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Abstract. There is a need to strike a balance between the pursuit of
personalized services based on a fine-grained behavioral analysis and the
user privacy concerns. In this paper, we consider the use of web traces
with truncated URLs, where each URL is trimmed to only contain the
web domain, to remove sensitive user information. In order to offset the
accuracy loss in user activity profiling due to URL truncation, we propose
a statistical methodology that leverages specialized features extracted
from a burst of consecutive URLs representing a micro user action. These
bursts, in turn, are detected by a novel algorithm which is based on our
observed characteristics of the inter-arrival time of HTTP records. On
a real dataset of mobile web traces, consisting of more than 130 million
records and 10,000 users, we show that our methodology achieves around
90% accuracy in segregating URLs representing user activities from non-
representative URLs.

1 Introduction

Behavioral analysis of mobile users based on their web activities has the potential
to transform their online experience. It enables service providers to personalize
their deliverable, specialize their content, customize recommendations and target
advertisements based on user context. For the network operators, it opens up
the possibility of provisioning their resources and dynamically managing their
network infrastructure (particularly, with the realization of network function
virtualization) to effectively serve the varying user and content demand in order
to deliver advanced quality-of-service experience.

However, behavioral analysis also raises serious concerns about user privacy.
Users are uncomfortable if personalization is taken too far. In the wider philo-
sophical debate between personalized services based on user behavior analysis
and preserving the user privacy, there is a need to find a middle ground that
will allow for potential benefits of personalized services and still safeguard the
fine-grained sensitive user information.1

Ideally, the data set for such analyses should be stripped of all sensitive user
information, while still allowing for inference of medium-grained user activity.

1 Specific search queries, personal entertainment preferences, purchased products,
location etc. are generally considered highly sensitive user information.
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This is becoming even more important with the tightening privacy legisla-
tions in various countries [1,4,7,18], increasing regulation (e.g., [8]) and heavy
penalties for data breaches which has made network operators as well as ser-
vice providers (e.g., [26]) more careful about the data sets they collect, store
and share. The operators would like to store the minimal amount of data
to still be able to perform complex analytics, raising the important ques-
tion of determining the thin boundary between the required data for neces-
sary analytics and the data that can enable mining of highly sensitive fine-
grained user traits. In this context, we consider the usage of truncated URLs,
wherein each URL is trimmed to only contain the web domain. For instance,
the HTTP URL finance.yahoo.com/q?s=BAC is truncated to finance.yahoo.com
(to hide the fact that the user had queried for Bank of America Corp. stock
price), the URL https://www.google.com/#q=postnatal+depression is trun-
cated to www.google.com (to avoid leaking the sensitive health query of the
user) and the URL www.amazon.com/Dell-Inspiron-i15R-15-6-inch-Laptop/dp/
B009US2BKA is truncated to www.amazon.com (to avoid leaking the searched
or purchased product). Already, many network operators only share the trun-
cated URL data-sets with third-party analysts, owing to privacy considera-
tions. For the non-HTTP traces (e.g., HTTPS encapsulated in IP packets), even
the network operators, themselves, have limited information available. While a
reverseDNS service can be used to extract the URL from the IP address, it does
not recovers the content type or the query parameters. Thus, it is important to
explore whether high accuracy can still be obtained in profiling user activities if
an analyst is restricted to only using truncated-URL web trace. In this paper,
we investigate this issue.

Specifically, we focus on the task of identifying URLs that are representative
of user activities, which is often an important step in profiling user activities.
We note that the remaining task of mapping the representative URLs to activity
categories (and creating user profiles) can be done using either manual labeling
of interesting categories or in an automated way by using external databases or
web analytics services (e.g., Alexa [2]).

The key challenge in filtering out the representative URLs from noisy trun-
cated traffic trace is that a truncated trace lacks many crucial features for such
a filtering. These include the file name suffix (e.g., .jpg, .mp3, .mpg etc.) that
is usually a good indicator of the content type as well as number, type and val-
ues of parameters in the URL strings. Nonetheless, we show that even with the
truncated URLs, we can achieve a highly accurate automated classification of
web-domains into those that represent the user activity and those that don’t.
The key insight that we bring in this paper is that a user’s traffic trace is com-
posed of many data bursts. A burst usually corresponds to a micro user action
like a web click, chat reply, etc. and is typically associated with a unique activity.
We show that novel features related to burst measurements, such as positioning
of a URL in a burst, the number of URLs in the burst containing the web-domain
etc., can improve the accuracy of filtering the noise (unintentional traffic such as
spam, analytics, advertisements as well as other non-representative traffic such
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as images, multimedia, scripts) out of the traffic trace, by around 20%, offsetting
the loss due to URL truncation.

To achieve this result, we need to decompose a traffic trace of a user into its
constituent data bursts. The problem here is that there is a significant variation
in the traffic pattern across different users, at different timestamps and different
activities. Even the distribution shape of the inter-arrival time of HTTP records
differs significantly from one user to another. We resolve this problem by propos-
ing a novel burst decomposition algorithm that adapts itself to any distribution
shape, rather than relying on specific distributions.

We provide an extensive experimental evaluation over more than 130 mil-
lion HTTP records generated from 10,000 users over a period of 30 days. The
experimental analysis demonstrates that our methodology provides high accu-
racy (around 90%), in segregating representative URLs from non-representative
URLs.

Our approach, thus, enables the network operators to personalize services
without risking the leakage of more sensitive user data (as the sensitive informa-
tion need not be stored or shared). Specifically, it enables many medium-grained
personalization applications, including, but not restricted to, product recom-
mendation and targeted advertisement. For instance, knowing when their users
read, shop, browse and play games, enables telecom operators to create bet-
ter pricing schemes that are personalized and targetted for different users and
demographics. Such profiling of user activity also opens up many avenues for
network optimization to service providers. For instance, system resources can
be better allocated to match the data access rate and desired delay time for
gaming activities at specific time in the day and better caching strategies can
be designed.

Outline. In Section 2, we show that there is a considerable variation in the user
activity, that necessitates the data-dependent feature extraction and complex
statistical models to deal with this problem. Section 3 presents an overview of our
methodology. In Section 4, we argue that there is a considerable variation in the
distribution shapes of the inter-arrival time of HTTP records and thus, the burst
decomposition techniques that rely on specific distribution shapes do not work
well across the entire user spectrum. In Section 5, we show how we can remedy
the situation by using a threshold on the inter-arrival time of HTTP records,
that adapts to the distribution profile of each user. Section 6 presents the results
of domain classification using the features extracted from burst measurements.
Section 7 presents an overview of some related work.

2 Variation in User Activity

The main goal of our investigation is to develop an automated procedure to
filter out representative URLs from the noisy trace of truncated HTTP records.
In this section, we describe our dataset. We show that in this dataset, there is a
significant variation between different users in terms of non-representative traffic,
user activities, number of HTTP records etc. In the next section, we propose a
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(a) (b) (c)

Fig. 1. Summary statistics for the traffic trace of a randomly chosen batch of 2000
users

novel methodology that employs robust algorithms for extracting user-dependent
features to overcome this high variation in user activity.

Dataset. Our dataset consists of more than 130 million web-logs generated from
randomly selected 10,000 users over a period of 30 days from an anonymous
network operator. In our traces, each record contains information fields such as
user hashed ID, truncated-URL, download size, upload size and timestamp. Note
that our dataset is not restricted to any particular domain or limited to a small
set of volunteer users. Being a network-side dataset, it is fairly large and diverse
in terms of the domains and the users covered. The flip side of this is that it is
also very noisy – it contains not just the URLs that a user types in his browser,
but also all the redirects, secondary URLs (pictures, embedded videos etc.) and
unintentional data (scripts, analytics, advertisement, spam etc.).

Variation in Total Traffic. We first observe that there is a significant variation
in the HTTP traffic generated by different users. For instance, the number of
HTTP records ranges from low tens for some users to tens of thousands for other
users, over the 30 day period of study. In fact, a majority of HTTP download
traffic (75%) is generated by just 31% of user (Figure 1a). We observe even more
skewed distribution for the traffic in terms of the generating activity domain.
Less than 0.5% of domains generate 75% of traffic in terms of download size
(figure 1b) and HTTP record counts (Figure 1c). Note that even though a large
majority (99.5%) of URLs together constitute only a small portion (25%) of
the traffic, these less popular URLs are more likely to characterize the unique
features of different users and therefore, they play a critical role in differentiating
user specific behavior. Thus, it is vitally important to correctly classify these
URLs into those that represent the user activities and those that don’t.

Variation in Type of Traffic. Even among the users with similar total traffic,
the kind of web activities and the fraction of non-representative URLs in the
traffic trace varies considerably between the users. For instance, Figure 2 shows
the web trace snapshot of two users, illustrating two different activity patterns.
Different colored segments in this figure represent traffic from different domains,
which can be either representative or non-representative. The trace of the first
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(a) (b)

Fig. 2. Snapshot of timestamped HTTP records with download size for two users,
showing a significant variation in amount of non-representative traffic

(a) (b)

Fig. 3. Daily record count of top 5 user activities for two users; different colored bars
represent different user activities such as reading, searching, gaming

user (Figure 2a) has only one domain, i.e. gaming, and in fact, repeated records
from a single URL for more than 1300 seconds. For this user, there is no non-
representative traffic to filter out. However, the web browsing activity of another
user shown in Figure 2b alternates between a large number of domains (scripts,
multimedia, HTML CSS, advertisements, analytics etc.) in less than 100 seconds,
even though he/she is browsing a single web-page during this time. This variation
in activity patterns is reflected in download size, inter-arrival time as well as
number of HTTP records. In addition, the timestamp patterns of HTTP records
also varies significantly from one user to another (see Figure 2).

Variation in User Behaviors. We also observe that there is a significant
variation between different users in terms of the activities themselves. To sum-
marize the aggregated variation of the top-k domains of both representative and
non-representative traffic, we use the following global entropy-based metric to
measure this variation:

Sa =
−∑

i
ni

nk log( ni

nk ) − log(k)
log(nk) − log(k)

, (1)

where ni is the number of times that URL i appears in the top k domains,
satisfying

∑
i ni = nk. By Equation (1), the variation metric Sa is maximized at

1 when all users have different non-overlapping top k domain set and is minimized
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at 0 when all users have the same non-ordered top k domain set. For the web
trace data, Sa is 0.484 with 1455 distinct domains from among the top k = 5
domains for the 2000 users. The discovered Sa value suggests that there is a
significant variation in the top activities among the different users. We show this
intuition graphically in Figures 3a and 3b, where we depict the activity variation
of two users over time. For this figure, we filtered out the non-representative
domains manually, selected top 5 representative domains for each user according
to the number of HTTP records. Figure 3 presents the daily record counts for
each representative domain and demonstrates both the temporal and activity
variations in terms of activity types and the magnitude across two randomly
selected users.

Summary. These above variational statistics imply that the methods to extract
features for separating noise from the representative URLs have to adapt to
changing user patterns. In particular, the variation in the total traffic and the
timestamp patterns necessitates user-adaptive solutions that we explore in the
next sections.

3 Our Methodology

In this section, we present an overview of our methodology to automatically
classify the web-domains into those that represent the user activities and those
that don’t. The key feature of this methodology is the usage of novel features
derived from the burst decomposition of a user’s web-trace that improves the
accuracy of the classification, offsetting the loss due to URL truncation.

The main intuition behind our methodology is that a user’s browsing activ-
ity consists of several data bursts. These data bursts correspond to micro user
actions, such as a web click or a chat reply. In each burst, there are some URLs
representing the user activity intermixed with other unintentional web-traffic
such as advertisements, web-analytics etc and secondary URLs corresponding to
multimedia associated with the representative URL. Our statistical methodology
decomposes the web-trace back into its constituent data bursts. It then lever-
ages specialized features from data bursts (e.g., the position of a URL in a data
burst, the number of unique URLs in a data burst, burst duration, burst down-
load size etc.) to segregate the representative web-domains from the remaining
web-domains. In Section 6, we show that the usage of features derived from data
burst help in significantly improving the accuracy of the segregation task.

A key challenge in our methodology is the decomposition of the web-trace
into data bursts. As highlighted already in Section 2, there is a considerable
variation in the traffic patterns of different users. We found that even the distri-
bution of inter-arrival time of HTTP records is very different for different users.
This makes it particularly difficult to model these data bursts and to find good
thresholds to decompose the web-trace into data bursts. We solve this problem
by having different thresholds for different users and ensuring that the thresh-
old computing function is robust with respect to the distribution shape. This is



122 T. Mai et al.

achieved using a novel technique to generate thresholds for each user that adapts
to any distribution of inter-arrival time.

4 Inter-arrival Time Distribution Models

In this section, we study the inter-arrival time of HTTP records with a view to find-
ing good thresholds that will decompose a user’s traffic-trace into burst of records
that represent micro user actions.

As described in Section 3, the key concept behind burst is that when a user
performs a micro action like web click, chat reply etc., it not only generates many
HTTP records related to the representative activity, but also a large number of
secondary records such as advertisements, web analytics, webscripts etc. These
records are all intermixed. When the user completes the current micro-action, e.g.
reading the current web page, and starts a new one, e.g. opening the next page, a
new burst is generated with its associated records. So, the observed inter-arrival
time records are the combined results of within-burst and out-of-burst records.
However, we expect that the within-burst HTTP records are closer together and
the out-of-burst records are far apart in time. By computing an appropriate sepa-
ration threshold on the inter-arrival time, we aim to decompose the traffic into its
constituent bursts.

Since traffic patterns and the inter-arrival time distributions for different
users are very different, we can’t expect a global threshold to work well for all
users. Instead, we compute a different threshold for each user specific to his/her
traffic patterns. If the difference between the time-stamp of a record and its
predecessor is greater than the computed separation threshold for that user, the
record marks the beginning of a new burst. Otherwise, the record belongs to the
burst of its predecessor.

To learn the separation threshold for each user, our first approach is to
learn the probability density function of inter-arrival time for the users. By
computing the best-fitting parameters for this density function for each user
and defining the separation threshold as a function of those parameters, we can
decompose the traffic trace for each user into its constituent bursts.

We modeled personalized inter-arrival time distributions by exploring differ-
ent density functions, such as exponential distribution, pareto distribution and
mixtures and concatenations of these distributions (details provided in [14]).
From the analysis, we found that even these general density functions are not
flexible enough to accommodate highly varied and personalized inter-arrival time
of different users. Thus, we concluded that even though this formalism is prin-
cipled, there is a need for a more robust technique to separate within-burst and
out-of-burst records, that is independent of the personalized distribution shape
of a user.

5 Burst Decomposition Using Adaptive Thresholds

In this section, we propose a robust burst decomposition algorithm that is inde-
pendent of the distribution shape. Our technique only relies on the general
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Algorithm 1. Burst Decomposition

1. Divide inter-arrival times into bins bi of length l with counts ci

2. Calculate ki = ci∑i
j=1 cj

3. Find the smallest index i� that ki�+j < p ∀j = 1..J
4. Define the inter-arrival threshold τ� = l × i�

5. Group consecutive URLs with inter-arrival times τ < τ� into bursts.

characteristics of the inter-arrival time distribution (cf. [14]), but not on any spe-
cific model. The only characteristic of the inter-arrival time distribution that we
use is that there is a within-burst component with high arrival-rate of records (and
small inter-arrival time), an out-of-burst component with low arrival-rate (high
inter-arrival time) forming a long tail and that these two components are separa-
ble with a threshold. Our aim in this section is to have a threshold that adapts
itself to any inter-arrival time distribution, subject to this general property.

We first observe that an optimal threshold τ� is expected to lay in a low
probability range and should satisfy the following conditions:

– ∀ x < τ�, p(x) should, generally, be high and show the presence of bursts
– ∀ x >= τ�, p(x) should, typically, have low values and imply user inactivity

periods

In order to satisfy the above conditions, τ� has to intercept the minimum
x point where the probability density function of inter-arrival time distribution
decays to fairly close to zero and the density of p(x) values beyond τ� is minimal.

However, to quantitatively measure the significance of each p(x) value, we
need a scalar indicator that would determine when a p(x) value is minimal. This
approach would suffer from the selection of a global scalar indicator that would
fail in detecting the intrinsic variations of the density proportion between the
within bursts and out-of bursts components for different users.

Therefore, instead of using this approach of quantifying p(x), we leverage the
conditional density, i.e. p(x)dx∫ x

0 p(y)dy
, to determine τ�. Note that, p(x)dx∫ x

0 p(y)dy
≈ ci∑i

j=1 cj

which is the probability that a time sample belongs to bin i, conditioning on the
fact that it belongs to a bin less than or equal to i: ki = Pr(x ∈ bi|x ∈ b1:i). In
other words, ki measures the contribution of the current bin to the accumulated
probability.

Our Algorithm 1 searches for τ� by starting from the smallest value of the
inter-arrival time density such that the extended probability by increasing decay-
ing point is insignificant, compared to the accumulated probability at that point
(as captured by ki). Specifically, the threshold τ� is found when the contributions
of J consecutive bins are less than a predefined probability, for a pre-specified
parameter J .

The burst decomposition algorithm will group all the records with inter-
arrival time less than the obtained τ� into actual bursts.
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In the next section, we provide evidence that this algorithm detects mean-
ingful bursts that significantly improve the classification accuracy in identifying
the domains that represent user activities.

τ

Fig. 4. Calibrating parameter p by examining the variation of user behaviors through
the threshold τ�

We estimate the values of the scalar indicator, p, used in the Algorithm 1
based on an analysis of the corresponding τ� values across all users. In Figure 4
we only report the τ� behaviors of 200 users as representative of entire τ� values
computed across all users. It is easy to notice that for p = 0.01 the τ� would range
from 1 to 10 seconds, which is a reasonable range to separate inter-arrival time
values between within burst and out-of bursts for activities such as web browsing,
reading, shopping, etc. Hence, this value of p was used in our experimental
analysis.

Next, we examine the results of our algorithm with respect to users with
substantially different behaviors. Even though the distribution shapes and the
number of records characterizing these three users are very different, the algo-
rithm successfully finds a user specific τ� as shown in Figure 5.

6 Domain Classification

In this section, we describe our classification model for identifying the represen-
tative URLs and show that it is possible to achieve very high accuracy for this
task even with truncated URLs. Features extracted from the burst decompo-
sition presented in Section 5 play a crucial role in significantly improving the
accuracy of our classification model.

Classification Model Formalization. We use a logistic regression model for
the domain classification problem. Our model for logistic regression is as follows:

yi ∼ Bernoulli(qi), (2)

ln(
qi

1 − qi
) = μi = β0 +

∑

l

βlxi,l, (3)
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(a) Low activity user: 71
records.

(b) Medium activity user:
6764 records.

(c) High activity user:
35116 records.

Fig. 5. User dependent τ� obtained from burst decomposition algorithm

where yi is the binary label (yi = 1 if URL i is representative and yi = 0 other-
wise) and xi,l is the specific classification feature that we derive from record-level
and burst-level analysis in Section 6.1 and 6.2. The representative probability
qi is computed by the logistic function on a linear predictor μi and all the
parameters are estimated by the Iteratively Re-Weighted Least Squares (IRWLS)
method [20].

The domain classification follows three steps. First, we manually label 400
URLs into two classes: representative and non-representative domains. Second,
we extract five sets of web traces generated out of 2K random users each, perform
the burst decomposition and obtain aggregated measurements independently for
each set. Finally, half of the labelled URLs of the first set are used in training the
classifier, which is validated by the other half of the first set and the remaining
four. We use five different sets to validate the robustness of our approach.

We demonstrate the accuracy of our classification approach in two steps. We
first study the accuracy obtained by only using the record-level features and
ignoring the burst-level features. Then, we show the improvements we gain by
adding the burst-level features which are derived upon the detected bursts from
our burst decomposition algorithm.

Record-level Features. The key part of our modeling is feature engineering,
or identifying the right set of features to achieve a high accuracy. For the record-
level features, shown in Table 1, we use the aggregated measurements across
all users and compute the quantile values k by ranging k from 5 to 95 with an
increment step equal to 5. These features were carefully selected to achieve a
high accuracy with record-level features. Specifically, for each record we collect
the leading and following inter-arrival time and the upload and download size.
These features are examined as covariates in our domain classification model.

6.1 Accuracy with Record-level Features

Accuracy. As shown in Table 2, the resultant accuracy with the record-level
features is quite poor. For the five sets of web traces, the accuracy varies between
69.7% and 72.9%, implying that around 30% of the URLs are misclassified.
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Table 1. Aggregated measurements at record-level where R(i) denotes the set of
records containing domain URL i

Record-level features (wrt R(i))

tr,l,k Quantile k of the leading inter-arrival time

tr,n,k Quantile k of the next inter-arrival time

sr,u,k Quantile k of the upload size

sr,d,k Quantile k of the download size

Table 2. AIC and classification
accuracy with record-level features

AIC BIC Classification accuracy on
5 sets of 2K users each.

CR 242.82 252.72 69.7 72.9 71.0 70.8 71.4

Table 3. Estimated values (βl),
standard deviation (σβ), p-values
and significance (SIG) for logistic
regression model with record-level
features

Feature βl σβ p-value SIG

Intercept −1.41 0.38 1.8e − 4 ***

sr,d,75% − sr,d,25% −0.03 0.01 4.7e − 4 ***

sr,u,50% 0.86 0.26 1.0e − 3 ***

Among the analyzed features we have discovered two particularly important:
x·,1 = (sr,d,75% − sr,d,25%) and x·,2 = sr,u,50% by the stepwise model selection
procedure. The first is the difference between the 75 and 25 quantile statistics
of the download size per domain and the second is the 50 quantile statistic of
the upload size. The estimated coefficients for this model is shown in Table 3,
implying that domains with small variation of download size and high value of
upload size have higher chance of being representative domains. However they
are the most relevant features at record-level, their discriminatory capacity still
remains limited.

6.2 Accuracy with Burst-level Features

In this section, we show how the accuracy improves with features measured at
burst-level.

Burst-level Features. By leveraging the burst decomposition algorithm, we
segment our web traces in a series of consecutive bursts and we measure burst-
specific characteristics. Specifically, for each URL i, we choose a list of aggregated
measurements, shown in Table 4, where B(i) denotes the set of bursts contain-
ing URL i. We observe that two burst features, i.e. ob,j and ub,j (j = 1 : 2),
in Figure 6 are particularly important in improving the domain classification
results. The first measure, i.e. ob,j , describes the probability that a URL is ranked
j in its burst and the second, i.e. ub,j , quantifies the probability that there are j
unique domains in the burst containing the URL (j = 1 : 2). Similar to record-
level features, these aggregated measurements are examined as covariates in our
domain classification model.
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Table 4. Aggregated measurements
at burst-level where B(i) denotes the
set of bursts containing URL i

Burst-level features (wrt B(i))

ob,j The probability that URL i is ranked j-th
(j = 1 : 9)

ub,j The probability that a burst containing
URL i has j unique URLs (j = 1 : 9) in the burst

db,k Quantile k of burst duration

tb,l,k Quantile k of the leading inter-arrival time
of a burst

tb,n,k Quantile k of the next inter-arrival time of
a burst

sb,u,k Quantile k of the burst upload size

sb,d,k Quantile k of the burst download size

Table 5. Estimated values (βl),
standard deviation (σβ), p-values
and significance (SIG) for logistic
regression model with all features

Feature βl σβ p-value SIG

Intercept −3.30 0.52 2.2e − 11 ***

ob,j=1 22.87 3.32 5.5e − 12 ***

ub,j=2 −9.51 3.45 0.01 **

(a) (b)

Fig. 6. The probability ob,j that a URL is ranked j in its burst and the probability
ub,j that there are j records in the burst containing the URL (j = 1 : 2) for different
domains

Discriminating Features. We perform a model selection procedure, based
on AIC, to select the most discriminating features for our classification model
and starting from those listed in Table 4. We observe that the feature ob,j=1 =
ob,j=1−ub,j=1 is selected with high significance. The intuition behind this is that
the URLs which usually come first in bursts are more likely belonging to the rep-
resentative class. Thus, ob,j=1 is a good distinguishing feature between represen-
tative domains (SEARCH ENGINE, WEB PORTAL) and non-representative
domains (ADS, CDN) (as shown in Figure 6). Solely using this feature will mis-
classify domains from STATIC CONTENT class as representative (as these are
also likely to come first in burst). This class includes many CSS HTML pages
and static images on web-pages. However, the exceptions such as those from
STATIC CONTENT class have a high probability of being alone in their bursts,
as shown by ub,j=1 in Figure 6. Thus, the feature ob,j=1 is able to distinguish
between most representative and non-representative domains.
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Fig. 7. Logistic curve of the predictor
and the histograms of labelled observa-
tions

Fig. 8. Receiver operating characteris-
tic curve

Note that the domains in theSEARCHENGINE class have a unique character-
istic, i.e. they show high values in both ub,j=1 and ob,j=1 features. However, the dif-
ferenced ob,j=1 can still act as a discriminator in selecting representative domains.

The corresponding estimated coefficients βl are shown in Table 5 along with
standarddeviation andp-values, indicating all significant coefficients.As explained
above, domains that have high rankings among others, i.e. do not appear alone in
their bursts, aremore likely tobe representative domains.Fromthe estimatedvalue
ub,j=2, we can also see that domains appearing in small bursts of few unique records
have smaller chance of becoming representative domains.

6.3 Trade-off Between Classification Metrics

The relation between the linear predictor μi and representative probability qi is
plotted in Figure 7, together with the binary labelled observations and histogram
of each domain class. The red vertical line represents the decision boundary such
that all URL with qi ≥ h = 0.5 are put into representative class and the other
are in the non-representative class. Hence, the ratio between the points on the
left and right of the red line at row q = 0 corresponds to the ratio between true
negative-ness and false positive-ness. Similarly, the ratio between true positive-
ness and false negative-ness is at row q = 1.

In Figure 7, we use the boundary value h = 0.5, corresponding to the case of
minimizing the number of misclassification cases to separate between represen-
tative and non-representative records. However, from a decision theory point-of-
view, as the false-positive and false-negative penalties are usually different, we
may want to optimize the boundary value by customizing these penalties based
on application specific requirements. For instance, let’s consider an application
that generates users’s profiles. These kind of applications may want to put a
higher penalty for false negatives (representative URLs incorrectly classified as
non-representatives) than for false positives (non-representative URLs correctly
classified as representative). This is because when determining the activity of a
burst, there is an opportunity to prune out the noise (non-representative URLs)
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Table 6. Trade-off between accuracy,
sensitivity, precision and specificity

h 0.500 0.166

Precision 0.93 0.77

Negative Predictive Value 0.90 0.95

Sensitivity 0.78 0.91

Specificity 0.97 0.87

Accuracy 0.91 0.88

Table 7. AIC and classification accuracy

AIC BIC Classification accuracy

CB 112.80 122.69 90.0 88.3 90.2 89.2 90.5

CR 242.82 252.72 69.7 72.9 71.0 70.8 71.4

further, while the representative URLs lost in the process are unlikely to be
re-inserted later on. Thus, these applications should be calibrated to improve
sensitivity, i.e. the ratio of correctly classified representative URLs to the total
number of representative URLs.

Because the penalties are problem-specific and not obvious in many con-
texts, we show the trade-off between true positive rate (complement of false
negative rate) and false positive rate with the receiver operating characteristic
curve (ROC) in Figure 8. The figure also illustrates another optimal boundary
point in purple for the case of minimizing the sum of false positive and false neg-
ative rates. The high value of area under the curve (AUC), [9], again confirms
the good performance of our classifier.

Table 6 provides further statistics on the trade-off between false positives
and true negatives for two different values of the boundary, that were shown
in Figure 8. These trade-offs are characterized in terms of precision, negative
predictive value, sensitivity, specificity and accuracy. We note that while the
value of h = 0.5 results in higher precision and accuracy, the h = 0.166 results
in better sensitivity. Thus, for applications with more emphasis on accuracy, we
may choose h = 0.5, while for applications where sensitivity is crucial, we may
select h = 0.166.

Accuracy. The usage of burst-level features, and in particular ob,j=1, results in
significant improvement in the accuracy of the classification model. As shown
in Table 7, the accuracy improves from around 70% to around 90%; AIC value
drops from 242.82 without burst-level features to just 112.8 with these features;
and finally, the BIC drops from 252.72 to 122.69.

Altogether, these results show that it is possible to achieve a 90% accu-
racy in segregating representative URLs from non-representative URLs by using
burst-level features on truncated URL web-traces. In other words, the burst
decomposition and the extraction of specific features from the bursts over-
come the information lost due to URL truncation. Note that this accuracy is
in terms of the number of URLs correctly classified as being representative or
non-representative. Popular URLs are more likely to be correctly classified by
our methodology and thus, the accuracy in terms of number of records, download
size (e.g., to answer questions like how much download is generated correspond-
ing to each activity type) or number of bursts (identifying the activity for each
burst) is likely to be significantly higher.
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7 Related Work

The past research related to identifying URLs representing user activities falls
into the following categories:

1. Filter out the unintentional traffic by relying on URL suffixes (e.g., .mp3, .js
etc.), URL header patterns, HTTP referrers and HTTP blacklists. This cate-
gory critically relies on full HTTP web-traces. For some papers (e.g., [24]) in
this category, the setting even allows to take a peek into a user’s full network
traffic (including a deep packet inspection of the content). The full HTTP
URLs can reveal highly sensitive user information and their usage raises seri-
ous privacy concerns. For instance, Song et al. [16] highlighted a practical
privacy attack that exploits seemingly-anonymous recorded information of
shortened URL service such as HTTP referrer URLs, countries, browsers,
platform, etc to infer the clicking pattern of a specific user. In contrast, our
focus is on inferring medium-grained user behavior analysis from minimal
traffic traces (truncated-URLs) and on techniques that will allow us to offset
the accuracy loss due to URL truncation.

2. Providing an activity description at a very coarse level (e.g., peer-to-peer net-
working, HTTP browsing, chatting etc.) by filtering out URLs based on con-
nection port number, packet payload, statistical traffic patterns etc. [15,25],
primarily for the purpose of network traffic analysis and traffic classifica-
tion (e.g. for CDN). This is clearly different from our HTTP domain-level
segregation.

3. Manual blacklisting of URLs to filter out spam, adult content or advertise-
ments. This has obvious scalability limitations and it is very expensive to
manually maintain the blacklists. Furthermore, the existing blacklists (see [23]
for a list of many manual blacklists) are for specific purposes (such as spam,
adult content, advertisements) anddonot contain all non-representativeURLs
(such as multimedia associated with the main content).

Our work deals with a large, diverse, but noisy traffic trace from a network-
side. This allows us to perform a detailed study that is not limited to a few
domains or restricted to a few volunteer users. This is in contrast with many
publications on behavior analysis that deal with data from users or service-
providers.

Privacy Preserving User Profiling. There has been considerable work
in recent years on privacy preserving personalization. Herein, we list a few
approaches:

Bilenko and Richardson [5] also consider the problem of user profiling while
mitigating the privacy concerns. However, their approach is based on storing the
sensitive information on the client side, in the form of cookies or browser local
storage. The storage of this sensitive information still leaves a user vulnerable
to privacy violations. On the other hand, our user profiling does not require the
sensitive information to be stored at all. Similar client-side approaches in the
context of personalized search (e.g., [21]) and online advertisements (e.g., [19])
have also been studied.
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Nandi et al. [3] take an alternative approach to privacy preserving personal-
ization. They replace the user traces by traces of group of similar users. However,
this requires user segmentation, which in turn, requires significant historical data.
Also, this results in an aggregate level personalization and not an individual level
personalization.

Also, there are some theoretical solutions based on k-anonymity [17] and
l-diversity [13] for preserving privacy. However, it is not clear if they can be
useful for profiling personalized time-series data. There are also some approaches
(e.g. [12]) that add random or correlated noise to the data to preserve the privacy.
However, such approaches also introduce more noise in the user profiles.

Burst Detection. Kleinberg [11] proposed a discrete state space model as a
burst detection algorithm, with applications in email streams. However, the focus
of this solution is the varying exponential distribution’s rate, modelled by the
hidden state. The rate characterizes the email arrival of a temporal local period
but does not provide a clear distinction between within-burst and out-of-burst
records. For example, even when the rate goes down to the smallest value, the
positive skewness of exponential distribution still favours small inter-arrival time
samples. Such an approach is unlikely to work for our problem of segregating
two inter-arrival time classes.

Karagiannis et al. [10] showed that the accuracy of exponential distribution
varies with different backbone packet traces. In general, exponential distribution
has nice mathematical features such as memoryless-ness and closed-form solu-
tions of sum-concat-minimum operators. However, its light tailed property may
not be a good match to some datasets.

8 Discussion

We have proposed a novel methodology to identify URLs representing user activ-
ities from a truncated URL web-trace. Our statistical methodology offsets the
loss in accuracy due to URL truncation by considering additional features derived
from the burst measurements. To enable the computation of burst-level features,
we propose a novel technique for burst decomposition.

Once the set of representative URLs is identified, one can compare the (live)
streaming web-traces of users to infer medium grained activities in real-time
and offer personalized services. Burst decomposition can play a critical role in
this part as well. Once the user-adaptive thresholds are identified, our burst
decomposition algorithm can be used to decompose the streaming trace into
bursts and a unique URL representing the activity in that burst can be identified
using the identified set of representative URLs.

We consider that our methodology can be very useful for providing personal-
ized services, while being considerate about more sensitive user privacy data. For
instance, state-of-the-art techniques to predict click-through-rate (CTR) rely on
behavioral targeting of fine-grained user data [6], such as advertisement clicks,
web-page clicks, page views and search query data. A medium-grained user pro-
filing, such as the one created by our technique, can be used to provide good
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CTR predictions while preserving privacy considerations. Similarly, user segmen-
tation based on behavioral targeted advertisement (e.g., [22]) can also benefit
from our medium-grained profiling. Our profiling can also be employed to re-rank
the search results for a more personalized experience (similar to the approach in
[21]). More generally, we hope that our work will lead to deeper studies on the
usage of truncated URL traces, as a means to striking the fine balance between
personalized services and user privacy.
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