Yjs: A Framework for Near Real-Time P2P
Shared Editing on Arbitrary Data Types

Petru Nicolaescu®™, Kevin Jahns, Michael Derntl, and Ralf Klamma

RWTH Aachen University Advanced Community Information Systems (ACIS)
Group, Ahornstr. 55, 52056 Aachen, Germany
{Nicolaescu, Jahns,Derntl,Klamma}@dbis.rwth-aachen.de
http://dbis.rwth-aachen.de

Abstract. Near real-time shared editing of documents in the Web
browser has become popular for many applications like text writing,
drawing, sketching and others. These applications require protocols
for exchanging messages among user agents and for resolving editing
conflicts. The available frameworks mostly rely on operational trans-
formation approaches and often expose drawbacks like failing to scale,
restriction to linear data structures and client-server architectures. In
this paper we present Yjs, a lightweight open-source JavaScript frame-
work that can be used for collaborative editing of arbitrary data types
in peer-to-peer settings. The framework is based on a new operational
transformation-like approach and supports communication protocols like
XMPP and WebRTC. From an engineering perspective Yjs is easy to
integrate into Web applications. Evaluations show that it has a favor-
able runtime complexity.

Keywords: Near real-time collaboration - Shared editing - Web
framework

1 Introduction

Shared editing software enables multiple users to collaborate on shared data [3].
In a near real-time (NRT) setting, collaborators apply changes to their local copy,
while concurrently sending and receiving notifications of those changes via some
communication protocol. Google Docs is a good example of such an application.
It uses Operational Transformation (OT) [1] and a client-server infrastructure for
resolving conflicts occurring during NRT collaboration sessions. However, both
existing literature [8] and practical experience show that current shared editing
approaches do not scale well with the number of users in pure peer-to-peer set-
tings. Moreover, they mostly enable collaboration on linear data structures but
are not designed for non-linear ones (e.g., graphs, custom abstract data types).
To overcome this gap we have developed Yjs!, a framework that allows devel-
opers to conveniently add collaborative features to Web applications. It offers a

! Developer documentation and a demo can be found at http://y-js.org.

© Springer International Publishing Switzerland 2015
P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 675-678, 2015.
DOI: 10.1007/978-3-319-19890-3_55


http://y-js.org

676 P. Nicolaescu et al.

customizable approach for any required shared abstract data type. Based on a
modular design Yjs contains a collaboration engine that resolves editing conflicts
and ensures the shared data integrity across peers, and various connectors for
propagating the collaboration-related updates across the network.

Our demo showcases the usage of Yjs on text, JSON and DOM elements
(XML), using both WebRTC and XMPP connectors. As such, collaborative edit-
ing using text, HTML5 elements and HTML5 Web pages is part of the demo
scenario. The focus is on the reliability and usability of the framework in ad hoc
peer-to-peer settings. Presented recently in a lightning talk at the European open
source conference in Brussels (FOSDEM’15), Yjs is already garnering interest
from the open-source community. We target the adoption of NRT collaboration
for existing and new Web applications by leveraging lightweight applications,
where collaboration logic can be easily engineered on the client side.

2 Features of the Distributed Shared Editing Algorithm

Most OT frameworks support collaboration on text, JSON and/or XML [2,4,5].
However, due to the difficulty of implementation and dealing with known OT
collaboration puzzles, they fail to scale with the number of users in peer-to-
peer environments [8]. Namely, they do not always converge or they need a
centralized mechanism for creating a total order for local operations. Moreover,
in terms of applying operations on a local copy of a shared data, in a client-
server approach there are n execution orders, where n is the number of users,
whereas in a peer-to-peer approach, the clients have one connection to every
collaborator and there are n(n —1)! execution orders that need to be considered.
Yjs proposes a new type of algorithm and a modular implementation that scales
to peer-to-peer communication between the clients. The algorithm, similar to
efficient existing OT approaches [7,8] has a favorable time complexity. Instead
of defining an operation as a tuple of position and content, we define it as an
insertion between two other operations (similar to the WOOT approach?). This
has positive implications on preserving the user intention for the order of applied
operations and enables a worst-case time complexity of O(C?), where C is the
number of concurrent operations at the same position.

Important advantages of Yjs’ algorithm are therefore that it reduces time
to synchronize shared data among clients (e.g., after a late join), can handle
more clients at the same time and minimizes the space needed for propagated
messages. Compared to classic OT algorithms it does not require propagation of
complex internal structures (i.e., state vectors). Due to space limitations, details
about the algorithm and its formal proof will be published in the near future.

3 Yjs Framework

In contrast to similar implementations that support only a very limited number
of document structures, the Yjs framework encourages developers to build cus-
tom data types. A custom type can use existing types (e.g., from third parties)

2 https://hal.inria.fr/inria-00071240/document


https://hal.inria.fr/inria-00071240/document

Yjs: A Framework for Near Real-Time P2P Shared Editing 677

in order to give meaning on the actions on the data and can fire custom events.
Among existing implemented types are String, Array and Object. Internally, a
linear data type is represented as a doubly linked list. Each composing element
(e.g., a character of a word) represents an item of the linked list having a pre-
decessor and a successor. When an element is deleted by an operation, it will
not be removed from the linked list, but its content will be set to empty. Only a
built-in garbage collector can remove elements completely from the linked list,
when it can assure that no conflicts will occur. Yjs is currently available as a
collection of open-source JavaScript libraries on GitHub?.

In order to keep the modularity and to be able to employ Yjs in various
Web engineering settings, the communication protocols and the shared data
type formats support are implemented as dedicated interchangeable components.
This greatly simplifies the process of integrating the framework into an existing
project, since existing projects typically use diverse communication protocols
(e.g., Web Sockets, IWC, XMPP), and collaborate on various data types (e.g.,
XML, JSON, graphs). Support of different communication protocols is imple-
mented in connector components, and the support for data types in type compo-
nents. While the text document component only supports simple insert, delete
and replace operations, the interface for XML documents inherits all the features
(events, and DOM traversal / manipulation) of the browser DOM element. This
means that the XML document can also be easily queried and manipulated via
jQuery using its XML manipulation features.

4 Evaluation

To evaluate the scalability and correctness of Yjs we performed multiple auto-
matic tests simulating many users working on a single shared document. Every
user was represented by an instance of the Yjs framework. For this, we used a test
connector that simulated a peer-to-peer environment, configurable with respect
to number of users and actions that can be created. We connected each test user
directly with all other users by means of the test connector (resulting in a total
connected network). Furthermore, we enabled the option to restrict the collabo-
ration to a specific data type (e.g., text or JSON with primitive data types and
XML attributes). Among the test cases we considered various network delays
in the peer-to-peer communication, generation of random operations created in
different contexts and varying order of received operations at every peer [7].

Using this setting we created and executed 10000 actions on text and JSON
with various test agents, ranging from 1 to 10. The tests ran on one single CPU
only (Intel i7, 3.4 GHz). We ran the test 15 times to obtain solid average timings.
The results showed that in average 100 actions per millisecond can be performed,
which we consider to meet well the NRT collaboration expectations.

In terms of real-world applications, Yjs was used for enabling free-hand col-
laborative video annotation at frame level in near real-time. The annotation tool

3 https://github.com/y-js


https://github.com/y-js

678 P. Nicolaescu et al.

evaluation also showed that the framework outputs reliable results and that it
is easy to use from a developer’s perspective.

5 Conclusion and Future Work

Our proposed example scenarios showcase NRT collaboration on text, JSON ele-
ments and XML in terms of DOM (collaboratively building a Web page). The
scenarios use both XMPP and WebRTC in order to demonstrate the trade-off
between federation and responsiveness. Our results show that XMPP provides
a better scaling in number of users than WebRTC, which in turn provides more
efficient response times. We are currently implementing the undo functionality.
Furthermore, we are investigating ways to persist the internal Yjs data repre-
sentations for improved performance.

Yjs is being integrated in several open-source projects. We plan to use Yjs
with our DireWolf framework [6] for widget distribution in order to synchro-
nize the state between the Web components. Further usage of Yjs—also in the
domain of mashup applications—is to integrate it as NRT collaboration and
state preservation solution in modeling and widgetizing Web applications.

Acknowledgements. This research was funded in part by the European Commis-
sion in the projects “Layers” (FP7-318209) and “METIS” (531262-LLP-2012-ES-KA3-
KA3MP).

References

1. Ellis, C.A., Gibbs, S.J.: Concurrency Control in Groupware Systems. SIGMOD
Record 18(2), 399-407 (1989)

2. Gerlicher, A.R.S.: A Framework for Real-Time Collaborative Engineering in
the Automotive Industries. In: Luo, Y. (ed.) CDVE 2006. LNCS, vol. 4101,
pp. 164-173. Springer, Heidelberg (2006)

3. Grudin, J.: Computer-Supported Cooperative Work: History and Focus. Computer
27(5), 19-26 (1994)

4. Heinrich, M., Griineberger, F.J., Springer, T., Gaedke, M.: Enriching Web Applica-
tions with Collaboration Support Using Dependency Injection. In: Brambilla, M.,
Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 473-476.
Springer, Heidelberg (2012)

5. Ignat, C.-L., Norrie, M.C.: Multi-level Editing of Hierarchical Documents. Computer
Supported Cooperative Work (CSCW) 17(5-6), 423-468 (2008)

6. Kovachev, D., Renzel, D., Nicolaescu, P., Koren, I., Klamma, R.: DireWolf: A Frame-
work for Widget-based Distributed User Interfaces. Journal of Web Engineering
13(3&4), 203—222 (2014)

7. Sun, D.; Sun, C.: Operation context and context-based operational transformation.
In: Proceedings of the 20th Anniversary Conference on Computer Supported Coop-
erative Work (CSCW 2006), pp. 279-288 (2006)

8. Weiss, S., Urso, P., Molli, P.: Logoot: a scalable optimistic replication algorithm for
collaborative editing on P2P networks. In: Proceedings of the 29th IEEE Conference
on Distributed Computing Systems (ICDCS 2009), pp. 404-412 (2009)



	Yjs: A Framework for Near Real-Time P2P Shared Editing on Arbitrary Data Types
	1 Introduction
	2 Features of the Distributed Shared Editing Algorithm
	3 Yjs Framework
	4 Evaluation
	5 Conclusion and Future Work
	References


