Conflict Resolution in Collaborative User
Interface Mashups

Michael Hertel, Alexey Tschudnowsky®), and Martin Gaedke

Technische Universitat Chemnitz, Chemnitz, Germany
{Michael.Hertel,Alexey.Tschudnowsky,
Martin.Gaedke}@informatik.tu-chemnitz.de

Abstract. User Interface (UI) Mashups propose methods and tech-
niques, which should enable non-programmers to develop their own
widget-based solutions. At the moment the process of configuring UI
mashups is mainly a single-user activity. Adding support for real-time
collaboration to the composition tools could make the development pro-
cess more “social” and, thus, further lower the entry barrier and make
users more productive. The paper describes challenges and possible solu-
tions to enable real-time collaboration in UI mashups with particular
focus on resolution of conflicts, which can occur as a result of concurrent
modifications. Implementation of the proposed mechanisms is demon-
strated in the context of an open-source mashup platform Apache Rave.

Keywords: User interface mashups - Real-time collaboration - Opera-
tional transformation - Conflict resolution

1 Introduction

A UI mashup is a Web application, which is developed by the composition of
components called widgets, which hide complexity of underlying technologies
behind graphical user interfaces [8]. Interactions between widgets usually takes
place over configurable connectors or emerge in a self-organized fashion based
on capabilities of widgets. By developing Ul mashups non-technical users should
be enabled to solve situational problems faster and more efficiently [1].

Currently the majority of Ul mashup composition tools are single-user appli-
cations. Enabling a collaborative use could yield added value to the platforms
due to knowledge exchange, synergy effects and faster composition process [3].
However, building Web applications with real-time collaboration capabilities is
a challenging task and requires a careful design of synchronization algorithms
and conflict resolution mechanisms [2].

This paper describes an approach to integrate real-time collaboration capa-
bilities to UI mashup development platforms. We demonstrate, how Operational
Transformation (OT) algorithm [7] can be applied to maintain consistency of
mashup models. The approach is implemented as an extension to Apache Rave!,
a publish-subscribe-based UI mashup platform.

! http://rave.apache.org/

© Springer International Publishing Switzerland 2015
P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 659-662, 2015.
DOI: 10.1007/978-3-319-19890-3_51

http://rave.apache.org/

660 M. Hertel et al.

2 Conflict Resolution Using OT

Conflicts emerge from concurrent actions that do not satisfy the consistency
model as defined in [5]. OT as a concurrency control mechanism is well suited
and increasingly applied for preserving consistency in real-time collaboration
applications. OT consists of a generic control algorithm, a data model specific to
a concrete application, operations and transformation functions. The fundamen-
tal concept of OT is the modification of conflicting operations by transforming
them against all previously applied concurrent operations so that they eventually
satisfy the consistency model.

2.1 Data Model

In the following we consider publish-subscribe-based Ul mashups with user-
defined communication restrictions as proposed in [6]. The following OT-specific
data model is used. A mashup is a list of so called areas, which are lists of wid-
gets. Widgets can not be placed freely on the workspace, but rather allocated
to areas or re-ordered within them. Each widget has a set of properties, a view
mode and a configuration of its inter-widget communication (IWC) behavior.
Properties are unordered key-value pairs. Viewmode is a method of widget ren-
dering: “normal”, “minimized” or “maximized”. IWC configuration is a set of
restrictions, which describe, which receivers and which topics are forbidden to
be used for message publications.

2.2 Operations

Each defined operation has to affect the OT data model for enabling consis-
tency maintenance with OT. The concept of site identifiers is used for situations
where a global unique decision is required, i.e., the same data was modified con-
currently. Every operation transmits the unique identifier of its origin instance
as the last parameter sid. It allows a global definite decision without a dedicated
server. The following OT operations are defined for the synchronization of the
mashup structure:

— AddWidget(id, area, pos, width, height, viewmode, properties, iwcsettings,
sid) adds a new widget to the mashup into the area at the position pos.

— MoveWidget(id, areaOld, posOld, areaNew, posNew, sid) moves the widget
to the given area areaNew at the position posNew.

— RemoveWidget(id, area, pos, sid) removes a component from the mashup.

— ChangeViewmode(id, viewmode, sid) sets the display mode of the widget
with the identifier id to the given viewmode.

— Replace WidgetProperty(id, key, value, sid) replaces the current value of the
property with the key for the component identified by the id with value.

— ChangeConnectionSetting(publisherid, subscriberid, topic, state, sid) spec-
ifies the rule provided by state that should be applied to the connection
between the defined publisher and subscriber for the given topic.

Conflict Resolution in Collaborative User Interface Mashups 661

2.3 Transformation Functions

The structural formula for each transformation T is O!, = T(O,,Oy), which
means that the operation O, is transformed against the operation O, and results
in the transformed operation O. To meet the convergence property with OT
two transformation (or convergence) properties (TP) have been identified in [4].
Dedicated transformation functions have been developed for above operations,
which satisfy TP1. It is assumed that the control algorithm can preserve TP2
because this embodies a common approach [7]. To validate the preservation of
TP1 Z; = Z5 must hold for all operations O, and O and any initial state Z if
Z1 =7200,0T(04,0,) and Zys = ZoOyoT(O,, Op). The composition operator
o represents the application of an operation O to the state Z resulting in the
new state Z’ including the impact of O in the context of Z' = Z o O. Due to
the vast amount of possible constellations arising from the combination of all
operations combined with every parameter proportion the verification of TP1
was automated with the help of VOTE?.

3 Implementation

Apache Rave has been extended to support real-time collaboration and con-
flict resolution. We extended its mashup sharing functionality, which enabled to
share configurations among platform users. However, further modifications to the
shared mashup configuration were not synchronized in “real-time” and no con-
flict resolution was performed. We used the ShareJS?* OT library for real-time
mashup model synchronization and consistency preservation. Figure 1 shows

- 4 @ & a«an b & &

Apache Rave Mashup Instance (sid1) Apache Rave Mashup Instance (sid2)

Iwc
Configuration

Transformation

— - /ReplaceMetainfo
| (keyl, 10, sid2) || RemoveWidget
(w1, areaA, 1, sid1) |\ (w1, areaA, 1, sid1)

wc
Configuration

Widget Widget
Properties Properties
Mashup

Mashup d * == @

Structure % = B

Mashup Publish Operation Mashup
Metainformation — Metainformation

RemoveWidget
(wi, areah, 2, sid1)

Structure

Local modifications Local modifications

SharelS Server Application

Transformation

_ i areah,\ . Central modifications
(wl, aread, 2, sid1) M\ (w1, areah, 1, sid1) (

Fig. 1. Application of OT to collaborative Ul mashups

2 http://www-sop.inria.fr/coprin /urso/logiciels/
3 http://sharejs.org/

http://www-sop.inria.fr/coprin/urso/logiciels/
http://sharejs.org/

662 M. Hertel et al.

the general process of the OT-based synchronization. Once an event initiates a
local modification, a dedicated OT operation is issued to the ShareJS server.
The server performs necessary transformations against all concurrent operations
received previously. After that it applies the resulting operation to the global
mashup configuration maintained by the server and propagates the operation
to other collaborators. The receiving clients eventually transform this operation
against not yet propagated local ones and apply the result.

Demonstration: An online demo of the approach can be found at https://vsr.
informatik.tu-chemnitz.de/demos/conflict-resolution-ui-mashups.

4 Conclusions and Outlook

This paper demonstrated an approach to enable conflict resolution in collab-
orative Ul mashups. Consistency preservation mechanisms based on OT were
applied to publish-subscribe-based Ul mashups.

Future research will focus on application of these mechanisms to other types
of UI mashups. Another subject that is not yet considered are security concerns
and rights management. Finally, support of OT undo functionality could further
improve usability of mashups with real-time collaboration capabilities.

References

1. Cappiello, C., Daniel, F., Matera, M., Picozzi, M., Weiss, M.: Enabling End User
Development through Mashups: Requirements, Abstractions and Innovation Toolk-
its. In: Piccinno, A. (ed.) IS-EUD 2011. LNCS, vol. 6654, pp. 9-24. Springer,
Heidelberg (2011)

2. Heinrich, M., Lehmann, F., Springer, T., Gaedke, M.: Exploiting single-user web
applications for shared editing: A generic transformation approach. In: Proceed-
ings of the 21st International Conference on World Wide Web, WWW 2012,
pp. 1057-1066. ACM, New York (2012)

3. Holsapple, C.W., Sims, K., Whinston, A.B.: Groupware. In: Encyclopedia of Com-
puter Science, pp. 759-761. John Wiley and Sons Ltd., Chichester (2003)

4. Ressel, M., Nitsche-Ruhland, D., Gunzenhduser, R.: An Integrating,
Transformation-oriented Approach to Concurrency Control and Undo in Group
Editors. In: Proceedings of the 1996 ACM Conference on Computer Supported
Cooperative Work, CSCW 1996, pp. 288-297. ACM, New York (1996)

5. Sun, C., Chen, D.: A consistency model and supporting schemes for real-time coopera-
tiveeditingsystems. Australian Computer Science Communications 18,582-591 (1996)

6. Tschudnowsky, A., Pietschmann, S., Niederhausen, M., Hertel, M., Gaedke, M.:
From Choreographed to Hybrid User Interface Mashups: A Generic Transformation
Approach. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS,
vol. 8541, pp. 145-162. Springer, Heidelberg (2014)

7. Xu, Y., Sun, C., Li, M.: Achieving convergence in operational transformation: con-
ditions, mechanisms and systems. In: Proceedings of the 17th ACM Conference
on Computer Supported Cooperative Work & Social Computing, CSCW 2014,
pp. 505-518. ACM, New York (2014)

8. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
IEEE Internet Computing 12(5), 44-52 (2008)

https://vsr.informatik.tu-chemnitz.de/demos/conflict-resolution-ui-mashups
https://vsr.informatik.tu-chemnitz.de/demos/conflict-resolution-ui-mashups

	Conflict Resolution in Collaborative User Interface Mashups
	1 Introduction
	2 Conflict Resolution Using OT
	2.1 Data Model
	2.2 Operations
	2.3 Transformation Functions

	3 Implementation
	4 Conclusions and Outlook
	References

