Harnessing WebGL and WebSockets
for a Web-Based Collaborative Graph
Exploration Tool

Bjorn Zimmer®™ and Andreas Kerren

Department of Computer Science, ISOVIS Group, Linnaeus University,
Vejdes Plats 7, SE-35195 Vaxjo, Sweden

{bjorn.zimmer,andreas.kerren}@lnu.se

Abstract. The advancements of web technologies in recent years made
it possible to switch from traditional desktop software to online solu-
tions. Today, people naturally use web applications to work together on
documents, spreadsheets, or blogs in real time. Also interactive data
visualizations are more and more shared in the web. They are thus eas-
ily accessible, and it is possible to collaboratively discuss and explore
complex data sets. A still open problem in collaborative information
visualization is the online exploration of node-link diagrams of graphs
(or networks) in fields such as social sciences or systems biology. In this
paper, we address challenges related to this research problem and present
a client/server-based visualization system for the collaborative explo-
ration of graphs. Our approach uses WebGL to render large graphs in a
web application and provides tools to coordinate the analysis process of
multiple users in synchronous as well as asynchronous sessions.

Keywords: Collaboration - Web user interfaces -+ WebGL - WebSock-
ets - Network visualization + Graph drawing

1 Introduction

The advent of the Web 2.0 introduced a vast amount of interactive web appli-
cations such as text editors, online drawing tools or more advanced office suites
(e.g., Google Docs). The online nature of these applications makes them feasi-
ble for collaboration, and an increasing amount of users spread across the globe
work together to synchronously create and edit documents in web-based tools.
These collaborative applications should assist users by providing insights about
other users who are working on the same document to help everyone establish-
ing a “common ground” (cf. Section 2 and [1,2]) in the shared workspace. Users
should be able to notice if another user joins or leaves a session and be aware
of the changes that other users are applying to a document. In addition, collab-
orative systems should also utilize concurrency control to solve arising conflicts
when different users want to apply changes to the same part of a document
simultaneously.

© Springer International Publishing Switzerland 2015
P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 583-598, 2015.
DOI: 10.1007/978-3-319-19890-3_37

584 B. Zimmer and A. Kerren

Information visualization researchers also use the web for making collabo-
rative data visualizations available. The biggest advantage of these web-based
applications is their convenient usage. Users do not have to download and install
additional software packages or plug-ins to collaborate. It suffices to share a URL
to start a collaborative session with other colleagues. This tackles a problem
which was mentioned by Isenberg et al. [3] as one of the ongoing challenges in
collaborative information visualization.

In this work, we focus on the cooperative analysis of complex node-link dia-
grams. These diagrams are usually explored by various domain experts, who
would like to work together to improve the quality of the analysis process. This
process can take place in a joint online session where everybody works simulta-
neously on one data set and discusses possible changes and insights in real-time
with other users. In this case, an expert might want to see what the others are
doing and if there are possibilities to coordinate the efforts and find a common
ground. In another scenario, experts would like to work on the data set whenever
time permits. In such an asynchronous setting, it would be interesting to quickly
perceive changes that were performed by former analysts or to find out which
parts of the data set were already explored by others.

We designed our visualization tool OnGraX to address special challenges for
synchronous and asynchronous collaborative network analysis in a web-based
environment. The graphs which are analyzed with the help of our system usually
have a complex topology and various node attributes. But the available libraries
for the visualization of graphs in web browsers are not sufficient enough, since
their ability to render several thousand labeled nodes with different shapes and
colors is quite limited. In this paper, we want to discuss the technical design deci-
sions of our tool which enable us to provide an easy accessible web-based tool for
the collaborative exploration of graphs. Note that all visualization details were
published separately [4,5]. Here, we concentrate on the technical and engineering
aspects of OnGraX. We will discuss the following points in detail:

— the utilization of WebGL to render graphs with several thousand labeled
nodes of different shapes and color,

— the usage of WebSockets to provide real-time mouse and viewport positions
of other users in synchronous sessions as well as fast response times for event
synchronization, and

— efficiently storing the graph information and concurrency handling during
collaborative sessions.

OnGraX is capable of visualizing graphs from various application domains, such
as social networks (e.g., Facebook), networks in software engineering (UML-
diagrams among other things), or biochemical networks. Currently, our tool
is used for the collaborative analysis and data cleaning [6] of metabolic net-
works due to long lasting cooperations with biologists/bioinformaticians at sev-
eral research institutions. This specific application serves as use case throughout
this paper and focuses on the interactive exploration and analysis of biologi-
cal networks based on the so-called Kyoto Encyclopedia of Genes and Genomes

Harnessing WebGL and WebSockets for a Web-Based Collaborative 585

pathway database [7]. Building these biological networks is often based on com-
plex experiments. In consequence, biologists of different domains and experience
levels would like to explore the resulting networks together and check them for
wrong entries or missing data and revise the networks wherever it is necessary.

The remainder of this paper discusses our solution for these challenges. The
next section covers related work in graph visualization and web-based collabo-
rative visualization. Our requirements are described in Section 3. An overview
of our tool is given in Section 4, and the implementation as well as technical
details are covered in Section 5. We discuss the benefits of our approach and
future work in Section 6 and conclude in Section 7.

2 Related Work

Desktop applications for single users with the possibility to visualize graphs,
such as Cytoscape [8], Gephi [9], Pajek [10], or Tulip [11], have been used before
the advent of the Web 2.0. Available methods for graph visualizations are com-
prehensively overviewed in several surveys and books, for instance [12-14]. How-
ever, the idea of working collaboratively on complex data sets is becoming more
and more attractive with the rapidly growing amount of data available. Thus, a
good number of web-based visualizations were already introduced that support
the public exploration of complex data sets [15]. Users are able to add com-
ments on interesting visualizations and also discuss new insights with other users
over the web. Several systems support those features, such as ManyEyes [16] or
Sense.us [17]. In these web-based visualization systems, users are able to save
bookmarks of specific views on a data set, and it is possible to add graphical
annotations directly to the visualization. Dashiki [18] enables users to collabo-
ratively build visualization dashboards with the help of a wiki-like syntax and
interactive editors. However, the aforementioned systems are not suitable for
our tasks, since they do not support the interactive visualization of node-link
diagrams in a web browser. And, they do not provide any features for real-time
interactions during synchronous collaboration settings.

Drawing graphs in a web browser is usually done with the help of already
existing JavaScript libraries. Arbor.js [19] and Sigma.js [20] render the input
graphs on a HTML5 canvas or via SVG-images, but they do not support
OpenGL-enhanced rendering which limits the number of nodes and edges that
can be rendered with a suitable frame rate. A faster solution is provided by Viva-
GraphJS [21]: this library uses a WebGL renderer to draw graphs and provides
high performance during rendering, but gives only limited support for different
and more complex node shapes. Additionally, these libraries are not able to effi-
ciently render a lot of text, e.g., node labels for all nodes visible at the same time,
which is one of the requirements for our tool as described in the next section.

A good overview of the field of collaborative visualization is given in the arti-
cle of Isenberg et al. [3]. We follow their terminology and classify our approach
as distributed, synchronous/asynchronous collaborative visualization method. In
this work, we restrict ourselves on the collaborative visual analysis of networks.

586 B. Zimmer and A. Kerren

For further readings on general aspects of visualization, human-computer inter-
action, computer-supported collaborated work, and collaborative visualization
of other data types, we refer to the standard literature, for instance [2,15,22-25]
(this list does not claim to be exhaustive).

The benefits of collaborative work are also discussed in an article on social
navigation presented by Dieberger et al. [26]. Being able to see the usage history
and annotations of former users might help analysts to filter and find relevant
information more quickly. In order to be able to work together during a syn-
chronous session, users have to know each other’s interactions and views on the
data set, usually referred to as “common ground” [1,2]. To find a common ground
in node-link visualizations, we apply the techniques from the work of Gutwin
and Greenberg [27] and show the viewports of other users as rectangles in the
graph visualization.

There are also existing groupware frameworks and libraries to handle col-
laborative editing in the web with concurrency control, such as ShareJS [28] or
Apache Wave [29]. They usually center on manipulating the DOM of collabo-
rative websites and editing text in online documents without creating conflicts.
Our approach concentrates on collaboration and awareness in a node-link based
graph visualization which does not require to edit a lot of textual data, i.e., we
focus on changing the structure and attributes of the graph instead. For this
case, it suffices to use a traditional lock-based approach.

3 Requirements

Our goal was to design a system for analyzing complex graphs in distributed
collaborative sessions. The initial process of beginning a collaboration should
be as fast and easy as possible, thus the tool should also be available on the fly
without requiring users to install specific software, plug-ins, or Java applets first.
Additionally, users should be able to drop in and out of ongoing collaborative
work without having to setup and plan each session individually—experts would
like to work on a data set whenever they find the time and do not want to wait
for others to join before they can start their analysis process. In this case, users
who are joining an already ongoing session should be able to quickly catch up
on what has been done before. Hence, the system should support logging all
actions that are performed in a session and provide a way to quickly retrieve
and analyze them to show important information to subsequent users. These
actions include not only changes performed on a graph (such as deleting or
changing the attributes of a node), but also the tracking and logging of every
user’s camera position. This assists subsequent analysts to identify regions of
a graph that other users were already interested in if they work on the data
set asynchronously. During a synchronous session however, changes applied to
the graph should be distributed to all connected clients as fast as possible and
users should be able to track each other’s mouse and camera positions in real
time to establish a common ground and be aware of everything that is going
on in a session. The system also has to store the complete graph structure and

Harnessing WebGL and WebSockets for a Web-Based Collaborative 587

additional graph attributes in an efficient way. And, it should handle conflicts
that could arise during a collaborative session if two users want to change the
same object in the graph at the same time.

In addition to the graph structure itself, nodes usually hold attributes (e.g.,
age, gender, or income for social networks). Rendering the nodes as simple dots is
therefore not sufficient enough for our application areas since the shape, size, and
color of nodes may have specific meanings; nodes may also have labels attached.
Thus, our system should be able to render graphs with a considerable number of
nodes and edges of different shapes and sizes with additional text labels on every
node in an acceptable frame rate. Moreover, running computationally expensive
tasks—such as calculating the layout of a graph, computing additional graph
metrics, or aggregating the camera positions to show interesting regions—should
not have a negative impact on the rendering performance on the clients. We
summarize the technical requirements (TRs) of our tool as follows:

TR 1. It should be possible to start a collaborative session on the fly without
having to install software or plug-ins first.

TR 2. The system should be able to render graphs with up to 6,000 nodes and
edges with a good performance on standard computers.

TR 3. It should be able to render nodes in various shapes and colors, with
additional text labels on every node.

TR 4. Changes to the graphs and mouse positions as well as viewports of other
users should be distributed to all connected clients in (soft) real time.

TR 5. The server should efficiently store the graph structure as well as the
complete action history of a graph session in order to use this data for
subsequent analysis processes.

TR 6. The system should be able to manage concurrent graph changes during
a collaborative session.

TR 7. Computationally expensive processes, such as calculating the layout of a
graph, should not interfere with the rendering performance of the graph
visualization.

TR 8. As the most graphs come with node and/or edge labels, the system
should support fast and efficient text rendering.

4 General System Overview

OnGraX visualizes graphs as interactive node-link diagrams. Fig. 1 shows an
overview of the tool right after joining an ongoing graph analysis session with
two other users: Bob and Sue. Their viewports are represented as two dashed
rectangles. Bob’s position is shown in blue and Sue’s position is shown in green
(see Fig. 1(a) and (b)). The rectangles also contain their mouse cursors which are
updated in real time. This makes it possible to point at interesting objects and
coordinate collaborative work. Short animations (created with the tween.js [30]
library) are used to facilitate user awareness about ongoing changes during a
session. For instance, if nodes are deleted they will slowly grow in size and fade

588 B. Zimmer and A. Kerren

out instead of just disappearing. Recent actions which are performed during
a session are tracked as small icons on the right-hand side of the screen (see
Fig. 1(c)). These icons can be clicked to move the camera back and forth between
the current camera position and the position where the event took place, enabling
users to quickly check the ongoing work of other users. To not get overwhelmed
with notifications, an additional dialog box allows users to configure which types
of actions are tracked.

Apart from a simple chat window where users can discuss changes, it is also
possible to pin textual annotations to nodes and edges. This gives analysts the
possibility to pass information about performed changes in the graph to subse-
quent users, ask questions about specific objects, or delegate work to other users.
In Fig. 1(d), an annotation that is pinned to a node is highlighted, along with the
respective text in the annotations dialog in the bottom right corner. The text in
the annotations dialog can also be clicked to move the camera to the respective
annotated object in the graph if it is not in the current view. One problem with
textual annotations is, that the original context in which an annotation was ini-
tially written could get lost if the respective graph region—where the annotation
is pointing to—is changed during the course of a session or if the object with this
annotation is deleted. We solve this problem by enabling analysts to temporarily
revert the complete graph to an old state, giving them the possibility to view the
graph in a state in which the annotation was originally written. This is done by
clicking on any icon in the timeline at the bottom of the screen (see Fig. 1(e)). This
action will undo all subsequent changes that were performed on the graph. While
viewing an old state, icons to the right can be clicked to replay already performed
changes and go forward in time, and icons on the left are used to undo additional
changes to view even older states of the graph.

Analysts who join a session would like to be able to quickly find out which
graph regions were already viewed or changed by other users, for instance to
decide if they should work on another part of a graph or if they should double
check on specific regions. In our case, we had to use a visualization method that
does not interfere with the original graph visualization. Changing the colors or
the size of nodes in the graph was not an option for us, because these properties
are already mapped to other attributes. To still be able to show additional user
data without affecting the original graph visualization, we use a heat map-based
visualization approach. The heat map is drawn in the background of the graph
visualization. It can be configured to only show data for specific users or to show
data for all users together. Furthermore, it is possible to select a time frame (e.g.,
the last five minutes of the current analysis session) or a specific start and end
date. This enables an analyst to review changes done in a collaborative session
during a specific time frame or to check the work of a single user. The heat map
can be configured to show two different data sources:

User viewports. Here, nodes are highlighted that were in the viewing area
of all users during their analysis process. The server aggregates the logs of
all node movements and user views to visualize the amount of seconds that
nodes were in the viewports of all or specific users. This helps analysts to

589

Harnessing WebGL and WebSockets for a Web-Based Collaborative

‘soguer porjdde Arjde1 pue ae)s snotseid e 0} delsd oY) 110A0I 0) pasn oq urd (9) aurEwI) oYy J, "(p) siesn 180
M Suor)senb pue s)ySISul ‘syse) SSNosIp 09 Sa8pa pur sepou 0} pauurd 8 URD SUOIPRIOUUR JXJ], "SOPOU SUIIS[AP 10 SUIPPR Sk Yons ‘SIosn
10130 Aq pouriojtad suOI|OR JUEdaI Jo o) dosy 0} jsA[eur o1} IsIsse (D) UALIdS 1) Jo Ioulod JyILI-doy o1y ul sjoquids oY, ‘sprodmara
Ppo830] 1101} uo paseq sepou [[e SunyIIYSIY Aq SIosn Io)0 oY) 0} }soIojul Jo olom jey) ydeld o) JO SUOIFI AJIJUopI 07 ISA[eUR oY) S)SISSe
punoisyorq oY) ul deur jesy o) ‘9Io] owIl} [eal (9Jos) ur pajepdn ore UOIsses Ydeld & UT I9SN AI19A0 JO IOSIND 9SNOU S} Pue s1I0dMaTA
o1 T, "Afsnooueynuils ydeld siy) Suriojdxe oIe oym sIosn Ioyj0 omy Jo (sprodmora) seore Suimala o1y o1e ((q) pue (e) 09s) so[3uw)dol paysep
U09I3 pue on[q oY, J, 'SO8Po (GGG PUR SOPOoU (‘¢ YIM JIOM)OU [RITWOYDOI] € JO JIed ® SMOYS 98RWI O], "WO)SAS INO JO MAIAILA() T “S1q

g ; —_— watmn o009 sapot 5008
() B IC R P e P e P P L PR P e e PP 20990 PP PPl erPrRC PP 942029999 4P PR29%%2%%%07%% m
T = qﬁ U ﬁ =

S o)
& LR) o~ m ‘10809 §1 SIU} J| SINS 10U WE | *3POU SIL} ¥08YD 8SES|d NOA PINCD
Ve P ‘uizolg ollaH
A aseald sy %9949
o 2 £2-Z0-G10Z €1:€0 - @NS;
o oy INBYIaAC BWOS SPaaU
I{UIY | ¢BJeY uolBau siy) Je 300] & axe} aseeld Apogawos pinoD
] uoyBa siuy} Je %00] & e

£2-20-5102 91:€0 - wiaolg
LUVTYEl

|||||||||| JeSElep [enIul 8y}
Ul SI0L® BLIOS BJoM 818U "8JeY S|aqe| 9pou Jo 8dnod & pabueyd |
:Pajoa.i0D s|age| apoN
£€2-20°G10Z 0Z:€0 - dog
PIoE djoueINqoX0-Z-JAYIBN-E 7|

suopejouuy

IIIIIIIIIIIIIIIIIIIIIIIII opoptot 6 io@fjorc

sz

o

s &

wa,,;zg@zsi” a3 a cusaas n owrvs
b 05 I
oA == xt o PSR E AE uh @ G I

RNl =

noA x asLmeN), x 3o -0 ® g o @

590 B. Zimmer and A. Kerren

quickly identify in which part of a graph another user was interested in and
also to find out if there are any regions that were not viewed at all.

Graph changes. This option calculates a heat map based on the number
of changes that have been performed on graph objects, such as modifying
the shape or color of a node, adding a new node, or adding edges to a node.
A multiplier can be specified for each individual action type to give it more
or less weight during the calculation. This gives analysts the possibility to
search for renamed and moved nodes only, for instance.

5 System Setup and Architecture

We decided to implement OnGraX as a web-based tool to address our first
technical requirement (TR 1). OnGraX’ client/server-based architecture enables
us to provide an easily accessible tool for graph exploration over the web which
allows analysts to simply open a web browser to start a collaborative session.
Figure 2 illustrates the basic architecture of our system. On the client side,
all graphs are rendered with the help of the client computer’s GPU by using
WebGL [31], a JavaScript API for rendering 3D graphics natively in modern
web browsers. For our special case, this is faster than using SVG-based node-
link visualization approaches, such as the d3.js visualization library [32]. To ease
the process of low-level OpenGL programming, we utilize the JavaScript library
three.js [33]. This approach tackles the second and third technical requirements
(TR 2-3) and enables us to achieve a high-performance rendering of node-link
diagrams.

The server side of OnGraX is implemented in Java EE and currently runs
as a web application on an Apache Tomcat server. Communication between
server and clients is done with the relatively new WebSocket protocol [34]. It
suffers less from network overhead since it is layered over TCP instead of HTTP
which removes the overhead from HTTP header fields and allows for a low

Clients Tomcat Server Neo4j Database

*Graph Structure

*Graph Attributes

|
|
|
|
|
Graph Sessi
rapn Session | MySQL Database
I
I
I
|
|

Web Browser
« JavaScript
* HTML5
* WebGL + Three.js

WebSockets

*Actions
*Viewports

N ———— e

Fig. 2. General architecture of our system. Sessions are initialized on demand whenever
a user joins a graph analysis session. The client-server communication is done via
WebSockets. Every graph is stored in a separate Neo4j database, whereas all performed
actions of a session are logged in a MySQL table.

Harnessing WebGL and WebSockets for a Web-Based Collaborative 591

latency two-way communication. Clients do not have to poll the server in regular
intervals anymore to ask for updates. Instead, the server can send a message to
all connected clients whenever an update on the client side is required. This
allows our system to track the viewports and mouse positions of other users
and distribute this information among all clients in real time and addresses our
fourth technical requirement (TR 4).

Each graph is stored in a separate Neodj [35] database. As soon as a user
joins a graph session, the respective Neo4j database is initialized as an embedded
database service on the server. As a graph-based database, Neo4j offers a conve-
nient way to store our graphs together with all of their node/edge attributes and
supports graph-like queries, such as shortest path calculations. It also simplifies
other graph-related queries for community detection or applying clustering algo-
rithms. For the remaining data, such as user data and login information, our
system uses a MySQL database. Performed actions and all camera positions
that are generated by the users while they are exploring a graph are also stored
in a MySQL table. This data can be used later to visualize regions of a graph
that were modified or viewed by other users. Using Neo4j to efficiently store the
graph structure in conjunction with a MySQL database to log all events enables
us to tackle our fifth technical requirement (TR 5).

Technical requirement number seven is addressed by using the server side
part of our system for complex processes (TR 7). The Tomecat server currently
runs on a Dell PowerEdge R720 with two Intel Xeon E5-2650 2.00GHz proces-
sors (eight cores each), 128GB RAM, and a Value MLC 3G SSD hard drive.
This configuration provides more than enough computing power for our current
purpose and future extensions like the calculation of complex graph layouts or
running graph analysis algorithms on the server and distributing the results to
all clients. Right now, all graphs analyzed with our tool already have precom-
puted layouts, but computing a layout for other graphs could easily be achieved
by using a Java-based graph layout library, such as Jung [36].

5.1 Action and Conflict Handling

Since our system focuses on the collaborative exploration of graphs and not in
the collaborative editing of text documents, we do not need sophisticated con-
currency control systems which are usually used in such a case (e.g., operational
transformation [37]). A pessimistic locking approach is sufficient enough for our
scenario, since changes are usually performed directly on one or a couple of single
nodes and node attributes. To address our sixth technical requirement (TR 6),
we use a simple server-side queue to ensure that all clients visualize the same
data structure. Whenever a user performs an action that would change the graph
structure or any of the graph object’s attribute—such as moving a node, chang-
ing the shape of a node, or adding a new edge between two nodes—an action
request event is sent to the server. The server uses Neo4dj’s transaction system
to open a new transaction and apply the changes to the stored graph. Only if
the transaction is successful, the server reports this back to all connected clients,
including the client who initiated the action. Figure 3 illustrates this approach.

592 B. Zimmer and A. Kerren

All incoming actions are handled in a server-side queue, and an event is only
applied if it is not in conflict with a previous event. This could happen if a
user deletes a node, while a second user tries to add an edge to this node at
exactly the same time. If the server processes the node delete action first, the
second user’s action will not be performed on the graph structure, and the user
will receive a short notification instead, while his/her local graph visualization
is updated to reflect the changes that where performed by the first user.

Clients Server
g T T == > I/ - - - - 777777/ 77777 = N
I -
Initiating client) Action queue Neo4j DB
| process transaction
A

Y

(Send error no Transaction
L message successful?
yes
Y
I .
4_,_'_‘ Send action ’ Log action in
[to all clients MySQL DB

Fig. 3. Action handling between clients during a graph session. To avoid concurrent
changes, actions that would affect the graph structure are sent as an action request
event to a queue on the server. All clients only update their local graph visualization,
if the transaction was applied successfully to the Neo4j database. In case of a conflict
the action is not applied, and the initiating client receives an error message.

Clients update
local graph structure

5.2 Calculation and Visualization of the Heat Map

As discussed in Section 4, we use a heat map-based visualization in the back-
ground of the node-link diagram (cf. Figure 1) to either show aggregated values
of all logged user views to find regions of interest or applied node changes to
get an overview of changes that were performed on a graph. If the heat map
configuration is set to show the logged user views, the server calculates the heat
map values by aggregating all logged user views with all node positions from all
move actions that have been performed previously on the nodes. This process
results in a heat map visualization that is robust against layout changes of the
graph.

After the values are calculated and sent to the requesting client, they have
to be visualized in the web browser without negative performance effects on the
interactive graph visualization. To avoid having to render a lot of additional
objects, we first draw the heat map values on an off-screen canvas element and

Harnessing WebGL and WebSockets for a Web-Based Collaborative 593

create a single OpenGL texture from this canvas afterwards. The canvas repre-
sents the heat map values as an alpha map—for every node, a circular gradient
is drawn which is based on the size and position of its related node. This creates
an image with grayscale values ranging from 0 to 255. To create the actual col-
ors for the heat map, each pixel value is used to lookup the color from a 1x256
pixel-wide color gradient. The gradient colors range from white, over green to
red. Based on these color values, an OpenGL texture is created and put on a
mesh in the background of the graph visualization. By using an alpha map as
basis, we could also draw a heat map based on mouse positions or eye tracking
data easily.

Getting the heat map values for all actions that were applied to all nodes
of a graph only takes around 4 milliseconds on the server for a typical graph
analysis session. Calculating the heat map based on user views and node posi-
tions takes considerably more time, because the server has to correlate all stored
views with all logged node positions to get the number of seconds every node of
the graph was viewed by a user while also considering layout changes. During
our test sessions, the server calculated those values in about 60 milliseconds if
the complete time frame was selected. The time also depends on the amount
of stored user actions and node positions and will of course increase slightly
if a graph analysis session is used for a longer time period and more actions
are logged. However, since analysts are usually only interested in specific time
frames which span over the course of a few days, this is not an important issue.
Right now, the bottleneck during the heat map generation lies on the client side.
The largest graph that is currently visualized with our system spans an area
of 5,800x3,600 pixels. Drawing the alpha map on a canvas with the same size
would take approximately 20 seconds, which is not adequate for generating a
real-time heat map. Another problem occurs during the creation of the OpenGL
texture, as the maximum texture size is limited by the client’s graphic card. Cur-
rent graphic cards support textures with up to 16,384x 16,384 pixels, whereas
older computers are limited to 2,048x2,048 pixels. We avoid this performance
problem on the client side and achieve a real-time rendering for the heat map
by drawing a scaled-down version of the alpha map if the graph area exceeds
the size of 2,048 2,048 pixels. The resulting texture is then put on a mesh in
the background of the visualization and stretched to the appropriate size of the
graph.

An alternative and faster approach for generating the heat map would be
to create the alpha map and the texture array directly on the server and send
the array for the texture to the requesting client(s). But this would drastically
increase the amount of traffic between server and clients. Therefore, we decided
against this idea and settled for the slightly slower approach of drawing the heat
map on the client side.

5.3 Rendering Text with WebGL

Drawing a large number of node labels was another challenge and requirement
(TR 8) that we had to solve. The most convenient way—which can also be found

594 B. Zimmer and A. Kerren

in three.js forums—is to draw each node label on an offscreen canvas, render this
canvas to an image and use this image as a sprite texture. This works well for
a small amount of text strings. But for graphs with more than just a couple
of hundred nodes, the JavaScript engine would have to create and render a
large amount of textures, which is not fast enough and will eventually crash the
JavaScript engine. To solve this, we adapted and modified the JavaScript-based
solution from an online article of Heikkinen [38] for bitmap fonts, a common
technique used in standard OpenGL rendering. Instead of creating a texture for
each label, we just use one texture with all required letters on it. For each letter
in a node label, two triangles are drawn and only the part of the texture with
the position of the letter is mapped to this geometry. This is an extremely fast
solution and the only drawback is, that the fonts do not scale nicely at very high
zoom levels.

5.4 Performance

Upon joining a graph session, the complete graph structure is transferred to
the client. This approach is fast enough for graphs with up to 6,000 nodes and
edges. The download and initialization of all graphical objects on the client takes
around three seconds. Unfortunately, this approach does not work for graphs
with more than 6,000 nodes as it takes simply too long to transfer the whole
data set to the client and generate all graphical objects in one single step. This
may eventually lead to an error message in the client’s browser stating that
JavaScript is not responding anymore. Streaming the graph to the client by only
sending an initial part and expanding the information as soon the user zooms out
or further explores the graph would be a more convenient step and is planned
for a future version of our tool. Picking up the idea of Gretarsson et al. [39],
it would also be possible to render parts of the graph on the server and send
them as images to the client where they are visualized until the complete data
is loaded.

After the initialization phase, our tool renders a zoomed-out overview of our
test graphs—which usually contain about 3,000 labeled nodes and edges—with
20 frames per second and 30-40 frames per second in a standard zoomed-in
view on an early 2011 MacBook Pro (2,2GHz i7, 8GB memory, Radeon HD
6750M with 1,024MB video memory) with a screen resolution of 1,680x 1,050
pixels. We also did a performance test with the same computer on a 4K monitor
with a resolution of 3,840x2,160 pixels. Here, the overview is rendered with 10
frames per second and 20-28 frames per second for the zoomed-in view. The
biggest graph visualized by with our system by now had 3,700 nodes and 7,500
edges. The initial data transfer while joining the session took about ten seconds.
While rendering the complete overview of the graph was only possible with five
frames per second, the standard zoom level of our users while working within the
graph was rendered at around 10 to 15 frames per second with a 1,680x1,050
resolution. While this is not an optimal frame rate, the visualization still proved
to be useable by our test users. Increasing the performance for bigger graphs is

Harnessing WebGL and WebSockets for a Web-Based Collaborative 595

one of the next planned steps in our future work as discussed in the following
section.

6 Discussion

We made our tool available to various experts in systems biology and bioinfor-
matics at Monash University, Australia, and received mostly positive and also
constructive feedback. They liked the idea of working together on their data sets
by simply opening the visualization in a browser window. Seeing each others
camera position in a synchronous session made it a lot easier for them to discuss
and change specific parts of the graph, although one group of experts missed a
voice chat directly in the tool. They would have preferred to be able to talk to
each other directly without having to fall back to other programs, such as Skype
or Google Hangouts. This could be addressed in a future version of our tool
with the help of the new WebRTC standard [40] for real-time communications
in browsers. Another group of biologists found the heat map visualization of user
behavioral data quite useful. They would like to use OnGraX for the education
of their students. A use case here would be to give students an already edited
graph and ask them to revise the data set further as well as to verify the changes
that have already been performed by previous users. Afterwards, the supervisors
could review the steps that the students performed and also discuss and reflect
the process online together with the students in a collaborative session.

There are still some technical issues that have to be addressed to improve the
performance and usability of OnGraX. One task is to utilize Web Workers [41]
to speed up the client-side part of the heat map generation. The user interface
sometimes becomes unresponsive—depending on the client’s hardware—for up
to two seconds while the JavaScript engine generates the heat map texture. This
caused a small inconvenience among some of our test users. Web Workers could
be used to finish this calculation in a thread-like manner in the background of the
web application, allowing the web page and user interface to remain responsive
all the time.

In general, our tool is able to handle graphs with 10,000 nodes and edges on
faster computers as we stated in [4], but some users with slower computers had
performance issues during the exploration of graphs with more than 6,000 nodes.
Using streaming techniques together with the idea of WiGis [39] to render parts
of the graph on the server and only show them as images on the clients would
be another possibility to improve the rendering performance and initialization
times. Another technique would be to still send the whole data to the clients, but
to render specified areas of a graph only once into a texture instead of rendering
all graph objects in every frame. Users could then manually select areas to be
rendered as a texture and only switch to full rendering on demand. If a subgraph
that is rendered as a texture for one user is changed on another client, the changes
only have to be rendered once again into the texture on the first user’s client
to update the information. Adapting this technique would enable us to visualize
even bigger graphs with more than 10,000 nodes.

596 B. Zimmer and A. Kerren

After implementing the aforementioned improvements, the next step will be
to conduct a detailed user study to improve the user interface, find missing
features and get detailed feedback about the usability of our system.

7 Conclusion

In this paper, we presented a collaborative system for visualizing graphs with
several thousands of nodes and edges in a web-based environment. By using
WebGL, the system is able to provide an interactive graph visualization with
up to 6,000 labeled nodes and edges. With the help of our client/server-based
system, analysts do not have to install any additional applications or browser
plug-ins anymore. The start of a collaborative analysis session is simply done
by opening a URL in a browser window. With this fundamental property of our
visualization environment, we address one of the research challenges given in the
article of Isenberg et al. [3]. Another challenge named by these authors is the
need to develop so-called hybrid collaboration scenarios. Here, we provide users
visualization and interaction techniques for analyzing data sets synchronously
and asynchronously in a distributed environment. With the help of our tool, users
can seamlessly drop in and out of ongoing sessions and do not have to wait for
other users to start or finish their work. All actions performed during a session as
well as the users’ camera positions are tracked and can be visualized along with
the graph data by using underlying heat map representations. This helps experts
to analyze regions of a graph that were of interest or have been edited by former
users, i.e., social navigation and guidance is maintained by the aggregated user
activity in form of heat maps. Here, we address the “Collaboration & Awareness”
challenge in web-based collaborative visualization that was raised by Heer et
al. [15]. In the synchronous collaboration case, we provide another contribution
(cf. “Pointing & Reference” challenge in [15]) namely that participants of an
analysis session can follow the activities of the others (shared viewing areas)
and point to specific nodes or edges by using brushing (shared node markers
and mouse cursors). The use of WebSockets enables us to distribute this user
data in real time among all connected clients.

Acknowledgments. The authors would like to thank Falk Schreiber and his col-
leagues at Monash University in Australia for constructive discussions and valuable
feedback, as well as all students at Linnaeus University in Sweden who participated in
our initial user studies.

References

1. Chuah, M., Roth, S.: Visualizing common ground. In: Proceedings of the Inter-
national Conference on Information Visualization (IV 2003), pp. 365-372. IEEE
(2003)

2. Heer, J., Agrawala, M.: Design Considerations for Collaborative Visual Analytics.
Information Visualization 7(1), 49-62 (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Harnessing WebGL and WebSockets for a Web-Based Collaborative 597

Isenberg, P., Elmqvist, N., Cernea, D., Scholtz, J., Ma, K.-L., Hagen, H.: Collab-
orative Visualization: Definition, Challenges, and Research Agenda. Information
Visualization 10(4), 310-326 (2011)

Zimmer, B., Kerren, A.: Applying heat maps in a web-based collaborative graph
visualization. In: Poster Abstracts, IEEE Information Visualization (InfoVis 2014),
France, Paris (2014)

Zimmer, B., Kerren, A.: Sensemaking and provenance in distributed collaborative
node-link visualizations. In: Abstract Papers, IEEE VIS 2014 Workshop: Prove-
nance for Sensemaking, France, Paris (2014)

Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver,
C., Lee, B., Brodbeck, D., Buono, P.: Research directions in data wrangling: Visu-
alizations and transformations for usable and credible data. Information Visual-
ization 10(4), 271-288 (2011)

KEGG: Kyoto Encyclopedia of Genes and Genomes. http://www.genome.jp/kegg/
(accessed July 10, 2014)

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,
N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome Research 13(11), 2498-2504
(2003)

Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. In: International AAAI Conference on Weblogs
and Social Media (2009)

Batagelj, V., Mrvar, A.: Pajek - analysis and visualization of large networks. In:
Mutzel, P., Jinger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 477-478.
Springer, Heidelberg (2002). http://dx.doi.org/10.1007/3-540-45848-4 54

Auber, D.: Tulip: data visualization software. In: Graph Drawing, pp. 435-437
(2001)

von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.,
Fekete, J.-D., Fellner, D.: Visual analysis of large graphs: State-of-the-art and
future research challenges. Computer Graphics Forum 30(6), 1719-1749 (2011).
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x

Kerren, A., Purchase, H.C., Ward, M.O.: Multivariate Network Visualization, ser.
Lecture Notes in Computer Science, vol. 8380. Springer (2014)

Kerren, A., Schreiber, F.: Network visualization for integrative bioinformatics. In:
Chen, M., Hofestddt, R. (eds.) Approaches in Integrative Bioinformatics - Towards
the Virtual Cell, pp. 173-202. Springer, Heidelberg (2014)

Heer, J., van Ham, F., Carpendale, S., Weaver, C., Isenberg, P.: Creation and
collaboration: engaging new audiences for information visualization. In: Kerren,
A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS,
vol. 4950, pp. 92-133. Springer, Heidelberg (2008)

Viégas, A.B., Wattenberg, M., Ham, F.V., Kriss, J., Mckeon, M.: Many eyes: A
site for visualization at internet scale. IEEE Transactions on Visualization and
Computer Graphics 13(6), 1121-1128 (2007)

Heer, J., Viégas, F., Wattenberg, M.: Voyagers and voyeurs: supporting asyn-
chronous collaborative information visualization. In: ACM Human Factors in Com-
puting Systems (CHI), pp. 1029-1038 (2007)

McKeon, M.: Harnessing the Information Ecosystem with Wiki-based Visualization
Dashboards. IEEE Transactions on Visualization and Computer Graphics 15(6),
1081-1088 (2009)

Samizdat Drafting Co. Arbor.js. http://arborjs.org (accessed January 2015)

http://www.genome.jp/kegg/
http://dx.doi.org/10.1007/3-540-45848-4_54
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x
http://arborjs.org

598

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.
34.

35.
36.

37.

38.

39.

40.

41.

B. Zimmer and A. Kerren

Jacomy, A.: sigma.js. http://sigmajs.org (accessed January 2015)

Kashcha, A.: Vivagraphjs. https://github.com/anvaka/VivaGraphJS (accessed
January 2015)

Kerren, A., Ebert, A., Meyer, J. (eds.): Human-Centered Visualization Environ-
ments, ser. LNCS Tutorial, vol. 4417. Springer, Heidelberg (2007)

Dix, A., Finlay, J.E., Abowd, G.D., Beale, R.: Human-Computer Interaction, 3rd
edn. Prentice Hall, London (2003)

Baecker, R.M.: Readings in GroupWare and Computer-Supported Cooperative
Work: Assisting Human-Human Collaboration, 1st edn. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1994)

Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.): Information Visualization,
Human-Centered Issues and Perspectives, ser. Lecture Notes in Computer Science,
vol. 4950. Springer (2008)

Dieberger, A., Dourish, P., H66k, K.: Social Navigation: Techniques for Building
more Usable Systems. Interactions 7(6), November 2000

Gutwin, C., Greenberg, S.: Design for individuals, design for groups: tradeoffs
between power and workspace awareness. In: Proceedings of the 1998 ACM Con-
ference on Computer Supported Cooperative Work, ser. CSCW 1998, pp. 207-216.
ACM, New York (1998)

Gentle, J.: ShareJS - Live concurrent editing in your app. http://sharejs.org
(accessed January 2014)

The Apache Software Foundation. Apache Wave. http://sharejs.org (accessed Jan-
uary 2014)

TweenJS. http://www.createjs.com/TweenJS (accessed January 2015)

Khronos Group. WebGL Specification. Editor’s Draft 1, July 2014. http://www.
khronos.org/registry /webgl/specs/latest (accessed January 2015)

Bostock, M.: D3 - data-driven documents. http://threejs.org (accessed January
2015)

Cabello, R.: Three.js. http://threejs.org (accessed January 2015)

World Wide Web Consortium. The WebSocket API. http://dev.w3.org/html5/
websockets/ (accessed January 2015)

Neo Technology, Inc., Neodj. http://neodj.com (accessed January 2015)
O’Madadhain, J., Fisher, D., Nelson, T.: JUNG - Java Universal Network/Graph
Framework. http://jung.sourceforge.net/ (accessed January 2015)

Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.
18(2), 399-407 (1989)

Animating a Million Letters Using Three.js. http://www.html5rocks.com/en/
tutorials/webgl/million_letters/ (accessed January 2015)

Gretarsson, B., Bostandjiev, S., O’'Donovan, J., Hollerer, T.: WiGis: a framework
for scalable web-based interactive graph visualizations. In: Eppstein, D., Gansner,
E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 119-134. Springer, Heidelberg (2010)
World Wide Web Consortium. WebRTC. http://www.w3.org/TR/2015/
WD-webrtc-20150210/ (accessed January 2015)

Web Workers. http://www.w3.org/TR/workers/ (accessed January 2015)

http://sigmajs.org
https://github.com/anvaka/VivaGraphJS
http://sharejs.org
http://sharejs.org
http://www.createjs.com/TweenJS
http://www.khronos.org/registry/webgl/specs/latest
http://www.khronos.org/registry/webgl/specs/latest
http://threejs.org
http://threejs.org
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/
http://neo4j.com
http://jung.sourceforge.net/
http://www.html5rocks.com/en/tutorials/webgl/million_letters/
http://www.html5rocks.com/en/tutorials/webgl/million_letters/
http://www.w3.org/TR/2015/WD-webrtc-20150210/
http://www.w3.org/TR/2015/WD-webrtc-20150210/
http://www.w3.org/TR/workers/

	Harnessing WebGL and WebSockets for a Web-Based Collaborative Graph Exploration Tool
	1 Introduction
	2 Related Work
	3 Requirements
	4 General System Overview
	5 System Setup and Architecture
	5.1 Action and Conflict Handling
	5.2 Calculation and Visualization of the Heat Map
	5.3 Rendering Text with WebGL
	5.4 Performance

	6 Discussion
	7 Conclusion
	References

