MIRROR: Automatic RZRML Mapping
Generation from Relational Databases

Luciano Frontino de Medeiros!, Freddy Priyatna?®), and Oscar Corcho?

! UNINTER, Curitiba, Brasil
luciano.me@uninter.com
2 Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
ocorcho@fi.upm.es

Abstract. Two W3C recommendations exist for the transformation of
RDB content into RDF: Direct Mapping (DM) and R2RML. The DM
recommendation specifies the set of fixed transformation rules, whilst
R2RML allows customising them. Here we describe the MIRROR sys-
tem, which generates two sets of R2RML mappings. First, it creates
a set of mappings that allow any R2RML engine to generate a set of
RDF triples homomorphic to the ones that a DM engine would generate
(they only differentiate in the URISs used). This allows R2RML engines to
exhibit a similar behaviour to that of DM engines. Second, it produces an
additional set of RZRML mappings that allow generating triples resulting
from the implicit knowledge encoded in relational database schemas, such
as subclass-of and M-N relationships. We demonstrate the behaviour of
MIRROR using the W3C DM Test Case together with an extended ver-
sion of one of its databases.

1 Introduction

The W3C RDB2RDF (Relational Database to Resource Description Framework)
Working Group was created in 2009 with the mission to standardize languages for
mapping relational data and relational database schemas into RDF and OWL.
As a result of the work in the group, two recommendations were published in
September 2012: Direct Mapping [1] and R2RML [2]. The former specifies the
terms generation rules to be applied to generate automatically an RDF dataset
that reflects the structure and content of the relational database. Since this may
not be always adequate or optimal, especially in those cases when the relational
database content needs to be transformed into RDF according to an existing
ontology, R2RML allows customising the terms generation rules to be applied.
Hence R2RML provides more flexibility than its counterpart, the Direct Map-
ping specification. However, this comes at a cost for users interested in gener-
ating RDF from their relational databases: they need to learn how to create
those R2RML mappings. Several tools have been made available to facilitate the
task of mapping generation, as discussed in Section 2, but either they produce
mappings in earlier RDB2RDF languages (e.g. the ODEMapster GUI, which
produces R20 mappings) or are not usable enough (e.g. form-based tools that

© Springer International Publishing Switzerland 2015
P. Cimiano et al. (Eds.): ICWE 2015, LNCS 9114, pp. 326-343, 2015.
DOI: 10.1007/978-3-319-19890-3_21

MIRROR: Automatic R2RML Mapping Generation 327

only provide syntactic sugar to users, who still require a good knowledge of
R2RML). An alternative approach to ease the burden of R2RML creation from
users, making them more efficient, is to bootstrap the process with the creation
of an initial R2ZRML mapping document that reflects the behaviour of the Direct
Mapping specification, and then allow users to edit that document further, e.g.
in a text editor. This has generally proven to be useful in our own work, since
in many cases a large percentage of triple maps inside an R2ZRML mapping doc-
ument are reused. This has also an additional positive side effect, which is the
fact that any R2RML engine (e.g. morph-RDB) can be used to produce RDF
following the Direct Mapping specification.

Furthermore, we have already pointed out that the Direct Mapping generates
an RDF dataset that reflects the structure and content of the relational database.
However, there are some well-known and widely-applied relational database pat-
terns that usually encode some additional information that may be useful in this
transformation process. For instance, some combinations of primary and foreign
keys in relational tables are commonly used to represent parent-child, 1-N and
M-N relationships between tables. This means that we may be able to push our
approach further by generating as well some of that implicit information (such
as subclass-of relationships, some specific object properties, etc.), in addition to
the mappings generated following the Direct Mapping specification.

Motivational Example. Let us see an example, which will be used through-
out the rest of the paper. Consider the database D011!, from the W3C Direct
Mapping Test Cases, with tables: Student(ID, FirstName, LastName) and
Sport (ID, Description), where ID is the primary key in both cases; and
Student_Sport(ID_Student, ID_Sport), where both columns form a compos-
ite primary key, and where ID_Student is a foreign key that refers to the column
ID of the table Student and ID_Sport is a foreign key that refers to the column
ID of the table Sport.

The constraints specified by the primary/foreign keys in the table
Student_Sport represent an M-N relationship between table Student and table
Sport. Thus, when transforming this database into RDF, one can expect that
there will be an object property, for example hasStudent, with Sport as its
domain and Student as its range, or viceversa with object property hasSport.

Now we will make the following modifications to that database, and will name
the resulting database DO11B. Figure 1 provides its graphical representation.

— Add another table Person(ID, SSN), with ID as the primary key. We also
add a foreign key constraint to the column ID of table Student, which refers
to the column ID of the table Person. Then, we can see that there is a
parent-child relationship, being the table Person the parent, and the table
Student the child. This relationship implies that every property available
in the parent is also inherited by the child, so that when we transform this
database into RDF, the instances resulting from table Student will also have
properties corresponding to the column SSN of the parent table Person.

! http://www.w3.org/2001 /sw/rdb2rdf/test-cases/#D011-M2MRelations

http://www.w3.org/2001/sw/rdb2rdf/test-cases/#D011-M2MRelations

328 L.F. de Medeiros et al.

Person

1D (PK) SSN

10 1234510

" 1234511

12 1234512

Contact Student Student_Sport Sport

CID(PK) | SID(FK) | Email ID(PFK] | FirstName | LastName 1D_Student (PFK) | 1D_Sport (PFK} D (PH) Description
1 10 venus@hotmail.com 10 Venus Willams 10 1o 110 Tennis
2 10 venus@gmail.com 1" Fernando Alonso 1 111 1 Foatball
3 " fernando@yahoo.com 12 David Villa 1 112 112 Formulat
4 12 david@msn.com 12 111

Fig. 1. Graphical Representation of DO11B Database

— Add another table Contact (CID, SID, Email) with CID as the primary key
and SID as the foreign key that refers to the column ID in the table Student.
The relationship between Student and Contact is a 1-N relationship, so we
may expect to have an object property generated for this relationship, being
Student the domain and Contact the range.

Contributions. The main contribution of this paper is the design and imple-
mentation of an algorithm that takes as an input a relational database and gen-
erates as an output an R2RML mapping document that includes two groups of
mappings. The first group of mappings encodes the transformations that would
be done by a Direct Mapping engine, with the only exception that the gen-
erated RDF will differ in the URIs that are generated for some RDF nodes.
The second group of mappings encodes an additional set of transformations
that exploit the implicit information that is normally contained in relational
databases (e.g. subclass-of relationships, M-N relationships) and which are not
exposed by directly following the Direct Mapping approach.

The rest of the paper is structured as follows. In Section 2 we discuss pre-
R2RML and R2RML-compliant mapping generation systems. In Section 3 we
present the core of our approach for the automatic generation of R2RML map-
pings from a relational database schema. In Section 4 we present some experi-
ments applied to the set of test cases provided by the W3C RDB2RDF working
group. In Section 5 we provide some conclusions on this paper and our planned
future work.

2 Background and State of The Art

We start this section by providing some background on the two W3C recommen-
dations that we have already referred to in the introduction: Direct Mapping and
R2RML. Then we move into the description of some of the approaches that have
been proposed so far for the generation of RDB2RDF mappings.

MIRROR: Automatic R2RML Mapping Generation 329

2.1 Background: W3C Direct Mapping and R2RML

As discussed in the introduction, the W3C Direct Mapping recommendation
defines simple transformation rules to generate RDF from relational data, as
follows:

— A rule to generate the subject URI that corresponds to each row of a database
table. These subject URIs are the result of the concatenation of a base URI
with the name of the primary key column, the symbol = and the value of
the column, e.g., <Student/ID=10>. Blank nodes are generated in the case
of tables that do not have any primary key defined.

— A rule to generate rdf:type triples from each row of a database table, e.g.,
<Student/ID=10> rdf:type <Student>.

— A rule to generate literal triples from each row of a database table. This
rule generates the subject URI as the subject, the concatenation of the table
name, the symbol # and the column name as the predicate, and the column
value as the object. An example of a triple generated by this rule is the
following: <Student/ID=10> <Student#FirstName> "Venus".

— A rule to generate reference triples from each row of a datable table that
contains a foreign key. This rule generates the subject URI as the subject,
the concatenation of the table name, the string #ref- and the column name
as the predicate, and the concatenation of the referenced table name, the
primary key of the referenced table and the column value as the object.
For example, this rule would generate the following triple: <Contact/ID=1>
<Contact#ref-SID> <Student/ID=10>.

Unlike the Direct Mapping recommendation, R2RML allows users to specify
the transformation rules to be applied. The most important R2ZRML elements are:

— rr:TriplesMap, used to transform database rows into RDF triples.

— rr:LogicalTable, used to specify the table (or view) whose rows are to be
transformed.

— rr:TermMap, used to represent the term generation rules for components

of the triples (subject, predicate, and object). There are three ways to

specify them: constant (rr:constant), column rr:column, or template

(rr:template).

rr:SubjectMap, used to specify the transformation rules to generate the

subjects of the triples.

— rr:PredicateObjectMap, used to specify the transformation rules to
generate the pair of predicate and object of the triples, by means of
rr:PredicateMap and rr:0bjectMap, respectively.

2.2 RDB2RDF Mapping Generation Approaches

Several works in the state of the art have dealt with the automatic or manual
generation of RDB2RDF mappings.

The first group of systems that we can refer to is that of early RDB2RDF sys-
tems (e.g. ODEMapster [3], D2R Server [4], Triplify [5])?, which used their own

2 A longer list is available at http://d2rq.org/resources#projects

http://d2rq.org/resources#projects

330 L.F. de Medeiros et al.

mapping languages to transform relational database content to RDF. They also
had associated functionalities to ease the generation of such mappings, either
manually or automatically. For example, the ODEMapster GUI was a NeOn
Toolkit plugin that allowed specifying in a graphical manner the most common
types of mappings that may be declared in the R20 language. D2R. Server pro-
vides an automatic mapping generation functionality based on table and column
names, as well as constraints such as primary and foreign keys, what is very sim-
ilar to the one provided for the W3C Direct Mapping. This implementation was
first available for the D2R language and later for R2RML. Triplify provides map-
ping templates for some well-known Web applications (e.g. WordPress, Joomlal,
Drupal).

There are also other approaches that are independent from the mapping lan-
guage and tool used to specify and run mappings. For instance, the authors in
[6,10] analyse the different types of relationships that exist between relational
tables, using primary and foreign keys, so as to determine the classes and prop-
erties of the expected results in RDF. However, no mappings are generated as
a result of this analysis, what means that this work cannot be reused by other
RDB2RDF engines. More recent work [7] has proposed a fixed set of rules for
saturating mappings, once that the mappings between the relational database
and an ontology have been defined by a domain expert. In fact, the motivation
example that we have described in our example in section 1 is inspired by that
work.

In [8] the authors proposed a semi-automatic mapping generation process,
where R2ZRML mappings are generated based on a set of semantic correspon-
dences (for classes and properties) defined by domain experts. And the authors
in [9] present a GUI-based R2RML mapping editor to help non-expert users to
create and modify their mappings.

However, none of the aforementioned approaches and systems deals with
the automatic generation, from relational databases, of R2RML mappings
that encode the implicit information that can be obtained from the relational
database schema.

3 Automatic Generation of R2ZRML Mappings

Our process for automatically generating R2RML mappings from a relational
database schema is depicted in Figure 2. The system receives as an input either
the connection details to an existing database or a SQL file containing the
database schema (represented by SQL DDL /DML statements). Then the process
consists of two main steps:

1. Identification of Relationships between Tables. In this step, the rela-
tionships between tables are extracted, as well as their cardinality and the
columns and constraints that are present in the database schema.

2. Generation of R2ZRML Mappings. In this step, the R2ZRML triples maps
that correspond to the patterns identified in the previous step are generated.

MIRROR: Automatic R2RML Mapping Generation 331

R2RML Mappings Generator

s Y
¥ \
L 1
!) Definition of i
1. Extraction of Parameters i
f :> tablesfrom and !
! relationships Constant |
! Triples H
! 1
! 1
1 ' Tripl
! I riples
! sat ! Maps
H commands 1
Schema ! 2. Generation '
avata | | D\ et %
! mappings H
1 H
\ ;

G Generation of

Triples

http://

Fig. 2. A general overview of the R2ZRML mapping generation process in MIRROR

We consider two assumptions about the relational schema, so as to ensure
completeness of the mapping process and preservation of information, as dis-
cussed in [10]:

1. The relational schema must be normalized, at least, in third normal form
(3NF).
2. Primary keys must be defined as not null and unique.

Next we discuss about the typical patterns that can be found in a relational
database schema and our approach to convert them into R2ZRML mappings.

3.1 A Catalogue of Typical Patterns in Relational Schemas

A typical database modeling process considers three types of models: con-
ceptual (where the elements are described using an Entity-Relationship or
an Extended Entity-Relationship diagram), logical (which uses the relational
model and is independent of the target database management system) and phys-
ical (which depends on the underlying database management system, defines
how data is stored and declares constraints and keys). While conceptual and
logical models may in principle be the most adequate to understand the domain
of a database, given their higher level of abstraction and technology indepen-
dence, these models are not commonly available. Therefore, R2ZRML mapping
generation algorithms need to be designed taking into account the information

332 L.F. de Medeiros et al.

that can be obtained from the physical model: relations (tables) and relationships
between them.

We have created a catalogue (see tables 1 and 2) describing nine types of
relationships between two (or more) tables that may be found in the physical
implementation of a relational database. We name these tables “parent* and
“child“. A parent table is the one that contains a primary key that is used as a
foreign key by the child table.

Catalogue Creation Process. Figure 3 outlines the steps followed to gener-
ate our catalogue. First we consider all the possible pairs (16) that describes a
relationship between two entities at the conceptual model, from the perspective
of each entity: (Opt,1), (Opt,N), (Mand,1) and (Mand,N)3. This list is then
pruned as follows:

1. Using the reflexive property (i.e., 1 — N = N — 1), the options are pruned
to 10.

2. By assumption 2 (primary keys must be defined as not null and unique),
options 10, 11, 12 and 16 are not allowed, because of the parent optional
feature (Opt,X):

3. Finally, three special cases are added: i) reciprocal relationships, where
one parent may be (optionally) related to only one child, and one child
may be related to only one parent, respectively; ii) self (or recursive)
relationships, where one instance of the parent may be related to another
instance of the same parent; and iii) n-ary relationships, which involve
many relationships, having many child tables connected to one parent table.

As a result, the catalogue is reduced to nine patterns, which need to be
detected in the physical model of the database.

Catalogue Description. These nine patterns are graphically depicted in tables
1 and 2, which shows how they are normally specified in the conceptual (already
discussed), logical and physical models. In the logical model we specify the
number of relations (tables) involved, as well as the type of relationship between
them. In the physical model we describe whether null values are accepted in
the key column (primary or foreign) of each relation.

Now we describe each of the rows of tables 1 and 2:

1. Rows 1 and 2a get transformed into a single table in the relational model
(and hence also in the physical model).

2. Row 2b may be considered as a special case of row 5a. A special case of an
IS-A relationship using two tables may be also considered here.

3. Row 3 indicates a reciprocal relationship case between two tables and it
matches with twice 1:N case not mandatory, as row Ha also states.

3 Opt and Mand refer to whether the relationship is optional or mandatory, and the
second item refers to the maximum cardinality, which may be 1 or uningspecified.

333

MIRROR: Automatic R2ZRML Mapping Generation

—

diysuonej=s Ae-u
diysuonejas (aalsinaal) j=s
diysuoiej=d jeaoadiazd

{n'puew) | (ndo) | [tdo) | (nado) [(ncpuew) [(ndo) | (Tdo) [(ncpuew) | (ToPvem) | Poud suondaoxa
(npuew) | (T'Puen] | (T'Puen) | (N'Puew) | (n'Puen) | (TPue) | (T'Puen] | {TPue) | (TPUEN] | 1uaieg duippe sayy (€
g 3 v £ z I
(n3do) |(npuew) | inado) | (Tdo) |(npuew) | (Tpuew) [P 7 uondwnsse
{nrpue] | (n'puew) | (Tpuew) | (T'puew] | (T7puew) | (Tpuen) | wameq| Sulhjdde sayy (2
g 3 v £ z T
{n2do} | (nado) | (zado) |(npuew) | {nado} [(n‘puew) | {nado) | (tado} |[npuew) | (Tpuen) | piuz| Auadoad aaxa)ial
(udp) | (vRdo) | (¥990) | (¥90) |(npuew) |(n'puew) | (Tpuew) | (T'pue] | (Tpue) | (Tpuew) | wased| Sulhjdde sayy (T
9T T 13 ot g 3 v £ z I
(nado} | (tado} |(npuew] | (TRusw} | (Ndo) | [tdo) |(n‘Puew) | (TRUEN] | PIYD
(n3do) | (nBdg) | (M9d0) | (nSdp) | (tdo) | (todo) | (Todo) | (T9dD) | waesey
91 5T ¥ £1 1 T [6 SUOIIEUIGIOD
nv (o
(ndo} | (t3do} |(nPuew] | (TRuB} | (Ndo) | [tdo) |(n'Puew) | (TRue) | PRYD
(n'pueia) | (n'puew] |{npuew) | (NPORN) | (T'puen) | (T'Puew] | {T°Puew] | (T'Puen] | waied
8 i 3 5 v £ z T sdaig

Fig. 3. Obtaining the Catalogue for Guiding the R2ZRML Mapping Generation

334

L.F. de Medeiros et al.

Table 1. Correspondences between conceptual, logical and physical models (rows

1to 5)
Conceptual Logical Ayt
Nullable . . - Comments
Parent| Child | Tables| Relationships | Parent| child s
5|z
i | B |E | 4 - il || =
= = One table, no
- — Parent relationships
ParentPK [ParentCol1 ChildCol1
1 N
a R .
= |2 Parent I
2 & gm | ParentPK |FarentCoI1|FarentCoI2| . | susbec\a;];
.
b| = | = 2 1-N N Y U"‘)| i} relationships
Child 01% (6.0 Person
ChildPK | childCol1 | childcolz2 | [Parentrk | | and Student)
Parent
w2 [ParentPk [ParentcolParentCold] [chilgrk | . |
3|5 |52 1-N NO| Y 1 " 10N | torers
O P E relationship
= |2 1.1 0.1
ChildPK [childCol1 [childcol2 | [Parentrk |
. Parent
= || = ParentPK [PareniCol fParenicoly] . ;ig(i:*:?:;f
2 ; ttact,
4 | |5 | 2 1N N[N 4.1 ki
E | = Child (1N case)
ChildPK [ChildCol1 | ChildCol2 | [ParentFk |
Parent
| PareniPK |FarethUI1|FaremCUl2| - | (e.g. Student
a 2 1-N N Y '[1 “I)| and Contact,
Child [UN* optional case)
ChildPK [ChildCol1 | ChildCal2 | [ParentFk |
] = 7 L Parent
5 5 | = 11
= o (e.0. Student,
- Parent_Child Gl e
arent_Chil Student_Spert
b : MH M| Y | onr—»[Pamentk | chidk it
considering
optional case)
GE ChildPK [ChildCol1 | ChildCol2

4. Rows 7 and 8 can be considered as special cases using only two tables, settled
in the row 9 as a more general form.

5. Row 6 describes a self-relationship.

= o=

The categories described next reflect the patterns of relationships that guide
the SQL queries on the information schema that we will use in our algorithm,
starting from, at least, two tables (patterns 1 and 2a, translated into only one
table, are not considered):

1:N, optional entity (rows 2b, 3, 5a, 6a and 6b).

1:N, mandatory entity (row 4)

M:N having 2 tables, optional or mandatory (rows 5b, 7 and 8)

M:N having more than 2 tables, optional or mandatory (row 9)

MIRROR: Automatic R2ZRML Mapping Generation

335

Table 2. Correspondences between conceptual, logical and physical models (rows

6 to 9)
Conceptual Logical Etiysical c ;
omments
Hullabie Graphical Representation for a Generic Model
Parent | Child | Tables | Relationships | Parent| Child
Parent
a 1 1-N M Y ParentPK |ParentCol1|ParentCol2) ParentFK
(.1 0N}
== Self
[g = Parent Eelatlonsmp
Q or recursive
= = | ParentPK |Parenlcul1‘F’aremCﬂl2‘ ‘ relationship)
b 2 1-N M Y (1,1)
child (ON
ChildPK [ParentfK [childcolt [Chilacol2] .. |
Parent
(1,1—] ParentPk [ParentcoliParentColz] |
(e.q.tables
zZ |z Student,
= e Parent_Child Sport and
- C |
T & | &3 M-N NN] ParentK | childek Student_Sport
= = , mandatory
case)
(1,1+—| childPK [childcolt | ChildCol2 |
Parent
(1,1—] ParentPk [ParentcoliParentColz] |
Z —
s | Z Parent_Child
8 = i3 3 M-N M Y Same as 5b
=2
[\
child
ChildPK | ChildGol1] ChildCol2 | |
Ny
—_ Parent_Child1
i -
= (xN)y—+{ ParentFK | Child1FK N-ary
= O relationships
9 g g 3 M-N N YorN Parent [idgﬁmanly
— | ==] or NF iferen
5=z (1,1 ParentPK [ParentCol1|ParentCol2 S
= i involving rows
= Parent_ChildN 7ands)
= N —»{ ParentFK | chilonFk
b
(1,1—] chilanPK [childNCal ChildNCold

3.2 Algorithms for the Generation of R2ZRML Mappings

Two different algorithms are proposed for R2RML mapping generation: one for
1:N relationships (Algorithm 1) and another one for M:N relationships (Algo-

rithm 2).

In Algorithm 1 (Cardinality 1-N) the outer loop goes through all primary
keys from the parent table, and executes three procedures that produce R2RML

mapping components:

— triplesMap(n): it stores an ordered, auto-incremented triples maps, indexed
by n, according to the template <#TriplesMap{n}>.

336 L.F. de Medeiros et al.

— logicalTable(RS): it stores the mapping component rr:logicalTable for the
parent table RS.

— subjectMap (RS, KS): it stores the mapping component rr:subjectMap, tak-
ing in account the template rr:template "http://IRI/RS/{KS}", where
IRI is a parameter defined by the user.

The inner loop stores the mapping component rr:predicateObjectMap. It
loops through all the columns that belong to the parent table (represented by
argument attr(RS)). When the index n is incremented, the graph for the child
table is generated, considering now:

— triplesMap(n): it has the same behaviour as for the parent table.

— logicalTable(RT): it stores the mapping component rr:logicalTable for the
child table RT.

— subjectMap(RT, KT): it stores the mapping component rr: subjectMap, tak-
ing in account the template rr:template "http://IRI/RT/{KT}".

After another inner loop with respect to the rr:predicateObjectMap for the
child table, the algorithm registers the relationship, by means of the mapping
component rr:joinCondition, linking the primary key KS from the parent
table with the foreign key KT from the child table.

Algorithm 2 (Cardinality M-N) is different, since we use one more loop on
all rows obtained from evaluation [¢]; (categories 3 and 4).

Algorithm 1 1-N Cardinality

Require: atir(¢) = {RS,KS,RT, KT}
1: if card([¢]r) =1 then

2: n=1

3 for all KS do

4: triplesMap(n) > Generates triples map for RS (parent table)
5: logicalTable(R.S)

6: subjectMap(RS, KS)

7 for all attr(RS) do

8: predicateObjectMap(attr(RS))

9: end for

10: n«—n+1

11: triplesMap(n) > Generates triples map for RT (child table)
12: logicalTable(RT)

13: subjectMap(RT, KT)

14: for all attr(RT) do
15: predicateObjectMap(attr(RT))
16: end for
17: joinCondition(K S, KT) > Generates join condition
18: n«—n+1

19: end for
20: end if

MIRROR: Automatic R2RML Mapping Generation 337

Algorithm 2 M-N Cardinality
Require: atir(¢) = {RS,KS,RT, KT}

1: if card([¢]r) > 1 then
2 for all tuples in ¢ do
3 n=1
4 for all KS do
5: triplesMap(n) > Generates triples map for RS (parent table)
6: logicalTable(RS)
7 subjectMap(RS, K.S)
8: for all attr(RS) do
9: predicateObjectMap(atir(RS))
10: end for
11: n—n+1
12: triplesMap(n) > Generates triples map for RT' (child table)
13: logicalTable(RT')
14: subjectMap(RT, KT)
15: for all attr(RT) do
16: predicateObjectMap (attr(RT))
17: end for
18: joinCondition(K S, KT > Generates join condition
19: n«—n+1
20: end for
21: end for
22: end if

Subclass Identification. We use saturation to extend the set of R2ZRML map-
pings that has been initially created, exploiting subclass relationships that can
be found in the database physical model. Unlike the work presented in [7], our
work does not consider the use of an existing ontology to guide this saturation
process. Our saturation approach considers two cases that can appear in the
database physical model:

1. An IS-A relationship with cardinality 1-1 between a parent table and its
child, having a common primary key table (row 2b from table 1).

2. An IS-A relationship with cardinality 1-N between a parent table and its
child, becoming 1-1 after a data checking, testing whether any tuple in the
parent table is related to only one tuple in the child table (it may happen
with rows 4, ba from 1, and 6a and 6b from table 2).

In these cases, the R2RML triple map for the child table is saturated with
additional attributes from the parent table. An extra constant triple map is
generated to feature explicitly the hierarchy, using rdfs:subClassOf.

Object Property Identification. Covering rows 5b from table 1; and 7, 8
and 9 from table 2, M-N relationships are represented by 3 tables. The binary
table between parent and child tables, having the primary keys respectively

338 L.F. de Medeiros et al.

as foreign keys, can be understood as an object property. Our R2RML map-
ping generator can create constant triples maps, templated as object property
ParentHasChild and putting also its inverse, ChildBelongsToParent, using
owl:0ObjectProperty, owl:inverseOf, rdfs:domain and rdfs:range.

Datatype Property Identification. In the wake of the object proper-
ties handling, all columns of tables in the database schema are featured as
datatype properties. The mapping generator creates constants triples maps
(using owl:DatatypeProperty) considering the table to which the column
belongs as the domain (using rdfs:domain), and the column data type as the
range (using rdfs:range).

4 Implementation and Experimentation

The algorithms described in this paper have been implemented in MIRROR*
(MappIng from Relational to Rdf generatOR) and have been integrated with
morph-RDB? [11]. We have performed some experiments in order to show that
our system can obtain R2RML mappings that encode the semantics in the
W3C Direct Mapping specification, and furthermore that our system can gen-
erate R2ZRML mappings that also lift-up the implicit semantics encoded in the
database.

We use two datasets in this experimentation: the set of databases provided
in the Direct Mapping Test Cases, and we extend one of the databases (D011)
to encode a parent-child relationship.

4.1 Experimentation Using the Direct Mapping Test Cases

The Direct Mapping Test Cases® is a test suite provided by the W3C RDB2RDF
Working Group, which consists of a collection of test cases covering various
database schemes such as databases without tables, databases with one table,
with 1-N relationships, and with M-N relationships. In each of the test cases,
the triples that can be expected as a result of applying Direct Mapping rules are
provided. Thus, this test suite is a suitable source for us to evaluate our system,
enabling us to see if our system produces the expected Direct Mapping results.
In addition to that, we can also easily see the additional triples generated by
the saturated mappings resulting from the identification of pattern relationships
described in Section 3.

Here we discuss the database of Test Case D011, which consists of three tables
Student, Sport, and Student_Sport. The table Student_Sport acts as a binary
table that enables the M-N relationship between table Student and table Sport.
The result of applying Direct Mapping rules over the database D011 can be seen
in Listing 1.1.

* https://github.com/oeg-upm/MIRROR
5 https://github.com/oeg-upm/morph-rdb
5 http://www.w3.0rg/2001 /sw/rdb2rdf/test-cases/

https://github.com/oeg-upm/MIRROR
https://github.com/oeg-upm/morph-rdb
http://www.w3.org/2001/sw/rdb2rdf/test-cases/

MIRROR: Automatic R2RML Mapping Generation 339

Listing 1.1. The Result of Applying Direct Mapping Rules Over D011 Test Case
Database

1 || <Student/ID=10> rdf:type <Student> .
2 || <Student/ID=10> <Student#FirstName> "Venus".
3 || <Student/ID=10> <Student#ID> 10 .
4 || <Student/ID=10> <Student#LastName> "Williams" .
5 || <Student/ID=11> rdf:type <Student> .
6 || <Student/ID=11> <Student#FirstName> "Fernando".
7 || <Student/ID=11> <Student#ID> 11 .
8 || <Student/ID=11> <Student#LastName> "Alonso" .
9 || <Student/ID=12> rdf:type <Student> .
10 || <Student/ID=12> <Student#FirstName> "David".
11 || <Student/ID=12> <Student#ID> 12 .
12 || <Student/ID=12> <Student#LastName> "Villa" .
13 || <Student_Sport/ID_Student=10;ID_Sport=110> rdf:type <Student_Sport> .
14 || <Student_Sport/ID_Student=10;ID_Sport=110> <Student_Sport#ID_Student> 10 .
15 || <Student_Sport/ID_Student=10;ID_Sport=110> <Student_Sport#ref —ID_Student> <Student/ID=10> .
16 || <Student_Sport/ID_Student=10;ID_Sport=110> <Student_Sport#ID_Sport> 110 .
17 || <Student_Sport/ID_Student=10;ID_Sport=110> <Student_Sport#ref —ID_Sport> <Sport/ID=110> .
18 || <Student_Sport/ID_Student=11;ID_Sport=111> rdf:type <Student_Sport> .
19 || <Student_Sport/ID_Student=11;ID_Sport=111> <Student_Sport#ID_Student> 11 .
20 || <Student_Sport/ID_Student=11;ID_Sport=111> <Student_Sport#ref —ID_Student> <Student/ID=11> .
21 || <Student_Sport/ID_Student=11;ID_Sport=111> <Student_Sport#ID_Sport> 111 .
22 || <Student_Sport/ID_Student=11:ID_Sport=111> <Student_Sport#ref —ID_Sport> <Sport/ID=111> .
23 || <Student_Sport/ID_Student=11:ID_Sport=112> rdf:type <Student_Sport> .
24 || <Student_Sport/ID_Student=11;ID_Sport=112> <Student_Sport#ID_Student> 11 .
25 || <Student_Sport/ID_Student=11;ID_Sport=112> <Student_Sport#ref—ID_Student> <Student/ID=11> .
26 || <Student_Sport/ID_Student=11;ID_Sport=112> <Student_Sport#ID_Sport> 112 .
27 || <Student_Sport/ID_Student=11;ID_Sport=112> <Student_Sport#ref—ID_Sport> <Sport/ID=112> .
28 || <Student_Sport/ID_Student=12;ID_Sport=111> rdf:type <Student_Sport> .
29 || <Student_Sport/ID_Student=12;ID_Sport=111> <Student_Sport#ID_Student> 12 .
30 || <Student_Sport/ID_Student=12;ID_Sport=111> <Student_Sport#ref —ID_Student> <Student/ID=12> .
31 <Student_Sport/ID_Student=12:ID_Sport=111> <Student_Sport#ID_Sport> 111 .
32 || <Student_Sport/ID_Student=12:ID_Sport=111> <Student_Sport#ref —ID_Sport> <Sport/ID=111> .
33 || <Sport/ID=110> rdf:type <Sport> .
34 || <Sport/ID=110> <Sport#ID> 110 .
35 || <Sport/ID=110> <Sport#Description> "Tennis" .
36 || <Sport/ID=111> rdf:type <Sport> .
37 || <Sport/ID=111> <Sport#ID> 111 .
38 || <Sport/ID=111> <Sport#Description> " Football " .
39 || <Sport/ID=112> rdf:type <Sport> .
40 || <Sport/ID=112> <Sport#ID> 112 .
41 || <Sport/ID=112> <Sport#Description> "Formulal" .

Listing 1.2. The Generated R2ZRML Mappings Correspond to Direct Mapping Triples

<#TriplesMap5> a rr:TriplesMap;

1

2 rr: logicalTable [rr:tableName "student";];

3 rr:subjectMap [rr: class <Student>; rr:template "Student/{ID}"; rr:termType rr:IRL; |

4 rr:predicateObj [rr i D>; rr: obji [rr:column "ID"; rr:datatype xsd: integer ; 1;];

5 rr:predicateObj [rr i FirstName>:rr:obj [rr:column "FirstName"; rr:datatype xsd: string ;]:]:
6 rr:predicateObji [rr i astName>; rr:obji [rr:column "LastName"; rr:datatype xsd: string ; J; 1.
7

8 || <#TriplesMap10> a rr:TriplesMap;

9 rr:logicalTable [rr:tableName "student_sport"; |;

10 rr:subjectMap [rr: class <Student_Sport>; rr:template "Student_Sport/{ID_Student}/{ID_Sport}"; rr:termType rr:IRI:];

11 rr:predicateObjectMap[rr:predicate <Student_Sport#ID_Student>;rr:objectMap[rr:column "ID_Student";rr:datatype xsd: integer ;];];
12 rr:predicateObjectMap[rr:predicate <Student_Sport#ID_Sport>;rr:objectMap(rr:column "ID_Sport";rr:datatype xsd: integer :J:];
13 rr:predicateObjectMap [rr:predicate <Student_Sport#ref —ID_Student>;rr:objectMap [

14 rr:parentTriplesMap <#TriplesMap5>;rr:joinCondition [rr:child "ID_Student"; rr:parent "ID"; |:]:];

15 rr:predicateObjectMap [rr:predicate <Student_Sport#ref —ID_Sport>;rr:objectMap [

16 rr:parentTriplesMap <#TriplesMap1>; rr:joinCondition [rr:child "ID_Sport"; rr:parent "ID"; 1:]:].

17

18 <#TriplesMap1> a rr: TriplesMap;

19 rr: logicalTable [rr:tableName "Sport";];
20 rr:subjectMap [rr: class <Sport>:rr:template "Sport/{ID}";rr:termType rr:IRI:];
21 rr:predicateObjectMap [rr:predicate <Sport#ID>;rr:objectMap [rr:column "ID"; rr:datatype xsd: integer ; I; I
22 rr:predicateObjectMap [rr:predicate <Sport# Description >;rr:objectMap [rr:column "Description"; rr:datatype xsd: string ;]:].

When the same database schema and instance are passed to MIRROR, it
generates the R2ZRML mappings shown in Listing 1.2.

340

Listing 1.3. Direct Mapping triples of morph-RDB Result Over D011 Test Case

Database

1 || <Student/10> rdf:type <Student> .

2 || <Student/10> <Student#FirstName> "Venus" xsd: string .

3 || <Student/10> <Student#ID> "10""xsd: integer .

4 || <Student/10> <Student#LastName> "Williams" xsd:string .

5 || <Student/11> rdf:type <http :// example.com/Student .

6 || <Student/11> <Student#FirstName> "Fernando"*"xsd: string .

7 || <Student/11> <Student#ID> "11"*xsd: integer .

8 || <Student/11> <Student#LastName> "Alonso" " xsd:string .

9 || <Student/12> rdf:type <http :// example.com/Student> .

10 || <Student/12> <Student#FirstName> "David""xsd: string .

11 || <Student/12> <Student#ID> "12" Mxsd: integer .

12 || <Student/12> <Student#LastName> "Villa" Mxsd: string .

13 || <Student_Sport/10/110> rdf:type <Student_Sport> .

14 || <Student_Sport/10/110> <Student_Sport#ID_Student> "10" Mxsd: integer > .
15 || <Student_Sport/10/110> <Student_Sport#ref —ID_Student> <Student/10> .
16 || <Student_Sport/10/110> <Student_Sport#ID_Sport> "110" xsd: integer > .
17 || <Student_Sport/10/110> <Student_Sport#ref —ID_Sport> <Sport/110> .

18 || <Student_Sport/11/111> rdf:type <Student_Sport> .

19 || <Student_Sport/11/111> <Student_Sport#ID_Student> "11""xsd: integer > .
20 || <Student_Sport/11/111> <Student_Sport#ref —ID_Student> <Student/11> .
21 || <Student_Sport/11/111> <Student_Sport#ID_Sport> "111"Mxsd: integer > .
22 || <Student_Sport/11/111> <Student_Sport#ref —ID_Sport> <Sport/111> .
23 || <Student_Sport/11/112> rdf:type <Student_Sport> .
24 || <Student_Sport/11/112> <Student_Sport#ID_Student> "11""xsd: integer > .
25 || <Student_Sport/11/112> <Student_Sport#ref —ID_Student> <Student/11> .
26 || <Student_Sport/11/112> <Student_Sport#ID_Sport> "112" xsd: integer > .
27 || <Student_Sport/11/112> <Student_Sport#ref —ID_Sport> <Sport/112> .
28 || <Student_Sport/12/111> rdf:type <Student_Sport> .
29 || <Student_Sport/12/111> <Student_Sport#ID_Student> "12" Mxsd: integer > .
30 || <Student_Sport/12/111> <Student_Sport#ref —ID_Student> <Student/12> .
31 || <Student_Sport/12/111> <Student_Sport#ID_Sport> "111"Mxsd: integer > .
32 || <Student_Sport/12/111> <Student_Sport#ref —ID_Sport> <Sport/111> .
33 || <Sport/110> rdf:type <Sport> .
34 || <Sport/110> <Sport#ID> "110""xsd: integer> .
35 || <Sport/110> <Sport#Description> "Tennis"xsd: string > .
36 || <Sport/111> rdf:type <Sport> .
37 || <Sport/111> <Sport#ID> "111"xsd: integer> .
38 || <Sport/111> <Sport#Description> " Football " Mxsd: string > .
39 || <Sport/112> rdf:type <Sport> .
40 || <Sport/112> <Sport#ID> "112" xsd: integer> .
41 || <Sport/112> <Sport#Description> "Formulal""xsd: string> .

L.F. de Medeiros et al.

Upon receiving these mappings, morph-RDB (or any other R2RML pro-

cessor) generates a set of triples (see Listing 1.3) that correspond to the ones
generated by Direct Mapping, hence we call them Direct Mapping triples.

[e I N

Listing 1.4. R2RML Mappings that Generate the Extra Triples

<#TriplesMap15> a rr:TriplesMap;
rr: logicalTable [rr:sqlQuery
"SELECT DISTINCT t_39025.ID_Student AS ID_Student, t_39025.ID_Sport AS ID_Sport
FROM (sport AS t_01724 JOIN student_sport AS t_39025 ON ((t_01724.ID=t_39025.ID_Sport)))
JOIN student AS t_83317 ON ((t_83317.ID=t_39025.ID_Student))"];
rr:subjectMap [rr:termType rr:IRI; rr:template "Sport/{ID_Sport}"; |;
rr:predicateObjectMap [rr: predicate <SportHasStudent>;
rr:objectMap [rr:template "Student/{ID_Student}"];].

In addition to the mappings above, additional mappings are also generated,

as shown in Listing 1.4. These mappings produce the triples that can be seen

MIRROR: Automatic R2ZRML Mapping Generation 341

in Listing 1.5, which specify the relationship between Student and Sport, which
are not generated by the Direct Mapping specification.

AW =

Listing 1.5. Extra triples of morph-RDB Result Over D011 Test Case Database

<Sport/110> <SportHasStudent> <Student/10> .
<Sport/111> <SportHasStudent> <Student/11> .
<Sport/111> <SportHasStudent> <Student/12> .
<Sport/112> <SportHasStudent> <Student/11> .

4.2 Experimentation Using D011B

For D011B, MIRROR generates the additional mappings shown in Listing 1.6:

— R2RML mappings that generate the triples that the instances of the class

Student are also instances of the class Person (line 20-23) and that SSN is
a property of Student because Student inherits properties of Person (line
24-27).

— R2RML mappings that generate relationships between Student and Contact

(line 7-10).

Listing 1.6. R2RML Mappings Correspond to Subclass Generation and the Inherited
SSN property in class Student

N=lie N B e Y R S

<#TriplesMap12> a rr: TriplesMap;
rr: logicalTable [rr:sqlQuery
"SELECT DISTINCT t_37839.1D, t_11900.CID
FROM (student AS t_37839 JOIN contact AS t_11900 ON ((t_37839.ID=t_11900.SID)))" 1;
rr:subjectMap [rr:termType rr:IRI;
rr:template "http :// example.com/Student/{ID}";];
rr:predicateObjectMap [
rr:predicate ex:StudentHasContact;
rr:objectMap [rr:template "http :// example.com/Contact/{CID}"];];
B

].
<#TriplesMap18> a rr: TriplesMap;
rr: logicalTable [rr:sqlQuery
"SELECT t_76159.ID, t_76159.FirstName, t_76159.LastName, t_40951.SSN
FROM person AS t_40951 JOIN student AS t_76159 ON (t_40951.ID=t_76159.1D)"

-

r:subjectMap [rr: class ex:Student; rr:termType rr:IRI;
rr:template "http :// example.com/student/{ID}";

B
rr:predicateObjectMap|
rr:predicate rdf:type;
rr:objectMap [rr:constant ex:Person];
B
rr:predicateObjectMap [

rr:predicate ex:Student#ssn;

rr:objectMap [rr:datatype xsd: string ; rr:column "SSN";]
B

342 L.F. de Medeiros et al.

5 Conclusion

We have presented a tool for the automatic generation of R2RML mappings
from a relational database schema. These mappings can be used by any R2RML
processor to generate a set of RDF triples that is similar to those resulting
from Direct Mapping. Several types of relationships between tables in a physical
model have been categorised. By means of a core query and two algorithms that
extract and organize this information, mappings are generated.

MIRROR has been integrated with morph-RDB, what allows experimenting
with the generated R2ZRML mappings. The process was tested using the DM test
cases suite, with test D011 extended to D011B to cover more relationships. The
additional mappings and extra triples resulting from subclasses, object properties
and datatype properties have been also described.

In future works, we will cover other types of database systems, so as to make
our work inline with xR2RML [12] and RML [13].

Acknowledgments. This research has been funded by Ministerio de Economia y
Competitividad (Spain) under the project ”4V: Volumen, Velocidad, Variedad y Validez
en la Gestién Innovadora de Datos” (TIN2013-46238-C4-2-R). Luciano Frontino de
Medeiros was supported by Fundacién Carolina-Spain.

References

1. Arenas, M., Bertails, A., Prud, E., Sequeda, J., et al.: A direct mapping of relational
data to RDF, W3C recommendation 27 september 2012 (2013)

2. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language.
W3C recommendation, 27 september 2012 (2013)

3. Barrasa Rodriguez, J., Corcho, 0., Gémez-Pérez, A.: R20, an extensible and
semantically based database-to-ontology mapping language (2004)

4. Bizer, C., Cyganiak, R.: D2R server-publishing relational databases on the seman-
tic web. In: Poster at the 5th International Semantic Web Conference (2006)

5. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-
weight linked data publication from relational databases. In: Proceedings of the
18th international conference on World wide web, pp. 621-630. ACM (2009)

6. Sequeda, J.F., Tirmizi, S.H., Corcho, O., Miranker, D.P.: Survey of directly map-
ping SQL databases to the semantic web. Knowledge Engineering Review 26,
445-486 (2011)

7. Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or material-
ization? in practice, both!. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C.,
Knoblock, C., Vrandecié, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
ISWC 2014, Part I. LNCS, vol. 8796, pp. 535-551. Springer, Heidelberg (2014)

8. Pequeno, V.M., Vidal, V.M., Casanova, M.A., Neto, L.E.T., Galhardas, H.: Spec-
ifying complex correspondences between relational schemas and RDF models for
generating customized R2RML mappings. In: Proceedings of the 18th International
Database Engineering & Applications Symposium, pp. 96-104. ACM (2014)

10.

11.

12.

13.

MIRROR: Automatic R2RML Mapping Generation 343

Sengupta, K., Haase, P., Schmidt, M., Hitzler, P.: Editing R2ZRML mappings made
easy. In: International Semantic Web Conference (Posters & Demos), pp. 101-104
(2013)

Sequeda, J.F., Arenas, M., Miranker, D.P.: On directly mapping relational
databases to RDF and OWL. In: Proceedings of the 21st international conference
on World Wide Web, pp. 649-658. ACM (2012)

Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using morph. In: Proceedings of the
23rd international conference on World wide web, International World Wide Web
Conferences Steering Committee, pp. 479-490 (2014)

Michel, F., Djimenou, L., Faron-Zucker, C., Montagnat, J.: xR2RML: Non-
relational databases to RDF mapping. Technical report (2015)

Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: RML: a generic language for integrated RDF mappings of heteroge-
neous data. In: Proceedings of the 7th Workshop on Linked Data on the Web
(LDOW2014), Seoul, Korea (2014)

	MIRROR: Automatic R2RML Mapping Generation from Relational Databases
	1 Introduction
	Motivational Example.
	Contributions.

	2 Background and State of The Art
	2.1 Background: W3C Direct Mapping and R2RML
	2.2 RDB2RDF Mapping Generation Approaches

	3 Automatic Generation of R2RML Mappings
	3.1 A Catalogue of Typical Patterns in Relational Schemas
	Catalogue Creation Process.
	Catalogue Description.

	3.2 Algorithms for the Generation of R2RML Mappings
	Subclass Identification.
	Object Property Identification.
	Datatype Property Identification.

	4 Implementation and Experimentation
	4.1 Experimentation Using the Direct Mapping Test Cases
	4.2 Experimentation Using D011B

	5 Conclusion
	References

