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Abstract Recent times have seen an increased interest into techniques that allow
the linking of records across databases. The main challenges of record linkage are
(1) scalability to the increasingly large databases common today; (2) accurate and
efficient classification of compared records into matches and non-matches in the
presence of variations and errors in the data; and (3) privacy issues that occur when
the linking of records is based on sensitive personal information about individuals.
The first challenge has been addressed by the development of scalable indexing
techniques, the second through advanced classification techniques that either
employ machine learning- or graph-based methods, and the third challenge is
investigated by research into privacy-preserving record linkage (PPRL). In this
chapter, we describe these major challenges of record linkage in the context of
population reconstruction. We survey recent developments of advanced record
linkage methods, discuss two real-world case studies, and provide directions for
future research.

5.1 Introduction

In the past decade, record linkage has attracted much interest by researchers and
practitioners from various domains, including national census, health and social
science research, businesses, and crime and fraud detection (Christen 2012a;
Herzog and Scheuren 2007; Naumann 2010; Talburt et al. 2011). Also known as
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data linkage, entity resolution, data matching, or duplicate detection, these tech-
niques aim to identify and link all records that refer to the same real-world entities
within a single or across several databases. In most applications, the entities under
consideration are people, such as customers or patients.

The two areas where record linkage has traditionally been employed are national
censuses (Winkler 2006) and the health domain (Kelman et al. 2002; Newcombe
1988). Most record linkage systems in these areas are based on the probabilistic
record linkage approach developed by Newcombe and Kennedy (1962) and for-
malised by Fellegi and Sunter in 1969.

More recently, computer scientists have developed various techniques that allow
the linking or deduplication of large databases with the aim to, for example clean
customer records (Hernandez and Stolfo 1995) or identify fraudsters and criminals
in financial and national security databases (Jonas and Harper 2006). Record
linkage and deduplication techniques are also being employed to remove duplicate
entries returned by search engines (Su et al. 2009), or to identify all bibliographic
records of by the same author in publication databases (Lee et al. 2007).

Social scientists working in the area of demographics and genealogy have also
employed record linkage techniques, commonly using historical census, or birth,
death, and marriage (BDM) data (Fure 2000; Newton 2013; Quass and Starkey
2003; Reid et al. 2002; Ruggles 2002). The aim of such linkages is to identify and
link not just individuals across two or more databases, but rather to create complete
family trees over significant periods of time (Antonie et al. 2014a; Bloothooft 1995;
Fu et al. 2014a). Such reconstructed (or reconstituted) family trees allow social
scientists to investigate many aspects of past societies, such as changes in
employment, mobility, fertility and morbidity, and even the genetic factors of
certain diseases (Glasson et al. 2008).

Compared to contemporary data, the major challenges specific to the linking of
historical data, which are based on census returns or BDM registers, are:

• The generally low levels of literacy of both census collectors and householders
meant census items were often not recorded correctly. Dates of birth, and even
ages, were commonly not known, and addresses were not clearly defined. There
were no standard classifications of employment categories.

• Over time people moved, died, and were born, and so the structure of house-
holds and families changed significantly. Even if census returns are available for
a full country, immigration and emigration mean a significant number of indi-
viduals simply ‘appear’ or ‘disappear’ without birth or death records. The
influence of people’s movements is significantly worsened if only a small subset
of census returns, like from a certain district or area, is available for research.

• Both given- and surnames often had strong local distributions. It was not
uncommon for a large portion of a population to have one of a few common
names.

• Only a small number of attributes were collected in many national censuses in
the nineteenth century. For each individual they usually included the name, age,
gender, relationship to the head of household, and occupation. Other data
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sources, such as vital and parish registers (containing birth, baptism, death, and
marriage records), can also provide rich sources of detailed information about
families and their structures (Newton 2013; Reid et al. 2002).

• Historical documents are commonly hand-written and therefore have to be
scanned and transcribed, either manually or automatically using optical char-
acter recognition techniques. These processes are likely to introduce further
errors and variations into the data (Block and Star 1995).

Contemporary administrative and census databases are increasingly used for
social science research. While present-day data are generally of higher quality and
contain more detailed information, they pose their own set of challenges:

• As more information is being collected, today’s databases not only become
larger but they also contain more details about individuals, and they might also
contain more complex types of data (such as text or multimedia documents).
Linking very large databases poses significant computational challenges, as will
be discussed in Sect. 5.2.

• The data collected are about people who are still alive, and therefore can contain
sensitive information, for example about a person’s health or their financial
details. In today’s ‘Big Data’ society, such information is highly valuable for
organisations such as advertisers, insurers, financial institutions, and even
governments, because it can facilitate for example specific individual targeting
of advertisements, or the calculation of highly predictive credit risk scores
(Siegel 2013). Privacy and confidentiality are especially of concern when
records are linked across databases held by different organisations, as we will
discuss in Sect. 5.3.

This chapter extends an earlier shorter workshop paper on the same topic
(Christen 2014). In the following section, we provide a brief overview of advanced
methods and techniques that have been developed in recent years. In Sect. 5.3 we
discuss privacy issues relevant to record linkage and we summarise techniques that
have been developed to facilitate linking databases across organisations without the
need to reveal private or confidential information. In Sect. 5.4 we then illustrate,
using two case studies, the issues discussed in Sects. 5.2 and 5.3. In Sect. 5.5 we
present our view of important research directions for record linkage in the context
of population reconstruction. We conclude this chapter in Sect. 5.6 with a summary
of our findings. We also provide an extensive bibliography to relevant work.

5.2 Advanced Record Linkage Methods

A variety of techniques have been developed that allow the linking of large dat-
abases. The main areas of research have been to improve scalability to linking large
databases, and to improve linkage quality using advanced classification techniques.
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5.2.1 Scalable Indexing Techniques

When two databases are linked, each record from one database potentially has to be
compared with all records from the other database. The vast majority of these
comparisons will be between records that are not matches (i.e. refer to different
entities). Indexing is the process of reducing this possibly very large number of
record pairs that need to be compared in detail between databases by splitting each
database into smaller sets of blocks or clusters, or by sorting the databases. The aim
is to identify candidate record pairs from records in the same blocks or clusters that
likely correspond to true matches, and that need to be compared in detail, generally
using approximate string comparison functions (Christen 2012a).

The traditional blocking approach employs a blocking criteria (a single or set of
attributes) to insert each record into one block (Fellegi and Sunter 1969). For
example, if a ‘postcode’ attribute is used as blocking criteria then all records with
postcode ‘2000’ are inserted into the same block. Only records within the same
block are then compared with each other. The sorted neighbourhood approach
(Hernandez and Stolfo 1995) sorts a database according to sorting criteria (usually
a set of concatenated attributes) and then moves a sliding window over the sorted
database. Only records that are within a certain window are compared with each
other.

Many of the recently developed indexing techniques insert each record into more
than one block, thereby aiming to overcome errors in attribute values (Christen
2012b). Overlapping clusters (called canopies), sorted suffix arrays, and
q-gram-based indexing, are examples of such techniques. A different approach is to
map records into a multi-dimensional space such that the distances between records
are preserved (Jin et al. 2003). A multi-dimensional index data structure together
with nearest-neighbour queries are then used to extract blocks of candidate records.

Adaptive techniques that, based on the characteristics of the data, dynamically
modify the size of the window in the sorted neighbourhood method (Draisbach
et al. 2012; Yan et al. 2007) or in suffix array-based indexing (de Vries et al. 2011)
have recently shown to obtain blocks of higher quality. Other recent work has
investigated indexing techniques for real-time record linkage, where a stream of
query records is to be linked in sub-second time to a database of entity records
(Christen et al. 2009; Ioannou et al. 2010; Ramadan et al. 2014). Related to
real-time record linkage are approaches that allow for dynamic databases, where
records are added, modified, or removed, on an ongoing basis (Dey et al. 2010;
Ioannou et al. 2010).

While traditional indexing approaches require manual decisions about the choice
of blocking criteria, several approaches have been proposed to learn optimal
blocking criteria either using training data (pairs or groups of records known to be
true matches or non-matches) (Bilenko et al. 2006; Michelson and Knoblock 2006),
or more recently by exploring the distribution of attribute values in records and the
similarities between them (Kejriwal and Miranker 2013). The aim of such learning
techniques is to find blocking criteria that lead to small blocks which contain mostly
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matches only and overall have a high coverage of all matches (if they are known
from training data). Generally, as will be discussed next, techniques that make use
of true matches and non-matches obtain blocking results of higher quality compared
to techniques that are only based on data distributions.

Only limited experimental evaluations have been conducted to compare the
performance of indexing techniques. Christen (2012b) identified that none of 12
variations of six techniques outperformed all others when employed on several data
sets, and that one of the most important factors for efficient and accurate indexing is
the definition of an appropriate blocking criteria.

None of the indexing techniques discussed here is specific to a certain type of
data, and therefore any can be used in the context of linking data for population
reconstruction. However, given the often low quality especially of historical data,
techniques should be applied that are able to cope with ‘dirty’ data and bring
matching records together that likely contain errors and variations. To this end,
techniques that insert each record into several blocks can be of advantage (at the
cost of having to compare a larger number of candidate pairs), as can be techniques
that incorporate domain expertise to guide the indexing process [for example by
learning good blocking criteria (Bilenko et al. 2006; Kejriwal and Miranker 2013;
Michelson and Knoblock 2006)].

5.2.2 Accurate Classification Techniques

The objective of record linkage classification is to decide if a pair or group of
records is a match (assumed to refer to the same real-world entity) or a non-match
(refer to different entities). In the traditional probabilistic record linkage approach
(Fellegi and Sunter 1969), each compared record pair is classified independently
into one of three classes (matches, non-matches and potential matches). The third
class is those pairs or groups of records that require manual classification through a
clerical review process (Christen 2012a).

Besides requiring an often time consuming manual clerical review step, this
traditional approach has several other drawbacks. First, it assumes independence
between attributes. Statisticians have investigated approaches that allow depen-
dencies between some attributes to be modelled (Winkler 2006), and have achieved
improved classification outcomes in some situations. Second, the estimation of the
parameters needed for the probabilistic record linkage approach is a non-trivial
undertaking and requires knowledge about the error rates in the databases to be
linked (which is often difficult to obtain) (Herzog et al. 2007). Third, individual
pair-wise classification can lead to a violation of the transitive closure property (if
record pairs ða; bÞ and ða; cÞ are classified as matches, then pair ðb; cÞ must also be a
match).

Machine learning based approaches aim to overcome these deficiencies. They
are either following a supervised learning approach, where training data in the form
of known matching and non-matching record pairs are required (Elmagarmid et al.
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2007), or they are based on unsupervised clustering techniques which group records
according to their similarities (Naumann and Herschel 2010). While supervised
approaches generally achieve higher linkage quality, their main drawback is the
challenge of obtaining a large number of suitable training examples. Active learning
techniques aim to overcome this drawback (Arasu et al. 2010; Bellare et al. 2012).
They select a small number of difficult to classify record pairs and present these to a
domain expert for manual classification, followed by a re-training of the classifi-
cation model. This process is repeated until high enough linkage quality is obtained.

Several collective classification techniques for record linkage have recently been
developed. Compared to the traditional classification of individual record pairs,
based on a graph representation of the databases to be linked these techniques aim
to find an overall optimal solution when assigning records to entities. Both
Bhattacharya and Getoor (2007) and Kalashnikov and Mehrotra (2006) build a
graph with records as nodes and relational and attribute similarities between them as
edges. On the other hand, Dong et al. (2005) build a dependency graph where each
attribute value pair is represented as a node that contains the similarity between the
two values. An overall optimal classification is calculated in an unsupervised way
by iteratively merging or splitting parts in such a graph into smaller sub-graphs,
such that at the end of the process each sub-graph corresponds to an entity.
A related technique is group linkage (On et al. 2007), where groups rather than
individual records are considered and linked based on some form of group
similarity.

Most experimental evaluations of these collective and group linkage techniques
have been conducted using bibliographic databases, where different types of entities
(authors, papers, venues, and affiliations) provide a rich and well-defined setting of
relational information between entities. Compared to historical data, the quality of
bibliographic data is generally high, but ambiguities occur, for example when
non-standardised abbreviations of conferences or journals are recorded, only the
initials of authors are given, or several authors have the same name and even work
in the same research area. For two ambiguous author records, co-author similarities
or having published in similar journals or conferences can provide the evidence
needed to decide if the two records refer to the same author or not. The databases
used to evaluate collective classification techniques generally contained less than
one million records, and scalability of these techniques to very large databases has
only been investigated recently (Rastogi et al. 2011).

Only limited work has been conducted in machine learning-based record linkage
for population reconstruction. Antonie et al. (2014a, b) use a support vector
machine classifier to link historical Canadian census data, while Efremova et al.
(2015) use a linear scoring model to weight different similarity measures in the
context of matching historical Dutch BDM records. These works highlight the
successful application of supervised classification techniques for population
reconstruction, but they also discuss the challenges in acquiring the required
training data.

Fu et al. (2014a, 2011b, 2012) have recently investigated group linkage methods
on historical census data by treating households as groups and combining pair-wise
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record linkage with household linkage. Their evaluation on UK census data showed
a significant reduction in the number of multiple links (i.e. where a single record
from one database is linked to several records in another database).

The unique structure between records within a family or household has only
recently been explored for record linkage. While most personal details of people
change over time, some aspects of the relationships between the members of a
family or household keep constant even over long periods of time. For example, the
age differences between two parents, and between parents and their children, do not
change (assuming they are recorded accurately). As we will illustrate in Sect. 5.4.1,
Fu et al. (2014b) recently proposed to build one graph per household using such
time-invariant information as edge attributes, and they showed that such an
approach can help to improve household matching in historical census data.
Graph-based approaches can exploit such rich sources of structural information and
allow the development of improved record linkage techniques in the context of
population reconstruction.

5.3 Privacy Aspects in Record Linkage

Due to the lack of unique entity identifiers, record linkage is generally based on
comparing partially identifying personal details of individuals, such as their names,
addresses, dates of birth, and so on. When historical data are being linked then
usually no privacy concerns are being raised, because these data do not contain any
information about living individuals. However, as social science research increas-
ingly requires the linking of contemporary databases obtained from diverse sources,
privacy and confidentiality issues become crucially important. National census
agencies are currently considering the use of anonymisation techniques to facilitate
matching their databases with records sourced from public as well as private
administrative data (Office for National Statistics 2013).

While a single database that contains the personal details of individuals can
already contain sensitive information, linking records sourced for instance from
government agencies with records from commercial databases can reveal infor-
mation that is highly sensitive. For example, an individual’s social security
(unemployment) record linked with their financial details obtained from a bank
database would be of high value for a credit rating agency. As recent events in the
context of national security data leakages have shown (Edward Snowden’s copying
and releasing of thousands of top secret US government documents) (Toxen 2014),
people are wary that their information is being collected by and shared across
different organisations, especially if this is done by governments.

The linking of contemporary databases from diverse sources can allow studies at
levels of detail and at scales otherwise not possible, and therefore safeguards must
be in place to make sure no private or confidential information can be revealed. In
the health domain, specific protocols (Churches 2003; Kelman et al. 2002) have
been developed and are in use that split sensitive health data from the attributes

5 Advanced Record Linkage Methods and Privacy Aspects … 93



used for the actual linkage. These protocols, however, still require a trusted third
party to conduct the linkage using the actual personal details of individuals. Ideally,
it should be possible to conduct record linkage without the need of any sensitive
information to be exchanged between the parties that are involved in a record
linkage project.

Researchers working in the area of ‘privacy-preserving record linkage’ (PPRL)
are aiming to achieve this goal (Verykios and Christen 2013). Vatsalan et al. (2013)
provide an extensive review and propose a taxonomy of current PPRL techniques,
and they discuss research challenges and directions. The basic ideas of PPRL
techniques are to (somehow) encode (or mask) the databases at their sources and to
conduct the linkage using only these encoded data (i.e. no sensitive data are ever
exchanged between parties). At the end of such a PPRL process, the database
owners only learn which of their own records have a high similarity with certain
records from the other database(s). The database owners can then negotiate the next
steps, such as exchanging the values in certain attributes of the linked records, or
sending selected attribute values to a third party (for example a researcher, as
discussed in Sect. 5.4.2).

The two basic scenarios in PPRL are two- and three-party protocols. In the latter
type, a linkage unit is conducting the actual linkage based on encoded data received
from the two database owners. On the other hand, in two-party protocols the two
database owners directly exchange encoded data between them. The advantage of
two-party over three-party protocols is that they are more secure, as there is no
possibility of collusion between one of the database owners and the linkage unit.
However, two-party protocols are generally more complex in order to make sure
that the two database owners cannot infer any sensitive information from each other
during the PPRL process.

Research into PPRL started in the mid 1990s, and the developed techniques can
be categorised into three generations (Vatsalan et al. 2013). The first only con-
sidered the exact matching of attribute values without revealing these values. These
techniques basically convert attribute values into hash codes (bit-patterns of a
certain length) using one-way hash algorithms such as SHA or MD5 (Schneier
1996), and then compare the generated hash codes in an exact fashion. These hash
codes are secure in that having only access to a hash code makes it nearly
impossible (with current computing techniques) to find the corresponding plain-text
string in a reasonable amount of time. The major drawback of the first generation of
PPRL techniques is that even a single character difference between attribute values
results in completely different hash codes, and so only exact matching of values is
possible. As data, especially personal details such as names and addresses, often
contain variations and errors, exact matching does not work well in most practical
linkage situations.

The second generation of PPRL techniques aimed to overcome this drawback by
allowing for approximate matching. Approaches for secure edit-distance, Jaccard
and overlap similarity, and Cosine distance have been developed, with several
recent surveys providing comparative evaluations of such techniques (Durham et al.
2012; Karakasidis and Verykios 2010; Trepetin 2008; Vatsalan et al. 2013;
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Verykios et al. 2009). A variety of techniques have been investigated, including
Bloom filters (bit-arrays) (Schnell et al. 2009; Vatsalan and Christen 2012), pho-
netic encoding (such as Soundex or NYSIIS) (Karakasidis and Verykios 2009),
random and public reference values (Karakasidis et al. 2011; Pang et al. 2009;
Vatsalan et al. 2011), embedding spaces (into multi-dimensional spaces)
(Scannapieco et al. 2007; Yakout and Atallah 2009), and secure multi-party com-
putation (Atallah et al. 2003; Inan et al. 2008; Li et al. 2011; Ravikumar et al.
2004). The interested reader is referred to the above cited survey articles for details.

While allowing for approximate matching was a significant improvement for
PPRL, the problem of scalability to linking large databases has only recently been
considered in the third generation of PPRL techniques (Al-Lawati et al. 2005;
Bonomi et al. 2012; Durham 2012; Inan et al. 2010; Karakasidis 2012; Karapiperis
and Verykios 2014; Kuzu et al. 2013; Sehili et al. 2015; Vatsalan et al. 2013a).
Different techniques have again been developed which combine traditional index-
ing techniques (Christen 2012b) with encoding, perturbation, or cryptographic
approaches (Vatsalan et al. 2013). Thus far, only a few small comparative studies of
such techniques have been published (Durham 2012; Vatsalan et al. 2013a, 2014).
The issues involved in evaluating PPRL techniques have also received increased
attention in recent times (Vatsalan et al. 2014).

5.4 Case Studies

In this section we present two case studies with a focus on advanced record linkage
techniques being employed to population reconstruction. The first study discusses
the use of group and graph linking in the context of linking historical census data,
while the second discusses approaches to preserving privacy when linking con-
temporary data from several sources from both private and public organisations.

5.4.1 Advanced Linking of Historical UK Census Data

Our case study uses historical census returns collected from the district of
Rawtenstall, which in the nineteenth century was a small cotton textile manufac-
turing town in North-East Lancashire in the United Kingdom (UK). Currently
released historical census data in this area were collected since 1851 in ten-year
intervals. The original data were hand-filled census forms, which contain 12 attri-
butes, that for each individual residing in a household include the address, full
name, age, gender, occupation, place of birth, and their relationship to the head of
the household.

These hand-filled census forms were transcribed manually onto enumerator’s
returns sheets, and these sheets were subsequently scanned into digital form. Since
the late 1990s, various organisations began transcribing these data from images into
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tabular form and stored them in spreadsheets where they could be examined by
members of the public. A sample of a scanned image is shown in Fig. 5.1. Our
collection consists of six data sets, with around 160,000 records in total, corre-
sponding to the censuses from 1851 to 1901.

To link such historical census data, several key steps are necessary to calculate
the similarities between records from the individual data sets (Christen 2012b).
These steps include data cleaning and standardisation to improve data quality and
make attribute values more consistent before comparison; blocking or indexing, as
discussed in Sect. 5.2.1, to subdivide a data set into blocks so that records in a block
are only being compared with other records in the same block in the comparison
step; and finally the classification of the compared record pairs into matches and
non-matches, as was discussed in Sect. 5.2.2.

The differences between traditional record linking methods and those based on
group or graph methods are in the final classification step. Traditional approaches
only perform linkage at the record-pair level, relying only on the output of record
attribute similarities to classify record pairs. In practice, this strategy often faces
difficulties because most historical data have significant data quality problems, and
only limited details about people are available in historical (census) data that can be
compared attribute-wise between records. Group- or graph-based methods, on the
contrary, consider households (or families) as integral entities, and use the whole of
household information to improve the effectiveness and accuracy of record linkage.

To illustrate how household information can help group- and graph-based record
linkage, let us consider the following example. Table 5.1 shows a household with
four people, consisting of the parents and two children, extracted from the 1871

Fig. 5.1 Historical census sample

Table 5.1 1871 household sample. The example record for Sarah Ashworth is highlighted in
italics

ID Address Surname Firstname Relation_to_head Sex Age
25531 union street ashworth john head m 30
25532 union street ashworth alice wife f 28
25533 union street ashworth richard son m 4
25534 union street ashworth sarah daughter f 2

96 P. Christen et al.



census return. The key attributes and their values for each member are displayed,
with ‘ID’ being a unique record identifier.

When applying traditional pair-wise record linkage between 1871 and 1881
census returns, we can see that Sarah Ashworth (ID 25534) has two matched
records in 1881. One (ID 12534 in Table 5.2) lived in the same address but with a
wrong age, and the other (ID 20858 in Table 5.3) lived at a different address with
the correct age. Based only on the attributes in these records, it is difficult to
determine which is the correct Sarah. Most pair-wise record linkage approaches will
take the match with ID 12534 to be the correct one because it has a higher similarity
to the 1871 Sarah than the second option, because street addresses normally contain
more distinguishing information than age. As example, the pair-wise linking
method by Fu et al. (2014a) uses approximate string comparison functions
(Christen 2012a) on the address and name attributes and absolute differences on the
age attribute, and gives a total similarity score of 0.9 for the record pair with ID
25534 and ID 12534 of Sarah Ashworth, higher than the total similarity score
between ID 25534 and ID 20858, which is 0.84. This shows that pair-wise record
linkage is not always reliable.

If we take other household members into consideration, it is obvious that record
with ID 20858 in Table 5.3 should be the true match for record with ID 25534 in
Table 5.1. The reason is clear: the names and ages of Sarah’s parents and her
brother Richard in this 1881 household (with Richard abbreviated as ‘rd’ in 1881)
also match the corresponding members in the 1871 household, while the other
members of the household in Table 5.2 do not. Therefore, household information
can greatly help the decision making so as to reduce the ambiguity that arises from
the pair-wise linkage results.

Table 5.3 Correctly matched 1881 household

ID Address Surname Firstname Relation_to_head Sex Age
20855 whittle st ashworth john head m 40
20856 whittle st ashworth alice wife f 36
20857 whittle st ashworth rd. son m 14
20858 whittle st ashworth sarah daughter f 12
20859 whittle st ashworth john son m 8
20860 whittle st ashworth harold son m 3

Table 5.2 Wrongly matched 1881 household

ID Address Surname Firstname Relation_to_head Sex Age
12532 union street ashworth henry head m 48
12533 union street ashworth eruble wife f 47
12534 union street ashworth sarah daughter f 18
12535 union street ashworth john son m 12
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The key to utilising household information is how to model household members
and their relationship. Group and graph linking are two methods aiming to solve
this problem. Group linking (Fu et al. 2011b, 2012, 2014a; On et al. 2007) gen-
erates group similarity scores for each pair of households. Such household pair
similarities are calculated in several steps. First, the number of household members
in each household is counted. Then, the sum of the pair-wise record similarity
scores between the household pairs is calculated. This sum is normalised by the
number of distinct members in the two households being compared so as to gen-
erate the household similarity score. When two or more households are compared
with a target household, the one with the highest household similarity is being
matched.

For example, we know that the households in Tables 5.1 and 5.2 both have four
members. Pair-wise linking results, again following the approach taken by Fu et al.
(2014a), show that the similarity between records with ID 25531 and ID 12535 is
0.9, between ID 25532 and ID 12533 is 0.66, and between ID 25534 and 12534 is
0.9. Then, the group linking similarity score, using the bipartite similarity (Fu et al.
2011b), between this household pair is calculated as ð0:66þ 0:9þ 0:9Þ=
ð4þ 4� 3Þ ¼ 0:49, i.e., the sum of record pair-wise similarities divided by the
number of distinct members in these two households. The same calculation gives a
group linking similarity score between the two households in Tables 5.1 and 5.3 of
0.78. Based on this it becomes clear that the households in Tables 5.1 and 5.3 are
matched, and that Sarah Ashworth with ID 25534 and ID 20858 are matches.

Graph-based linking can be considered as an extension of the group linking
step. Graph linking does not only consider the similarity of all record pairs in two
households, it also takes structural information of households into consideration.
While personal information, such as marital status, address and occupation, may
change over time, surnames of women may change after marriage, and even ages
may change due to different times of the year for census collection or input errors,
some aspects of the relationships between household members generally remain
unchanged. Such relationship aspects include, but are not limited to, age and
generation difference, and role-pairs of two individuals in a household (Fu et al.
2014b). By incorporating such relationship aspects between household members
into the linking model the linking accuracy can be improved.

The graph method in (Fu et al. 2014b) treats members in a household as the
vertices (nodes) of a graph, and uses edges to show the relational aspects between
these vertices. The method first calculates record-pair similarities, which are used to
find matched candidate record pairs with high similarities. These pairs are then used
to connect the graphs of two candidate households. This transforms the household
linking problem into a graph matching problem. The graph similarity score for each
pair of households is calculated as the weighted sum of the vertex and edge
similarities.

As an example of graph-based linkage using the three households from
Tables 5.1, 5.2 and 5.3, Fig. 5.2 shows the graph generated between the 1871 and
the correctly matched household, while Fig. 5.3 shows the graph generated between
the 1871 and the wrongly matched household. Only the AGE attribute is used in
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this example (in practice, the relationships between individuals would also be used).
Only records that have high attribute similarities between the households are
included in these graphs. The shown edge attribute values are age differences
between records in the corresponding vertices, while the dotted lines between
vertices in these household graphs correspond to the record attribute similarities
calculated in the pair-wise linkage step. The edge (AGE) similarities are calculated
as age sim ¼ 1:0� absðage diff Þ=max age (Christen 2012a).

When only the node similarities are considered, the similarity for the matched
household pair is 0.78 for the households from Tables 5.1 and 5.3, which is lower
than the similarity for the non-matched household pair (0.82), as shown in the
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household sim= λ ×avr node sim+(1−λ )×avr edge sim= 0.84

Fig. 5.2 Graph structure and similarity calculations of the two matched households from
Tables 5.1 and 5.3. Edge values are absolute differences in AGE values, while the dotted lines
show attribute similarities between records in the two households. We set the weighting parameter
(Fu et al. 2014b) k ¼ 0:5
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avr edge sim= (0.06+0.97+0.23)/3 = 0.42
household sim= λ × avr node sim+(1−λ )× avr edge sim= 0.62

Fig. 5.3 Graph structure and similarity calculations of the two non-matched households from
Tables 5.1 and 5.2. We again set the weighting parameter k ¼ 0:5
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calculations in Figs. 5.2 and 5.3, respectively. On the other hand, when the age
relationships between household members are considered, a higher overall simi-
larity is calculated for the matched household pair (0.84) compared to the
non-matched pair (0.62), resulting in correctly matched households.

The results on the six Rawtenstall data sets show that the proposed methods
significantly reduce the number of multiple record and household matches, with a
more than 85 % reduction using either group or graph linking approaches (Fu et al.
2011b, 2014b).

5.4.2 Privacy-Preserving Record Linkage Across Several
Organisations

Linking records across several databases held by different organisations, using the
common identifiers that contain personal information, often involves privacy and
confidentiality concerns of the individuals represented by the records in these
databases (Vatsalan et al. 2013b). Generally, organisations are not allowed or
willing to exchange such personal and sensitive information due to privacy and
confidentiality concerns as well as government or business regulations.

As an example scenario, assume a demographer who aims to investigate how
mortgage stress (having to pay large sums of money on a regular basis to repay a
house) is affecting people from different ethnic backgrounds, and with different
education and employment levels, with regard to their mental and physical health.
This research will require data from financial institutions, as well as different
government agencies (social security, health, and eduction), and potentially other
private sector providers (such as health insurers). Neither of these parties is likely
willing or allowed by law to provide their databases to the researcher. The
researcher only requires access to some attributes of the records that are linked
across all these databases, but not the actual identities of the individuals that were
linked. However, personal details are needed to conduct the actual linkage due to
the absence of unique identifiers across all the databases. As was discussed in
Sect. 5.3, PPRL aims to address this problem.

Assume three databases from three different organisations, as shown in
Tables 5.4, 5.5 and 5.6, need to be linked in order to identify the matching entities
across these databases. A set of common personal identifiers, which are first_name /
given_name, last_name /surname, and postcode, are used as quasi-identifiers
(QIDs) for conducting the linkage. Exchanging the actual values of these QIDs is
not possible in this scenario as it would compromise the privacy and confidentiality
of the individuals represented in these databases. Therefore, the linkage has to be
conducted on masked (encoded) versions of the QID values which have a specific
functional relationship with the actual QID values (Vatsalan et al. 2014).

There have been various masking functions proposed in the literature, as
reviewed in Vatsalan et al. 2013b. Bloom filter encoding is one masking approach
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that has widely been used in PPRL (Durham 2012; Ranbaduge et al. 2014; Schnell
et al. 2009; Sehili et al. 2015; Vatsalan and Christen 2012, 2014). An example of
Bloom filter encoding is illustrated in Fig. 5.4. The Bloom filter encoded QID
values can then be compared using a set-based similarity function such as the
Dice-coefficient (Schnell et al. 2009). The Dice-coefficient of P Bloom filters
(b1; . . .; bP) is calculated as:

dice simðb1; . . .; bPÞ ¼ P� c
PP

i¼1 xi
ð5:1Þ

where c is the number of common bit positions that are set to 1 in all P Bloom filters
(common 1-bits), and xi is the number of bit positions set to 1 in bi (1-bits),
1� i�P.

As discussed in Sect. 5.2.1, comparing all pairs or sets of records is not scalable
due to the resulting quadratic or exponential complexities, respectively (Vatsalan
et al. 2013b). Generally, private blocking or indexing techniques (Durham 2012;
Karakasidis 2012; Kuzu et al. 2013; Ranbaduge et al. 2014; Vatsalan et al. 2013a)

Table 5.5 Example social security database

SSN Title Last_name First_name Age Postcode Employment Income Benefits Payment

490814 Mrs amilia smith 39 2642 teacher 60,000 child care 45,000
581233 Mr peter roberts 42 2617 engineer 110,000 family tax 50,000
932389 Mr william smith 69 3205 retired – pension 35,000

Table 5.4 Example bank database

ID First_name Last_name DOB Gender Postcode Loan_type Period Amount Paid
6723 peter robert 20.06.72 M 2617 Mortgage 20 350,000 130,000
8345 miller roberts 11.10.79 M 2602 Personal 5 10,000 1,900
9241 amelia millar 06.01.74 F 2415 Mortgage 30 475,000 154,250

Table 5.6 Example health database

PID Surname Given_name Age Postcode Sex Pressure Stress Last_visited Reason_of_visit

P1209 robertt peter 41 2617 m 140/90 high 25 days ago chest pain
P4204 miller amelia 39 2415 f 120/80 high 61 days ago headache
P4894 sieman jeff 30 2602 m 110/80 normal 15 days ago checkup

te et re

1 111

pe

1 0 0 0 0 1 0 0 0 1

Fig. 5.4 Example Bloom filter encoding of value ‘peter’. The q-grams (q ¼ 2) of ‘peter’ are
hash-mapped into a Bloom filter of l ¼ 14 bits using k ¼ 2 hash functions
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are used to reduce the number of comparisons that are required in PPRL. For
example, applying Soundex-based phonetic blocking (Christen 2006) on the three
example databases using the surname/last_name attribute as the blocking criteria
results in blocks as shown in Tables 5.7, 5.8 and 5.9 with their encoded Bloom
filters (made-up) using first_name/given_name, last_name/surname, and postcode
as the QIDs.

Records are then compared with only the records from other databases that are in
the same block. In the running example, comparing records (Bloom filters) in the
blocking key (Soundex code) ‘r163’ using the Dice-coefficient similarity function
and classifying records as matches that have a dice sim (Eq. 5.1) of at least a
minimum threshold st ¼ 0:8, are shown in Figure 5.5. The records with ID 6723
from Table 5.4, SSN 581233 from Table 5.5, and PID P1209 from Table 5.6 are
classified as corresponding to the same person as the similarity of these (masked)
records is dice sim ¼ 0:86 (≥0.8). Identifying matching records from subsets of
databases (e.g. ID 9241 from Table 5.4 and PID P4204 from Table 5.6) is also an
important problem in PPRL which requires further research.

Schnell et al. (2009) and Durham (2012) proposed to use a third party (linkage
unit) to compare and classify the Bloom filters from two database owners.

Table 5.7 Records in the example bank database (Table 5.4) with their blocks, QIDs, and Bloom
filter encodings. The records in block ‘r163’ are highlighted in italics

Block Rec_ID QID Bloom filter
r163 6723 peter,robert,2617 1 1 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1
r163 8345 miller,roberts,2602 1 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1
m460 9241 amelia,millar,2415 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1

Table 5.8 Records in the example social security database (Table 5.5) with their blocks, QIDs,
and Bloom filter encodings. The record in block ‘r163’ is highlighted in italics

Block Rec_ID QID Bloom filter
s530 490814 amilia,smith,2642 1 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0
r163 581233 peter,roberts,2617 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 0 1 1
s530 932389 william,smith,3205 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0

Table 5.9 Records in the example health database (Table 5.6) with their blocks, QIDs, and Bloom
filter encodings. The record in block ‘r163’ is highlighted in italics

Block Rec_ID QID Bloom filter
r163 P1209 peter,robertt,2617 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 0 1 1
m460 P4204 amelia,miller,2415 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1
s550 P4894 jeff,sieman,2602 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1
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A privacy risk with using a linkage unit is the possible collusion between a party
and the linkage unit with the aim to learn about data from the other parties (Vatsalan
et al. 2013b). A two-party protocol (Vatsalan and Christen 2012) was later proposed
where the database owners iteratively exchange selected bits from their Bloom
filters and classify the record pairs without requiring a third party. Most work in
PPRL so far support the linkage of two sources only. However, two novel
approaches for multi-party PPRL for more than two databases based on Bloom filter
encodings were recently proposed (Ranbaduge et al. 2014; Vatsalan and Christen
2014). One of the main challenges with multiple parties is the exponential increase
in the number of record sets that potentially have to be compared.

In addition to Bloom filter encoding, several other masking functions, ranging
from computationally expensive cryptographic techniques (Lindell and Pinkas
2009) to differential privacy (Dwork 2006), k-anonymity (Sweeney 2002), refer-
ence values (Pang et al. 2009), and noise addition techniques (Karakasidis et al.
2011) have been used in the literature to preserve privacy while allowing the
linkage. Other privacy components that need to be considered in a PPRL project are
encrypted communication among the parties using public/private key pairs, secure
generation and exchange of keys, employee confidentiality agreements to reduce
internal threats, as well as secure connections and servers to reduce external threats.

5.5 Research Directions

Most advanced record linkage techniques have been developed by computer sci-
ence researchers. The focus of these techniques was not only on data that contain
personal information, as is generally required for population reconstruction, but
often on bibliographic records, or consumer product or business data. Based on
existing techniques and approaches, the following research directions can be
identified:

Fig. 5.5 Comparison and classification of Bloom filters in block ‘r163’ from Tables 5.7, 5.8 and
5.9
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• A main open challenge is how collective and graph-based classification tech-
niques, that have shown to be highly accurate, can be used on personal data such
as those available in (historical) census and BDM databases. Compared to the
bibliographic databases on which such techniques so far have been evaluated,
much less relational structure is available in personal data. Specifically, the
number of different entity types, and their relationships, are more limited.

• Only limited work has been conducted on how to incorporate temporal infor-
mation into the linkage process, such as personal details like name and address
values that can change over time (Chiang et al. 2014; Christen and Gayler 2013;
Li et al. 2011). However, such changes, especially in address attributes, occur
regularly and at significant rates.

• As in many applications no or only a limited amount of training data in the form
of true matches and non-matches are available, further investigating active
learning techniques (Arasu et al. 2010; Bellare et al. 2012), specifically in the
context of population reconstruction, could lead to significant reduction in the
manual efforts currently required with traditional record linkage approaches.
Furthermore, visualising, for example multiple households or families that were
linked over time, and highlighting ambiguities and conflicts in the obtained
linkages, could help to both better understand problems in linkage algorithms,
and also improve the selection and preparation of manual training examples.

• Related to the previous point, given the generally low quality of historical data,
developing (semi-) automatic data cleaning and standardisation techniques (Fu
et al. 2011a), based on approaches that learn the characteristics of data errors
and variations, will significantly reduce the time consuming and cumbersome
process of manual data cleaning that is still commonly required today. The
requirements of training data of such learning algorithms should be minimised,
by for example employing active learning (Arasu et al. 2010; Bellare et al. 2012)
or bootstrapping approaches where increasingly accurate models are trained in
an iterative fashion (Churches et al. 2002). Additionally, such learning tech-
niques should also be transferable from one domain to another, or allow
re-training with little (manual) effort.

With regard to PPRL, while significant advances have been achieved in this area,
there are several open research questions that need to be solved in order to make
PPRL practical (Christen et al. 2014):

• So far most PPRL techniques have only investigated the linking of two dat-
abases. However, as the example scenario in Sect. 5.4.2 has shown, in many
real-world applications data from more than two sources need to be linked. Our
recent work in multi-party PPRL (Ranbaduge et al. 2014; Vatsalan and Christen
2014) has highlighted the significant computational challenges when aiming to
link data from several sources, as even when using sophisticated blocking
techniques the number of candidate record sets to be compared increases
exponentially with the number of parties involved. Besides these computational
challenges, possible collusion between subsets of parties needs to be considered.

104 P. Christen et al.



• Most existing PPRL techniques only employ a simple threshold-based classifier
to classify record pairs into matches or non-matches. Only group linkage (Li
et al. 2011) has been considered within a PPRL framework, but none of the
other advanced collective and graph-based approaches discussed in Sect. 5.2.2
have so far been investigated for their applicability in PPRL. A major challenge
for classification in PPRL is the use of training data for supervised learning
approaches, because such data generally require access to actual sensitive
attribute values.

• How to assess linkage quality and completeness has so far not been thoroughly
investigated for PPRL. This is, however, a must-solve problem as otherwise it
will not be possible to evaluate the efficiency and effectiveness of PPRL tech-
niques in real-world applications, making these techniques non-practical.

• Unlike for measuring linkage performance and quality, where standard mea-
surements, such as run-time, reduction ratio, pairs completeness, pairs quality,
precision, recall, or accuracy can be used (Christen 2012a), there are currently
no standards available for measuring privacy for PPRL. Different measures have
been proposed and used (Vatsalan et al. 2013b, 2014), making the comparison
of techniques difficult.

• Finally, no framework has been developed that allows the experimental com-
parison of different PPRL techniques with regard to their scalability, linkage
quality, and privacy preservation. Ideally such a framework should allow
researchers to easily ‘plug-in’ their algorithms. Related to this issue is the lack of
standard test data sets, a problem that is not just specific to PPRL but to record
linkage research in general (Christen 2012a; Köpcke and Rahm 2010).
A possible alternative to using real-world data sets, which are difficult to obtain
due to privacy and confidentiality reasons, is to use synthetic data that are
generated based on the characteristics of real data (Christen and Vatsalan 2013).

Improved collaboration between domain experts, computer scientists and stat-
isticians who work on the algorithmic aspects of record linkage is needed to obtain
the best outcomes for the field of population reconstruction. Neither research area
can work in isolation. While multidisciplinary research brings its own challenges,
the importance of such applied research is now increasingly being recognised by
research areas that traditionally have worked in isolation (Rudin and
Wagstaff 2013).

5.6 Conclusions

As our society moves into the ‘Big Data’ era, tremendous opportunities arise for
research in the social sciences to use large-scale population-based databases col-
lected both by commercial organisations as well as government agencies.
Compared to small controlled studies based on surveys and experimental set-ups,
using large databases can help overcome sampling bias and potentially reduce
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costs. In an analogy to genomics and bioinformatics, Kum et al. (2013) recently
proposed the notion of the ‘social footprint’ or ‘social genome’, and the field of
‘population informatics’ which deals with the collection, integration, and analysis
of data about people gathered from many different domains, including healthcare,
education, employment, finance, and so on. Reconstructing a population from such
data, and enriching existing (census) data collections with such external data, will
allow insights into many aspects of today’s societal challenges.

National census agencies are also realising both the challenges and opportunities
that matching their data with external, possibly commercial, databases can bring
(Baffour et al. 2013; Office for National Statistics 2013). The acquisition of data
from a variety of organisations is, however, a complicated process that involves
negotiations with various partners. Privacy and confidentiality, as well as data
quality issues, need to be considered carefully. As computers become more pow-
erful, the computational challenges of linking large databases become less of an
issue compared to non-technical challenges such as obtaining access to the data
required for certain studies, or communication between researchers from different
domains.

Nevertheless, research into techniques that allow efficient and effective popu-
lation reconstruction based on data linked from a variety of sources will likely not
only attract more interest from academia, but also from governments and private
sector organisations. Understanding the structures and characteristics of popula-
tions, and how they change over time, becomes more valuable for organisations in
an ever more competitive environment, where a better understanding of their data
can give an organisation the competitive edge it needs to be successful (Siegel
2013).
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