
Chapter 14
The Backtracking Search for the Optimal
Design of Low-Noise Amplifiers

Amel Garbaya, Mouna Kotti, Mourad Fakhfakh and Patrick Siarry

Abstract The backtracking search algorithm (BSA) was recently developed. It is
an evolutionary algorithm for real-valued optimization problems. The main feature
of BSA vis-à-vis other known evolutionary algorithms is that it has a single control
parameter. It has also been shown that it has a better convergence behavior. In this
chapter, the authors deal with the application of BSA to the optimal design of RF
circuits, namely low-noise amplifiers. BSA performance, viz. robustness and speed,
are checked against the widely used particle swarm optimization technique, and
other published approaches. ADS simulation results are given to show the viability
of the obtained results.

14.1 Introduction

Radio-frequency circuit (RF) design is a laborious strained and iterative cumber-
some task that mainly relies on the experience of the skilled designers. The liter-
ature offers a plethora of papers dealing with techniques, approaches, and
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algorithms aimed at assisting the designer in such a cumbersome task, see for
instance [22, 47].

Mathematical approaches have been used for alleviating the sizing task of such
circuits, and it has already been proven that classical approaches are powerless
vis-a-vis these NP-hard optimization problems [23].

Metaheuristics bid interesting and arguably efficient tools for overcoming
impotence of the classical techniques. This can be briefly explained by the fact that
due to the stochastic aspect of metaheuristics, ‘efficient’ sweeping of large
dimension search spaces can be insured. Furthermore, metaheuristics allow dealing
with many objective problems as well as constrained ones [15, 51, 52, 57].

Evolutionary metaheuristics have been used to deal with the optimal design of
RF circuits, as well as analog circuits, and a large number of algorithms have been
tested [2, 19, 24, 25, 29, 32, 40–44, 47, 50, 53, 54].

Swarm intelligence techniques (SI) have also been used, such as particle swarm
optimization techniques (PSO) [20, 21, 38, 55, 56], ant colony optimization tech-
niques (ACO) [3, 5], and bacterial foraging techniques (BFO) [10, 31]. SI metaheu-
ristics are nowadays largely adopted for the resolution of similar optimization
problems. Actually, it has been shown that when compared to notorious optimization
algorithms, mainly genetic algorithms (GA) [26, 33] and simulated annealing
(SA) [35], SI techniques can be much interesting to be used because they can be more
robust, faster, and requiremuch less tuning of control parameters, see for instance [48].

Very recently, an evolutionary algorithm’s enhanced version has been proposed,
and it is called the backtracking search optimization technique (BSA or BSOA),
and it has been shown via mathematical test functions and few engineering prob-
lems that BSA offers superior qualities [11].

Thus, in this work, we have put BSA to the test. It was used for the optimal
sizing of low-noise amplifiers (LNAs), namely an UMTS LNA and a multistandard
LNA.

BSA performances were checked with those obtained using conventional PSO
algorithm and also with published results (for the same circuits) using ACO and
BA-ACO techniques [42] as it is highlighted in the following sections.

The rest of this chapter is structured as follows. In Sect. 14.2, we offer a brief
introduction to the considered RF circuits. In Sect. 14.3, the BSA technique is
detailed, and a concise overview of the PSO technique is recalled. Section 14.4
presents the BSA obtained results, which provides a comparison with performances
from the other techniques. ADS simulation techniques are also given in this section.
Finally, Sect. 14.5 concludes this chapter and discusses the reached results.

14.2 Low-Noise Amplifiers

Despite the tremendous efforts on RF circuit design automation, this realm remains
very challenging. This is due to the complexity of the domain and its high inter-
action and dependency on other disciplines, as depicted in Fig. 14.1 [45].
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It is to be stressed that one among the most different tasks in this design is the
handling of various tradeoffs, known by the famous hexagon introduced in [45], see
Fig. 14.2.

The most important block of a front-end receiver is arguably the low-noise
amplifier, which principal role consists in amplifying the weak RF input signal fed
from the external antenna with a sufficient gain, while adding as less noise as
possible, hence its name [1].

Advances in CMOS technology have resulted in deep submicron transistors with
high transit frequencies. Such advances have already been investigated for the
design of CMOS RF circuits, particularly LNAs [39].

In this work, we deal with two CMOS LNAs, namely a wideband LNA and a
multistandard LNA. Both architectures are chosen for comparison reasons with an
already published paper [4] regarding performance optimization, as it is detailed in
Sect. 14.4.

• A multistandard LNA

The CMOS transistor level schematic of the LNA is shown in Fig. 14.3. It is
intended for multistandard applications in the frequency range 1.5–2.5 GHz [8].

In short, this LNA encompasses a cascade architecture for reducing the Miller
effect and uses the reverse isolation. M3, R2, and R1 for the biasing circuitry of the
input transistor; L2, C1, and C2 allow the input matching.
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• An UMTS dedicated LNA

Figure 14.4 presents a CMOS LNA, in which topology was optimized in order to be
dedicated for UMTS applications. R1, R2, and M3 form the bias circuitry. M2 forms
the isolation stage between the input and the output of the circuit. LL, RL, and CL

form the circuit’s output impedance.
In Sect. 14.4, we will deal with the optimal sizing of these circuits. Most

important performances of such LNAs are considered, i.e., the voltage gain and the
noise figure. It is to be noted that the voltage gain is handled via the scattering
parameter ‘S21’ [8]. Corresponding expression (generated using a symbolic ana-
lyzer [18]), as well as expressions of the noise figure and the input/output matching
conditions, is not provided. We refer the reader to [8] for details regarding these
issues.
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14.3 PSO and BSA Metaheuristics

As introduced in Sect. 14.1, metaheuristics exhibit a wide spectrum of advantages
when compared to the conventional mathematical optimization techniques.
Metaheuristics are intrinsically stochastic techniques. They ensure random explo-
ration of the parameter search space, allowing converging to the neighborhood of
the global optimum within a reasonable computing time. According to [49],
the name ‘metaheuristics’ was attributed to nature-inspired algorithms by Fred
Glover [28].

Genetic algorithms [26, 33], which are parts of the evolutionary algorithms, are
the oldest most known metaheuristics. A large number of variants of GA were
proposed since the introduction of the basic GA (see for instance [15, 51]).

More recently, a new discipline was proposed, so-called swarm intelligence (SI).
SI is an artificial reproduction of the collective behavior of individuals that is based
on a decentralized control and self-organization [6].

A large number of such systems were studied by swarm intelligence, such as
schools of fishes, flocks of birds, colonies of ants, and groups of bacteria, to name
few processes [7, 9, 27, 34, 46]. Nowadays, particle swarm optimization may be the
most known and the most used technique, particularly in the analog and RF circuits
and systems designs, see for instance [13, 20, 21, 37, 48, 55].

More recently, a new improved variant of GA was proposed, and it is called
backtracking search optimization technique (BSA) [11]. It offers some interesting
features, mainly its robustness (vis-a-vis GA), its rapidity, and the low number of
control parameters.

BSA is being used in the fields of analog and RF designs, see for instance [14,
16, 17, 30, 36]. BSA will be used for optimizing performances of both LNAs given
in Sect. 14.2.

Presently, PSO is, as introduced above, largely used in design fields; it will also
be considered for comparison reasons with BSA.

Furthermore, obtained results are also compared to the ones published in [3],
using ant colony optimization (ACO) and backtrack ACO (BA-ACO) techniques.

• PSO technique is inspired from the observation of social behavior of animals,
particularly birds and fish. It is a population-based approach that has the par-
ticularity that the decision within the group is not centralized [12, 34]. In short,
PSO algorithm can be presented as follows.

The group, which is formed of potential solutions called particles, moves
(flies) within the hyper search space seeking for the best location of food (the
fitness value).

Movements of the group are guided by two factors: the particle velocity and
the particle position, with respect to Eqs. (14.1) and (14.2).
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vi
!ðt þ 1Þ ¼

x vi
!ðtÞ

þC1randð0; 1ÞðxPbesti�! ðtÞ � xi
!ðtÞÞ

þC2randð0; 1ÞðxGbesti�! ðtÞ � xi
!ðtÞÞ

�������
ð14:1Þ

xi
!ðt þ 1Þ ¼ xi

!ðtÞ þ vi
!ðtÞ ð14:2Þ

xPbesti
�!

is the best position of particle i reached so far; xGbesti
�!

is the best position
reached by particle i’s neighborhood.

x, C1rand(0, 1), C2rand(0, 1) are weighting coefficients. x controls the
diversification feature of the algorithm, and it is known as the inertia weight. It is
a critical parameter that acts on the balance between diversification and inten-
sification. Thus, a large value of x makes the algorithm unnecessarily slow. On
the other hand, small values of x promote the local search ability. C1 and C2

control the intensification feature of the algorithm. They are known as the
cognitive parameter and the social parameter, respectively.

PSO algorithm is given in Fig. 14.5.
As shown above, PSO algorithm is simple to be implemented and is com-

putationally inexpensive. Thus, it does not require large memory space and is
rapid, as well. These facts are on the basis of its popularity.

• BSA (or BSOA) is a new population-based global minimizer evolutionary
algorithm for real-valued numerical optimization problems [11]. BSA offers
some enhancements over the evolutionary algorithms, mainly the reduction in
sensitivity to control parameters and improvement in convergence
performances.

Classic genetic operators, namely selection, crossover, and mutation, are
used in BSA, but in a novel way.

BSA encompasses five main processes: (i) initialization, (ii) selection ①,
(iii) mutation, (iv) crossover, and (v) selection ②. BSA structure is simple,
which confers low computational cost, rapidity, and necessitates low memory
space. Moreover, the power of BSA can be summarized through its control
process of the search directions within the parameters’ hyperspace.
BSA algorithm is given in Fig. 14.6.

– Initialization: The population P = (pij)(N,M) is initialized via a uniform sto-
chastic selection of particles values within the hypervolume search space, as
shown by expression (14.3):

pij ¼ pjmin þ randð0; 1ÞðpjMax � pjminÞ
ði; jÞ 2 1; . . .;Nf gx 1; . . .;Mf g ð14:3Þ
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BSA takes benefits from previous experiences of the particles; thus, it uses a
memory where the best position of each particle visited so far is memorized.
The corresponding matrix noted Pbest = (pbestij)(N,M) is initialized in the same
way as matrix P:

pbestij ¼ pjmin þ randð0; 1ÞðpjMax � pjminÞ
ði; jÞ 2 1; . . .;Nf gx 1; . . .;Mf g ð14:4Þ

Begin

Initialization: Uniform 
initialization of the particles 

positions and velocities

Compute the fitness values

Memorize Gbest and Pbest

f(xi)<f(xPbesti)

 xPbesti = xi

f(xi)<f(xGbesti)

 xGbesti = xi

Update the Velocity matrix

Update the Position matrix

Stopping criteria met?

End

Fig. 14.5 Basic flowchart of
PSO
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– Selection ① consists of the update of the Pbest matrix,
– The Mutation process operates as follows. A mutant MUTANT =

(mutantij)(N,M) is generated as shown in Eq. (14.5).

mutantij ¼ pij þF pbestij � pij
� �

ði; jÞ 2 1; . . .;Nf gx 1; . . .;Mf g ð14:5Þ

F is a normally distributed factor that is used to control the search path, i.e.,
the direction.

– Crossover: It consists in generating a uniformly distributed integer valued
matrix MAP = (mapij)(N,M). MAP elements values are controlled via a
strategy that defines the number of particle components that mutate. This is
performed via the ‘dimension-rate’ coefficient. Matrix MAP is used for
determining the matrix P components to be handled: the offspring matrix.

– Selection ② consists of the update of the trial population via Pbest matrix.

Begin

Initialization of P and Pbest

Evaluate Fitness of P and Pbest

Stopping criteria met?

Update Pbest

Generate matrix MAP

Generate the offspring matrix
using current P, Pbest, MAP
matrices and coefficient F

Evaluate offspring matrix
P:=offspring

Update Pbest

End
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Fig. 14.6 BSA algorithm
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14.4 Experimental Results and Comparisons

In this section, we will first deal with the application of the BSA technique to some
mathematic test functions and give comparison results with the ones obtained by
means of PSO regarding the robustness and the algorithm execution time. Then, we
will consider the case of both LNAs introduced in Sect. 14.2. It is to be noted that a
Core™2 Duo Processor T5800 (2 M Cache, 2.00 GHz, 4.00 Go) PC was used for
that purpose.

• Test functions

Five test functions were considered: DeJong’s, Eason 2D, Griewank, Parabola,
and Rosenbrock.

The corresponding expressions are given by (14.6)–(14.10), respectively.
Figure 14.7 shows a plot of these functions.

Both algorithms, i.e., PSO and BSA, were run 100 times. The algorithms’
parameters are given in Table 14.1.

f ðxÞ ¼
Xn
i¼1

ix4i

� 5:12� xi � 5:12

ð14:6Þ

f ðxÞ ¼ � cosðx1Þ cosðx2Þeð�ðx2�pÞ2�ðx2�pÞ2Þ

� 5� x1 � 5;�5� x2 � 5
ð14:7Þ

f ðxÞ ¼ 1
4000

Xn
i¼1

x2i �
Yn
i¼1

cos
xiffiffi
i

p
� �

þ 1

5:12� xi � 5:12

ð14:8Þ

f ðxÞ ¼
Xn
i¼1

x2i

� 5:12� xi � 5:12

ð14:9Þ

f ðxÞ ¼
Xn�1

i¼1

100ðxiþ1 � x2i Þ2 þ ðxi � 1Þ2
h i

� 2:048� xi � 2:048

ð14:10Þ

Figure 14.8 gives a whisker boxplot relative to the 100 executions of both
algorithms.

Table 14.2 gives the mean execution time of both algorithms with respect to the
five considered functions.
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Fig. 14.7 Plots of the five considered functions (n = 2). (x* is the minimum of f). a DeJong’s
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Table 14.1 PSO and BSA
algorithms’ parameters

PSO x C1 C2

0.9 2 2

BSA F Dimension-rate

3 1
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Table 14.2 Mean execution time for PSO and BSA (sec.)

Test function DeJong’s Eason 2D Griewank Parabola Rosenbrock

PSO 24.133 26.848 24.313 25.044 25.219

BSA 0.163 0.292 0.195 0.163 0.170
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• LNAs

PSO and BSA algorithms were used for optimally sizing both LNAs presented in
Sect. 14.2. The same conditions observed above were considered. Tables 14.3 and
14.4 give the circuits’ optimized parameters. Moreover, simulations were per-
formed using ADS software to check the viability of these results. Obtained per-
formances are given in Tables 14.5 and 14.6. In addition, these tables present the
results published in [4] obtained by application of ACO and BA-ACO techniques.

Table 14.3 Multistandard LNA’s optimal parameters’ values

W1,2 (µm)/L1,2 (µm) Id (mA) Cch
(pF)

Rch (Ω) Lch (nH)

PSO 429.98/0.35 96.96 10.00 0.39 0.62

BSA 441.28/0.35 100.00 6.06 0.49 0.90

Lg (nH) Ls (nH) C1 (pF) C2 (pF) W3 (µm)/L3 (µm)

PSO 8.14 0.52 916.90 405.30 40.00/0.35

BSA 10.00 0.35 1000.00 214.00 40.00/0.35

Table 14.4 UMTS LNA’s optimal parameters’ values

W1 (µm)/L1 (µm) W2 (µm)/L2 (µm) W3/L3 (µm) Id (mA) Cch (pF)

PSO 727.41/0.35 995.92/0.35 40.00/0.35 32.33 8.35

BSA 553.19/0.35 513.20/0.35 40.00/0.35 17.7 9.50

Lch (nH) Rch (Ω) Lg (nH) Ls (nH)

PSO 0.70 1.24 6.39 0.40

BSA 0.55 1.20 10 0.27

Table 14.5 UMTS LNA’s optimal performances

S21 (dB) C++ results ADS simulation results

PSO 16.33 16.46

BSA 16.11 15.64

ACO [4] 16.49 16.47

BA-ACO [4] 16.49 16.36

Table 14.6 Multistandard LNA’s optimal performances

S21 (dB) C++ results ADS simulation results

@1.5 GHz @2.5 GHz @1.5 GHz @2.5 GHz

PSO 8.27 11.44 8.78 11.10

BSA 11.56 22.55 8.85 11.02

ACO [4] 10.65 15.48 9.00 11.46

BA-ACO [4] 11.32 18.65 10.68 11.62
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The mean execution times for both problems are given in Table 14.7. Robustness
results are shown in Figs. 14.9 and 14.10.

Simulation results obtained using the ‘a priori’ optimal parameters for both
circuits are depicted in Figs. 14.11, 14.12, 14.13, 14.14, 14.15, 14.16, 14.17, 14.18,
14.19, 14.20, 14.21, 14.22, 14.23, 14.24, 14.25, and 14.26.

Table 14.7 Mean execution
time per run

UMTS LNA (s) Multistandard LNA (s)

PSO 3.56 2.96

BSA 1.12 0.60

ACO [4] 27.56 38.73

BA-ACO [4] 19.00 31.22
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Fig. 14.9 Boxplot for the
100 executions runs for the
UMTS LNA using PSO and
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Fig. 14.10 Boxplot for the
100 executions runs for the
multistandard LNA using
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14.5 Discussion and Conclusion

This chapter investigated the application of BSA, the very recently proposed EA
technique, on the resolution of RF sizing problems. For comparison reasons, PSO
technique was also applied for optimizing these circuits (namely two LNAs).
Furthermore, obtained performances were also compared with the already pub-
lished results dealing with the same circuits but using ACO and BA-ACO, and also
the application to the resolution of some test functions.

The obtained results show that BSA outperforms the other optimization tech-
niques in terms of computing time. However, it has been noted that PSO is rela-
tively more robust. Nonetheless, the rapidity of BSA and its good performances
make this algorithm a good and interesting technique to be considered within a
computer-aided design approach/tool.
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