
Chapter 12
Optimization of RF On-Chip Inductors
Using Genetic Algorithms

Eman Omar Farhat, Kristian Zarb Adami, Owen Casha
and John Abela

Abstract This chapter discusses the optimization of the geometry of RF on-chip
inductors by means of a genetic algorithm in order to achieve adequate perfor-
mance. Necessary background theory together with the modeling of these inductors
is included in order to aid the discussion. A set of guidelines for the design of such
inductors with a good quality factor in a standard CMOS process is also provided.
The optimization process is initialized by using a set of empirical formulae in order
to estimate the physical parameters of the required structure as constrained by the
technology. Then, automated design optimization is executed to further improve its
performance by means of dedicated software packages. The authors explain how to
use state-of-the-art computer-aided design tools in the optimization process and
how to efficiently simulate the inductor performance using electromagnetic
simulators.

12.1 Introduction

The design and fabrication of on-chip radio frequency (RF) inductors have con-
stantly demonstrated wide interest due to the need of providing single-chip solu-
tions for integrated transceivers. They are required in matching networks, resonator
tanks, baluns, and as inductive loads. The performance of radio frequency inte-
grated circuits (RFIC), including low-noise amplifiers, mixers, and oscillators, is
greatly limited by the quality factor of such passive elements. This is particularly
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true in standard silicon processes (e.g., CMOS), whose characteristics (such as
substrate coupling) contribute to the relatively poor performance of the available
passive components. CMOS processes are often chosen to implement RF circuit
blocks due to their low cost, high level of integration, and availability. RFIC
designers generally demand for on-chip inductors to have a desirable value with a
high self-resonant frequency and high quality factor and occupy a small layout area.
In general, passive inductors fabricated in a standard CMOS fabrication process
have small inductance in the range of nanohenries.

Inductors are circuit elements which store energy in the form of a magnetic field.
In RFIC, spiral inductors are fabricated on the topmost metals available in the
process. For instance, Figs. 12.1 and 12.2 illustrate the top and cross-sectional
views of a square inductor fabricated in a generic CMOS process [1]. The top metal
layer (M1) is used for the spiral, while the lower metal layer (M2) is used for the
underpass as depicted in Fig. 12.2.

Spiral inductors are mainly defined by a number of geometrical parameters: the
number of turns n, the width of the metal trace w, the turn spacing s, the inner
diameter din, and the outer diameter dout. They can be implemented in different

Fig. 12.1 Layout of a square
spiral inductor (top view)

Fig. 12.2 Cross-sectional
view of the implementation of
a square inductor in a generic
CMOS process
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shapes such as hexagonal, octagonal, and circular configurations as shown in
Fig. 12.3. The symmetrical forms of these inductors are often used in differential
circuits such as voltage-controlled oscillators and low-noise amplifiers [3].

In order to reduce the substrate losses and enhance the inductor quality factor, a
patterned ground shield (PSG) fabricated via a metal layer which is located between
the spiral inductor and the substrate can be employed [4]. This is shown in
Fig. 12.4.

(a) (b)

(c)

Fig. 12.3 Spiral inductor topologies [1]. a A hexagonal spiral. b An octagonal spiral. c A circular
spiral

Fig. 12.4 A spiral inductor
with the patterned ground
shield [3]
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12.2 Losses in CMOS Inductors

Inductors implemented in a standard CMOS technology experience a number of
electric and magnetic effects, which limit their performance. When a potential
difference is applied to the terminals of the integrated inductor, magnetic and three
electric fields appear as illustrated in Fig. 12.5 [5]. A magnetic field BðtÞ is gen-
erated as the ac current flows through the tracks of the spiral. This induces an
inductive behavior, while parasitic currents flow in the tracks and the substrate.
According to Faraday’s law, a time-varying magnetic field induces an electric field
in the substrate which forces an image current to flow in the substrate opposite in
direction to the current in the winding directly above it. Thus, this adds a loss to the
CMOS inductor, since the substrate acts as an undesired secondary winding which
loads the coil. In the case of larger inductors, the magnetic field penetrates deeper
into the substrate causing higher substrate losses. To minimize the effect of such
substrate losses, some technologies provide the possibility to either use nonstandard
high-resistivity silicon substrate or have a post-processing micromachining step in
order to etch the substrate underneath the inductor [6]. Additionally, f induces eddy
currents in the center of winding which affect the inner turns of the inductor. This is
also known as current crowding [7].

The electric field E1ðtÞ appears as the potential difference is applied between the
terminals of the spiral. Because of the finite metal resistivity, ohmic losses occur as
the current flows through the track. In typical CMOS processes, aluminum (and
sometimes copper) is used as the interconnecting metal. Its sheet resistivity lies
between 30 and 70 mX=sq, depending on the metallization thickness and the type of
aluminum alloy. Therefore, the dc resistance of the spiral can be easily calculated
by the product of the sheet resistance and the number of spiral turns. An
improvement in the quality factor can be achieved by an introduction of a copper
metallization track with a thicker upper-level interconnect metal. Also, strapping
multiple metallization levels to create a multilayer spiral effectively lowers the dc
winding resistance [7].

Fig. 12.5 Electric and magnetic fields associated with a square spiral inductor implemented in a
generic CMOS process [5]
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The potential difference between the turns in the metal that forms the spiral
causes an electric field E2ðtÞ. Thus, capacitive coupling is induced between the
tracks because of the dielectric material. Usually, the winding of the spirals in a
CMOS technology is separated from the substrate by a thin layer of silicon dioxide.
The silicon substrate is neither a perfect conductor nor an insulator. Therefore, there
are losses in the reactive fields that surround the windings of the spiral. The sub-
strate is a heavily doped p-type material and it is tied to ground such that a potential
difference appears between the spiral and the substrate. Therefore, capacitive
coupling is created between the inductive structure and the substrate. The induced
electric field E3ðtÞ penetrates into the conductive substrate, causing an ohmic loss.
This allows RF currents to interact with the substrate, lowering the inductance
value. Additionally, it increases the parasitic capacitance and lowers the
self-resonant frequency. Reducing the trace width decreases the effect of this par-
asitic capacitance but in turn increases the series resistance. Hence, this implies that
using wide traces helps to overcome the low thin-film conductivity of the metal-
lization. On the other hand, this limits the possibility of creating large-value
inductors. As a conclusion, the major losses in a standard CMOS technology are
due to the effect of the substrate. This is still an important limiting factor, even
when the conductivity of the spiral windings is not an issue.

12.3 Quality Factor

The quality factor Q is a fundamental parameter associated with energy storing
elements and it is the measure of the storage efficiency. Since inductors store
magnetic energy, they have an associated quality factor which offers an insight on
their performance. It is defined as the ratio of the energy stored per cycle to the
energy dissipated per cycle, as given in (12.1).

Q ¼ 2p
maximum energy stored

energy dissipated
ð12:1Þ

For inductors, the only form of required energy is that stored in the magnetic field,
while any energy stored in the electric field is a loss. In addition, inductors have an
associated self-resonant frequency fsr beyond which it starts to behave capacitively.
At fsr, the peak magnetic and electric energies are equal, such that Q becomes zero.
Q is proportional to the net magnetic energy stored, which is equal to the difference
between the peak magnetic and electric energies. Based on this definition and the
lumped element p-model (refer to Sect. 12.5), Q is calculated using (12.22) [8].

Q ¼ xLs
Rs

:
Rp 1� R2

s Cp

Ls
� x2LsCp

� �
Rp þ xLs

Rs

� �2
þ1

� �
Rs

ð12:2Þ
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where Ls, Rs, and Cs represent the series inductance, the metal series resistance, and
the capacitive coupling, respectively. Cp and Rp represent the overall parasitic effect
of the oxide and the silicon substrate. Inductors implemented in a standard silicon
(Si) technology such as CMOS have a low Q resulting from the relativity
high-conductivity Si substrate. Planar spirals that are fabricated on GaAs substrates
exhibit Q in the range of 20–40, while the Q of inductors implemented on a Si
substrate is much lower. Discrete off-chip inductors provide a much higher quality
factor, but it is desirable to reduce the board-level complexity and limit the cost by
using on-chip inductors. Bond wires are frequently used as an alternative to some
on-chip inductors due to their high Q. They provide a higher surface area per unit
length when compared to planar spirals, thus having less resistive loss and as a
consequence a higher quality factor. However, they also suffer from large variations
in the inductance value. Additionally, wire bonding is a mechanical process that
cannot be tightly controlled as in the case of a photolithographic process [9].
Remarkably, the inductance of on-chip inductors is solely defined by their physical
geometry, since modern photolithographic processes have stringent geometric tol-
erances limiting any variations in the inductor performance [7].

12.4 Guidelines for On-Chip Inductor Design

The square spiral topology is the most commonly used in the implementation of
on-chip inductors. Another frequently used topology is the octagonal spiral
topology. As the number of geometry sides increases, both the resistance and the
inductance of the structure increase since a larger length of metal track would be
used. However, the inductance value increases at a faster rate than that of the
resistance, thus resulting in an increase of the quality factor. In this regard, the
circular spiral geometry provides the largest perimeter for the same radius, thus
maximizing the inductance and quality factor. Although it is preferable to employ a
circular configuration, it is often not permitted by standard integrated circuit
technologies. Additionally, non-Manhattan geometries are not supported by many
technologies [9].

Reducing the resistance per unit length of an inductor trace is imperative to
increase the quality factor and this is usually done by making use of thick metal
layers. Alternatively, in conventional CMOS processes, two or more metal layers
are connected together to thicken the inductor trace to generate a so-called multi-
layer spiral inductors. The resistance of the inductors becomes smaller as the
number of layers shunted together is increased, thus leading to an increase in the
quality factor. In practice, the number of metal layers in a CMOS process may vary
and this increase in the quality factor is often limited because of the finite resistance
of the interconnecting vias. It is not recommended to use the metal layers closer to
the substrate, because this would increase the parasitic capacitance associated with
the structure, thus reducing the self-resonant frequency of the inductor.
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Due to the eddy current effect, the innermost turns of the coils suffer enormously
from a high resistance which affects the overall quality factor. In addition, the
innermost turns give minimal contribution to the inductance. Hence, it is recom-
mended to design a hollow coil. The inductor opposite coupled lines must have a
din �w, in order to enable magnetic flux to pass through the hollow part. In
addition, the spacing between the outer spiral inductor turn and any other sur-
rounding metal should be at least 5w. The width of the inductor should be as wide
as the limit where the skin effect starts to be dominant. The wider the metal track,
the higher the exhibited quality factor, because the resistance of the inductor
decreases, while the inductance value remains constant. However, when the width
is significant to the skin effect, the inductor resistance starts to increase. It was
observed for spiral inductors operating from 1 to 3 GHz that the Q is optimum for a
track width between 10 and 15 μm [10].

Due to mutual coupling between the spiral metal tracks, the spacing between the
lines of the inductor should be as close as possible. Large spacing causes a
reduction in the mutual coupling, thus lowering the inductance value [5]. Another
design factor to take into account is the spiral radius. As the radius increases, the
metal area overlapping the substrate increases accordingly and the parasitic
capacitance between the spiral and the substrate increases. This results in a
reduction of the self-resonant frequency. The substrate losses are also susceptible to
the area occupied by the coil. Limiting the area, the magnetic field associated with
the coil penetrates less deeply into the substrate, thus reducing the substrate losses.

12.5 Modeling of Two-Port Inductors

A two-port lumped passive element p-type equivalent circuit, shown in Fig. 12.6,
can be used to model a spiral inductor implemented on a silicon substrate. This
equivalent circuit includes a number of components which altogether model the
variation of the inductance with frequency and the loss mechanisms related to the
structure of the spiral inductor. In particular, Ls represents the inductance, Rs

models the resistance of the metal trace, CF represents the capacitive coupling
between the spiral trace and the underpass, and the magnetic eddy current effect is
modeled as an ideal transformer coupled to a resistor RsubðmÞ. In addition, the
substrate is represented by three components Csub, Rsub, and Cox, where Cox is the
oxide capacitance between the spiral and the substrate.

In order to estimate the value of these circuit elements, physically based equa-
tions related to the geometry of the spiral inductor and the parameters of the
fabrication process can be used [11, 12]:

Rs ¼ 1
rxdð1� eð�t=dÞÞ ð12:3Þ
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CF ¼ nx2 eox
toxM1�M2

ð12:4Þ

Cox ¼ 1
2
lx

eox
tox

ð12:5Þ

Csub ¼ 1
2
lxCsub=A ð12:6Þ

Rsub ¼ 2
lxGsub=A

ð12:7Þ

where r is the conductivity of the metal layer, l is the total length of the metal trace,
d is the metal skin depth, t is the metal thickness, tox is the thickness of the oxide
situated between the spiral inductor and the substrate, and Csub=A and Gsub=A are the
substrate capacitance and conductance per unit area, respectively. The metal skin
depth can be calculated using (12.8):

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
r pl f

s
ð12:8Þ

where f is the frequency and l is the permeability of free space. The skin resistance
Rs is given by Eq. (12.3), showing that as the frequency of operation increases, the
resistance of a metal segment will increase due to the skin effect. The values of the
quality factor Q and the inductance Ls can be calculated from the equivalent circuit
by converting the measured or simulated two-port S-parameters into Y-parameters
and using the equivalent p-network given in Fig. 12.7. For symmetrical inductors,
Y12 ¼ Y21 and Y11 ¼ Y22.

Fig. 12.6 General spiral
inductor passive lumped
element circuit model
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In order, to define L and Q, one needs to reduce the p-network to single element
circuit consisting of an inductor in series with a resistor. For a simple series element
R + jX (refer to Fig. 12.8), the inductance and the quality factor can be found using:

L ¼ X
2pf

ð12:9Þ

and

Q ¼ X
R

ð12:10Þ
Figure 12.8a shows the case in which one of the inductor terminals is grounded
such thatY12 þ Y22 is bypassed and the circuit looking into port 1 reduces to an
admittance Y11 connected to ground.

In this case, the input impedance Zin of the inductor can be calculated by:

Rþ jX ¼ 1
Y11

ð12:11Þ

Fig. 12.7 p-equivalent circuit for a two-port network

Fig. 12.8 Two methods of simplifying the two-port p-network. a Single-ended configuration and
b differential configuration
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Thus, L and Q is defined as follows:

L ¼ Im
1=Y11
2pf

� �
¼ � 1

2pf ImðY11Þ ð12:12Þ

Q ¼
Im 1

Y11

� �
Re 1

Y11

	 
 ¼ � ImðY11Þ
ReðY11Þ ð12:13Þ

Equations (12.12) and (12.13) are valid for an inductor used in a circuit, in which
one of its terminals is connected to ground. This is often the case in many RF
circuits, such as in low-noise amplifiers and mixers where the inductors are used for
degeneration or as a load. L and Q can be calculated by using measured or simu-
lated one-port S-parameters with one terminal of the inductor grounded and con-
verting the reflection coefficient into an input impedance. The series input
impedance Zin is given by:

Rþ jX ¼ Zin ¼ Z0
1þ C1

1� C1
ð12:14Þ

where C1 ¼ S11 and Z0 is the port characteristic impedance. In other applications,
such as differential voltage-controlled oscillators, the on-chip inductors are used in a
differential configuration, where both ports are not at a ground potential (refer to
Fig. 12.8b). In this case, a different approach is required to determine Q and L and
the input impedance is referred to as floating impedance seen between port 1 and
port 2 of the p-network. Therefore, the differential input impedance is given by:

Rþ jX ¼ � 1
Y12

� �
k 1

Y11 þ Y12
þ 1
Y22 þ Y12

� �
¼ Y11 þ Y22 þ 2Y12

Y11Y22 � Y2
12

ð12:15Þ

In this case, where the shunt elements Y11 þ Y12 and Y22 þ Y12, which are related to
the substrate networks, can be neglected, L and Q can be calculated using:

L ¼ Im
1=Y12
2pf

� �
¼ � 1

2p f ImðY12Þ ð12:16Þ

Q ¼
Im 1

Y12

� �
Re 1

Y12

	 
 ¼ � ImðY12Þ
ReðY12Þ ð12:17Þ

When the shunt elements Y11 þ Y12 and Y22 þ Y12 are not negligible, as in
standard CMOS processes, the effective inductance Ldiff and Qdiff are obtained
using (12.19–12.19) [3].
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Rþ jX ¼ 4
Y11 þ Y22 � Y12 � Y21

ð12:18Þ

Ldiff ¼
Im 4

Y11þY22�Y12�Y21

� �
2p f

ð12:19Þ

Qdiff ¼ � ImðY11 þ Y22 � Y12 � Y21Þ
ReðY11 þ Y22 � Y12 � Y21Þ ð12:20Þ

For symmetrical inductors, Y22 and Y21 are equal to Y11 and Y12, respectively,
such that Eqs. (12.21) and (12.22) are simplified as follows:

Ldiff ¼
Im 2

Y11�Y12

� �
2p f

ð12:21Þ

Qdiff ¼ � ImðY11 � Y12Þ
ReðY11 � Y12Þ : ð12:22Þ

12.6 Inductance Estimation

The inductance of a planar spiral inductor is a complex function which mainly
depends on its geometry. An accurate estimation of the inductance can be made
either by using expressions based on a numerical method or by using a field solver.
There are two methods which may be used to calculate the inductance of a spiral
using a closed-form equation. One of the basic methods is based on the
self-inductance and the mutual coupling in single wires and is known as the
greenhouse method. The other method relies on empirical equations applied for
inductance calculations. A summary of comprehensive formulas is presented in
[13], illustrating the tables for inductance estimation.

According to the greenhouse theory, the inductance of a square spiral inductor
can be calculated by splitting up the different inductor sections into single wires.
Then, the self-inductance of each wire is calculated and finally summed up. The
self-inductance of a single wire with a rectangular cross section is given by the
following equation [2]:

Lself ¼ 2l ln
2l

wþ t
þ 0:5þ wþ t

3l

� �
ð12:23Þ

where Lself is the self-inductance in nH, the wire length l is in cm, w is the wire
width in cm, and t is the wire thickness in cm. This equation is valid when the wire
length is at least greater than twice the cross-sectional dimension. Additionally, to
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calculate the overall inductance, the mutual inductance (positive or negative)
between parallel lines is included. The mutual inductance between two parallel
wires can be expressed as follows [14]:

M ¼ 2lQm ð12:24Þ

where M is the mutual inductance in nH, l is the wire length in cm, and Qm is the
mutual inductance parameter which is calculated by (12.25):

Qm ¼ ln l
GMDþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l

GMD

� �2r !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ GMD

l

� �2r
þ GMD

l ð12:25Þ

where GMD is the geometric mean distance between the track center of the two
wires and its exact value is given by:

lnðGMDÞ ¼ lnðdÞ � 1

12 d
w

	 
2 þ 1

60 d
w

	 
4 þ 1

168 d
w

	 
6 þ 1

360 d
w

	 
8 þ � � �
" #

ð12:26Þ

where d is the center to the center separation between the conductors and w is the
width of the conductors. Thus, the inductance of a conductor is given by:

LT ¼ L0 þMþ �M� ð12:27Þ

where LT is the total inductance of the spiral inductor, L0 is the sum of
self-inductances, Mþ is the positive mutual inductance (where the current in two
parallel segments is in the same direction), and M� is the sum of the negative
mutual inductance (where the current in two parallel wires is in the opposite
direction) [2]. For instance, the inductance for a two-turn square spiral inductor
shown in Fig. 12.9 can be calculated as follows:

LT ¼ L1 þ L2 þ L3 þ L4 þ L5 þ L6 þ L7 þ L8
þ 2ðM1;5 þM2;6 þM3;7 þM4;8Þ
� 2ðM1;7 þM1;3 þM5;7 þM5;3 þM2;8 þM2;4 þM6;8 þM6;4Þ

ð12:28Þ

where Li is the self-inductance of wire i and Mij is the mutual inductance between
wires i and j.

The second method often used to estimate the inductance of a spiral coil is based
on empirical equations. One such empirical equation is (12.29), which is based on
the modified Wheeler formula [15] and is valid for planar spiral integrated
inductors:
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Lmw ¼ K1 l0
n2 davg

ð1þ K2 qÞ ð12:29Þ

where Lmw is the inductance calculated by the modified Wheeler formula, the
coefficients K1 and K2 are layout-dependent parameters presented in Table 12.1, n
is the number of turns, davg is the average diameter defined as davg ¼
0:5ðdin þ doutÞ, and q is the filling ratio defined as q ¼ ðdout � dinÞ=ðdout þ dinÞ.

Another empirical expression is based on the current sheet approximation [15].
This method approximates the sides of the spirals by symmetrical current sheets of
equivalent current densities. Since sheets with orthogonal current have zero mutual
inductance, the inductance estimation is then reduced to just the evaluation of the
self-inductance of a sheet and the mutual inductance between opposite current
sheets. The self- and mutual inductances are established using the concepts of
geometric mean distance (GMD), arithmetic mean distance (AMD), and arithmetic
mean square distance (AMSD) [15]. The formula for this method is given by:

Lgmd ¼ ln2davgc1
2

lnððc2=qÞ þ c3qþ c4q
2Þ ð12:30Þ

where ci are layout-dependent coefficients provided in Table 12.2. As the ratio s=w
increases, the accuracy of this equation degrades exhibiting a maximum error of
8 % for s� 3w. Practical integrated spirals are designed s�w.

Fig. 12.9 Application of the
greenhouse method to a
two-turn square spiral
inductor

Table 12.1 Coefficients for
the modified Wheeler
expression

Layout K1 K2

Square 2.34 2.75

Hexagonal 2.33 3.82

Octagonal 2.25 3.55

Table 12.2 Coefficients for
the current sheet expression

Layout c1 c2 c3 c4
Square 1.27 0.07 0.18 0.13

Hexagonal 1.09 2.23 0.00 0.17

Octagonal 1.07 2.29 0.00 0.19

Circle 1.00 2.46 0.00 0.20
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The monomial expression is another empirical equation and it is based on a
data-fitting technique which yields the following expression [15]:

Lmon ¼ b da1out w
a2 da3avg n

a4 sa5 ð12:31Þ

where Lmon is the inductance in nH, dout is the outer diameter in lm, n is the number
of turns, and s is the turn-to-turn spacing in lm. The coefficients b and ai are layout
dependent and are given in Table 12.3. This expression can be solved using geo-
metric programming which is an optimization method that applies monomial
models.

Although the greenhouse method offers sufficient accuracy to estimate the
inductance value [17], this method cannot provide a direct design for given spec-
ifications and it is a slow approach for a preliminary design. Additionally, simple
inductor expressions may predict the correct order of magnitude of the inductance
value, but they incur errors in the range of 20 % which is unacceptable for circuit
design and optimization [17]. The three aforementioned empirical equations are
accurate, with typical errors of 2–3 % [17]. Consequently, they present an excellent
candidate for a design and synthesis tool. These equations can provide expressions
for the inductance of square, hexagonal, octagonal and circular planar inductors.

Commercial 3D electromagnetic simulators can be used to estimate the induc-
tance of planar spiral inductors, via the extracted Y-parameters of the two-port p-
equivalent circuit model (refer to Sect. 12.5) using (12.32) [18]:

Ls ¼ � 1
2p f

Im
1
Y12

� �
ð12:32Þ

where f is the frequency. The formulae used in the extraction of the inductor π-
equivalent lumped circuit parameters are presented in [19]. The accuracy and
limitations of such calculation are inherent to the inductor p-equivalent circuit
model.

12.7 Boundary Conditions for the Spiral Inductor
Optimization

The bounding of the layout parameters of the spiral inductor required for the
optimization procedure can be expressed as follows [14]:

Table 12.3 Coefficients for the inductance monomial expression

Layout β α1 α2 α3 α4 α5
Square 1.62 × 10−3 −1.21 −0.147 2.40 1.78 −0.030

Hexagonal 1.28 × 10−3 −1.24 −0.174 2.47 1.77 −0.049

Octagonal 1.33 × 10−3 −1.21 −0.163 2.43 1.75 −0.049
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maximize Qðdout;w; s; nÞ

subject to Ls;min � Lsðdout;w; s; nÞ� Ls;max

ð2nþ 1Þðsþ wÞ� dout
doutmin � dout � doutmax

wmin �w�wmax

smin � s� smax

nmin � n� nmax

ð12:33Þ

where Q-factor is the objective function and dout, w, s, and n are the optimization
variables related to the spiral geometry, in which n is the number of turns, s is the
track-to-track distance, and w is the track width. The domain of the design search
space is determined by the lower and upper bounds of these variables. It is
important to set these variables to restricted feasible values in order to reflect the
limitations of the technology.

The geometry of the spiral inductor needs to be optimized in order to maximize
its quality factor Q at a particular frequency. The inductance value is bounded by
the first constraint. The boundary of the layout size is ensured by the second
constraint. The other four constraints are the geometric constraints. Many optimi-
zation methods have been proposed to solve (12.33), such as the exhaustive enu-
meration, sequential quadratic programming (SQP), mesh adaptive direct search
(MADS), genetic algorithm, and geometric programming (GP) [1]. Considering
that the design parameters of the spiral inductor are independent from each other, it
is important to constraint them together. The outer diameter can draw a correlation
between n, w, and s governed by (12.34):

dout ¼ din þ 2 nwþ 2ðn� 1Þs ð12:34Þ

where din is the inner diameter.

12.8 Optimization of Inductors via a Genetic Algorithm

A genetic algorithm (GA) optimization is a stochastic search method which repli-
cates the natural biological evolution by applying the principle of survival of the
fittest, in order to achieve the best possible solution to a given problem. In the
context of integrated spiral inductor design, GA is being proposed as an adequate
optimization tool since it does not rely on formal mathematical derivations or prior
knowledge of the problem, is resistant to being trapped in local optima, and can
handle noisy functions. In addition, GA has proven to be able to handle large
variations within the boundary conditions and is able to search at specific point
rather than at regions across the searched space [20].
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The main principle behind the applied GA optimization is that it takes into
consideration heuristic constraints regarding the inductor design. It offers a way to
determine the various parameters of the inductor layout. Due to the technology and
topology constraints, the layout parameters are inherently discrete and so discrete
variable optimization techniques are used. In this chapter, two approaches are
presented. In this section, the GA-based integrated inductor design is based on the
lumped element two-port π-model (refer to Sect. 12.5) and the modified Wheeler
formula given by (12.29) which is used to calculate the inductance value.

This approach can be implemented using the MATLAB GA toolbox in order to
yield technology-feasible design parameters [21]. The design generated by this
method can then be verified through an EM simulator. For the p-model inductor,
the quality factor is defined as given by Eq. (12.22) and the evaluation of Rs; Rsi ¼
Rsub; Cs ¼ CF ; Cox and Csi ¼ Csub can be obtained from Eqs. (12.3), (12.7), (12.4),
(12.5), and (12.6), respectively. The shunt resistance Rp and capacitance CP can be
estimated by:

Rp ¼ 1
x2C2

oxRsi
þ RsiðCox þ CsiÞ2

C2
ox

ð12:35Þ

Cp ¼ Cox
1þ x2ðCox þ CsiÞ þ CsiR2

si

1þ x2ðCox þ CsiÞ2R2
si

ð12:36Þ

The restricted technological constraints are defined as follows: minimum values for
the track width w, track-to-track spacing s, and input diameter din. Moreover, the
correlation between the layout parameters is considered as heuristic design rules for
reducing the parasitic phenomena due to proximity effect [20] given by (12.37)

0:2\din=dout\0:8; din [ 5w ð12:37Þ

For a GA optimization procedure, a cost function is required in which it formulates
the optimization problem as follows (12.38):

minimization of Costðn; din;wÞ
subject to ð1� dÞLexp � Lsðdin;w; nÞ� ð1þ dÞLexp

w 2 ½wmin : stepw : wmax�
din 2 ½dmin : stepd : dmax�
n 2 ½nmin : stepn : nmax�

ð12:38Þ

where Costðn; din;wÞ is the cost function, Lsðn; din;wÞ is the inductance of the
spiral, Lexp is the targeted inductance value, and d is the tolerance limit for the
inductance, which is the value by which it may deviate from the targeting value.

There are three different scenarios that can be applied to the cost function at a
particular frequency of operation: either the minimization of the tolerance d, the
minimization of the device area dout, or else the maximization of the quality factor
Q. In this work, the cost function is related to the maximization of the quality factor
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[20]. Initially, the GA optimization algorithm randomly generates the initial pop-
ulation. Each individual constitutes three variables ðw; din; nÞ, representing the
layout geometry parameters. Each gene is formulated to real parameters, to abide to
the objective boundaries’ constraints. Following that, every quality factor and
inductance of each particular gene (which refers to an inductor design) is evaluated.
If these are not compliant, a fitness function is applied to pay a penalty so that it has
a very low probability for being elected for the next population. If the termination
condition is verified, the algorithm stops there, else the next steps create a new
population, where selection and reproduction functions are used. For the selection,
the roulette method is chosen, while afterward mutation is made. Figure 12.10
represents the flowchart of GA process to design the RFIC inductor.

To show the performance of the GA-based integrated inductor, an example of 1
nH square spiral inductor is shown. The technological parameters used to estimate
Rsi, Cs, Cox, and Csi are shown in Table 12.4. The determination of the layout
parameters is obtained through the constraints presented in Table 12.5. The GA
optimization procedure was utilized to maximize the quality factor, given the tol-
erance for the required inductance. The result of GA optimization procedure is
shown in Table 12.6.

The validity of the obtained design layout parameters was checked against a
simulation performed using HFSS yielding the results shown in Table 12.7. The
frequency response of the quality factor and inductance of the designed square

Fig. 12.10 Block diagram of
the numerical GA used for the
design optimization of the
spiral inductor
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inductor are inductor is illustrated in Figs. 12.11 and 12.12, respectively. The
inductor HFSS design model generated model is depicted in Fig. 12.13. The
comparison between the HFSS simulation results and the GA estimations demon-
strates a good agreement, where the GA inductance value is 1:2 nH and the sim-
ulations predict an inductance of 1:15 nH. The Q estimated via the GA is 6:8, while
the simulations show that the inductor exhibits a Q of 7.2.

Table 12.4 Technology
parameters

Parameter Value Parameter Value

ɛ0 (F/m) 8.85e−12 tox (μm) 11.8

ɛr 11.9 Csub (F/m
2) 4.0e−6

σ (S/m) 2.7e−7 Gsub (S/m
2) 2.43e−5

Table 12.5 Design
constraints

Parameter Min Max

win (μm) 2 20

din (μm) 70 90

n 2 7

Table 12.6 GA optimization
results

win (μm) din (μm) n N

15 48 2.5 4

Table 12.7 Comparison of
estimated and simulated
results

LGA(nH) LHFSS
(nH)

Error
(%)

QGA QHFSS Error
(%)

1.2 1.15 4.2 6.8 7.2 5.8

Fig. 12.11 Variation of the
inductor’s quality factor with
frequency obtained using
HFSS
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12.9 Optimization of Inductors via Geometric
Programming

Geometric programming (GP) has a significant feature of determining if a design is
feasible and if so finding the best possible inductor layout parameters [2]. Its main
advantage is that it relates the sensitivity of the design objectives to its constraints,
thus offering a rapid searching tool which enables the RFIC designer to spend more
exploring and tuning the fundamental design trade-offs.

Fig. 12.12 Variation of the inductance with frequency obtained using HFSS

Fig. 12.13 HFSS square spiral inductor model
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A GP problem has a form

minimize f0ðxÞ
subject to fiðxÞ� 1; i ¼ 1; 2; . . .;m;

giðxÞ ¼ 1; i ¼ 1; 2; . . .; p;
xi [ 0; i ¼ 1; 2; . . .; n;

ð12:39Þ

where fiðxÞ; i ¼ 0; 1; . . .;m; are posynomial functions and giðxÞ; i ¼ 1; 2; . . .;P; are
monomial functions. The posynomial function is defined as

f ðx1; . . .; xnÞ ¼
Xt
k¼1

ckx
a1k
1 xa2k2 . . .xankn ð12:40Þ

where cj � 0 and aij 2 R. When t = 1, f is called a monomial function. Thus, for

example, 0:7þ 2x1=x23 þ x0:32 is a posynomial and 2:3ðx1=x2Þ1:5 is a monomial.
Posynomials are closed under sums, products, and nonnegative scaling.

Indeed, an initial point is unnecessary for it has no effect on the optimization
algorithm procedure. The GP problem is solved globally and efficiently, converting
it into a convex optimization problem. This is specifically done through the
transformation of the objective and constraint functions using a set of new variables
defined as yi ¼ log xi, such that xi ¼ eyii [22]. For a monomial function f given by
(12.41)

f ðxÞ ¼ c1 x
a1k
1 xa2k2 . . .xankn ð12:41Þ

Then,

f ðxÞ ¼ f ðey1; . . .; eynÞ
¼ cðey1Þa1 . . .ðeynÞan
¼ ea

T ðyþbÞ
ð12:42Þ

where b ¼ log c.
Using the variable yi ¼ log xi transforms a monomial function to an exponential

form of an affine function, as follows:

f ðxÞ ¼
XK
k¼1

ea
T
k yþbk ð12:43Þ

where ak ¼ ða1k; . . .; ankÞ and bk ¼ log ck. Hence, a posynomial can be changed to
a sum of exponentials of affine functions, and the GP problem is expressed in terms
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of the new variable y. Then, the objective and constraint functions are transformed
by taking the logarithm resulting in a convex optimization form

minimize f 0ðyÞ ¼ log
PK0

k¼1
ea

T
0kyþb0k

� �

subject to f iðyÞ ¼ log
PKi

k¼1
ea

T
ikyþbik

� �
� 0; i ¼ 1; . . .;m

hiðyÞ ¼ gTi yþ hi ¼ 0; i ¼ 1; . . .; p:

ð12:44Þ

where the functions f 0ðyÞ are convex and hi are affine. Hence, this problem is
referred to as geometric programming in convex form.

The formulation of spiral inductor optimization problem as a GP optimization
problem was presented in [16], based on the monomial expression for inductance
introduced in [15]. According to two-port lumped element circuit model, the
monomial expression for the inductance is represented in terms of geometrical
parameters ðdout;w; davg; n and sÞ [16], which has the form given by 31 [15].

Where the series resistance can be formulated as

Rs ¼ l
rw dð1� e�t=dÞ ¼ 4 f ðxÞk1 davg n=w ð12:45Þ

The spiral–substrate oxide capacitance Cox that takes into consideration inductor’s
parasitic capacitance is given by the following monomial expression:

Cox ¼ eox l w
2 tox

¼ 4 k2 davgnw ð12:46Þ

The series capacitance Cs that represents the capacitance between the spiral and the
metal underpass required to connect the inner end of the spiral inductor to external
circuitry. It is specified as a monomial expression

Cs ¼ eox nw2

tox;M1�M2
¼ k3 nw

2 ð12:47Þ

where tox;M1�M2 is the oxide thickness between the spiral and the underpass.
The substrate capacitance Csi that refers to the substrate resistance can be

modeled as a monomial equation

Csi ¼
Csub=Al w

2
¼ 4 k4 davg nw ð12:48Þ
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The monomial expression of the substrate resistance is Rsi

Rsi ¼ 2
Gsub=Al w

¼ k5=ð4 davg nwÞ ð12:49Þ

where Ls is the inductance in nH, dout is the outer diameter in lm, n is the number of
turns, s is the turn-to-turn spacing in lm, k1 to k5 are coefficients dependent on
technology, and f ðxÞ is the coefficient dependent on frequency and technology

f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2

xl0 r

q
ð1� e�t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðxl0 rÞ

p
Þ

ð12:50Þ

The shunt resistance Rp and capacitance Cp are frequency dependent, expressed as
monomials as follows:

Rp ¼ 1
x2 C2

ox Rsi
þ RsiðCox þ CsiÞ2

C2
ox

¼ k6=ð4 � davg nwÞ ð12:51Þ

Cp ¼ Cox
1þ x2ðCox þ CsiÞ þ CsiR2

si

1þ x2ðCox þ CsiÞ2R2
si

¼ 4k7 davg nw ð12:52Þ

where k6 and k7 are coefficient dependent on technology and frequency. According
to the p-model, the quality factor of a spiral inductor accounting for substrate loss
factor and self-resonance factor is given by

QL ¼ xLs
Rs

:
Rp 1� R2

s Ctot

Ls
� x2LsCtot

� �
Rp þ ½ x Ls

Rs

� �2
þ1�Rs

ð12:53Þ

where Rp ¼ 2Rp and Ctot ¼ Ctot=2 for two-port device, while for one-port device, it
is Rp ¼ Rp and Ctot ¼ Ctot. When the inductor is used as one-port inductor, the total
shunt capacitance is posynomial Ctot ¼ Cs þ Cp because Cs and Cp are monomial
expressions. The quality factor represents the objective function in GP and can not
be as a posynomial function of the design parameters. By introducing a new var-
iable, the specification for minimum quality factor (QL �QL;min) was written in [16]
as a posynomial inequality in the design variables and QL;min

QL;minRs

x Ls Rp
: Rp þ ðx LsÞ2

Rs
þ Rs

" #
þ R2

s ðCs þ CpÞ
Ls

þ x2LsðCs þ CpÞ� 1 ð12:54Þ
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This is because only inequality constraints in monomial form are allowed in
GP. Accordingly, the GP design problem is formulated as

maximize Qmin

s:t: Q�Qmin

L ¼ Lreq; Ls;min � Ls � Ls;max

ð2nþ 1Þðsþ wÞ� dout
dang þ nðsþ wÞ� dout
doutmin � dout � doutmax

wmin �w�wmax

smin � s� smax

nmin � n� nmax

ð12:55Þ

Since the design parameters dout, w and s are independent, an inequality constraint
to correlate them together dang þ nðsþ wÞ� dout has been imposed. Also, the
inductor area can be constrained by using the monomial inequality, d2out �Amax. The
minimum self-resonant frequency can be handled by adding the following posy-
nomial inequality:

x2
sr;min Ls Ctot þ R2

sCtot

Ls
� 1: ð12:56Þ

Yet, there are some cases that apply PGS beneath the inductor to eliminate the
resistive and capacitive coupling to the substrate at the expense of the increased
oxide capacitance. Hence, the inductor exhibits an improvement in its performance.
In this case, the inductor lumped model parameters become Rp ¼ 1; Cp ¼ Cox ¼
ðeox l wÞ=ð2tox;poÞ, where tox;po is the oxide thickness between the spiral and the
polysilicon layer.

A simple MATLAB toolbox for solving geometric programming problems is
proposed in [23]. This toolbox can be used to evaluate Eq. (12.55) and find feasible
optimal parameters to model spiral inductors via geometric programming optimi-
zation method.

An optimal design of a 1-nH spiral inductor using the GP optimization is pre-
sented here, where the GP optimization tool maximizes the Q-factor for the inductor
operating at 1 GHz. The GP tool was presented with the following constraints:
Maximize lm subject to Ls ¼ 1 nH; s� 2 lm;xsr � 10 GHz.

Figure 12.14 illustrates the maximum Q-factor for 1-nH square inductor at
1 GHz without PSG, as a result of the GP optimization method. The corresponding
geometrical dimensions are all in a feasible technological range, shown in
Table 12.8. In order to verify GP results, commercial FEM simulation software of
HFSS was used with the layout parameters depicted in Table 12.8. The results of
HFSS verification are presented in Table 12.9, which show a very good agreement
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with the GP estimated results. The GP algorithm gave an inductance of 1 nH with a
Q-factor of 8.4, while HFSS reported that the designed inductor exhibits an
inductance of 1.1 nH with a Q-factor of 7.3. The HFSS square spiral model is
shown in Fig. 12.15.

Fig. 12.14 Variation of the maximum quality factor with inductance

Table 12.8 Maximum
Q-factor and optimal value of
geometry parameters for the
1-nH square inductor

Ls
(nH)

dout
(μm)

w (μm) davg
(μm)

n s (μm)

1 167.3 17 110 2.5 2

Table 12.9 Comparison of
the estimated and simulated
results obtained using HFSS

LGP (nH) LHFSS (nH) QGP QHFSS

1 1.1 6 7.3

Fig. 12.15 Geometry of a
square spiral inductor in
HFSS
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12.10 Genetic Algorithm Optimization Using EM Solvers

The implementation of integrated spiral elements relies on approximate quasi-static
models that need to be verified by electromagnetic field solvers. The design of RF
spiral inductors can be accomplished by integrating the use of a 3D electromagnetic
(EM) solver together with an optimization method. A 3D EM solver is a CAD tool
which can be used to compute multiport parameter data for a particular RF structure
by using 3D electromagnetic field simulation. In this work, a new methodology of
using the GA optimization MATLAB toolbox integrated with HFSS is presented, in
order to demonstrate the implementation of an optimal RF CMOS inductor design.
The proposed design procedure for the RFIC inductor is summarized in Fig. 12.16.

As discussed in Sect. 12.5, Q and L can be easily evaluated by simulating the
inductor spiral and extracting the Y-parameters. However, Q is very sensitive to the
simulation settings and environment. For an accurate determination of the Q value,
the internal parts of the conductors should be finely meshed in order to account for
the exponential decay of the current inside the conductors. The optimization
boundary constraints employed in this approach are based on the set presented in
(12.38), and a GA optimization is scripted so as to implement a spiral inductor.
Using the extracted Y-parameter data, Q and L are estimated, and the results are
automatically sent to the GA main function. A cost function is defined in order to
eliminate genes with a low probability of achieving a maximum Q given by (12.57).

Fðf Þ ¼ �Q; for Q� 2
0; for Q\2

�
ð12:57Þ

To restrict the inductance value during the optimization procedure, a bounding
condition is defined before calling the fitness function:

Fig. 12.16 Design flow for
an RFIC inductor
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if 1� dð Þ Lexp � Ls din; w; N; nð Þ� 1þ dð Þ Lexp
QL ¼ � Im Y11�Y12ð Þ

Re Y11�Y12ð Þ
else
Q ¼ 0

8>><
>>: ð12:58Þ

An optimum spiral inductor designed for a given inductance value at a particular
operating frequency is targeted for a maximum Q and a minimum area consumption
with an adequate self-resonant frequency. The physical characteristics of an
inductor, such as the metal width w, outer diameter dout, spacing s, and the number
of turns n, are optimized in order to yield the required inductor. In addition, it was
imperative to take into consideration the guidelines presented in Sect. 12.4. In
practice, the values of on-chip inductors used in RF circuits fall in the range of 1–10
nH due to considerations in area utilization.

The CMOS process is modeled by drawing the substrate and the metal layers in
a 3D-box-like fashion, where each layer is defined by its relative permittivity and
bulk conductivity. The inductor layout is drawn by scripting HFSS commands
through MATLAB using a library proposed in [24]. Figure 12.17 illustrates the
main parameters of the generic CMOS process used in the simulations. The spiral is
implemented using the top metal layer, and the underpass is made from the next
metal layer level. A ground ring was added connecting each port of the inductor.

The block diagram of the genetic algorithm function used in this procedure is
shown in Fig. 12.18. As a starting point of the optimization process, the initial
population is created randomly, in which binary strings are generated from layout
parameters. The GA is implemented in a way to code these layout parameters into
genes via a binary-string coding. The four optimized parameters are s, w, n, and din,
such that the chromosome structure is a four-part string, where each string

Fig. 12.17 Layers in a
generic CMOS process
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corresponds to a parameter. The model is then created in HFSS according to the
decoded parameters and is used to estimate the Y-parameters. The inductance is
then evaluated using Eq. (12.21), while abiding to the condition given by (12.58).
Following that, the algorithm automatically returns the Q value to the main function
which applies the fitness function given by (12.57) to each individual in the GA
population. Successive generations are produced by the application of selection,
crossover, and mutation operators, until the optimal or a relatively optimal solution
is found or termination criterion is met.

The 3D tool improves the design methodology of the on-chip inductors. Though
it provides full freedom in implementation, it shows to be slower tool due to
modeling through geometric construction and it uses the finite element method
which requires many iterations in order to achieve convergence [18]. A relation was
used to account for the accuracy in the quality factor estimated from the HFSS
simulation results [25], where a cross-sectional solver was used to estimate the
losses in coupled transmission lines, thus correcting the estimation.

The proposed optimization methodology is demonstrated through the design of a
rectangular spiral inductor targeted for an operating frequency of 1 GHz. The
design constraints and the technology parameters are given in Tables 12.10 and

Fig. 12.18 Block diagram of
the genetic algorithm used for
the design optimization of the
spiral inductor

Table 12.10 Optimization
constraints

Parameter Values

Desired inductance 1 nH

Operating frequency 1 GHz

Outer diameter ≤400 μm
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12.11. The determination of the upper and lower bounds of the width w, the number
of turns n, and spacing s is based on an initial estimation of the inductance and
layout parameters from the GP optimization; hence, a sweep is performed around
these values. The GP optimization layout design parameters used in this example
are those given in Table 12.8. The number of turns was varied from 2 to 4, w from
10 to 20 μm, while din from 40 to 70 μm.

The parameters of the square inductor design are given in Table 12.12, while the
simulation results obtained from HFSS are illustrated in Figs. 12.19 and 12.20,
where the variation of the inductance and quality factor with frequency is reported.
The value of the quality factor and the inductance obtained from this procedure are
compared with those obtained from the GP optimization procedure in Table 12.13.

Table 12.11 Technology
parameters

Parameter Values

Substrate resistivity 10 Ω cm

Silicon dielectric constant 11.9

Oxide thickness 4.5 μm

Conductivity of the metal 2.8 × 105 (Ω cm)−1

Metal thickness 3 μm

Table 12.12 Optimization
constraints

Parameter Values

w 17 μm

s 2 μm

n 2.5

din 65 μm

Fig. 12.20 Variation of the
inductance with frequency
obtained using HFSS
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12.11 Conclusion

In this chapter, computational techniques employed to model and optimize radio
frequency on-chip spiral inductors on a silicon substrate were presented and dis-
cussed. This work presents an efficient tool for analyzing, designing, and imple-
menting any arbitrary inductor arrangement or topology. The optimization strategy
is initialized by using a set of empirical formulae in order to estimate the physical
parameters of the required structure as constrained by the technology, layout, and
design specifications. Then, automated optimization using numerical techniques,
such as genetic algorithms or geometric programming, is executed to further
improve the performance of the inductor by means of dedicated software packages
such as MATLAB. The optimization process takes into account substrate coupling,
current constriction, and proximity effects. The results of such an optimization are
then verified using a 3D EM simulator. This strategy was shown to be convenient in
synthesizing optimal spiral inductors with adequate performance parameters such as
the quality factor, area utilization, and self-resonant frequency, by combining
lumped element model estimation with computational techniques within an EM
simulation environment. This strategy provides a time-efficient and accurate design
flow. A further improvement to this work would be to incorporate a method for
correcting the inaccuracy of the EM simulators in calculating the quality factor of
the spiral inductors.

Fig. 12.19 Variation of the
inductor’s quality factor with
frequency obtained using
HFSS

Table 12.13 GA
optimization results

LGA-HFSS (nH) LGP (nH) QGA-HFSS QGP

1.1 1 6.5 6

12 Optimization of RF On-Chip Inductors … 359



References

1. Yu, W., Bandler, J.W.: Modeling of spiral inductors. In: Optimisation of Spiral Inductor on
Silicon using Space Mapping. Microwave Symposium Digest, 2006. IEEE MTT-S
International, pp. 1085–1088 (2006)

2. Yu, W.: Optimisation of spiral inductors and LC resonators exploiting space mapping
technology. Electrical and Computer Engineering. Hamilton, Ontario (2006)

3. Okada, K., Masu, K.: Modeling of spiral inductors. Advanced microwave circuits and
systems. InTech. Institute of Technology, pp. 291–296 (2010)

4. Zhang, Y., Sapatnekar, S.S.: Optimization of integrated spiral inductors using sequential
quadratic programming. In: Proceeding of Design, Automation and Test in Europe Conference
and Exhibition, vol. 1. pp. 1–6 (2004)

5. Aguilera, J. Joaquim de No., Garcia-Alonso, A., Oehler, F., Hein, H., Sauerer, J.: A Guide for
On-Chip Inductor Design in a Conventional CMOS Process for RF Applications. pp. 56–65
(2010)

6. Kaynak, M., Valenta, V., Schumacher, H., Tillack, B.: MEMS module integration into SiGe
BiCMOS technology for embedded system applications. Bipolar/BiCMOS Circuits and
Technology Meeting (BCTM), 2012 IEEE. pp. 1–7 (2012)

7. Bunch, R.L., Sanderson, D.I., Raman, S.: Quality factor and inductance in differential IC
implementations. IEEE microwave magazine. Appl. Notes. 3(2), 82–91 (2002)

8. Yue, C.P., Wong, S.S.: On-chip spiral inductors with patterned ground shields for Si-based RF
ICs. Circ. 33(5), 743–752 (1998)

9. Lee, T.H.: The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University
Press, Cambridge (1998)

10. Craninckx, J., et al.: A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral
inductors. IEEE J. Solid-State Circuits. 32, 736–744 (1997)

11. Yue, C.P., Ryu, C., Lau, J., Lee, T.H., Wong, S.S.: A physical model for planar spiral
inductors on silicon. In: Electron Devices Meeting, 1996. IEDM ‘96, International, pp. 155–
158 (1996)

12. Yue, C.P., Wong, S.S.: Physical modeling of spiral inductors on silicon. IEEE Trans. Electron
Dev. 47(3), 560–568 (2000)

13. Grover, F.W.: Inductance calculations. Van Nostrand, New York (1962)
14. Haobijam, G., Palathinkal, R.P.: Design and analysis of spiral inductors. In: Haobijam, G.,

Palathinkal, R.P. (eds.) Optimisation of Spiral Inductor with Bounding of Layout Parameters,
pp. 21–51. Springer, New Delhi (2014)

15. Mohan, S.S., Hershenson, M., Boyd, S.P., Lee, T.H.: Simple accurate expression for planar
spiral inductances. IEEE J. Solid-State Circ. 34(10), 1419–1424 (1999)

16. Hershenson, M., Mohan, S.S., Boyd, S.P., Lee, T.H.: Optimisation of inductor circuit via
geometric programming. In: Proceedings of 36th Design Automation Conference, pp. 994–
998 (1999)

17. Crols, J., Kinget, P., Craninckx, J., Steyeart, M.: An analytical model of planar inductors on
lowly doped silicon substrates for analog design up to 3 GHz. VLSI Circuits, Dig Tech Papers.
pp. 28–29 (1996)

18. Paolo, G., Mayuga, T., Marc D. Rosales, M.D.: Inductor modeling using 3D EM design tool
for RF CMOS process. IEEE J. Solid-State Circuits. 32, 736–744 (1997)

19. Yoshitomi, S.: PAnalysis and simulation of spiral inductor fabricated on silicon substrate.
Electronics, Circuits and Systems, 2004. ICECS 2004. Proceedings of the 2004 11th IEEE
International Conference on. pp. 365–368 (2004)

20. Perdro, P., Helena Fino, M., Fernado, C., Mario Ventim-Neves: GADISI-genetic algorithms
applied to the automatic design of integrated spiral inductors. In: IFIP International Federation
for Information Processing 2010, vol. 314, pp. 515–522 (2010)

21. Haupt, R.L., Haupt, S.E.: Practical Genetic Alforithms. http://onlinelibrary.wiley.com/book/
10.1002/0471671746. Cited May 2006

360 E.O. Farhat et al.

http://onlinelibrary.wiley.com/book/10.1002/0471671746
http://onlinelibrary.wiley.com/book/10.1002/0471671746


22. Boyd, S., Vandenberghe, L.: Convex Optimisation. Cambridge University Press, Cambridge
(2004)

23. GGPLAB: A Simple Matlab Toolbox for Geometric Programming. http://www.stanford.edu/
boyd/ggplab/. Cited May 2006

24. Vijay Ramasami: HFSS-MATLAB-SCRIPTING-API. http://code.google.com/p/hfss-api/
source/browse/trunk/?r=3. Cited June 2009

25. Sani, A., Dunn, J., Veremey, V.: Using EM Planar simulator for estimating the Q of spiral
inductors. AWR Corporation, a National Instruments Company

26. Greenhouse, H.M.: Design of planar rectangular microelectronic inductors. IEEE Trans. Parts
Hybrids Package 10(2), 101–109 (1974)

12 Optimization of RF On-Chip Inductors … 361

http://www.stanford.edu/boyd/ggplab/
http://www.stanford.edu/boyd/ggplab/
http://code.google.com/p/hfss-api/source/browse/trunk/?r=3
http://code.google.com/p/hfss-api/source/browse/trunk/?r=3

	12 Optimization of RF On-Chip Inductors Using Genetic Algorithms
	Abstract
	12.1 Introduction
	12.2 Losses in CMOS Inductors
	12.3 Quality Factor
	12.4 Guidelines for On-Chip Inductor Design
	12.5 Modeling of Two-Port Inductors
	12.6 Inductance Estimation
	12.7 Boundary Conditions for the Spiral Inductor Optimization
	12.8 Optimization of Inductors via a Genetic Algorithm
	12.9 Optimization of Inductors via Geometric Programming
	12.10 Genetic Algorithm Optimization Using EM Solvers
	12.11 Conclusion
	References


