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Abstract The correctness of the training during sport and fitness activities involv-

ing repetitive movements is often related to the capability of maintaining the required

cadence and muscular force. Muscle fatigue may induce a failure in maintaining the

needed force, and can be detected by a shift towards lower frequencies in the surface

electromyography (sEMG) signal. The exercise repetition frequency and the evalua-

tion of muscular fatigue can be simultaneously obtained by using just the sEMG sig-

nal through the application of a two-component AM-FM model based on the Hilbert

transform. These two features can be used as inputs of an intelligent decision making

system based on fuzzy rules for optimizing the training strategy. As an application

example this system was set up using signals recorded with a wireless electromyo-

graph applied to several healthy subjects performing dumbbell biceps curls.
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1 Introduction

Often sportive or training activities require the execution of repetitive movements.

For some activities, such as cycling, running, the estimation of muscle metabolism

is based on heart rate, oxygen uptake, lactate production, ventilatory threshold and

other variables commonly used in sports medicine [15] requiring special instrumen-

tation such as the cycloergometer. Additionally, recording forces produced by mus-

cles during many physical performances is equally unpractical, often requiring use of

special force or torque sensors, which can be bulky, expensive, and not user friendly.

The analysis of surface electromyography (sEMG) signals offers a simple alter-

native method for quantifying [9] and classifying [24] the muscular activity, and

can be a practical tool when exercising on strength training machines or lifting

freeweights, to set up ad-hoc training sessions, maximize efficiency, and even pre-

venting injuries [16].

The spectral parameters derived from the EMG signal, such as mean frequency

or median frequency, can be used to evaluate muscular fatigue [13, 21, 22, 25]. In

fact, during a sustained isometric contraction, there is an increase in the amplitude

of the low frequency band and a relative decrease in the higher frequencies, which

is called EMG spectrum compression [27].

However, for dynamic or cyclic movements, or for contraction levels higher than

50 % of maximum voluntary contraction, the EMG is a non-stationary signal, thus

the physical meaning of the overall spectrum is reduced since amplitude and fre-

quency change over time. To deal with this variability, more sophisticated signal

analysis techniques have been proposed [2, 5, 6, 17, 18, 26].

Sinusoidal AM-FM models are representations of signals that can be considered

as resulting from simultaneous amplitude modulation and frequency modulation,

where the carriers, amplitude envelopes, and instantaneous frequencies (IFs) need

to be estimated [10–12]. Recent works have proposed different methodologies based

on AM-FM models for evaluating fatigue from EMG signal in repetitive movements

[1, 4, 14, 19].

The mean frequency of the amplitude spectrum (MFA) of the EMG signal, con-

sidered as a function of time, is directly related to the dynamics of the movement per-

formed and to the fatigue of the involved muscles. If the movement is cyclic, MFA

will display the same cyclic pattern, but its average will tend to decrease as the mus-

cle becomes fatigued, due to the reduced conduction velocity of muscle fibers that

cause a shift of the spectrum towards lower frequencies. These two effects have been

simultaneously modeled by a multicomponent (two-component) AM-FM model [3].

More in detail we applied to the MFA of the EMG signal an AM-FM technique

based on the Hilbert transform that is able to simultaneously extract features that

are estimations of the cadence and of the resulting muscle fatigue. These features

represent a simple and near real-time “summary” of the exercise and can be used

by a fuzzy-rule-based decision making system to direct and try to maximize the

effectiveness of the training.
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Fuzzy-based decision making systems [20] are particular suitable for this kind

of application as they can easily embed the vast amount of knowledge on training

that can be collected from experts in the field. They are also well suited to ad hoc
hardware and software implementation of their fuzzy membership functions (MFs),

as reported in [7, 8, 23], and the parameters of their MFs can be estimated by using

data obtained from previous exercises.

2 Exercise Evaluation

In order to evaluate the exercise execution and its potential effects on the training

activity, we record an sEMG signal from the involved muscle and extract some fun-

damentals parameters according to the algorithm presented in [3] and briefly sum-

marized in the following.

A flow-chart of the whole system is depicted in Fig. 1. First, a feature extractor

simultaneously estimates both the cadence at which the exercise was performed and

the resulting muscle fatigue. This data is then fed into a fuzzy engine, which ulti-

mately gives suggestions as to how to proceed in the training, and whose rules are

determined beforehand in accordance with the training objectives.

Fig. 1 Flowchart of the

system

2.1 sEMG Feature Extraction

The recorded sEMG signal is first conditioned by passing it through a high-pass filter

to remove some of the acquisition artifacts (e.g., due to cable movement), then the
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background noise during rest periods is cancelled. Let y(t) be this cleaned signal. We

compute the MFA trajectory from its sliding fast Fourier transform Y(t,ω), as

x(t) = 1
2π

∫
fH

0
ω |Y(t,ω)| dω

∫
fH

0
|Y(t,ω)| dω

(1)

where fH is the bandwidth of the electromyograph used to record the signals.

An example of such an MFA trajectory is shown in Fig. 2, together with its cor-

responding EMG signal. Its shape suggests that it can be well approximated by a

simple two-component AM-FM model

x(t) ≃
2∑

i=1
âi(t) cos

(

ϕ̂i + ∫
t

0
ω̂i(τ ) dτ

)

(2)
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Fig. 2 EMG signal recorded from the biceps brachii muscle during a biceps curl exercise with a

3 kg dumbbell (top), and corresponding MFA trajectory (bottom)
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where âi(t), ϕ̂i, and ω̂i(t) are the estimated component’s amplitude, initial phase, and

frequency, respectively. The first component models the slowly time-varying average

frequency decreasing trend due to fatigue, and the second component models the

oscillations in frequency due to the various phases of performing the exercise, thus

allowing the cadence to be extracted.

The trend of x(t) is thus captured by the amplitude of the first component â1(t)
alone, with ω̂1(t) ≃ 0 since the fatigue status is generally monotonic and not cyclic

during a single exercise. On the other hand, the amplitude of the second component

has little meaning (it’s the difference between the “peak” and the “mean” MFA dur-

ing one cycle of the movement), but its frequency ω̂2(t) corresponds to the cadence

at which the exercise was performed. Figure 3 reports an example of these curves

extracted by the algorithm in [3] from the signal of Fig. 2. The amplitude of the first

component â1(t) fits with the decreasing trend of x(t), while ̂f2(t) = 2π ω̂2(t) fits the

(possibly varying) pace of the exercise.

A well-known fatigue index is the relative slope of the linear regression of â1(t),
that is, β∕α if â1(t) ≈ α+β t. This value is reported, together with the mean cadence,

in Table 1, which shows results obtained from 5 healthy subjects performing biceps

curl exercises with different weights ranging from 2 kg to 7 kg, selected according

to the level of fitness of each individual.

3 Fuzzy Engine for Training Strategy Decision

Once an exercise is performed, we have the two parameters called “fatigue” and

“cadence” extracted as previously described. These are used as inputs to a fuzzy

engine whose rules come from already available training experience.

An example is given below. We consider the problem of selecting the proper

weight for training the biceps brachii muscles. The data reported in Table 1 can be

used to help derive the shape of a few membership functions. For instance, the fatigue

has been classified as “low”, “medium”, or “high” according to the weight selected

by the subject. We assume that a 2 kg dumbbell produced a “low” fatigue status,

and so on. The data from the 7 kg exercise was not used as there were not enough

points. For each class we discarded the lowest and highest measurement and con-

sidered the remaining range of values as 100 % belonging to that class. Membership

functions (MFs) are then tapered between these selected ranges, as shown in Fig. 4.

The expected output of the system is a hint on the weight to use next, expressed as a

percentage of increment, whose MFs are also shown in the same figure.

The set of rules used by the system are reported in Table 2, and the resulting

input-output function in Fig. 5. For the inference algorithm, we used the mix/max

functions for logic operations, product/sum functions for implication and aggrega-

tion, and centroid-based defuzzyfication.
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Fig. 3 Demodulated amplitudes and frequencies from the MFA signal of Fig. 2. The linear regres-

sion of â1(t) and the mean of ̂f2(t) are also shown as they are used to obtain a compact representation

of fatigue and cadence for the overall exercise

To validate the effectiveness of the set of rules previously enumerated, the out-

come of the fuzzy engine was computed for each of the input corresponding to the

data reported in Table 1. Results are shown in Table 3. The obtained results seems to

be in good accordance to the level of fitness declared by the subjects that performed

the exercise.



A Rule Based Framework for Smart Training Using sEMG Signal 95

Table 1 Fatigue test performed on 5 healthy subjects: estimated rate of MFA variation and mean

cadence, [%∕min ] @ [reps∕min ]. Data from [3]

Subject Weight

2 kg 3 kg 5 kg 7 kg
subject 1 −7.9@17.7 −4.2@20.5 −12.4@21.4
subject 2 −0.6@23.5 −9.8@21.7 −30.3@18.6
subject 3 −1.2@20.9 −7.5@20.1 −19.1@18.3
subject 4 −7.4@23.4 −16.8@24.5 −23.7@20.4
subject 5 −12.0@22.4 −14.3@24.9 −34.3@22.6

Table 2 Inference rules used to select the next weight to use. The “=” symbol means keep the

current weight, “−” decrease the weight, “+” increase the weight, “++” increase much the weight

cadence

slow right fast

high − = =
fatigue med = + +

low = + ++

4 Conclusion

In this paper an efficient framework to aid in the selection of a training strategy to

improve muscular strength has been presented. The framework uses a lightweight

wireless electromyograph applied on the involved muscles, and from the sEMG sig-

nal thus recorded both the muscular fatigue and the repetition frequency during the

accomplishment of cyclic movements is estimated, by means of a two-component

AM-FM decomposition based on the Hilbert transform.

These two features have been used as inputs of a fuzzy rule-based pattern recog-

nition system whose outputs are the guidelines needed for optimizing and customiz-

ing individual training sessions. As an application example, some experimental data

extracted from dumbbell biceps curls have been used to set-up the fuzzy system and

obtain the input-output relationship for this kind of exercise employing inference

rules written by exploiting knowledge on training techniques.
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Fig. 4 Membership functions of the inputs and output of our fuzzy system



A Rule Based Framework for Smart Training Using sEMG Signal 97

10

15

20

25

30

−30

−20

−10

0
−30

−20

−10

0

10

20

30

40

50

cadence   [min−1]

fatigue   [% / min]

w
ei

gh
t  

in
cr

em
en

t  
 [%

]

Fig. 5 Input-output relation resulting from the fuzzy rules reported in Table 2

Table 3 Results of the application of the fuzzy engine on the data of Table 1: suggested increase

of the weight [%]

Subject Weight

2 kg 3 kg 5 kg 7 kg
subject 1 +18.5 +20.0 +8.4
subject 2 +31.9 +20.0 0.0
subject 3 +20.0 +20.0 0.0
subject 4 +20.0 0.0 0.0
subject 5 +10.2 0.0 0.0

References

1. Agostini, V., Knaflitz, M.: An algorithm for the estimation of the signal-to-noise ratio in sur-

face myoelectric signals generated during cyclic movements. IEEE Trans. Biomed. Eng. 59(1),

219–225 (2012)

2. Bai, F., Lubecki, T., Chew, C.M., Teo, C.L.: Novel time-frequency approach for muscle fatigue

detection based on sEMG. In: IEEE Biomedical Circuits and Systems Conference (BioCAS).

pp. 364–367 (2012)



98 G. Biagetti et al.

3. Biagetti, G., Crippa, P., Curzi, A., Orcioni, S., Turchetti, C.: Analysis of the EMG signal during

cyclic movements using multicomponent AM-FM decomposition. IEEE J. Biomed. Health

Inform. (in press)

4. Bonato, P., Roy, S., Knaflitz, M., De Luca, C.: Time-frequency parameters of the surface myo-

electric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans.

Biomed. Eng. 48(7), 745–753 (2001)

5. Cifrek, M., Tonković, S., Medved, V.: Measurement and analysis of surface myoelectric signals

during fatigued cyclic dynamic contractions. Measurement 27(2), 85–92 (2000)

6. Cifrek, M., Medved, V., Tonković, S., Ostojić, S.: Surface EMG based muscle fatigue evalua-

tion in biomechanics. Clin. Biomech. 24(4), 327–340 (2009)

7. Conti, M., Crippa, P., Orcioni, S., Turchetti, C.: A current-mode circuit for fuzzy partition

membership functions. In: Proceedings of the IEEE International Symposium on Circuits and

Systems (ISCAS ’99). vol. 5, pp. 391–394 (1999)

8. Conti, M., Crippa, P., Orcioni, S., Turchetti, C., Catani, V.: Fuzzy controller architecture using

fuzzy partition membership functions. 2, 864–867 (2000)

9. De Luca, C.: Physiology and mathematics of myoelectric signals. IEEE Trans. Biomed. Eng.

BME 26(6), 313–325 (1979)

10. Gianfelici, F., Biagetti, G., Crippa, P., Turchetti, C.: Asymptotically exact AM-FM decompo-

sition based on iterated Hilbert transform. pp. 1121–1124 (2005)

11. Gianfelici, F., Biagetti, G., Crippa, P., Turchetti, C.: Multicomponent AM-FM representations:

an asymptotically exact approach. IEEE Trans. Audio Speech Lang. Process. 15(3), 823–837

(2007)

12. Gianfelici, F., Turchetti, C., Crippa, P.: Multicomponent AM-FM demodulation: the state of the

art after the development of the iterated Hilbert transform. In: IEEE International Conference

on Signal Processing and Communications, (ICSPC 2007). pp. 1471–1474 (Nov 2007)

13. González-Izal, M., Malanda, A., Navarro-Amézqueta, I., Gorostiaga, E.M., Mallor, F., Ibañez,

J., Izquierdo, M.: EMG spectral indices and muscle power fatigue during dynamic contractions.

J. Electromyogr. Kinesiol. 20(2), 233–240 (2010)

14. Hotta, Y., Ito, K.: Detection of EMG-based muscle fatigue during cyclic dynamic contraction

using a monopolar configuration. In: 2013 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC). pp. 2140–2143 (2013)

15. Hug, F., Decherchi, P., Marqueste, T., Jammes, Y.: Emg versus oxygen uptake during cycling

exercise in trained and untrained subjects. J. Electromyogr. Kinesiol. 14(2), 187–195 (2004)

16. Izquierdo, M., Ibanez, J., Calbet, J.A.L., González-Izal, M., Navarro-Amézqueta, I., Granados,

C., Malanda, A., Idoate, F., González-Badillo, J., Hakkinen, K., et al.: Neuromuscular fatigue

after resistance training. Int. J. Sports Med. 30(8), 614 (2009)

17. Karlsson, S., Yu, J., Akay, M.: Enhancement of spectral analysis of myoelectric signals during

static contractions using wavelet methods. IEEE Trans. Biomed. Eng. 46(6), 670–684 (1999)

18. Karlsson, S., Yu, J., Akay, M.: Time-frequency analysis of myoelectric signals during dynamic

contractions: a comparative study. IEEE Trans. Biomed. Eng. 47(2), 228–238 (2000)

19. Knaflitz, M., Bonato, P.: Time-frequency methods applied to muscle fatigue assessment during

dynamic contractions. J. Electromyogr. Kinesiol. 9(5), 337–350 (1999)

20. Lee, C.: Fuzzy logic in control systems: fuzzy logic controller. i. IEEE Trans. Syst. Man

Cybern. 20(2), 404–418 (1990)

21. Merletti, R., Conte, L.R.L.: Surface EMG signal processing during isometric contractions. J.

Electromyogr. Kinesiol. 7(4), 241–250 (1997)

22. Merletti, R., Knaflitz, M., De Luca, C.J.: Myoelectric manifestations of fatigue in voluntary

and electrically elicited contractions. J. Appl. Physiol. 69(5), 1810–1820 (1990)

23. Orcioni, S., Biagetti, G., Conti, M.: A mixed signal fuzzy controller using current mode cir-

cuits. Analog Integr. Circ. Sig. Process 38(2–3), 215–231 (2004)

24. Ouyang, G., Zhu, X., Ju, Z., Liu, H.: Dynamical characteristics of surface EMG signals of hand

grasps via recurrence plot. IEEE J. Biomed. Health Inform. 18(1), 257–265 (2014)

25. Potvin, J., Bent, L.: A validation of techniques using surface EMG signals from dynamic con-

tractions to quantify muscle fatigue during repetitive tasks. J. Electromyogr. Kinesiol. 7(2),

131–139 (1997)



A Rule Based Framework for Smart Training Using sEMG Signal 99

26. Ranniger, C., Akin, D.: EMG mean power frequency determination using wavelet analysis. In:

Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society. vol. 4, pp. 1589–1592 (1997)

27. Sakurai, T., Toda, M., Sakurazawa, S., Akita, J., Kondo, K., Nakamura, Y.: Detection of muscle

fatigue by the surface electromyogram and its application. In: 2010 IEEE/ACIS 9th Interna-

tional Conference on Computer and Information Science (ICIS). pp. 43–47 (2010)


	A Rule Based Framework for Smart  Training Using sEMG Signal
	1 Introduction
	2 Exercise Evaluation
	2.1 sEMG Feature Extraction

	3 Fuzzy Engine for Training Strategy Decision
	4 Conclusion
	References


