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Abstract Probabilistic forecasts account for the uncertainty in the prediction

helping the decision makers take optimal decisions. With the emergence of renew-

able technologies and the uncertainties involved with the power generated through

them, probabilistic forecasts can come to the rescue. Wind power is a mature tech-

nology and is in place for decades now, various probabilistic forecasting techniques

are used here. On the other hand solar power is an emerging technology and as the

technology matures there will be a need for forecasting the power generated days

ahead. In this study, we utilize some of the probabilistic forecasting techniques in

the field of solar power forecasting. An ensemble approach is used with different

machine learning algorithms and different initial settings assuming normal distribu-

tion for the forecasts. It is observed that having multiple models with different initial

settings gives exceedingly better results when compared to individual models. Get-

ting accurate forecasts will be of great help where the large scale solar farms are

integrated into the power grid.
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1 Introduction

Renewable energy sources have gained popularity in the past decade because of the

increasing global warming. The environmental impact of the average barrel of oil is

much more today than it was in 1950. The production of fossil fuels has some envi-

ronmental impact as it releases large amounts of carbon dioxide into the atmosphere.

The impact is only going to increase with the depletion of resources as we try to

access less accessible resources which results in more costs on transport etc. [5].

According to the U.S. Energy Information Administration, the energy consumption

across the world is going to increase by 56 percent between 2010 and 2040. Renew-

able energy along with nuclear power is the fastest growing energy resource, the

growth rate is estimated at 2.5 percent every year [14].

As the world looks for more environmental friendly energy resources, solar

energy is viewed as an important clean energy source. The amount of solar energy

striking the earth’s surface every hour is more than sufficient to meet the energy

needs of the entire human population for one year [9]. Solar energy is one of the

most abundant resources available and it can help reduce the ever increasing depen-

dency on energy imports. It can also protect us from the price fluctuations of the

fossil fuels and help stabilize the electricity generation costs in the long run. Solar

photovoltaic (PV) power plants do not emit any green house gases and they use lit-

tle water, with the rapid increase in air pollution this benefit of solar PV becomes

even more important. The technology roadmap for solar PV envisions a 4600 GW of

PV capacity by 2050 this will result in the reduction of 4 gigatonnes (Gt) of carbon

dioxide per year [15].

When large solar farm(s) are integrated into the power grid, solar power forecast-

ing becomes essential for grid operators who make decisions about the power grid

operations and as well as for electric market operators [20, 23]. The output of solar

farms varies with every season, month, day and even hour. This can be challenging

for grid operators and they have to turn on and off the power plants to balance the

grid. Forecasting the power generated ahead of time can help avoid these problems.

It also helps in the optimal use of resources [18]. With large solar farms coming into

the forefront, short-term ramp events will have a higher impact. Ramp events occurs

when the power generation suddenly stops because of a cloud cover and also when

the cloud cover lifts and the power generation ramps up again [21].

No forecast is perfect. Every forecast carries along with it a certain amount of

inaccuracy and this can be attributed to the errors in real-time measurements and

model uncertainty. “Probabilistic forecasting” [8] is the forecast that takes proba-

bility distributions over future events. Probabilistic forecasts are preferred to point

(a.k.a. single-valued) forecasts as they take into account the uncertainties in the pre-

dicted values which helps in taking effective decisions. Probability forecasts are

being used for quite some in the case of predicting binary events, events like “what is

the probability that it rains today?” and other similar events. But the focus is shifting

towards applying them in more general events. Some examples include flood risk

assessment, weather prediction, financial risk management among others [8].
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Traditionally, in the domain of solar forecasting, point forecasting methods

[2, 12, 13, 19] has widely been used. Nonetheless, recently, probabilistic forecast-

ing was used for forecasting of solar irradiance by employing stochastic differential

equations [16]. In the electricity market high asymmetric costs are associated with

the need to continuously balance the grid to avoid grid failure. These costs arise due

to the intrinsic uncertainty associated with the emerging renewable power sources

such as wind and solar. Hence a thorough understanding of the uncertainty asso-

ciated with the prediction is necessary to effectively manage the grid [16]. Thus,

we believe that probabilistic forecasting can become a power trend in solar power

forecasting.

In this paper, as our research contributions, we have:

– Proposed a probabilistic forecasting method for solar power forecasting using an

ensemble of different machine learning models, and

– Demonstrated that the use of ensemble learning approach offers significantly bet-

ter results when compared to individual models.

2 Related Work

Bacher et al. [2] introduce a new two stage model for online short-term solar power

forecasting. In the first stage, clear sky model is used to normalize the solar power

and in the second stage linear time series models are used to forecast. The clear sky

model gives the solar power estimation at any given time. The normalized values are

obtained by taking the ratio of solar power in clear sky and the observed solar power.

This is done to ensure the resulting values are more stationary, the values must be

stationary to apply the statistical smoothing algorithms which assume stationarity.

It takes the observed power as input and uses statistical smoothing techniques and

quantile regression to give the estimated power values. The linear time series models

use adaptive recursive least squares (RLS) method. The coefficients of the model are

estimated by minimizing the weighted residual sum of errors, the new values are

given a higher weight. This is necessary as the models need to adapt to the changing

conditions.

Marquez et al. [19] use Artificial Neural Network (ANN) model to forecast the

global and direct solar irradiance with the help of National Weather Service’s (NWS)

database. Eleven input variables are used in total, nine from the NWS database i.e.

the meteorological data and two additional variables solar zenith angle and normal-

ized hour angle are also added. To extract the relevant features, Gamma Test (GT)

is used and to efficiently search the feature space, Genetic Algorithm (GA) is used.

After extracting the relevant features, ANN model is used to generate the forecasts.

The most important features are found to be the solar geometry variables, probabil-

ity of precipitation, sky cover, minimum and maximum temperature. The models are

accurate during summer rather than winter as there are more days with clear skies in

summer.
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Hossain et al. [12] propose a hybrid intelligent predictor for 6 hour ahead solar

power prediction. The system uses an ensemble method with 10 widely-used regres-

sion models namely Linear Regression (LR), Radial Basis Function (RBF), Support

Vector Machines (SVM), Multi-Layer Perceptron (MLP), Pace Regression (PR),

Simple Linear Regression (SLR), Least Median Square (LMS), Additive Regres-

sion (AR), Locally Weighted Learning (LWL), and IBk (an implementation of k-th

Nearest Neighbor, KNN, Algorithm). Their results shows that, with respect to mean

absolute error (MAE) and mean absolute percentage error (MAPE), the top most

accurately performing regression models are LMS, MLP, and SVM.

E. B. Iversen et al. [16] propose a framework for calculating the probabilistic fore-

casts of solar irradiance using stochastic differential equations (SDE). They construct

a process which is limited to a bounded state space and it gives zero probability to all

the events outside this state space. To start with, a simple SDE model is used which

tracks the solar irradiance from the numerical weather prediction model. This basic

model is further improved by normalizing the predicted values using the maximum

solar irradiance, this helps in capturing seasonality and trend. The proposed model

outperformed some of the complex benchmarks.

3 Data Set

The data used in this study is taken from the Global Energy Forecasting Competition

(GEFCOM) 2014 [7, 11]. This is the first competition on probabilistic forecasting in

the power and energy industry. The competition lasted for 16 weeks which included

15 tasks. Each week the task is to forecast the power values for the next period. For

the first task, hourly data is provided for each of the 3 zones from April 1, 2012

until April 1, 2013. For each of the remaining tasks, the data for the next month is

provided. By the end of the last task, the data contained 56,953 records ranging from

April 1, 2012 until May 31, 2014.

Table 1 shows the installation parameters for the three solar farms (one in each

zone). Table 2 shows the independent variables (a.k.a features or attributes) that are

given as part of the training and testing data sets. The objective is to predict the

probabilistic distribution of the solar power generation values. The power values are

normalized to range between 0 and 1 as the nominal power value for each of the solar

farms is different. The location and time zones of the solar farms are not disclosed.

Table 1 Installation parameters for the solar farms. (Note: the actual names and locations of the

zones and solar farms are not disclosed by the GEFCOM organizers)

Zone Type Number Power Orientation Tilt

1 Solarfun SF160-24-1M195 8 1,560 W 38
◦

clockwise from North 36
◦

2 Suntech STP190S-24/Ad+ 26 4,940 W 327
◦

clockwise from North 25
◦

3 Suntech STP200-18/ud 20 4,000 W 31
◦

clockwise from North 21
◦
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4 Methodology

This section describes the approach that we use to obtain probabilistic forecasts. The

below sections describe how the data is grouped and the models used in the process

followed by the methods to generate probabilistic forecasts.

4.1 Grouping the Data

The data provided contains no missing values and hence there is no need to handle

missing values. The solar power values in the data are normalized to scale appro-

priately across all the three solar farms. No other data preprocessing techniques are

used. All the variables provided have an impact on the solar power generated. How-

ever the data in each zone is grouped based on hour. Hence for each zone 24 different

models are used.

Table 2 Description of independent variables

Sr. Description Unit

1 Total column liquid water kg∕m2

2 Total column ice water kg∕m2

3 Surface pressure Pa
4 Relative humidity at 1000 mbar %
5 Total cloud cover 0 − 1
6 10 metre U wind component m∕s
7 10 metre V wind component m∕s
8 2 metre temperature K
9 Surface solar rad down J∕m2

10 Surface thermal rad down J∕m2

11 Top net solar rad J∕m2

12 Total precipitation m

Figure 1 shows the solar power values for the month of April 2012. A clear trend

can be seen with the values going to zero during the time and slowly peaking in the

afternoon, there are more fluctuations in the data and it is widely spread. Whereas

Fig. 2 shows the hourly data for a particular time (1 am) observed for the year 2013.

This shows that the values are not as dispersed as in the case of daily values. This

will help avoid the problem of outliers while fitting the models.
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Fig. 1 Observed solar

power values for the month

of April, 2012 in Zone 1
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Fig. 2 Solar power values

recorded at 1 am across the

year 2013 in Zone 1
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4.2 Base Models Used

The following seven individual machine learning methods are used as base models

for ensemble learning in this study.

– Decision Tree Regressor: A model is fit using each of the independent variables.

For each of the individual variables, mean squared error is used to determine the

best split. Maximum number of features to be considered at each split is set to the

total number of features [4].

– Random Forest Regressor: An ensemble approach that works on he principle

that a group of weak learners when combined would give a strong learner. The

weak learners used in random forest are decision trees. Breiman’s bagger is used

in which at each split all the variables are taken into consideration [3].

– KNN Regressor (Uniform): The output is predicted using the values from the

k-nearest neighbors (KNNs) [1]. In the uniform model, all the neighbors are given

an equal weight. Five nearest neighbors are used in this models i.e. the ‘k’ value

is set to five. Distance metric “Minkowski” is used in finding the neighbors.

– KNN Regressor (Distance): In this variant of KNN, the neighbors closer to the

target are given higher weights. The choice of k and distance metric are same as

above.
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– Ridge Regression: Penalizes the use of large number of dimensions in the dataset

using linear least squares to minimize the error [10].

– Lasso Regression: A variation of linear regression that uses shrinkage and selec-

tion method. Sum of squares error is minimized but with a constraint on the

absolute value of the coefficients [22].

– Gradient Boosting Regressor: An ensemble model usually using the decision

trees as weak learners, it builds the model in stage-wise manner by optimizing the

loss function [6].

4.3 Generating Probabilistic Forecasts
Using Ensemble Learning

Three ensemble learning approaches are used to generate the probability forecasts

using the values generated from the models mentioned above.

– Naive model: A cumulative probability distribution where the first quantile is the

lowest among the values and 99th quantile was the highest.

– Normal distribution: The mean and standard deviation of the point forecasts from

above seven individual models are used to generate 99 quantiles assuming normal

distribution.

– Normal distribution with different initial settings: This method is similar to the

above normal distribution method but the models are run with two different initial

settings, including the month as a variable and taking only the values for the 30

most recent days as inputs.

5 Evaluation Metric

Pinball loss function [17] is used as an evaluation metric as we are dealing with

probabilistic forecasts and not point forecasts. Let the 99 quantiles generated 0.01,

0.02,..., 0.99 be defined as q1, q2 … , q99 respectively and q0 = −∞ the natural lower

bound and q100 = +∞ the natural upper bound. Then the score L for qi is defined

as:

L(qi, y) =

{
(1 − i∕100)(qi − y) if y < qi
i∕100(y − qi) if y ≥ qi

where y is the observed value and i = 1, 2,… , 99. To evaluate the overall perfor-

mance, this score is averaged across all target quantiles. Lower scores indicate better

forecasts.
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6 Results and Discussions

The results when using only the individual models are shown in Table 3. The average

pinball loss in the table refers to average value across 15 months starting from April

2013 for the 3 zones. Random forests and gradient boosting regression gave the best

results. A small part of the results for a 24 hour period is shown in Fig. 3 for bet-

ter resolution. The point forecasts are very close to the observed values but they do

not take into account the error associated with them and hence we need probabilis-

tic forecasts. There is a significant improvement in the results when the ensemble

methods are used as shown in Table 4.

Table 3 Individual performance of different models

Individual model Average pinball loss

Decision Tree 0.0249

Random Forest 0.0194

KNN (Uniform) 0.0223

KNN (Distance) 0.0224

Ridge Regression 0.0206

Lasso Regression 0.0218

Gradient Boosting 0.0193

Fig. 3 Point forecasts of

different models for 24 hour

period on May 2nd, 2013
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Table 4 Ensemble performance of the three methods

Ensemble model Average pinball loss

Naive model 0.0157

Normal Distribution 0.0152

Normal Distribution with different initial settings 0.0148
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Among the three zones, Zone1 had the best results. For example the average error

value in Zone1 for Naive model is 0.019673 whereas it is 0.022617 and 0.022531 for

Zone2 and 3 respectively. The hourly error values also varied significantly with hours

11 through 18 showing a zero error value since the power generated during that times

is zero. The highest error values are observed during the hours zero through four. The

monthly error values are shown in Fig. 4. Very low error are observed in the months

of May and June whereas August has the highest error rate. These fluctuations in the

error rates are caused by the cloud cover. In general better forecasts are achieved in

summer because of clear sky and there are high error rates during the winter with

more cloud cover during the daytime.

Fig. 4 Pinball loss values

for different months
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7 Conclusion

In this study, we generated the probabilistic forecasts using ensemble methods

assuming normal distribution for the point forecasts obtained from the individual

models. For each hour in each zone, a different model is used to avoid problems

with outliers. There is a significant improvement in the performance of ensemble

model when compared to individual models. However, these models can be fur-

ther improved as the assumption that the forecasts follow normal distribution is too

restrictive.
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