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Abstract The goal of this paper is the development of foundations for robust
reasoning and decision-making in pervasively inconsistent theories and deductive
databases. The pervasiveness of these inconsistencies is partly inherent to the
human epistemic condition (i.e. the need to make decisions on the basis of per-
spective bound knowledge) and partly inherent to practical limitations (e.g.
incomplete knowledge). In the first case, we do not want to eliminate the incon-
sistencies. In the second case, we cannot eliminate them. So, in both cases, we will
have to incorporate them in our descriptions of reasoning and decision making. For
this reason, inconsistency handling is one of the central problems in many areas of
AI. There are different approaches to dealing with contradictions and other types of
inconsistency. In this paper, we develop an approach based on logical varieties and
prevarieties, which are complex structures constructed from logical calculi. Being
locally isomorphic to a logical calculus, globally logical varieties form a logical
structure, which allows representation of inconsistent knowledge in a consistent
way and provides much more flexibility and efficacy for AI than standard logical
methods. Logical varieties and prevarieties are efficiently used in database theory
and practice, expert systems and knowledge representation and processing. To
increase efficiency, flexibility and capabilities of logical varieties and prevarieties
and to model perspective bound decision making, we introduce labeling of their
elements and study labeled logical varieties and prevarieties. We illustrate the
viability of this by an example of a labeled logical variety, the extended Logic of
Reasonable Inferences, which is and has been applied in the legal domain.
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1 Introduction

As far as we (humans) are concerned, the world is inconsistent. Our reproductive
survival probability seems to be enhanced by our ability to perceive and process
inconsistent data establishing inconsistent (alternative, mutually exclusive) pro-
jections and using them to make the more beneficial choices. If this was not the
case, we would not be here to reflect upon our inconsistency handling abilities as
evolution theory and the anthropic principle suggest. The argument that this ability
is an independent feature of our cognition can be countered by the observation that
perceiving inconsistency in a consistent world would just result in confusion and
therefore be counter-reproductive. The time dimension imposes constant change
upon us. If this change is predetermined, then there would be only one consistent
universe. Actually, this change can be brought about by humans, who are often able
to foresee alternative futures caused by their actual actions. They can even expe-
rience a feeling of choice preceding the actual action because they dispose of a
palette of imaginable alternative actions and, at least in their minds, they have the
power to decide which one of these alternatives to select and perform. From our
perspective every transition from one state to another therefore presupposes a
selection of the next state from a set of accessible possibilities. To describe our
universe, we therefore need a descriptive model of knowledge of the universe that
incorporates the perception of the alternatives and some tentative outcomes of the
selection process. Even if the selection process is predetermined, we need a
description of the antecedents (that are called considerations if constituted by
conscious cognitive processes) that led to the derived conclusion. It is also
important to be able to explain this process to ourselves and to others, because we
will have to communicate about it and to cooperate with each other in its appli-
cation to be able to make collective decisions. The more we know about and share
these antecedents the more we perceive them as facts, while the less we know about
them and the less we share them the more we are inclined to call them opinions. An
advanced scientific description of relations between antecedents and corresponding
conclusions is called a theory. The situation is even more complicated because a
state of mind itself can also play the role of a possible future. Indeed, when we want
to describe changes of our states of mind, we consider a number of possible states
of mind (e.g. opinions) to which we come, in making our decisions and in adhering
to certain opinions.

In the next section we will formulate the theoretical requirements for the
description of our inconsistency handling capabilities.
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2 Reasoning and Decision Making in an Inconsistent
World

Humans are able to imagine and reason about different futures (i.e. to describe their
distinct characteristics and the relations between these characteristics) by perceiving
relations between their (mental) actions, making selections of possible futures,
reasoning about relations between themselves as individuals and some of these
futures and coming into a state in which this relation is narrowed down to one
possible future, which then becomes the present. Classical logic does not cover and
usually denies this human capacity. Some modern logics try to incorporate this
process into their scope (see Sect. 3). However, modern logics like belief revision
and default reasoning still deny the fact that the state of inconsistency is not
transient but permanent - there is no decisive factor which renders a perception
(a fact or opinion) into the universal knowledge - while these logics consider
knowledge to be inherently universal. Other modern logics like probabilistic and
fuzzy logics have the same limitations and even more, they deny the presence of the
context dependent factors that constitute opinions and that are used in the selection
of the individual consequences of these opinions. In particular, the mean of all
perceived or even possible contexts is not a realistic prediction of the future context
in an actual case, while these logics consider knowledge to be valid in one common
(or even universal) context. To meet these requirements for the description of our
cognition, we need two things:

1. A description of our cognition that allows reasoning about (mutually exclusive)
alternative actions and situations.

2. A description of our cognition that allows tagging the alternatives and situations,
e.g., describing their identity and context, in order to be able to explain the
connection between alternative antecedents (considerations/arguments) and
alternative imagined futures (decisions for a certain perspective or opinion).

As we will see in Sect. 3, the most common forms of modeling decision making
in logic (like belief revision and default reasoning; probabilistic and fuzzy logics)
are not suited to realistically model reasoning and decision making in an incon-
sistent domain of knowledge. Logical varieties do solve the first limitation of these
logics: they allow for the preservation of all individual opinions [17, 18, 25, 26]
(Burgin and de Vey Mestdagh 1191). Labeled logics solve the second limitation of
these logics: they allow for the identification of individual opinions and enable us to
reason about these opinions. Labeled logical varieties, introduced and studied in
this paper, combine advantages of both approaches essentially extending the power
of logic in solving problems in all practical and theoretical areas since they both
resolve the epistemic need to conserve inconsistency as the practical need to handle
inconsistency even when it cannot be eliminated.

The previous argument can be illustrated most easily by taking a knowledge
domain that is situated on the opinion end of the perception (fact-opinion) con-
tinuum. The legal knowledge domain is such a domain. Not only is its foundation
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based on the existence of different normative opinions, but it also does not pre-
suppose the aspiration for a permanent (universal) resolution of these differences. In
practice, only local and temporal legal solutions enable humans to make a move
allowing them immediately to reconsider their previous decision when necessary.
The rejected opinion is a part of the (context of) the selected opinions (see Sect. 7).
Judicial and other social laws are not laws of nature. They allow for discretion (e.g.,
for balancing specific interests), qualification (e.g., they have an open texture),
interpretation (e.g., they are vague) and individualization (e.g., they can be
instantiated by a personal local temporal context). Even if the contents of my
opinion are exactly the same as your opinion, it is still a unique opinion, which has
another potential effect upon the outcome of a reasoning process. So, reasoning in
the legal domain demands non explosive means of describing and processing
alternatives. Furthermore it demands the preservation of opinions, even if they are
locally and or temporally or even on average defeated. Finally it demands the
possibility to tag each opinion and to describe its context.

The most obvious way in which the context of an opinion plays a role in
reasoning is when an individual or a group tries to decide which opinion should
prevail in order to be able to make an opinionated move. In other words, to make a
personal local temporal decision, we need to be able to reason about opinions and
their contexts. For both purposes, the opinions have to be identified. Criteria for
making decisions between opinions do use this identification to compare opinions.
To make things more complex: even the decision criteria are opinions and therefore
alternative decision criteria compete when we make a decision. Mathematicians and
logicians immediately recognize the recursion, which takes away the burden of
modeling each of these levels of decision making separately. An extended example
of such a decision making process including the contexts, the tags for opinions
(valid, excludes, preferred) and their semantics and the decision rules (legal
principles/metarules) and derivation rules (ranking principles) is given in de Vey
Mestdagh and Hoepman [81]. We will develop a decision logic on the basis of the
class this example belongs to and show its efficacy using inter alia this example.

In the next section we will formulate the formal requirements for the description
of our inconsistency handling capabilities.

3 Approaches to Dealing with Inconsistent Knowledge

There is an active current research in the area of inconsistent knowledge, com-
prising various directions and approaches [25, 26]. Although inconsistencies
bothered logicians from the time of Aristotle, the first logical systems treating
contradictions appeared only in the 20th century. At first, they had the form of
multivalued logics developed by Vasil’év and Łukasiewicz. Then the first relevant
logics were built by Orlov. However, their work did not make any impact at the
time and the first logician to have developed a formal paraconsistent logic was a
student of Łukasiewicz, Jaśkowski [48]. Starting from this time, a diversity of
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different paraconsistent logics, including fuzzy logics, multivalued logics and rel-
evant logics, has been elaborated (cf. [73]).

The perspective-bound character of information and information processing
often results in natural inconsistency coming from different perspectives or from a
faulty perception or from faulty information processing, such as processing on the
basis of incomplete knowledge from a single perspective. As a result, now many
understand that contradiction handling is one of the central problems in AI.
Inconsistent knowledge/belief systems exist in many areas of AI, such as distributed
knowledge base and databases, defeasible reasoning, dynamic expert systems,
merging ontologies, ontology evolution, knowledge transition from one formalism
to another, and belief revision.

There are three basic approaches to dealing with inconsistency in knowledge
systems. The first one, which we call the restoration approach, is aimed at restoring
consistency of an inconsistent knowledge system, e.g., a database [69]. The most
popular direction in the first approach is called coherence-based methodology
[60, 61]. It is performed in two steps:

1. Selection of one or several consistent subsystems in an inconsistent knowledge
system;

2. Application of the classical inference on these subsystems.

Examples of systems that select one consistent subsystem are possibilistic logic
[8], linear ordering [61], Adjustment and Maxi-adjustment [86, 87]. Examples of
techniques that select several consistent subsystems are acceptable subbases [70],
preferred subbases [14], Papini’s revision function [63] and lexicographical
approach [9, 50, 51].

Another way to restore consistency is to exclude those formulas (statements) that
cause contradictions. This is achieved by utilizing logics that allow dynamical
changes in the process of their functioning. Examples of such strategies are
non-monotonic logics [53, 55, 56] and belief revision [29, 34, 39, 66, 84].

A non-monotonic logic is a formal logic that learning a new piece of knowledge
can transform the set of what is known aimed at contradiction elimination.
A non-monotonic logic can handle various reasoning tasks, such as default rea-
soning when consequences may be derived only because of lack of evidence of the
contrary, abductive reasoning when consequences are deduced as most plausible
explanations and belief revision when new knowledge may contradict old beliefs
and some beliefs that cause contradictions are excluded [55, 53].

The second approach, which we call the tolerance approach, is to tolerate
inconsistency [12] by using non-classical logics and including an inconsistent
knowledge system into such a logic. As a result, inconsistency is treated at a higher
level [78]. Examples of such methods are paraconsistent logics [13, 28, 67, 72] and
argumentation [2, 10, 31].

The third direction, which we call the structuring approach, is based on implicit
or explicit utilization of logical varieties, quasi-varieties and prevarieties [16–18].

In comparison with non-monotonic logics, which form the base for the first
approach, logical varieties, quasi-varieties and prevarieties provide tools for
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preserving all points of view, approaches and positions even when some of them
taken together lead to contradiction. Due to their flexibility, logical varieties,
quasi-varieties and prevarieties allow treating any form of logical contradictions in
a rigorous and consistent way.

Paraconsistent logics, which form the base for the second approach, are infer-
entially weaker than classical logic; that is, they deem fewer inferences valid. Thus,
in comparison with paraconsistent logics, logical varieties, quasi-varieties and
prevarieties allow utilization of sufficiently powerful means of logical inference, for
example, deductive rules of the classical predicate calculus. Besides, Weinzierl [85]
explains why paraconsistent reasoning is not acceptable for many real-life scenarios
and other approaches are necessary. In addition, paraconsistent logics attempts to
deal with contradictions in a discriminating way, while logical varieties,
quasi-varieties and prevarieties treat contradictions and other inconsistencies by a
separation technique.

Although conventional logical systems based on logical calculi have been suc-
cessfully used in mathematics and beyond, they have definite limitations that often
restrict their applications. For instance, the principal condition for any logical
calculus is its consistency. At the same time, knowledge about large object domains
(in science or in practice) is essentially inconsistent [16, 62, 79, 80]. From this
perspective, Partridge and Wilks [64] write, “because of privacy and discretionary
concerns, different knowledge bases will contain different perspectives and
conflicting beliefs. Thus, all the knowledge bases of a distributed AI system taken
together will be perpetually inconsistent.” Consequently, when conventional logic
is used for formalization, it is possible to represent only small fragments of the
object domain. Otherwise, contradictions appear.

To eliminate these limitations in a logically correct way, logical prevarieties and
varieties were introduced [16]. Logical varieties represent the natural development
of logical calculi, being more advanced systems of logic, and thus, they show the
direction in which mathematical logic will inevitably go. Including logical calculi
as the simplest case, logical varieties and related systems offer several advantages
over the conventional logic:

1. Logical varieties, prevarieties and quasi-varieties give an exact and rigorous
structure to deal with all kinds of inconsistencies

2. Logical varieties allow modeling/realization of all other approaches to incon-
sistent knowledge. For instance, it is possible to use any kind of paraconsistent
logics as components of logical varieties. In [16], it is demonstrated how logical
varieties realize non-monotonic inference.

3. Theoretical results on logical varieties provide means for more efficient appli-
cation of logical methods to problems in different areas (e.g. the application of
the Logic of Reasonable Inferences (a logical variety) to represent and process
contradicting opinions in the legal domain as described below).

4. Logical varieties allow partitioning of an inconsistent knowledge system into
consistent parts and to use powerful tools of classical logic for reasoning.
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5. Logical varieties allow utilization of different kinds of logic (multi-functionality)
in the same knowledge system. For instance, it is possible to use a combination
of the classical predicate calculus and non-monotonic calculus to represent two
perspectives one of which is based on complete knowledge and the other on
incomplete knowledge.

6. Logical varieties allow separation of different parts in a knowledge system and
working with them separately.

7. Logical varieties provide means to reflect change of beliefs, knowledge and
opinions without loss of previously existed beliefs, knowledge and opinions
even in the case when new beliefs, knowledge and opinions contradict to what
was before. In [18], they are applied to temporal databases.

These qualities of logic varieties are especially important for normative, in
particular, legal, knowledge because this knowledge consists of a collection of
formalized systems, a collection of adopted laws, a collection of existing traditions
and precedents, and a collection of people’s opinions. In addition, in the process of
functioning, normative (legal) knowledge involves a variety of situational knowl-
edge, beliefs and opinions. To analyze and use this diversity, it is necessary to have
a flexible system that allows one to make sense of all different approaches without
discarding them in an attempt to build a unique consistent system. To formalize
these characteristics of normative knowledge, a form of a logical variety, the Logic
of Reasonable Inferences (LRI) was developed [79]. The LRI was subsequently
used as specification for the implementation of a knowledge based system shell,
Argumentator [80]. This shell has consequently been used to acquire and represent
legal knowledge. The resulting legal knowledge based system has been successfully
used to test the empirical validity of the theory about legal reasoning and decision
making modeled by the LRI [80].

It is interesting that several other systems used for inconsistency resolution, e.g.,
Multi-Context Systems [85], are also logical varieties and prevarieties. For instance,
bridge rules used inMulti-Context Systems for non-monotonic information exchange
are functions that glue together components of a logical variety or prevariety.

The goal of this work is the development of logical tools for working with
inconsistency in knowledge systems. That is why we do not consider here specific
approaches to inconsistency in data sets and databases. This is an important area
and various means are used to perform data mining on inconsistent data. It was
demonstrated that approaches based on rough set theory are especially useful for
this task (cf. [42–45, 59, 65, 83]), as well as approaches based on fuzzy set theory
(cf. [49, 71]). However, it is necessary to mention that data sets are model logical
varieties and prevarieties (see Sect. 5) and it is possible to apply techniques based
on model logical varieties and prevarieties to building tools for working with
inconsistency in data sets and databases.

In the next sections we will describe labeling in logic (Sect. 4), logical varieties
(Sect. 5) and the function of labels in logical varieties as a formal approach to
handle inconsistency (Sect. 6), which overcomes the limitations of the other
approaches described in this section.
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4 Labeling in Logic and Named Sets

Labels are a kind of names and labeling is a specific naming. Namely, a label is a
name of an object attached to this object. In a similar way, labeling is a process of
naming studied in named set theory [22], and namely, it is a process of attaching the
label to the object. This informal conception is formalized in the following way.

Let us consider a logical language L and a labeling structure A.

Definition 4.1 A labeling of the logical language L in the structure A is a partial
mapping l: L→A.
According to this definition, the mapping l assigns labels to logical formulas from L.

Treating labels in the context of names, we see that names, naming and named
sets came to logic from the very beginning. To understand this, we start with the
definition of a named set.

Definition 4.2 A named set (or a fundamental triad) X is the structure that consists
of three components X= X, f , Ið Þ.

Each component of a named set (fundamental triad) plays its unique role and has
a specific name. Namely, X is called the support, I is called the component of names
or set of names and f is called the naming correspondence of the named set X.

This construction is prevalent in mathematics in general and in mathematical
logic in particular. At the same time, named sets are abounding in many areas, in
particular, in the legal domain. An example is elaborated on in Sect. 7.

Traditionally, mathematical logic is divided into three parts: formal (usually,
axiomatic) theories (such as axiomatic set theories or formal arithmetic), proof
theory, and model theory.

A formal theory includes a logical calculus and logical semantics. A logical
calculus consists of a set A of initial statements called axioms, the deductive system
as a set r of rules for correct inference, and a set T of deduced statements called
theorems. Logical semantics studies inner interpretation (or truth evaluation) of
logical systems for codification of the meaning of logical formulas in the form of
truth-conditions, or possible truth conditions.

Proof theory studies the syntax of logic, that is, logical languages and means of
logical inference, mostly, deduction. In this area, the main logical structures are
propositions, predicates, logical operations (such as conjunction or disjunction),
logical formulas, logical transformations (such as deduction or induction), logical
calculi and syntactic or deductive logical varieties and prevarieties.

Model theory studies outer interpretations of logical systems in general structures
called models.

At first, names and named sets were used only in model theory. For instance,
statements of Aristotle’s syllogistics contained variables and as it was demon-
strated, variables are named sets.
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A variable x is a named set (fundamental triad) x= x, r,Dxð Þ where the support is
the name of the variable, the set of names form the domain Dx of the variable x, and
correspondence r called the interpretation mapping connects the name x with the
domain of this variable.

Names and consequently named sets play an imperative role in logic. For
instance, Alonzo Church explains the importance of names for mathematical logic,
contemplating the concept of name as one of the basic terms used in logic [27]. At
the beginning of his book, Church clarifies the main concepts of logic. At first, he
elucidates what logic is as a discipline. Then he makes clear what a name is in logic,
taking into account only proper names and following the theory of (proper) names
developed by Frege [33]. Only after this exposition, Church goes to such concepts
as variables, constants, functions, propositions and so on. Thus, according to
Church, the concept of a name is the first after the concept of logic. Shoenfield [75]
also describes how names for individuals and expressions are constructed and used.
To indicate importance of names in logic, Smullian [77] includes the word name in
the title of his book, which provides a popular and informal introduction to logic.

Much later labels and corresponding named sets appeared in logical semantics
with the advent of fuzzy logic. Namely, the truth value of a formula (statement)
instead of taking two values {true, false} as in classical logics acquired multiple
values from the interval [0, 1]. Each of these values is a number from the interval
[0, 1], which means that the formula (statement) is true only to some degree. Thus,
this degree c is a label, which displays the degree of truthfulness.

Fuzzy logics have been extensively studied, having many applications [5, 46, 58].
In proof theory, labels and corresponding named sets appeared in the labeled

deductive systems introduced and studied by Gabbay [36]. Labeled logics and
labeled deductive systems form a new and actively expanding direction in logic (cf.
[37, 82]). Labeled logics use labeled signed formulas where labels (names of the
formulas) are taken from information frames. As the result, the set of formulas in a
labeled logic becomes an explicit named set, the support of which consists of
logical formulas, while the set of names is an information frame, i.e., the system of
labels. The derivation rules act on the labels as well as on the formulae, according to
certain fixed rules of propagation. It means that derivation rules are morphisms
(mappings) of the corresponding named sets.

Application of logic to programming gave birth to the direction called logic
programming. Naturally, labeled logics brought forth labeled logic programs [6].

Special tools have been developed for working with names in logic, and naming
always involves building new or transforming existing named sets (cf. Sect. 5.2).
For instance, Gabbay and Malod [38] extend predicate modal and temporal logics
introducing a special predicate W(x), which names the world under consideration.
Such a naming allows one to compare the different states the world (universe or
individual) can be in after a given period of time, depending on the alternatives
taken on the way. As Gabbay and Malod [38] remark, the idea of naming the
worlds and/or time points goes back to Prior [68].
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Labels play two roles in logic:

1. Substitution labels are used to represent logical formulas.
2. Attached labels provide additional information about logical formulas.

Substitutions are used in all kinds and types of logic. For instance, when we have
a metaformula in the sense of [20] or logical schema in the sense of [54] A∧B→A
of the propositional calculus, in it, A and B are substitution labels because it is
possible to substitutes by arbitrary propositions obtaining a true formula of the
classical propositional calculus. In essence, any variable in logic is a substitution
label.

It is necessary to remark that a substitution is a kind of renaming [54], while
renaming is one of the basic operations studied in the theory of named sets [22]. As
a matter of fact, renaming is abounding in many areas, in particular, in the legal
domain (see the example in Sect. 7).

There are three modalities of attached labels:

1. Control labels impact, e.g., control or direct, logical inference.
2. Coordinated labels are transformed in the process of inference according to

deduction rules.
3. Independent labels and logical formulas are independently transformed in the

process of inference.

Control labels have become rather popular in logic. For instance, in labeled
deductive systems, consequence is defined by proof rules that work with both
logical formulas and their labels [36], while in traditional logical systems, conse-
quence is defined by proof rules only over the logical formulas. Examples of the use
of different types of attached labels are given in Sect. 7.

There are also many possible functions of attached labels: Often attached labels
form some structure, e.g., an algebra or information frame.

A labeled logical language L consists of pairs (φ, a) where φ is a logical formula
and a is an attached label. Note that, in general, one label can consist of several
other labels. For instance, if a1, a2, …, an are labels, then it is possible to treat the
n–tuple (a1, a2, …, an) as another label.

Applications of logic in software technology on the one hand, e.g., in logic
programming, and applications of computers to logic, e.g., in automated theorem
proving, bring us to labeled inference languages. As Manna and Waldinger [54]
write, proofs in formal theories that use simplistic application of deduction rules are
usually far too expensive to be of practical value. So, it is necessary to build
efficient proof strategies. Here labels come into the play. They can be used for
labeling deduction rules in strategies, for naming proof strategies and organizing
interaction between proof strategies.

Besides, proof strategies are specific types of second-order algorithms [23, 24].
As a result, labels can be used in second-order algorithms for the same purposes as
in proof strategies.

In the next section we will describe the application of labels to logical varieties.
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5 Structuring Inconsistency by Means of Labeled Logical
Quasi-Varieties, Prevarieties, and Varieties

There are different types and kinds of logical varieties and prevarieties: deductive or
syntactic varieties and prevarieties, functional or semantic varieties and prevarieties
and model or pragmatic varieties and prevarieties [17]. Semantic logical varieties
and prevarieties are formed by separating those parts that represent definite
semantic units and determining logical semantics in these parts. In contrast to
syntactic and semantic varieties, model varieties are essentially formalized struc-
tures. The structure of data in a distributed relational database is an example of
logical model varieties.

Syntactic varieties, quasi-varieties and prevarieties are built from logical calculi
as buildings are built from blocks. That is why, we, at first remind the concept of a
logical calculus.

Let us consider a labeled logical language L and a labeled inference language R.

Definition 5.1 A syntactic or deductive labeled logical calculus is a triad (a named
set) of the form C= A,H,Tð Þ where H⊆R and A, T⊆L,A is the set of axioms,
H consists of inference rules (rules of deduction) by which from axioms the the-
orems of the calculus are deduced, and the set of theorems T is obtained by
applying algorithms/procedures/rules from H to elements from A.

Note that there are not only logical calculi. For instance, there are differential
calculus and integral calculus in mathematical analysis.

Let K be a class of syntactic labeled logical calculi, K be a set of labeled
inference rules, and F be a class of partial mappings from L to L.

Definition 5.2 A triad M = (A, K, M), where A and M are sets of expressions that
belong to the labeled logical language L (A consists of axioms and M consists of
theorems) and H is a set of inference rules, which belong to K, is called:

(1) a labeled projective syntactic (K,F)-quasi-prevariety if there exists a set of
labeled logical calculi Ci = Ai,Hi,Tið Þ from K and a system of mappings
fi: Ai → L and gi:Mi →Lði∈ IÞ from F in which Ai consists of axioms and Mi

consists of some (not necessarily all) theorems of the logical calculus Ci, i.e.,
Mi⊆Ti and for which the equalities A= ∪ i∈ I fi Aið Þ, K = ∪ i∈ IHi and
M = ∪ i∈ Igi Mið Þ are valid (it is possible that Ci =Cj for some i≠ j).

(2) a labeled syntactic K-quasi-prevariety if it is a projective syntactic (K,F)-
quasi-prevariety where all mappings fi and gi that define M are inclusions,
i.e., A= ∪ i∈ IAi and M = ∪ i∈ IMi.

(3) a labeled projective syntactic (K,F)-quasi-variety with the depth k if it is a
projective syntactic (K,F)-quasi-prevariety and for any i1, i2, i3,…, ik∈ I either
the intersections ∩ j=1k fijðAijÞ and ∩ j=1k gij Tij

� �
are empty or there exists a

calculus C= A,H,Tð Þ from K and projections f → ∩ j=1k fij Aij
� �

and
g:N→ ∩ j=1k gij Mij

� �
from F where N⊆T .
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(4) a labeled syntactic K-quasi-variety with the depth k if it is a projective
syntactic (K,F)- quasi-variety with depth k in which all mappings fi and gi
that defineM are bijections on the sets Ai andMi, correspondingly, and for all
intersections (cf. Definition 4.2(3)), mappings f and g are bijections.

(5) a (full) labeled projective syntactic (K,F)-quasi-variety if for any k>0, it is a
projective syntactic (K,F)-quasi-variety with the depth k.

(6) a (full) labeled syntactic K-quasi-variety if for any k > 0, it is a K-
quasi-variety with the depth k.

(7) a labeled projective syntactic (K,F)-prevariety if it is a projective syntactic
(K,F)-quasi-prevariety in which Mi = Ti for all i∈ I.

(8) a labeled syntactic K-prevariety if it is a syntactic K-quasi-variety in which
Mi = Ti for all i∈ I.

(9) a labeled projective syntactic (K,F)-variety with the depth k if it is a pro-
jective syntactic (K,F)-quasi-prevariety with the depth k in which Mi = Ti for
all i∈ I.

(10) a labeled syntactic K-variety with the depth k if it is a projective syntactic (K,
F)-quasi-variety with depth k in which Mi =Ti for all i∈ I and for all
intersections (cf. Definition 4.2(3)), N =T .

(11) a (full) labeled projective syntactic (K,F)-variety if for any k>0, it is a
projective syntactic (K,F)-variety with the depth k.

(12) a (full) labeled syntactic K-variety if for any k>0, it is a K-variety with the
depth k.

We see that the collection of mappings fi and gi makes a unified system called a
prevariety or quasi-prevariety out of separate logical calculi Ci, while the collection
of the intersections ∩ j=1k fij Aij

� �
and ∩ j=1k gij Tij

� �
makes a unified system called a

variety out of separate logical calculi Ci. For instance, mappings fi and gi allow one
to establish a correspondence between norms/laws that were used in one country
during different periods of time or between norms/laws used in different countries.

The main goal of syntactic logical varieties is in presenting sets of formulas as a
structured logical system using logical calculi, which have means for inference and
other logical operations. Semantically, it allows one to describe a domain of
interest, e.g., a database, knowledge of an individual or the text of a novel, by a
syntactic logical variety dividing the domain in parts that allow representation by
calculi.

In comparison with varieties and prevarieties, logical quasi-varieties and
quasi-prevarieties are not necessarily closed under logical inference. This trait
allows better flexibility in knowledge representation.

Definition 5.3 The calculi Ci used in the formation of the labeled syntactic quas-
ivariety, prevariety or variety M are called components of M.

Note that it is possible that different components of a syntactic prevariety (variety)
M have different deduction (inference) rules and even different types of deduction
(inference) rules. For instance, some components have conventional, i.e., recursive,
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inference rules, while other components have super-recursive inference rules, which
are more powerful [19]. If we consider the formal arithmetic A, then the famous
result of Gödel asserts impossibility of proving consistency of the arithmetic A by
recursive, inference rules [41]. However, later consistency of the arithmetic A was
proved using more powerful superrecursive inference rules [1, 40, 74].

An example of a logical variety is a distributed database or knowledge base, each
component of which consists of consistent knowledge/data. Then components of
this knowledge/database are naturally represented by components of a logical
variety. Moreover, very often data in a database have various labels. For example,
in temporary database data elements have timestamps [21]. Besides, in one
knowledge base different object domains may be represented. In these domains,
some object may have properties that contradict properties of an object from
another domain.

One more example of naturally formed logical varieties is the technique Chunk
and Permeate built by [15]. This technique suggests to begin reasoning from
inconsistent premises and proceeds by separating the assumptions into consistent
theories (called chunks by the authors). These chunks are components of the logical
variety shaped by them. After this, appropriate consequences are derived in one
component (chunk). Then those consequences are transferred to a different com-
ponent (chunk) for further consequences to be derived. This is exactly the way how
logical varieties are used to realize and model non-monotonic reasoning [16].
Brown and Priest suggest that Newton’s original reasoning in taking derivates in the
calculus, was of this form.

An interesting type of logical varieties was developed in artificial intelligence
and large knowledge bases. As Amir and McIlraith write [4, 52, 57], there is
growing interest in building large knowledge bases of everyday knowledge about
the world, comprising tens or hundreds of thousands of assertions. However
working with large knowledge bases, general-purpose reasoning engines tend to
suffer from combinatorial explosion when they answer user’s queries. A promising
approach to grappling with this complexity is to structure the content into multiple
domain- or task-specific partitions. These partitions generate a logical variety
comprising the knowledge base content. For instance, a first-order predicate theory
or a propositional theory is partitioned into tightly coupled sub-theories according
to the language of the axioms in the theory. This partitioning induces a graphical
representation where a node represents a particular partition or sub-theory and an
arc represents the shared language between sub-theories.

The technology of content partitioning allows reasoning engines to improve the
efficiency of theorem proving in large knowledge bases by identifying and
exploiting the implicit structure of the knowledge [4, 52, 57]. The basic approach is
to convert a graphical representation of the problem into a tree-structured repre-
sentation, where each node in the tree represents a tightly-connected sub-problem,
and the arcs represent the loose coupling between sub-problems. To maximize the
effectiveness of partition-based reasoning, the coupling between partitions is min-
imized, information being passed between nodes is reduced, and local inference
within each partition is also minimized.
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Additional advantage of partitioning is a possibility to reason effectively with
multiple knowledge bases that have overlap in content [4].

The tools and methodology of content partitioning and thus, implicitly of logical
varieties are applied for the design of logical theories describing the domain of
robot motion and interaction [3]. Other examples are given in Burgin and de Vey
Mestdagh [25, 26].

Concepts of logical varieties and prevarieties provide further formalization for
local logics of Barwise and Seligman [7], many-worlds model of quantum reality of
Everett [30, 32], and pluralistic quantum field theory of Smolin related to the
many-worlds theory [76].

In the next section we will describe the functions of labels in logical varieties

6 Labels and Their Functions in Logical Varieties

Labels can perform multiple functions in logical varieties:

1. Labels that indicate the source of information (knowledge) represented by a
component of a logical variety, assuming that each component of a logical
variety is connected to a source of information (knowledge). For instance the
source of a particular observation or derivation, a specific legal source (legis-
lation, case law, expert opinion, etc.);

2. Labels that show the reliability of (the source of) information (knowledge). For
instance an accepted fact finding method, a valid legal source (see Sect. 7), the
reliability of a witness, etc.;

3. Labels that refer the logical formulas to the problem-knowledge which these
formulas represent. For instance, items, e.g. formulas, related to the same
source (a person, a body, etc.) can have the same label (see Sect. 7);

4. Labels that estimate the relevance of logical formulas to the corresponding
problems;

5. Labels that estimate the importance of information (knowledge) to the related
conjectures;

6. Labels that refer the logical formulas to the topics (attributes) knowledge about
which these formulas represent;

7. Labels that estimate the relevance of logical formulas to the corresponding
topics (attributes);

8. Labels that describe relations between objects and people involved in the
process;

9. Labels that estimate the importance of information (knowledge);
10. Labels that refer the logical formulas to conjectures (see for example, Sect. 7);
11. Labels that estimate importance of information (knowledge) to the related

conjectures;
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12. Labels that estimate probability of conjectures represented by logical formulas
in a logical variety;

13. Labels that show the degree of support of a conjecture or belief. Utilization of
such labels is described in [35, 47];

14. Labels that describe connections and relations of a formula;
15. Labels that indicate where information represented by a formula is stored;
16. Labels that show time of information creation and/or acceptance (see for

example, Sect. 7);
17. Labels that show time of information validity.

Labeling in information systems allows users to discern when the same infor-
mation represented by a formula comes from different sources. Thus, it is possible
that one and the same formula has different labels. Such a formula can belong to
different components or even to the same component of the syntactic logical
quasivariety, prevariety or variety. For instance, when a label indicates the reli-
ability of information sources and the source 1 has the reliability 5, while the source
1 has the reliability 7, then a formula φ coming from the source 1 has the reliability
label 5, while coming from the source 1 has the reliability label 7.

Let us consider some types of labeling.

Definition 6.1 A labeling l:M→A of a syntactic logical quasivariety (prevariety or
variety) M= A,K,Mð Þ is called:

(1) structured if formulas from different components of M have different labels;
(2) discerning if different elements from M have different labels.
(3) univalent if any element from M has, at most, one label.

An example of structured labeling of logical quasivarieties is a locally stratified
knowledge base or database in the approach of Benferhat and Garcia [11] who
suggest handling inconsistent knowledge bases by local stratification based on
priorities, such as a preference relation or reliability relation, which are assigned to
knowledge (data) items, allowing to provide more meaningful and reliable infor-
mation to the user. Priority values are used as labels of formulas, while priorities
stratify the database or its part forming a logical variety, in which a component is
determined by a fixed level (value) of priority. Thus, priority labeling is structured.

Proposition 6.1. A syntactic quasivariety M= A,K,Mð Þ has a structured labeling
if it is discrete.

Corollary 6.1. A syntactic prevariety (variety) M= A,K,Mð Þ has a structured
labeling if it is discrete.

An important operation in labeled logical structures, such as logical deductive
systems, logical calculi and logical varieties, is relabeling or changing labels. It is a
particular case of renaming studied in the theory of named sets [22].

Labels allow logicians to connect semantic logical varieties studied in [17] and
syntactic logical varieties studied here.
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Let us consider a labeled logical language L and a structure Q. Note that it is
possible to treat a logical language without labels as a specific labeled logical
language, namely, as logical language formulas of which have empty labels.

Definition 6.2. A named set Sem= L, c,Qð Þ where c: L→Q is a partial mapping is
called a semantics in the language L with the scale Q.

The most popular semantic scale is the truth-scale Q= T, Ff g used in classical
logics. Another popular semantic scale Q= T, F, Uf g where U means undefined or
unknown is used in intuitionistic logics.

Semantics in a labeled logical language allows us to define semantic calculi. Let
us consider a subset E of the structure Q.

Definition 6.3. A labeled semantic E-calculus C is the name set C= C, c,Eð Þ in
which the subset C of L defined in the following way

C= φ∈ L; c φð Þ∈Ef g

Let K be a class of semantic labeled logical calculi, Q be a semantic scale, and
F be a class of partial mappings.

Definition 6.4. (a) A projective labeled semantic logical (K, F)-prevariety M =
(M, k, E) is the named set components of which are defined in the following way:

There are semantic labeled logical calculi Ci = Ci, ci,Eið Þ from K and three
systems of mappings ci:Ci →Ei, ki:Ei →E and gi:Mi → L from F such that

M = ∪ i∈ Igi Mið Þ,E= ∪ i∈ Iki Eið Þ and k= ∪ i∈ Ikici

(b) A labeled semantic logical K-prevariety is a projective labeled semantic logical
(K, F)-prevariety M = (M, k, E) in which all gi and ki are inclusions, i.e.,
M = ∪ i∈ IMi and E= ∪ i∈ IEi.

Definition 6.5. A labeled semantic logical K-variety is a labeled semantic logical
K-prevariety M = (M, k, E) in which all intersections ∩ j=1kMij are empty or there
exists a calculus C= C, c,Hð Þ from K such that ∩ j=1kMij =C,∩ j=1kEij =H and
each restriction of c on Mij coincides with cij.

Definition 6.6. Labeling l:M→ L of a syntactic logical quasivariety, prevariety or
variety M= A,K,Mð Þ is called semantic if there is a semantic logical prevariety or
variety Ms = N, k,Eð Þ such that N = M and lðφÞ = kðφÞ for any formula φ from M.

Definitions imply the following result.

Proposition 6.2 For any syntactic logical variety M= A,K,Mð Þ and any semantic
logical variety Ms = N, k,Eð Þ, there is a semantic labeling of M defined by Ms.

Control labels can essentially change properties of logical calculi and logical
varieties.
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By the famous Gödel theorem, the first-order formal arithmetic (Peano arith-
metic) A is undecidable [41], and in particular, it has formulas that are true in the
natural semantics of A but are not recursively provable (recursively deducible). An
appropriate labeling can change this situation.

Proposition 6.3 There is a binary labeling l of all formulas in the language of
A and a deduction operator such that all true in A formulas and only true in
A formulas are recursively provable.
Proof. Let us take the standard semantic scale of labeling Q= T, Ff g and a formula
φ from the language L(A) of the arithmetic A. We attach the label T to φ when φ is
true in A and the label F when φ is false in A. After doing this, we define the
following deduction rule

ðφ, dÞ⊪ðψ, cÞ if and only if c= d=T

We can see that the labeled calculus (D, {⊪}, H) where the set of axioms D consists
of single axiom (n= n, T) and H is the set of all theorems deduced from D by means
of the deduction operator ⊪ is complete and consistent assuming that A is
consistent.

Proposition is proved.

In the above example, labeling extends provability making deduction more
powerful because in traditional logics without labeling, it is impossible to build
sufficiently powerful complete and consistent calculus as the first Gödel theorem
tells us. At the same time, it is possible not only to extend power of deduction but
also to restrict provability by means of an appropriate labeling as the following
example demonstrates.

Let us consider a formal theory P with the classical deduction operator ⊢, which
includes application of standard deduction rules, such as ðφ,φ→ψÞ⇒ψ, and the
set of axioms A, and take the classical semantic scale Q= T, Ff g, We attach the
label T to a formula φ from the language L(P) of the theory P when φ is true in
A and the label F when φ is false in A. For a set of formulas D and a formula φ from
L(P), we define another deduction rule

D ⊩ (φ, d) if and only if D ⊢ φ in P and there are no formulas in D with the
label F.

This gives us a syntactic calculus C= A, j⊩f g,Tð Þ where T are all theorems
deduced from A by means of the deduction operator ⊩. In this calculus, false
formulas do not participate in the inference and thus, even when A or T has con-
tradictions (false formulas), it does not cause explosion, i.e., T is not necessarily
equal to L. Note that in a general case, C is a kind of a paraconsistent logical
calculus.

Various other applications of control labels to enhancement of inference pro-
cesses are described in the area of labelled deductive systems [36, 37].

In the next section we will apply a species of a labeled logic variety (the
extended Logic of Reasonable Inferences) to an example from the legal domain.
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7 The Logic of Reasonable Inferences, an Implementation
of a Labeled Logical Variety in the Legal Domain

Our knowledge of the world is always perspective bound and therefore funda-
mentally inconsistent, even if we agree to a common perspective, because this
agreement is necessarily local and temporal due to the human epistemic condition.
The natural inconsistency of our knowledge of the world is particularly manifest in
the legal domain (de Vey Mestdagh et al. 2011).

In the legal domain, on the object level (that of case facts and opinions about
legal subject behavior), alternative (often contradicting) legal positions compete.
All of these positions are a result of reasoning about the facts of the case at hand
and a selection of preferred behavioral norms presented as legal rules. At the
meta-level meta-positions are used to make a choice for one of the competing
positions (the solution of an internal conflict of norms, a successful subject nego-
tiation or mediation, a legal judgement). Such a decision based on positions that are
inherently local and temporal is by definition also local and temporal itself. The
criteria for this choice are in most cases based on legal principles. We call these
legal principles metaprinciples because they are used to evaluate the relations
between different positions at the object level.

To formalize this natural characteristic of (legal) knowledge we developed the
Logic of Reasonable Inferences (LRI, [79]). The LRI is a logical variety that
handles inconsistency by preserving inconsistent positions and their antecedents
using as many independent predicate calculi as there are inconsistent positions [25,
26]. The original LRI was implemented and proved to be effective as a model of
and a tool for knowledge processing in the legal domain [80]. In order to be able to
make inferences about the relations between different positions (e.g. make local and
temporal decisions), labels were added to the LRI. In de Vey Mestdagh et al.
(2011) formulas and sets of formulas are named and characterized by labelling them
in the form (Ai, Hi, Pi, Ci). These labels are used to define and restrict different
possible inference relations (Axioms Ai and Hypotheses Hi, i.e. labeled signed
formulas and control labels, see Sect. 4) and to define and restrict the composition
of consistent sets of formulas (Positions Pi and Contexts Ci). Formulas labeled Ai

must be part of any position and context and therefore are not (allowed to be)
inconsistent. Formulas labeled Hi can only be part of the same position or context if
they are mutually consistent. A set of formulas labeled Pi represents a position, i.e. a
consistent set of formulas including all Axioms (e.g., a perspective on a world,
without inferences about that world). A set of formulas labeled Ci represents a
context (a maximal set of consistent formulas within the (sub)domain and their
justifications, c.f. the world under consideration, see Sect. 4). All these labels can
be used as predicate variables and if individualized to instantiate predicate variables
and consequently as constants (variables as named sets see Sect. 4). Certain
metacharacteristics of formulas and pairs of formulas were finally described by
labels (e.g., metapredicates like Valid, Excludes, Prefer) describing some of their
legal source characteristics and their legal relations which could be used to rank the
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different positions externally. The semantics of these three Predicates (Valid,
Exclude and Prefer) are described in de Vey Mestdagh et al. [81]. These three
predicates describe the elementary relations between legal positions that are pre-
scribed by the most fundamental sets of legal principles (i.e. principles regarding
the legal validity of positions, principles regarding the relative exclusivity of legal
positions even if they do not contradict each other and principles regarding the
preference of one legal position over another). It was also demonstrated that the first
requirement of Sect. 2, a description of our cognition should allow for reasoning
about (mutually exclusive) alternatives, is attained by the LRI.

In this section we show that labels can be used formally to describe the ranking
process of positions and contexts. With that the second requirement of Sect. 2 will
be also satisfied, namely, a description of our cognition should allow for local and
temporal decisions for a certain alternative, which means without discarding the
non-preferred alternatives like belief revision does and without using the mean of
all alternatives like probabilistic logics do. This extends the LRI from a logical
variety that could be used to formalize the non-explosive inference of inconsistent
contexts (opinions) and naming (the elements of) these contexts to a labeled logical
variety, in which tentative decisions can be formally represented by using a
labelling that allows for expressing the semantics of the aforementioned
meta-predicates and prioritizing (priority labelling). We illustrate the use of these
labels by examples.

In de Vey Mestdagh et al. 2011 (Sect. 4), a complex legal case is presented about
a threat to the tower of Pisa. It would take too much space to repeat the informal
and the full formal case description here. Just the necessary parts of the formal case
description are repeated here. The full case description can be read at and down-
loaded from:

http://www.rug.nl/staff/c.n.j.de.vey.mestdagh/inconsistent_knowledge_as_a_natural_
phenomenon_cnjdvm_def-en-reftobook.pdf (p. 29, Sect. 4).

As a part of this case four existing legal positions (Pi) consisting of Axioms (Ai)
and Hypotheses (Hi) are presented:

P1 Subjectivist’s view : A1..A11; H1, H4(H1), H7(H1,H2)
P2 Objectivist’s view : A1..A11; H2, H4(H2), H5(H2), H6(H2,H1)
P3 Impressionist’s view : A1..A11; H3, H7(H3,H2)
P4 Subjectivist’s + Impressionist’s : A1..A11; H1, H3, H4(H1), H7(H1,H2), H7(H3,

H2)

It is shown that these positions can be formally reduced to two mutually
inconsistent contexts (general perspectives C1 justified by P1, P3, P4 and C2
justified by P2):
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C1 Reasonable inference : Criminal_attempt(One_of_us,Toppling_Top)
Justification : P1, P3, P4

C2 Reasonable inference : ¬Criminal_attempt(One_of_us,Toppling_Top)
Valid(H1), Valid(H2), Excludes(R2,R1)

Justification : P2

There are several possible perspectives on the criteria used to decide between
these two contexts. In this Section four of these tentative ‘decision models’ and a
combination of them are described. We use the term ‘tentative’, because the
decision model does not discard contexts but just adds inferences about their
preference to the contexts. The decision models are extensions of and are applied to
the theorems of the case presented in de Vey Mestdagh et al. 2011.
Decision model ‘Prefer the most valid position’
Prefer a minimal position which contains more uninstantiated valid basic formulas
over a position that contains less uninstantiated valid basic formulas (the minimal
position predicate and the uninstantiated formula predicates are left out to preserve
readability).

A6 Precedent H1ð Þ, Precedent H2ð Þ
A7 Complies with section 1 Penal Code H2ð Þ
H4 Precedent Hið Þ→Valid Hið Þ meta− rule precedent validity½ �
H5 Complies with section 1 Penal Code Hið Þ→Valid Hið Þ meta− rule½ principle

of legality�
H8 ¬ ðPrecedent Hið Þ∨Complies with section 1 Penal Code Hið ÞÞ→¬Valid Hið Þ
H9 In Pi, Hið Þ∧Valid Hið Þ→Valid Pið Þ
H10 In Pi, Hið Þ∧¬Valid Hið Þ→¬Valid Pið Þ
H11 Valid Pið Þ∧¬Valid Pj

� �
→ Prefer Pi, Pj

� �

On the basis of this extended set of rules hypotheses H1 and H2 are just valid
and hypothesis H3 is just invalid (all hypotheses contained in de positions P1, P2,
P3 and P4 presented above). As a consequence the positions P1 (just valid unin-
stantiated formulas), P2 (just valid uninstantiated formulas) and P4 (valid and
invalid uninstantiated formulas) are preferred over P3 (just invalid uninstantiated
formulas). The double evaluation of P4 (valid and invalid) causes a split of
contexts.
Decision model ‘Prefer the legal position’
Prefer a position which contains more uninstantiated legal basic formulas (i.e. a
formula based on legislation) over a position that contains less uninstantiated legal
basic formulas:

A7 Complies with section 1 Penal Code H2ð Þ
H5 Complies with section 1 Penal Code Hið Þ→Valid Hið Þ meta− rule principle of½

legality�
H12 Complies with section 1 Penal Code Hið Þ→Legal Hið Þ
H13 ¬ Complies with section 1 Penal Code Hið Þ→¬Legal Hið Þ
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H14 In Pi, Hið Þ∧Legal Hið Þ→Legal Pið Þ
H15 In Pi, Hið Þ∧¬Legal Hið Þ→¬Legal Pið Þ
H16 Legal Pið Þ∧¬Legal Pjð Þ→ Prefer Pi, Pjð Þ
On the basis of this set of rules P2 (containing a legal uninstantiated formula), is

preferred over P1, P3 and P4 (containing no legal uninstantiated formulas).
Decision model ‘Prefer the specific position’
Prefer a position which contains the more specific uninstantiated legal basic for-
mulas over a position that contains the more general uninstantiated legal basic
formulas.

A8 Specialis H2, H1ð Þ
H6 Specialis Hi, Hj

� �
→Excludes Hi, Hj

� �
meta− rule lex specialis½ �

H18 In Pi, Hið Þ∧ In Pj, Hj
� �

∧H6Excludes Hi, Hj
� �

→ Prefer Pi, Pj
� �

On the basis of this set of rules P2 (containing the specialis H2) is preferred over
P1 and over P4 (both containing the generalis H1)
Decision model ‘Prefer the position which soothes public alarm’ (terrorism
induced policies)
A decision model which is popular in this time of perceived terror threats is ‘Prefer
a position which soothes public alarm’.

A5 Recent public alarm Toppling Topð Þ
A9 Soothes public alarm H1, Toppling Topð Þ
A10 ¬Soothes public alarm H2, Toppling Topð Þ
A11 Soothes public alarm H3, Toppling Topð Þ
H7 Recent public alarm yð Þ∧ Soothes public alarm Hi,ð yÞ∧¬Soothes public
alarm Hj,

�
yÞ→ Prefer Hi, Hj

� �
meta− rule terrorism induced policies½ �

H19 In Pi, Hið Þ∧ In Pj, Hj
� �

∧H7Prefer Hi, Hj
� �

→Prefer Pi, Pj
� �

On the basis of this set of rules P1, P3 and P4 (based on one or two of the
soothing rules H1 and H3) are preferred over P2 (based on the non-soothing rule
H2).

Decision model ‘Prefer the context with the most preferred position as a
justification’
The LRI adds the inferred preference relations by definition to the contexts (cf.
de Vey Mestdagh et al. 2011). The two contexts C1 and C2 described in de Vey
Mestdagh et al. 2011 split into four contexts: two (equal to the originals) extended
with valid formulas P4 and two (C3 and C4, equal to the originals C1 and C2) with
invalid formulas P4. A simple decision model just counts the number of times a
position is preferred and prefers the context(s) with the most preferred position as a
justification. Position P1 is preferred 3 times in the four decision models, position
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P2 6 times, position P3 once and position P4 twice. In the contexts the occurrence
of the preference for position P2 is reduced to 4 times and the other preferences stay
the same (less than 4), because equal inferences are just registered once (so a more
elegant decision model would use the number of preferred positions based on the
different decision models, but the LRI does not allow for labelling the decision
models because they do not belong to the formal part of the logic).

The following decision rule will conclude to prefer C2 (and C4) over C1 (and
C2):
Most_preferred(Pi) ∧ In_justification(Ci,Pi) ∧ ¬ In_justification(Cj,Pi) → Prefer
(Ci,Cj)

The reasonable inference in both C2 and C4 is that it is no criminal attempt if
one of us tries to topple the Tower of Pisa just by pushing it, which is actually the
dominant (but not the only!) opinion of the majority of Dutch courts. Note that this
preference is just added to (in this case) all contexts and that none of the contexts is
discarded because of the preference. Actually the logic does not decide but just
suggests a decision (that a human or computer can process further). This is exactly
what we want. Interestingly enough in a more complex case the LRI can derive
multiple preference relations between contexts including contradictory ones. In that
case metapredicates can be added to evaluate the preference relation between these
preference relations (if we had the brains this would end up in an infinite recursion,
but fortunately we lawyers as all humans are fairly limited in our capacity to think
new metalevels of decision making through).

8 Conclusion

In this paper, we have described the theory and application of labelled logical
varieties. It was demonstrated that labelled logical varieties provide means for
overcoming some severe restrictions of common logical approaches to inconsis-
tency. It allows to preserve all knowledge positions instead of discarding them (like
belief revision) and instead of replacing them by an aggregate such as a mean
(probabilistic approaches).

Labelled logical varieties allow us to formally describe and to model the
underlying reality of:

1. Reasoning about (mutually exclusive) alternatives without discarding or
adapting them

2. Deciding locally and temporally for a certain alternative
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The preservation of all alternatives does satisfy the epistemic need to conserve
inconsistency (natural inconsistent perspectives) and in doing that can en passant
satisfy the practical need to handle unwanted inconsistency when it cannot be
eliminated.

We think that this is in accord with the human epistemic condition, which does
not know and does not accept universal and infinite closure under any circumstance.

Further research will focus on the extension and application of labelled logical
varieties in knowledge systems, particularly in the legal domain. It would also be
useful to develop techniques based on model logical varieties and prevarieties for
building tools that would allow working with inconsistency in data sets and
databases.
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