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Abstract Switching systems under Pulse Width Modulation (PWM) are commonly
utilized in many industrial applications. Due to their associated nonlinearities, such
systems are prone to exhibit a large variety of complex dynamics and undesired
behaviors. In general, slow dynamics in these systems can be predicted and ana-
lyzed by conventional averaging procedures. However, fast dynamics instabilities
such as period doubling (PD) and saddle-node (SN) bifurcations cannot be detected
by average models and analyzing them requires the use of additional sophisticated
tools. In this chapter, closed-form conditions for predicting the boundary of these
bifurcations in a class of PWM systems with linear and bilinear plants are obtained
using a time-domain asymptotic approach. Previous studies have obtained similar
boundaries by either solving the eigenvalue problem of the monodromy matrix of
the Poincaré map or performing a Fourier series expansion of the feedback signal.
While the former approach is general and can be applied to linear as well as bilinear
plants, the later approach is applicable only to PWM systems with linear plants. The
conditions for fast scale instability boundaries presented in this chapter are obtained
from the steady-state analysis of the Poincaré map using an asymptotic approach
without resorting to frequency-domain Fourier analysis and without using the mon-
odromy matrix of the Poincaré map. The obtained expressions are simpler than the
previously reported ones and allow to understand the effect of different system’s
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parameters on its stability. In PWM systems with linear plants, under certain practical
conditions concerning these parameters, the matrix form expression can be approx-
imated by standard polynomial functions expressed in terms of the operating duty
cycle weighted by the Markov parameters of the linear part of the system.

1 Introduction

Switched systems constitute a special class of nonlinear dynamical systems [1] and
arise often in many practical engineering systems when some switching elements
such as switches or diodes, block with dead-zone, saturated amplifiers, relays and
comparators in electrical systems are present. This is also the case of mechanical sys-
tems where impacts or nonsmooth friction take place. A particular class of switched
systems are those characterized by linear differential equations between switching
events. These systems are called therefore piecewise linear (PWL) or piecewise
affine (PWA) systems [2]. Most of the PWL systems studied in the literature are
characterized by switching among linear subsystems when certain time-varying and
T —periodic boundaries in the state-space are reached. This is the case of Pulse
Width Modulation (PWM) systems like switching DC-DC power converters [3–8],
DC-AC inverters [9], temperature control systems [10], switched capacitor networks
and chaos generators [11] and hydraulic and fluid valve drivers [12, 13]. Nonlin-
earity arises from the feedback which imposes a constraint relating the duty cycle
nonlinearly and in general implicitly to the vector of the system state variables.
Despite their engineering use, one of the main drawbacks of switched systems under
PWM is this nonlinearity making them prone to exhibit a large variety of complex
dynamics and undesired behaviors [6, 10, 11]. Although each subsystem is linear
and its describing differential equations can be solved in closed-form, the dynamics
of the complete switched system is highly nonlinear and its accurate stability analysis
requires sophisticated computational tools [14].

Switched systems under PWM employ switching devices to control a suitable
output variable by using a T —periodic external modulating signal. Therefore, the
only acceptable nominal operation of any switched system under PWM is a T —
periodic oscillation around the desired level. When the stability of this periodic
operation is lost, different slow scale-time or fast scale-time nonlinear phenomena
can take place [15].

The dynamical behavior and the accurate stability analysis of this kind of systems
can either be tackled by long-time integration of the continuous-time switched model,
discrete-time model and its Jacobian matrix or Floquet theory with Fillipov technique
to compute the mondromy matrix [16]. Other methods leading to the same matrix
and based on trajectory sensitivity analysis are also available [17]. After obtaining
the Jacobian or monodromy matrix, critical boundary conditions for some singular-
ities like saddle-node (SN) bifurcation or period-doubling (PD) can be obtained by
imposing that one eigenvalue is equal to +1 or −1, respectively [4]. It is in general
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very cumbersome to compute the stability boundary of a PWM system using the
previous methods.

Another approach, which was called harmonic balance,1 used for the first time in
[18] and recently in [5] for locating these boundaries is by expanding the feedback
signal into a Fourier series to obtain the steady-state trajectory in certain periodic
regimes and imposing critical conditions for the occurrence of the corresponding
singularities like PD and SN bifurcations.

The conditions for fast scale instability boundaries presented in this chapter are
obtained from the steady-state analysis of the Poincaré map using a time domain
asymptotic approach without resorting to frequency-domain Fourier analysis and
without using the monodromy matrix of the Poincaré map. The obtained expressions
are simpler than the previously reported ones and allow to understand the effect of
different system’s parameters on its stability. Examples of PWM systems that can
be studied by the approach of this chapter are DC-DC switching power electronics
converters [3, 5, 6], DC-AC inverters [9], temperature control systems [10] and
switched capacitor chaos generators [11], among others.

The rest of the chapter is organized as follows. Section 2 presents the switched
model of systems with bilinear plants under PWM. A review of Poincaré map mod-
eling approach is explained in Sect. 3 together with its steady-state solution. Sub-
sequently, Sect. 4 deals with the steady-state approach for predicting the boundary
of SN and PD instabilities in this kind of systems by imposing boundary condi-
tions in the time-domain on the steady-state T -periodic and the 2T —periodic orbits
together with their respective switching conditions imposed by the PWM process.
Finally, some concluding remarks are drawn in the last section.

2 Bilinear Modeling of PWM Switched Systems

2.1 Pulse Width Modulation

Pulse-width modulation is a technique used, among others, to control switched sys-
tems. This modulation technique is one of the mostly used methods in switched
mode power supply for different applications. In this kind of systems, the average
value of voltage or current fed to the load is controlled by turning on and off some
switching devices such as MOSFETs and IJBTs. The PWM switching frequency
has to be much higher than the time constants of the plant to be controlled to mini-
mize the ripple of the voltage or current applied to the load. The term duty cycle is
defined as the proportion of on-time duration of the switching element to the com-
plete switching period. In the traditional PWM strategy, the duty cycle of the pulse
driving signal u(t) is varied according to the control signal xc(t) which correspond to

1In [5] this type of analysis was called Harmonic Balance. Here this term was conserved but to
the opinion of the authors only a steady-state analysis of the feedback signal expressed in Fourier
series has been used and no harmonic balance has been performed since the system loop is linear.
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Fig. 1 Waveforms of the T —periodic external signal stri(t) and the control signal a TEM xc =
Cᵀ(Xref − x(t)), b LEM xc = Cᵀ(x(t) − Xref )

a compensated version of the error between the output variable (voltage or current)
and its desired reference xref . This error is processed through an error compensator
to provide the control signal xc(t). In direct duty cycle control, the simplest analog
form of generating a fixed frequency PWM is by comparing the control voltage with
a ramp periodic signal stri(t) in such a way that the pulse signal u(t) goes high/low at
switching instants ts when the control signal xc(t) is higher/lower than the triangular
signal stri(t) (Fig. 1). In other constant frequency modulation schemes, the switch
is turned on (resp. off) periodically while it is turned off (resp. on) whenever the
peak (resp. valley) control signal xc reaches the ramp compensator. The ratio of the
first interval duration ts,k to the complete period T ((ts,k)/T ) during the switching
cycle (kT, (k + 1)T ) is the duty cycle dk in that cycle for Trailing Edge Modulation
(TEM) strategies while it is its complementary dk = 1 − dk for Leading Edge Mod-
ulation (LEM) strategies. The control signal for TEM strategies can be expressed as
xc = Cᵀ(Xref − x) while it is xc = Cᵀ(x − Xref) for LEM schemes, where x ∈ R

n

is the vector of the state variables including the power stage and the controller para-
meters and n is the order of the system after excluding any existing integrator in the
loop. C is an appropriate feedback vector and Xref is a suitable reference vector. In
both strategies, the generation of the PWM driving signal is carried out by comparing
the control signal xc with the T —periodic signal stri.

2.2 The Bilinear Switched Model

Let us focus on TEM strategy. The results corresponding to LEM can be deduced
from those of TEM strategy by just a change of variable dk → 1 − dk . During a
switching period of length T , an orbit of a switched system under PWM starting at
time instant kT (k ∈ Z) is forced, using a clocked latch, to be governed by the vector
field

f1(x, w) = A1x + B1w (1)

This orbit intersects with a switching boundary, at a certain switching instant ts =
dk T decided by the modulation strategy. The switching occurs when the external
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periodic ramp signal stri intersects with the control signal xc. The orbit then goes to
another different linear system described by the vector field

f2(x, w) = A2x + B2w (2)

where Ai ∈ R
n×n and Bi ∈ R

n×m , i = 1, 2 are the system state matrices for phase
i and w ∈ R

m is the vector of the external parameters of the plant and controller, m
being the number of the external inputs to the system which are supposed to be con-
stant within a switching cycle. The system is forced periodically and synchronously
to the first phase (i = 1) characterized by the vector field f1 while it is switched to
the second phase (i = 2) characterized by the vector field f2 whenever the condition
σ(x, t) := Cᵀ(Xref − x) − stri = 0 holds. In compact form, the model of a switched
system under PWM can be written in the following general bilinear form

ẋ = uf1(x, w) + (1 − u)f2(x, w) (3a)

where f1(x, w) = A1x + B1w, f2(x, w) = A2x + B2w and u ∈ {0, 1} is the driving
signal which is generated by the PWM process by which the system is forced to one
phase cyclically while it is switched to the other phase whenever the control signal
xc crosses the periodic signal stri(t). In TEM strategies, the switching condition
Cᵀ(Xref − x) = stri can be written as −Cᵀx = r , where r = −CᵀXref + stri.

3 Review of Poincaré Map Modeling of PWM Systems

3.1 Closed-Form Solution of the State Variables

The trajectory x(t) at time t of the system starting from an initial condition x(t0) at
time instant t0 can be expressed as follows

x(t) = eAi (t−t0)x(t0) + A−1
i (eAi (t−t0) − I)Bi w (4)

It is assumed that the matrix Ai is nonsingular. It should be noted that two kinds of
singularities may arise in this kind of switched systems which are detailed below:

1. A singularity which takes place only theoretically and that can be avoided by just
adding parasitic elements [19].

2. A structural singularity that cannot be avoided by just adding parasitics. In this
case, the previous expression for the solution of the system state variables cannot
be used if the integrator was taken into account despite the fact that this solution
exists and it is well defined even in the case when the matrix Ai is not invertible.
However, the integral action has no meaning without closing the loop by the
feedback and the PWM process. Having said that, the switched model used in
this study and the expression of the trajectories in (4) do not take into account the
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Fig. 2 State-space representation of a switched system under PWM

integral variable. However, while the integral action could have an effect on the
slow scale dynamics, its effect on the fast scale dynamics is negligible [6].

3.2 Local Mappings

Since the vector fields between the switching events are linear we can use the exact
analytical solution to express the value of the state vector at the end of a switching
cycle in terms of its value at the beginning of that cycle, Fig. 2. The local Poincaré
map of the system within switching sub-intervals can be obtained by using (4) during
the corresponding interval [2]. Let us define xk = x(kT ), xd = x((k + dk)T ),
xk+1 = x((k + 1)T ) where dk is the duty cycle during the cycle (kT, (k + 1))T .
Therefore, the local mappings are given by

xd := P1(xk) = �1(dk T )xk + �1(dk T ) (5a)

xk+1 := P2(xd) = �2((1 − dk)T )xd + �2((1 − dk)T ) (5b)

where, according to (5a) and (5b), �k(t) and �k(t) are defined by:

�k(t) = eAk t and �k(t) = A−1
i (eAi t − I)Bi w (6)

Most parts of this chapter require only a very moderate knowledge of mathematics.
What is importantly required is just an understanding of the previous solution and
simple algebraic matrix arrangements as it will be shown later.
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3.3 Linear Poincaré Map for the Open Loop System

The mapping describing the system behavior between the time instants kT and (k +
1)T can be obtained by composing the two previously presented local mappings [2],
i.e., the Poincaré map P = P2 ◦ P1 of the switched PWM system described by the
vector fields given in (1) and (2) can be written in the following form

xk+1 = �(dk)xk + �(dk) (7)

where �(dk) and �(dk) are given by:

�(dk) := �2((1 − dk)T )�1(dk T ) (8a)

�(dk) := �2((1 − dk)T )�1(dk T ) + �2(dk T ) (8b)

3.4 Closing the Loop: The Source of Nonlinearity

For appropriate operation of PWM systems and regulation of some suitable outputs
in the presence of parameter changes, output feedback is used. Often an integrative
action is necessary in order to regulate a certain output variable xo to get a zero
steady-state error between this output variable and the desired reference xref . First,
the error e := xref − xo is computed and then it is processed through a compensator
containing an integrator to increase, in average, the DC gain of the system while
other poles and zeroes of the compensator are selected with the aim to meet some
design specifications like maximum allowed overshoot and system response speed
and settling time due to step changes. As it has been mentioned before, this integral
action has a negligible effect on the fast scale instability [6]. Therefore, we exclude
the integral variable from the analysis. The feedback loop together with the PWM
process imposes the following constraint between the state variables x(dk T ) and the
duty cycle dk at the kth switching cycle

σ(x(dk T ), dk) : = −Cᵀxd − r(dk T )

= −Cᵀ�1(dk T )xk + �1(dk T ) − r(dk T ) = 0 (9)

The expression in (9) is nonlinear in dk and it is responsible for many nonlinear
phenomena that could take place in PWM systems.

3.5 Steady-State Response of the Poincaré Map

In this section, let D be the steady-state duty cycle. Let also �1 = eA1 DT and
�2 = eA2(1−D)T , �1 = A−1

1 (eAi DT − I)B1w and �2 = A−1
2 (eAi ((1−D)T ) − I)B2w.

Let xss(0) be the steady-state value of the periodic orbit of the system at the beginning
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of the switching period and xss(DT ) be the steady-state value of this orbit at time
instant DT . Therefore, in steady-state, according to (4), the vector of state variables
at the beginning of the switching period is given by (Fig. 1)

xss(0) = xss(T ) = �2xss(DT ) + �2 (10)

In turn, the vector of state variables at the switching time DT within the same period
can be expressed as follows

xss(DT ) = �1xss(0) + �1 (11)

Using (10) in (11), one obtains

xss(DT ) = �1�2xss(DT ) + �1�2 + �1 (12)

Therefore, the steady-state value of the state variables xss(DT ) at the time instant
DT is given by

xss(DT ) = (I − �1�2)
−1(�1�2 + �1) (13)

Let � = �1�2 and � = �1�2 + �1. Then, (13) can be simplified as follows

xss(DT ) = (I − �)−1� (14)

where the matrix (I − �) is assumed to be nonsingular. It should be noted that the
previous system is open loop stable if the integral state variable is excluded because
the matrices Ai are supposed to represent dissipative linear system configuration. The
monodromy matrix of the open loop system is the product of the monodromy matrices
corresponding to the two linear configurations. Both monodromy matrices are stable
because they are exponential matrix functions of Hurwitz matrices. Therefore, the
product of both monodromy matrices is a Jury matrix and then the open loop system
is stable. Note also that if the integrator was included in the model, the open loop
system response would be unbounded unless the input to the integrator is zero.

The stability of periodic orbits of a closed loop PWM system can be analyzed by
checking the evolution of a small perturbation in the state variable within one period.
This problem can be tackled by different ways. One of the most used techniques is
to analyze the stability of the fixed points of the Poincaré map of the closed loop
system by using its Jacobian matrix. The periodic orbit will be stable if this matrix
evaluated at the associated fixed point has eigenvalues with modulus less than 1.
Another technique is by using Floquet theory and Filippov method which leads to
the same results [6]. In this chapter a different approach will be used which is based
on the analysis of the steady-state response of the Poincaré map to periodic and
subharmonic excitations [26].
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4 A Steady-State Approach for Predicting Fast Time-Scale
Instabilities

Using the steady-state response for predicting fast-scale instability in the form of
subharmonic oscillation has been first introduced in [17] for a simple case of a
PWM system with linear plant which consists of a DC-DC buck converter under
voltage mode control. Years later, this method has been re-considered in [3, 5].
The method in both works consists of a Fourier series expansion of the feedback
signal and its use for predicting stability boundaries after imposing a certain system
periodic regime by the PWM process. With that approach an effort to transform the
results from the Fourier frequency-domain into the time-domain must be done. In
[5], the transformation from the Fourier frequency-domain to the time-domain is
based on elementary partial fraction decomposition after defining some elementary
cases of the system transfer function in the s−domain and listing them in the form
of tables. However, this transfer function cannot be directly defined for systems with
A2 �= A1 making the approach only applicable for a limited class of PWM systems
like the ones considered in [5]. In particular, those can be formulated in the form
of a linear subsystem and a square-wave signal generated by a comparator like the
PWM process. It should be noted that in [5] the approach is based on the Fourier
series expansion to a system with theoretically A2 �= A1 was applied but by making
an approximation and an order reduction leading finally to the simple linear case
A1 = A2. Another different type of approximation leading to the same consequence
A1 = A2 has been used and justified in [7] for this kind of systems. In [20], the Poisson
sum formulae and some related Fourier series properties have been used to transform
the condition for PD occurrence derived in [5] from the Fourier frequency-domain to
a matrix-form state-space time-domain condition. It was shown in this study that a
steady-state analysis of the trajectory of the system in the time-domain without any
order reduction, except from excluding the integrator, will lead to new equivalent
simple expressions without need to use the Fourier series expansion and without
having to perform any transformation nor needing the calculation of the Jacobian or
the monodromy matrix.

4.1 Predicting SN Bifurcation

SN bifurcation or tangent bifurcation is a type of local bifurcations that can take
place in nonlinear continuous-time dynamical systems. This nonlinear phenomenon
is characterized by the fact that two solutions of a continuous system collide and
annihilate each other at a certain critical value of the system bifurcation parameter.
When the system is represented by a Poincaré mapping obtained by sampling a
continuous-time system as it is the case in PWM systems, these solutions correspond
to periodic orbits of the original system and the phenomenon is also called cyclic
fold bifurcation.
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Fig. 3 SN bifurcation in a nonlinear dynamical system

In steady state the feedback loop together with the PWM process imposes the
following constraint between the state variables xss(DT ) and the steady-state duty
cycle D

σss(D) := σ(xss(DT ), DT ) := −Cᵀxss(DT ) − r(DT ) = 0 (15)

If a SN bifurcation takes place at a certain critical value of the system bifurcation
parameter, there must be a tangency between the feedback signal—Cᵀxss(DT ) and
the ramp signal r(DT ) for the imposed steady-state duty cycle D in such a way
that two solutions of (15) coalesce and disappear (Fig. 3). The number of solutions
of (15) equals to the number of T —periodic orbits that exist for a specific set of
parameters. Therefore, from (15), the following equality holds at this critical point

∂σss(D)

∂ D
= 0 ⇒ −∂Cᵀxss(DT )

∂ D
= ∂r(DT )

∂ D
(16)

Let σe(D) = 1/T × ∂r/∂ D be the slope of the external T —periodic signal r(t) at
time instant DT . Therefore, (16) becomes

− 1

T
Cᵀ∂xss(DT )

∂ D
= σe(D) (17)

The derivative of the left side of (17) can be obtained by using (14) and differentiating
the involved matrix functions. Let us calculate the derivative ∂xss(DT )/∂ D. Using
(14) one obtains

∂xss(DT )

∂ D
= ∂

∂ D
(I − �)−1� + (I − �)−1 ∂�

∂ D
(18)

Using known chain rules for matrix derivative, (18) can be written as follows

∂xss(DT )

∂T
= (I − �)−1 ∂�

∂ D
(I − �)−1� + (I − �)−1 ∂�

∂ D
(19)
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Making the term (I − �)−1 as a common factor results in the following equation

∂xss(DT )

∂ D
= (I − �)−1

(
∂�

∂ D
(I − �)−1� + ∂�

∂ D

)
(20)

then by using (14), the expression (20) becomes

∂xss(DT )

∂ D
= (I − �)−1

(
∂�

∂ D
x(DT ) + ∂�

∂ D

)
(21)

The derivative of the involved matrix function ∂�(D)/∂ D can be calculated as
follows

∂�

∂ D
= ∂

∂ D
(�1�2)

= �1(A1 − A2)�2T (22)

Likewise, the derivative of ∂�(D)/∂ D can be obtained by

∂�

∂ D
= ∂

∂ D
(�1�2 + �1)

= ∂

∂ D
(�1)�2 + �1

∂

∂ D
(�2) + ∂

∂ D
(�1)

= �1((A1 − A2)�2 + B1 − B2)T (23)

Let ΔA = A1 − A2 and ΔB = B1 − B2. Substituting (22) and (23) in (21), the
critical boundary condition for SN bifurcation boundary in (17) becomes

σe,SN(D) = σe(D) (24)

where σe,SN(D), the critical slope of the external function r(t) for SN bifurcation
occurrence, can be expressed by

σe,SN(D) = −Cᵀ(I − �)−1�1(ΔAxss(0) + ΔB) (25)

Taking into account that A1x(t) + B1 = ẋ(t−) = f1(x, w) and that A2x(t) + B2 =
ẋ(t+) = f2(x, w), the critical value of the slope of the external T —periodic function
at the boundary of a SN bifurcation is

σe,SN(D) = −Cᵀ(I − �)−1�1Δf(xss(0)) (26)

where Δf(x) = f1(x, w) − f2(x, w). It has to be mentioned here that in [4, 8] a
slightly differently expressed condition has been obtained for the same boundary
condition which is reported and adapted here for comparison
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σe,SN(D) = −Cᵀ[f1(xss(D−T )) + �1(I − �2�1)
−1])�2Δf(xss(DT )) (27)

Although apparently the condition (27) derived in [4, 8] and that in (26) do
not coincide, they just happen to be the same conditions but expressed differently.
Note however that the expression (26) is simpler than (27). To illustrate the use
of the previous expression, let us consider the following three different cases of
compensating external signals:

• Case of a linear compensating ramp signal

r(t) = r0 + σet (28)

where r0 is the initial value of the external signal at t = 0 and σe is its constant
slope. This is the ideal case of most PWM systems. Since the slope is constant,
the right-hand side of (24) is given by

σe(D) = σe ∀D (29)

• Case of a quadratic modulating signal. For improving the performances of some
switching PWM systems, a quadratic modulating signal can be used [21, 22]. Let
σ0 be the initial slope of the external signal at t = 0 and let σT be its final slope at
t = T . Therefore, this signal can be expressed as follows

r(t) = r0 + σ0t + 1

2T
(σT − σ0)t

2 (30)

In this case, the slope is linearly dependent on the duty cycle D and the right-hand
side of (24) can be expressed as follows

σe(D) = σ0 + (σT − σ0)D (31)

• In a practical implementation, the external modulating signal is implemented by
a first order low pass filter system making its shape more exponential than linear.
In this case, the ramp signal r(t) can be expressed as follows

r(t) = r0 + σ0τ(1 − e− t
τ ) (32)

where τ is a suitable time constant and σ0 is the initial slope at the beginning of
the switching cycle. The slope is exponentially depending on the duty cycle D and
the right-hand side of (24) is given by

σe(D) = σ0e− DT
τ (33)
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4.2 Application Examples for Predicting SN Bifurcation

4.2.1 General Bilinear Plants

Example 1: Consider a boost converter under state feedback control with the
parameter values considered in [23] (Fig. 4). These are: input voltage vg =
5 V, inductance L = 50 µH, capacitance C = 4.4 µF, voltage feedback
gain kv = −0.0435, current feedback gain ki = 0.174 �, voltage reference
Vref = 0.13 V, load resistance R = 28 �. Three different values of switching
frequency are used to illustrate the occurrence of SN bifurcation. The system
matrices and vectors are as follows

A1 =
(

− 1

RC
0

0 0

)
, A2 =

⎛
⎜⎝− 1

RC

1

C

− 1

L
0

⎞
⎟⎠

B1 = B2 =
(

0
1

L

)
, x =

(
vC1

iL1

)
, w = vg, C =

(
kv

ki

)

All the parameters appearing in the matrices can be identified in the circuit
diagram of Fig. 4.

Numerical simulations in [23] confirm that the system is stable for switching fre-
quencies greater than fs = 500 kHz and unstable for lower frequencies. For fs =500
kHz, it was shown in [24] that the system has one stable operating solution with duty
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iL
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Fig. 4 Boost converter under a state feedback control
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Fig. 6 The effect of the type
of the modulator on the SN
bifurcation
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cycles D ≈ 0.58 and one unstable solution with D ≈ 0.70. This instability has been
explained numerically by expanding the system waveforms in the form of a Fourier
series and a Picard iterative process applied to the function f (D) = −Cᵀx(DT ).
The statement in [23] that the system is unstable has been refined using the concept
of the basin of attraction. It has been stated that starting in the (possibly small) basin
of attraction of the behavior corresponding to the stationary duty cycle D ≈ 0.58 the
system converges to a periodic regime characterized by this duty cycle value. Hence,
starting in this domain of attraction the system exhibits a stable behavior. However,
transient solutions outside this basin are unstable and the system do not converge to
the desired periodic regime. Here we confirm the result reported in [24] by using the
new derived expression (26) and we show that the critical value for occurrence of
SN bifurcation is fs ≈ 705 kHz.

Figure 5a shows the boundary of SN in the parameter space (D, σe) by considering
a linear ramp modulator for different values of switching frequency fs . Figure 5b
shows the steady-state switching function σss(D) for the same values of the switching
frequency where it can be observed that for fs ≈ 705 kHz the system is indeed at the
boundary of SN bifurcation. In order to show the effect of the type of the modulator
signal on the system behavior, Fig. 6 shows the switching function σss(D) in term
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of the steady-sate duty cycle D. The switching frequency is fixed at fs = 1 MHz. It
can be observed that while the stability is improved with an exponential modulator,
it is worsened in the case of a quadratic modulator. For a fair comparison, the same
value of ramp amplitude VM = 1 V is used for the three modulators.

4.2.2 Special Linear Plants

Example 2: The second example that will be considered in this study is a
buck converter driving another converter both under current mode control.
The second converter can be approximated by a constant current sink [25]. All
the parameters appearing in the matrices can be identified in the circuit diagram
of Fig. 7. Because A1 = A2, the plant is linear. The used parameter values are
the same ones of [25] and are as follows: input voltage vg = 120 V, inductance
L = 37.5µH, DC parasitic of the inductance rL = 0.01 �, capacitance value
C = 420µF, equivalent series resistance of the capacitor rC = 0.01�, output
current io = 38 A and switching frequency fs = 50 kHz. The system matrices
and vectors are as follows

A1 = A2 =
⎛
⎜⎝ 0

1

C

− 1

L
−rL + rC

L

⎞
⎟⎠ ,

B1 =
⎛
⎜⎝

1

C
0

1

L

rC

L

⎞
⎟⎠ , B2 =

⎛
⎝

1

C
0

0
rC

L

⎞
⎠ ,

x =
(

vC

iL

)
, w =

(
vg
io

)
, C1 =

(
1
0

)

Figure 8 shows σss(D) which gives the possible operating steady-state duty cycles
for different values of iref just below and just above the SN critical point. This
figure also shows the stability map of the system in the parameter space (D, σe). For
D < 0.5, the system has only one solution. For D > 0.5, three different regions
can be identified. The first one is σe < σe,SN where the system presents no solution.
The second one is σe,SN < σe < Vg/(2L) where the system presents one stable
solution and one saddle. The last one where σe > Vg/(2L) and the system presents
one stable solution. For this particular example it turns out that the boundary of the
SN bifurcation in the parameter space (D, σe) is approximately a straight line whose
slope is Vg/L and passing from D = 0.5 and its maximum value is Vg/(2L) for
D = 1. Therefore, by choosing σe = Vg/(2L) will guarantee that the system to have
only one solution independently on the value of the steady-state cycle.
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4.3 A Steady-State Approach for Predicting PD Bifurcation

4.3.1 Steady-State Response of the Second Iterate Poincaré Map

Consider a switched dynamical system under PWM exhibiting a PD bifurcation as
shown in Fig. 9. After this phenomenon takes place, a 2T -periodic solution devel-
ops at the critical point while in contrast to the SN bifurcation case, the T -periodic
solution loses its stability but it continues to exist. During the switching cycle of
duration T , a PWM system has two phases defined by the system matrices (A1, B1)
and (A2, B2), respectively. During the switching cycle of duration 2T , this system
has four phases defined by the system matrices (A1, B1), (A2, B2), (A1, B1) and
(A2, B2), respectively. Let us assume that the system behavior in steady-state is a
2T -periodic orbit. Therefore, during two consecutive switching periods in the inter-
val (kT, (k + 2)T ), let the crossing between the signals −Cᵀx(t) and r(t) occurs at
t = (D − εt + k)T and at t = (1 + D + εt + k)T , k ∈ Z (see Fig. 10). The para-
meter εt is a small quantity that vanishes at the boundary between T —periodic and
2T -periodic behavior. At this point, the T -periodic solution and the 2T -periodic
solution are coincident (Fig. 9). By obtaining the expression of the 2T -periodic
steady-state solutions at the switching instants, imposing the corresponding feed-
back constraints imposed by the PWM process and equating them at the critical
point (εt → 0 ), a condition for predicting PD bifurcation is obtained in terms of the
system matrices containing all the parameters.

From the switching conditions at the two switching instants t = (D + εt )T and
t = (1 + D + εt )T , the following equalities hold

−Cᵀxss((D − εt )T ) = r((D − εt )T ) (34a)

−Cᵀxss((D + εt + 1)T ) = r((D + εt )T ) (34b)
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+

−
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+

−
vtri (t)
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T

L

iL

rL
S

ioDvg +

+

σ

Fig. 7 Schematic circuit diagram of a buck converter under a current mode control loaded by a
constant current source as a load representing a downstream converter also under current mode
control
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Fig. 9 Sketch of a PD
bifurcation in a switched
dynamical system under
PWM and the corresponding
waveforms before and after
the bifurcation takes place by
sweeping a parameter

PD bifurcation

Bifurcation parameter

2T -periodicT -periodic

x

Fig. 10 Waveforms of the
T —periodic external signal
r(t) and the feedback signal
−Cᵀxss(t) at 2T —periodic
regime in steady-state

While in [5], the previous equations are expressed in the Fourier frequency domain
in the case of an example of PWM systems with linear plant for which A1 = A2, in
this chapter these two equations are treated generally for the bilinear case directly
in the time-domain without any extra effort to go back from the Fourier frequency-
domain into the time-domain. Exhibiting a 2T -periodic regime, the sampled value
of the steady-state variables of the system at the switching instants (D − εt )T and
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(D + εt + 1)T can be obtained by using (4) and forcing 2T —periodicity. By doing
so, it can be expressed as follows

xss((D − εt )T ) = (I − �−(εt ))
−1�−(εt ) (35a)

xss((D + εt + 1)T ) = (I − �+(εt ))
−1�+(εt ) (35b)

where all the matrices and vectors appearing in the previous equations are given by

�−(εt ) =�̄1�̄4�̄3�̄2 (36a)

�+(εt ) =�̄3�̄2�̄1�̄4 (36b)

�−(εt ) =�̄1�̄4�̄3�̄2 + �̄1�̄4�̄3 + �̄1�̄4 + �̄1 (36c)

�+(εt ) =�̄3�̄2�̄1�̄4 + �̄3�̄2�̄1 + �̄3�̄2 + �̄3 (36d)

and

�̄1 = �1e−A1εt T , �̄1 =
∫ (D−εt )T

0
eA1τ dτB1w (37a)

�̄2 = �2eA2εt T , �̄2 =
∫ (1−D+εt )T

0
eA2τ dτB2w (37b)

�̄3 = �1eA1εt T , �̄3 =
∫ (D+εt )T

0
eA1τ dτB1w (37c)

�̄4 = �2e−A2εt T , �̄4 =
∫ (1−D−εt )T

0
eA2τ dτB2w (37d)

Subtracting (34a) from (34b), one obtains

−Cᵀ(xss((D +1+εt )T )−xss((D −εt )T )) = r((D +εt )T )−r((D −εt )T ) (38)

The boundary of PD bifurcation can be located by taking the limit in (38) when the
parameter εt → 0. Therefore, at the onset of this instability the following equality
holds

− lim
εt →0

Cᵀ(xss((D+1+εt )T )−xss((D−εt )T )) = lim
εt →0

r((D+εt )T )−r((D−εt )T )

(39)

While the right-hand side of (39) is generally easy to obtain, the left-hand side of
the previous equation is mathematically more involved. Let us first focus on the
right-hand side of (39) and let us obtain it for three different cases of PWM signals:
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• In the case of a linear ramp compensating signal, the right-hand side of (39) is
given by

lim
εt →0

r((D + εt )T ) − r((D − εt )T ) = 2σeT (40)

• In the case of a quadratic modulating signal, the right-hand side of (39) can be
easily expressed as follows

lim
εt →0

r((D + εt )T ) − r((D − εt )T ) = 2T (σ0 + (σT − σ0)D) (41)

• In a practical implementation, the slope is exponentially depending on the duty
cycle D and the right-hand side of (39) is given by

lim
εt →0

r((D + εt )T ) − r((D − εt )T ) = 2σ0T e− DT
τ (42)

As it was mentioned previously, the left-hand side of the previous equation is mathe-
matically more involved. For simplicity let us consider that the external T —periodic
function is linear during the switching period in such a way that its slope σe is constant
and that (39) can be written as follows

σe,PD(D) = σe (43)

where σe,PD(D), the critical slope for PD bifurcation boundary, is given by

σe,PD(D) = − lim
εt →0

1

2εt T
Cᵀ(xss((D + 1 + εt )T ) − xss((D − εt )T )) (44)

By using (35a)–(35b), the limit expression in (44) becomes

σe,PD(D) = − lim
εt →0

1

2εt T
((I − �+(εt ))

−1�+(εt ) − (I − �−(εt ))
−1�−(εt ))

(45)

By calculating the limit in the previous expression, the following condition is obtained
at the boundary of subharmonic oscillation

σe,PD(D) = −Cᵀ[(I − �)−1�1(f1(xss(0)) + f2(xss(0)))] (46)

More calculation details can be found in [26]. It is worth mentioning here that in
[4], a slightly differently expressed condition has been obtained using a different
approach based on solving the eigenvalue problem of the z-domain characteristic
equation, for the same boundary condition which is reported and adapted here for
comparison
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σe,PD(D) = −Cᵀ[f1(xss(DT −)) − �1(I − �2�1)
−1]�2Δf(xss(DT )) (47)

Although they are expressed differently, the critical ramp slope for PD bifurcation
given in (46) and the one derived in [4] and shown in (47), are coincident. Note
however that (46) is simpler than (47).

4.4 Application Examples for Predicting PD Bifurcation

4.4.1 General Bilinear Plants

Example 3: The system which will be considered in this section is a boost
converter under a current mode peak controller. The state variables are the
capacitor voltage vC and the inductor current iL . The system matrices and
vectors are as follows

A1 =
(

− 1

RC
0

0 − rL
C

)
, A2 =

⎛
⎜⎝

− 1

RC
1
C

1

C
− rL

C

⎞
⎟⎠

B1 = B2 =
(

0
1
L

)
, x =

(
vC

iL

)
, w = vg, C =

(
0
1

)

where R is the load resistance, L is the inductance with equivalent series
resistance rL , C is the output filtering capacitance and vg is the input voltage.
The peak current is iref . The duty cycle D is varied by varying iref . The used
parameter values are as follows: input voltage vg = 5 V, inductance L = 200
µH, DC parasitic of the inductance rL = 0.1 �, capacitance value C = 10µF,
load resistance R = 15 � and switching frequency fs = 10 kHz.

It can be demonstrated that SN bifurcation is not possible in this case because the
switching function σss(D) is monotone with respect to the duty cycle D. However,
PD can take place in this converter if a suitable parameter is varied. One would be
interested on determining the boundary in the parameter space of this instability.
Figure 11 shows such a boundary in the parameter space (D, σe) for the system. It
is worth noting that a traditional approximated approach will predict PD instability
for duty cycle values larger than 0.5 in the case of not using a compensating ramp
(σe = 0). Note that the exact closed-form expression predicts a lower critical value
of the duty cycle (Dc ≈ 0.43). Therefore, the approximated conventional approach
could predict stability for a PWM system while it exhibits subharmonic oscillation
due to PD bifurcation.
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Fig. 11 PD bifurcation
curve in terms of the duty
cycle D and the slope σe of
the compensating ramp for a
boost converter under peak
current mode control. The
curve 	PD(D) represents the
boundary
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4.4.2 Special Linear Plants

The switched model for a PWM system with linear plant can be expressed in compact
form as follows

ẋ = Ax + Bu + B2w, xc = Cᵀ(Xref − x) (48)

where B = (B1 − B2)w. Let the Markov parameters of the system described by the
3-tuple (A, B, C) as follows [27]

μk = CᵀAk−1B, k = 1, 2.... (49)

Hence, performing a Taylor series expansion on (46), the following equality holds
at the onset of subharmonic instability

σe,PD(D) =
∞∑

k=1

μk−1Sk(D)T k−1

≈ μ0(D − 1

2
) + μ1T

(
D2

2
− D

2
+ 1

4

)
(50)

The functions Sk(D) are related to the kth order Clausen polynomials clk(θ)

shown in Table 1 and having the following property [28].

d

dθ
clk(θ) = (−1)kclk−1(θ) for k = 2, 3 . . . (51)

Moreover, the presence of these terms in (50) is largely dependent on the relative
degree of the system (48) where the input is the command driving signal u and the
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Table 1 Polynomial functions clk(θ) and Sk(D)

k clk(θ) Sk(D)

1
1

2
(π − θ) D − 1

2

2
π2

6
− πθ

2
+ θ2

4

D2

2
− D

2
+ 1

4

3
π2θ

6
− πθ2

4
+ θ3

12

D3

6
− D2

4
+ D

12

output is the control signal xc. The relative degree rd of a single-input single-output
system is the smallest integer such that the Markov parameter CᵀArd−1B �= 0, i.e.,

rd = inf{k ≥ 0 : μk �= 0} (52)

The PWM system (plant including the controller) will have therefore a relative degree
rd such that [27]

rd = 1 if μ0 = CᵀB �= 0, (53a)

rd = 2 if μ0 = CᵀB = 0 and μ1 = CᵀAB �= 0 (53b)
...

Example 4: Let us apply the previous theoretical results to a buck converter
with a simple proportional-integral (PI) control. The expressions of the matrix
A and vector B are given by

A =

⎛
⎜⎜⎜⎝

− 1

RC

1

C
0

− 1

L
0 0

−1 0 0

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎝

0
1

L
0

⎞
⎟⎠ , w = vg

The vector of the state variables after excluding the integrator is x(t) =
(vC , iL)ᵀ. Therefore, the vector Cᵀ = (kv 0), where kv is a voltage feed-
back gain. Figure 12 shows a schematic circuit diagram of a DC-DC buck
converter under voltage mode PI control. All the parameters appearing in
the matrices can be identified in the circuit diagram of Fig. 12. Because
A1 = A2, the plant is linear. The parameter values used are inductance
L = 20 mH, capacitance C = 47 µF, lower value of the ramp modulator
signal Vl = 3.8 V, its amplitude VM = 4.4 V, switching period T = 400 µs,
voltage reference, vref = 11.3 V and voltage feedback gain kv = 8.4,
[6, 19, 29].



Using Steady-State Response for Predicting Stability Boundaries … 389

T

PWM
vrefxc

c

(t)u(t)

stri(t)

T

DT

VM

vg

iL

R

S

+ vcv
+

−−

T

CLK

L

+

−
C

Vl

+

−Voltage

Controller

Fig. 12 Block circuit diagram of a DC-DC buck converter under PI voltage mode control

Fig. 13 Exact and
approximated stability
surface v∗

g (T/(RC), D) in
terms of the duty cycle D
and T/(RC) showing that
only for high values of
T/(RC) � 1 (not practical),
(50) is not accurate enough
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The control signal can be expressed as xc = Cᵀ(Xref − x) = kv(vref − vc).
The time constant of the integrator is selected to be τ = 0.01 s which is much
larger than the switching period to ensure slow time-scale and to reduce its effects
on the fast scale instability. Traditionally, the dynamic behavior of the system in this
example has been studied in terms of the input voltage vg and the load resistance R
[6, 19, 29]. In Fig. 13, the exact mesh plot of the critical value of the input voltage
v∗
g (T/(RC), D) from (46) is shown together with the approximated plot from (50)

using the first two terms in the expansion. From this figure, it can be observed
that for T/(RC)  1, a good concordance between the exact and the approximated
expressions is obtained, while a discrepancy exists between their corresponding plots
for relatively large values of T/(RC). This discrepancy becomes significant for time
constant RC approaching the switching period T . Only for T/(RC) � 1, (50) will
give inaccurate results. However, this is not a practical case since the time constant
of the converter filter must be much larger than the switching period in all practical
implementations of switching converters in particular and PWM systems in general.
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Finally, it should be noted that this example uses a LEM strategy and a change of
variable D → (1 − D) := D must be done in (46) together with a sign inversion in
the voltage feedback gain.

5 Conclusions

In this chapter closed-form conditions for predicting the fast-scale stability bound-
aries corresponding to both saddle-node (SN) and period-doubling (PD) bifurcations
have been derived for a class of PWM switching systems with bilinear plants. The
results presented in this chapter can also be applied to the special case of switched
systems with linear plants. Hence, for both cases, the effect of the different parameters
of the system upon the stability boundary can be easily unveiled. The general-purpose
derived expressions can be applied to different examples of PWM systems such as
switching power converters, switched capacitor chaos generators, temperature con-
trol systems and hydraulic valve drive control among others. The stability boundaries
have been derived without the need of the Jacobian matrix and without expressing
the system trajectories in the Fourier frequency-domain and without any order reduc-
tion apart from excluding the integrator which has negligible effect on the fast scale
instabilities. The simple asymptotic time-domain approach used in this chapter can
be better understood by practitioners than those based in frequency-domain approach
or on the eigenvalue problem of the Jacobian or the monodromy matrix.
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