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Abstract This chapter describes the dynamic behaviour of a coupled system where
a nonlinear oscillator is attached and driven harmonically by an electro-dynamic
shaker. The shaker is modelled as a linear single degree-of-freedom oscillator and
the nonlinear attachment is modelled as a hardening Duffing oscillator. The attach-
ment consists of four elastic wires, represented as springs, and its nonlinearity is
due to the geometric configuration of the springs, which incline as they extend. The
mass of the nonlinear system is much less than the moving mass of the shaker so
that the nonlinear system has little effect on the shaker dynamics. The objective is
to explore the dynamic behaviour of this system under a range of different condi-
tions. Of particular interest is the situation when the linear natural frequency of the
nonlinear system is less than the natural frequency of the shaker such that the fre-
quency response curve of the nonlinear system bends to higher frequencies and thus
interacts with the resonance frequency of the shaker. It is found that for some values
of the system parameters a two-part frequency response curve can occur: a closed
detached curve can appear as a part of the overall amplitude-frequency response, and
this detached curve can lie outside or inside the main continuous resonance curve.

1 Introduction

When a nonlinear oscillator is attached to a linear host structure, complex dynamics
can occur [1, 2]. In particular, if it is assumed that the linear system is excited by a
harmonic force, and that the responses of the two degree-of-freedom (DOF) system

G. Gatti
University of Calabria, 87036 Rende (CS), Italy
e-mail: gianluca.gatti@unical.it

M.J. Brennan
Universidade Estadual Paulista, 15385-000 Ilha Solteira (SP), Brazil
e-mail: mjbrennan0@btinternet.com

I. Kovacic (B)

Faculty of Technical Sciences, University of Novi Sad, 21125 Novi Sad, Serbia
e-mail: ivanakov@uns.ac.rs

© Springer International Publishing Switzerland 2015
M. Belhaq (ed.), Structural Nonlinear Dynamics and Diagnosis,
Springer Proceedings in Physics 168, DOI 10.1007/978-3-319-19851-4_14

283



284 G. Gatti et al.

are predominantly harmonic at the frequency of excitation, multi-valuedness of the
steady-state solution may occur, which affects the shape of the frequency response
curve (FRC). Due to the coupling with the attachment, and for some particular
combinations of the system parameters, the FRC can have interesting features, such
as a detached resonance curve (DRC), lying inside or outside the main continuous
FRC. Outer DRCs have been identified in several studies for the case of a purely
nonlinear attachment with no linear stiffness term [3–7]. For the same condition,
i.e. in the case when the attachment has a quasi-zero-stiffness (QZS) characteristic
around the equilibriumposition, innerDRCsmay also appearwith stable andunstable
parts. These inner DRCs are of particular interest in this chapter.

For the sake of clarity, some assumptions are adopted in this study. The general
aim is to limit the number of system parameters, so that on the one hand, their
effect on the main features of the system dynamics are retained, and on the other
hand, a quantitative insight is possible without additional cumbersome mathematical
formulation. Further, it is assumed that the mass of the nonlinear attachment is
small compared to that of the linear system. The effect of this assumption is that
the nonlinear system does not have an appreciable effect on the vibration of the
forced linear system. Although such an assumption is reasonable for the testing of a
nonlinear attachment by a shaker, it excludes the nonlinear absorber as an application
example. However, the interested reader can find more on this latter application in
[8]. Regarding the type of excitation, it is assumed to be a harmonic force with a
constant amplitude as frequency changes. With reference to the test of a nonlinear
system using an electro-dynamic shaker, this implies that the shaker is supplied with
a constant current at each frequency. This can easily be achieved in practice using
commercially available shakers and controllers.

2 Mechanical and Mathematical Model

2.1 System Description

The practical system of interest in this chapter is depicted in Figs. 1 and 2. Pho-
tographs of the system are shown in Fig. 1a, b, and a schematic representation is
shown in Fig. 2. A small mass m, is attached to a large shaker via a support frame,
and the connection between the small mass and the support frame is made by four
elastic wires, which can be modelled as four springs of stiffness k and a damper c.
The initial tension in the wires can be adjusted upon assembly and has a profound
effect on the stiffness of the system attached to the shaker. When the small mass
vibrates in the horizontal direction, the springs stretch in tension, thus creating a
geometric stiffness nonlinearity. The electro-dynamic shaker, which is used to excite
the system, can be modelled as a linear system consisting of a parallel combination
of a spring ks and a damper cs connected to a mass ms , which is made up of the
moving mass of the shaker and the support frame, and is much larger than the mass
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Fig. 1 Practical system under consideration, consisting of a nonlinear system attached to an electro-
dynamic shaker: a photograph of the system, b photograph showing the details of the nonlinear
system attached to the shaker

Fig. 2 Schematic view of
the shaker and the nonlinear
attachment

m. If the shaker is driven by a constant current at each frequency, the excitation can
be modelled as a harmonic force with constant amplitude, F cos(ωt) as shown in
Fig. 2.

2.2 System Modelling

The wires connecting the small mass to the support structure can be modelled as
shown in Fig. 3a. The distance d is equal to the length of the springs when they are
assembled and the system is at rest. When the mass moves in the z direction, the
springs incline to accommodate the motion as shown in the figure and it is the change
in their length that causes the nonlinearity. Note that the effect of gravity on the mass
is neglected. The relationship between the static restoring force f in Fig. 3a, and
the resulting relative displacement z between the mass and the support structure, is
given by
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Fig. 3 Nonlinear system attached to the shaker: a schematic view; b non-dimensional restoring
force as a function of the non-dimensional relative displacement for d0/d = 0.9, exact expression
(solid line), approximate expression (dashed line)

f = 4kz

(
1 − d0√

z2 + d2

)
, (1)

where d0 ≤ d is the length of the unstretched spring.
Using the McLaurin expansion to the third order for small z, (1) can be written as

f ≈ k1z + k3z3, (2)

where k1 = 4k
(
1 − d0

d

)
and k3 = 2k d0

d3 . The non-dimensional form of (1) and its

approximation given by (2) are illustrated in Fig. 3b, for the particular case when
d0
d = 0.9. It can be seen that for a relative displacement z = xs − x less than about
40% of the length d, the percentage error between (1) and (2) is less than 5%.
Furthermore, this error reduces for decreasing values of d0

d .
Using the approximate expression for the spring restoring force, the equations of

motion of the two DOF system depicted in Fig. 2 are given by

ms ẍs + cs ẋs + ks xs + cż + k1z + k3z3 = F cos (ωt), (3a)

mẍ − cż − k1z − k3z3 = 0 (3b)

Equations (3a), (3b) correspond to the simplified system depicted in Fig. 4 and can
be written in non-dimensional form as

y′′
s + 2ζs y′

s + ys + μy′′ = cos (�τ), (4a)

w′′ + 2ζw′ + ω2
0w + γ w3 = y′′

s (4b)

where x0 = F/ks is the static displacement of the primary mass; ys = xs
x0

, y =
x
x0

, w = z
x0

are the non-dimensional displacement of the primary and secondary

mass, and the corresponding relative displacement, respectively; ωs =
√

ks
ms

, ω1 =



An Investigation into the Dynamic Interaction … 287

Fig. 4 Simplified model of
the nonlinear system
attached to the shaker

√
k1
m , ω0 = ω1

ωs
are the undamped natural frequency of the primary mass alone on its

suspension, the linearized undamped natural frequency of the secondary mass alone
on its suspension, and the ratio between the two, respectively; ζs = cs

2msωs
, ζ = c

2mωs
are the damping ratios of the primary and secondary masses, respectively; τ =
ωs t,� = ω

ωs
, μ = m

ms
are the non-dimensional time, non-dimensional frequency

and mass ratio, respectively; γ = k3
μks

x20 is the nonlinear coefficient; and the primes
denote differentiation with respect to the non-dimensional time.

It should be noted that a change in γ can be interpreted as a change in the non-
linearity or in the amplitude of excitation or in the mass ratio, or a combination of
the three.

By assuming that the mass of the nonlinear attachment is small compared to that
of the linear system, so that

∣∣y′′
s

∣∣ � ∣∣μy′′∣∣, as in the practical situation discussed,
(4a), (4b) reduce to

y′′
s + 2ζs y′

s + ys = cos (�τ) (5a)

w′′ + 2ζw′ + ω2
0w + γ w3 = y′′

s . (5b)

Equation (5a) shows that the nonlinear system attached to the shaker has a negli-
gible effect on the shaker vibration so that the shaker vibrates predominantly as a
disconnected linear system, while (5b) describes a base-excited hardening Duffing
oscillator [2].
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3 Steady-State Response: Approximate Analytical Solution

3.1 Primary Resonance Response

Approximate solutions for the equations of motion given by (5a), (5b) are found
in terms of the primary resonance responses, assuming that the system responds
predominantly at the frequency of excitation, so that

ys ≈ Ys cos (�τ + ϕs), (6a)

w ≈ W cos (�τ + ϕ) (6b)

which also means that higher and lower order harmonics are negligible in the system
response.

Substituting (6a), (6b) into (5a), (5b) and applying the harmonic balance method
[9] results in

Y 2
s

[(
1 − �2

)2 + 4ζ 2s �2
]

= 1 (7a)

9

16
γ 2W 6 + 3

2
γ W 4

(
ω2
0 − �2

)
+ W 2

(
�4 + 4ζ 2�2 + ω4

0 − 2ω2
0�

2
)

− �4Y 2
s = 0.

(7b)

Equations (7a), (7b) define the amplitude-frequency behaviour of the system response
and show that the frequency response of the primary mass, is decoupled from the
motion of themass of the nonlinear attachment. This is due to the assumption adopted
that the mass ratio is relatively small. However, (7b) is coupled with (7a) by the
amplitude of the response of the primary mass Ys .

The focus of this chapter is on the amplitude-frequency relationships only, so the
expressions for the phases ϕs and ϕ in (6a), (6b) are not given.

Combining (7a) and (7b), gives the implicit amplitude-frequency equation, which
can be written as

9

16
γ 2W 6 − 3

2
γ W 4

(
�2 − ω2

0

)
+ W 2

(
�4 + 4ζ 2�2 + ω4

0 − 2ω2
0�

2
)

− �4[(
�2 − 1

)2 + 4ζ 2
s �2

] = 0. (8)

Equation (8) is used to plot the FRC shown later in this chapter. It is interesting
to note that, since it is cubic in W 2, this equation can yield up to three real solutions,
and thus a multi-valued response for the steady-state can occur.
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3.2 Stability

The stability of the steady-state solutions is calculated following the procedure in
[9] and the limits for stability are determined to be

�1,2 =

√√√√(
3

2
W 2γ − 2ζ 2 + ω2

0

)
±

√(
− 3

2
W 2γ + 2ζ 2 − ω2

0

)2
− 27

16
W 4γ 2 − ω4

0 − 3W 2γω2
0 .

(9)

Both (8) and (9) involve a relationship between the amplitude of the non-dimensional
relative displacement W and the non-dimensional frequency �. However, while (8)
is an implicit polynomial equation whose roots can be solved numerically in terms
of W for each value of � and of the system parameters, (9) is explicitly written in
terms of � as a function of W and of the system parameters. Both (8) and (9) can
then be plotted in the � − W plane. The solutions of (8) which are enclosed by the
two curves given by (9) correspond to unstable solutions. In the FRCs plotted in this
chapter, the unstable solutions are depicted by dashed lines while stable solutions
are represented by solid lines.

4 Steady-State Response: Experimental Work

4.1 Setup Configuration

The experimental setup is depicted in Fig. 5. The electro-dynamic shaker was driven
by a signal generator supplying a stepped-sine signal. Accelerometers were attached
to the support structure and to the small mass, while a signal conditioner and a
two-channel oscilloscope were used to observe the system response.

Before collecting data, two tests were carried out to broadly investigate the
dynamic behaviour of the system. For each test, the support wires had a differ-
ent initial tension. In the first test, a slow frequency sweep was applied from zero to

Fig. 5 Experimental set-up
configuration
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about 28Hz and the response of the system was monitored using the oscilloscope.
The first resonance was observed to be at about 19Hz, with both masses vibrating
with large amplitudes. As the frequency was increased beyond this, a second reso-
nance occurred at about 26Hz, in which only the vibration of the suspended mass
was large. This was followed by a sudden decrease in the motion of the suspended
mass (a jump-down). The frequency was then slowly swept down. A sudden increase
in the amplitude was observed at a frequency of about 22Hz, again for the suspended
mass only (a jump-up). At about 19Hz, the resonance response in which there was
large motion of both the support structure and the suspended mass was observable.
In the second test, similar behaviour was observed, but the jump-up and jump down
frequencies were found to occur at about 29 and 34Hz respectively.

To collect data, the shaker was then driven at discrete frequencies for the sys-
tem with the wires set with low and high initial tension, corresponding to the cases
described above, respectively. The excitation frequency was increased from 10 to
36Hz, with a 1Hz increment, and then decreased to 10Hz with the same frequency
increment. As mentioned previously, the amplitude of the excitation force was main-
tained at a constant level for all excitation frequencies, by manually adjusting the
power amplifier so that the current was 0.8 A. At each frequency, once the system
was at steady-state, five-second acceleration time histories were captured using a fre-
quency analyser. Subsequently, these data were processed to give the displacement
of the support structure and the suspended mass. The data are presented in terms of
the absolute displacement xs of the support structure and the relative displacement
z = xs − x between the support structure and the suspended mass. The Fourier
series coefficients are extracted from these two time histories and the amplitude of
the first harmonic of each data set is plotted at the corresponding frequency. This
can be seen in Fig. 6a, b for the system in which the springs have low initial tension,
and in Fig. 6c, d for the high initial tension springs, respectively. The data points in
each graph are denoted by a ‘+’ for increasing frequency and a ‘×’ for decreasing
frequency.

In Fig. 6a, c, which depict the response of the support structure, it can be seen
that, in each case, the FRC is similar, resembling the response of a single DOF linear
system. The peak, at about 19.5Hz corresponds broadly to the resonance frequency of
the shaker and the attached mass of the support structure. It is evident, therefore, that
the nonlinear system attached to the shaker has only a small effect on its response.
This is because the combined mass of the moving part of the shaker and support
structure is much greater than that of the suspended mass.

In the FRCs of the relative displacement Z , shown in Fig. 6b, d, in addition to the
peak associated with the resonance frequency of the shaker, a jump-down and jump-
up frequency can be seen, due to the response of the suspended mass. These are the
frequencies where there is a sudden change in the amplitude of the response when the
excitation frequency is changed very slowly [10]. The jump-down frequencies occur
at approximately 26 and 33Hz for the low initial tension and high initial tension cases,
respectively, and the corresponding jump-up frequencies at about 21 and 31Hz.
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Fig. 6 Analytical, simulated and experimental results for step-sine input to the shaker: a andbwires
with low initial tension; c and d wires with high initial tension. Analytical solution: stable solu-
tion (solid line), unstable solution (dashed line). Numerical solution (‘◦’). Experiment: increasing
frequency (‘+’), decreasing frequency (‘×’)

4.2 Parameter Estimation and Model Validation

To compare the experimental results with the predictions from the model, the sys-
tem parameters are required. One group of parameters (ms, ks, cs, m) was measured
independently, and the other group (k1, k3, c) is considered to be unknown and cho-
sen so that the FRCs are a best fit to the experimental data. Both sets of parameters
are given in Table1. The first group was estimated as follows. The combined mass
of the moving part of the shaker and the support structure ms , together with the stiff-
ness ks and damping cs of the shaker were estimated through measurements made
from an impact hammer test. With the suspended mass m detached and measured
directly, the frequency response function (FRF) of the shaker and attached support
structure was measured. The system parameters were estimated by fitting a theoreti-
cal single DOF FRF to the experimental FRF. Once these parameters were estimated,
the electro-mechanical constant of the shaker, defined as the ratio of the force over
the electric current (assumed to be constant), was estimated by measuring the FRF of
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Table 2 Equivalent non-dimensional system parameters

μ ω0 γ ζs ζ

Wires with
low initial
tension

0.011 0.677 4.6 × 10−3 0.046 0.050

Wires with
high initial
tension

0.011 1.394 5.4 × 10-3 0.046 0.026

the same system when driven by a random signal from the signal generator through
the power amplifier. For a given input current of 0.8A, the force amplitude is calcu-
lated and is given in Table1.

The second group of parameters is chosen to best fit the experimental data as
follows. Noting that, for fairly weak nonlinearity, the damping has a negligibly small
effect on the jump-up frequency and the corresponding FRC amplitude [11], a first
two-parameter fit is performed to match those values, and k1, k3 are estimated. The
remaining parameter c is then estimated by matching the jump-down frequency,
which is affected by the degree of nonlinearity and damping. These three parameters
are also listed in Table1, but in parenthesis to indicate that they are estimated thisway.
For completeness, Table2 lists the equivalent system parameters for the equation of
motion written in the non-dimensional form of (4a), (4b).

Using the parameters in Table2 and their relation to the dimensional parameters
in Table1, the FRCs described by (7a), (7b) are plotted in Fig. 6a–d together with
the experimental results for comparison.

5 Steady-State Response: Numerical Solution

The FRCs reported in the section above are plotted using the approximate amplitude-
frequency equations given in (7a), (7b), which are derived based on the assumption
that the system response is predominately harmonic at the frequency of excitation.
In this section it is shown how this assumption is verified and the analytical FRCs
are validated.

The original equations of motion of the system, given in (4a), (4b), without the
assumption for the mass ratio, are numerically integrated for a value of μ = 0.001,
which satisfies the assumption |μÿ| � |ÿs |, and the Fourier series coefficients are
extracted from the time history of the non-dimensional absolute displacement of
the primary mass, ys , and from the non-dimensional relative displacement between
the primary and secondary mass, w. The amplitude of the first Fourier coefficient
of the time response of w, which corresponds to the component at the frequency of
excitation, is plotted as a circle in the FRCs shown in Fig. 6a–d. For the parameters of
the experimental rig, higher- and lower-order harmonics are found to be negligible
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compared to the first harmonic; the small differences between the analytical and
numerical results around the resonances are due to the fact that the assumption | ÿs | �
|μÿ| does not hold in these frequency regions. Examining Fig. 6a–d it can be seen
that there is reasonably good agreement between the approximate analytical solution
and the experimental results. Thus, the analytical model qualitatively captures the
behaviour of the system.

Furthermore, for the numerical results superimposed on the FRCs reported in
the figures of this chapter it is also verified that the amplitudes of the higher- and
lower-order harmonics were negligible (less than 5%) compared to that of the funda-
mental. A similar validation is performed on the time response of the displacement
ys . Although the FRCs of the corresponding amplitude are not reported here, a ver-
ification of the assumption is performed and, also in this case, it is valid for ys .

6 Frequency-Response Curves for a QZS Attachment

Themodel developed in the previous sections is used here to investigate the effects of
the system parameters on the FRC of the relative displacement W , and in particular
on the interaction of the two resonances of the two DOF system depicted in Fig. 4.
Of particular interest is the case where the natural frequency of the underlying linear
system of the nonlinear attachment is lower than the natural frequency of the primary
system. In this case, the FRC of the two DOF system will have a lower resonance
frequency which is related to the nonlinear attachment and a higher resonance fre-
quency which is related to the primary system. Due to the hardening characteristics
of the nonlinear attachment, the bending of the first resonance peak to higher fre-
quencies interacts with the second resonant peak, yielding the specific shape of the
FRC. To limit the number of system parameters, the particular case is considered
where the nonlinear attachment has a very small linear stiffness coefficient k1, which
can be practically achieved by a very low tightening of the suspension wires during
assembly of the mechanical rig showed in Fig. 1. As a result, the non-dimensional
frequency ratio is very small, i.e. ω0 ≈ 0 and this corresponds to a QZS configura-
tion around the equilibrium position [12]. For the results related to the case of the
non-QZS configuration, the interested reader is directed to [13].

6.1 Effect of System Parameters: Jumps and Detachments

In this section, the FRCs of the non-dimensional relative displacement amplitude W
are illustrated for some particular combinations of the systems parameters, in which
ω0 is set to zero, for the sake of simplicity. To this end, (8) is solved numerically for
different values of frequency and for different combinations of the systemparameters.
The stability of the solution is checked by applying (9). The FRCs of the displacement
amplitude of the primary mass, which are governed by (7a) are not shown here, since
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this is assumed to be not affected by the nonlinear attachment, due to the assumption
of the small mass ratio. The FRC of Ys thus corresponds to the frequency response
of a linear single DOF oscillating system.

In Figs. 7 and 8, two sets of sub-figures are reported, where the effect of the
nonlinear parameter γ is shown for a similar value of the damping ζs in the primary
system and two different values of the damping ζ in the attachment, respectively.

It can be seen from Figs. 7 and 8 that a variety of different shapes of the FRCs
are obtained, depending on the values of the system parameters. In both figures,
sub-figures a-f correspond to increasing values of the nonlinear parameter γ . It can
be seen that the shapes of the FRCs in Figs. 7 and 8 are qualitatively the same, except
for sub-plots c.

In particular, Figs. 7a and 8a refer to low values of the nonlinearity, and show a
single-valued FRC which is qualitatively similar to that of a linear two DOF system
with one of the stiffness equal to zero, since it is QZS. This shape is labelled as Type
I (see the upper-right corner of the sub-figure). When the nonlinearity increases, an
outer detached resonance curve, having a stable and an unstable branch, appear above
the main continuous FRC. This shape is labelled as Type II. The detached resonance
curve comes ‘from above’ in the sense that as the nonlinearity increases from zero to
a specific value, it moves downwards until it merges with the main continuous curve.
At this stage, two different types of behaviour may occur: the detached curve merges
at � ≈ 1, which occurs in Fig. 7c; or it merges at � ≈ 0, which occurs in Fig. 8c.
These two qualitatively different types of behaviour are labelled, respectively, as
Type IIIa and IIIb. If the nonlinearity is increased further, the detached resonance
curve appears inside the main continuous resonance curve, and this behaviour is
again qualitatively similar for the sub-plots d in Figs. 7 and 8. The appearance of the
inner detached resonance curve is associated with a FRC with a shape of Type IV.
Such a detached curve decreases in size as the nonlinearity increases, as shown in
sub-plots e, until it disappears. The shape of the FRC which is qualitatively similar
to those shown in sub-plots f is labelled as Type V.

It is also interesting to note the typical bending of the resonance peak to the
right (i.e. to higher frequencies), which is related to a hardening type nonlinearity.
Such bending, which is clearly seen in the FRC of Type V, is associated with the
jump frequencies. A lower jump-up frequency and a higher jump-down frequency
are evident in the FRCs of the sub-plots f.

When an inner detached resonance curve appears, two new jump-up frequencies
appear in the FRC, as shown in the sub-plots d and e. They are always lower than
� = 1. The outer detached resonance curves, shown in sub-plots b, appear above
the main continuous FRC and introduce two jump-down frequencies, one of which
corresponds to the frequency higher than � = 1, while the other one corresponds to
the frequency lower than � = 1.
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Fig. 7 FRCs of the normalized relative displacement W as a function of the normalized frequency
� for ζs = 0.046, ζ = 0.026, and for different values of the nonlinear parameter γ : a γ = 10−5;
b γ = 10−3; c γ = 3.3× 10−3; d γ = 10−2; e γ = 2.6× 10−2; f γ = 3× 10−2. Stable solutions
(solid lines), unstable solutions (dashed lines). Numerical solution (‘◦’)
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Fig. 8 FRCs of the normalized relative displacement W as a function of the normalized frequency
� for ζs = 0.046, ζ = 0.015, and for different values of the nonlinear parameter γ : a γ = 10−5;
b γ = 10−3; c γ = 1.4 × 10−3; d γ = 10−2; e γ = 2.6× 10−2;f γ = 3 × 10−2. Stable solutions
(solid lines), unstable solutions (dashed lines). Numerical solution (‘◦’)
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6.2 Insight into the FRC Shape

In this section a detailed analysis is performed with the aim of showing the effect of
the system parameters on the shapes of the FRC and to categorize themain qualitative
features. Again, for the sake of simplicity, the frequency ratio ω0 is set to zero and
(8) is rewritten as

9

16
γ 2W 6 − 3

2
γ W 4�2 + W 2�2

(
�2 + 4ζ 2

)
− �4[(

�2 − 1
)2 + 4ζ 2

s �2
] = 0. (10)

As mentioned earlier, (10) is cubic in W 2, and depending on the sign of the dis-
criminant of the corresponding polynomial, it can yield up to three real solutions for
the steady-state response of the system at a given excitation frequency. In particular,
if its discriminant is negative, (10) has one distinct real root and a pair of complex
conjugate roots; if it is positive, there are three distinct real roots; and if it is zero,
then two roots coincide.

The transition between a single-valued and multi-valued response is determined
by setting the discriminant to zero to get a quadratic equation in terms of the nonlinear
parameter γ , and solving to give the following two solutions

γu,l = 8

81�

[
36ζ 2� + �3 ±

(
�2 − 12ζ 2

) 3
2
] [(

�2 − 1
)2 + 4ζ 2

s �2
]

, (11)

where the sub-scripts u and l stands for upper and lower, respectively. For values of
the nonlinear parameter between γu and γl , the amplitude-frequency equation in (10)
yields three distinct real solutions for the steady-state amplitude response W , while
for values of γ equal to γu or γl , there are two coincident real solutions, and this
occurs at the jump-up or jump-down frequencies. Thus, (11) give implicit expressions
for the frequencies where a jump occurs. When (11) is plotted in the�−γ plane, the
curves obtained are referred to as the transition curves or bifurcation curves. They
are plotted in Figs. 9 and 10 to show the effects of the damping ratios in the linear
and nonlinear oscillator. It can be seen that the transition curves are not defined for
a value of the non-dimensional frequency lower than �C, as indicated in the figures.
Point C is obtained by setting γu = γl in (11) to give

(
�C, γC

) =
(
2
√
3ζ,

128

27
ζ 2

[(
1 − 12ζ 2

)2 + 48ζ 2ζ 2
s

])
. (12)

It should be observed that �C increases linearly with ζ and does not depend on ζs.
In particular, the bifurcation curves inFig. 9 are shown for afixedvalueof ζ = 0.03

and for several values of ζs . It can be seen that a change in the value of ζs has the
same effect on γu and γl , i.e. only shifting the position of the local minima of these
curves, which occur approximately at � ≈ 1.
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Fig. 9 Effects of the
damping parameter ζs on the
bifurcation curves depicted
by a thick line (γu) and by a
thin line (γl ), for ζ = 0.03:
ζs = 0.005 (solid curve);
ζs = 0.03 (dash curve);
ζs = 0.07 (dot curve)

Fig. 10 Effects of the
damping parameter ζ on the
bifurcation curves depicted
by a thick line (γl ) and by a
thin line (γl ), for ζs = 0.03:
ζ = 0 (solid curve);
ζ = 0.03 (dash curve);
ζ = 0.07 (dot curve);
ζ = 0.15 (dash-dot curve)

In Fig. 10, the transition curves are shown for a fixed value of ζs = 0.03 and
for different values of ζ . They illustrate that the damping in the attached nonlinear
system has a different effect on γu andγl . It should be noted that, depending on the
value of ζ , both curves can be with or without a local maximum point, which occurs
at different frequencies, and may be with or without local minimum points, which
occur at � ≈ 1. This local minimum of the upper curve is slightly affected by ζ .

It is also noted that if �C is greater than unity, which occurs when ζ ≈ 1/2
√
3,

no local maxima or minima exists, while in the special case when ζ = 0, (11) reduce
to γl = 0 and to

γu = 16

81

[
�2

(
�2 − 1

)2 + 4�4ζ 2
s

]
. (13)
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For the combination of parameters below this curve, depicted by the solid line in
Fig. 10, three distinct real roots of (10) exist. In this case, point C coincides with the
origin, and a multi-valued response occurs for any value of frequency.

Approximate relationships for the local maxima and minima of the bifurcation
curves can be derived analytically by assuming that the damping in the linear oscil-
lator is light, i.e. ζs � 1. To this end, the local maxima on the upper and lower
bifurcation curve are labelled as Umax and Lmax, respectively, while the local min-
ima on the upper and the lower curve are labelled Umin and Lmin, respectively.

From Figs. 9 and 10, it can be observed that point C and point Lmax are almost
indistinguishable from each other, so that

(
�Lmax

, γLmax

) ≈ (
�C, γC

) ≈
(
2
√
3ζ,

128

27
ζ 2

(
1 − 12ζ 2

)2)
. (14)

It can also be observed that the frequency corresponding to the relative maximum
of the upper curve, Umax, seems not to be greatly affected by either damping ratios.
If these are then neglected in (11), a quadratic equation in terms of �2 is obtained.
This can be solved to give � = 1/

√
3 and � = 1, which correspond approximately

to the frequencies where the maximum and minimum points of the upper transition
curve occur. If the value � = 1/

√
3 is substituted back into (11), the coordinates of

point Umax in the � − γ plane are determined to be

(
�Umax , γUmax

) ≈
(

1√
3
,

32

2187

[
1 + 108ζ 2 +

√
− (

36ζ 2 − 1
)3])

. (15)

Finally, it can be noted that the frequency corresponding to the relative minima of
the upper and lower curves appears at � ≈ 1. By substituting this value into (11),
the coordinates of points Umin and Lmin are obtained as

(
�Umin , γUmin

) ≈
(
1,

32

81
ζ 2

s

[
1 + 36ζ 2 +

√(
1 − 12ζ 2

)3])
, (16)

(
�Lmin , γLmin

) ≈
(
1,

32

81
ζ 2

s

[
1 + 36ζ 2 −

√(
1 − 12ζ 2

)3])
. (17)

Points Umax, Lmax, Umin, Lmin and C are used to define regions in the � − γ plane
which characterize the different shapes of the FRCs. These are shown in Fig. 11a, b
for two different combinations of ζ and ζs . Although Fig. 11a, b appear to be similar,
they are different with respect to the relative positions of points Lmax and Umin. The
characteristic regions where a specific shape in the FRC is achieved are indicated as
I, II, IIIa, IV and V in Fig. 11a, and as regions I, II, IIIb, IV and V in Fig. 11b. They
are also shaded by using different grey-scales. Each region in Fig. 11 is associated
with the corresponding type of shape of the FRC, as indicated in the upper-right
corners of Figs. 7 and 8 and discussed in the previous section.
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Fig. 11 Characteristic
regions I–V in the � − γ

plane, where the FRC of W
exhibits different shapes, for
ζs = 0.046: a ζ = 0.026; b
ζ = 0.015. Characteristic
points Umax, Lmax, Umin,
Lmin and C are also labelled

To emphasize the relationship between the bifurcation curves in the � − γ plane
and the FRCs in the � − W plane, a three-dimensional plot involving the three vari-
ables �, γ, W is reported in Fig. 12. Two graphs are shown (Fig. 12a, b) to illustrate
the relationship between the bifurcation curves in Fig. 11 and the FRCs of Figs. 7
and 8. It can be seen that a straight line, drawn for a particular value of γ , may be
interpreted as the projection of the corresponding FRC on the � − γ plane. More-
over, the intersections between this straight line and the bifurcation curves give the
values of the jump frequencies: jump-up points on the upper bifurcation curve, and
jump-down points on the lower bifurcation curve.
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Fig. 12 Three-dimensional plot illustrating the relationship between the bifurcation curves and the
FRCs

7 Summary

This chapter has presented an investigation into the dynamics of a nonlinear system
attached to a shaker which is driven harmonically, where the mass of the nonlinear
system is much less than that of the support structure and the shaker. Consequently,
the nonlinear system has a negligible effect on the response of the shaker for the
majority of frequencies. The stiffness nonlinearity of the attached system is due to
the particular geometrical configuration of the elastic wires, represented as springs.
The system has been modelled as a two degree-of-freedom system with a cubic type
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nonlinearity and solved using the harmonic balance method to determine the primary
frequency response equation and the stability conditions, which define the stable and
unstable steady-state solutions. The system of equations has been decoupled and
solved in closed-form. Good agreement has been found between the experimental
results and the analytical and numerical solutions.

The effect of the system parameters on the frequency response curves was further
investigated through simulations and it has been found that they can have different
shapes. In particular, ofmain interest has been the casewhen the nonlinear attachment
has a quasi-zero-stiffness. In this situation, closed detached resonance curves can
appear. They can lie outside or inside the main resonance curve, and have stable
and unstable parts. Approximate analytical expressions that define the boundaries
between the shapes of the frequency response have been determined, enabling the
parameters that influence the shape of the frequency response curves to be identified.
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