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Abstract A nonlinear hysteretic beam model based on a geometrically exact planar
beam theory combined with a continuum extension of the Bouc-Wen model of hys-
teresis is proposed to describe the memory-dependent dissipative response of short
wire ropes which have the unique feature of exhibiting hysteretic energy dissipation
due to the interwire friction. With the proposed model, hysteresis is introduced in
the constitutive equation between the bending moment and the curvature within the
special Cosserat theory of shearable beams. The model is indeed capable of describ-
ing the hysteretic behavior exhibited by short steel wire ropes subject to flexural
cycles. The model parameters which best fit a series of experimental measurements
for selected wire ropes are identified employing the Particle Swarm Optimization
method. The identified parameters are used to reproduce other experimental tests on
the same wire ropes obtaining a good accuracy.

1 Introduction

Wire ropes are structural elements usually employed to resist large axial loads while
providing high strength, durability and reliability. In these applications the ropes
length is much larger than the diameter usually resulting in a negligible bending
stiffness along the cable length except in regions near the boundaries or point loads
where boundary layers are produced. On the contrary, when the wire ropes are rel-
atively short (i.e., the ratio between length and diameter is comparable to that char-
acteristic for beams) and subject to cyclic loadings, the bending stiffness cannot be
neglected and the force-displacement response shows hysteresis loops due to the
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relative sliding between the wires. The idea of exploiting the bending behavior of
short wire ropes to absorb and dissipate energy was proposed for the first time by
Stockbridge in the last century [36]. More recently, several applications based on
the interwire friction exhibited by short wire ropes have been explored [6, 11, 17,
18, 37, 43]. Within this context, Carboni et al. proposed a new rheological device
capable of providing several types of hysteretic responses employing assemblies of
wire ropes made of steel and shape memory alloy materials [5].

Challenging issues are inherent in the mathematical modeling and prediction of
the complicated mechanical behavior of wire ropes. Costello [9] proposed a theory in
which the individual wires are modeled using Loves equations for bending and twist-
ing of thin helical rods [26]. However, this model does not describe the frictional
effects. A direct approach based on the finite element method (FEM) consists in
constructing solid models which, upon reflecting the actual helical wire rope geom-
etry, are treated as a deformable continuum with frictional contacts [27, 30, 44].
The high computational burden due to the complexity associated with handling the
evolving contact regions between the wires does not allow to use three-dimensional
FEM models for predicting the wire rope hysteretic behavior. Analytical [20, 21]
or semi-analytical methods based on one-dimensional polar continuum formulations
supplemented by rheological models for the constitutive laws are more suitable for
describing the hysteresis exhibited by wire ropes. Sauter and Hagedorn [32] extended
the Masing model for a continuous system to model the short cables of a Stockbridge
damper. Rafik and Gerges [16] developed a model based on a curved beam to describe
wire rope springs deforming in tension-compression cycles.

A phenomenological model often used to describe the mechanical behavior of
hysteretic systems is the Bouc-Wen (BW) model [3, 45]. It has been used in a wide
variety of studies for modeling discrete hysteretic restoring forces or stresses. Several
extended versions of the BW model have been proposed to take into account stiffness
and strength degradation or pinching behavior [1, 2, 5]. Recently, the BW model has
been generalized to continuous systems for describing materially nonlinear problems
such as elastoplastic structures. Sivaselvan and Reinhorn [35], starting from the orig-
inal model proposed by Bouc [3], developed a smooth hysteretic method based on the
viscoplasticity theory in the context of the flexibility approach to simulate inelastic
frame structures according to a state space formulation [34]. A three-dimensional
BW-type model obtained by smoothening a three-dimensional yield surface was
proposed by Casciati [7]. Triantafyllou and Koumousis [39] introduced an elasto-
plastic hysteretic constitutive relationship derived by the BW model in the classical
Euler-Bernoulli beam formulation to conduct small and large displacement dynamic
analysis of frame structures. The same authors [38, 40] extended the plastic formu-
lation based on the BW model to plane stress elements.

Another important task in the design of applications that rely on hysteretic behav-
iors is represented by the identification of the model parameters on the basis of exper-
imental measurements. Identification strategies can be classified according to several
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criteria. A useful distinction is between parametric and non parametric methods. An
example of a non parametric method is the restoring force method initially developed
by Masri and Caughey [28] and by Donnell and Crawley [10]. This method deals with
the identification of nonlinear dynamical systems for which accelerations, velocities
and displacements are directly measured or obtained via integration/differentiation.
Extensive studies were carried out to devise suitable techniques for data processing
[46] and suitable excitation signals selection [47].

More recently there has been an extensive use of heuristic methods belonging
to the family of genetic algorithms for global optimization problems. The Particle
Swarm Optimization (PSO) is a gradient-free method proposed by Kennedy and
Eberhart [22]. The main advantages are (i) the applicability to a single type of data
without requiring differentiation or integration, (ii) the robustness against instrumen-
tal noise, and (iii) the property of converging to the global minimum of an objective
function without restrictions. On the other hand, the main disadvantage consists in
the lack of well-posed proofs of convergence. The PSO algorithm has been used
for a wide number of applications such as topology and shape optimization [14,
15], truss and frame structures optimization [12, 19, 33], aircraft wings optimization
[41]. Several variants of the original PSO algorithm have been proposed mainly tar-
geted to the identification or optimization of nonlinear hysteretic and chaotic systems
[23, 25, 48]. Charalampakis and Dimou [8] employed two variants of the PSO algo-
rithm to calibrate the BW model parameters which best fitted the hysteretic force-
displacement curves of a steel welded-bolted joint. Quaranta et al. [31] compared
different PSO versions for identifying the parameters of the van der Pol-Duffing
oscillators.

In this paper, a continuum hysteretic beam formulation based on the BW model of
hysteresis is proposed to describe the hysteretic behavior of steel wire ropes subject
to flexural cycles (see Fig. 1). The considered theory is the Special Cosserat theory
of shear deformable planar beams undergoing finite displacements and rotations. A
BW-type hysteretic relationship is established between the bending moment and the
associated curvature. Experimental quasistatic tests are performed on assemblies of
steel wire ropes, clamped at both ends, fixing one end and prescribing to the other end
a cyclic displacement in the direction orthogonal to the ropes length. The restoring
forces developed by the wire ropes are measured for several displacement amplitudes.
The wire ropes undergo a deflection with opposite curvatures having the nodal point
at the midspan. The parameters which best fit the experimentally obtained force-
displacement curves are identified by means of the PSO algorithm. The proposed
model represents a step forward from phenomenological towards mechanical mod-
eling. The equivalent beam model presents the actual geometric features (length and
circular cross section) and boundary conditions of the wire rope while the BW-type
moment-curvature constitutive law is adopted for modeling the memory effects due
to the interwire friction. Hysteresis is introduced in the bending moment according
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(a) (b)

(c) (d)

Fig. 1 The investigated wire ropes: a 7 × 19 and c 7 × 7 and their cross sections (b) and (d),
respectively

to the assumption that this loading state causes most of the relative sliding of the
wires. For more general loading states, hysteresis can be also associated to the axial
force by defining a suitable interaction law with the hysteretic bending moment.

2 The Bouc-Wen Model of Hysteresis

The restoring force f of the BW model enhanced with a cubic term is the summation
of the elastic force kex +k3x3 and hysteretic force z, respectively, in which x denotes
the displacement, ke indicates the elastic stiffness and k3 is the coefficient of the
cubic restoring term. The hysteretic force evolution is described by the first-order
differential equation

ż = [kd − (γ + β sgn(zẋ)) |z|n]ẋ (1)

where kd , γ, β and n together with ke and k3 are the constitutive parameters of the
model and the overdot indicates differentiation with respect to time t . The tangent
stiffness of the hysteretic force denoted by zx is obtained by multiplying the left- and
right-hand sides of (1) by dt , and dividing the resulting equation by dx thus giving

zx = kd − (γ + β sgn(zẋ)) |z|n . (2)

The hysteretic tangent stiffness at the origin is kd , while the tangent stiffness of the
overall restoring force f is ke + kd . Along the loading and unloading branches, the
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hysteretic force z reaches upper and lower bounds equal to ±[kd/(γ + β)] 1
n when

the displacement is such that zx = 0. Thus, if the cubic restoring term is set to zero,
the tangent stiffness of the restoring force becomes ke which thus represents the
post-elastic stiffness. These considerations are valid only when γ +β > 0 for which
the model exhibits a softening behavior. Moreover, these model properties can guide
the initial choice of the parameters design space.

The nondimensional form of the restoring force and the evolution equation of the
hysteretic component read

f̃ = δx̃ + (1 − δ)z̃ + k̃3 x̃3, (3)

˙̃z = [1 − (γ̃ + β̃ sgn(z̃ ˙̃x)) |z̃|n] ˙̃x, (4)

respectively, where the overdot denotes differentiation with respect to nondimen-
sional time t̃ and the following nondimensional variables and parameters are intro-
duced:

x̃ = x

x0
, t̃ = ωt, z̃ = z

z0
, δ = ke

ke + kd
, k̃3 = k3x2

0

ke + kd
. (5)

In (5), x0 indicates a characteristic displacement, z0 = kd x0, ω = √
N0/(x0m) with

N0 = (ke + kd)x0 and m denoting a characteristic mass. The other dimensionless
parameters are (γ̃, β̃) = (γ,β)x0zn−1

0 .

3 The Hysteretic Beam Model

The formulation of the shearable nonlinear beam follows [24]. Let us consider a
fixed reference frame (O, e1, e2, e3) and a straight reference configuration for the
beam centerline described by the vector ro(s) = se1 where s ∈ [0, l] is the arclength
parameter and l denotes the initial beam length. The orientation of the beam cross
section in the reference configuration is described by the intrinsic frame (bo

1, bo
2, bo

3)

of which bo
1 and (bo

2, bo
3) are collinear with e1 and the principal axes of inertia of

the cross section, respectively. The reference position of the material points of the
beam is defined by the position vector po(s) = ro(s) + x2(s)bo

2 + x3(s)bo
3. The

cross sections are assumed to be locally rigid implying the preservation of planarity.
We consider only planar motions for the beam centerline which can be described by
the displacement vector u(s, t) = u(s, t)e1 + v(s, t)e2 while we let the rotation of
the cross sections about e3 be described by θ(s, t). The actual configuration of the
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centerline is given by the position vector r(s, t) = ro(s, t)+ u(s, t) while the actual
orientation of the cross sections is described by the triad (b1, b2, b3). The unit vector
b1 makes the angle θ(s, t) with bo

1 = e1. The position vector of a material point in
the actual beam configuration is described by p(s, t) = r(s, t)+ x2(s)b2 + x3(s)b3
where b1 = cos θe1+sin θe2, b2 = − sin θe1 + cos θe2, and b3 = e3. The kinematic
unknowns are (u(s, t), v(s, t), θ(s, t)). Denoting by ∂s differentiation with respect
to s, the stretch vector is defined as ν := ∂s r and expressed as

ν(s, t) = ν(s, t)b1(s, t) + η(s, t)b2(s, t) (6)

where ν and η represent the beam stretch and shear strain, respectively. The third
generalized strain is the bending curvature μ given by

μ(s, t) = ∂sθ. (7)

The stretch and the shear strain can be expressed in terms of the displacement gradient
and the flexural rotation angle as

ν(s, t) = (1+∂su) cos θ+∂sv sin θ, η(s, t) = −(1+∂su) sin θ+∂sv cos θ. (8)

The generalized strains (ν, η,μ) are related through the constitutive relationships
to the generalized stress resultants and moment resultant, also referred to as con-
tact forces and contact couple. The contact force vector is n = N (s, t)b1(s, t) +
Q(s, t)b2(s, t) while the bending moment is M(s, t). The linear constitutive equa-
tions for an elastic isotropic beam read

N (s, t) = E A(ν(s, t) − 1), Q(s, t) = G A∗η(s, t), M(s, t) = EJμ(s, t),
(9)

where E and G represent Young’s modulus and the shear modulus, respectively; A
is the area of the cross section, A∗ is the shear area and J is the area moment of
inertia about the principal axis b3.

The equations of motion read

ρA∂t t u = (∂s N − μQ)cosθ − (∂s Q + μN )sinθ + f1, (10)

ρA∂t t v = (∂s N − μQ)sinθ + (∂s Q + μN )cosθ + f2, (11)

ρJ∂t tθ = ∂s M + νQ − ηN + c, (12)

where ρ is the mass density, f1, f2, and c indicate the forces and the couple per unit
reference length, respectively. Equations (10)–(12) are obtained from the balance of
linear and angular momentum in the fixed reference frame. They are supplemented
by general boundary and initial conditions expressed as
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Fig. 2 The planar beam in
the reference (dashed lines)
and actual configurations
(solid lines)

u(0, t) = u(t), θ(0, t) = θ(t), u(l, t) = û(t), θ(l, t) = ̂θ(t) t ∈ [0, T ],
(13)

u(s, 0) = ŭ(s), θ(s, 0) = θ̆(s) s ∈ [0, l], (14)

where [0, T ] denotes the time integration domain. Figure 2 shows the beam in the
reference configuration that undergoes a planar motion to the actual configuration.

In the present model, hysteresis is introduced in the constitutive equation (9)3
between the bending moment and the flexural curvature. The hysteretic constitutive
equation reads

M(s, t) = EJeμ + Mh + k3μ
3 (15)

where k3 represents the coefficient of the cubic elastic bending moment, Mh is the
hysteretic bending moment whose evolution is governed by the first-order differential
equation

∂t Mh = {

EJh − [

γ + β sgn(Mh∂tμ)
] |Mh |n}

∂tμ (16)

with ∂t denoting differentiation with respect to time t . The parameters (γ,β, n) are
the same as those defined in (1). The tangent stiffness of the bending moment at the
origin μ = 0 is EJt = EJe + EJh while the post-elastic bending stiffness is EJe,

attained when ∂t Mh = 0, Mh = ±[EJh/(γ + β)] 1
n and k3 = 0.

The main objective of the hysteretic beam model is to describe the experimentally
obtained hysteretic responses of steel wire ropes subject to bending cycles. The
nonlinear beam model can reproduce the actual geometry (length and cross section)
of the wire rope, boundary and loading conditions during the tests. The hysteretic
bending moment, introduced in the constitutive equation, has the designated function
of describing the hysteretic behavior due to the interwire friction within the rope.
The beam cross section is assumed as the circular envelope of the actual cross section
of the wire rope. However, to take into account the fact that the cross section of a
wire rope is not compact but is constituted by an assembly of individual wires, an
additional parameter ψ ∈ (0, 1] is introduced to reduce the bending stiffness EJ of
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the compact circular cross section bounding the actual rope cross section. By letting
the new parameter δ ∈ (0, 1) denote the post-elastic-to-elastic bending stiffness (in
the limit n = ∞), we set

EJt = ψEJ,
EJe

EJt
= δ,

EJh

EJt
= 1 − δ. (17)

The parts of the bending stiffness indicated by EJe and EJh , respectively, can be
written as

EJe = δEJt = δψEJ, EJh = (1 − δ)EJt = (1 − δ)ψEJ. (18)

The beam length, Young’s modulus, cross section (zeroth and second area
moments), boundary and loading conditions are assumed on the basis of the actual
wire ropes geometrical and mechanical features. The hysteresis parameters (γ,β, n)
and the stiffness parameters (ψ, δ) are calibrated to best fit the experimental measure-
ments. This model has the purpose of describing, among other goals, the applications
exploiting the frictional dissipation of wire ropes [4, 5]. The hysteretic features of
the response of a given wire rope type under bending can be evaluated carrying out
an experimental campaign whose results are used for identifying the parameters of
the proposed model. The advantage is that the identified model of a given wire rope
can be used during the design process of the specific application which makes use of
wire ropes thus drastically reducing the number of experimental tests required and
the overall design costs.

Equations (10)–(12) can be rendered nondimensional introducing the following
nondimensional variables and parameters [24]: s̃ = s/ l, t̃ = ωct , ũ = u/ l, ṽ =
v/ l, ωc = [EJ/(ρAl4)]1/2, ka = E Al2/(EJ), ks = G A∗l2/(EJ), k̃3 = k3/(EJ),
( f̃1, f̃2) = ( f1, f2)l3/(EJ), c̃ = cl2/(EJ). The nondimensional hysteretic moment
is given by

M̃h = Mhl/EJ (19)

whose evolution is described by the following nondimensional equation:

∂t̃ M̃h =
{

(1 − δ)ψ −
[

γ̃ + β̃ sgn(Mh∂t̃μ)
] ∣

∣

∣M̃h

∣

∣

∣

n}

∂t̃μ (20)

where
γ̃ = γ(EJ)n−1/ ln, β̃ = β(EJ)n−1/ ln . (21)

The nondimensional equations of motion read

∂t̃ t̃ ũ = [ka∂s̃ν − ksη∂s̃θ]cosθ − [ks∂s̃η + ka(ν − 1)∂s̃θ]sinθ + f̃1, (22)

∂t̃ t̃ ṽ = [ka∂s̃ν − ksη∂s̃θ]sinθ + [ks∂s̃η + ka(ν − 1)∂s̃θ]cosθ + f̃2, (23)
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∂t̃ t̃θ/ka = (ψδ + k̃3)∂s̃ s̃θ + ∂s̃ M̃h + ksνη − ka(ν − 1)η + c̃ (24)

where the assumption that the beam has a uniform cross section along the overall
span has been adopted. These equations are supplemented by boundary and initial
conditions expressed by (13) and (14). The solution can be obtained via a finite ele-
ment discretization [24]. The solution at each step is obtained employing a Newton-
Raphson iterative scheme.

4 Experimental Bending Tests for Steel Wire Ropes

The complex geometry of the contact areas between the wires of spiral and stranded
wire ropes makes the experimental tests necessary for quantifying the dissipation
capacity. An experimental campaign was carried out to evaluate the hysteresis cycles
of two stranded steel wire ropes subject to bending cycles. The investigated wire
ropes have a diameter equal to 10 and 6 mm and are constituted by 7 strands of 19
steel wires and 7 strands of 7 steel wires of diameter equal to 0.65 mm, respectively.
Figure 1 shows the wire ropes and their cross sections. The tests were performed
employing the Material Testing System (MTS) in the DISG laboratory at Sapienza
University of Rome (Italy). Two groups of four parallel 7 × 19 and 7 × 7 wire ropes
were tested with the experimental setup illustrated in Fig. 3. The wire ropes ends are
clamped at the two thick steel bars denoted by B1 and B2, the former being connected
to the piston P of the MTS machine. Bar B2 is passed through by two smooth rods
(denoted by S1 and S2) and one threaded cylindrical rod (denoted by t). The threaded
bar does not touch the bar B2 while between the smooth rods s1 and s2 and B2 two
self-lubricated clinched joints are placed to allow a relative frictionless sliding. The
rods t, s1 and s2 are welded to a third steel bar denoted by B3 that is, in turn, fixed to
a load cell.

A sinusoidal displacement with a relatively low frequency equal to 0.1 Hz is
applied to B1 along the direction orthogonal to the wire ropes whose restoring force
is measured by the load cell (see Fig. 3). The wire ropes are subject to pure bending
thanks to the free sliding of bar B2 on rods s1 and s2. The two bolts (denoted by b1
and b2) on the threaded bar t can be used both for mounting the system and realizing
another testing setup in which the sliding of B2 is prevented. In the latter case, tensile
loads arise in the ropes and the measured force-displacement curves exhibit a strong
hardening behavior. In this paper only pure bending tests are presented.

Figure 4 shows the experimental setup with the undeformed and some deformed
configurations of the specimen. The wire ropes present a deflected shape character-
ized by a change of curvature through the midspan. Table 1 lists the experimental
tests for the 7×19 and 7×7 wire ropes. For each wire rope length and displacement
amplitude, 15 hysteresis cycles were measured to obtain a stabilized loop.
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Fig. 3 Experimental setup
with the tested wire ropes
and their fixtures. The arrow
indicates the cyclic
displacement provided by
the MTS testing machine

Load
Cell

s1

s2

t
b1 b2

P

7x19 wire ropes

7x19 wire ropes

B1

B2

B3

Fig. 4 The experimental
setup showing the wire ropes
in the undeformed (a) and
deformed (b), (c)
configurations

(a) (b) (c)

Table 1 List of the performed experimental tests in which the wire rope section, the wire rope
length and the prescribed displacement are indicated

Wire rope
cross section

Length (mm) Displacement amplitude (mm)

7 × 19 75 5 10 15 20

7 × 19 85 5 10 15 20

7 × 19 90 5 10 15 −
7 × 7 100 5 10 15 20
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5 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a heuristic global optimization method based
on the swarm intelligence theory and inspired from the social interactions in bird
flocks, schools of fish or swarms of insects. The algorithm starts from an initial
population (the particles) formed by several sets of parameters to optimize with
respect to an objective function (OF). Each particle is modified iteratively by a
velocity vector that is function of the best particle within the population and the best
values assumed by the particle itself until the considered iteration.

Here, we seek to identify the model parameters of the hysteretic beam which best
fit the experimentally obtained restoring forces as function of the prescribed dis-
placements. The measured restoring force is denoted by f (y) while the model-based
restoring force is indicated by f̂ (y). The mean square error (MSE) between mea-
sured and model-based restoring forces is assumed as objective function to minimize
and expressed as

OF(x) =
∑N

k=1 [ f (yk) − f̂ (yk |x)]2

Nσ2
f

(25)

where σ2
f and N are the variance and the number of samples of the experimentally

obtained restoring force, respectively, x denotes the parameters vector of the model,
and y indicates the displacement. Considering the particles xi (i = 1, 2, .., p) and the
lower and upper bounds xL B and xU B for the particle values, respectively, the initial
population is a matrix formed by p vectors whose values are drawn by a Gaussian
distribution on their ranges of variation. The particles are updated at the j th iteration
according to the following expression:

xk
i, j+1 = xi, j + vk

i, j+1 i = 1, 2, .., p, j = 1, 2, .., q (26)

where time is assumed to be equal to unity and q is the number of iterations. The
velocity is

vi, j+1 = wvi, j + c1r1 ◦ ( pi, j − xi, j ) + c2r2 ◦ ( p j − xi, j ) (27)

where w is the inertia factor; c1, c2 are the cognitive and social parameters, respec-
tively. These parameters in the simple PSO algorithm are constant and can be set to
w = 0.8, c1 = 2.8, and c2 = 1.3. A study about the effect of the values assigned
at the inertia factor and cognitive and social parameters can be found in [13]. The
vector pi, j represents the i th best ever particle at the j th iteration with respect to the
criterion expressed by (25). The vector p j denotes the best ever particle at the j th
iteration between all vectors of the population. The notation ◦ indicates element-by-
element multiplication and the vectors r1 and r2 are formed by random variables
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with uniform distributions in the interval [0, 1]. When a particle element exceeds
the assigned range of variation, its value is reset to the value belonging to the clos-
est boundary. The number of iterations q is chosen by the user according to the
values achieved by MSE that must be lower than a given tolerance for which the
identification is considered acceptable.

6 Identification Results

The experimentally obtained force-displacement hysteresis cycles are identified
using the proposed hysteretic beam model. The measured restoring forces are divided
by the number of wire ropes according to the fact that they work in parallel and equally
contribute to the total restoring force. The tests with the 7 × 19 wire rope of length
equal to 75 mm are identified with an individual parameters set for each displacement
amplitude. The set of model parameters, obtained by averaging the thus obtained val-
ues, is used to compute the hysteresis cycles for the other wire ropes lengths and
compared with the experimental measurements. The test with the 7 × 7 wire rope
for a displacement amplitude equal to 15 mm is identified with a parameters set that
is later employed to compute the hysteresis cycles for different displacement ampli-
tudes. Thus, the model-based cycles are compared with the experimentally obtained
curves.

The same geometric features and boundary conditions of the wire ropes are
assigned to the hysteretic beam. In particular, the beam length and the diameter
of the circular cross section are assumed equal to those of the wire ropes. The beam
ends are both clamped. The Young modulus and Poisson coefficient are assumed
equal to 206 GPa and 0.3, respectively, while the parameters (ψ, δ, γ,β, n, k3) to
identify are assigned ranges of variation according to the PSO algorithm. One end
of the beam (i.e., that at s = l) is subject to the displacement x = A sin ωt along
e2 (see Fig. 2) where A is the amplitude (equal, in turn, to that of the experimental
tests), ω = 0.628 rad/s is the circular frequency, and t ∈ (0, T ) is the time. The
generalized force f (s, t) = N (s, t) sin θ(s, t)+ Q(s, t) cos θ(s, t) along e2 at s = 0,
which coincides with the shear force Q(0, t) (since the clamp implies θ(0, t) = 0),
is the restoring force. Therefore, (x(t), f (0, t), t ∈ (t1, t2)) represent the displace-
ment and force to compare with the experimental measurements, t1 and t2 are the
time instants delimiting a stabilized hysteresis cycle. Time t can be seen as a para-
meter because the frequency ω is assumed so low that the inertia forces and rotary
inertia become negligible. The boundary and initial conditions for the beam can be
summarized as follows
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u(0, t) = θ(0, t) = 0, v(l, t) = x(t), θ(l, t) = 0, t ∈ [0, T ] (28)

u(s, 0) = θ(s, 0) = 0, s ∈ [0, l]. (29)

Note that the horizontal displacement u(t) at s = l is not restricted.
The identification task is performed employing concurrently the finite element

solver COMSOL Multiphysics [29] and Matlab [42]. The computational architecture
is managed by Matlab to which the input data are fed. COMSOL Multiphysics is used
for the computation of the hysteretic beam response across the beam span. At each
iteration of the PSO algorithm, the beam model parameters, evaluated by Matlab, are
given as input to COMSOL that performs the finite element discretization and solves
the problem. The vectors (x, f ) are fed back to Matlab for computing the OF (i.e.,
MSE) and performing the identification. The number of particles p and iterations q
are set to 10 and 75, respectively. Table 2 shows the assigned ranges of variation for
the parameters to identify. The coefficient of the cubic term k3 is set to zero a priori
and is not reported in the following results. These initial input data are evaluated by
means of some preliminary calculations.

Table 3 summarizes the optimal parameter sets selected by the PSO algorithm for
the 7×19 wire rope whose length is 75 mm while in Fig. 5 the comparisons between
the model-based and the experimentally obtained hysteresis cycles are shown. The
identification is accurately performed and the parameters which exhibit the lowest
variation with the displacement amplitude are ψ and δ regulating the elastic and
hysteretic stiffnesses. This suggests that the hysteretic beam model is suitable for
reproducing the hysteretic wire ropes response. For the displacement amplitude of
20 mm (Fig. 5d), both the experimentally obtained and model-based restoring forces
show a slight hardening. This is more pronounced for the model-based curves and is
due to the geometric effect of the bending curvature that takes finite values. Figure 6
shows a cycle of (a) the total and (b) the hysteretic bending moments as function of
the curvature at s = 0 for the beam length equal to 75 mm and the prescribed end

Table 2 Ranges of variation for the parameters to identify

ψ (–) δ (–) γ (N1−nm2−n ) β (N1−nm2−n ) n (–)

Min 0.008 0.1 0.8 0.8 1.0

Max 0.025 0.6 2 2 1.3

Table 3 Identified parameters and associated MSEs for the 7 × 19 wire rope of length equal to
75 mm

A (mm) ψ (–) δ (–) γ
(N1−nm2−n )

β
(N1−nm2−n )

n (–) MSE (%)

5 0.0159 0.251 1.478 1.729 1.275 0.43

10 0.0162 0.240 1.391 1.103 1.152 0.44

15 0.0166 0.21 1.218 1.151 1.165 0.40

20 0.0168 0.186 1.684 1.989 1.285 0.50
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Fig. 5 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a), 10 mm (b), 15 mm (c) and 20 mm
(d); the employed model parameters are reported in Table 3 and the identified tests are those for the
7 × 19 wire rope of length equal to 75 mm

(a) (b)

Fig. 6 a Total and b hysteretic bending moments versus the curvature at s = 0 for the beam length
of 75 mm with the model parameters of Table 4 and the prescribed end displacement equal to 5 mm
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(a) (b)

Fig. 7 a Elastic and b hysteretic bending moments across the beam span whose length is equal to
75 mm with the model parameters of Table 4 and for the prescribed end displacement equal to 5 mm

Table 4 Values of the model parameters obtained as mean values of the parameters in Table 3

ψ (–) δ (–) γ (N1−nm2−n) β (N1−nm2−n) n (–)

0.0164 0.222 1.443 1.493 1.219
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Fig. 8 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a) and 10 mm (b); the employed
model parameters are reported in Table 3 and the identified tests are those for the 7 × 19 wire rope
whose length is 75 mm

displacement of 5 mm. The elastic and hysteretic bending moments along the beam
length are illustrated in Fig. 7. The mean values of the model parameters reported in
Table 4 are used to reproduce the hysteresis curves for the other wire rope lengths.
Figures 8, 9 and 10 show the comparisons between the model-based and the experi-
mentally obtained hysteresis cycles for the wire rope lengths of 75, 80, and 90 mm,
respectively. The associated MSEs are given in Table 5. The mean values of the
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Fig. 9 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a), 10 mm (b), 15 mm (c) and 20 mm
(d); the employed model parameters are reported in Table 4 and the identified tests are those for the
7 × 19 wire rope whose length is 80 mm

parameters identified for the 7 × 19 wire rope of length equal to 75 mm are capable
of accurately describing the hysteresis curves obtained for the lengths equal to 75,
80, and 90 mm. The best results are achieved for the displacement amplitudes of
5, 10 and 15 mm while for the displacement amplitude of 20 mm some discrepan-
cies are observed. This loss of accuracy is mainly due to the hardening behavior
exhibited by both the model-based and experimentally obtained hysteretic cycles for
large displacement amplitudes. The hardening is more significant in the model-based
response, thus a variation of the constitutive parameters for different displacement
amplitudes is required for an accurate description of the experimentally obtained
curves. However, the achieved accuracy level is consistent with the practical require-
ments.
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Fig. 10 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a), 10 mm (b) and 15 mm (c); the
employed model parameters are reported in Table 4 and the identified tests are those for the 7 × 19
wire rope whose length is 90 mm

The experimentally obtained hysteretic cycles for the 7×7 wire rope can be accu-
rately described identifying the model parameters according to a single displacement
amplitude cycle. This is due to the fact that the ratio between the displacement ampli-
tudes and wire rope length is small enough to induce weak nonlinearities and the
parameters change with the displacement amplitude is negligible. In Table 6 the
parameters identified for fitting the hysteretic curve of the 7 × 7 wire rope for a
displacement amplitude equal to 15 mm are shown. The comparisons between the
experimentally obtained and model-based curves are shown in Fig. 11 with the asso-
ciated MSEs given in Table 7.
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Fig. 11 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a), 10 mm (b), 15 mm (c) and 20 mm
(d); the employed model parameters are reported in Table 6 and the identified tests are those for the
7 × 7 wire rope

Table 5 MSEs between the model-based and experimentally obtained hysteresis cycles of Figs. 8,
9 and 10, identified by the wire rope type, length l and displacement amplitude A

Wire rope type l (mm) A (mm) MSE (%)

7 × 19 75 5 0.63

7 × 19 75 10 0.92

7 × 19 80 5 0.94

7 × 19 80 10 0.89

7 × 19 80 15 0.53

7 × 19 80 20 0.68

7 × 19 90 5 0.71

7 × 19 90 10 0.71

7 × 19 90 15 0.87
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Table 6 Identified model parameters which best fit the experimentally obtained hysteretic curve
of the 7 × 7 wire rope for a displacement amplitude equal to 15 mm

ψ (–) δ (–) γ (N1−nm2−n) β (N1−nm2−n) n (–)

0.0355 0.201 1.987 1.188 1.134

Table 7 MSEs between the model-based and experimentally obtained hysteresis cycles of Fig. 11,
identified according to the wire rope type, length l and displacement amplitude A

Wire rope type l (mm) A (mm) MSE (%)

7 × 7 100 5 1.1

7 × 7 100 10 0.68

7 × 7 100 15 0.45

7 × 7 100 20 0.51

7 Conclusions

A nonlinear hysteretic beam model based on the formulation of an equivalent shear
deformable beam with geometric nonlinearities and an extension of the Bouc-Wen
model of hysteresis to the one-dimensional polar continuum was proposed. Hys-
teresis is introduced in the constitutive equation for the bending moment given as a
direct summation of elastic and hysteretic components. The model aims to describe
the hysteretic behavior of steel wire ropes subject to bending cycles. Experimental
tests were performed by means of an ad hoc setup for evaluating the restoring force
exhibited by a group of steel wire ropes clamped at both ends and subject to a qua-
sistatic displacement of one end in the direction orthogonal to the wire ropes rest
position. The energy dissipation within the wire ropes is due to the interwire fric-
tion. Several tests were executed for three lengths of the wire ropes and for different
prescribed displacement amplitudes. The proposed model reduces the actual wire
rope to a compact nonlinear beam in which the hysteretic bending moment describes
the frictional dissipation in a phenomenological fashion and the Cosserat-type non-
linear beam formulation reproduces the actual mechanics. Thus the geometric and
boundary conditions of the beam are assumed as those of the wire ropes while the
dissipation properties are identified on the basis of experimental tests. Moreover, the
bending stiffness is reduced by an additional parameter denoted by ψ to take into
account the lack of compactness of the rope with respect to the equivalent cylindri-
cal rod. The parameters regulating the hysteretic moment and the parameter ψ were
identified using the PSO algorithm by best fitting the experimentally obtained curves
for the 7×19 wire rope of length equal to 75 mm and for the 7×7 wire rope subject to
a displacement amplitude of 15 mm. Thus, the identified parameters were employed
to reproduce the hysteresis curves obtained for different lengths of the 7 × 19 wire
rope and for different displacement amplitudes of the 7 × 7 wire rope. These curves
show a good agreement with the experimental results confirming that the proposed
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model is a valid tool for the design of a wide range of applications based on wire
ropes hysteretic behaviors.

Acknowledgments This work was partially supported by the Italian Ministry of Education, Uni-
versity and Scientific Research (2010-2011 PRIN Grant No. 2010BFXRHS-002) and by a FY 2013
Sapienza Grant N. C26A13JPY9.

References

1. Baber, T., Noori, M.: Random vibration of degrading, pinching systems. J. Eng. Mech. 111(8),
1010–1026 (1985)

2. Baber, T., Wen, Y.: Random vibration hysteretic, degrading systems. J. Eng. Mech. Div. 107(6),
1069–1087 (1981)

3. Bouc, R.: Forced vibration of mechanical systems with hysteresis. In: Proceedings of the Fourth
Conference on Non-linear oscillation, Prague, Czechoslovakia (1967)

4. Carboni, B., Lacarbonara, W.: A new vibration absorber based on the hysteresis of multi-
configuration nitinol-steel wire ropes assemblies. In: MATEC Web of Conferences, vol. 16, p.
01004. EDP Sciences (2014)

5. Carboni, B., Lacarbonara, W., Auricchio, F.: Hysteresis of multiconfiguration assemblies of
nitinol and steel strands: experiments and phenomenological identification. J. Eng. Mech. 141,
04014135 (2014)

6. Carpineto, N., Lacarbonara, W., Vestroni, F.: Hysteretic tuned mass dampers for structural
vibration mitigation. J. Sound Vib. 333(5), 1302–1318 (2014)

7. Casciati, F.: Stochastic dynamics of hysteretic media. Struct. Saf. 6(2), 259–269 (1989)
8. Charalampakis, A., Dimou, C.: Identification of bouc-wen hysteretic systems using particle

swarm optimization. Comput. Struct. 88(21), 1197–1205 (2010)
9. Costello, G.: Theory of Wire Rope. Springer, New York (1990)

10. Crawley, E.F., ODonnell, K.J.: Identification of nonlinear system parameters in joints using the
force-state mapping technique. AIAA Pap 86(1013), 659–667 (1986)

11. Demetriades, G., Constantinou, M., Reinhorn, A.: Study of wire rope systems for seismic
protection of equipment in buildings. Eng. Struct. 15(5), 321–334 (1993)

12. Dimou, C., Koumousis, V.: Reliability-based optimal design of truss structures using particle
swarm optimization. J. Comput. Civil Eng. 23(2), 100–109 (2009)

13. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources.
In: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1, pp. 81–86.
IEEE (2001)

14. Fourie, P., Groenwold, A.: The particle swarm optimization algorithm in size and shape opti-
mization. Struct. Multi. Optim. 23(4), 259–267 (2002)

15. Fourie, P., Groenwold, A.A.: Particle swarms in topology optimization. In: Proceedings of the
Fourth World Congress of Structural and Multidisciplinary Optimization, Dalian, China (2001)

16. Gerges, R.: Model for the force-displacement relationship of wire rope springs. J. Aerosp. Eng.
21(1), 1–9 (2008)

17. Gerges, R., Vickery, B.: Parametric experimental study of wire rope spring tuned mass dampers.
J. Wind Engi. Ind. Aerodyn. 91(12), 1363–1385 (2003)

18. Gerges, R., Vickery, B.: Optimum design of pendulum-type tuned mass dampers. Struct. Des.
Tall Spec. Build. 14(4), 353–368 (2005)

19. Gholizadeh, S., Salajegheh, E.: Optimal design of structures subjected to time history loading by
swarm intelligence and an advanced metamodel. Comput. Methods Appl. Mech. Eng. 198(37),
2936–2949 (2009)

20. Gnanavel, B., Gopinath, D., Parthasarathy, N.: Effect of friction on coupled contact in a twisted
wire cable. J. Appl. Mech. 77(2), 024501 (2010)



Hysteretic Beam Model for Steel Wire Ropes Hysteresis Identification 281

21. Gnanavel, B., Parthasarathy, N.: Effect of interfacial contact forces in radial contact wire strand.
Arch. Appl. Mech. 81(3), 303–317 (2011)

22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International
Conference of Neural Network IV, Perth, Australia

23. Kwok, N., Ha, Q., Nguyen, T., Li, J., Samali, B.: A novel hysteretic model for magnetorhe-
ological fluid dampers and parameter identification using particle swarm optimization. Sens.
Actuators A: Phys. 132(2), 441–451 (2006)

24. Lacarbonara, W.: Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Mod-
eling. Springer, New York (2013)

25. Liu, B., Wang, L., Jin, Y.H., Tang, F., Huang, D.X.: Directing orbits of chaotic systems by
particle swarm optimization. Chaos, Solitons Fractals 29(2), 454–461 (2006)

26. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University
Press, Cambridge (2013)

27. Ma, J., Ge, S.R., Zhang, D.K.: Distribution of wire deformation within strands of wire ropes.
J. China Univ. Min. Technol. 18(3), 475–478 (2008)

28. Masri, S., Caughey, T.: A nonparametric identification technique for nonlinear dynamic prob-
lems. J. Appl. Mech. 46(2), 433–447 (1979)

29. Multiphysics, C.: Version 3.5 a (2008)
30. Nucera, C., di Scalea, F.L.: Monitoring load levels in multi-wire strands by nonlinear ultrasonic

waves. Struct. Health Monit. 10(6), 617–629 (2011)
31. Quaranta, G., Monti, G., Marano, G.C.: Parameters identification of van der pol-duffing oscil-

lators via particle swarm optimization and differential evolution. Mech. Syst. Sig. Process.
24(7), 2076–2095 (2010)

32. Sauter, D., Hagedorn, P.: On the hysteresis of wire cables in stockbridge dampers. Int. J.
Nonlinear Mech. 37(8), 1453–1459 (2002)

33. Schutte, J., Groenwold, A.: Sizing design of truss structures using particle swarms. Struct.
Multi. Optim. 25(4), 261–269 (2003)

34. Simeonov, V.K., Sivaselvan, M.V., Reinhorn, A.M.: Nonlinear analysis of structural frame
systems by the state-space approach. Comput. Aided Civil Infrastruct. Eng. 15(2), 76–89 (2000)

35. Sivaselvan, M.V., Reinhorn, A.M.: Hysteretic models for deteriorating inelastic structures. J.
Eng. Mech. 126(6), 633–640 (2000)

36. Stockbridge, G.: Vibration damper. US patent 1,675,391 (1928)
37. Tinker, M., Cutchins, M.: Damping phenomena in a wire rope vibration isolation system. J.

Sound Vib. 157(1), 7–18 (1992)
38. Triantafyllou, S., Koumousis, V.: Bouc-wen type hysteretic plane stress element. J. Eng. Mech.

138(3), 235–246 (2011)
39. Triantafyllou, S., Koumousis, V.: Small and large displacement dynamic analysis of frame

structures based on hysteretic beam elements. J. Eng. Mech. 138(1), 36–49 (2011)
40. Triantafyllou, S.P., Koumousis, V.K.: An hysteretic quadrilateral plane stress element. Arch.

Appl. Mech. 82(10–11), 1675–1687 (2012)
41. Venter, G., Sobieszczanski-Sobieski, J.: Multidisciplinary optimization of a transport aircraft

wing using particle swarm optimization. Struct. Multi. Optim. 26(1–2), 121–131 (2004)
42. Version, M.: 7.10. 0.499 (r2010a) (2010)
43. Vestroni, F., Lacarbonara, W., Carpineto, N.: Hysteretic tuned mass damper for passive control

of mechanical vibration. Sapienza University of Rome, Italian Patent No. RM2011A000434
(2011)

44. Waisman, H., Montoya, A., Betti, R., Noyan, I.: Load transfer and recovery length in parallel
wires of suspension bridge cables. J. Eng. Mech. 137(4), 227–237 (2010)

45. Wen, Y.: Method for random vibration of hysteretic systems. J. Eng. Mech. Div. 102(2), 249–
263 (1976)

46. Worden, K.: Data processing and experiment design for the restoring force surface method,
part i: integration and differentiation of measured time data. Mech. Syst. Sig. Process. 4(4),
295–319 (1990)



282 B. Carboni et al.

47. Worden, K.: Data processing and experiment design for the restoring force surface method,
part ii: choice of excitation signal. Mech. Syst. Sig. Process. 4(4), 321–344 (1990)

48. Ye, M.: Parameter identification of dynamical systems based on improved particle swarm
optimization. In: Intelligent Control and Automation, pp. 351–360. Springer, Berlin (2006)


	Hysteretic Beam Model for Steel Wire  Ropes Hysteresis Identification
	1 Introduction
	2 The Bouc-Wen Model of Hysteresis
	3 The Hysteretic Beam Model
	4 Experimental Bending Tests for Steel Wire Ropes
	5 Particle Swarm Optimization Algorithm
	6 Identification Results
	7 Conclusions
	References


