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Abstract The Multiple Scale Harmonic Balance Method (MSHBM) is discussed
here for several paradigmatic systems (primary structures) equipped with a Nonlin-
ear Energy Sink (NES). This is a small-mass oscillator with essentially nonlinear
stiffness, used for passive control purpose. The method permits to overcome the dif-
ficulties inherent to standard perturbation methods, which occur as a consequence
of the nonlinearizable nature of the NES equation. It combines the Multiple Scale
Method and the Harmonic Balance Method to furnish Amplitude Modulation Equa-
tions ruling the slow asymptotic dynamics of the augmented system. TheMSHBM is
illustrated here for a general, internally non-resonant, multi d.o.f. structure equipped
with a NES and under multiple concurrent actions, namely steady wind inducing
Hopf bifurcation, and 1:1 and 1:3 resonant harmonic forces. The relevant Amplitude
Modulation Equations are specialized for simpler cases, where the single contribu-
tions of each external action is considered separately. The effect of the NES on the
dynamics of the system is discussed for each case and numerical results are displayed.

1 Introduction

Nonlinear Energy Sinks (NES) are strongly nonlinear oscillators, typically equipped
with a small mass, a linear damper and an essentially nonlinear spring, attached to a
primary structure to be controlled. Their main goal is to induce irreversible transfer
of vibrational energy from the primary structure to themselves, and to dissipate it as
a passive control device. A comprehensive report on the characteristics and uses on
NES is found in [1, 2].

The one-way energy convey from the primary structure to the NES, referred
as Target Energy Transfer (TET), and investigated in the literature in analytical,
numerical and experimental sense [3–7], as well as the capacity (in theory) of the
NES of oscillating at any frequencies, giving rise of large band tuning with the
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structure to be controlled, are consequences of the essentially nonlinear nature of
the NES and its lacking of linear stiffness. Moreover, the presence of small mass is
responsible of (almost) singularity in the equations, inducing relaxation oscillations,
typically referred as Weakly Modulated Response (WMR) and Strongly Modulated
Response (SMR) [8, 9].

Recently, these kind of devices have received great attention in the literature, being
used in many applications. In [10, 11], a NES was applied to a main linear oscillator
harmonically excited by a 1:1 resonant force. In [12, 13],multiple parallel NESswere
considered to dissipate first-mode oscillations of a linear structure under impulse as
well as harmonic forcing. In [14] non-smooth NES was considered to control a two-
d.o.f. system. In [15], NES was used to suppress aeroelastic instabilities on a rigid
wing, modeled as a two-d.o.f. section-model, under steady wind. In [16] a single
NES is used to control oscillations of a long-span bridge prone to coupled flutter.

To analytically study the slow-flowdynamics of systemswithNES, the researchers
generally make use of two steps: (a) the complexification-averaging procedure by
Manevitch [17], referred as CX-A, recently extended also to non-polynomial non-
linearity [18] and piece-wise systems [14], and, subsequently, (b) the Multiple Scale
Method (MSM, [19]). In fact, due to the non-linearizable nature of the equations of
NES, it was stated in [20], where a grounded NES was studied, that “for this type
of problem the standard analytical techniques from nonlinear dynamics (such as the
method of multiple-scales, and the standard method of averaging), are not directly
applicable, and an alternative approach must be followed”; accordingly, the com-
plexification method was employed. Dealing with the same problem, three different
methods were used in [21], namely, the method of harmonic balance, a combina-
tion of a shooting method and Floquet theory, and direct time integration, but not
the MSM. In the same paper, the authors used an adapted version of the method of
averaging, and defined their theoretical analysis as “limited”.

For all these reasons, the authors of this paper, in a series of work [22–24] in-
vestigated the possibility of implementing a nonstandard version of the MSM, for
general systems equipped with NES, under specific external actions. In particular,
in [22], they used the Multiple Scale Harmonic Balance Method (MSHBM), to get
AmplitudeModulation Equations (AME) for amulti d.o.f. system under 1:1 resonant
external force. The main advantage of the algorithm is that the initial complexifi-
cation procedure is avoided, dealing directly with variables having clear physical
meanings. In [23], the same algorithm was specialized for a system undergoing a
Hopf bifurcation due to steady wind. In [24] the MSHBM was extended to infinite
dimensional systems, in direct approach, to deal with an internally nonresonant string
under a harmonic force considered resonant to a certain mode.

In this paper, theMSHBM is illustrated for a general discrete system under simul-
taneous external actions. The scope of the paper is multifold: (a) to collect old results
by the authors in a more systematic and exhaustive manner; (b) to present new results
concerning subharmonic excitations, not analyzed in the past; (c) to open the way
to further investigations relevant to the interaction among simultaneous excitations,
here accounted for in formulation, but not addressed in the numerical results, yet.
To this ends, a general, nonlinear, multi-d.o.f. system under effect of steady wind,
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which induces a Hopf bifurcation, concurrently acting with external 1:1 and 1:3 res-
onant harmonic excitation, is considered. A NES is attached to it, in order to control
amplitude of vibrations, and the MSHBM is applied to the equations of motion, to
get the AME ruling the dominant dynamics of the system. Then, numerical results
are extracted for simpler cases, when one single component of excitation is applied
in turn, with the aim of analyze the effect on the dynamics of the principal structure
and to check the reliability of the algorithm. However, a complete unfolding of the
dynamics of the proposed examples, as well as a deep analysis of the possible bene-
ficial effect of the NES, are not fulfilled herein, since they are out of the aim of this
paper.

The paper is organized as follows: in Sect. 2, the algorithm is applied to a general
system; in Section 3, some examples are discussed: in Sect. 3.1 a one d.o.f. system
under 1:1 resonant force is studied; in Sect. 3.2 the effect of a NES on the dynamics of
a one d.o.f. system under 1:3 subharmonic resonance is discussed; in Sect. 3.3 results
on a two-d.o.f. system under steady wind are analyzed; in Sect. 3.4 a N-d.o.f. inter-
nally nonresonant string with NES and under harmonic excitation is considered; in
Sect. 4 some conclusions are drawn.

2 The Multiple Scale Harmonic Balance Method

A nonlinear multi-d.o.f. mechanical systems, which is close to a Hopf bifurcation
caused by aerodynamic forces, and under both 1:1 and 1:3 resonant harmonic ex-
citations, is considered herein. The aerodynamic forces, due to the steady wind of
(non-dimensional) speed μ which blows orthogonally to the plane of the structure,
are assumed to be described by the quasi-steady theory. The main system is equipped
with an essentially nonlinear oscillator with small mass and linear damper, behaving
as a Nonlinear Energy Sink (NES), attached at a selected point (see Fig. 1). The
relevant nondimensional equations of motion for the whole system read:

Mẍ + C(μ)ẋ + K(σ, μ)x + ξ(rT ẋ − ẏ)r + κ(rT x − y)3r

+ n(x, x, x) = η1f1 cos(ωt) + η3f3 cos(3ωt) (1)

mÿ − ξ(rT ẋ − ẏ) − κ(rT x − y)3 = 0 (2)

where: x = x(t) is the time-dependingN-dimensional columnmatrix of the displace-
ments of the main structure; M is the mass matrix; C(μ) is the (non-proportional)
damping matrix and K(σ, μ) is the stiffness matrix; C depends on μ while K de-
pends onμ and (linearly) by a structural parameter σ ; bothμ and σ act as bifurcation
parameters; n is the column of the (cubic) geometric nonlinearities, f1 is a unitary
vector (||f1|| = 1) providing the shape of the component of the external force, of am-
plitude η1, which is modulated by the frequencyω; in analogy, f3 is the unitary vector
(||f3|| = 1) describing the component of the external force modulated by frequency
3ω and with amplitude η3; y = y(t) is the time-depending displacement of the added
oscillator, m its mass, ξ its damping-ratio and κ the coefficient of its essentially
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Fig. 1 Sketch of a
multi-d.o.f. system equipped
with a NES

nonlinear (cubic) spring; r is the influence coefficient column; finally, the dot repre-
sents time-differentiation. It is assumed that, when μ is equal to a critical value, the
wind triggers aHopf bifurcation and the dynamics of the (homogeneous) systemwith
NES disengaged evolves on a critical mode; moreover, when σ = 0, the external ex-
citation f1 is 1:1 resonant with the same critical mode of the main structure, and f3 is
1:3 resonant with the same mode as well, whereas no other resonance combinations
are possible; σ acts as a detuning parameter.

It is convenient to introduce the relative displacement between main structure and
NES, z := rT x − y, so that the (1) and (2) become:

Mẍ + C(μ)ẋ + K(σ, μ)x + ξ żr + κz3r

+ n(x, x, x) = η1f1 cos(ωt) + η3f3 cos(3ωt) (3)

m(rT ẍ − z̈) − ξ ż − κz3 = 0 (4)

The dependent variables are rescaled through a nondimensional small parameter
ε > 0, as (x, z) := ε1/2(x̃, z̃), consistentlywith the presence of cubic nonlinearity; the
bifurcation parameterμ is expressed asμ = μ0 +εμ1, whereμ0 is its critical value,
to be still evaluated, and εμ1 is the small deviation from it. The structural parameter
σ is rescaled as σ = εσ̃ . The 1:1 external force is rescaled as η1 = ε3/2η̃1, while the
1:3 force component is rescaled as η3 = ε1/2η̃1. The parameters of the NES are also
rescaled, since both its mass and damping are assumed small: (m, ξ) := ε(m̃, ξ̃ ). The
rescaling and series expansion of C(μ) and K(σ, μ) lead to the following equations,
after omission of tilde and division by ε1/2:

Mẍ + (C0 + εμ1C1)ẋ + (K0 + εμ1Kμ + εσKσ )x

+ εξ żr + εκz3r + εn(x, x, x)

= εη1f1 cos(ωt) + η3f3 cos(3ωt) (5)

εm(rT ẍ − z̈) − εξ ż − εκz3 = 0 (6)
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where C0 := C(μ0), K0 := K(0, μ0), C1 := ∂C(μ0)/∂μ, Kμ := ∂K(0, μ0)/∂μ,
and Kσ := ∂K(0, μ0)/∂σ .

According to theMultiple ScaleMethod, independent time scales t0 := t, t1 := εt,
t2 = ε2t, . . . are introduced and, consistently, the derivatives expressed as d

dt =
d0 + εd1 + ε2d2 + . . . and d2

dt2
= d2

0 + 2εd0d1 + ε2(d2
1 + 2d0d1) + . . .. Moreover,

the dependent variables are expanded in series as:

{
x
z

}
=

{
x0
z0

}
+ ε

{
x1
z1

}
+ ε2

{
x2
z2

}
+ . . . (7)

Substituting in (5) and (6) and collecting terms of the same order in ε, lead to the
following perturbation equations:

order ε0 :
Md2

0x0 + C0d0x0 + K0x0 = η3f3 cos(3ωt0) (8)

order ε1 :
Md2

0x1 + C0d0x1 + K0x1 = −2Md0d1x0 − C0d1x0
− μ1C1d0x0 − μ1Kμx0 − σKσ x0 − ξd0z0r

− κz30r − n(x0, x0, x0) + η1f1 cos(ωt0) (9)

m(rT d2
0x0 − d2

0z0) − ξd0z0 − κz30 = 0 (10)

order ε2 :
Md2

0x2 + C0d0x2 + K0x2 = −M(d2
1x0

+ 2d0d2x0 + 2d0d1x1) − C0(d2x0 + d1x1)

− μ1C1(d0x1 + d1x0) − σKσ x1 − μ1Kμx1

− ξ(d0z1 + d1z0)r − 3κz20z1r − 3n(x1, x0, x0) (11)

m(rT d2
0x1 − d2

0z1) − ξd0z1 − 3κz20z1 =
2m(d0d1z0 − rT d0d1x0) + ξd1z0 (12)

It should be noted that, because of the vanishingly small values of the mass and
damping, as well as of the lack of linear stiffness, no equation of motion relevant
to NES appears in the generator problem (order ε0), which therefore describes the
linear dynamics of the main structure alone (as if NES were disengaged).

First, the homogeneous version of (8) is considered, in order to evaluate the critical
condition due to the wind and the complementary function. It is assumed that, at the
specific critical value μ0, the system experiences a Hopf bifurcation, this entailing
that the relevant eigenvalue problems

(λ2M + λC0 + K0)u = 0

(λ̄2MT + λ̄CT
0 + KT

0 )v = 0 (13)
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have a solution λ1,2 = ±iω, with the associated right (u and ū) and left (v and
v̄) eigenvectors (the overbar denoting the complex conjugate and i the imaginary
unit), whereas all the other eigenvalues have negative real parts and are far from the
imaginary axis.

Then, a particular solution of (8) is sought: the external forces are assumed to be
1:1 and 1:3 resonant with the same critical mode u of the main system (131), and this
entails that the remaining non-resonant modes bring a higher-order contribution to
the overall response. Therefore, only the contribution related to the resonant mode
is retained in the solution of (8), i.e.:

x0(t0, t1, . . .) = A(t1, . . .)ueiωt0 + η3w0e3iωt0 + cc (14)

where: A(t1, . . .) is a complex modal amplitude, whose modulation on the slower
time-scales must be evaluated; cc stands for complex conjugate and w0 := 1

2 [K0 +
3iωC0 − 9ω2M]−1f3.

The ε-order perturbation equations (9) and (10) are now addressed, and the NES
(10) considered first. Since its (steady) solution cannot be expressed by elementary
(nor Jacobi) functions, the Harmonic Balance Method is used, letting:

z0(t0, t1, t2) =
∑

k

B0k(t1, t2)e
ikωt0 + cc (15)

where B0k are complex amplitudes. In this paper, just the terms relevant to the values
k = 1, 3 are retained in (15), coherently with the idea of obtaining an approximated
solution, which contains at least the same frequency components of the generat-
ing solution (14). Consequently, balancing the frequencies ω and 3ω in (10), the
following nonlinear, complex, algebraic equations are obtained:

mω2(−B01 + uA) + iξωB01 + 3κ(B2
01B̄01 + B03B̄2

01

+ 2B01B03B̄03) = 0 (16)

mω2(−9B03 + 9η3w0) + 3iξωB03 + κ(B3
01 + 3B2

03B̄03

+ 6B03B01B̄01) = 0 (17)

where u := rT u and w0 := rT w0.
Equations (16) and (17) provide, at the first order of perturbation, an algebraic

constrain between the (active) resonant amplitude A of oscillation of the main struc-
ture and the (passive) amplitudes of the NES elongation, B01 and B03; it, therefore,
describes a manifold in the state-space, on which the asymptotic dynamics takes
place (at the first perturbation order).

Equation (9) is then considered, in which z0 is assumed as in (15). By requiring
that the resonant forcing term is orthogonal to the null space of the adjoint operator
(solvability condition), the following equation must hold
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vH [(2iωMu + C0u)d1A + (iωC1u + Kμu)μ1A

+ σKσ uA + iωξrB01

+ 3κr(B2
01B̄01 + B03B̄2

01 + 2B01B03B̄03)

+ 3A2Ān(ū, u, u)

+ 3η3Ā2n(w0, ū, ū) + 6η23An(w0, w̄0, u)] = 0 (18)

producing the following differential equation:

c1d1A = (μ1c2 + σc3 + η23c8)A + ξc4B01

+ κc5(B
2
01B̄01 + B03B̄2

01 + 2B01B03B̄03)

+ c6A2Ā + η3c7Ā2 + η1c9 (19)

where the expression of the complex coefficients ci is given in Appendix A. It is
worth noticing that, when B01 = B03 = η3 = 0 is put into (19), this reduces to the
normal form equation for the Hopf bifurcation of the principal system. This entails
that the NES modifies both the bifurcation point and the limit cycle, thus bringing
potential benefits to the mechanical behavior of the original system.

If one decided to stop the perturbation analysis at this step, (19) and (16), (17)
should be considered together. In this case, since the NES provides an algebraic
constraint, its (complex) amplitudesB01 andB03 would be passive variables, whereas
the dynamic evolution of the (active) amplitude A of the main system would be
completely restrained onto the manifold (16), (17). To overcome this tight limitation,
a further perturbation step must be accomplished.

The non-diverging solution of (9) can now be evaluated, after tacking into account
(19): it contains terms of frequency ω, 3ω, 5ω, 7ω and 9ω. However, still driven by
the idea of obtaining and approximated solution, just the terms of frequency ω and
3ω are retained in it, which turns out to be:

x1(t0, t1, t2) = [(μ1w1 + σw2 + η23w3)A + ξw4B01

+ κw5(B
2
01B̄01 + B03B̄2

01 + 2B01B03B̄03)

+ w6A2Ā + η3w7Ā2 + η1w8]eiωt0

+ [η3μ1w9 + η3σw10 + ξw11B03

+ κw12(B
3
01 + 3B2

03B̄03 + 6B03B01B̄01)

+ w13A3 + η3w14AĀ + η33w15]e3iωt0 + cc (20)

where wj, (j = 1, . . . , 15) are defined in Appendix A.
Equation (12) is finally considered: a new harmonic balance is carried out, as-

suming the following expression for z1:

z1(t0, t1, t2) =
∑

k

B1k(t1, t2)e
ikωt0 + cc (21)
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Substituting (14), (15), (20) and (21) in (12) and balancing the ω- and 3ω-frequency
terms, the following equations are obtained:

−ω2m[(μ1w1 + σw2 + η33w3)A + ξw4B01 + κw5(B
2
01B̄01

+ B03B̄2
01 + 2B01B03B̄03) + w6A2Ā + η3w3Ā2

+ η1w8 − B11] − iωξB11 − 3κ(B2
01B̄11 + 2B01B̄03B13

+ 2B01B03B̄13 + B13B̄2
01 + 2B01B̄01B11 + 2B11B̄03B03

+ 2B03B̄01B̄11) − 2imω(d1B01 − ud1A)

− iωξd1B01 = 0 (22)

−9ω2m[η3μ1w9 + η3σw10 + ξB03w11 + κw12(B
3
01

+ 3B2
03B̄03 + 6B03B01B̄01) + w13A3 + η3w14AĀ

+ η33w15 − B13] − 3iωξB13 − 3κ(B2
01B11 + B2

03B̄13

+ 2B01B03B̄11 + 2B01B13B̄01 + 2B03B13B̄03

+ 2B03B11B̄01) − 6iωmd1B03 − 3iωξd1B03 = 0 (23)

where wj := rT wj, j = 1, . . . , 15. Equations (16) and (22), and (17) and (23), can
be reconstituted, respectively, using the definitions B1 := B01 + εB11 and B3 :=
B03 + εB13; coming back to the true time, they become:

−ω2m[(u + μ1w1 + σw2 + η33w3)A + κw5(B
2
1B̄1

+ B3B̄2
1 + 2B1B3B̄3) + w6A2Ā + η3w3Ā2

+ η1w8 − (1 − ξw4)B1] − iωξB1 − 3κ(B2
1B̄1

+ 2B1B̄3B3 + B3B̄2
1) − 2imω(Ḃ1 − uȦ)

− iωξ Ḃ1 = 0 (24)

− 9ω2m[η3(w0 + μ1w9 + σw10) + κw12(B
3
1

+ 3B2
3B̄3 + 6B3B1B̄1) + w13A3 + η3w14AĀ

+ η33w15 − (1 − ξw11)B3] − 3iωξB3

− κ(B3
1 + 3B2

3B̄3 + 6B3B1B̄1)

− 3iξωB3 − 6iωmḂ3 − 3iωξ Ḃ3 = 0 (25)

It appears that (24) and (25) describe the dynamics of the amplitudes B1 and B3,
differently from (16) and (17). The key-terms containing Ḃ1and Ḃ3 come out only at
the second-order, since they are affected by small coefficients ξ andm, thus revealing
the nature of singular perturbation. In contrast, the term proportional to Ȧ, which
also appears at this order, does not add any qualitative new contributions, being ruled
by (19).
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If the perturbation procedure is truncated at order ε for the main system equation,
the solvability condition (19) can be written in terms of the true time:

c1Ȧ = (μ1c2 + σc3 + η23c8)A + ξc4B1

+ κc5(B
2
1B̄1 + B3B̄2

1 + 2B1B3B̄3)

+ c6A2Ā + η3c7Ā2 + η1c9 (26)

Therefore, the prevalent dynamics of the primary system coupled with NES is
described by (26), (24), (25), in terms of the complex variables A, B1 and B3.
To get the real form of the system, either the polar or the Cartesian transforma-
tions can be applied to the equations: the first one is A(t) := 1

2a(t)eiα(t) and
Bk(t) := 1

2bk(t)eiβk(t), for k = 1, 3; the second one is A(t) := 1
2 (p1(t) + iq1(t)),

B1(t) := 1
2 (p2(t) + iq2(t)) and B3(t) := 1

2 (p3(t) + iq3(t)). The substitution
of one of the two kinds of transformations in the equations and the separa-
tion of real and imaginary parts provides the six real ordinary differential equa-
tions in the six real variables (a(t), α(t), b1(t), β1(t), b3(t), β3(t) in the polar case,
p1(t), q1(t), p2(t), q2(t), p3(t), q3(t) in the Cartesian case). Equilibrium points of the
system represent periodic oscillations in the displacements x, z.

3 Sample Systems and Numerical Results

Sample systems are analyzed here, (a) to investigate the mechanical effects of the
attached NES on the dynamics of the main system; (b) to check the reliability of
the MSHBM via comparison with direct numerical integrations of the equations of
motion.

3.1 One d.o.f. Main System Under 1:1 External Force

A sample system, already studied in [2, 11, 22], is considered here. The main system
consists of a one d.o.f. linear undamped system,with attachedNES, a sketch ofwhich
is shown in Fig. 2. The nondimensional equations of motion are:

ẍ + (ω2 + σ)x − ξ(ẏ − ẋ) − κ(y − x)3 = η1 cosωt (27)

mÿ + ξ(ẏ − ẋ) + κ(y − x)3 = 0 (28)

that, for z := x − y, become:

ẍ + (ω2 + σ)x − ξ ż − κz3 = η1 cosωt (29)

m(z̈ − ẋ) + ξ ż + κz3 = 0 (30)
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yx

1 m

η1 cos(ωt)

ω
κ

ξ

Fig. 2 Principal linear undamped oscillator under 1:1 resonant harmonic force with NES

Therefore, comparing (29) and (30) with (3) and (4), it results N = 1 and:

x = x, M = 1, C = 0, K0 = ω2, Kμ = 0,

Kσ = 1, n(x, x, x) = 0, f1 = 1, f3 = 0 (31)

Since the external excitation has just the component of frequencyω, the generating
solution does not contain the component of frequency 3ω, and so is it for the terms
z0 and z1 (B03 = B13 = 0), leading just to the balance of the frequency ω. The
nonlinear manifold, (16), becomes:

mω2(−B01 + A) + iξωB01 + 3κB2
01B̄01 = 0 (32)

which can be easily written in real form in terms of the (real) amplitudes a and b1:

(
3κb21
8mω

+ ωb1
2

)2

+
(

ξb1
2m

)2

− ω2a2

4
= 0 (33)

The set of numerical values considered in [2, 11] is used for this example: m = 0.05,
ξ = 0.01, κ = 0.067, ω = 1.

The Amplitude Modulation Equations (26), (24) read:

Ȧ = iσ

2ω
A − ξ

2
B1 − 3iκ

2ω
B2
1B̄ − iη1

4ω
(34)

2imωȦ − (2imω + ξ)Ḃ1 = mω2A

+ (iξω − mω2)B1 + 3κB2
1B̄1 (35)

In polar form, they become:

ȧ = 3kb31 sin(α − β1)

8ω
− 1

2
ξb1 cos(α − β1) − η1 sin α

2ω
(36)

aα̇ = aσ

2ω
+ 3b31k cos(α − β1)

8ω
+ 1

2
b1ξ sin(α − β1)

− η1 cosα

2ω
(37)
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mȧ sin(α − β1) + maα̇ cos(α − β1) + ξ

2ω
ḃ1 − mbβ̇1 =

− mω

2
a cos(α − β1) − 3b31k

8ω
+ mω

2
b1 (38)

mȧ cos(α − β1) − maα̇ sin(α − β1) − mḃ1

− ξ

2ω
b1β̇1 = ξ

2
b1 + mω

2
a sin(α − β1) (39)

When the NES is disengaged, since the main system is linear, the amplitudes of the
periodic solutions in x become

ae = η1

σ
(40)

tan αe = aeσ

2ω
(41)

which are always stable. They are the equilibrium points of (36), (37),when b = 0.
Due to the lack of damping in the main system, the amplitude tends to infinite when
σ goes to zero.

When the NES is considered engaged, the branches of equilibrium points of the
dynamical system (36)–(39), which represent periodic oscillations in the original
variables x and z, are shown in Fig. 3, for η1 = 0.075. The figure is obtained via
the software AUTO [25]. It can be observed that multiple solutions exist in some
intervals of σ . In particular, the three equilibrium points relevant for σ = −0.3 are
marked by colored points, and only the green one is stable, while the yellow and red
ones are unstable; black boxes represent secondary Hopf bifurcation points.

The same three equilibrium points are also shown in Fig. 4, superimposed to the
nonlinear manifold. Strongly modulated responses (SMR) are detected by numerical
integration of the system (36)–(39). They represent quasi-periodic relaxation oscilla-
tions in the variables a and b, typically describing cycles around the two folds of the

Fig. 3 Amplitudes a and bwhenNES is engaged, whenm = 0.05, ξ = 0.01, κ = 0.067,ω = 1 and
η1 = 0.075. The filled squares indicate Hopf bifurcation points. The colored points are equilibria
referred to following figures. Continuous line stable; dashed line unstable
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Fig. 4 Nonlinear manifold (blue line), three equilibrium points (red, green and yellow points),
Poincaré map of the SMR response (magenta points), and transitional motion (black line) falling
to the equilibrium point, when σ = −0.3, f = 0.075, m = 0.05, ξ = 0.01, κ = 0.067, ω = 1

t

x

Fig. 5 SMR for example 1, when σ = −0.3, η1 = 0.075, m = 0.05, ξ = 0.01, κ = 0.067,
ω = 1; x(t) as numerical integration of the original (27), (28) (red dashed line) and as reconstituted
response from (36)–(39) (blue continuous line)

nonlinear manifold shown in Fig. 4. They are triggered in dependence of the position
of the equilibrium points. In particular, a Poincaré section is shown (magenta points).
For initial conditions close to the stable equilibrium point, a trajectory asymptoti-
cally falling on it is also found (black line). The corresponding time evolutions of
the (reconstituted) displacement x(t) is shown in Fig. 5, in good agreement with the
solutions obtained by numerical integration of the original (27), (28).

A discussion on the use of the higher harmonics (3ω, . . .) for this example and
the evaluation of their negligible contribution is given in [22].
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3.2 One d.o.f. Main System Under 1:3 External Force

A second example is considered here concerning an external force in 1:3 subhar-
monic resonance. The relevant results are believed to be new, and deserve further
investigation.

The principal system is of a one d.o.f. nonlinear damped system, with attached
NES, as shown in Fig. 6. The nondimensional equations of motion are:

ẍ + 2ζωẋ + ω2(1 − σ)x + κcx3

+ κ(x − y)3 + ξ(ẋ − ẏ) = η3 cos(3ωt)

mÿ − κ(x − y)3 − ξ(ẋ − ẏ) = 0 (42)

that, for z := x − y, become:

ẍ + 2ζωẋ + ω2(1 − σ)x + κcx3

+ κz3 + ξ ż = η3 cos(3ωt)

m(z̈ − ẍ) + κz3 + ξ ż = 0 (43)

Therefore, comparing (43) with (3) and (4), it results N = 1 and:

x = x, M = 1, C = 2ζω, K0 = ω2, Kμ = 0,

Kσ = −1, n(x, x, x) = κcx3, f1 = 0, f3 = 1 (44)

Here the generating solution of the principal structure contains both the com-
ponents of frequency ω and 3ω, therefore the balance of both those frequencies in
the NES equation is carried out in this case. The polar form of the three Amplitude
Modulation Equations (26), (24), (25) reads:

yx

1 m

η3 cos(3ωt)
ω ,κc κ

2ζω ξ

Fig. 6 Principal nonlinear oscillator under 1:3 resonant harmonic force with NES
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ȧ = F1(a, b1, b3, α, β1, β3) (45)

aα̇ = F2(a, b1, b3, α, β1, β3) (46)

mωȧ sin(α − β1) + mωα̇ cos(α − β1) + ξ

2
ḃ1

− mωb1β̇1 = F3(a, b1, b3, α, β1, β3) (47)

mωȧ cos(α − β1) − mωα̇ sin(α − β1) − ξ

2
bβ̇1

− mωḃ1 = F4(a, b1, b3, α, β1, β3) (48)

ξ

2
ḃ3 − 3mωb3β̇3 = F5(a, b1, b3, α, β1, β3) (49)

ξ

2
bβ̇3 + 3mωḃ3 = F6(a, b1, b3, α, β1, β3) (50)

where Fj, j = 1, . . . , 6, are reported in Appendix A.
If the NES were disengaged, just (45) and (46) would be retained, being bk ≡

βk ≡ 0, and the steady state response of the system, describing periodic oscillations
for x(t), is described by the solution of the system F1 = F2 = 0 (see [19]).
In particular the steady state response is governed by the equation

(ζω)2 +
((

−σω

2
+ 3κcη

2
3

64ω5

)
+ 3κc

8ω
a2

)2 =
(3κcη3a

32ω3

)2
(51)

which, besides a = 0 existing everywhere, defines the non-trivial response for the
subharmonic resonance condition, which exists in the range

σ ≥ 21η33κc

256ω6 + 256ζ 2ω6

3η23κc
(52)

The frequency-response plot of the subharmonic response is shown in Fig. 7 in
black line, for η3 = 0.3, ζ = 0.01, ω = 1, κc = −5. It is superimposed to
the corresponding one, which is obtained when NES is engaged (red line) for
m = 0.05, ξ = 0.01, κ = 1. In particular, the NES reduces the amplitude of the
subharmonic response and its domain of existence; furthermore, in comparison with
the case with NES disengaged, it is found that the basin of attraction of the sub-
harmonic response in presence of NES is noticeably reduced in favor of the trivial
solution. Moreover, relaxation oscillations are found by means of numerical integra-
tions of (45)–(50). Their phase plot is shown in Fig. 8 (red line) as superimposed
to the nonlinear manifold (gray points), which is a surface in the (b1, b3, a) space.
The relaxation oscillations here described have maximum amplitudes smaller than
the corresponding (periodic) oscillations which occur when the NES is disengaged
(see Fig. 9).
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σ

a

Fig. 7 Frequency-response curve in correspondence of the 1:3 resonance for the system with NES
disengaged (black line) and with NES engaged (red line), for η3 = 0.3. Continuous line stable;
dashed line unstable

b1

a

b3

Fig. 8 Nonlinear manifold (gray points) and relaxation oscillations (red line) for σ = −0.5,
η3 = 0.3

3.3 A Two d.o.f. Airfoil

A sample system, already considered in [15, 23], is used to investigate the mechanics
of a primary structure subjected to steady wind. It is constituted by a two d.o.f. rigid
airfoil engaged to a NES and subjected to the (non-dimensional) steady wind μ,
and is sketched in Fig. 10. The (non-dimensional) Lagrangian parameters are x and
ϕ, representing the plunge and the pitch, respectively. The two nonlinear springs,
extensional and rotational respectively, have both linear and cubic coefficients. The
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t

x

Fig. 9 Time-evolution of the primary system with NES disengaged in subharmonic resonance
(black line) and with NES engaged (red line), for η3 = 0.3 and σ = −0.5

Fig. 10 Rigid airfoil with NES under steady wind

position of the NES with respect to the center of mass of the airfoil is described
by the (non-dimensional) parameter δ: if it is positive, then the NES is windward,
otherwise, if δ is negative, the NES is leeward. The non-dimensional equations of
motion are

ẍ + n12ϕ̈ + μg11ẋ + �2x + μ2g11ϕ − ξ(ẏ − ẋ + α̇δ)

− κ(y − x + αδ)3 + n1x3 = 0

n12ẍ + n22ϕ̈ + μg21ϕ̇ + k21x + (n22 − μ2g21)ϕ

+ ξ(ẏ − ẋ + α̇δ)δ + κ(y − x + αδ)3δ + n2ϕ
3 = 0

mÿ + ξ(ẏ − ẋ + α̇δ) + κ(y − x + αδ)3 = 0 (53)

The comparison between (53) and (1) allows one to identify N = 2 and the relevant
matrices and columns as



On the Use of the Multiple Scale Harmonic Balance Method ... 251

x =
{

x
ϕ

}
, M =

[
1 n12

n12 n22

]
, C(μ) = μ

[
g11 0
g21 0

]
,

K(μ) =
[
�2 μ2g11
k21 n22 − μ2g21

]
, r =

{
1

−δ

}
, n =

{
n1x3

n2ϕ3

}
(54)

The following numerical values are chosen, corresponding to those used in [15]:
n12 = n21 = 0.2, n22 = 0.25, g11 = 0.2, g21 = −0.08, � = 0.5, k21 = 0,
n1 = n2 = 1, m = 0.02, ξ = 0.008. For the specified values, the critical wind
turns out to be μ0 = 0.8704, the corresponding critical frequency ω = 0.8704
(imaginary part of the eigenvalue) and the right and left eigenvectors u = {0, 1}T and
v = {−0.6521−0.5635i, 0.5217+2.7486i}T , respectively. The relevant Amplitude
Modulation Equations are not reported in their explicit form for the sake of brevity.

InFig. 11 the equilibriumbranches of theAME, corresponding to periodicmotions
in the variables x, ϕ, z, are shown for (a) windward NES (δ = 0.75) and (b) leeward
NES (δ = −0.75). The red line describes the branch when the NES is disengaged,
and the dots represent results of the numerical integration of the original equations
(53), which are in good agreement. It can be seen that, when the NES is disengaged,
a super-critical Hopf bifurcation occurs at μ1 = 0 and stable periodic motions are
triggered for increasing values of μ1, whose amplitudes are represented by the red
line. The NES shifts forward the position of the bifurcation points, but it also makes
the bifurcation sub-critical. Indeed two turning points occur, as well as two secondary
Hopf bifurcation points which trigger stable periodic motions in a, corresponding to
quasi-periodicmotions in x,ϕ and z (the amplitude of the limit cycles are shown in the
pictures). In case of windward NES (Fig. 11a), next to the second turning point, the
amplitude of the branch is larger than that without NES. It means that, in this case, the
NES gives a harmful contribution to the dynamics of the system. On the other hand,
in case of leeward NES (Fig. 11b), the branch of the amplitude is always underneath
the one corresponding to the case without NES. Therefore, for leeward NES, the
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Fig. 11 Equilibrium branches of the slow flow on the plane (μ1, a): a κ = 10, δ = 0.75; b
κ = 10, δ = −0.75. Red line without NES; black line with NES; dots numerical integrations of the
originating equations; continuous line stable; dashed line unstable; black square secondary Hopf
point
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Fig. 12 Phase portrait on the plane (b, a): a κ = 10, μ1 = 0.05, δ = 0.75; b κ = 10, μ1 = 0.07,
δ = −0.75. Red line manifold; blue line trajectory; black circle stable equilibrium point; black
cross unstable equilibrium point

effective reduction of the amplitude of oscillations is accomplished. These results are
in agreement with [2]. The two vertical dashed-dotted green lines in Fig. 11 represent
the values of μ1 for which the phase portraits of Fig. 12 are produced (μ1 = 0.05
and μ1 = 0.07, respectively). In particular, from Fig. 12a it is evident how the stable
equilibrium point (black circle), which lies on the manifold, asymptotically attracts
the dynamic evolution of the system; as a correspondence, periodic oscillations in
the variables (x, ϕ, z) are produced. On the other hand, in Fig. 12b, realized for a
value of μ1 between the two secondary Hopf bifurcations, the equilibrium points
are unstable, and a limit cycle in (b, a) is obtained. It corresponds to quasi-periodic
oscillations in (x, ϕ, z), which are in good agreement with the relevant results of the
numerical integrations of the originating equations (53).

3.4 Nonlinear Elastic String

Anonlinear extensible elastic stringPQ is considered (see Fig. 13 and [24] for details
on this case study). The string is restrained at P, while a concentrated mass mQ and a
vertical elastic spring of linear stiffness kQ are applied at Q. The string is supposed of
initial length � and prestress tensile force N̄ . An external, distributed, harmonically
time-dependent, force p(x) cos(�t) is supposed to be applied to the string (x being
the abscissa measured in the prestressed configuration and t the time). The mass per
unit length of the string is ρ and its longitudinal stiffness EA. A NES characterized
by a mass m, cubic stiffness coefficient k and linear damping coefficient c, is linked
to the string at point C, corresponding to the abscissa xC . Denoting by v(x, t) the
in-plane transverse displacement of a generic point of the string and by y(t) the dis-
placement of the NES, the nonlinear equations of motion, up to the cubic order, read
(see [19, 26] for the equations of motion of the string, obtained after the classic con-
densation procedure of the longitudinal displacement and valid under the hypothesis
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Fig. 13 Internally
nonresonant elastic string
equipped with a NES

y

P
Qv(x, t)

xC
x

k c

m

kQ

mQ
NC

f (x, t)

of large ratio between the celerity of longitudinal vs. transverse waves)

N̄v′′(x, t) + EA

�
v′′(x, t)

[∫ �

0

v′2(x, t)

2
dx

]
− ρv̈(x, t)

+ p(x) cos(�t) −
[
k(v(x, t) − y(t))3

+ c(v̇(x, t) − ẏ(t))
]
δ(x − xC) = 0

mÿ(t) −
[
k(v(xC, t) − y(t))3

+ c (v̇(xC, t) − ẏ(t))
] = 0 (55)

where δ(x) is the Dirac delta, the dot indicates time-derivative and the prime space-
derivative.

The geometric boundary condition at P states that v(0, t) = 0, while the mechan-
ical boundary condition, to be applied at Q, reads

N̄v′(�, t) + EA

�
v′(�, t)

[∫ �

0

v′2(x, t)

2
dx

]

= −kQv(�, t) − mQv̈(�, t) (56)

In nondimensional form, the partial differential problem becomes:

v̈ + ζ v̇ − v′′ − ηv′′
[∫ 1

0

v′2

2
dx

]

+
[
κz3 + ξ ż

]
δ(x − xC) = p cos(�t)

m(z̈ − v̈C) + κz3 + ξ ż = 0 (57)
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and the relevant boundary conditions are:

v(0, t) = 0

v′(1, t) + ηv′(1, t)

[∫ 1

0

v′2

2
dx

]

= −kQv(1, t) − mQv̈(1, t) (58)

where vC(t) := v(xC, t), η = EA/N̄ and z(t) := v(xC, t) − y(t), and an external
linear damping is introduced through the coefficient ζ .

The application of a Galerkin projection of (57)–(58), using as trial functions
the first N eigenfunctions ϕj(x) = sin(ωjx) (j = 1, . . . , N) of the homogeneous
linearized problem when NES is disengaged (ωj are the natural frequencies of the
string), allows one to obtain a discrete, approximate, version of the equations of
motion, which read as (3) and (4). In particular, indicating with xj(t) the unknown
modal amplitudes (v(x, t) = ∑N

j=1 xj(t)ϕj(x)), the relevant matrices and columns
read:

x = {xh}, M = {mhk}, C = {chk},
K = {khk}, r = {rh}, n = {nh} (59)

where

mhk =
{
1

0
, chk =

{
2ξhωh

0
, khk =

{
ω2

h h = k

0 h �= k
(60)

and

r = {ϕh(xC)}, n =
{

nhxh

N∑
j=1

j2x2j

}
,

f1 = {ph}, f3 = {0} (61)

with nh elastic coefficients, ξh modal damping factors and ph modal forces, h, k =
1, . . . , N .

Actually, the MSHBM was extended in [24] for infinite dimensional systems,
i.e. directly working on partial differential equations as (57) with b.c. (58). Being
the results in very good agreement with those obtained for a Galerkin projection
with large N , here pictures relevant to the direct case of [24] are shown, obtained
when η = 2.825, mQ = 0.3167 and kQ = 3.9× 10−3, the external force is assumed
as uniform (p(x) ≡ p) with frequency � = ω2(1 + σ) close to the 1:1 resonance
with the second mode of the string (here the detuning is directly applied to the
forcing frequency and not considered as a modification of the stiffness) and the
external damping coefficient of the string is ζ = 1.557%. The (nondimensional)
parameters of the NES are m = 0.05, κ = 400, ξ = 0.01. Moreover, the first four
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(nondimensional) natural frequencies of the string are ω1 = 1.208, ω2 = 3.831,
ω3 = 6.722, ω4 = 9.738. The NES is supposed to be applied at about the antinode
of the resonant mode, i.e. xC = 0.4. In the generating solution, the contribution of the
resonant mode is retained only, so that it contains just the term of frequency ω = ω2;
the harmonic balance is then applied exclusively in correspondence of the frequency
ω. The relevant Amplitude Modulation Equations are not shown here for the sake of
brevity.

Amplitude of periodic motions of both the string and NES, for force amplitude
valueη1 = 0.007, are shown inFig. 14 in terms of frequencydetuningσ . In particular,
in Fig. 14a, the frequency-response curve obtained for disengaged NES (black curve)
is superimposed to the corresponding curve obtainedwhenNES is engaged (red line).
In Fig. 14b, the amplitude of oscillation b of the NES is shown. Blue points represent
Hopf bifurcations. It is evident the beneficial effect of the NES, whose presence
reduces the peak of the string amplitude of oscillations a.

In Fig. 15a, b, the WMR (for σ = 0.064) and SMR (for σ = 0.070) are superim-
posed to the invariant manifold, respectively. The first one develops itself close to the
fold of the invariant manifold, while the second one describes relaxation oscillations
around it.

In Fig. 16, the periodic time-evolutions of the vertical displacement of the mid-
span of the string (vm := v(1/2, t))is shown for σ = 0.02. They are superimposed
to the corresponding evolutions (dotted line) obtained by time-integration of the
approximated system of ODE, which is drawn after the Galerkin projection of (57),
(58) on a basis constituted by the 8 first natural modes of the string. They show a
very good agreement.

σ

a

(a)

σ

b

(b)

Fig. 14 Frequency-response curves of the string (a) and NES (b), for η1 = 0.007. Red line
response with NES at the antinode; black line response with NES disengaged. Blue points indicate
Hopf bifurcations. Continuous line stable; dashed line unstable
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Fig. 15 Weakly modulated response (σ = 0.064, blue line (a)) and strongly modulated response
(σ = 0.070, black line (b)) with NES at the antinode, for η1 = 0.007; red line invariant manifold.
Continuous line stable; dashed line unstable
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Fig. 16 Periodic time-evolution of the string mid-span, for p = 0.007 and σ = 0.02. Continuous
line reconstituted functions from MSHBM; dotted line reconstituted functions from a discrete
Galerkin model

4 Conclusions

In this paper, a general, nonlinear, multi-d.o.f. system, equipped with an essentially
nonlinear oscillator with small mass, NES, is considered. Aim of the NES is to
passively control the amplitude of vibrations of the primary system, which here is
excited by concurrent effect of steadywind, inducing aHopf bifurcation, and both 1:1
and 1:3 resonant harmonic forces; no internal resonances are allowed. The MSHBM
is applied in order to obtain the Amplitude Modulation Equations, which turn out
to be singular perturbed equations. Numerical results are shown for different case
studies, in order to detect the single effect of the excitations and how theNESmodifies
the predominant dynamics of the principal system. The outcomes guarantee good
agreement with the response as obtained by numerical integrations of the equations



On the Use of the Multiple Scale Harmonic Balance Method ... 257

of motion; moreover they assure good reliability of the MSHBM (a) to detect the
predominant dynamics of the system and (b) to be used as valid tool for optimization
purposes in the choice of the parameters and position of the NES.
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Appendix A: Coefficients of the Equations

The index H indicates the Hermitian (transpose and complex conjugate). The ex-
pression of the coefficients of (19) are:

c1 = 2iωvHMu + vHCu, c2 = −iωvHC1u − vHKμu,

c3 = −vHKσ u, c4 = −iωvHr, c5 = −3vHr,

c6 = −3vHn(u, u, ū), c7 = −3vHn(w0, ū, ū),

c8 = −6vHn(u, w0, w̄0), c9 = 1

2
vH f1 (62)

In (20) the column matrices wj (j = 1, . . . , 8) are the solutions of the following
singular algebraic problems:

w1 : (K0 + iωC0 − ω2M)w1 = −iω
(

C1u

− 1

c1
(vHC1u)(2iωMu + C0u)

)

−
(

Kμu − 1

c1
(vHKμu)(2iωMu + C0u)

)
(63)

w2 : (K0 + iωC0 − ω2M)w2 = −
(

Kσ u

− 1

c1
(vHKσ u)(2iωMu + C0u)

)
(64)

w3 : (K0 + iωC0 − ω2M)w3 = −6
(

n(u, w0, w̄0)

− 1

c1
vHn(u, w0, w̄0)(2iωMu + C0u)

)
(65)

w4 : (K0 + iωC0 − ω2M)w4 = −iω
(

r

− 1

c1
vHr(2iωMu + C0u)

)
(66)

w5 : (K0 + iωC0 − ω2M)w5 = −3
(

r

− 1

c1
vHr(2iωMu + C0u)

)
(67)
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w6 : (K0 + iωC0 − ω2M)w6 = −6
(

n(u, u, ū)

− 1

c1
vHn(u, u, ū)(2iωMu + C0u)

)
(68)

w7 : (K0 + iωC0 − ω2M)w7 = −6
(

n(w0, ū, ū)

− 1

c1
vHn(w0, ū, ū)(2iωMu + C0u)

)
(69)

w8 : (K0 + iωC0 − ω2M)w8 = −1

2

(
f1

− 1

c1
vH f1(2iωMu + C0u)

)
(70)

The solution is made unique by the normalization condition wT
j u = 0.

Moreover wj (j = 9, . . . , 15) are the solutions of the following non-singular
algebraic problems, in which, however, compatibility is satisfied.

w9 : (K0 + 3iωC0 − 9ω2M)w9 = −3iC1w0 − Kμw0 (71)

w10 : (K0 + 3iωC0 − 9ω2M)w10 = −Kσ w0 (72)

w11 : (K0 + 3iωC0 − 9ω2M)w11 = −3iωr (73)

w12 : (K0 + 3iωC0 − 9ω2M)w12 = −r (74)

w13 : (K0 + 3iωC0 − 9ω2M)w13 = −n(u, u, u) (75)

w14 : (K0 + 3iωC0 − 9ω2M)w14 = −6n(w0, u, ū) (76)

w15 : (K0 + 3iωC0 − 9ω2M)w15 = −3n(w0, w0, w̄0) (77)

In (45)–(50), the expressions of the right hand side terms are:

F1 = −ζωa − 3

32ω3 η3κca2 sin(3α) − 1

2
ξb1 cos(α − β1)

+ 3

8ω
κb31 sin(α − β1) + 3

8ω
κb21b3 sin(α + 2β1 − β3)

+ 3

4ω
κb1b23 sin(α − β1) (78)

F2 = 3

64ω5
η23κca − σω

2
a − 3

32ω3 η3κca2 cos(3α) + 3

8ω
κca3

+ 1

2
ξb1 sin(α − β1) + 3

8ω
κb31 cos(α − β1)

+ 3

8ω
κb21b3 cos(α + 2β1 − β3) + 3

4ω
κb1b23 cos(α − β1) (79)

F3 = −1

2
mω2a cos(α − β1) + 1

2
mω2b1
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− 3

8
κb21b3 cos(3β1 − β3) − 3

4
κb1b23 (80)

F4 = 1

2
mω2a sin(α − β1) + 1

2
ξωb1 − 3

8
κb21b3 sin(3β1 − β3) (81)

F5 = 9

8
η3m cos(β3) − 9

64
η3mσ cos(β3) + 27

32
η3mζ sin(β3)

+ 27

4096ω6 η33mκc cos(β3) + 27

128ω2 η3mκca2 cos(β3)

− 9

64
κcma3 cos(3α − β3) − 1

8
κb31 cos(3β1 − β3)

− 9

64
κmb31 cos(3β1 − β3) + 9

2
mω2b3

− 3

4

(
1 + 9

8
μ1

)
κb21b3 − 3

8

(
1 + 9

8
μ1

)
κb33 (82)

F6 = 27

32
η3mζ cos(β3) − 9

8

(
1 − 1

8
σ
)
η3m sin(β3)

− 27

4096ω6 η33κcm sin(β3) − 27

128ω2 η3κcma2 sin(β3)

− 9

64
κcma3 sin(3α − β3) − 1

8

(
1 + 9

8
m

)
κb31 sin(3β1 − β3)

− 3

2

(
1 + 9

8
m

)
ξωb3 (83)
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