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Abstract This work reports on the effect of a quasi-periodic (QP) voltage on the
dynamics of a resonant capacitive micro-electro-mechanical system (MEMS) under
DC and AC actuations. We consider that the AC actuation is composed of resonant
AC and non resonant AC voltages. The microstructure device is modelled as a lumped
mass-spring-damper system. Averaging technique and the method of multiple scales
are performed to obtain the modulation equations of the slow dynamic near the
primary resonance. The influence of the amplitude and the frequency of a high
frequency voltage (HFV) on the occurrence of bistability and jumps in the frequency
response is examined and the safe basin of attraction is explored. The results of this
work indicate that when the mechanical parameters of the MEMS device are fixed
and cannot be tuned, a HFV can be used for controlling the dynamic of the resonant
capacitive MEMS.

1 Introduction

Analysis of nonlinear vibrations of MEMS such as resonators, sensors and switches
is an active research topic with applications in many engineering fields such as com-
munications, automotive and robotics, to name just a few. One of the most critical
issues in the design of MEMS is their reliability, life time, survivability and stabil-
ity under mechanical, thermal and electrical loads. From dynamical point of view
one of the key performances of MEMS is the repeatability and the reproducibility
in terms of uniquely determined dynamics. However, this property is affected by
nonlinearities, especially hysteresis and pull-in phenomena. Indeed, in capacitive
MEMS devices hysteresis and pull-in instability constitutes one of the main way to
the device failure [1].
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Various theoretical and experimental works investigated the dynamic of MEMS
actuated by DC and AC resonant voltages. For instance, Mestrom et al. [2] measured
the effects of AC voltage on the hysteresis interval. Sahai et al. [3] used a laser beam
focused on a MEMS structure to tune its nonlinear behavior from softening to hard-
ening. Nayfeh and co-workers [4, 5] studied the mechanisms leading to the dynamic
pull-in of MEMS resonators actuated by a resonant AC voltage. They showed that
AC resonant voltage lowers drastically the pull-in threshold caused by the jumps
phenomena. Alsaleem et al. [6] studied analytically and experimentally nonlinear
resonances and dynamic pull-in of a microbeam. Rhoads et al. [7] studied paramet-
rically excited MEMS oscillators, while Lakrad and Belhaq [8, 9] investigated the
effect of a HFV on the pull-in in a microstructure actuated by mechanical shocks
and electrostatic forces and the effect of a HF AC tension on the pull-in induced by a
DC. Kacem et al. [10] analyzed the nonlinear dynamics of micro- and nanoelectro-
mechanical resonant sensors around the primary resonance. For a comprehensive
review on nonlinear static and dynamics of MEMS, the reader can refer to [1].

All the previously cited works deal with periodically driven MEMS. In the present
paper, the effect of a QP voltage on a capacitive MEMS is investigated. The QP
actuation is composed of a resonant AC voltage and a nonresonant AC one.

The rest of the paper is organized as follows: In Sect. 2, we describe the model, we
perform an averaging technique [11] and then we use the method of multiple scales
[12] to approximate the QP solutions of the MEMS device. In Sect. 3, analytical
results are compared to numerical simulations, QP resonance curves are plotted and
the effects of the control parameters are discussed. The dynamic integrity and basin
erosion are also computed and commented. Section 4 concludes the work.

2 Equation of Motion and Perturbation Analysis

A single-degree-of-freedom model depicted in Fig. 1 is considered to represent a
MEMS device employing DC and AC voltages as actuators. The movable electrode
is modelled as a linear mass-spring-damper system. This linearity is valid when the
thickness of the movable electrode is greater than the initial gap with the stationary
electrode. We suppose that the only nonlinearity exhibited by the MEMS device is
caused by the electric actuation. Thus, the equation of motion can be written as

mẍ + cẋ + kx = εS

2(d − x)2 V 2(t) (1)

where x(t) is the displacement of the movable mass m, c and k are the damping and
stiffness of the system, respectively, ε is the dielectric constant of the gap medium,
d is the initial capacitor gap width, S is the area of the cross section, and V (t) is the
electric load.

The electric tension V (t) is taken as square root of a QP function as follows
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Fig. 1 A
single-degree-of-freedom
model used to model the
capacitive MEMS

 Stationary electrode

 x(t)  d 
 V(t) 

 m 

 c k

V (t) =
√

V 2
0 + U 2

1 cos (ω∗t) + U 2
2 cos (Ω∗t) (2)

where V0 is the DC voltage, U1 and ω∗ are the amplitude and the frequency of the
AC resonant actuation, respectively, while U2 and Ω∗ denote the amplitude and the
frequency of the nonresonant voltage, respectively. The specific form of the input
voltage (2) is chosen in order to decouple the effects of DC and AC voltages, to avoid
the occurrence of other harmonics and to principally prevent coupling with harmonic
resonances. Note that a square root of a harmonic voltage was used in [13, 14] to
decouple parametric and harmonic excitation.

By setting X = x
d , τ = ω0t , ω0 =

√
k
m , ξ = c

2mω0
, ω = ω∗

ω0
and Ω = Ω∗

ω0
,

where the displacement is normalized with respect to the gap and the frequencies are
normalized with respect to the natural frequency ω0 of the mass-spring system, the
nondimensional equation of motion reads

X ′′ + 2ξX ′ + X = α

(1 − X)2 + β cos (ωτ )

(1 − X)2 + γ cos (Ωτ )

(1 − X)2 (3)

Here the primes denote the derivatives with respect to the normalized time τ , and
the parameters

α = εSV 2
0

2mω2
0d3

(4)

β = εSU 2
1

2mω2
0d3

(5)

γ = εSU 2
2

2mω2
0d3

(6)

represent the contribution of the DC voltage, the resonant AC and the nonresonant
AC voltages, respectively. It should be pointed out that the parameters α,β and γ
have to be chosen such that the electric tension V (t) in (2) is real.
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Equation (3) is a quasi-periodically driven system both externally and paramet-
rically. In what follows Ω is taken larger than ω and the corresponding voltage is
referred to as HFV.

In the absence of the AC voltages, the application of a DC voltage α causes
an attractive electrostatic force between the two electrodes that causes a permanent
displacement of the mass towards the stationary electrode. The static equilibria Xs

are given by solving the following algebraic equation

Xs = α

(1 − Xs)2 (7)

Note that Xs = 1 corresponds to the static pull-in phenomenon which leads to
the contact between the two electrodes. This contact is desirable, for instance, for
capacitive switches and undesirable for sensors. In this latter, it can cause stiction,
plastic deformations of the movable electrode or even its failure.

A static analysis reveals that the pull-in occurs for αp = 4
27 ≈ 0.148 which

corresponds to a steady state displacement Xs = 1/3. Figure 2 shows the classical
variation of the static equilibria Xs with the DC voltage α. The stable (lower) branch
and the unstable (upper) branch of equilibrium points collide in a saddle-node bifur-
cation, resulting in the disappearance of both branches. In order to avoid the static
pull-in, the DC voltage α should be taken below 0.148 and the initial conditions
should be taken inside the homoclinic loop of the saddle equilibrium. It is worth
noting that the pull-in phenomenon could happen for values of α lower αp, statically
determined, due to the transient dynamics and to the modification of the basin of
attraction.

Fig. 2 Static equilibria Xs
versus the DC voltage α.
Solid lines stable, dashed
lines unstable
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2.1 Fast Flow Dynamic

The expression of the electric tension V (τ ) used in (3) contains a slow dynamic which
describes the main motion at time-scale of the microstructure natural vibration and
a fast dynamic at time scale of the HFV. In what follows the two-step perturbation
method is used to approximate QP solutions of (3).

To obtain the main equation governing the slow dynamic of the device, we imple-
ment the method of direct partition of motion [11] by introducing two different
time-scales: a fast time T−1 = η−1τ and a slow time T0 = τ . Then, the displacement
of the mass X (τ ), around a stable static equilibrium Xs , can be split up into a slow
part Z(T0) and a fast part φ(T−1, T0) as follows

X (τ ) = Xs + Z(T0) + φ(T−1, T0) ≡ Xs + η Z̃(T0) + η2φ̃(T−1, T0) (8)

Here the positive parameter η is introduced to measure the smallness of other para-
meters (0 < η � 1). The slow part Z(T0) takes into account the transient motion
composed of the natural damped motion of the microstructure and the response to the
resonant actuation. In order to give a physical meaning to the perturbation parameter
η, the high-frequency is chosen as Ω = η−1. The fast motion and its derivatives are
assumed to be 2π-periodic functions of the fast time T0 with zero mean value with
respect to it [11]. Thus, 〈X (τ )〉 = Z(T0) where 〈.〉 = 1

2π

∫ 2π
0 (.)dT−1 defines the fast

time-averaging operator. Introducing Dn
m = ∂n

∂T n
m

yields

d

dτ
= η−1 D−1 + D0 + ηD1 + η2 D2 + O(η3) (9)

d2

dτ2 = η−2 D2−1 + η−12D−1 D0 + D2
0 + O(η) (10)

Setting β = η3β̃ and ξ = η2ξ̃ where the parameters with tildes are of order O(1)

and substituting (9) and (10) into (3), we obtain up to O(η4) order the following
equation

(D2−1φ̃) + Xs + η[2(D−1 D0φ̃) + (D2
0 Z̃) + Z̃ ] + η2[(D2

0 φ̃) + 2(D−1 D1φ̃) + φ̃ + 2(D0 D1 Z̃)]
+ η3[2(D−1 D2φ̃) + 2(D0 D1φ̃) + 2(D0 D2 Z̃) + (D2

1 Z̃) + 2ξ̃(D−1φ̃) + 2ξ̃(D0 Z̃)]

= 1

(1 − Xs )2

{[
α + γ cos (T−1)

]
+ η

[
2Z̃

(1 − Xs )
(α + γ cos (T−1))

]
(11)

+ η2

[
(

3Z̃2

(1 − Xs )2 + 2φ̃

(1 − Xs )
)(α + γ cos (T−1))

]

+ η3

[
(

4Z̃3

(1 − Xs )3 + 6Z̃ φ̃

(1 − Xs )2 )(α + γ cos (T−1)) + β̃ cos (ωT0)

]}
+ O(η4)
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The dominant terms dependent on T−1 up to the order O(η) in (11) are

(D2−1φ̃) = γ

(1 − Xs)2 cos (T−1) (12)

Thus, up to this leading order, the fast motion is given by

φ̃(T−1, T0) = − γ

(1 − Xs)2 cos (T−1) + O(η) (13)

This fast motion φ increases by increasing the amplitude γ of the HFV and by
considering larger values of static equilibrium Xs which implies having a large DC
voltage α.

2.2 Slow Flow Dynamic

To approximate the equation of the slow dynamic, Eq (11) is averaged over a period
of the fast time scale T−1. One obtains the following equation up to the order O(η3)

(D2
0 Z̃) + ω2

1 Z̃ = η[α1 Z̃2 − γ1] + η2[α2 Z̃3 − γ2 Z̃ − 2ξ̃(D0 Z̃) + β̃1 cos (ωT0)] (14)

where

α1 = 3α

(1 − Xs)4 , α2 = 4α

(1 − Xs)5
, β̃1 = β̃

(1 − Xs)2 , γ1 = γ2

(1 − Xs)5
, γ2 = 3γ2

(1 − Xs)6

The parameters αi (i = 1, 2), β̃1 and γi (i = 1, 2) represent the effects of the DC
actuation, the AC resonant actuation and the HFV, respectively. The fast dynamic
influences the slow one, in (14), through a biasing term ηγ1 and a linear term η2γ2 Z̃ .

The normalized natural frequency of the mass actuated by the DC voltage is
given by

ω2
1 = 1 − 2α

(1 − Xs)3 (15)

In Fig. 3 the natural frequency ω1 given in (15) is plotted versus the DC voltage α.
In the same figure are plotted in circles the numerically obtained natural frequencies
of (3) in the absence of the AC voltages (β = γ = 0) and damping. In this case
the system is Hamiltonian and the physically acceptable solutions are centers that
are confined inside a homoclinic loop corresponding precisely to the static pull-in
phenomenon. It should be noted that the fundamental frequency of orbits near the
centers is computed numerically using a fast Fourier transformation analysis. It can
be seen from Fig. 3 that the natural frequency is decreasing with respect to α till
reaching zero which corresponds to the pull-in instability.
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Fig. 3 Natural frequency ω1
versus α. Continuous line
(given by (15)) and circles
(given by numerical
simulation of (3))

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

α

N
a
tu

ra
l f

re
q
u
e
n
cy

 ω
1

In order to obtain approximations of periodic solutions of the slow dynamic, we
use the multiple scales method [12] up to the second order near the primary resonance
i.e., ω = ω1 + σ where the small detuning parameter σ = η2σ̃ is introduced to
measure the closeness of the excitation frequency ω to the natural frequency ω1. New
time scales are introduced Tn = ηnτ , where n is a positive integer. Then, equating
terms of like power of η in (14), we obtain the following hierarchy of problems:

• Order O(1)

D2
0 Z̃0 + ω2

1 Z̃0 = 0 (16)

The solution is written as

Z̃0(T0, T1, T2) = Ã(T1, T2) exp (iω1T0) + c.c (17)

where cc denotes the complex conjugate of the preceding terms. The complex ampli-
tude Ã(T1, T2) has to be determined by eliminating the secular terms at the next level
of approximations.

• Order O(η)

D2
0 Z̃1 + ω2

1 Z̃1 = α1 Z̃2
0 − γ1 − 2(D0 D1 Z̃0) (18)

The secular terms elimination condition is given by

D1 Ã = 0 (19)

and the particular solution up to order O(η) reads
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Z̃1 = α1

ω2
1

Ã ¯̃A − γ1

2ω2
1

− α1 Ã2

3ω2
1

exp (i2ω1T0) + c.c (20)

• Order O(η2)

D2
0 Z̃2 + ω2

1 Z̃2 = − 2(D0 D2 Z̃0) − (D2
1 Z̃0) + 2α1 Z̃0 Z̃1

+ α2 Z̃3
0 − γ2 Z̃0 − 2ξ(D0 Z̃0) + β̃1

2
e(iωT0) (21)

Elimination of secular terms leads to

i2ω1(D2 Ã) = −i2ξ̃ω1 Ã + Γ1 Ã + L2 Ã2 ¯̃A + β̃1

2
eiσT0 (22)

where Γ1 = − 2α1γ1

ω2
1

−γ2 and L2 = 10α2
1

3ω2
1

+ 3α2. The particular solution at this order

is given by

Z̃2 = − 1

8ω2
1

(
α2 − 2α2

1

3ω2
1

)
Ã3e(i3ω1T0) + cc (23)

Using the polar form Ã = (ã/2) exp (iθ), where ã and θ are the amplitude and the
phase, respectively, separating real and imaginary parts in (22) leads to the following
modulation equations of amplitude and phase

dã

dτ
= −ξã + η2 β̃1

2ω1
sin (ψ) (24)

ã
dψ

dτ
= σã + η2

[
Γ1

ã

2ω1
+ L2

ã3

8ω1
+ β̃1

2ω1
cos (ψ)

]
(25)

with ψ = σ̃T2 −θ. One should point out that stationary solutions of (24) and (25) i.e.,
ȧ = ψ̇ = 0 correspond to periodic solutions of the slow flow (14) and consequently
to the QP vibrations of the original system (3). In fact, with Z = η Z̃ and a = ηã, the
amplitude a of these periodic solutions is obtained by solving the following algebraic
equation

ξ2a2 +
[
σa + η2Γ1

a

2ω1
+ L2

a3

8ω1

]2

=
(

β1

2ω1

)2

(26)

It can be seen that HFV influences the amplitude a through the parameter Γ1. The
approximated QP solution of (3), up to the leading order, is then given by
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X (τ ) = Xs − γ

Ω2(1 − Xs)2 cos(Ωτ ) + a cos (ωτ + ψ)

+ α1

2ω2
1

a2

Ω2 − γ1

Ω2ω2
1

− α1

6ω2
1

a2 cos (2ωτ − 2ψ)

− 1

32ω2
1

(α2 − 2α2
1

3ω2
1

)a3 cos (3ωτ − 3ψ) + O(η4) (27)

3 Main Results

In this section, we analyze the effect of different actuations on the dynamic of
the micro-system. To validate the analytical prediction, we compare the analyti-
cal approximation given by (27) with the results obtained by numerical simulations
of (3) using a Fehlberg fourth-fifth order Runge-Kutta method.

Next, attention will be paid on the regions where the behavior of the micro-system
is QP precluding the chaotic regions. Indeed, (3) represents a four-dimensional
dynamical system in the space R2 × T 2 and can be written in the form

X ′ = Y

Y ′ = −2ξY − X + α + β cos (Φ) + γ cos (Θ)

(1 − X)2

Φ ′ = ω (28)

Θ ′ = Ω

A visual representation of the attractors in the four-dimensional flow (28) can be
achieved using Poincaré map by strobing on the fast-evolving phase Θ . The corre-
sponding mapping (Xn, X ′

n, Φn) → (Xn+1, X ′
n+1, Φn+1) is three dimensional.

In all numerical computations the damping coefficient ξ = 0.0002. In Fig. 4 we
show the time histories of (3) obtained analytically (27) and numerically for various
parameters of control. One can observe from these figures a good match between the
analytical and the numerical results.

In Fig. 5 are depicted the power spectra and the Poincaré map of the attractors
(shown in Fig. 4a, b) projected on the plane (Xn, Φn), with Φn is computed modulo
2π
ω . These plots show that the attractors are QP.

3.1 Case with Resonant Actuation Only

In the absence of the nonresonant voltage (γ = 0), the system is subject to a DC and
an AC resonant voltages. Figure 6 shows, for different values of the static voltage α,
the amplitude-frequency response of the mass, as given by (26). The numerical values
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Fig. 4 Time histories for α = 0.12, ξ = 0.0002,σ = 0 and γ = 0.119. Gray line (analytical
solution (27)) and black line (numerical solution of (3)). a β = 2.10−6 and Ω = 7.1, b β = 10−5

and Ω = 4.1, c β = 5.10−5 and Ω = 4.1
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Fig. 6 Resonance curves for
various values of α, for
γ = 0, ξ = 0.0002 and
β = 0.00001. Lines
Analytical solutions (24) and
(25): continuous for stable
and dashed for unstable. The
stars, triangles and circles
for numerical solutions of (3)
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Fig. 7 Resonance curves for
various values of β, for
γ = 0, ξ = 0.0002 and
α = 0.12. Continuous lines
for stable, dashed lines to
unstable analytic solutions.
The stars are numerically
computed amplitude
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of the amplitude a of the periodic solutions are obtained by solving the algebraic
equation (26). It can be seen from this figure that increasing the static voltage α
increases the softening behavior of the system.

In Fig. 7, we show for fixed DC voltage α = 0.12, the frequency response for
different values of resonant AC voltage β. One observes that increasing β leads to
the softening behavior, hysteresis as well as dynamic pull-in instability [5] for larger
values of β.

The bifurcation curves delimiting the existence regions of solutions are shown
in Fig. 8 in the plane of the resonant voltage parameters. It is clear that the region
of multiplicity of solutions (zone I) increases with increasing β. This results is in
agreement with the softening effect of increasing β shown in Fig. 7.
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Fig. 8 Number of solutions
in the plane (σ,β) for γ = 0,
α = 0.12 and ξ = 0.0002:
zone I three solutions and
zone II one solution
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Fig. 9 Number of solutions
in the plane (Ω, γ) for
α = 0.12, σ = −0.002, zone
I three solutions, zone II one
solution
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3.2 Effects of the Nonresonant Voltage

In this subsection we investigate the effect of adding the nonresonant AC voltage on
the frequency response of the moving mass. In particular, we shall investigate how
this voltage can affect the domain of bistability. First, assume that the parameters
of the system are chosen in zone I of Fig. 8 (σ = −0.002,β = 0.00001) where
bistability exists. In Fig. 9 we show in the parameter plane (γ,Ω) of the HFV the
region where the bistability can be eliminated (the gray region). Figure 9 indicates
that the elimination zone of bistability is optimal for moderate values of the frequency
Ω and high values of the amplitude γ of the HFV.

Figure 10 shows, for fixed Ω = 7.1 and α = 0.12, the influence of the amplitude
γ on the resonance frequency of the slow dynamic obtained analytically in (26).
This figure shows that increasing the amplitude γ causes the nonlinear resonance
frequency to shift towards higher frequencies. Figure 10 also indicates that by tuning
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Fig. 10 Analytical resonance curves given by (26) versus the shift of the resonance σ for various
values of γ. α = 0.12 and Ω = 7.1

the amplitude of the HFV, the amplitude of the resonant mass response might be
increased or decreased to a desirable value of operation.

In Fig. 11 are shown the numerically computed resonance curves of the original
equation (3) for various values of γ. This figure shows the maximum values of
the stationary solution of the QP attractors, after disregarding 6600 resonant period,
during 600 times of the resonant period. This figure confirms the analytically obtained
results of Fig. 10. The effect of the amplitude γ and frequency Ω of the nonresonant
voltage on the resonance shift is presented in Fig. 12. This figure shows that the
amplitude γ and the frequency Ω cause opposite effects on the shift of resonance.
Indeed, increasing γ increases the shift, while increasing Ω decreases it towards the
case γ = 0.

3.3 Dynamic Integrity and Basin Erosion

It is agreed that the safety of a nonlinear system depends not only on the stability
of its solutions but also on the uncorrupted basin surrounding each solution [15].
Indeed, by performing numerical simulations of trajectories from different starting
points we are able to detect any significant change in the safe basin of attraction. In
this section we analyze and approximate numerically the safe basin of attraction.

The chosen phase space window is X (τ ) ∈ [0, 0.5] and X ′(τ ) ∈ [−0.2, 0.15]
which contains the compact part of the safe basins of attractions. Figures 13 show the
basins evolution for increasing value of the AC voltage β in the absence of HFV. The
safe basins correspond to the black regions and the corrupted areas correspond to
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Fig. 13 Basins of attraction for various values of β and for α = 0.13,σ = −0.001 and γ = 0. a
β = 0. b β = 0.003. c β = 0.007. d β = 0.01.

the white regions. These latter regions correspond precisely to the occurrence of the
dynamic pull-in phenomenon. The erosion of the safe basins for increasing resonant
voltage amplitude β is depicted in Fig. 13.

Figure 14 shows that the safe basin of attraction can be increased by adding a
HFV with γ = 0.12 and Ω = 5.1. The effect of adding the nonresonant voltage on
the basins of attractions is given in Fig. 15. It shows the global integrity measure,
representing the normalized area of the safe basin [15], versus the amplitude of
the resonant voltage amplitude β for various γ. One observes that increasing the
amplitude γ may increase the safe basin of attraction for β < 0.005 while the
amplitude of the HFV has no effect on the global integrity measure beyond β =
0.005. Indeed, increasing the safe basin offers the movable electrode of the capacitive
MEMS to gain stability and to operate in larger intervals.
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Fig. 14 Basins of attraction
for α = 0.13,β =
0.00001, ξ = 0.0002,σ =
−0.001 and Ω = 5.1. The
gray zone corresponds to
γ = 0 and the black zone to
γ = 0.12
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4 Conclusion

The dynamics of a quasi-periodically actuated capacitive MEMS is studied analyti-
cally and numerically. The MEMS is modelled by a lumped single degree of freedom
system actuated by DC and AC electrical voltages. The AC actuation is QP and is
composed of a resonant AC voltage and a non resonant fast AC voltage. The QP attrac-
tors are approximated by using the two-step perturbation technique. The method of
direct partition of motion was performed to approximate the slow dynamic of the
device and the multiple scales method was used to obtain the amplitude-frequency
response of the slow dynamic near the primary resonance.

The results shown that adding a HFV to the resonant AC actuation shifts the
frequency response toward higher frequencies, thereby retarding the occurrence of
bistability and jumps in the response amplitude. It was also shown that for appropriate
values of the amplitude and the frequency of the HFV, jumps phenomena can be
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eliminated. Moreover, by tuning the amplitude of the HFV, the amplitude of the
resonant mass might be increased or decreased to a desirable value of operation which
can be of interest for sensing specific mechanical parameters. It was also shown that
for appropriate amplitude and frequency of the HFV the safe basin of attraction is
increased and consequently the dynamic integrity of the device is improved.

The present work reveals that in certain operations where the original mechanical
characteristics of the MEMS device are assigned and cannot be tuned, HFV can
be considered as a practical alternative for controlling the dynamic of the resonant
capacitive MEMS.
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