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Preface

Structural nonlinear dynamics and diagnosis (SNDD) are of great concern to
engineers, physicists, and mathematicians. They are multidisciplinary and
encountered in many applications such as vibro-impact of mechanical structures,
aeroelastic flutter, fatigue fracture, microelectromechanical systems, and energy
harvesting systems. The aim of the two international conferences CSNDD 2014 and
CSNDD 2014 held, respectively, in Marrakech (Morocco), April 30-May 2, 2012
and in Agadir (Morocco), May 21-23, 2014, is to provide a forum for the dis-
cussion of recent developments in the theory and industrial applications of struc-
tural nonlinear dynamics and diagnosis. This SNDD biannual conference offers a
meeting place where scientists from different branches of applied mathematics,
applied mechanics, and advanced physics working in nonlinear dynamics and
control can meet to discuss the latest achievements and to exchange ideas in the-
oretical, numerical, and experimental advances in the field. Focuses are directed
toward diverse topics, ranging from the theoretical of dynamical systems to dif-
ferent physical and engineering applications. The link between fundamental and
applied nonlinear dynamics is one of the stimulating goals of the SNDD conference.
A special effort has been to invite active researchers from engineering, science, and
applied mathematics communities. These two technical meetings have indeed
updated engineers with recent analytical developments of SNDD and at the same
time allowed engineers and industrial practioners to alert mathematicians with their
unresolved issues.

This book presents the contributions of some distinguished participants in the
two meetings. Both conferences were organized by the nonlinear dynamic group
of the Hassan II University of Casablanca and have attracted representatives from
the international scientific community in nonlinear dynamics, from more than 30
nationalities. There were more than 250 communications from scientists working in
nonlinear dynamics from all over the world and more than 350 participants attended
the meetings. The book addresses the state of the art and presents the most active
current lines of research in the field of structural nonlinear dynamics. A wide
audience of researchers in this field may have an advantage of the material
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presented in this book. The book includes 22 chapters contributed by outstanding
colleagues covering various aspects of applications grouped as follows:

e The first group comprises of six chapters related to structural health monitoring,
diagnosis, damage detection, and energy harvesting.

e The second group consists of six chapters covering experimental methods,
active vibration control, passive control of structures via nonlinear energy sinks,
and microelectromechanical systems.

e The third group is comprised of ten chapters dealing with nonlinear dynamics,
vibro-impact dynamics, and aeroelastic dynamics.

Researchers and engineers interested in challenges and opportunities posed by
nonlinearities in the development of structural health monitoring, diagnosis and
damage detection, control strategies, energy harvesting, novel design criteria,
modeling, and characterization will find an outstanding introduction and useful
resources of their current needs. We hope this book will provide valuable resources
to graduate students involved in structural nonlinear dynamics and diagnosis.

The organizers of CSNDD 2012 and CSNDD 2014 would like to thank the
generous contributions made by a number of individuals and institutions. In par-
ticular, the organizers would like to acknowledge the financial contributions of the
University Hassan II-Casablanca, the University de Le Havre, University Mohamed
I-Oujda, Ecole Centrale de Lyon, ENSEM—Casablanca, the Academy Hassan II of
Sciences and Techniques, CNRST, International Union of Mathematics,
Polytechnic Institute of Casablanca, MANAGEM group, SOGELAB, and
MASTE TEC.

June 2015 Mohamed Belhaq
Laboratory of Mechanics
Hassan II University of Casablanca
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Recent Advances of Structural Life
Assessment and Related Problems

Raouf A. Ibrahim

Abstract Structural life assessment (SLA) is a diversified field and is based on the
theories of fracture mechanics, fatigue damage process, probability of failure and
reliability. SLA is not only governed by the theory of fracture mechanics and fatigue
damage process, but by the type of loading. The theory of fracture mechanics may be
classified into quasi-static fracture mechanic and dynamic fracture mechanics. The
problem of singularity encountered in fracture mechanics has been resolved by the
new theory of peridynamics described by integro-differential equation of motion.
The basic ingredients of the theory of fracture mechanics will be presented in terms
of linear elastic fracture mechanics (LEFM) and elasto-plastic fracture mechanics
(EPFM), dynamic fracture mechanics and peridynamics. The amount of energy avail-
able for fracture is usually governed by the stress field around the crack, which is
measured by the stress intensity factor. SLA depends on the failure modes and the
probabilistic description of failure.

1 Introduction

Structural life assessment (SLA) periodically evaluates the state and condition of a
structural system and provides recommendations for possible maintenance actions
or the end of structural service life. It basically relies on the theory of fracture
mechanics and reliability theory. Fracture mechanics deals with the study of the
propagation of cracks in a structural element. It seeks to establish the local stress
and strain fields around a crack tip in terms of local parameters such as the loading
and the geometry of the structure. The theory of fracture mechanics opens the way
to analyze engineering structures that experience predetermined amounts of stable
and unstable crack growth. On the other hand, the reliability theory describes the
probability of a structure to perform its expected function during an interval of time.
The opposite of reliability is failure probability per unit time or over time, such as a
life cycle.

R.A. Ibrahim ()
Department of Mechanical Engineering, Wayne State University, Detroit 48098, USA
e-mail: ibrahim@eng.wayne.edu

© Springer International Publishing Switzerland 2015 1
M. Belhaq (ed.), Structural Nonlinear Dynamics and Diagnosis,
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Reliability-based methods include the analysis of fatigue life of structural details
based on the cyclic stress against the logarithmic scale of cycles to failure (known as
S-N curve) approach and on the assumption that fatigue damage accumulation is a
linear phenomenon. The S-N curve is based on experimental measurements of fatigue
life in terms of cycles to failure for different loading levels and specimen geometries.
For some materials there is a theoretical value for stress amplitude below which it
will not fail for any number of cycles, called fatigue limit, endurance limit, or fatigue
strength. Fatigue life is thus specified by the number of stress cycles of a specified
character that a specimen sustains before failure of a specified nature occurs.

SLA and structural health monitoring (SHM) are linked and complement each
other with the purpose of maintaining structural systems in operation in spite of
inevitable aging and degradations resulting from operational environments. The pres-
ence of a fatigue crack can lead to loss of effectiveness of a structural element when
the crack reaches a critical size. Thus, the net section that resists longitudinal loads
is reduced. The two main approaches for assessing fatigue strength are the S-N for
crack initiation assessment and fracture mechanics for crack propagation assess-
ment. The S-N approach predicts the strength based on crack initiation of a critical
structural detail as a function of the number of stress cycles. The fracture mechanics
approach can be used in risk analysis based on crack propagation assessment.

While SLA relies on periodic evaluations of structure conditions, SHM deals
with the detection and identification of the structure damage and its location during
operation. SHM also involves the observation of a structure over time using sam-
pled dynamic response measurements from an array of sensors, the extraction of
damage-sensitive features from these measurements, and the statistical analysis of
these features to determine the current state of the structure health. The damage may
be manifested by changes in the material and/or geometric properties of a structural
system, including changes to the boundary conditions and system connectivity. These
changes adversely affect the structure performance. SLA and SHM are overlapping
in the some aspects of structural systems integrity. However, in SHM, the assessment
of damage requires a comparison between two system states, namely the state of per-
fect structure characteristics and the state of defected structure characteristics. SLA
and SHM share common issues such as identification and quantification of cracks,
fatigue assessment, and impact-induced damage.

An approach for integrating the information obtained from SHM in the life-
cycle performance assessment of ship structures under uncertainty was developed
by Okasha and Frangopol [69] and Okasha et al. [70]. A strategy was proposed
by Lynch et al. [62] for fatigue life estimation of a ship hull using a wireless sen-
sor network installed in the hull for autonomous health monitoring. Experimental
tests were conducted on an aluminum hull stiffened element specimen as part of the
monitored aluminum hull integrity test program to verify the embedded fatigue life
estimation procedures. The Office of Naval Research (ONR) Ship Structural Relia-
bility Program Sielski et al. [83] indicated that SHM can enhance safety and reduce
total ownership costs for all ships, particularly high-speed aluminum vessels. The
prior experience of high-speed vessels is limited and the operational demands of
these vessels require a means to assess the performance of such high-speed ships and
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evaluate their structural health conditions in real time. A fully-effective monitoring
system would monitor operational loads, detect performance degradation and struc-
tural damage in the earliest possible stage, predicting the time to potential structural
failure and providing strategies for corrective actions.

This paper is organized as follows. Section 2 provides a brief account of the theory
of fracture mechanics starting from the linear elastic fracture mechanics (LEFM)
inaugurated by Griffith’s criterion and its sequence to the elasto-plastic fracture
mechanics (EPFM) described the J-integral. In view of the limitations of quasi-
static fracture mechanics, the need for the dynamic fracture characterized for non-
Hookean materials (hyperelasticity) is addressed in Sect. 3 including an introduction
to the basic foundation of peridynamic as an emerging theory in solid mechanics.

2 Fundamentals of Fracture Mechanics

2.1 Linear and Weakly Nonlinear Criteria

Fracture mechanics was inaugurated by Griffith [43] criterion of linear elastic strains
of brittle materials. Fracture mechanics is based on the existence of an initial crack and
subsequent crack propagation under cyclic loading. Generally, the theory of fracture
mechanics is divided into linear elastic fracture mechanics (LEFM) and elastic-plastic
fracture mechanics (EPFM). LEFM is convenient for brittle-elastic materials such
as low-carbon steel, stainless steel, certain aluminum alloys and polymers. Plasticity
will always precede fracture. The linear theory (LEFM) is governed by a parameter
called the stress intensity factor, which determines the entire crack tip stress field and
measures the material toughness [80]. On the other hand, if fracture is accompanied
by considerable plastic deformation the EPFM is used. The fracture parameters used
in EPFM is referred to as the J-integral, which measures the strain energy release
rate,! and the crack-tip opening displacement (CTOD). The next few subsections
provide a brief description of these criteria.

Griffith [43] developed a linear elastic fracture criterion for brittle materials. He
recognized that the difference between the energy released if a crack was extended
and the energy needed to create new surfaces would result in a force for crack
extension. Figure 1 shows a cracked structure with a crack length 2a and subjected
to uniaxial loading of stress o. Griffith estimated the strain energy stored per unit
thickness to be

Ue = (1)

Note that the term “rate” does not refer to derivative with respect to time. In this context it refers
to derivative with respect to the size of the crack.
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under uniaxial tension
showing the stress
concentration at the crack tip

Fig. 1 Cracked structure T o

where E is Young’s modulus of the material and the minus sign indicates that this
energy would be released from the material. The energy associated with the surface
area of the crack per unit thickness is

Us =2Qa)y ()

where v is the material specific surface energy density. Griffith assumed that the
crack will propagate under constant applied stress, o, if an incremental increase in
crack length produces no change in the total energy of the surface. In other words,
the derivative of the total energy with respect to a vanishes, i.e.,

i[Ue'i‘Us]:O (3)
da

This condition results in the critical stress, o,

2F
Oer = | =L 4)
ma

Condition (4) is known as the Griffith criterion, which states that the change of
surface energy must be greater than the change of strain energy in order to maintain
the integrity of a structure member.

In ductile materials, a plastic zone may develop at the tip of the crack as shown
in Fig. 2. As the applied load increases, the plastic zone increases in size until the
crack grows and the material behind the crack tip unloads. The plastic loading and
unloading cycle near the crack tip leads to the dissipation of energy in the form of heat.
Hence, a dissipative term has to be added to the energy balance relation devised by
Griffith for brittle materials. In physical terms, additional energy is needed for crack
growth in ductile materials when compared to brittle materials. Irwin [51, 52] divided
the energy into the stored elastic strain energy, which is released as a crack grows,
and another portion due to the dissipated energy, which includes plastic dissipation
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Plastic zone Plastic zone

Crack Crack

Plane Strain Plane Stress

Fig. 2 The plastic zone around a crack tip in a ductile material

and the surface energy. The dissipated energy provides the thermodynamic resistance
to fracture and its value per unit area of the crack (G = —0U/0da) is

G=27+G, 5)

where G, is the plastic dissipation (and dissipation from other sources) per unit
area of crack growth. The modified version of Griffith’s energy criterion can then be
written as

EG
TN (©

Note that the crack extension occurs when G = 2y = R, where R is called the
material resistance to crack extension. Depending on how G and R vary with the crack
size the crack growth may be stable or unstable. A plot of R versus crack extension
is called a resistance or R-curve. The corresponding plot of G Ve;r(s;us crack extension

is the driving force. Condition for the stable crack growth is &7 < ‘%, while the

condition for unstable crack growth is % > ‘fi—g. A material with a rising R-curve,
however, cannot be uniquely characterized with a single value of G. According to
the condition of unstable crack growth a flawed structure fails when the driving force
curve is tangent with R curve, but this point of tangency depends on the shape of the
driving force, which depends on configuration of the structure.

The stress intensity factor is usually used to determine the stress state near the
tip of a crack. It is applied to homogeneous, linear elastic material and is useful
for providing a failure criterion for brittle materials. Irwin determined the amount
of energy available for fracture in terms of the asymptotic stress and displacement
fields around a crack front in linear elastic solids. This asymptotic expression for the
stress field near a crack tip is given in terms of polar coordinates, r, 6 by the formula

K
;i &~ | —=) fi;(#) + higher order terms 7
’ («/ﬁ) 1) + hig 2
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Crack

Fig. 3 Stress field with arbitrary crack under mod-I loading
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Fig. 4 Modes of crack loading

where 0;; are the Cauchy stresses, r is the distance from the crack tip, 0 is the angle
with respect to the plane of the crack, and f;; are (nondimensional) functions that
are dependent on the geometry and loading conditions (see Fig. 3). Irwin called the
quantity K as the stress intensity factor. It is seen that (7) involves singularity close
to the tip as r — 0. Since the quantity f;; is dimensionless, the stress intensity factor
can be expressed in units of stress x /Iength.

Three linearly independent cracking modes are used in fracture mechanics usually
referred as mode-1, -1, or -III as shown in Fig. 4. Mode-I is an opening (tensile) mode
where the crack surfaces move directly apart. Mode-II is a sliding (in-plane shear)
mode where the crack surfaces slide over one another in a direction perpendicular to
the leading edge of the crack. Mode-IIl is a tearing (anti-plane shear) where the crack
surfaces move relative to one another and parallel to the leading edge of the crack.
The energy release rate for crack growth or strain energy release rate may then be
calculated as the change in elastic strain energy per unit area of crack growth, i.e.,

o (VY __ (v 5
= (%)P— (a—a)u (

where U is the elastic energy of the system. Subscripts P and u stand for fixed load
and fixed displacement, respectively, while evaluating the above expressions.
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For isotropic, homogeneous and linear elastic material, Irwin showed that the
strain energy release rate, G, for a mode-I crack (opening mode) is related to the
stress intensity factor K;j:

>

2
—  plane stress
(1—1/

E

ILS;

L plain strain

G=G;= (9a)

[*)

where v is Poisson’s ratio, and K7 is the stress intensity factor in mode-I. Irwin also
showed that the strain energy release rate of a planar crack in a linear elastic body can
be expressed in terms of the three modes’ stress intensity factors for the most general
loading conditions. For pure mode-II loading relations (9a) are valid by replacing K
by Kj;. For mode-III loading, the strain energy release rate is given by the expression

5 1

where G is the shear modulus. Under general loading in plane strain, the strain energy
release rate takes the following expression
2

G—(K2+K2)M+K L 9¢)
=&y 1 E 1y &

Irwin made an additional assumption that the size and shape of the energy dissi-
pation zone remain approximately constants during brittle fracture. This assumption
suggests that the energy needed to create a unit fracture surface is a constant and
depends only on the material. This new material property was given the name frac-
ture toughness and designated by G .. It is referred to as the critical stress intensity
factor, K.. For mode-1, fracture occurs when K; > Kj..

The material fracture toughness and energy release rate are usually measured by a
crack tip opening displacement test. The crack opening displacement (COD) method
employs the crack-tip opening displacement (CTOD), see Fig. 5. Crack-tip opening
displacement (CTOD or §) is defined as the displacement transverse to the crack-tip.
The apparent advance of the crack tip is known as the crack opening stretch (COS).
CTOD is used for materials that can show some plastic deformation before failure
occurs causing the tip to stretch open.

The CTOD is estimated from the measurement of the displacement of a clip gage
across the crack tips. It is assumed that the CTOD, §, is the sum of elastic J, and
plastic, ¢, components i.e., § = d. + J,. Approximate expressions for CTOD are
given in Broek [16] for LEFM and EPFM as follows:

K2
O ~ E = oo (LEFM) (10a)

Oy Oy
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Fig. 5 Definition of crack tip opening displacement (CTOD), crack opening stretch (COS), and
clip gage displacement (CGD) or crack opening displacement (COD)

s~ (EPFM) (10b)

Oy

where G is the energy release rate (dU/da) and oy, is the yield stress. Fracture occurs
at a critical value of G, (or K) or a critical value of the J-integral.

Paris and Erdogan [75] introduced a power law relationship between the crack
growth rate during cyclic loading and the range of the stress intensity factor AK =
Kmax — Kmin, Where Kpax and Kpjn are the maximum and minimum stress intensity
factors, respectively, in the form

da _ c(AK)™ (11)
dN
where N is the number of load cycles, m is the slope between da/dN and AK
(in log-log scale) as shown in Fig. 6. c is the material constant and represents the
coefficient at the interception of the log-log plot. The term on the left side, known as
the crack growth rate, denotes the infinitesimal crack length growth per increasing
number of load cycles. The three regions shown in Fig. 6 are: region-I exhibits a
slow crack growing, region-II represents the power-law region, and region-III is the
terminal stage whose end defines the ultimate fracture.
Paris’ law can be used to quantify the residual life (in terms of load cycles) of a
specimen for a given crack size. Defining the crack intensity factor as

K =oYrma 12)

where o is a uniform tensile stress perpendicular to the crack plane and Y is a dimen-
sionless parameter that depends on the geometry. The range of the stress intensity
factor is

AK = AcY/ma (13)
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Fig. 6 Typical relationship between the crack growth rate and the range of the stress intensity factor
showing three regions of crack development for a given stress ratio

where Ao is the range of cyclic stress amplitude. ¥ = 1 is taken for the case of a
center crack in an infinite sheet. The remaining cycles can be found by substituting
this equation in the Paris law

;’_; — C(AK)" = C (Ao¥ y/7a)" (14)

For relatively short cracks, ¥ can be assumed to be independent of a and the
differential equation can be solved using separation of variables to give

2-m 2—m
Z(ac2 —a;’ )
f= (15)

CCc@—m)(Aayym)"

where Ny is the remaining number of cycles to fracture, a. is the critical crack length
above which instantaneous fracture will occur, and g; is the initial crack length above
which fatigue crack growth starts for the given stress range Ac. If Y strongly depends
on a, numerical methods might be required to find reasonable solutions.

2.2 Nonlinear Criterion and the J-Integral

Most engineering materials show some nonlinear elastic and inelastic behavior under
operating conditions involving large loads. In such materials the plastic zone at a crack
tip may have a size of the same order of magnitude as the crack size. Furthermore,
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Fig.7 J-integral around a
crack tip in two dimensions

the size and shape of the plastic zone may change as the applied load increases
and also as the crack length increases. The J-integral describes the strain energy
release rate, —dU/da, or energy per unit fracture surface area in a body subjected to
monotonic loading. Rice [79] showed that the value of the J-integral represents the
energy release rate for planar crack growth. With reference to Fig. 7, the J-integral
is a line integral given by the expression

J = / (W(x, Vdy — T - 8—“ds) (16)
Ox
r

where W(x,y) = f()gij oij - d(gjj) is the strain energy density, T = ii -G is the
surface traction vector acting on a segment ds, o is the Cauchy stress tensor, 7 is the
normal to the curve T, i is a displacement vector along arc s. For plane strain, under
mode -1 loading, this relation takes the form (see (9a)):

. 2 1 —1?
JIC_G]C_K[C T (17)

where G is the critical strain energy release rate, K. is the fracture toughness
in mode-I loading. For mode-II and mode-III loadings, the relation between the
J-integral and the mode fracture toughness takes the same form after replacing the
subscript I by II or III, respectively.

2.3 Boundary-Layer Effect

The behavior of a multilayered fiber-reinforced composite laminate near its geomet-
ric boundaries received extensive experimental and analytical studies (see, e.g., [53,
71-74, 7678, 96, 100]). These studies revealed that complex stress states with rapid
change of gradients occur along the edges of composite laminates. This phenomenon
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is due to interactions of geometric discontinuities of the composite and materials dis-
continuities through the laminate thickness. It was found to occur only within very
local region near the geometric boundaries of a composite laminate. It is frequently
referred to as “boundary-layer effect” or “free-edge effect.” This problem is unique
to composite laminates and not observed in homogeneous solids in general. It was
shown that the boundary-layer effect is three-dimensional in nature and is considered
as one of the most fundamental and important problems in the mechanics and mechan-
ical behavior of composite laminates. The high interlaminar stresses are known to be
the dominant factor causing delamination. Wang and Choi [97-99] concluded that
the boundary-layer or free-edge stress field in a composite laminate is inherently
singular in nature due to the geometric and material discontinuities. Furthermore,
the order of boundary-layer stress singularity can be determined by solving for the
transcendental characteristic equation obtained from the homogeneous solution of
the governing partial differential equations. The boundary-layer stress singularity
depends only upon material’s elastic constants and fiber orientations of adjacent
plies in composite laminates.

Pipes et al. [77], Herakovich et al. [49] and Sun and Zhou [95] found that the high
stresses developed in the boundary-layer region coupled with the low interlaminar
strength are responsible for the initiation and growth of local heterogeneous damage
in the forms of interlaminar (delamination) and intralaminar (transverse cracking)
fracture in composite laminates under static loading. Christensen [22] and Wilkins
et al. [102] found that these stresses have significant effects on the long term strength
of composite laminates under cyclic fatigue loading.

The three-dimensional stress field, developed at the free-edge of an externally
loaded composite laminated plate, was found to exist in a thin layer close to the free-
edge layer. It may cause delamination, well before the expected failure of the matrix
or fibers. It is mainly explained by the mismatch of the elastic material properties
between two adjacent dissimilar laminate layers. The free-edge effect is characterized
by the concentrated three-dimensional and singular stress fields at the free edges in
the interfaces between two layers of composite laminates. An assessment of modeling
techniques and the effect of stress field for symmetric laminates subjected to different
load condition was presented by Soni and Pagano [93], Murthy and Chamis [67],
Bar-Yoseph and Ben-David [6, 7] and Mittelstedt and Becker [66]. It was found that
the edge effect is more dominant in tension than in bending loading for symmetric
and unsymmetric laminates, and more pronounced for symmetric angle-ply than for
unsymmetric angle-ply laminates. The main difficulty of analyzing unsymmetrically
laminated shells is due to the coupling of different modes of loading and deflection.

Gu and Reddy [46] developed a finite-element model based on the quasi-three-
dimensional elasticity theory of Pipes and Pagano [76, 78] to examine the effect of
geometric nonlinearity on free-edge stress fields in composite laminates subjected
to in-plane loads. It was found that the qualitative nature of the stresses remains
the same as those obtained in the linear analysis, but the nonlinear stresses are
larger in magnitude by 5-40 %, depending on the laminate. However, in most cases
the difference was found to be about 10 %. An analytical, parametric study of the
attenuation of bending boundary layers in balanced and unbalanced, symmetrically
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and unsymmetrically laminated thin cylindrical shells was presented by Nemeth and
Smeltzer [68] for nine contemporary material systems. It was found that the effect of
anisotropy in the form of coupling between pure bending and twisting has a negligible
effect on the size of the bending boundary-layer attenuation length of symmetrically
laminated cylinders. Moreover, the results showed that the coupling of the mem-
brane and flexural anisotropy and the anisotropy caused by unsymmetric lamination
is generally unimportant with regards to the primary effect of the individual shell
anisotropies on the bending boundary-layer decay length.

Stress singularities in a laminated composite wedge under real three-dimensional
corner effects were studied by Dimitrov et al. [26, 27] who developed a numerical
approach for the asymptotic analysis of the linear-elastic solution in the neighborhood
of some three-dimensional singular points. Their results revealed a strong dependence
of the singular exponents on the wedge angle, for wedge angles smaller than m
(convex wedges) the singularity is relatively weak, whereas for angles greater than
7 (concave wedges) the dominant singularity is significantly stronger and reaches
quickly its minimum near 0.5. This means, that holes with sharp edges or concave
corners are much more dangerous for the composite structures than convex corners
or edges.

3 Dynamic Fracture and Peridynamics

3.1 Fracture Dynamics/Instability of Cracks

It is believed that Freund [36] introduced the basic theory of dynamic fracture,
which deals with fracture phenomena on a time scale for which inertial resistance
of the material to motion is significant. The deformable body typically contains a
dominant crack or other stress concentrating defect, and the phenomena of primary
interest are those associated with conditions for the onset of extension of a crack
or its arrest. Material inertia can have a significant effect in a variety of ways. The
fundamental theory of dynamic fracture is well documented by Freund [38]. Dynamic
fracture in solids has attracted the interest of engineers and physicists due both to its
technological interest and to inherent scientific challenge. The relationship between
the crack driving force and the crack tip speed was developed in terms of crack tip
plastic fields by Freund [37]. The mechanics of crack tip plasticity in dynamic crack
growth influences two modes of dynamic fracture, namely cleavage and micro-void
nucleation, growth and coalescence. As the fracture energy approaches zero, a crack
propagating at its asymptotic velocity is equivalent to a disturbance moving along
a free surface. Stroh [94] predicted the crack’s limiting velocity to be the Rayleigh
wave speed, Vg, which is the highest speed at which a wave can move along a free
surface.

Early results revealed some discrepancies. For example, Yoffe [104] predicted that
the instability speed of cracks is about 73 % of the Rayleigh-wave speed, Vg, (see
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also [15, 38]). On the other hand, experiments measurements showed that the critical
instability speed can be much lower than that value for different types of materials.
Fineberg et al. [31] and Sharon et al. [82] found experimentally that the instability
speed is about one third of the Rayleigh wave speed. Later, Gao [39] showed that
Yoffe’s model is consistent with a criterion of crack kinking into the direction of
maximum energy release rate.

Some experimental observations of fracture mechanics were reported by Fineberg
and Marder [34]. In particular, it was indicated that once the flux of energy to a
crack tip passes a critical value, the crack becomes unstable, and it propagates in
increasingly complicated ways. As a result, the crack cannot travel as quickly as
theory had supposed, fracture surfaces become rough, it begins to branch and radiate
sound, and the energy cost for crack motion increases considerably. When energy
flux to a crack tip passes a certain critical value, efficient steady motion of the tip
becomes unstable to the formation of micro-cracks that propagate away from the
main crack. The dynamic energy release rate of a rapidly moving crack allows the
possibility for the crack to split into multiple branches at a critical speed of about
50 % of the Raleigh speed as indicated by Freund [35]. According to Fineberg and
Marder [34] as the crack undergoes a hierarchy of instabilities, the ability of the
crack tip to absorb energy is enormously increased.

Abraham et al. [3] proposed that the onset of instability can be understood from
the point of view of reduced local lattice vibration frequencies due to softening at
the crack tip. Later, Abraham [1] described the onset of the instability in terms of the
secant modulus. Close to crack tips, material deformation was found to be extremely
large, leading to significant changes of local elasticity, referred to as hyperelasticity.
Gao [40, 41] indicated that the atomic bonding in real materials tends to soften with
increasing strain, leading to the onset of instability when the crack speed becomes
faster than the local wave speed. Buehler and Gao [20] emphasized that the hypere-
lasticity is the key to understanding the existing discrepancies among theory, exper-
iments and simulations on dynamical crack instability. There is a very special set of
forces between atoms as reported originally by Slepyan [92]. These forces make it
possible to develop analytical solutions for cracks moving in lattices. The behavior
of cracks in these models has the following three features proposed by Marder and
Gross [64] and Marder and Fineberg [65]:

Birth: There is a range of velocities starting at zero until around 20 % of the sound
speed at which steady crack motion is forbidden. Above this range the crack
motion becomes possible.

Childhood: Above the above range of velocity a steady stable crack motion is allowed
and perfectly stable. At exactly the same externally applied stress, however, a
stationary crack could also be stable.

Crisis: Above a critical velocity steady crack motion becomes unstable.

As the crack speeds up, the relativistic contraction discovered by Yoffe [104]
becomes more and more important, until eventually horizontal bonds above the crack
line begin to snap. The results of numerical simulations are shown in the upper right
of Fig. 8. The crack might decide to build tree-like patterns of subsurface cracks once
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Fig. 8 Computer simulations in a simple model at the atomic scale showing a transition between
smoothly moving cracks and a violent branching instability that is similar to experiment. The
transition is a function of the energy stored per unit length to the right of the crack [65]

steady motion became impossible. Figure 8§ also shows the computer simulations of
the evolution of crack velocity in a simple model at the atomic scale showing a
transition between smoothly moving cracks and a violent branching instability that
is similar to experiment. The transition is a function of the energy stored per unit
length to the right of the crack.

Micro-branching is a form of instability of fracture dynamics [33]. Fineberg [30]
presented an overview of the dynamics of fast fracture in brittle amorphous materials.
The review provided some details on the numerous effects commonly observed in
dynamic fracture resulting from an intrinsic (micro-branching) instability of a rapidly
moving crack. This micro-branching instability was found to result in large velocity
oscillations, the formation of non-trivial fracture surface structure, a large increase in
the overall fracture surface area, and a corresponding sharp increase of the fracture
energy with the mean crack velocity. It was demonstrated that the loss of translational
invariance resulting from crack-front interactions with localized material inhomo-
geneities causes both localized waves that propagate along the crack front and the
acquisition of an effective inertia by the crack. Crack-front inertia coupled with the
micro-branching instability provided an explanation of the chain-like form of the
micro-branch induced patterns observed both on and beneath the fracture surface.

Large-scale molecular dynamics studies of dynamic fracture in brittle materials
involving the limiting speed of cracks, crack tip instabilities and crack dynamics at
interfaces were considered by Buehler and Gao [20]. The local elasticity was found
to govern the dynamics of fracture, in which case the assumption of linear elastic
material behavior becomes insufficient to describe the physics of fracture as indi-
cated by Buehler [17] and Buehler and Gao [18, 19]. The dynamics of fracture that
lead to material failure were found to be governed entirely by the material’s behavior
at the smallest scales as presented by Buehler [17] and Fineberg [29]. Hyperelastic
deformation (elasticity of large strain) near a crack tip was found to provide expla-
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Fig. 9 Crack propagation showing: a the dynamical mirror-mist-hackle transition as the crack
speed increases, and b the crack velocity history (normalized by the Rayleigh-wave speed)

nations for a number of phenomena including the “mirror-mist-hackle” instability
widely observed in experiments as well as supersonic crack propagation in elastically
stiffening materials. The relation of stress and strain in real solids is strongly nonlinear
near a moving crack tip. Buehler and Gao [19, 20] showed that hyperelasticity plays
an important role in dynamical crack tip instabilities. It was found that the dynamical
instability of cracks can be regarded as a competition between different instability
mechanisms controlled by local energy flow and local stress field near the crack tip.
The result of a large-scale molecular dynamics simulation illustrating the mirror-
mist-hackle transition is shown in Fig. 9. Figure 9a shows the transition process of
the dynamical mirror-mist-hackle as the crack speed increases, while Fig. 9b shows
the time evolution of the crack velocity normalized by the Rayleigh-wave speed.
Fracture surfaces in brittle materials usually have the feature of what is known
as “mirror-mist-hackle”. This feature is characterized by the crack face morphology
changes as the crack speed increases and is referred to as dynamic instability of
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cracks. Up to a critical speed of about one third of the Rayleigh-wave speed, the
crack surface is atomically flat (mirror regime). For higher crack speeds the crack
starts to roughen (mist regime) and eventually becomes very rough (hackle regime),
accompanied by extensive crack branching and perhaps severe plastic deformation
near the macroscopic crack tip. The phenomenon of mirror-mist-hackle was found to
be a universal behavior that appears in various brittle materials, including ceramics,
glasses and polymers. This dynamical crack instability was also observed in computer
simulations performed by Abraham et al. [2], Marder and Gross [64], Gumbsch et al.
[47], Holland and Marder [50] and Deegan et al. [25].

Crack dynamics in brittle materials was found to be governed by dynamical
instabilities of the crack tip (see, e.g., [31]). Gross et al. [45] reported experi-
mental measurements of acoustic emission, crack velocity, and surface structure.
The results demonstrated quantitatively similar dynamical fracture behavior in
polymethylmethacrylate and soda-lime glass samples. This unexpected agreement
suggests that there exist universal features of the fracture energy that result from
dissipation of energy in a dynamical instability. Improved measurements with high
resolution measurements of the crack’s velocity at 1/20 ws intervals for about 10,000
points throughout the duration of an experiment with velocity resolution of £5 m/s
were reported by Gross [44] and Marder and Gross [64] made it possible to follow
the long-time dynamics of a crack in more details. In applications to the fracture
of Polymethylmethacrylate (PMMA) a spatial resolution between measurements of
order 0.2 mm was obtained by Fineberg et al. [32], Sharon et al. [82] and Fineberg
and Marder [34]. Figure 10 shows the time evolution of the measured crack velocity
propagating in PMMA as reported by Fineberg and Marder [34]. It is seen that the
crack first accelerates abruptly, over a time of less than 1 s, to a velocity on the
order of 250 m/s. Above the critical velocity v, the crack velocity exhibits rapid
oscillations. As the crack’s velocity increases, these oscillations increase in ampli-
tude. The crack begins at rest and the tip has ample time to become slightly blunted
making it difficult for the crack to begin moving.

High speed interferometric measurements on dynamically propagating interfacial
cracks were reported by Lambros and Rosakis [57, 58] for Polymethylmethacrylate
(PMMA)/steel bi-material specimen. Impact loadings, using either a drop weight
tower device or a high speed gas gun, were used. In gas gun experiments, terminal
crack tip speeds of up to 1.5 Cf MMA " where Cf MMA s the shear wave speed of
PMMA, were measured. Very large dynamic effects were observed in all dynamic
bi-material tests. It was concluded that the whole process of interfacial crack initi-
ation and growth in these tests is driven by energy “leaking” from the metal side to
the PMMA side of the bond. Furthermore, very severe transient effects occurred dur-
ing the early stages of crack growth. Dynamic complex stress factor histories were
obtained by fitting the experimental data to available asymptotic crack-tip fields. A
dynamic crack growth criterion for crack growth along bi-material interfaces was
proposed. In the subsonic regime of crack growth it was found that the opening and
shearing displacements behind the propagating crack tip remain constant and equal
to their value at initiation. The dynamic fracture toughness of PMMA compact com-
pression specimen under transient loading was studied by Rittel and Maigre [81].
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Fig. 10 Measured time
evolution of a crack tip
velocity in PMMA material.
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The evolution of both the mode-I and mode-II stress intensity factors were assessed
from the onset of loading until early crack propagation detected by a fracture gage.
Dynamic fracture toughness was taken as the value of the mode-I stress intensity
factor at fracture time. The fracture toughness was observed to increase markedly
with the stress intensity rate. Fractographic examination showed the existence of a
characteristic rough zone directly ahead of the notch-tip of dynamically fractured
specimen.

Several attempts were made to understand various aspects of the high velocity
crack tip instabilities in the framework of linear elastic fracture mechanics by Adda-
Bedia [4], Katzav et al. [54], Bouchbinder et al. [8] and Bouchbinder and Procaccia
[9]. Direct measurements of the deformation surrounding the tip of dynamic mode-I
cracks propagating in brittle elastomers at velocities ranging from 0.2 to 0.8 of the
shear wave speed were performed by Bouchbinder et al. [11-14]. The measurements
demonstrated how linear elastic fracture mechanics (LEFM) breaks down near the
tip of a crack. This breakdown was quantitatively described by extending LEFM to
the weakly nonlinear regime, by considering nonlinear elastic constitutive laws up to
second-order in the displacement-gradients. It was shown that the scale of the near-tip
region is delineated by a dynamic length-scale, £,;, from the crack tip. At this scale
the weakly nonlinear theory was found to provide an excellent description of the
measured deformation fields. The dynamic length-scale, €,,;, is an important scale as
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it denotes the scale where LEFM breaks down, second order displacement-gradients
become non-negligible compared to the first order ones, and deformation-dependent
material behavior is initiated as demonstrated by Gao [40], Buehleretal. [17], Buehler
and Gao [19], Bouchbinder et al. [11] and Bouchbinder and Lo [10].

The critical fracture velocity, V¢, was found to be roughly linearly dependent on
the lowest crack acceleration rates in PMMA and glass as reported by Livne et al. [59]
and Bouchbinder et al. [13]. However, it is seen large apparent scatter in the values
of the critical fracture velocity V¢ for a given value of the crack acceleration. This
uncertainty is believed to be due to the micro-branching instability in gels, which
undergoes a sub-critical bifurcation (hysteretic transition) from a single crack to a
multiple-crack state. The reverse transition from a crack state with micro-branches
to a single-crack state occurs at velocities far less than V. Once the system falls
within the bistable region of velocities, either a single or multi-crack state can exist.

Bouchbinder et al. [13] indicated that the micro-branching instability can be sup-
pressed by reducing the sample thickness % in the Z-direction. When the thickness
h is sufficiently reduced the total number of “noise” (activation) sources was found
to be significantly reduced. In addition, any micro-branch chain soon encounters a
sample edge and disappears. When this occurs, Livne et al. [60] found that a new
and unexpected oscillatory instability is observed at a critical velocity of 0.9 V.
The characteristic scales of this instability such as oscillation wavelengths, A, or
amplitudes, A, are dependent on sample geometry or dimensions. Although such a
high velocity oscillatory instability was shown to occur in LEFM, Bouchbinder and
Procaccia [9] suggested that the predicted oscillation wavelength must scale with
the sample dimensions in the LEFM framework on the account that no other scale
exists. It was believed that these observations indicate a new intrinsic/dynamical
scale, which is needed to describe these dynamics. The oscillatory instability shown
in Fig. 11a contains a sequence of photographs of a propagating crack with an interval
of 0.69-ms between each shot. The first top two photo frames indicate that the crack is
smooth and then undergoes transition to oscillatory motion in the subsequent frames
at approximate speed of 0.9 Vg when micro-branching is suppressed. Figrue 11b
shows two frames, the top is the XY profile, while the bottom is the XZ fracture
surface of a 0.2-mm thick gel sample where oscillations are developed. Figure 11c
is for the case of a 2.0-mm thick gel where the crack preserves its straight line tra-
jectory. The shown fracture surface in Fig. 11c is dominated by micro-branching,
while the oscillating crack of Fig. 11b is a mirror surface. Figure 11d, e shows the
steady state amplitude and wave-length as functions of the applied stress, respec-
tively for the gel compositions used in Fig. 11a—c. The transition time evolution of
the oscillation amplitude and wave-length are shown in the insets of Fig. 11d, e,
respectively. The measured and LEFM predictions and measured crack-tip open-
ing displacement (CTOD) were compared by [61] and the results revealed that the
discrepancies become significant as the crack velocity increases.
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Fig. 11 Oscillatory instability of a crack: a a sequence of photographs of a propagating crack, b
photographs of XY profile (fop) and (XZ) fracture surface (bottom), of a 0.2 mm thick gel sample, ¢
the fracture surface is micro-branch dominated, d steady state amplitude of oscillations versus the
applied stress, e wavelengths of the oscillations as a function of the applied stress [9, 13, 60]

3.2 Peridynamics

The classical theory of continuum mechanics is based on partial differential equa-
tions whose partial derivatives are continuous. Since partial derivatives do not exist on
crack surfaces and other singularities, the classical equations of continuum mechan-
ics cannot be applied directly when such features are present in the structure. Cracks
in structural material form discontinuities and their modeling requires special formu-
lation. Such formulation was proposed by Silling [84] who developed the “peridy-
namic” model of continuum mechanics with discontinuities of fracture. Peridynamics
treats internal forces within a continuous solid as a network of pair interactions, sim-
ilar to springs, which can be nonlinear. The response of the springs depends on their



20 R.A. Ibrahim

Fig. 12 Spherical region
(horizon) in a solid showing
the bond between two points
and the force density vector
(pair-wise) applied at both
points [86]

direction in the reference configuration, and their length. Pairs of material points can
interact through a spring up to a maximum distance, called the horizon.

The peridynamic theory is based on integral equations and thus does not require
spatial derivatives to be evaluated within the structure body Silling [84, 85], Silling
et al. [87], Silling and Askari [88, 89], Silling and Bobaru [90] and Weckner and
Abeyaratne [101]. It was indicated that peridynamics unifies the mechanics of con-
tinuous and discontinuous media within a single set of equations. Peridynamics is a
recent developed theory in solid mechanics since it replaces the partial differential
equations of classical continuum theories with integro-differential equations. The
basic equation of peridynamics is usually written in the form:

p(X)ii(x, 1) = / f(u(x’ 1) —u(x, 1)) dVy + b(x, 1) (18)
H

where x is a point in a body horizon H, and u is the displacement vector field.
The vector valued function f is the force density that x” exerts on x as shown in
Fig. 12. This force density depends on the relative displacement and relative position
vectors between x” and x. This force describes how the internal forces depend on
the deformation. The term b represents the body force density field. The interaction
between any x and x’ is called a “bond.” The force density f is assumed to vanish if
the point x’ is outside a neighborhood of x in the undeformed configuration, which
is called the horizon. Note that bonds can break irreversibly and broken bonds carry
no force.

In peridynamics, particles interact nonlocally through a “bond” across the distance
between them, much as in molecular dynamics [91]. The term “nonlocal” implies that
points separated by a finite distance may exert force upon each other. Values of some
quantity at a point are strongly influenced by values of the field in a neighborhood of
that point. This is in contrast to the classical partial differential equations models in
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which the particles interact locally through direct contact with each other. Chen and
Gunzburger [21] applied finite element methods as well as discontinuous Galerkin
methods to implement the peridynamic model. They used piecewise constant and
discontinuous piecewise linear functions in regions where discontinuities may appear
and continuous piecewise linear function in areas where the solutions is smooth.
They proposed a methodology to combine the two methods. Peridynamic theory
was employed by Henke [48] to describe the mechanical response of the polymer
and polymer-nano-tube interfaces. The continuum formulation used in peridynamics
allowed the polymer material to be coarse-grained to the scale of the reinforcing nano-
fibers. Furthermore failure via nano-tube pull-out and matrix tearing are possible
based on energetic considerations alone.

The peridynamic theory depends crucially upon the non-locality of the force inter-
actions and does not explicitly involve the notion of deformation gradients. The lin-
ear bond-based non-local peridynamic models with reference to problems associated
with nonstandard nonlocal displacement loading conditions were studied by Zhou
and Du [106]. Both stationary and time-dependent problems were considered for a
one-dimensional scalar equation defined on a finite bar and for a two-dimensional
system defined on a square. The study was supported by applications to the numerical
analysis of the finite-dimensional approximations to peridynamic models. A review
of peridynamic models including the ordinary bond-based, state-based models and
non-ordinary triclinic model was presented by Zhou [105]. Later, a functional ana-
lytical framework for a linear peridynamic model of a spring network system in any
space dimension was developed by Du and Zhou [28]. Different properties of the
peridynamic operators were examined for general micro-modulus functions. These
properties were utilized to establish the well-posedness of both the stationary peri-
dynamic model and the Cauchy problem of the time dependent peridynamic model.

As an application of peridynamic formulation of elasticity theory, Silling [85]
considered the deformation of an infinite bar subjected to a self-equilibrated load
distribution. The bar problem was formulated as a linear Fredholm integral equation
and solved using Fourier transform methods. The solution was found to exhibit fea-
tures such as decaying oscillations in the displacement field and progressively weak-
ening discontinuities that propagate outside of the loading region. It was argued that
these features, when present, are guaranteed to decay provided that the wave speeds
are real. This would lead to a one-dimensional version of St. Venant’s principle for
peridynamic materials that ensures the increasing smoothness of the displacement
field remotely from the loading region. The peridynamic result was found to con-
verge to the classical result in the limit of short-range forces. Silling [85] highlighted
some advantages of the peridynamic model. For example it allows for the sponta-
neous emergence of discontinuities, in contrast to the classical theory, which predicts
deformations with infinite smoothness. Furthermore, the model includes long-range
forces between material particles, unlike the classical theory, which generally deals
only with contact forces between particles.

The peridynamic theory was employed for damage prediction of many problems.
For example, Silling [85] considered the Kalthoff—~Winkler experiment in which a
plate having two parallel notches was subjected to impact by a cylindrical impactor,



22 R.A. Ibrahim

and the peridynamic simulations successfully captured the angle of crack growth
observed in the experiments. Impact damage was also predicted using peridynamics
by Silling and Askari [88, 89] who considered a plate with a center crack to show the
convergence of their numerical method. A new constitutive model was introduced for
tearing and stretching of rubbery materials by Silling and Askari [89]. The oscillatory
crack path was predicted when a blunt tool is forced through a membrane. The
peridynamic theory was also applied to damage analysis of plain and reinforced
concrete structures by Gerstle and Sau [42]. Askari et al. [5] and Colavito et al. [23,
24] utilized peridynamic to predict damage in laminated composites subjected to
low-velocity impact and static indentation. Xu et al. [103] and Kilic [55] considered
notched laminated composites under biaxial loads.

In order to take advantage of the computational robustness of finite element
method, Macek and Silling [63] implemented the peridynamic model in a conven-
tional finite element analysis code, ABAQUS, by representing the peridynamic inter-
actions with truss elements and using embedded element technique for the overlap
region. Macek and Silling [56] adopted the peridynamic theory since it uses dis-
placements rather than displacement derivatives. They developed an approach to
combine the peridynamic theory and finite element analysis in one treatment. The
regions where failure is expected were modeled using peridynamics while remaining
regions were modeled utilizing the finite element method. The coupling introduced
an overlap region in which both the peridynamic and finite element equations are
used simultaneously.

4 Closing Remarks

Structural life assessment relies on the theory of fracture mechanics, which deals
with the study of the propagation of cracks in a structural element under static and
dynamic loadings. The basic ingredients of the theory of fracture mechanics in terms
of linear elastic fracture mechanics (LEFM) and elasto-plastic fracture mechanics
(EPFM) has been briefly outlined. The amount of energy available for fracture is
usually governed by the stress field around the crack, which is measured by the
stress intensity factor. The value of the stress intensity factor, which depends on
the loading mode, has been evaluated by different methods developed by many
researchers. Complex stress states with rapid change of gradients occur along the
edges of composite laminates. This phenomenon is due to interactions of geometric
discontinuities of the composite and materials discontinuities and is found to occur
only within very local region known as “boundary-layer effect” or “free-edge effect.”
This problem is unique to composite laminates and not observed in homogeneous
solids in general. It was shown that the boundary-layer effect is three-dimensional
in nature and is considered as one of the most fundamental and important problems
in the mechanics and mechanical behavior of composite laminates.

Equally important is the dynamic fracture phenomena when inertial resistance
of the material to motion is significant. A rapidly running crack emits stress waves
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which can be geometrically reflected or scattered back to the region of the crack.
Close to crack tips, material deformation is extremely large, leading to significant
changes of local elasticity known as hyperelasticity. Hyperelastic deformation near
a crack tip has shown to provide explanations for a number of phenomena includ-
ing the “mirror-mist-hackle” instability widely observed in experiments as well as
supersonic crack propagation in elastically stiffening materials. Since partial deriva-
tives do not exist on crack surfaces and other singularities, the classical equations of
continuum mechanics cannot be applied directly when such features are present in
the structure. Cracks in structural material form discontinuities and their modeling
requires special formulation such as the peridynamic model of continuum mechanics
with discontinuities of fracture. The development of peridynamics is in its early stage
and has not been fully implemented to handle practical engineering problems such
as ships and aerospace structures under extreme loadings.
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Electromagnetic Impact Vibration
Energy Harvesters

Mohamed Bendame, Eihab Abdel-Rahman and Mostafa Soliman

Abstract Vibration energy harvesting is the focus of extensive research as an alter-
native power source for low-power electronic devices. First generation of vibration
energy harvesters were based on linear oscillators designed to harvest vibrations in
a narrow band in the vicinity of their natural frequency. However, in environments
where vibrations are random or distributed over a wide spectrum, those harvesters
prove ineffective. In this chapter, we present a new architecter for nonlinear vibra-
tion energy harvesters, namely the ‘Springless’ vibration energy harvesting, that can
effectively harvest vibrations over a wide bandwidth and at low levels of vibra-
tion. It employs impact oscillators as the harvesting element. We study, characterize,
and qualify the performance of those harvesters experimentally, analytically, and
numerically.

1 Introduction

Advances in silicon electronics and MEMS technology reduced significantly the
power consumption of devices, Table 1, such as wireless sensors, portable, and wear-
able electronics. A large number of the locations, where those devices are used, are
either remote or inaccessible. Most of these low-power devices rely heavily on elec-
trochemical batteries as a source of power. However, batteries have a limited life span
and number of recharging cycles. They are also constantly in need for recharging
or replacement. For applications such as wireless sensing and remote monitoring,
battery replacement or recharging can be expensive, challenging or impossible in
some cases. Examples include human implants, sensing devices intended for long
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Table 1 Selected

Device type Power consumption
battery-operated systems

Smartphone 1w

MP3 player 50mW

Hearing aid 1 mW

Wireless sensor 100 W

Cardiac pacemaker S50puW s

Quartz watch SUW

duration, and systems that are physically placed in remote areas [1]. Another serious
problem with batteries is the fact that they contain hazardous chemical materials that
are harmful to the environment if not recycled. In Canada, for example, over 600
million primary consumer batteries were sold in 2007 and about 95 % of them end up
in landfills [2]. With the world’s growing reliance on wireless and low-power elec-
tronics and the push for a green environment, there is a great need for self-powering
and self-sustaining low-power electronic devices.

The low power design trends combined with self-sustainability needs presented
an opportunity for researchers to find alternative ways to power such devices and
eliminate or reduce dependency on batteries. One promising avenue to achieve this
goal is to exploit ambient vibration energy sources. Vibration energy harvesting
technology has been making significant strides over the last few years as it aims to
provide a continuous and uninterrupted source of power for low-power electronic
devices and wireless sensors. While the idea of converting environmental vibration
energy into electrical energy has been used before, advances in micro-electronics
and low power consumption of silicon-based electronics and wireless sensors have
given it an added significance.

In the research literature, the first description of an inertial micro-power-generator
was an electromagnetic vibration energy harvester (VEH) presented by Williams
and Yates in 1995 [3]. Since then a great deal of research has been conducted in the
area of vibration energy harvesting. Earlier works by Beeby, Glynne-Jones, Roundy
[4-6] and others focused on the implementation of linear oscillators to maximize
the harvested energy at resonance. In this type of harvesters, the seismic mass of the
VEH moves under the influence of base excitation supported by a linear spring. The
oscillator attains maximum velocity, and thus input kinetic energy, in a frequency

band around its natural frequency,
k
w=,—, (1)
m

where k is the spring stiffness and m is the effective mass of the mechanical oscillator.

While systems in this arrangement are capable of generating electrical energy with
output power on the order of few milli-Watts [6, 7], their natural frequency must be
tuned to match the frequency of ambient vibrations. In fact these harvesters are
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Table 2 Electromagnetic micro-power generators

Generator f (Hz) Accel (m/s?) m (g) Power (WW)
Beeby et al. [6] 52 0.589 0.66 45
Glynne-Jones [4] 99 6.85 2.96 4990
Ching et al. [27] 110 95.5 - 830

designed to harvest at a single frequency. A high Q-factor to minimize energy losses
means a very limited bandwidths over which energy can be harvested [8]. However,
in environments where ambient vibrations are distributed over a wide spectrum of
frequencies, with significant predominance of low frequency components, linear
harvesters prove to be ineffective because of their high center frequencies and narrow
bandwidth [9-11]. It is therefore impractical to use linear VEHs with relatively high
center frequency (>20Hz) and narrow bandwidth to harvest ambient wideband and
low frequency environmental vibrations. Examples of some linear harvesters that
have been proposed over the years are listed in Table 2, a more comprehensive
lists of electromagnetic energy harvesters can be found in [12]. We note that linear
harvesters have high operating frequencies and low power densities. For example,
the electromagnetic VIBES harvester (first line in Table 2) has a center frequency of
52 Hz and a maximum power of 45 p'W.

Due to these limitations, attention in recent years has focused on the imple-
mentation of self-tuning and nonlinear systems in order to increase the vibration
energy harvester’s frequency bandwidth. A number of approaches have been tried
for this purpose including nonlinear stiffness, resonant frequency tuning, mechanical
stoppers and exploitation of nonlinear structures that display bandwidth widening
behavior. These approaches lead to three main types of nonlinear vibration energy
harvesters; Duffing, array, and impact harvesters.

The Duffing type harvester gets its name from the Duffing oscillator since its
governing equation reduces to a Duffing equation. In this case, the nonlinearity is
added to the harvester either by using nonlinear springs or by introducing magnetic
forces to alter the overall system stiffness and make it appear as a nonlinear quantity
in the system’s model. The Duffing harvester can be classified in three categories:
hardening, bistable, and softening [13]. Mann and Sims [10] presented a Duffing
type harvester that uses magnetic restoring forces to levitate an oscillating center
magnet. The governing equation for the harvester’s mass displacement reduces to a
Duffing equation, and the introduction of nonlinearities through magnetic levitation
resulted in large motion over a wide band of frequencies. Using a similar approach,
Mann and Owens [9] presented a nonlinear vibration energy harvester with a bistable
well. Theoretical and experimental results reveal that the nonlinear generator with a
bistable potential well can be used to broaden the frequency response of the harvester.
The output power of the proposed harvester varied from 5 to 200mW for input
accelerations ranging from 5 to 10 m/s?, and from the presented results the frequency
bandwidth was 1, 2, and 3 Hz for input accelerations between 5 and 6.5 m/s2, and
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2Hz for 10m/s? respectively. Further examples of Duffing-type and other nonlinear
vibration energy harvesters can be found in reviews of recently published work
[8, 14, 15].

Array harvesters employ a series of mechanical resonators, usually a series of
cantilever beams with varying length and center frequencies. The cantilevers are
tuned in a way that all resonance frequencies are close to each other. The resonance
frequencies are adjusted by tuning the geometry of each energy scavenger or by
applying a proof mass. As long as the source vibration has dominant frequency
within the band of the array, at least one of the beams operates at its resonance
frequency. Hence, as more beams are added to the array, as much bigger is the
possible bandwidth [16]. Sari et al. [17] proposed a harvester that used an array
of piezoelectric oscillators made of cantilever beams on which planar gold coils
were fabricated. The reported generator covers a wide band of external vibration
frequencies by implementing a number of serially connected cantilevers of different
lengths resulting in an array of cantilevers with varying natural frequencies. The
device generates 0.4 W of continuous power in a frequency range covering a band
of 800Hz. Similar approaches were used by Lien and Shu [18] and Rezaeisary et
al.[19]. In [20], Yan et al. proposed a multi-frequency energy harvester consisting
of three permanent magnets and three sets of two-layer coils supported by a beam.
The idea here is that energy is harvested under the first, second, and third resonant
modes.

It has been shown that impact harvesters increase the frequency bandwidth and
output power of vibration energy harvesters [21-24]. Impact harvesters are realized
using mechanical stoppers that limit the motion of the seismic mass. When the seismic
mass impacts the stoppers, the overall stiffness of the system is reduced to a piecewise
linear or nonlinear function, that results in a nonsmooth system [23]. Soliman et al.
[25] proposed a wideband micropower generator that utilized a mechanical stopper
placed within the stroke and the cantilever beam. When the cantilever oscillates, it
engages the stopper during motion, and therefore changes its stiffness from k; to kp
with (k; < k»). Le Cuong et al. [26] presented a double-impact electrostatic energy
harvester that used a reference device with end-stops and an impact device with
movable end-stops functioning as slave transducers. The impact harvester resulted
in bandwidth increase by up to a factor of 20 compared to conventional approaches.

In this chapter, we analyze a new architecture of nonlinear VEHs that uses a
double-impact oscillator, namely the “Springless” VEH, as its harvesting element.
Specifically, we study the response of the horizontally aligned configuration of the
VEH experimentally, numerically, and analytically.

2 Springless Vibration Energy Harvester

The schematic of the “Springless” VEH, shown in Fig. 1, consists of an electromag-
netic transducer and a double-impact oscillator. The oscillator is composed of an
inertial mass comprising four permanent magnets residing inside a steel cage, and
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Fig. 1 Schematic of the
horizontally-aligned VEH

Sori
Bearings e

Steel cage

l:l Magnets
B coil

Fig. 2 Prototype of
springless vibration energy
harvester

two end limiters made of two identical springs attached to two resin walls at each end
of the housing unit. The carriage carrying the magnetic seismic mass moves freely
along the linear guide with respect to a stationary concentric coil in response to base
excitations. A prototype of the VEH is shown in Fig. 2.

The motion of the magnetic carriage induces an electromotive force (emf) across
the coil terminals according to Faraday’s law of induction;

dp
= — 2
o (2)
where ¢ is the total magnetic flux given by;
¢ — BA 3)

where A is the area vector and B is the magnetic field vector. For a coil that consists
of N loops, the total induced voltage would be N times as large, and (2) becomes;

d
V=N E(BA cos ) “4)
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Differentiating (4) with respect to time we obtain:

V=N a8 A 0+ B da 0) + BA a6 5

= (dt cos 6 + r cos(6) + dt) 5)
From (5), the harvested power depends on the magnetic field density B provided
by the permanent magnets, the coil’s cross-section area A of the coil, and the angle
between the magnetic field B and the normal to the coil cross section area A. It is
desired to maximize the output voltage by operating with an angle 6 of zero and
maximize the constant field density B. In this case, the first and last terms of (5) will
be suppressed and the equation reduces to:

v=ng“ (6)
- dr

The coil’s shape is rectangular with length [ and width x, during operation the length
I remains constant and the width x varies with respect to the moving mass. This
reduces (6) to the following:

dx

V = NBI —,
dt

(7

where % is the velocity of the moving mass.

2.1 Magnetic Field Model

One of the most important elements of the electromagnetic VEH is the magnetic flux
density. It is therefore important to accurately design the magnetic circuit with the
objective to maximize and stabilize the flux density around the coil. The magnetic
circuit of the VEH is shown in Fig. 3, it consists of four magnets arranged as shown
in the figure, a steel cage, and an air gap separating the two sets of magnets. The
material for the steel cage is mild steel and the magnets are Sintered Neodymium.

The finite element modeling software ANSYS was used to determine the mag-
netic flux density. The FEM simulations results are compared with measured results
for validation purposes. The FEM simulation results of the magnetic field strength
obtained from ANSYS are shown in Figs. 4 and 5, while the measured results are
shown in Fig. 6.

The measured and simulated results of the magnetic circuit show that the magnetic
flux density is constant (0.74T) but has opposite signs on each side of the magnetic
circuit. This is due to the fact that the polarities of the two sets of magnets are reversed
(S-N and N-S). This setup allows the induced voltage across the coil to add up and
hence maximize the harvested power. From Fig. 6, we recognize that the flux density
is maximum over a 6—7 mm range, where it is desired that the magnets oscillate with
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Steel cage width
Magnet width

Cage thickness

S N Magnet thickness
' Air gap

Fig. 3 Magnetic circuit

Fig. 4 Calculated magnetic flux density

Fig. 5 Calculated magnetic field distribution
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respect to the stationary coil in order to reduce any magnetic softening effects in the
harvester.

2.2 Damping

Damping in the vibration energy harvester comes from two sources, mechanical and
electrical energy losses. The mechanical damping is usually approximated as viscous
linear damping, but in the case of the impact VEH cubic nonlinear damping is added
to account for energy losses when the seismic mass impacts the end limiters. The
cubic damping is defined as:

F, = bn-"‘:)62 ®)

where by, is the nonlinear damping coefficient, and found by fitting experimental data
of the frequency-response curve of the model.

2.2.1 Electrical Damping

In electromagnetic vibration energy harvesters, when the current passes through the
coil it creates a magnetic field that opposes the field produced by the magnets. The
interaction between the two fields produces a force which opposes the motion of
the inertial mass. Consequently, the interaction force that acts as electromagnetic
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damping produces the harvested power delivered to the load, and it can be expressed
as [28]
dx
F, em = be Z (9)

The electrical power is extracted from the mechanical oscillator and is given by [6]

dx

Pey = emE

(10)
A small part of this power is dissipated in the coil resistance R., and the rest is
delivered to the load resistance Ry. Equating the power dissipated to that generated
by the electromagnetic force gives

P = b, (& T Ve (11)
=7 \dr)] T RL+Rc+joL

where L is the coil inductance. Substituting for the voltage using (2), we can write
the electromagnetic damping as

1 do\?
bp=——7—— 9 (12)
RL+Rc+joL \dx

Assuming that the coil inductance is negligible and the magnetic field intensity B is
constant, the electromagnetic damping coefficient can be expressed as:

(Bl)?

= 13
Rr +Rc (13

e

where [ is the effective length of the coil. The electrical damping can, therefore, be
calculated using (13) and the parameter values given in Table 3.

2.2.2 Mechanical Damping

The viscous mechanical damping is estimated from the measured open-load
frequency-response curve of the harvester, which determines the quality factor Q
of the VEH, while the nonlinear damping coefficient is found by matching the exper-
imental frequency-response curve to the numerical results of the model.

Table 3 Electromagnetic
transducer parameters

Parameter Value
Magnetic field B (T) 0.74
Effective coil length 1 (m) 1.75
Coil resistance R¢ (£2) 3.4
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Table 4 Mechanical

. Parameter Value
damping parameters
Mass, m (kg) 0.12
Stiffness, k; (N/m) 950
Center frequency, fo (Hz) 21
Low cut-off frequency, f1 (Hz) 20.2
High cut-off frequency, f> (Hz) 22.5

The quality factor of the VEH is defined as:

_
=
where fj is the center frequency and Af = f> —f1, with f] and f> are the two half-power

frequencies. The quality factor relates to the mechanical damping of the harvester as
follows;

Onm (14)

maw

= — 15
Om b 15)
where b, is the mechanical damping coefficient of the open-load harvester. The
mechanical damping is found using (14) and (15) and the values of the VEH’s
parameters given in Table 4, b,, = 1.16 kg/s. The center frequency and half-power

bandwidth were found from a frequency-sweep curve of the base acceleration of the
VEH at an amplitude of Ag = 0.05g.

2.3 Gravity

The response of the VEH undergoes significant qualitative changes when the orien-
tation of the gravitational field with respect to the linear guide changes. When the
linear guide is aligned horizontal with respect to the surface of earth, such that gravity
is perpendicular to the track, the harvester motions are symmetric with respect to
the track mid-point. As soon as a component of the gravitational field acts along the
track, it breaks the symmetry of the harvester motions.

First, in Sect. 3, the response of the symmetric HEV is analyzed when it is aligned
horizontally. Then, in Sect. 4, we will model and analyze the response of the limiting
case for asymmetric VEHs, a VEH aligned vertically.
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3 Horizontal VEH

3.1 Model

The harvester is modeled as a single degree of freedom oscillator with piecewise-
linear stiffness, Fig.7, subject to harmonic base excitations applied directly to the
housing unit.

We set the origin of the coordinate system used to describe the motion of seismic
mass at the half point between the springs. The seismic mass m is assumed to be
a point mass, as shown in Fig. 8. The free distance along the rail (not occupied by
the cage) between the upper and lower uncompressed springs is denoted L. The
uncompressed length of each spring is denoted x; and the fully compressed length
is denoted x.. In this configuration, the governing equation of motion of the moving

mass IS gi\/en by:
| bm

Ky
i i |
1 ]

by

Fig. 7 Horizontal VEH schematic
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r Tl 77 777777 7777777777

> x(t) y(t)

Fig. 8 Horizontal VEH

Xs Xs
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M3 4 by % + by x> %+ Fo 4+ F(x) = —my (16)

where x and y are the displacements of the seismic mass m and the housing unit,
respectively, and F(x) is a nonsmooth function representing the system’s stiffness
given by (19), and F, is the induced emf given by (9),

Fe=b,x a7
Substituting (17) in (16) we obtain the equation of motion of the “Springless” VEH;
mx 4 (by +be) X + bpx* %+ F(x) = —m ¥ (18)

The restoring force F(x) is defined such that:

e The springs stiffness is set to the linear stiffness of the spring k1 when it is not
fully compressed (no impact)

e The springs stiffness is set to a higher stiffness k» when it is fully compressed
(impact) with k> > ki

The force-displacement relationship shown in Fig. 9, F'(x) can be written as follows:

0 Xy X =< Xg
ki(x — xy) Xy < X < X

Fx)=1{ ka(x —xc) + k(e —x) xe <x < 5 (19)
ki(x + x5) —Xe < X < —Xg

ko (x + x¢) + ki (xs — x¢) _% <x =< —Xc

x(m)

ki

Fig. 9 Force-displacement relationship
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The VEH scavenges vibration energy transmitted to it from an environmental
vibration source represented by the base acceleration,

y=ua(t) =Ap coswt (20)

where Ag and w are the amplitude and frequency of the external excitation. The
equation of motion (18) is nondimensionalized using the nondimensional variables,

w / / o Xs _EC_ by,
n = wp = 1— —La Z—men

(21)
b, + by, wp, 2 w
A = 2 é‘l - ) )/ — — N .Q = —.
Lma)n 2mwy Wy Wp
and is written as,
¥ =A cos(2t) — 2% (£ + & x%) — F(x) (22)
where the nondimensional restoring force is given by:
0 —a1 <x<a
X — o o] <X =0
Fx)=1—-a1+a+yx—mm) o <x<l1 (23)
o] +x —ay <X < —U]
o —ay + y(ar +x) -1 <x < —was.

3.2 Experimental Results

The “Springless” VEH was tested using a feedback-controlled vibration shaker that
provides base excitations with constant acceleration and different frequencies. The
testing setup is shown in Fig. 10. Different experiments were performed to examine
the harvesters time response and frequency response. Different time response wave-
forms of the VEH, shown in Fig. 11, were obtained by applying different input base
excitations with constant amplitude at different frequencies, the figures show wave-
forms for an input amplitude Ag = 0.5g at frequencies in the region of the natural
frequency of the oscillator ( f=15,17,18,20Hz).

The frequency response curves shown in Fig. 12 represent the up and down fre-
quency sweep for input accelerations Ag = 0.3 — 0.6g and a 40 turns concentric coil.
We note from Fig. 12 a number of characteristics associated with nonlinear systems:
(1) The existence of a hysteresis band between the up and down frequency sweep,
(2) existence of the jump phenomena, (3) the frequency response curve peak shifts
to the right as the amplitude of input excitation is increased, and (4) the frequency
bandwidth increases with increase in the base excitation amplitude. We also confirm
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Fig. 10 Experimental setup of the horizontal “Springless” VEH

Fig. 11 Experimental time
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response waveforms of the ; 059 @ 18 Hz
“Qppe » B 059 @ 17 Hz

Springless” VEH for input OB g it H:

Ap = 0.5g and frequencies
2 =15,17,18 and 20 Hz

-0.4 T T T

0 0.04 0.08 0.12 0.16
Time (s)

from the results shown in Fig. 13 that as the coil’s number of turns is increased the
output voltage increases as well as the frequency bandwidth. The increase in the
frequency bandwidth is due to the increase of the parasitic resistance which in turns
reduces the electrical damping of the system.

Tests were carried out on the VEH to determine its optimal power and optimal load.
A resistive load was connected across the coil’s terminals and the base excitation input
frequency was varied over the frequency range f = 5-20 Hz. The test was repeated
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Fig. 12 VEH Experimental
frequency response curves
for input accelerations
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using different values of the resistive load. Results shown in Fig. 14 represent the
frequency-response curves of the VEH for different loads. From the figures, we
conclude that the optimal power is 8.5 and 12mW while the optimal voltage is 0.8
and 1.2 mV for a 40 and 60 turns coil respectively.
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Fig. 14 Harvester’s output
voltage for input acceleration
Ap = 0.5g and a coil with 60
turns for loads R = 1-7 §2

Voltage (V)

Frequency (Hz)

3.3 Numerical Results

Nonlinear dynamical systems are usually solved using numerical long-time integra-
tion. However, the long-time integration method might not yield periodic solutions
easily and provides no information about the system’s stability. Therefore, other
numerical methods for finding periodic solutions and analyzing their stability must
be used. The shooting method is a well known numerical method that uses numer-
ical integration in conjunction with Floquet theory to obtain periodic solution and
assesses their stability [29]. For validation purposes, the averaging method is used
to find approximate closed-loop form solutions.

3.3.1 Shooting Method

The shooting method described in [29] is applied to the VEH equation of motion
given by (18), which is written as a system of first order differential equation:

X1 =x2
. 24
Gy = —betbug by 2 Fat) (24)

Equation (24) can be written as;

x =F(x,1), (25)
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where X is the state variables vector (x1, x2), and F is a vector function. The shooting
method is used to find a periodic solution, x(t) = x(¢ + T), that satisfies (25) by
solving the boundary-value problem:

x =F(x, 1)

(26)
x(0)=n, x(T) =1
where n is a vector of initial guesses and T is the period, both of which are in
general unknown a priori. Applying the shooting technique, the two-point boundary-
value problem is converted into a initial-value problem, and the resulting system of
equations is

% = F(x)
x(0) = no, x(T) =no
i(a_X) N 27)
dt\ on on
8—X(O) =1
an h

where [ is the two dimensional identity matrix. Applying the shooting method to our
system we obtain the following system of differential equations;

1) = x2(0)

by

b.+b F.
Y () LS 1) R (3}
m m

() = —x2(1)
d 8)(1 N a)CQ
dt\on ) om

d (0x _8x2
dt\om) o

d (axz) _ be+bwdxy by 0(x7) 1 0Fy 0x %)
dt \ 9n m 0N m 0N m dx1 9N
g(@)_ be+bm 3x2 _ bw002x]) 1 8Fy dxy

dr\ ona m dnp om0 m dxy 9n2

x(0) = no

My =1, Xoy=0, 220y =0, 220 =1

an1 an an an

The shooting algorithm requires an initial guess, this is done by solving (24)
by long time integration for a given base acceleration amplitude and frequency,
then a point on the obtained orbit is used as an initial guess to solve the system
of (27). A periodic solution is found once the change in the initial guess between
two iterations falls within a predefined error criteria. The amplitude or frequency
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Fig. 15 Harvester’s N
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of base acceleration is then updated and the process is repeated to obtain an orbit
corresponding to the new forcing parameters. Figure 15 shows the waveforms of the
VEH obtained numerically and experimentally. From the figure we note a very close
match between numeric and experimental results. Figure 16 shows the numeric and
experimental frequency response curves of the VEH. The numerical results match
those experimentally indicating the model captures and reproduces the behavior of
the VEH.

3.4 Analytical Results

The averaging method is used to obtain an approximate closed-form solution of the
harvester’s equation of motion given by (18). We assume a solution of the form:

x(t) = asin(2t+ B) 29)
where a and § are slowly varying amplitude and phase. We also assume that:
x(t) = af2 cos($2t+ B) (30)

subject to the constraint: )
asing +apBcos¢p = 0. (3D
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where we set ¢ = §2 r+ . Using (29) and (30) in the normalized equation of motion
(18), we obtain the second constraint:

acosp +2accosd (14 a*) sin(t + B)?) + F(x) a2

=a(f+1)sinp + A cos(2 1).

Solving (31) and (32) for & and g yields:
a=—[2at cos¢ (1 +a*sin® ) — a sin(¢p) — Acos(21) + F(¢)]cos¢p  (33)

aB =[2a¢ cos(¢) (1 +a* sin® ¢) — asin(¢) — A cos(£2 1) + F(¢)] sin(¢)

(34)
Next, we use (29) to write the restoring force in terms of the phase angle ¢ as
0 O<¢p=<¢
asing — o P11 =P =¢
aysing tox(l—y)—argpp<¢p <m—¢
0 T—pr=¢p=¢1+m
F = .
@) asin¢ + o h+r<¢=<¢rt+m (33)
aysing +ax(y — ) +ay ¢pp+m <¢p <27 — ¢
asing + o 2t —pp < ¢ <27 — ¢
| 0 2m —¢1 < ¢ <2m
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i (%), e (%)

are the phase angles corresponding the seismic mass contacting the linear spring at
x = x; and the fully compressed spring x = x., respectively.

We define a detuning parameter describing the difference between the forcing
frequency §2 and w,, as

where

o= -1

and average (33) and (34) over the interval of one period (0, 27) to obtain the
modulation equations

) 1 A
a:—a—§(4+a )+—cos(at—,3)

o2
B = [ 2az(y—1>\/1———2a1,/ —;
(36)
2 1 1
( 2(y — 1)sin™ (—) —2sin~ (—) —l—ny)] - =
a a 2

A .
~ % sin(at — B)

Defining the phase angle v = ot — B, we write the modulation equations in
autonomous form as

. 1 2 A
a= —a—§(4+a)+—0051//

/ / o2
1,'0—0—— 2052()/—1) 1——+2a1 —é
(37
+a( 2(y — )sin™ (—)—2sm (—)—i—ny)]—l
a a 2

A .

7 sin
The steady-state periodic solutions correspond to the fixed points (ag, o) of the
modulation equations. These equations are solved numerically for the fixed points as
a function of the detuning parameter o. Substituting the fixed point at & = 0, which
corresponds to the resonance frequency, in the assumed solution form, (29), we
obtain the seismic mass response shown in Figs. 17 and 18. Figure 17 shows the time
response of the seismic mass displacement when the frequency of base excitation
matches the natural frequency of the oscillator. Figure 18 shows the corresponding
orbits of the seismic mass obtained numerically and analytically.
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4 Vertical Configuration

A vertical implementation of the VEH, is suitable for environments where motions
are predominantly in the vertical direction. The linear guide, aligned vertically as
shown in Fig. 19, allows the carriage to move freely along the rail. When the assembly
vibrates due to a base excitation y(¢), the seismic mass m moves with respect to the
housing producing a relative displacement x(z). In this section the mathematical
model of the vertically aligned VEH is derived and the numerical method used to
obtain the periodic orbits of the system. Experimental results are then used to validate
the model.

Fig. 17 Displacement of 0.6 — .
VEH’s mass m: numerical Hisnerical
. - Averaging
(red) and analytical (blue)
for base acceleration 0.4 —
amplitude of Ag = 0.6g
0.2 —
c o
=
% 0
o
o =
02 —
A -
T T 717 T 1 1
180 184 188 192 196 200
Time
Fig. 18 VEH orbits: B1x'[t]

numerical (blue) and

averaging (green) for base
acceleration amplitude of
Ag = 0.6g

/

“ha 02
-02
/_0;

02 \0}4 xit]
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Fig. 19 Schematic of the y(t)
vertically-aligned springless
VEH
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4.1 Model

The equation of motion of the vertically-aligned harvester can be written as:
m3 = — (be + by) X — Fy(x) — my —mg, (38)

where F(x) is the restoring force. The VEH harvests kinetic energy transmitted to
it from the host vibrations represented by the base acceleration

V= Agcos(£21), (39)

where Ap and §2 are the amplitude and frequency of the external excitation.

The origin of the coordinate system is placed at the point where mass m rests on
the lower spring. The seismic mass m is assumed to be a point mass, as shown in
Fig.20. The free distance along the rail, not occupied by the cage, between the upper
and lower uncompressed springs is denoted x;. The uncompressed length of each
spring is denoted x; and the fully compressed length is denoted x.. The restoring
force F; (x) varies with the position of the inertial mass m according to the equation:
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Fig. 20 Simplified
schematic of the VEH IX
c

T 7777777
0 0<x<ux
kix Xe—Xxs<x<0
ki (xe — x5)+
Fo(x) = { ka(—=xc + X+ %) =X S x < xe — X (40)
ki(x — x;) Xp <X < —Xe + Xg + X
ki (xg — xo)+ —XeF X+ X <X <Xy + X
| ko (e — x5 — x +x)

where x; is the position where the mass touches the uncompressed spring, x. is
the position where the spring is fully compressed, k1 is the linear spring stiffness,
and k> the linear stiffness of the fully compressed spring. The force-displacement
relationship is shown in Fig. 21.

5 Results

A prototype of the VEH is mounted on an electromagnetic shaker as shown in Fig. 22
and a base acceleration is applied as input excitation with amplitude A¢ and frequency
£2. The voltage across the coil terminals is measured using an oscilloscope.
Experimental results show that the vertically-aligned harvester possesses three
different regions of operation. For amplitudes (A9 < 0.05g), the VEH response
is linear, since the seismic mass remains attached to the lower spring throughout
motion, this region will be known as the linear regime. For acceleration amplitudes
in the range (0.1g < Ap < 0.5g), the mass detaches from the lower spring during
motion without impacting the upper one. In this region, the response is that of a



52 M. Bendame et al.

F(N)
10
ke i
5 [
i\ [ X Xe
L Il L L L n n n n 1 n n n n 1 n n n n 1 n L L Il J x(m)
—0.005 t 0.005 0.010 0.015 0.020
I 1
_5 L
ko
_10 L
Fig. 21 Restoring force-displacement relationship
Fig. 22 Experimental setup
of the VEH
VEH base
Coil
——Seismic mass
& .
% Accelerometer
Shaker

single-impact oscillator and will be therefore called the single impact regime. For
acceleration amplitudes (A9 > 0.5g), the mass impacts both springs and the response
is that of a double-impact oscillator, this will be called the double impact regime.
The experimental and numerical results for the three different regimes are presented
next.
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Fig. 23 The numerical (red 0.02 —

line) and experimental (blue SR o i
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5.1 Linear Regime

In this case, the mass remains in contact with the lower spring. Test results show that
the response of the VEH is linear. Figure23 shows the measured and numerically
obtained frequency-response curves of the voltage (RMS) across the open circuit
terminals of the coil. Base acceleration amplitude is held constant at Ag = 0.03g,
while the frequency is swept up and down in the range 12-30 Hz.

Since the response of the VEH system is linear, the piecewise restoring force
reduces to a linear relationship between stiffness and displacement, and the equation
of motion is reduced to a simple spring-mass-damper model given by:

b k
i=—li-—x—j—g, @1)
m m

The steady-state response x of linear model under a base acceleration
y=02%Yycos21=Ag cos 21 (42)

is given by:
x()=acos(2t+ ®) (43)

where a and @ are the amplitude and phase of the system response and their expres-
sions can be found in books that deal with linear one DOF oscillators. The open
circuit voltage is given by:

Vi, = Bix (44)
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Fig. 24 Frequency-response
curves of the VEH under
base acceleration amplitudes
in the range of

Ap = 0.2-0.5g

Voltage (V)

Frequency (Hz)

The harvester’s response is obtained by substituting the parameter values listed in
Table4 into (41) and numerically integrating. The results, shown in Fig.23, agree
reasonably well with the experimental results. The maximum output voltage is 18 mV
obtained at the center frequency f. = 21 Hz and the harvesting bandwidth is 3 Hz.

5.2 Single Impact

The experimental frequency-response curves of the voltage across the open circuit
terminals of the coil for base acceleration amplitudes in the range 0.2-0.5 g are shown
in Fig. 24. The figure shows the up- and down-sweeps in the frequency range 5-35 Hz.
We note the existence of hysteresis between the up and down frequency sweeps
and jumps between an upper and a lower branches of response in the frequency-
response curves. We note in Fig. 24 that the jump to the lower branch occurs as the
frequency is swept down indicating the existence of a softening nonlinearity in the
VEH [29]. The hysteresis range increases with base acceleration amplitude from
1Hz atAp = 0.2g—3 Hzat Ap = 0.5g.

The harvester response for a base acceleration amplitude Ag = 0.4g was obtained
numerically and the results compare reasonably well with the experimental results
as shown in Fig.25. The stiffness and damping were reduced for this regime to
k1 = 880 N/m and b,, = 0.6 N m/s, respectively. This is expected since in this
regime the mass looses contact with the spring and spends significant time in air and
thus reducing the effective stiffness and damping of the VEH.
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Fig. 25 The open circuit 0.12 =
voltage between the coil
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acceleration amplitude
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We note that the reduction in effective stiffness shifts the center frequency from
fe = 21 Hz to the range 12—16.5 Hz, which indicates that nonlinearities in the system
facilitate low frequency harvesting. Further, as the base acceleration amplitude was
increased, the peak frequency dropped, from f, = 16.5 Hz at Ag = 0.2g—f, =
145HzatAg = 0.3gandf. = 12 Hz at Ay = 0.4g, as the carriage spent more time
in air away from the lower spring.

Meanwhile, the maximum output voltage continued to increase with base accel-
eration amplitude as expected. For base acceleration amplitude A9 = 0.4g, the max-
imum output voltage was 110 mV (RMS) obtained at a frequency of f, = 12 Hz.

5.3 Double Impact

For large excitations, the base acceleration amplitude was set to the range of Ag =
0.6 — 1g. Figure26 shows the frequency-response curves obtained for the open-
circuit output voltage of the VEH. As in the case of moderate excitations, note the
up and down jumps between branches of response and hysteresis between up and
down-sweeps in the frequency range of 5-35 Hz.

We also observe a new branch of responses in the harvester frequency response.
Two additional jumps appear to the right (at higher frequency) of the two original
jumps in the frequency-response curves leading up to the new branch during fre-
quency down-sweeps and down from it during up-sweeps. The harvester response is
linear along this new branch. For instance, for base acceleration amplitude Ag = 0.8g
the new jumps occur at f = 13 and f, = 15 Hz.
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Fig. 26 Frequency-response 0.25 —
curves of the VEH for base
acceleration amplitude in the
range of Ap = 0.6—1g

o

P

o
|

Voltage (V)

0.1+

20
Frequency (Hz)

This new phenomenon is attributed to large seismic mass motions covering the
entire track between the two springs. Along this branch of response, the mass motions
reach the maximum allowable displacement

D =~ x; + x3 — x,

which remains almost constant as the excitation frequency varies since it is limited
by the two hard springs k». As a result, the velocity along this branch is

X ~ wD sin(wt + ¢)
Using (44), we obtain the output voltage (RMS) as

BID
V=""2 45
ﬁw (45)

We note that the measured output voltage varies linearly with the frequency, Fig. 26,
in accordance with (45). Further, since base acceleration amplitude does not appear
in (45), the voltage output falls on the same line for all acceleration amplitude values
reported here.
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6 Conclusion

In this paper we investigated the response of a wideband impact VEH numerically
and experimentally when aligned horizontally and vertically. Results show that using
a double-impact oscillator and a concentric coil enhanced the harvester’s output
power and its bandwidth. A maximum output power of 12mW over a frequency
bandwidth BW = 6 Hz was achieved using a 60 turns coil with an effective length
I =1.75 m and a 3.652, from an input acceleration Ag = 0.6g. We also note that the
impact produced a hardening/softening type nonlinearity in the horizontal/vertical
configuration of VEH. The VEH’s bandwidth increased with increase of the input
acceleration and an increase in the number of turns in the concentric coil. Numerical
analysis of the VEH show the existence of nonlinear phenomena that are reminiscent
of impact oscillator, in particular, the jump phenomena in the frequency response of
the VEH and the existence of hysteresis.

References

1. Arnold, D.P.: Review of microscale magnetic power generation. J. IEEE Trans. Matwo Magn.
43, 3940-3951 (2007)

2. www.ec.gc.ca/gdd-mw/default.asp?lang=En&n=52DF915F-1&offset=1&toc=show

3. Williams, C.B., Yates, R.B.: Analysis of a micro-electric generator for microsystems. Solid
State Sens. Actuators 1, 369-372 (1996)

4. Glynne-Jones, P.: Vibration powered generators for self-powered microsystems, University of
Southampton, PhD Thesis (2001)

5. Roundy, S., Leland, E.S., Baker, J.: Improving power output for vibration-based energy scav-
engers. J. Pervasive Comput. IEEEXplore (2005)

6. Beeby, S.P.,, O’Donnell, T.: Chapter 5, pp. 130-132, in energy harvesting technology. In: Priya,
S., Inman, D.J.(eds.) Springer, New York (2009)

7. Hadas, Z., Kluge, M., Singule, V., Ondrusek, C.: Electromagnetic vibration power generator.
IEEE (2007)

8. Zhu, D., Beeby, S.: Energy Harvesting Systems, Springer, ISBN 978-1-4419-7565-2 (2011)

9. Mann, B.P., Owens, B.A.: Investigations of a nonlinear energy harvester with a bistable potential
well. J. Sound Vib. 329, 1215-1226 (2010)

10. Mann, B.P,, Sims, N.D.: Energy harvesting from the nonlinear oscillations of magnetic levita-
tion, J. Sound Vib. 319, 515-530 (2009)

11. Cammarano, A., Burrow, S.G., Barton, D.A.W.: An energy harvester with bistable compliance
characteristics, DETC2010-29222. In: 12th International Conference on Advanced Vehicle
and Tire Technologies; 4th International Conference on Micro- and Nanosystems, vol. 4, pp.
725-732. publisher Asme (2010)

12. Gilbert, J.M., Balouchi, F.: Comparison of energy harvesting systems for wireless sensor net-
works. Int. J. Autom. Comput. 5, 334-347 (2008)

13. Duy, S.N., Einar, H.: Wideband MEMS energy harvester driven by colored noise. J. Micro-
electromech. Syst. IEEE 22(4) (2013)

14. Harne, R., Wang, K.: A review of the recent research on vibration energy harvesting via bistable
systems. J. Smart Mater. Struct. 22 (2008)

15. Daqaq, M.F., Masana, R., Erturk, A., Dane, Q.: On the role of nonlinearities in vibratory energy
harvesting: a critical review and discussion. J. Appl. Mech. Rev. 66 (2014)

16. Twiefel, J., Westermann, H.: J. Intell. Mater. Syst. Struct. 24, 1291-1302 (2013)


www.ec.gc.ca/gdd-mw/default.asp?lang=En&n=52DF915F-1&offset=1&toc=show

58

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

M. Bendame et al.

Sari, 1., Balkan, T., Kulah, H.: An electromagnetic micro power generator for wideband envi-
ronmental vibrations. J. Micromech. Microeng. 146, 405-413 (2008)

Lien, L., Shu, Y.: Array of piezoelectric energy harvesting by equivalent impedance approach,
J. Smart Mater. Struct. 21 (2012)

Rezaeisary, M., El Gowini, M., Sameoto, D., Raboud, D., Moussa, W.: Wide-bandwidth piezo-
electric energy harvester with polymeric structure. J. Micromech. Microeng. 25 (2004)

Yang, B., Lee, C., Xiang, W., Xie, J., Han He, J., Kotlanka, R.K., Low, S.P., Feng, H.: Electro-
magnetic energy harvesting from vibrations of multiple frequencies. J. Micromech. Microeng.
19 (2009)

Dhakar, L., Liu, EE.H., Tay, FE., Lee, C.: A new energy harvester design for high power output
at low frequencies. J. Sens. Actuators 199, 344-352 (2013)

Lihua, T., Yaowen, Y., Soh, C.K.: Broadband Vibration Energy Harvesting Techniques.
Springer, New York (2013)

Soliman, M.S., Abdel-Rahman, E., El-Saadany, E., Mansour, R.R.: A wideband vibration-based
energy harvester. J. Micromech. Microeng. 18, 1257-1265 (2008)

Jacquelin, E., Adhikari, S., Friswell, M.: A piezoelectric device for impact energy harvesting.
J. Smart Mater. Struct. 20, 1-12 (2011)

Soliman, M.S., Abdel-Rahman, E., El-Saadany, E., Mansour, R.R.: A design procedure for
wideband micropower generators. J. Microelectromech. Syst. 18, 1288-1299 (2009)

Le, C.P., Halvorsen, E.: MEMS electrostatic energy harvesters with end-stop effects. J.
Micromech. Microeng. 22, 074013 (2012)

Ching, N.H., Wong, H.Y., Li, H.W.J., Leong, PH.W., Wen, Z.: A laser-micromachined multi-
modal resonating power transducer for wireless sensing systems. J. Sens. Actuators 97-98
(2002)

Mahmoud, M.A.E., Abdel-Rahman, E.M., Mansour, R.R., El-Saadany, E.F.: Springless vibra-
tion energy harvesters. In: ASME IDETC 2010, Montreal, Canada, DETC2010-29046, Aug
2010

Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, New York (1997)
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of the Modal Curvature Method for Damage
Detection in Plate Structures
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Abstract Use of modal curvatures obtained from modal displacement data for
damage detection in isotropic and composite laminated plates is addressed through
numerical examples and experimental tests. Numerical simulations are carried out
employing COMSOL Multiphysics as finite element solver of the equations gov-
erning the Mindlin-Reissner plate model. Damages are introduced as localized non-
smooth variations of the bending stiffness of the baseline (healthy) configuration.
Experiments are also performed on steel and aluminum plates using scanning laser
vibrometry. The obtained results confirm that use of the central difference method
to compute modal curvatures greatly amplifies the measurement errors and its appli-
cation leads to unreliable predictions for damage detection, even after denoising.
Therefore, specialized ad hoc numerical techniques must be suitably implemented
to enable structural health monitoring via modal curvature changes. In this study,
the Savitzky-Golay filter (also referred to as least-square smoothing filter) is con-
sidered for the numerical differentiation of noisy data. Numerical and experimental
results show that this filter is effective for the reliable computation of modal curvature
changes in plate structures due to defects and/or damages.
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1 Introduction

Vibration-based damage detection techniques have an advantage associated with
their global approach by which faults within a mechanical system can be identified
without a priori information about their location and regardless of their accessibility.
Moreover, automatic real-time vibration-based structural health monitoring (SHM)
systems can be effectively implemented. In this context, approaches based on changes
of the modal characteristics of the structure induced by damages are widely used.
While the validity of modal damping as damage index is still a controversial topic,
variations of natural frequencies and mode shapes have been largely exploited to
assess the occurrence of damage. Natural frequencies are particularly attractive for
damage identification because they can be estimated from a few measurement points
and are usually contaminated by small levels of noise, however, their sensitivity
to damage is rather poor. Changes in mode shapes yield local information which
turn out to be more suitable for damage localization than variations of the natural
frequencies, provided that a sufficient number of measurement points is acquired.
Notwithstanding the mentioned desirable features, several studies have shown that
modal displacements, as expected, are not very sensitive to faults.

Conversely, changes in the modal curvatures with respect to those of the baseline
(healthy) structure lead to a more effective definition and computation of damage
indices. In [14] it was observed that the localized occurrence of a spike in the function
obtained by subtracting the modal curvature of the undamaged structure from that of
the damaged situation is an indicator of the damage location. Therefore, in view of
practical applications, the main issue is concerned with the processing of the modal
curvatures, a task that can be accomplished by means of direct measurements or via
numerical methods. The possibility of directly measuring modal curvatures using
optical fibre strain sensors was discussed in [6], but most of the current applications
are based on the extraction of modal displacements from dynamic measurements.
To this end, the use of accelerometers, electronic speckle pattern interferometry or
scanning laser vibrometry is frequent. In this scenario, the whole reliability of the
damage detection procedure largely depends on the accuracy of the numerical differ-
entiation procedure. Attention has to be paid on the calculation of modal curvatures
because differentiation of noisy data is well known to be an ill-posed problem. The
central difference method is certainly the most popular tool for estimating the cur-
vatures from modal displacements, see for instance [1, 2, 7, 12]. However, some
studies have shown that errors amplification may become so large as to make the
central difference method inappropriate for reliable damage localization [2]. As a
consequence, some recent attempts have been made to circumvent the difficulties
that can be found when implementing damage detection techniques based on numer-
ically obtained modal curvatures. They include the use of wavelets [4, 8], Gaussian
function derivatives [ 13], Laplace operator [5], smoothing spline and Savitzky-Golay
filter [16].

The present contribution is part of a larger effort aimed at assessing the effec-
tiveness of damage detection by modal curvatures as well as at improving their
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reliability for practical SHM applications. This chapter is concerned with the use of
modal curvatures for damage detection in thin plate structures. Along these lines,
damage detection in composite laminated plates based on modal curvatures has been
discussed in [15]. Bending modal curvatures were calculated using the central differ-
ence method, and dynamic measurements were acquired by using a scanning laser
vibrometer (SLV). Curvatures obtained from measured modal displacements were
also recently considered to identify defects in composite T-stiffened panels [10].

In the present work, an extensive numerical study is conducted for isotropic
and composite laminated plates. Simulations are performed using COMSOL Mul-
tiphysics. The Mindlin-Reissner plate model is implemented and defects are intro-
duced as localized non-smooth variations of the bending stiffness of the baseline
configuration. Experiments are also performed on steel and aluminum plates using
SLV. Although the central difference method is often preferred to calculate the modal
curvatures, our study confirms that it greatly amplifies measurement errors. Its final
outcomes are ineffective for damage detection, even if measurement errors are as low
as possible and denoising is performed. On the contrary, numerical and experimental
investigations demonstrate that the Savitzky-Golay filter yields reliable predictions
of modal curvatures changes for practical SHM applications.

2 Damage Detection by Modal Curvatures

We assume that noisy modal displacements ¢; are available at positions (x;, y;), and
the measurement points along a given y coordinate are taken to be spaced by the
constant sampling distance Ax. The problem is concerned with the determination of
the second derivative with respect to x denoted by ¢” (x;), i.e., a suitable estimate
of the exact modal curvature at x; about direction y = y; (note that this is the
exact linear bending curvature within the Kirchhoff-Love plate theory whereby the
transverse shear strains are neglected). Therefore, the 2D numerical differentiation
problem is reduced to multiple 1D problems, as it was done in previous works [15]. In
the present study, two numerical differentiation techniques are considered, namely,
the standard central difference approximation and the Savitzky-Golay filter. The
methods described below apply to all targeted mode shapes and plate configurations
(undamaged or damaged). Any reference to the mode number and to the structural
configuration is, therefore, omitted for sake of conciseness.

The most popular approach for obtaining curvatures via numerical differentiation
from (displacement) mode shapes ¢ is based on the central difference approximation.
For the ith point, the central difference method yields the following expression:

Gi-1 = 2¢i + dit1

¢"(xi) = 2

&)

The original Savitzky-Golay filter [17] (also referred to as least-square smoothing
filter) and its variants represent an important class of local methods for numerical
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differentiation of noisy data [3]. In their seminal paper, Savitzky and Golay demon-
strated that fitting a polynomial to a set of input samples and then evaluating the
obtained polynomial at a single point within the approximation interval is equiva-
lent to discrete convolution with a fixed impulse response. The key derivation steps
are summarized next for a better appreciation of the proposed application to dam-
age detection. A set of (2m + 1) consecutive samples is considered together with a
local coordinate system, i.e., g € {—m, ..., 0, ..., +m}. The [th-order least-square
polynomial is represented by

1
f@=>Y bq". )
r=0

The Savitzky-Golay approach applies (2) at the midpoint only (¢ = 0) whereas the
value of the output at the next sample is obtained by shifting the analysis interval
to the right by one sample and repeating the procedure at the new midpoint. The
sth-order derivative of f(q) in (2) evaluated at ¢ = 0 only requires the expression
for bg. The central sth-order derivative of the polynomial form in (2) can also be
expressed as

0= > hie, 3)

q=—m

in which hy is the convolution weight of the gth filter point. Instead of considering
a power series, the approach developed in [9] is based on use of discrete orthogonal
polynomials, whereby the Gram polynomials turn out to be particularly suitable to
the present case. In doing so, the sth-order derivative at any point & is obtained by
using the following expression:

m

1
¢v(%-) = (Ax) Z hg,s(bq (4)
q

where the scale factor is needed when the original coordinate system is considered
(i.e., the points are separated by Ax # 1). The convolution weight for ¢, with
—m < g < m has the form:
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denote the rth-order Gram polynomial and its sth-order derivative, respectively. The
calculation of the modal curvature through (4) is best performed by constructing the
table H* (&, q) = {hg’s t—m <& < +m,—m < q < +m,s = 2} using (5). This
strategy is computationally efficient because the convolution weights do not change,
provided that the measurement points as well as m and / do not vary with the mode
shape number in both undamaged and damaged situations. Note that the classical
Savitzky-Golay approach [17] does not allow the calculation of the modal curvatures
at the first m points and at the last m points. By using the Gram polynomial-based
strategy developed in [9], the curvatures at the first m points and at the last m points
are calculated by using the coefficients of H*(&, ¢) for & from —m to —1 and for &
from 1 to m, respectively. As in the classical Savitzky-Golay approach, the rest of
the n samples uses the center point weighting, which is obtained by setting £ = 0.
Once the experimental modal displacements have been acquired, the modal cur-
vatures are numerically obtained and the damage can be identified by comparison. To
this end, the modal curvature-based damage index 7 (x;|y = y;) proposed in [1] is

ny

I(xily =yj) = Z

k=1

0" "
O ik — ik

®)

where n, is the number of target modes, ¢O;/k is a numerical estimate of the modal
curvature of the kth undamaged mode shape at the ith measurement point x; about the
direction y = y;, and ¢} is the corresponding curvature for the damaged structure.
Ho and Ewins [11] (see also [2]) presented the mode shape curvature squared method
based on the following proposition of the damage index:

ny

Ixily=y)=>

k=1

0”2 ”2

P ik — Dix ©)

On the other hand, the following different formulation of the damage index was
proposed in [16]:
ny 2 p
"
I(xily = y)) = (Z (6% — %) ) : (10)
k=1

Numerical analyses presented in [16] showed that if the numerical estimation of
the modal curvatures is sufficiently accurate, then the damage index given by (10)
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with p > 1 (e.g., p = 2) magnifies the distance between peaks due to damage and
those that appear in other positions. This turns out to be beneficial in reducing false
positives when noisy data are considered.

3 Numerical and Experimental Applications

The Mindlin-Reissner plate model is considered wherein damage or defects are intro-
duced as localized non-smooth variations of the bending stiffness of the undamaged
original configuration. The finite element software COMSOL Multiphysics is used
to perform FE discretization of the equations of motion provided in PDE form.
The considered composite plate has four layers with lay-up 0°/45°/90°/—45°. The
elastic constants are: £y = 137.137 GPa, E; = 9.308 GPa, vi» = 0.304,
v = 0.017, G1a = 4.551 GPa, G23 = 4.206 GPa, and the mass per unit vol-
ume is p = 1568 kg/m>. A specific damage is introduced by halving the stiffness of
the second layer within a region having an extension equal to 4 % of the plate side
length. A white Gaussian noise was added to the modal displacements so that the final
error (about 1 %) is able to simulate experimental data after denoising. The damage
index is computed according to (10) with n, = 5 and p = 1. The damage index
function is then normalized by dividing it by its absolute maximum value. Figure 1
shows a sample of the obtained numerical results for the composite laminated plate.

These results show that the central difference method does not lead to the proper
damage identification because of countless false positives. On the other hand, use
of the Savitzky-Golay filter gives a clear definite spike at the exact damage location

Damage index
Damage index

0.2
08

Fig. 1 Damage detection in composite laminated plate based on numerical data (the coordinates
of the midpoint of the narrow damaged region are x = 0.67 and y = 0.59): comparison between
central difference method (/eft) and Savitzky-Golay filter (right)
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LRI,

Fig.2 Experimental layout (clockwise from the upper left corner): Polytec scanning laser vibrom-
eter, piezoelectric actuator, undamaged and damaged 50mm x 50 mm aluminum and steel plates
(thickness equal to 0.5 mm). The plates have clamped boundary conditions on two sides and free
conditions on the other two sides. Damage is introduced by halving the plate thickness within a
circle having 2 mm diameter and the center about 14 mm far from one corner

while reducing the number of peaks due to error amplifications induced by the numer-
ical differentiation procedure.

Experiments were also performed on isotropic plate structures using SLV (see
Fig. 2 for an overview of the experimental layout). The results shown in Fig. 3 fur-
ther confirm that use of the Savitzky-Golay filter for the computation of the modal
curvatures provides a satisfactory identification of the damage in thin plate-like struc-
tures (the damage index is computed according to (10) with p = 1). The purposefully
introduced damage is well identified in both cases, i.e., the maximum values of the
damage index (red-colored zone) lie within the region of the plate where the defect
is introduced whereas very low values can be found elsewhere. The center of the
identified damaged region and that of the defect are roughly coincident for the steel
plate. For the aluminum plate, the location of the center is slightly off from the exact
one.

The effectiveness of the Savitzky-Golay filter with respect to the central difference
method was also evaluated for defects having different shapes. The experimental
results shown in Fig. 4, for instance, are referred to a stretched narrow damaged
region (the damage index is here computed according to (10) with p = 2). Results
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Fig. 3 Damage detection in isotropic plates based on experimental data (the curvatures are com-
puted by the Savitzky-Golay filter over a 50 x 50 grid of points centered at the damaged region):
steel plate (left) and aluminum plate (right)

Fig. 4 Detection of a stretched damaged region in an isotropic plate based on experimental data
(the vertical axis of the damaged region is x = 1 and the curvatures are computed over a 50 x
50 grid): results obtained using the central difference method (/eft) and the Savitzky-Golay filter
(right)

in Fig. 4 corroborate the fact that the central difference method does not provide a
clear evidence about the existence of damage whereas the defect is well identified
by means of the Savitzky-Golay filter. Specifically, high values of the damage index
calculated through the Savitzky-Golay filter can be easily recognized at the bounds
of the stretched damaged region, thus highlighting the location and extension of the
defect.
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4 Conclusions

This chapter provides an overview of a computational procedure for damage detec-
tion in plate structures based on modal curvatures estimated via numerical differen-
tiation of modal displacement data. The ill-posedness of such inverse problem can
cause abnormal amplifications in the calculation of the numerical derivatives, espe-
cially when considering relatively dense arrays of measurement points. Although
the central difference method is extensively employed, this study—in consonance
with previous recent works—confirmed that this method is not suitable for damage
detection. Keeping measurement errors as low as possible and reducing the noise
level may turn out to be beneficial to some extent for damage identification but does
not fix the problem. Therefore, different numerical procedures have to be explored
and, in this perspective, the present work illustrates the application of the least-square
smoothing filter, also known as Savitzky-Golay filter. Despite its simplicity, this tech-
nique proved to be a reliable, rapid tool for a satisfactory numerical estimation of
the modal curvatures from noisy modal displacements. Numerical and experimental
results discussed herein demonstrated that the implementation of the Savitzky-Golay
filter leads to a more effective identification of relatively small damages in thin plate
structures together with a remarkable reduction of the number of false alarms.
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Abstract Nowadays, new technologies have triggered the needs of new energy
sources, smaller and more efficient, so the research about energy harvesting has
increased substantially. Several researchers have developed the conversion of wasted
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transducer. This chapter proposes a mathematical model for the constitutive equation
of a piezoelectric transducer. Experimental results involving piezoelectric elements
were considered. The proposed mathematical model allows a considerably better
description. The results are closer to those obtained in a real system, reducing inac-
curacy of predictive behaviour of the piezoelectric energy harvesting system. In
this work, the numerical simulations show a significant difference between results
obtained with the proposed model and other models available in literature.

1 Introduction

Nowadays, new technologies have triggered the needs of new energy sources, smaller
and more efficient. The research on energy harvesting system has increased substan-
tially. Several different devices have been developed. In all these devices, a new way
to harvest energy is the use of piezoelectric material as a transducer to harvest energy
from ambient mechanical vibrations. Many researchers have recently explored this
sort of energy harvesting based on piezoelectric material. As some examples, we
mention that the piezoceramics can be used as piezomagnetoelasctic structure and
harvest energy from an ambient vibration [1, 2]. A vast and important study of piezo-
electric energy harvesting system can be found in [3-5]. These authors explored the
reuse of the wasted energy that is very important nowadays to some applications,
including renewable energy.

Linear and nonlinear piezoelectric coupling have been considered. The nonlinear
coupling incorporates the more realistic effects of the piezo elements, because of
the constitutive laws of piezoelectric materials specifically the nonlinear relation-
ship between the strain and the electric field in the piezoceramic material [6-9]. A
good approximation to a relation of the nonlinear piezoelectric coupling was firstly
developed by Triplett and Quinn [10] that shows good results comparing to the
experimental results. Hence, the authors conclude that the role of nonlinearities in
the piezoelectric materials has a great impact over the responses of the system. Thus,
for better design of an energy harvester, the nonlinear effects of electromechanical
coupling must be taken into account [11].

In order to check this, we propose a new approximation of experimental curve of
the piezoelectric material response to modelling this behaviour. Using the theoretical
model of piezoelectric energy harvesting in [12—14], a comparison was performed
among a reference function (RF) proposed by Triplett and Quinn [10] for piezoelec-
tric coupling and the proposed model (PM) by us present in this work.

This chapter is organized into five sections. Section 1 is essentially an introduction
to energy harvesting vibrating systems. Section 2 presents the proposed mathematical
nonlinear piezoelectric coupling, showing how it can be relevant in the mathematical
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modelling of the real problem, taking into account the nonlinear coupling proposed by
Triplett and Quinn [10]. Section 3 presents the mathematical modelling of the energy
harvesting system considering a proposal nonlinear piezoelectric coupling. Section 4
exhibits the results of numerical simulations, those were carried out, comparing the
average power using the reference function to the proposed model. Section 5 presents
the main conclusion of the work.

2 The Proposed Nonlinear Coupling Term

The piezoelectric element behaviour was checked experimentally by Crawley and
Anderson [7] as we can observe in Fig. 1. Figure 1b shows the function to dimen-
sionless piezoelectric coupling coefficient suggested by [10], where the dimen-
sional piezoelectric coefficient d(x) were approximated to: d(x) = djineqr(l +
dnonlinear|x|), having defined as the dimensionless counter-party as: d x) =61+
®1x]), where the piezoelectric coefficient is constituted by a linear part represented
by 6 and a nonlinear part represented by @. In Fig. 1a, the nonlinear model curve is
the approximation stipulated by Triplett and Quinn [10].

As can be seen in Fig. 1a, neither linear model and nonlinear approximation nor
the model of Fig. 1b are good approximations of experimental model. We can also
observe that the experimental model try to reach a saturation point, behaviour that is
not observed in the models. The goal of this research is to determine a model which
has a better mathematical representation of the experimental model. For this, we are
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Fig.1 aTheexperimental curve obtained by Crawley and Anderson [7]. b Reference approximation
of piezoelectric nonlinearity defined by Triplett and Quinn [10]
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going to consider an approximation normalized function y = d*[pmV ~']/408 and
x = Microstrain/500 determined by using the least square method [15, 16]. The
method could show us the approximation normalized functions as
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In Fig.2 we can observe a comparison considering the dimensional model pro-
posed in (1).

3 Mathematical Modelling

In this section will be shown the energy harvesting mathematical model using a
nonlinear piezoelectric coupling and the governing equations of movement of the
system.

The energy harvesting model in Fig.3 was proposed in [12—14], that are studied
using the proposed nonlinear piezoelectric coupling of Triplett and Quinn [10]. This
time, the new nonlinear piezoelectric coupling was used to compare its efficient with
the other coupling in [10].

The coupled equations of motion were defined in the dimensionless form in
[12-14] as:

x" + cax’ + Bx + efix> + ey = 819" cosp — £8,¢*sing
¢ =ep1 — pad’ + eyx"cosg
oV —WUx+v=0 )
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Fig. 3 Mathematical model
of the energy harvester
proposed in [12—14]

The parameter W in (2) represents the piezoelectric coupling function. The dimen-
sionless electrical power harvested from the system has the form P = pv’?. The
averaged power harvested is given by

1 T
Paverage = ?/0 P(t)dt 3)

4 Numerical Simulations and Results

In Figs.4 and 5, we can observe the behaviour of the system (2) for the following
parameters [10, 14]: ¢ = 0.01, 8 = 1.00, 81 = 0.25, p = 1.00,¢ = 0.10,8; = 0.40,
8 = 0.40, y = 0.60, uo = 1.50, 6 = 1.00, ® = 1.00, x1(0) = 0, x2(0) = 0,
x3(0) = 0, x4(0) = 0, x5(0) = 0. The u; parameter had to be adjusted in order to
reach the resonant frequency of the model for each of the tested functions.

Figure4a, b are depicting the resonance curve of the system using the reference
function RF, proposed model PM, and as can be seen the jumping occurs for the
value of the parameter ;1 = 1.55 and 1 = 1.52, respectively.

Figure 5 shows the dynamic response of the system comparing the proposed model
PM to the reference function RF proposed in [10]. Figure5a, b show the phase
plane and the time history of the displacement of the two functions, respectively.
We observe that the PM starts with a higher amplitude and at steady state keeps a
little higher amplitude of displacement than in the RF. To see what happens with
the power harvested Fig. 5c, d show the time history of the power harvested and the
average power, respectively. We can see the power harvested has higher peaks in
the PM than in REF, but it doesn’t occur to the average power. We see that at steady
state the average power of the PM is a little lower than the RF. It was expected
by the fact shown in Fig.2 that the PM approximates is closer to the experimental
result than the RF. Hence, the energy harvesting would be a little lower in PM
than in RF.



74 AM. Tusset et al.

(a) (b)
0.5 0.5 [
[ J
0.4 0.4 [ ]
[
0.3 ® 0.3 L]
x x .
[
0.2 0.2
0.1 0.1 J
0 0.5 1 15 2 0 0.5 1 15 2
H1 H1
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5 Conclusions

By using the least square method proposed in [15, 16], it was possible to obtain the
nonlinear model, Fig. 2, which resulted in an approximation function that considers
the operation mode d31, where mechanical strain is applied in the axial direction,
but the voltage is obtained from the perpendicular direction. With the application
of the proposed model, it was possible to observe the change of the Sommerfield
effect (u1 = 1.55 (RF) for u1 = 1.52 (PM)). This is an important point because
it indicates a reduction in the quantity of energy necessary to the system to achieve
the resonant frequency corresponding to of maximum displacement that can harvest
more energy.

We also observed in Fig. 5c, d that the curve represented by (1) has a little lower
energy harvester forecast as regard to the reference function, indicating that we would
be overestimating the power generation in numerical simulations, while the reference
function continue to be a good approximation. This is because the overestimated
power harvested is just a little part of it, considering the piezoelectric material harvests
low amount of energy.

It can be concluded that the obtained results shown the efficiency of the proposed
model in improving the prediction of the piezoelectric energy harvested in steady
state, thereby correcting the values obtained previously by the reference function,
due to a correct matching with the profile of the behaviour of the experimental curve
in Fig. 1a.
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Effect of Reinforced Concrete Deterioration
and Damage on the Seismic Performance
of Structures

Michel S. Chalhoub

Abstract The response of a system to dynamic excitation depends on the interaction
between the forcing function and the system. In practice, change in material properties
due to aging, fatigue, or the experience of a hazard are major challenges to the
designer. This chapter discusses the effect of material deterioration on the dynamic
properties of reinforced concrete structures with consideration to strain compatibility.
Aging and loss of steel bond to concrete have significant effects on dynamic response.
Aging causes a drop in compressive strength, hence in axial and flexural capacity,
altering column interaction diagrams, or beam-column joint strength. The effect
of aging in standing structures can be measured through coring and lab tests, but
loss of bond is harder to evaluate because its mechanism is interior to structural
members. Causes of bond deterioration include poor concrete mix, placement, or
protection from chemical agents. However, well-designed mixes and placed materials
may lose bond when subjected to an earthquake. Steel bond testing was performed
and documented in literature, but there is still a gap in field data. A mathematical
model is developed to illustrate the relationship between bond loss and concrete
frame stiffness. Field assessment and remedial measures are discussed for structures
that are suspected of, or diagnosed with, loss of bond. If the structure is salvageable,
such effects call for specialized repairs as a preventive measure against subsequent
events. Butif loss of bond during an earthquake goes into an irreversible deformation
range, the possibility of collapse increases or the structure becomes a candidate for
disposal.

1 Introduction

Concrete behavior is complex due to the development of cracks at low stress lev-
els, weathering, creep, and aging effects. Two major reasons for the deterioration
of reinforced concrete are attributed to weather changes, including freezing and
thawing, and corrosion of reinforcing steel. The structure becomes more susceptible
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to weathering if protective finishing works are not completed within a reasonable
time frame from the completion of the structural system [1]. Common design con-
siderations make an implicit assumption about compressive strength and concrete
mechanical properties without much consideration of material life span and building
service life. In the 1940s, early construction materials research addressed the porous
nature of concrete and its vulnerability through exposure to exterior agents using
hydraulic pressure theory. It was found that susceptibility of concrete to changes in
weather, especially when it involves frosting and thawing, increases significantly with
porosity [2].

The majority of residential and office buildings in countries around the world
are built with reinforced concrete due to its ease of placement and construction.
The appeal of using concrete, advances in cement manufacturing technology, and
the development of higher strength formulas made reinforced concrete a sustainable
construction material [3]. In addition, concrete offers desirable features in terms of
low sound and thermal transmission, availability of local expertise and materials in
most countries. Whether in residential or office buildings, low noise transmission is
one of the typical serviceability requirements. With increasing interest and concern
for energy efficiency and environmentally friendly buildings, high thermal insulation
properties are sought after [4, 5].

Concrete technology is considered to have made large strides over the last sixty
years, which places it today at an advantage over other construction materials such
as unreinforced or reinforced masonry, and at almost equal footing with industrial
steel for a certain range of buildings. In fact, back in the 1950s and 1960s research
was conducted on the vulnerabilities of concrete as building construction mater-
ial, emphasizing fatigue combined with loss of material strength. Concrete exhibits
different behaviors under different stress states. Under simple compressive stress,
concrete exhibits a linear-elastic stress-strain curve until it reaches about one third
of its compressive strength because the small cracks remain closed [6—8]. Hydraulic
pressure and osmotic pressure theories were used for the purpose of early modeling
of concrete behavior [9].

Many researchers attribute the attractiveness of concrete to the fact that it lends
itself to almost any desired shape, and may be customized to any loading rate or
pattern. For example, it was shown in the mid-sixties that concrete resistance to
impact increases with the rate of application of the load and is positively correlated
with aggregate size [10]. However, cyclic loading in the range of 50 % of f’c causes
a decrease in both the elastic modulus of concrete and its compressive strength and
exhibits hysteretic behavior. These findings indicate that concrete is vulnerable to
load reversals [11]. While considered a weakness, that same micro-crack formation
activates the internal friction in concrete, and its hysteretic behavior provides large
energy dissipation throughout the structure, attenuates response to dynamic loading,
and curbs motion amplification.

As discussed in the following sections, our interest in the present chapter is mainly
about changes in reinforced concrete properties especially those caused by deterio-
ration.
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2 Background: Reinforced Concrete in Use

Along with its vulnerabilities, concrete offers several advantages related to sustain-
ability and serviceability. It minimizes noise and vibration transfer, and has relatively
favorable thermal characteristics and applications in fire protection. Concrete also
offers strength suitable for a wide range of building heights as it has been used in
low-rise and high-rise building construction [12]. In 1919, the Japanese Urban Build-
ing Law limited the height of reinforced concrete buildings to 100 feet in an attempt
to minimize risk emanating from the use of such material. Further, lessons learned
in 1924 from Japan’s earthquake that imparted damage to reinforced concrete build-
ings were rapidly turned into Code upgrades [13]. Almost a century later, reinforced
concrete is used in high-rise construction with supporting Codes that provide the
design engineer with simplified procedures to perform the necessary calculations
while meeting some basic requirements related to ductility, energy dissipation, and
resilience in sustaining tremors [14, 15].

In the United States, the leap into skyscraper construction owes it by and large to
advances in industrial steel manufacturing, standard shape production, and accompa-
nying design guidelines [16, 17]. Another challenge faced by the steel construction
industry was posed by the scarce execution resources; workers, welders, forepersons,
and project managers. However, reinforced concrete remained a viable candidate for
high-rise construction with and without its combination with structural steel shapes
[18-20].

With the advantages of concrete, there are shortcomings related to environmental
impact, especially at its manufacturing stages [21]. Cement manufacturing processes,
among other industries, came under scrutiny with the increased public awareness
about global warming and the negative effects of industrial activity on the environ-
ment [22, 23]. But using concrete entails more than just its manufacturing stages.
It involves mixing, placement, maintenance, and down the line disposal or recy-
cling [24, 25]. Crushing of recycled concrete has become a source of aggregates
and a means of avoiding volumes of dump material that is neither biodegradable,
nor suitable as soil. The approach of recycling concrete has also been applied in
bridge construction where reclaimed concrete is used [26, 27]. Testing and studies
performed on structural elements and sub-assemblages also showed that recycled
concrete was a viable construction material [28]. Concrete mixing processes gradu-
ally moved from individual mixers that belong to specific construction sites to ready
mix concrete factories. Although these factories provide economies of scale catering
from one source to various destinations, they pose problems in terms of increased
industrial activity. In many, if not most, countries where concrete is mainstream
material for the construction industry, factory emissions control is not yet a priority
on the environmental agenda [29, 30].
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3 Effect of Aging of Concrete on Strength

A dimension of great interest in construction material science is the durability and
performance of concrete [31, 32]. What factors affect its life time? How does it age?
How does concrete aging affect its strength and interaction with other materials?
Deterioration through exposure to weather conditions, effect of chemicals, and crack
formation are related in an intricate cause-and-effect [33, 34].

Concrete aging comprises a broader range of effects than chemical or mechanical
deterioration. Such effects which include creep and shrinkage have been researched
extensively in the 1950s and the 1960s and were found to have direct impact on
strength and serviceability [35, 36]. More recently, shrinkage effects were studied
further with the inclusion of recycled aggregates [37]. Aged concrete tends to dete-
riorate and to exhibit hairline cracks, which may grow and allow weather agents to
infiltrate and attack reinforcing steel causing loss of strength [38]. Loss of strength
may be dormant until it manifests itself in case of excessive loading beyond safety
margins. For this reason it is important to differentiate the effects of aging on static
from the effects on dynamic properties [39]. There are distinctive loading types that
cause fatigue and cyclic deformation which in turn contribute to the acceleration of
concrete aging, hence deterioration and drop in strength [40].

Conversely, overloading causes damage, crack formation, and hence deteriora-
tion that accelerates aging of concrete. In both cases, aging is an important aspect
of reinforced concrete performance, especially in seismic zones where structural
elements are expected to sustain reversal in loading, fatigue, and peak stress levels
that may exceed design levels dictated by Codes [41, 42]. Past research on aging of
concrete addressed deterioration at a material level, including transformation of the
microstructure. However, there is a need to address the cumulative effects on overall
structural response taking into consideration changes in material properties such as
compressive strength or splitting strength due to aging [43, 44].

American and European Codes have explicit criteria related to the control of
cracking and to the repair of damaged concrete [45, 46]. A question precedes a
repair proposal in that does the structure, or a structural member, lend itself to repair
or should it be disposed of, replaced, or re-cast? When this question is posed at
the level of the entire building that has undergone severe irreversible damage from
an earthquake, and may pose public hazard, demolition may be the only solution
[47]. Therefore, any concrete repair proposal, plan, or operation requires a priori a
meticulous assessment of the structural member and a detailed recommendation of a
course of action [48]. To reach a reasonable repair recommendation, an assessment
needs to reach tangible results such as the extent to which compressive strength
S/ has dropped, or permeability has changed, or porosity has increased by orders
of magnitude, among other parametric studies [49, 50]. To answer these questions,
it has been common place to take cores out of an existing structure and test the
cored samples at the lab. The challenge in this case is threefold. First, coring is an
intrusive testing methodology whereby cylinders have to be cut out of members.
Second, cores may not fully describe the structural health. Third, even the most
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professionally clustered cores do not accurately reveal to what extent the structure
has been subjected to loss of bond between the reinforcing steel and the surrounding
concrete [51, 52].

Loss of bond is therefore one of the most difficult phenomena to field-
test realistically, and therefore it is critical to develop new methodologies that reflect
how much a bond has weakened or total detachment has occurred between the rein-
forcing steel and the surrounding concrete [53]. It is also critical to relate this type
of damage to other properties of the building whether physical, or dynamic, such as
the natural frequency and equivalent viscous damping.

One of the well-documented consequences of de-bonding between steel and con-
crete is a significant drop in stiffness. So considering an unchanged mass—of course
unless substantial shake-off of concrete occurs—the frequency expressed as «/k/m
clearly drops. This drop leads to a clear downwards shift in the building response
to a given earthquake. Such shift may create a discrepancy between the assumed or
anticipated structural performance during its design phase, and its actual real life
performance.

4 Basic Assumptions

Due to its anisotropic nature and its non-homogeneous mechanical properties, rein-
forced concrete requires special assumptions in the development of governing equa-
tions in design. In reinforced concrete design literature, the step-wise procedures
whether in textbooks or Codes adopt similar simplifying assumptions. Some of the
assumptions rely on basic mechanics, and others utilize strain compatibility. For
example, in the design of members subjected to bending, assumptions from basic
mechanics involve the consideration of plane sections remaining plane in flexure.
In the design of members subject to axial loads, mechanics assumptions involve the
uniformity of stress distribution on the entire cross section.

Assumptions of strain compatibility are not only a means to simplify calculations
and to reach coherent procedures for beam flexure, column axial-flexural interaction
equations, and other design formulas, but to also reflect a necessity in maintaining
that compatibility in real life applications [54]. This differentiation is very impor-
tant in design because it dictates the strength and serviceability performance once
the structure is put in operation. Depending on several factors which include mix
design, placement quality and procedures, or operational loads, strain compatibility
may not remain applicable throughout the lifetime of the building. Research litera-
ture addressed concrete aging and its effect on overall structural performance [55,
56]. Other studies addressed steel-concrete bond theoretically and experimentally
and found that it has a great effect on reinforced concrete member behavior. Early
research on bond comprised straight pull out tests that confirmed a significant change
in capacity with deterioration of bond [57, 58].
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5 Effect of Steel-Concrete Bond

5.1 Localized Versus Member Level Bond Effects

The bond between reinforcing steel and concrete governs the transfer of stress
between these two materials. A distinction should be drawn between bond at the
localized stress field level, and bond at the reinforced concrete member level. The
first category addresses the micro-structure interface whereby the concrete is crushed
by the steel lug edge [59, 60]. The second category addresses the cumulative effects
of rebar pull-out causing excessive rotation at beam-column joints or crack forma-
tion in the tension zone. These effects have a direct effect in the overall stiffness of
the structure. They can be modeled directly in the stiffness matrix and found mathe-
matically to impact eigenvalues yielding lower frequencies [61, 62]. Cyclic loading
causes alternation between tension and compression at the same member location,
and therefore requires the investigation of reversal of member forces computed from
static analysis.

5.2 Bond Deterioration at the Local Bar Level

Bond requires development length. If bond resistance deteriorates, reinforcing bars
are likely to slip and destroy the steel-concrete composite action. A severe loading
such as impulse or earthquake may cause brittle failure. Therefore, bond has multiple
functions including overall strength and ductility. It is affected by many factors
including concrete cover, rebar spacing, bundling, and position. Depending on the
manufacturer, certain bars have ribs at an angle that influences bond and pull-out
behavior. It was shown in early research and testing that for the same configuration,
bond resistance to straight pull-out is greater under dynamic loading than it is under
static loading [63]. This conclusion may not hold under dynamic cyclic loads [64].

Research showed that bond strength decreases as bar diameter increases. This
conclusion shed light on the selection of reinforcing steel in practical design, follow-
ing the determination of a total required steel area [65]. For example a choice of #9
versus #6 bars would not only be affected by placement, but also by increasing the
contact surface, or the frictional interface. In this case, smaller bar diameters would
be favored, all other design parameters being equal.

Development length of bars was also studied with the effect of confinement. Other
factors being constant, ultimate bond stress varies as a function of fC/ because it is
related to concrete tensile strength [66]. From traditional tri-axial stress relationships,
confinement causes an increase in fL/. and provides larger normal stress between steel
and concrete.

Rebar placement, spacing, member width and anchorage also affect bond strength
in terms of concrete splitting failure [67]. Studies considering a variety of deformed
bar surface properties established a relationship between concrete cracking and
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slippage along the embedment length. Results helped formulate resistance to pull-
out along embedment length [68]. Related research showed that since confinement
increases normal stress around the bar, it has a significant effect on bond [69].

5.3 Bond Slip Effects at the Member Level

The cumulative effects of localized bond slip result in overall drop in performance
at the reinforced concrete member level. In particular, beam-column joints would
undergo additional rotation beyond the level captured by linear elastic analysis [64].
Once reinforcing steel starts to move relative to concrete, the members connected at
the joints go through additional rotation relative to each other. Areas in the vicinity of
beam-columns joints in moment-resisting frames subjected to dynamic loading are
affected the most [62]. This result is expected because the energy imparted into the
superstructure by the earthquake is dissipated through ductile behavior at the joints
[70].

6 Model Development

6.1 Mathematical Derivation

We develop a mathematical model that represents the bond slip behavior. Consider
the ring of concrete in touch with the bar in between two consecutive lugs. Denote
by o the normal stress exerted by the lug on the concrete. Consider the lug as having
an angle 6 with the longitudinal axis of the rebar where 45° < 6 < 90°. Let d},
denote bar diameter and #; the height of the lug above the steel surface. The area on
the wedge of the steel lug concentric to the bar axis is:

4 21 2 2
Ao =— || — — 1
4 |:(sin9 +db) b:| M

For an embedment length /4, the resultant is:
. la
R, =osinfnt;(t; + dp)— 2)
s
The projected lug area concentric to the rebar axis is:

1,
A, =m[y + db]—l €))
tan 6
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The component of o exerted on this area contributes to concrete splitting effect. Its
resultant is:

)
R, = ZZUCOS o[y +db]@ 4)
d
g
R, = o cosOn[t; +dp] — — )
tanf s

The concrete shear area adjacent to the lugis:

2t
Ap = 28 + dp)] [—’ + si| (6)
tan 6

If f,, is the concrete shear strength, shear resistance is:

21
Rey = % fcvn[2tl + dp] I:m + S:| 7
21 l
Rey = fom[2t; + dp] [_1 + s} td ®
tan 6 s

The area of an infinitesimal element around the circumference of the steel segment
within the clear spacing of two consecutive lugs is:

dp
dA; = ?dotdx )

where da is an infinitesimal angle about the rebar centroid, and dx is an infinitesimal
distance parallel to the longitudinal rebar axis. Among the range of deformed bar
patterns, the simplest pattern has lugs that are parallel to each other, spaced at about
1/2" to 1” and orthogonal to the bar axis.

To express the frictional resistance mathematically, we consider that the confine-
ment stress, denoted f{ contributes to frictional resistance to motion, at both the
concrete-concrete interface and the steel-concrete interface. Denote w the friction
coefficient, which depends on the pull-out displacement rate, x = dx /dt and on the
angular location around the rebar periphery, . The differential force due to friction
can be expressed as:

dRy = u(, ) f] (%b) da.dx (10)

The resultant is a double integral over « and x, over the inter-lug segment, summed
over the embedment length:
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2w s

rd,
R, :Zflib//u(fc,oz)da.dx (11)
la 0 0

The inclusion of « in the expression of u is due to the fact that there may be localized
imperfections around the rebar such as air pockets, or a large aggregate instead
of bonding mortar, which may cause an uneven frictional resistance around the
circumference of the bar. Such local imperfections and their effects can be accounted
for separately through a safety reduction factor related to concrete mix and placement
quality. As for the relative pull-out displacement rate or velocity range expected at
incipient bond slip, we consider that the steel-concrete friction coefficientis constant
along the embedment length. Applying these two simplifications to expression (11),
performing double integration, and summing over the development length, we have:

Ry = mufdply (12)

The derivation sheds light on the difference between reversible and irreversible effects
of loading. For a steel bar whose strength exceeds the bond slip load level, the effect
is considered reversible. However, if bond slip occurs at a load level below the
development of the bar strength the effect becomes irreversible.

6.2 Application to Static Equilibrium

The stress resultants in expressions (2), (5), (8) and (12) can be used in equilibrium
equations in the longitudinal direction. As discussed earlier, (2), (5) and (12) could
be extended into a dynamic equilibrium where the rate of change of the friction
coefficient, inertia effects, and other related factors, are accounted for. However,
the dynamic equilibrium is treated undera separate scope. Several cases could be
identified, which we simplify under two main conditions that are most relevant to
our scope. Case 1 pertains to the rebar reaching its full development function, while
Case 2 corresponds to a pull-out prior to reaching yield. An optimal equilibrium
would be reached under strength and economic conditions simultaneously. Denoting
by T the tensile force applied to the bar:

Ty = Ag fs 13)

where Aj; is a single bar steel section and f; is the stress applied to that section. If
there is no bond slip, we have:

Tx = Axtfv = Ro + Rs (14)



86 M.S. Chalhoub

otherwise, the bar would pull-out under the applied section stresses. In this case, we
have:

T, = Astfs > Rey (15)

Once the concrete shear resistance fails at the envelope layer, both the lug resistance
and the frictional resistance along the steel segment between the lugs no longer
contribute to bond. Research on steel-concrete friction coefficients shows that their
values vary between 0.47 and 0.7 depending on finishing parameters and other factors
[71, 72]. For the purpose of the present illustrative examples, we use 0.5. However,
the same present derivation and resulting formulas could used over a range for values
of the friction coefficient.

The relationship between bar tensile force and bond resistance for a No. 5 bar in
4000 psi compression strength concrete is shown in Fig. 1, where tensile resistance
is plotted against development length factor. Yield forces in the bar are Ty (4) = 12.4
k and Ty (6) = 18.6 k for f, = 40ksi and fy = 60 ksi, respectively. Development
length required by ACI is 37 dp, for fy, = 40ksi, and 57d), for f, = 60ksi. For
both fy values, inequality (14) is satisfied and the bar will yield before reaching the
pull-out limit. However, shear strengthin the concrete in the vicinity of the bond area
is enough to carry the bar to yield for f), = 40ksi, but bond slip will occur before the
bar yields for f, = 60ksi (Fig. 1). A similar analysis could be performed for various
bar diameters, concrete compressive strength, and steel yield stress.
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7 Effect on Overall Structural Health

7.1 Effect of Bond Deterioration

Bond deterioration has a significant effect on local critical zones, and it has an
influence on the overall structural behavior, especially when subjected to dynamic
loading. The additional rotation at the joints due to bond slip exhibits hysteresis
behavior represented by a nonlinear curve [64, 70]. The force-deformation curve
starts with a straight line over the elastic range then reaches a plateau where the
joint rotates at no additional moment. When load reversal occurs, the joint starts
rotating in the opposite direction while engaging the bar in friction until it bears
against concrete. At that point, the bar on the opposite side of the beam starts its
pulling cycle. Theoretically, reversal exhibits equal and opposite values. But if decay
is included in the model, cycle i 4+ 1 will exhibit deterioration with respect to cycle
i, until collapse of the joint, should the cyclic load continue.

7.2 Effect of Aging

Aging of concrete is one of the most determining phenomena in the behavior of
structures. Early studies in the 1950s followed by research at the turn of century
show continuous interest in long term effects in concrete behavior [32, 35]. There
are no standardized direct experimental processes to deliberately age concrete and
test it on that basis. For this reason, the most reliable lab for aging would be the
outdoors real life situation in cities where reinforced concrete constitutes the vast
majority of buildings.

Data collected in various cities in Lebanon was compiled by building age, con-
dition, and ambient environmental effects. A subset of 140 buildings was studied
analytically. But coring and compressive strength tests were performed on only 5
buildings that were considered as representative of the others in the sample. The
5 buildings are not statistically significant, but their results were within a coherent
range and therefore provided an indication of the state of the concrete in these older
buildings. Some of the cylinders gave a compressive strength as low as 790 psi.
The detailed field-related experiments were left outside the scope of this paper as a
subject of future research [73].

7.3 Effect of Design and Placement Quality

Mix and structural design, and placement quality are very important and have a direct
relationship with the two features above; bond deterioration and aging. Concrete
that is well proportioned has a superior longevity to concrete that is not. Structural
systems that are designed to withstand dynamic loading defined by code, will
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Table 1 Basic decision rule that differentiates localized damage from overall distress

Damage categories Potential causes Reversibility
Concrete cover spalling Under-designed cover Uncover, treat bars, provide
new cover

Mild rebar corrosion

Chunking around bars Stress exceeds design stresses | Remove, track damage, rebar
implants, re-cast

Severe corrosion

Localized steel corrosion Lack of vibration during Uncover, treat bars, provide
stains placement new cover

Hairline cracks; air, water,
chemicals reach bars

Fluffy plaster, caulking, or Damage due to humidity or Uncover, treat bars, provide
paint water seepage new cover

Large structural cracks and Bond deterioration Fix depends on localized
visible deflections damage

Inject bond agent, cast shadow
member

Alternative solutions involve
exterior wrap

Beam-column joint slack Bond deterioration Building may pose hazard in
the following event

Bar pull-out Consider disposal

Fatigue, distress

Structure exhibiting Bond deterioration Dispose
misalignment or out-of-plumb

Major loss of strength

obviously perform better than the ones that are not. Some of the field challenges that
we encountered had to do with all three components; mix, design, and placement.
In the present paper, we mention some of those challenges as they cannot be fixed
retroactively, but we shall rather provide a rational approach for decision-making in
terms of types of actions that could be taken.

A challenge in many less developed countries is the lack of code guidelines.
Another challenge is the poor or lack of supervision. Even when designed per Euro-
pean or US codes, the execution leaves room for mismanagement of resources and
potential mishaps during construction.

7.4 Remediation Choices

Although extensive research on reinforced concrete damage caused by bond deteri-
oration was performed in the 1960s, interest in bond effects for both steel and fiber
reinforced concrete resurged in later decades as seismic codes grew more stringent
[74, 75].
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For existing buildings, parameters needed to perform calculations may not be
easily available. To determine fcl in an older building, coring and testing may be
performed. But results from various parts of the same building may exhibit a large
spread [73]. A simpler decision rule involves the overall state of the building. Table 1
provides a set of inspection results, with possible solutions. Three categories are
defined for strength, serviceability, and aesthetic requirements (Table 1).

8 Effect on Dynamic Behavior

8.1 Effect on Fundamental Period

Studies conducted on beam-column assemblages attempted to cast complex dynamic
behavior in formulas. Approaches proposed in literature account for bond slip effect
on overall structural dynamic behavior [64, 76].

To get a preliminary result on dynamic performance, considera single bay and
three degrees of freedom, one translation u; and two rotations at the joints, u; and
u3, respectively. We have:

ki1 k12 k13 uj Je
ka1 k22 ko3 uy [ =10 (16)
k31 k32 k33 u3 0

ki ur = fe (17)

where k]“l condenses the k;; stiffness coefficients (( = 1,2,3; and j = 1,2, 3;
i #1,and j # 1) and f, is the elastic force. The mathematical derivation is under
separate scope to focus here on the practical formulas for designers [73]. We define
a girder-column stiffness ratio:

_ Ecgl L. (18)

Eccl. Ly
where E.4 and E.. are the moduli of elasticity for the concrete in the girder and
in the column respectively, I; and /. are the moments of inertia of the girder and
column, respectively, and L, and L. are the span of the girder and column height
respectively. We have:

L3 \c+do

c

Eol b.
Ky, = el (" + ‘p) (19)

where a, b, c, and d, are constants that depend on column and girder properties
[73]. Degradation in girder-column stiffness ratio is denoted by . The drop in the
condensed stiffness term differs whether the deterioration is occurring in the girder
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or the column. In both cases, however, it results in a significant drop in natural
frequencies of the structural system. Figure2 shows the drop in stiffness due to
degradation in the girder, while Fig. 3 shows results for degradation in the column.

For a stiffness ratio of 5 that decreases 60 % through deterioration of girder
moment of inertia, the condensed stiffness drops from 22 to 19.5. While for the
same stiffness ratio, 5, that decreases 60 % through deterioration of column moment
of inertia, the condensed stiffness drops from 22 to 9 (Fig. 3). These numerical exam-
ples support the strong column weak girder approach in the seismic design of RC
structures.

The results can be related to linear elastic structural analysis using basic element
stiffness coefficients with various boundary conditions. For example, a free stand-
ing cantilever column whose top joint is allowed to rotate and translate without any
restraints has a lateral stiffness coefficient equal to 3EI/L3, where E, I and L are
the modulus of elasticity, moment of inertia, and span, respectively. If the top joint
of the column is fixed against rotation, but is allowed to translate horizontally, the
lateral stiffness coefficient is 12EI/L3. For a portal, the results in the first case yield a
coefficient of 6 and in the second case, a coefficient of 24. Therefore, the worst case
scenario of girder failure comprises bond deterioration in the girder at the column
face, leaving the joint in the column to rotate freely, or with very low deteriorated
rotational stiffness. The worst case scenario of column failure through bond deteri-
oration would be a hinge in the column leading to collapse, which is unacceptable
form a reinforced concrete design perspective.
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9 Conclusions

Methodologies for predicting earthquake response of a structure based on its known
properties and for a given excitation are well established. The challenge resides in
the ability to define those properties, especially when the construction material is
susceptible to substantial changes through time, or in the wake of a tasking event.
For reinforced concrete structures, these two factors are particularly important; aging
of concrete is accompanied by shrinkage and creep effects, and events such as earth-
quakes could drive the members into reversals that change their mechanical proper-
ties. What makes the analysis and design of reinforced concrete more demanding is
that related formulas are based on strain compatibility assumptions. These assump-
tions that of steel and concrete deforming in compatible increments as the elements
develop nominal strength, do not hold throughout the life of the reinforced concrete
member. These assumptions become less applicable to real life behavior when con-
crete elements age or undergo cyclic loading. Another challenge is related to the
possibility of performing tests on various lifetime intervals to ascertain, or adjust,
properties in models. The use of field sampling to determine concrete compressive
strength may be performed by coring and lab testing. However, field-testing for bond
deterioration is much more complex and cannot be determined by sampling an exist-
ing structure. Loss of bond between reinforcing steel and surrounding concrete is a
complex, internal, often invisible phenomenon that is hard to capture through com-
mon sampling techniques. The model developed in the present paper analyzes the
structural health of reinforced concrete buildings taking into consideration concrete
damage through loss of bond. The analytical model relates steel loading that causes
bond distress to design parameters such as development length and bar properties.
Potentially, new methodologies for field measurements could be developed to target
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bond deterioration through the observation of dynamics properties. This is based
on the premise that loss of bond leads to reduced stiffness which results in lower
natural frequencies. Those reduced or modified stiffness coefficient could be calcu-
lated for mass values kept constant. The analytical model could be checked against
the dynamic model and could be complemented by field measurements in future
research. The diagnosis method presented in this paper discusses the sustainabil-
ity of the structure and offers a simplified decision rule whether to perform minor
fixes, major rehabilitation, or disposal. The model draws a distinction between joint
damage in the girder as opposed to the column, and makes the case for weak-girder
strong-column design. Plastic joints formed in the girder may potentially lend them-
selves to concrete repair, while plastic hinges in the column may cause catastrophic
collapse, and thus make the structural health condition irreversible. Empirical results
were partially used and discussed to illustrate field challenges that are faced when
the structure is subjected to earthquake motion or other severe conditions such as
impulse loading.
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Recurrence and Joint Recurrence
Analysis of Multiple Attractors
Energy Harvesting System

C.A. Kitio Kwuimy and C. Nataraj

Abstract The method of recurrence plots and joint recurrence plots are considered
as tools for the nonlinear analysis of a dimensionless model of magnetoelastric piezo-
electric energy harvester under wind flow excitation with low Reynolds number. The
dynamics of the system is investigated by considering the bifurcation of the recur-
rence rate, the laminarity and the determinism and illustrations of system response
are presented though the recurrence plots and phase diagrams. In order to enhance
the efficiency of the system, a second degree of freedom is added to the mechanical
part. The method of joint recurrence plot is used to analyze the global synchroniza-
tion of the system. In this spirit, a feedback Master-Slave configuration is adopted to
ensure optimal synchronized mechanical excursion and thus maximal electric volt-
age harvested in the electric load. Throughout the paper, attention is focussed on the
effects of feedback coupling and mistuning parameter, as well as the relevance of
the method of recurrence plots and joint recurrence plots in the analysis of such sys-
tem. Specifically, it is shown that the joint recurrence plot synchronization parameter
effectively detects domain of maximal output electric power as well as domain of
out-of-phase motion leading to minimal output power.

1 Introduction

Energy harvesting systems are designed to transform available ambient energy into
electrical energy for small and/or portable devices. These harvesters involve struc-
tural vibration, wind flow, physiological and chemical reactions. For the last 10 years
several harvesters based on structure excitation and fluid flow have been analyzed
[4, 19-22, 31, 42, 43] (and references therein). Although common transduction
mechanisms are electromagnetic, piezoelectric and electrostatic, the piezoelectric
transducing mechanism is in general preferable because it has highest energy den-
sity and no reliance on external magnetic field or initial DC voltage [41]. These
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systems were found to be only efficient near sole resonance frequency and this limit
their applicability in frequency variant, amplitude variant or random excitations.
Considerable efforts have been devoted to enhance the performance of these systems
by using nonlinear phenomena such as multiple resonance, snap through instabil-
ity, bifurcation, stochastic resonance [20, 21, 30] and material with fractional order
properties [27].

To optimize the harvesting mechanism, multiple degree of freedom systems have
been considered. Shahruz [39] analyzed a set of parallel single degree of freedom
harvesters tuned at slightly different resonant frequencies, whereas Erturk et al. [10]
considered a harvester as a serial set of two beams connected to each other to form
an L-shape. Ferrari et al. [12] investigated a piezoelectric multiple frequency energy
converter for power harvesting in autonomous microsystems. Ramlan et al. [37] con-
sidered a harvester made of two oblique springs and analyzed the potential benefits of
the hardening effects of the spring on the output energy. Liu et al. [32] considered an
adaptive harvester for wind flow induced vibration involving an additional mechani-
cal arm acting as flow sensor. However, a network of harvesting system is not always
optimal since the out of phase motion and mistuning leading to a reduction of the out-
put energy can appear [41]. Litak et al. [31] analyzed the stochastic response of two
magnetopiezoelastic energy harvesters with mistuning. Also, for a multiple ampli-
tude response (such as in systems with hysteresis for example), it appears that, some
elements of the network can vibrate with lower amplitude [36]. These two problems
have lead to the development of the synchronized charge extraction technique [41]
(and references therein), the impedance adaptation technique [13] and the synchro-
nized switching harvesting on an inductor technique or voltage source [13, 16, 29].
These techniques have been considered for theoretical and experimental investiga-
tions under various assumptions such as resonance, linearity, in-phase motion and
weak coupling. Although they give information for the design of network of har-
vesters, these assumptions are not realistic since mistuning always happen as well
as out-of resonance motion [31, 41, 46]. Moreover, for self-excited systems such as
wind-induced vibration, out-of phase motion, hysteresis and multiple limit cycle can
appear [7].

The idea of extracting useful energy from the surrounding fluid flow has been
considered by several authors [2, 5, 6, 20, 21] and they discussed the conditions for
efficiency of the harvesters. The motivation of this paper is to investigate the effi-
ciency and the synchronization of multiple attractor wind-induced vibration energy
harvester system at low Reynolds number by recurrence. The dynamics under mul-
tiple attractors condition were ignored or briefly mentioned in previous contribu-
tions [3, 5-7, 19-21, 23]. The originality of this contribution, in addition to its
theoretical contribution in energy harvesting, is its relevance to hybrid method for
system analysis. Thus, the interest for the method of recurrence is based on the fact
that, the recurrence plot (RP) is now a strong numerical tool for time series analy-
sis of complex systems. Very few contributions have considered nonlinear analysis,
synchronization or control of complex systems based on RP, see for instance [9, 25,
27]. This could potentially reveals details that can be used in practical applications
such as system diagnostics and enhance system design [11, 15, 28, 38]. Recently,
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we used the method of RP to investigate the responses of a nonlinear pendulum and
detection of dynamics change in the system response [25]. This was extended to the
mathematical model describing the behavior of biological oscillator [27].

The rest of the paper is organized as follows: In Sect.2 we present the physi-
cal system and the mathematical model based on the work of Barrero-Gil et al. [7,
8]. Mlustration of birhythmicity is highlighted as well as the effects of an additive
harmonic excitation. The third Section discusses the possibility of a complete syn-
chronization of the system. The last section recalls and discusses the main results.

2 Brief Review of the Model and System Characterization

2.1 The Mathematical Model

The physical model is made of a cantilevered beam with piezoelectric patches under
a transversal wind flow (Fig. 1). It is constituted of an electrical circuit having a
load resistance Ry and a flexible beam with distributed piezoelectric patches. The
modeling equation of the system is given as

SO Y Y e o)t KoV (@ £ (1)
_— C, = T T
Pb ot? ax4 e a 0
av_v._ K/ o2, @)
P 5 dt 1 ax2

where W (X, 1) is the transversal beam deflection function of time t and a coordinate
along the beam element X, E is the Young modulus, S is the beam cross section, pp
is the beam mass density, L is the beam length, ¢, is the viscous damping, F,(t) the
aerodynamics force, Ky and K are the piezoelectric coupling terms acting exclu-
sively on the area of the piezoelectric patches, C, is the inherent capacitance of
the piezoelectric element, R, is the resistive load, V is the voltage generated by the
piezoelectric element. f(X) = H(X) —H(X — X))+ H(X — X2) —H(X — L)
is a spatial function used to specify that the piezoelectric patches are localized in
the region 0 < X < X and X» < X < L, where H(.) denotes the Heaviside
step function. For the beam in Fig. 1, the displacement and slope at the clamped end
(X = 0) are zero. Also, at the free end (X = L), the bending moment and the share
force are zero. The conditions are formulated as [26, 44]

82 3

aw W
W(O, T)Zﬁ(o,f)zm( ,T)ZW(L,T)ZO (3)
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Fig. 1 Schematic R,v
representation of the energy
harvesting system under
wind flow
iezoelectric
patches
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(UI
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For system with small Reynolds number (R, < 200), Barrero-Gil et al. [7, 8] showed
that the aerodynamics force is given as

Fot) = Lo oy o L2V 1 oW 3+ 1ow)> 1owy’
== al————a3| =—— as\—=—) —a1|=—
a 2 TR S\U o "\U or

where U is the wind velocity, D is characteristic constant of the system, p,, is the mass
density of the fluid, the coefficients a; (i=1, 3, 5, 7) are empirical functions of the
Reynolds number and the “+” and “—" are dictated by experimental considerations
and the Dan Hartog stability criteria [14].

“4)

2.2 Garlekin Approximation: Modal Equations

To facilitate the analysis, we use the dimensionless variables ¥ = %, X = %,

V= Vl, t = % andu = Ul where Vy, T and Uy are characteristic parameters to be

determined. The new form of the equations of the device is thus

ry + oy F() ) (5)
— +— - =novf(x
a2 " oxt 0 ’
dv 1 a3y
o= dx, 6
oty m/o f@) g (©6)

with

Yy Y\ 2 ay\* 3y \°©
F(t)=gl(u,Re)§ 1 —go(u, Re) (E) + g4(u, Re) (E) — g6(u, Re) (E)

(7
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as
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u(aju — &)
as aj
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The boundaries conditions are also transformed into
oY (x,t
Y. =0 and L&D g (11)
0x
at the clamped end, and
%Y (x,t Y (x,t
9x? ot

at the free end.

The dimensionless model (5) and (6) is a set of linear ordinary differential equation
(ODE) coupled to a nonlinear partial differential equation (PDE). For simplicity in
the analysis, we decompose the PDE into ODEs by using modal approach. Using
the Galerkin decomposition method, the transversal deflection of the beam can be
rewritten in single mode decomposed in the following form

Y (x, 1) = ym () Pm(x), (13)

where y,, (t) is the time dependent function of each mode and @,,(x) is the shape
function obtained from the undamped natural equation of the beam

3%y aty
iz T =0 (1

with boundaries conditions given in (11) and (12). Thus, one has

k hk
@, (x) = cos k;,x — coshk,,x — w [sin k,,x — sinhk,,x]  (15)
sin k,, + sinhk,,

where k,, is eigenvalue, solution of the transcendatal equation

cos k,coshk,, +1 =0 (16)
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Substituting the resulting mode decomposition in (5) and (6) and projecting back
on the mth mode [24, 35] yields the following set of equations

dzy * 2

2 ~ W EO+ 826y = +nomy, a7
dv dy
il = —Nim—, 18
Jr +yv Nm di (18)

where F(t) is actually defined as

Fo =2 |1 - gy, k) AN (. Re) ar)' @, Re) ZAY
=i 82U, Ke)op di 84U, K¢ )04 di 8o, Ke)og dt

19)

and

1
@ = [ @uo)dr. @, = (o) 17 = g1l R, i = 0P i)
0
(20)
In these equations, x,, is the mth solution of transcendental equation (16); based

on previous results [24], we consider only one mode of vibration (n = m = 1) and
the corresponding indices were simply removed for simplicity.

2.3 Existence of Birythmcity

In order to state the conditions for the existence of limit cycle and the number of

limit cycle, we set g = +/g2(ut, Re)az% andv = % and follow the application of

the Liénard theorem [40, 45]. We rewrite (17) and (18) in the standard form

dq
=P wF(q) + nov (21
t
dp
it 22
=4 (22)
dv* N dp
o AP 23
dt vy n dt @3)
where F(q) is defined as
3 5 7
o B
Fp=—q+L -2 4 7L (24)

3 5 7
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and

% g4(u, Re)ay g6(u, Ro)ag
p=—, a= B = G

r = I , I'=+/g2(u, Rp)an (25)

In the rest of the paper, we will simply ignore the asterisk.

Since the 3rd variable v does not change the dynamics properties of the fix point
q = 0, the results of [27], obtained for 9 = 11 = 0 can be transported here. Hence,
we recall the following theorem which proof can be developed as in [27].

Theorem

Setting H («, B) as the discriminant of the algebraic equation g(¢) = —1 4+ ¢/3 —
ac?/5+ B¢3/7 = 0, the dynamics system in (21)—(23) has

1. exactly one limit cycle under the condition H («, §) > 0
2. at least one stable limit cycle under the condition H (o, 8) < 0

where H («, B) is the discriminant of g(¢) = 0 and is defined as

768 o2 13188 27

He p) = =255+ 505 T Togas? ~ _’3 (26)

Figure2a shows the area of existence of one and two limit cycles in the plane
(B, «). One notes that the area of parameters leading to birhythmicity is quite small.
However, it is interesting to analyze the system in this domain. In fact, for application
such as energy harvesting where one takes advantage of large mechanical excursion
in producing an important mechanical deformation and thus an important amount of
harvested electric power, the limit cycle of large amplitude is advantageous. Thus,
it is important to understand how the system behaves in case of birhythmicity in
order to efficiently control its dynamics. This states the problem of control and
synchronization of the orbit since the behavior of the system in one or another
orbit depends on the initial conditions of the system, whose are quite impossible to
determine a priori in practise.

As illustration, for u = 3.5, « = 0.144, 8 = 0.005, n9 = 0.1, n; = 0.25
and y = 0.2 with the initial condition of the electrical voltage set at zero (at it is
throughout the paper), one obtains the basin of attraction of Fig. 2b. The inner domain
(in blue color) corresponds to the domain of attraction of the lower amplitude limit
cycle, while the outer domain (in red color) corresponds to the highest amplitude
limit cycle. This basin of attraction was obtained by scanning the initial conditions
in the space [—5, 5] x [—5, 5], and solving the differential equations (21)—(23). We
found that, as the initial conditions change, the final state of the system converges
into two possible limit cycles. Practically, this simply means that, a system initially
set in the blue domain will provide less amount of electrical energy than a system
set with initial conditions in the red domain. The analytical results of Barrero-Gil
et al. [7] show three possible amplitudes: a small one (which corresponds here to
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Fig. 2 (Color online) a (@) oz
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the lower amplitude limit cycle) and a large (which corresponds here to the upper
amplitude limit cycle), and an intermediate one which is unstable. Moreover, in their
study of birhythmicity in biological systems, Kadji et al. [17, 18] obtained the same
result using perturbation method and they showed that, the frequency of each limit
cycle depends (in a nonlinear fashion) on the amplitude. This can be extended to the
phase [35]. The immediate consequence is the possible out of phase motion (case of
multi degree of freedom oscillations) leading to minimal harvested energy [41].

3 Recurrence Analysis

3.1 Birhythmicity and Recurrence Analysis

Recurrence analysis for time series are based on the analysis of a matrix R whose
elements are defined as

D;

1: ~ @, S
Rij = 0:0; #;,’ i,j=1.,N, @7

where @(q, p, v) is the state vector, N is the length of the time series, i and j are
related respectively to the line and column of the matrix, @; ~ ®; means equality
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up to an error ¢. These indices are also related to the time t = iAf (At = 0.01 being
the sampling time). The elements of the matrix R are obtained by comparing the
state of the system at time i and j with a threshold precision ¢. Thus, formally one
has

Rij =0(e — ||®; — @;|]), (28)

with ||(.)]| been the Euclidian norm (L,-norm) and 8(r) = 1 forr > 0,0(r) =0
for r < 0 is the heaviside function. A RP graph is obtained by plotting the R;;
elements with different colours. The common use consists of using inked colour for
R;; = 1 and white colour for R;; = 0. By this definition, a RP graph is always
symmetric (R;; = R};) and always has colored central diagonal. Note that, for data-
based time series analysis it is crucial to reconstruct the phase space of the system (in
order to extract dynamic features) by estimating the embedded dimension; that is the
dimension of the homeomorphism image of the actual (real) phase space (for which
the structure is unknown), in which the dynamics of the system is fully described.
In this analysis, it is assumed without lost of generality, that the homeomorphism
image is the actual space itself (for which the structure is known). In other words,
the embedding dimension is equal to two (dimension of the state vector @ (g, p))
and the time delay between g and p can be determined using the average mutual
information [1].

It is important to recall that the choice of ¢ is critical. In fact, by definition
(see (28)), an ¢ too small will lead to a no recurrence behavior and an ¢ too large
will lead to an all-to-all recurrence. In this contribution, in order to estimate the
best neighbourhood size, we use an optimization procedure proposed by Matassini
et al. [34]. The procedure consists of minimizing the quantity

_ |(Nn(5) - Np(8)|
a Na(e)

r

(29)

where N, = Zi, j R;;/N is the average number of neighbor that points have and
N, is the number of peaks which is estimated from the histogram along the main
diagonal direction h; = D ;_ j=i Rjk. See the paper by Matassini et al. [34] for
details. In the rest of the paper, the value of ¢ used was such that the quantity I" was
minimal.

Figures 3 and 4 show the RP of the system as well as the phase diagram of the
mechanical system and the time history of the electrical system for different set
of the initial conditions and © = 0.05 (Fig.3) and u© = 3.5 (Fig.4). The graphs
corresponding to the initial conditions (qg, po, vo) = (0.1, 0, 0) are plotted in blue,
while those for the initial conditions (go, po, vo) = (5, 5, 0) are plotted in red.

In Fig.3, the RP of both initial conditions (Fig.3a) are indiscernible. However,
considering some recurrence quantification analysis parameters (RQA), namely the
recurrence rate (RR), the laminarity (LAM) and the determinism (DET) (defined in the
Appendix). One observes that, the RP are graphically similar; the distance between
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Fig. 3 Response of the (a) 80
system for = 0.05,

a = 0.144, B = 0.005 and

initial conditions vary. a The
recurrence plot of the =
system. b Phase diagram of
the mechanical arm. ¢ Time
response of the electrical
voltage
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diagonal along the main diagonal is constant: This implies that both limit cycles
have very close (almost equal with the precision used here) period. The RQA vary
as shown in Table 1. This is compatible with the phase diagram of the mechanical
variable (Fig.3b) and the time history of the electric variable (Fig.3c). One notes
that the attractor of large amplitude (outer orbit) has a small recurrence rate (large
diameter of the attractor) in comparison with the recurrence rate of the inner attractor
(small diameter of the attractor). This is simply due to the fact that, since the number
of points collected N is maintained constant, and the path in the outer orbit is longer
than the one in the inner orbit, less points recur for the outer orbit. Similar observation
is made for the determinism, whose reduction is simply due to change in the basin of
the initial conditions, rather than increases in the level of complexity in the system
(quasi periodic motion, chaos, transient motion,...). However, this observation on the
DET cannot be generalized. In fact for a large value of u = 3.5 (Fig.4), leading
to relaxation oscillation, the recurrence rate has still decreased from the inner orbit
to the outer orbit. The decreasing in the determinism in this case is due to combine
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Fig. 4 Response of the
system for u = 3.5,

a = 0.144, B = 0.005 and
initial conditions vary. a The
recurrence plot of the
system. b Phase diagram of
the mechanical arm. ¢ Time
response of the electrical
voltage
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effects of change in initial conditions (diameter of the attractor) and the presence of
more complexity (wiggles and distortion) as shown in the phase diagram of Fig. 5b.
Note that, the recurrence plots for both set of initial conditions contains parallel
diagonals whose pattern are now discernable. The gap between consecutive red and
blue diagonal is different; that is the upper and lower limit cycle have different period.
We conducted various numerical simulations corresponding to different value of u
and came to the conclusion that, as general rule, the RP of both orbits are totaly
indiscernible for regular oscillation (superposed parallel diagonals) and graphically
discernable for relaxation oscillations (combination of strictly parallel diagonals and
superposed diagonals). These investigations are corroborated by on the analytical
investigation of Kadji et al. [18]. In fact, in their analysis, they showed that the
frequency of each limit cycle linearly increases with the square of the damping
coefficient (142) and nonlinearly changes with the amplitude of the limit cycle. The
graphs of Figs.4c and 5c obviously show that the inner limit cycle leads to a small
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Table 1 Recurrence rate and determinism as function of the initial conditions and the system
damping

n Initial RR DET
conditions (qo, po, Vo)

0.07 (1,0,0) 0.0063 0.934

0.07 (5,5,0) 0.0034 0.103

35 (1,0,0) 0.0092 0.9523

35 (5,5,0) 0.00506 0.8431

amount of electrical energy, while the outer orbit leads to a large amount of electrical
energy. For the set of parameter used in this paper, the electric voltage is almost
double when changing the initial conditions from the inner to the outer domain.

3.2 Bifurcation and Chaotic Dynamics

The previous sub-section considered the system free of additional excitation.
Although this can happen in some environments, it is of interest to consider the
effects on the system response of an harmonic perturbation of amplitude ey and
frequency £2. Harmonic perturbation can be due to structural excitation, kinematic
excitation and perturbation in the fluid flow.

The bifurcation diagrams of the RR, LAM and DET as function of the ampli-
tude of excitation are plotted in Fig.5. Changing ep € [0, 14], one obtains the RR,
DET and the LAM plotted in Fig.5a—c for B = 0.05, £2 = 3.5, u = 3.5 and
(x0, ¥0,v0) = (5,5,0). The RQA parameters have higher values for ey = 0 and
as eq increases in the first phase of motion, the system progressively becomes more
complex marked by a reduction of RR. Since the determinism and laminarity are
almost constant, one concludes that the system undergoes quasi-periodic motion
with superimposed chaotic dynamics [9, 33]. This domain of constant DET and
LAM is followed by an abrupt transition to chaos combined with windows of less
complexity (quasi-periodicity, periodicity,...) signed by the presence of distinct max-
ima peaks at lowest values of the RQA parameters. Beyond the chaotic domain, an
abruptincreases in the RR is noted, followed by a continuous decrease of the RR, LAM
and DET. One can suspect in this domain multi periodic dynamics [33]. A second
chaotic domain appears followed by another abrupt increases of the RR. Interestingly,
beyond the second chaotic domain, the DET is smaller than (and decreasing) in the
chaotic domain. This is awkward as decreasing in the DET (in addition to decreasing
in the RR) always implies transition from regularity to complexity (non stochastic
system). Our explanation is that, the threshold value ¢ = 0.05 (kept constant) was
not appropriate for large value of eg. In fact, the RR is less sensitive to ¢ than the DET
and LAM. That is, the effects of ¢ is more visible on the DET and LAM. Practically,
taking ¢ by using the standard deviation or the phase space diameter would have give
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Fig. 5 Bifurcations of the (a)
RQA as function of the

driven amplitude. a 0.015
Bifurcation of the RR. b
Bifurcation of the DET. ¢  0.01
Bifurcation of the LAM T

0.005

LAM

a variable ¢ which can be more appropriated. By choosing a fix value of ¢ for the
bifurcation analysis has highlighted to sensitivity and importance of . Globally, one
can state that as e( increases from zero the following transitions occur in the system
response: Periodicity-chaos-multi-periodicity-chaos-multi-periodicity.

The bifurcation diagrams of the RQA parameters are not able to detect all details
in the system bifurcation (number of period for example). Rather, they give a global
picture of the system response. In order to capture details on the system dynamics,
we plot the RP (Fig. 6) along with the phase diagram (for consistency—Fig.7) for
the values of Fig. 5.

1. Foreg = 1.4,the RP (Fig. 6a) show a full diagonal and regularly spaced irregularly
broken diagonal. This kind of structure is known as signature of quasi-periodic
motion [33]. The phase diagram of Fig. 7a corroborates the RP.
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Fig. 6 Recurrence plots of
the system under harmonic
perturbation. a eg = 1.4,
Quasi-periodic motion. b

ep = 6, Period 4 motion. ¢
¢p = 10.4, Chaotic motion. d
eog = 12.4, Period 2 motion

(d)

TG

2. The RP of Fig. 6b show regularly spaced full diagonal separated by four regularly
broken diagonals that can be classified into two groups according to the scapement
between the points along each broken diagonal. This structure corresponds to a
4-period dynamics classified into two groups according to their amplitude and
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Fig. 7 Phase diagrams of (@) 10
the system under harmonic
perturbation. a eg = 1.4,
Quasi periodic. b eg = 6,
Period 4 motion. ¢

eo = 10.4, Chaotic motion. d e 0r
eog = 12.4, Period 2 motion
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frequency (and thus, rate of recurrence). This is confirmed by the phase diagram
of Fig.7b, which is typical for a 4-period motion.

3. For eg = 10.4, the RP of Fig. 6¢ has the structure of chaotic motion: irregularly
spaced diagonal with possible a white domain. As well, the phase diagram of
Fig.7c is typically chaotic.
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4. For g = 12.4, the RP of Fig. 6d show full diagonals as well as regularly broken
diagonals. Here, the number of broken diagonal between the two full diagonal
is not consistent (as it is for multi periodic motion). In fact, some diagonal seem
slightly broken. One can conclude that, for these diagonals, the threshold para-
meter ¢ was too small to complete the full diagonal. With larger value of ¢, the
structure of the RP will be the one of two periodic motion (regularly spaced full
diagonal, separated by a regularly broken diagonal). This is consistent with the
phase diagram of Fig. 7d and the observations made in the bifurcation diagram of
the DET for large value of eg.

The analysis of the harvesting system with a single degree of freedom mechanical
oscillator, shows possibility of birhythmicity and complex dynamics in presence of
harmonic excitation. These nonlinear phenomena can have drastic consequences in
the harvesting process in the case of multi degree of freedom mechanical oscilla-
tor. The following section considers a unidirectional coupling between mechanical
oscillators to overcome these difficulties.

4 Synchronization Charge Extraction:
The Joint Recurrence Plot

4.1 Master-Slave Scheme and Joint Recurrence Plot

Practically, in order to ensure optimal harvested energy, one can consider an unidi-
rectional coupling also called master-slave synchronization. The master is the system
with higher diameter of the attractor, while the slave is the system with lower diam-
eter. The schematization of Fig. 8 implies that a fraction of the signal of the master
is added to the slave. Practically, this can be ensured through a set of sensors and
actuators or set of diodes and condensers [26]. The mathematical model for such
enslavement is given as

dqm
g = Pm wF(gm) + nov (30)
dqs
i wF(gs) + nov 3D
dpm
n_ 32
dt dm (32)
d
Ps g+ k(gm — a5) (33)

dr
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Fig. 8 Schematisation of R,v
coupled energy harvesters 1
systems

F(t)

=

Yin (X, Y (X, t

dv dpm | dps
L 34
a7 '“( ar T ar (34)

where, m and s respectively stand for the master and the slave, « is the coupling
strength.

For coupled systems, the joint recurrence (JR) matrix is more suitable to ana-
lyze the response of the systems as comparing with recurrence and cross recurrence
matrices. In fact the JR gives possibility to analyze the dynamics of two interacting
sub-systems by examining their recurrence patterns. Each sub-system has a given
dynamics in its phase space and both dynamics can be coupled. This is done by
considering the JR matrix defined as

JR;j (" &%) =0 (7= || o — ' |)
o (ef— | &f — ||) (35)

The JR matrix is in fact obtained as product of the recurrence matrix of the master
system

Ri; =0 (em— | o — o ||) (36)
and the slave system
R =0 (gf— | &f - ||) (37)

with @" = (x,,, ym, v) and @° = (x;, ys, v). The affectivity of the synchronization
is measured by the following dimensionless quantity [33]
RRmS
J =
RRm

(38)
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where J = 1 for global synchronization, and J ~ 0 if the master and the slave are
independent. In fact the probability of recurrence RR™ = RR™ = RR® for global
synchronization, and RR™ = RR™RR® for independent systems. Practically, in
order to evaluate J, the mathematical model of the master and slave are integrated
simultaneously with k = 0. After a transient time, the feedback coupling term is
set k # 0 and the following 8000 points are ignored. Then we collected the next
N = 8000 points for analysis.

4.2 Synchronization of Limit Cycles

The graphs of Fig.9 are plotted for ¢g = 0 and the values of Fig.4 with initial
conditions (go, po, vo) = (5, 5, 0) for the master and (go, po, vo) = (0.1, 0, 0) for
the slave. The probability of recurrence of the master RR™, the salve RR® and the
coupled system RR™® are plotted in Fig.9a; while the synchronization parameter
is plotted in Fig. 9b. Clearly, the recurrence rate of the slave (in blue) is the highest
(from the previous section) and the recurrence of the joint system is the lowest.
One observes a singularity at k = 0.12 which can be due to nonlinear interplay
between the master and the slave. Note that, in contrary to the classic master-slave
coupling [26], the master is not totally independent of the slave. In fact, there is
a feedback through the electrical circuit. For k > «, = 1.51, one has a global
synchronization: RR™ = RR* = RR™’.

Fig. 9 Recurrence of the
system. a Comparative
analysis between RR, RR,,
and RR;. b The
synchronization parameter as
function of the threshold
parameter &

(a) 8% 107
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Fig. 10 Effects of (a) 1t
mistuning. a Mistuning and V,\MMWWWWW"W
synchronization parameter. b 0.8t
Mistuning and output voltage
5 0.6

— (i) — (i) —(iii)
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Figure 9b illustrates the effects of the threshold parameter ¢ on the synchronization
parameter. In each case, the parameter ¢ is maintained constant. For small values of
k, the transition regime is very sensitive to €. Similarly, the threshold for global
synchronization is sensitive to €. However, on observes an increases in the value of
J for k > k. and ¢ € {0.01, 0.075, 0.025}, while J ~ 1 for ¢ = 0.05.

The effects of mistuning on the synchronization parameter and the output voltage
are illustrated in Fig. 10a. Line (i) in blue corresponds to mistuning in the linear
system; that is the linear stiffness of the slave reads (1 — o) where ¢ is a random
number between 0 and 1. Line (ii) in red corresponds to the mistuning in coupling:
no(1 — o). Line (iii) corresponds to o = 0. Globally, the mistuning plays against the
global synchronization and can even lead to desynchronization (minimal value of J).
Similar observations are made for the output current in Fig. 10b. Here, it is clearly
visible that (as state in the introductive part of this paper), an energy harvester system
with multi degree of freedom mechanical arm does not always led to optimal output.
Mistuning is an important factor as well as the coupling factor, which need to be
appropriately selected in order to overcome the mistuning effects and the “negative”
consequence of the nonlinear dynamics interplay.

A visual analysis of the singularity observed for k = 0.12 is made in Fig. 11a, b
where the phase diagram of the master and the slave are plotted along with the output
voltage (Fig. 11b). Here the number (i) and (ii) respectively stand for the slave before
and after the onset of coupling. For this value of «, there is no synchronization, rather,
the in-phase motion of the slave has turned to out-of-phase motion (in comparison
with the master phase) with similar amplitude and frequency. This corresponds to
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Fig. 11 Synchronization @) s
phenomena. a and b Out of
phase motion, k = 0.12. ¢
and d Global
synchronization, k = 1.6
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a lowest value of the synchronization parameter J. Thus, the output of the electric
circuit is minimal (see Fig. 10b). For a different value of ¥ = 1.6, the phase diagram
of the master and slave as well as their time histories are indiscernible (Fig. 11c, d).
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4.3 Synchronization of Chaotic States

Itis unclear whether the chaotic regime of a single degree of freedom energy harvester
system provides more energy than a periodic regime. However, it is certain that for a
two or multi degree of freedom system, since chaos is sensitive to initial conditions,
difference in dynamics paths and phase angle will appear and thus, an efficient output
will be obtained when a global synchronization is achieved. Interestingly, coupling
two chaotic devices does not always results in a chaotic system. It is the case for the
values of Fig. 7c. In this section, we use the following parameters 8 = 0.05, eg = 12.
The intent is not to repeat the previous analysis but to illustrate some important facts.

Figure 12a—d show the RP of the master (in red crosses) as well as the RP of the
slave (in blue squares) for different values of the feedback coupling: k = 0,k = 0.1,
k = 1.2, k = 2, respectively. The crosses and squares were magnified for better
visibility. The corresponding electric voltage is plotted in Fig. 13. In all cases, the
initial conditions of the master is set at (qo, po, vo) = (5, 5, 0), and the slave initial
conditions are set at (go, po, vo) = (1, 0, 0).

1. For « = 0, there is no feedback coupling. Thus the master and the slave are
quasi-independent. In fact, there is still a undirect coupling between the master
and the slave through the electric circuit. This is confirmed by the non-zero value
of the synchronization parameter as shown in Table 2. The recurrence rates obey
RR™ > RR?; and based on previous analysis, one suspects that the path of the
orbit displays by the master is longer than with the slave. The corresponding RP
in Fig. 12a is typically chaotic for both sub-system.

2. Fork = 0.1, the synchronization parameter has increased as well as the recurrence
rate of the master while the rate of the slave is remained constant. The pattern of
the RP (Fig. 12b) has changed and become more dense.

3. For k = 1.2, the synchronization parameter has almost double and the RP
(Fig. 12c) is almost red with some presence of blue point. The recurrence rate
of the master has increased.

4. For k = 2, the synchronization parameter is J = 1 and the RP (Fig. 12d) is totally
mono color. The recurrence rate of the master and slave are obviously identical.

5. In comparison, Fig. 13 shows the electric voltage for those values of the feedback
coupling. One notes that, for « = 0 and ¥« = 0.1 one obtains to a relative small
amount of electric voltage (Line (i) and (ii)). Line (iii) and line (iv) correspond to

Table 2 Probability of recurrence and synchronization parameter as function of feedback coupling

K RR™ RR* J

0 0.000737 0.00069 0.4269
0.1 0.000775 0.00069 0.4525
1.2 0.000775 0.001654 0.89106
2 0.000782 0.000782 1
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Fig. 13 Harvested electric
voltage in chaotic regime.
Line (i)—« = 0. Line
(ii)—« = 0.1. Line
(iii)—« = 1.2. Line
(iv)—k =2

the same values of the electric voltage (the line are superimposed). Note that, the
synchronization has also contributed, in a progressive way, in suppressing chaos
as also observed on the RP of Fig. 12d.

5 Summary and Discussion

The interest of this paper was twofold:

e Discuss the harvesting process in a multi limit cycle energy harvesting system and
the synchronized charge extraction for both limit cycle and chaotic states under a
Master-Slave coupling scheme. This was motivated by the fact that wind-induced
vibration for energy harvesting system has strong potential applications. Previous
research has mentioned the possibility of multi limit cycles without specifically
analyzing its conditions and the system dynamics under such conditions.

e The second interest of the paper was the use of the methods of recurrence (RP)
and joint recurrence (JRP) for the analysis and synchronization of physics based
mathematical model of a dynamic system. In fact, very few contributions have
considered the RP as tool for nonlinear analysis of mathematical based physical
systems despite the potential use of such approach in hybrid approach of diagnostic
(combination of physics based and data driven models).

The method of recurrence was used to study the dynamics of the limit cycle system as
well as the system response under harmonic perturbation. For optimization purpose,
a second mechanical degree of freedom is added to the system and the Master-Slave
synchronization scheme is used with the method of JRP to ensure synchronized
charge extraction in the system. The effects of mistuning and threshold parameters
were highlighted. The main results are as follows:

e The existence of birythmicity depends only on two parameters o and 8 whose
practically depend on the fluid flow average velocity and the piezomaterial physical
properties.
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e Our simulations show that, the domain of birythmicity is quite small as well as the
basin of attraction of lower amplitude limit cycle.

e The phase diagram of the lower and upper limit cycle amplitudes limit cycle were
discernable. However, the RP were discernable only for large values of the damping
which corresponds to relaxation oscillations. The RR of the upper limit cycle was
in general smaller than the RR of the lower limit cycle. Similar conclusion was
made for the DET and the LAM without generalization. In fact, complexity such
as wiggles and distortion also affects the variation of the DET and the LAM.

e Obviously, due to the linear nature of the transducing mechanics, the output voltage
is higher for the upper limit cycle.

e Considering a harmonic perturbation, the bifurcation of the RR and the DET were
plotted in terms of the amplitude e of the perturbation. Region of quasi-periodic,
periodic, multiple periodic and chaotic response was identified. Illustrations of
these phenomenon were showed using the RP and the phase diagrams.

e Foratwo degree of freedom mechanical system, the Master-Slave coupling scheme
was used to synchronize limit cycle dynamics (toward the upper limit cycle) and
perturbed periodic and chaotic dynamics. It was found that, for large value of the
synchronization parameter x the global synchronization is obtained, leading to
highest output electric power. However, for small values of «, complex response
of the system is obtained, including out of phase motion leading to minimal output
power. The synchronization criterion was defined as the ration between the RR of
the master and the slave.

e The effects of mistuning and threshold recurrence parameter ¢ were discussed.
It was shown that mistuning can lead to minimal output power, specifically for a
small coupling parameter. Also, the domain of global synchronization is shifted
in presence of mistuning.

Globally, beyond the interesting results obtained, the method of RP has demonstrated
potential for the feature extraction for application in diagnostics and detection of
dynamics change. As for example, the variation of RR due to sole changes in initial
conditions in the absence of additional excitation is due to existence of multi limit
cycle: RR can be seen as a feature to detect birhythmicity. In a similar way, the DET
can be used to measure relaxation in the system. The joint probability of recurrence
and the synchronization parameter J are a third feature which can be used to measure
the performance of the system: J = 1 corresponds to optimal performance and J < 1
is an indication to change the coupling parameter. These features can also be used
to measure the intensity of mistuning in the system.
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Appendix: Definition of Recurrence Quantification
Analysis Parameters

1. RR which defines the percentage of recurring points in the whole matrix. The RR
is higher for periodic dynamics and smaller for chaotic or random dynamics. By
definition, one has

N
1
RR =~ > Ry j(e) 39)
i,j=1

2. The percentage of recurrent points that form diagonal lines (of at least length
Lnin) parallel to the main diagonal DET gives information on the deterministic
nature of the system. A chaotic system tends to have none or very short diagonals
in opposite to periodic or quasi-periodic dynamics which tend to form regular
diagonals parallel to the central diagonal along with mixture of short and long
diagonals. The DET is defined as

S PO

DET = == ,
Sl LP(O)

(40)

where £ is the length of the diagonal line and P (x) is the histogram of x for a
given threshold ¢. If v is the length of the vertical line, one has

z“f’\[:\’min vP (V)

LAM = N
> VP(v)

(41)

LAM decreases if the RP consists of more single recurrence points than ver-
tical structures. This is related to the existence of intermittency in the system
response [33].

In obtaining the RP of the system, we used the fourth order Runge Kutta algorithm
to obtain sets of N=8000 points for time series. The first 1000 values were ignored
(transient time) and the time step was kept constant Af = 0.01. The RR and DET
are evaluated using the above definitions in a self made codes. However, various
numerical codes are available online.

The bifurcation diagrams were obtained by increasing adiabatically (constant
initial conditions) the bifurcation parameter and used the above procedure to generate
the RR, LAM and DET.
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Quasi-Periodic Galloping of a Wind-Excited
Tower Under External Forcing and
Parametric Damping

Lahcen Mokni, Ilham Kirrou and Mohamed Belhaq

Abstract This paper investigates the influence of combined fast external excitation
and internal parametric damping on the amplitude and the onset of the quasi-periodic
galloping of a tower submitted to steady and unsteady wind flow. The study is carried
out considering a lumped single degree of freedom model and the cases where the
turbulent wind activates different excitations are explored. The method of direct par-
tition of motion followed by the multiple scales technique are applied to derive the
slow flow dynamic near the primary resonance. The influence of the combined load-
ing consisting in external excitation and parametric damping on the quasi-periodic
galloping onset is explored. The performance of the combined loading is compared
with the cases where the external excitation and the parametric damping are intro-
duced separately. The results show that the performance of the combined loading
on retarding the quasi-periodic galloping onset and quenching the corresponding
amplitude is better in all cases of the turbulent wind excitations.

1 Introduction

Considerable efforts have been done to investigate galloping of tall building induced
by steady and unsteady wind [1-8]. Such oscillations occur as the wind speed exceeds
the onset of galloping resulting in large amplitude oscillations of the structure. To
reduce the amplitude of galloping and retard its onset some techniques are used,
including, for instance, mass tuned dampers, tuned liquid dampers, friction dampers
[6], external excitation [9] and parametric damping [10]. A survey of some control
methods in civil infrastructure applications is given in [11].
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The effect of unsteady wind on the galloping onset of towers has been receiv-
ing growing interest. The influence of the unsteady wind on the critical wind speed
above which galloping occurs was investigated considering a single degree of free-
dom (sdof) model [4] and using the multiple scales method (MSM) [12]. It was
concluded that the unsteady wind decreases significantly the galloping onset near
the primary resonance. The effect of parametric, external and self-induced excitation
on galloping onset was examined for a single tower in [7] and for two towers linked
by a nonlinear viscous device [8]. The periodic galloping was studied analytically
using perturbation method and the quasi-periodic (QP) modulation envelope was
approximated numerically. The effects of the unsteady wind on the dynamics of the
tower [7] and on the viscous device of the system [8] have been analyzed. Note that
the problem of investigating the dynamics of some nonlinear oscillators under the
combined effect of parametric, external and self-induced excitation was studied in
[13-16]. Frequency response has been examined using the MSM, while the QP mod-
ulation envelope was approximated using numerical simulations [15, 16]. Specific
phenomena including frequency locking have been presented.

In previous works, attention has been focused on examining the effect of unsteady
wind on the periodic galloping onset [3, 4, 7]. The influence of unsteady wind on the
QP galloping onset, on the other hand, has been studied recently by Kirrou et al. [17].
Specifically, analytical results supported by numerical simulations shown that QP
galloping may occur for relatively small values of the wind velocity demonstrating
clearly that the effect of the turbulent wind on the QP galloping onset should not
be neglected. Instead, it must be systematically evaluated and considered in the
design process of tall buildings in order to enhance their stability performance to QP
galloping. Thus, a challenging problem that has arisen is to develop methods able to
control such QP galloping. In this context, two techniques have been implemented
to tune the QP onset toward higher values of the turbulent wind speed. Firstly, it was
shown that introducing a fast harmonic excitation (FHE) retards significantly the QP
galloping onset [9]. On the other hand, it was demonstrated that when an internal
parametric damping (IPD) is applied, the amplitude of the QP galloping decreases
while the QP galloping onset is not influenced [10, 18]. The natural question that
arises is how the FHE and IPD influence the QP galloping onset when they are acted
simultaneously. Recently, the influence of the combined loading was examined only
on the periodic galloping onset [19]. In particular, it was shown that the combined
loading of the FHE and IPD not only reduces the amplitude of the periodic galloping,
but also retards its galloping onset substantially comparing to the cases where the
FHE and the IPD are acted separately [9, 18].

In this paper, we extend the results related to the periodic galloping under the
combined loading [19] to the case of the QP galloping. The performance of the
combined effect on the QP galloping onset is systematically compared with the
cases where the FHE and IPD are introduced separately. In Sect. 2 a brief description
of the reduced equation of motion governing the dynamics of the tower exposed to
steady and unsteady wind and under the FHE and IPD is provided. The method of
direct partition of motion [20, 21] is performed and the MSM is applied to derive
the modulation equations of the slow dynamic near the primary resonance. A brief
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description of the results on the periodic galloping onset is given [19]. Section 3
explores the effect of FHE and IPD on the QP galloping onset in the cases where the
unsteady wind activates different excitations. Section4 concludes the work.

2 Equation of Motion and Periodic Galloping

The dimensionless sdof equation of motion of a tower subjected to steady and
unsteady wind and to the combined effect of FHE and IPD can be written in the
form

_ by b
$4x + [ecall = O) = bru(®)]i + Yv? cos(wi)i + bai® + [% + %u(t)] S

= mUu(t) + nU?* + Y cos(vr)
(1)

where the dot denotes differentiation with respect to the non-dimensional time ¢.
Note that the case where the FHE and IPD are absent has been considered in
[4, 7]. Equation (1) contains, in addition to the elastic, viscous and inertial linear
terms, quadratic and cubic components in the velocity generated by the aerodynamic
forces. The steady component of the wind velocity is represented by U and the turbu-
lent wind flow is approximated by a periodic force, u(¢), which is assumed to include
the two first harmonics, u(t) = usin 2t + u, sin282¢, where u, u, and 2 are,
respectively, the amplitudes and the fundamental frequency of the response. The co-
efficients of (1) are given in Appendix 1 and the derivation of the original model ((1)
with ¥ = 0) can be found in [7]. Equation (1) also includes the FHE and IPD terms
in which Y and v are, respectively, the dimensionless amplitude and the frequency
of the FHE and the IPD. To simplify the calculation, it is convenient to assume that
both FHE and IPD have the same amplitude Y and the same frequency v. However,
while the case in which the HFE and IPD have different amplitudes, say Y; and Y»,
can be handled without apparent difficulties, the case of different frequencies, say v;
and v,, would present a serious complexity due to the introduction of an additional
frequency in the problem [22].

We shall analyze the case of external excitation, u(¢) = u sin §£2¢, parametric
one, u(t) = uysin2£2t, and the case where both external and parametric excita-
tions are present simultaneously. Notice that the introduction of a FHE as a control
technique was motivated by the experimental work [23] made for vibrating testing
purpose of a full size tower. The mechanical vibration exciter system used in such
an experiment is placed on the top of the structure and debits a harmonic excitation
to the structure. The introduction of the IPD component, on the other hand, can be
carried out, for instance, via a damper device in the interfloors damping [24]. Its
use as a control strategy was motivated by its simple implementation and beneficial
effect in reducing vibration in many applications, including automotive, aerospace,
civil and mechanical engineering. To the best of the authors’ knowledge, a practical
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application of the FHE and IPD devices simultaneously as a control technique has
not been reported in the literature.

Equation (1) includes a slow dynamic due to the steady and unsteady wind and
a fast dynamic induced by the fast harmonic PD. To separate these dynamics, we
perform the method of DPM on (1) by defining a fast time 7o = vt and a slow time
T1 = t, and splitting up x(¢) into a slow part z(77) and a fast part ¢ (Tp, T1) as

x(t) = z(T1) + ne(To, T1) @)

where z describes the slow main motions at time-scale of oscillations, @¢ stands
for an overlay of the fast motions and p indicates that ¢ is small compared to z.
Since v is considered as a large parameter, we choose = v~! for convenience.
The fast part u¢ and its derivatives are assumed to be 2 —periodic functions of fast
time Ty with zero mean value with respect to this time, so that < x(¢) >= z(T1)
where <>= % 02” () dTy defines time-averaging operator over one period of the
fast excitation with the slow time 77 fixed. Averaging procedure gives the following

equation governing the slow dynamic of motion
. - b1 | b . b3
i+z+ [ca(l —U) — bju(t) — Hy + (7 + ﬁu(t)) Hl} i+ |:B — By (7

b b b B} B}
%u(t))] 2+ [% + %u(t)] Hy33 = mOu(t) + 0% + G 3)

where Hy = 4by¥2, Hy = 6(X)°, Hy = 1 + 6Y202 B = by(1 + 2¥%?),

Bg = 12Y? and G = —2b, (%)2 Note that the case without FHE component in (3)
has been studied in [9], the case without IPD term was considered in [10], while the
case without FHE and IPD (Y = 0) has been examined in [7].

To obtain the modulation equations of the slow dynamic (3) near the primary
resonance, the MSM is performed by introducing a bookkeeping parameter ¢, scaling
as z = 8%Z, by =¢by, Hy = eHy, HH = ¢H,, B = S%B, By = E%Bo, n = 8%7]1,
n = s%nz and assuming that U = 1 4 ¢V [7] where V stands for the mean wind
velocity. With the resonance condition §£2 = 1+ eo where o is a detuning parameter
and scaling H = ¢ H, a two-scale expansion of the solution is sought in the form

2(t) = 2ot 1) + €21 (t0, 11) + O(62) (4)

where #; = &'t (i = 0, 1). In terms of the variables #;, the time derivatives become
2 i aJ
% = dy + ed) + 0(?) and 45 = d2 + 2edod) + O(e?), where d! = o

diz ;"
Substituting (4) into (3), equating coefficients of the same power of ¢, we obtain the

two first orders of approximation

d3z20+z20=G (5)
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d§Z1 + 21 = —2dodyz0 + (caV + bru(to) + Hy — Hy(b31 + b32u(19)))(dozo)
— (B — By(b31 + byu(10)))(doz0)* — Ha(b31 + b3ou(10))(doz0)* + nyu(to) +m (6)

A solution of (5) is given by
20 = A(11) exp(ito) + A(ty) exp(—ito) + G ©)

where i is the imaginary unit and A is an unknown complex amplitude.

Equation (6) can be solved for the complex amplitude A by introducing its polar
formas A = %aei‘f’. Substituting the expression of A into (6) and eliminating the
secular terms, the modulation equations of the amplitude a and the phase ¢ can be
extracted as

a=1[S; — S3sin(2¢)la — Ss cos(q&)a2 +[—S +284 sin(2¢>)]a3 — B cos(¢p)
(3
ad = [0 — S3c08(2¢)]a + 385 sin(¢p)a’ + [Ss cos(2¢)]a’ + B sin(¢)

where S| = %(Cav + Ho — H1b31), S2 = %b31H2, S3 = %(bl — Hib3)uz, S4 =
%b32H2u2, Ss = l1932B()u1 and B = '“—2'” Before investigating the QP galloping
onset, we shall briefly present some results on the influence of both FHE and IPD
on the periodic galloping one [19]. The equilibria of (8), corresponding to periodic
oscillations of the system, are giving by setting @ = ¢ = 0. In the absence of
unsteady wind (#; = u» = 0), only the first equation of system (8) is used. Besides
the trivial solution, @ = 0, the amplitude of the periodic response is given by

4(cqV + Ho — H1b31)
a= )
3b31Hy

Figure 1 shows the periodic galloping amplitude a versus the wind velocity V in the
absence of the unsteady wind (11 = 0, up = 0), as given by (9), for 0 = 0 and for
two different values of the amplitude Y. It can be seen that increasing the amplitude
Y, the galloping onset shifts substantially toward higher values of the wind velocity
with a significant decrease of the galloping amplitude. It should be noticed that, for
the fixed value of Y = 0.3, while the combined effect of the FHE and IPD retards
substantially the onset of periodic galloping to V =~ 2.6 (Fig. 1), the FHE when
applied alone shifts the galloping onset slightly to V & 0.65 [9] and the IPD when
applied alone does not influence it at all [10].

In the case of turbulent wind with external excitation (11 # 0, u»> = 0), analysis
of equilibria of the slow flow (8) yields the following amplitude-response equation

(S1a — Sra?)? (—oa)?
(B + Ssa?)?> (B +3Ss5a%)?

=1 (10)
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InFig. 2 we illustrate the variation of the periodic galloping amplitude versus the wind
velocity V, as given by (10), for a given value of the external excitation amplitude
up and for Y = 0 and Y = 0.2. The solid line corresponds to the stable branch, the
dashed line corresponds to the unstable one and circles are obtained by numerical
simulations. One observes that the combined effect of the FHE and IPD decreases
significantly the galloping amplitude and shifts substantially its onset toward higher
values of the wind speed. It is worthy noticing that, for the fixed value of ¥ = 0.2,
while the combined loading decreases the periodic galloping and retards its onset
significantly (Fig.2), the IPD when applied alone produces a similar but moderate
effect [10] and the FHE when applied alone only shifts the amplitude curve slightly
to the right [9].

In the case of turbulent wind with parametric excitation (u; = 0, up # 0), the
amplitude-response equation reads
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Fig. 3 Effect of Y on the
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Figure 3 shows, for a given value of the excitation u», the effect of the combined
loading on the amplitude versus V, as given by (11), indicating also a decrease of
the amplitude and a shift of the galloping onset as Y is increased. Note that in this
case also, for a fixed value of ¥ = 0.2, the combined loading reduces the amplitude
and retards the galloping onset much more comparing to the case where the FHE or
the IPD is applied alone [9, 10].

Finally, in the case where the external and parametric excitations are acted simul-
taneously (u; # 0, up # 0), the amplitude-frequency response is shown in Fig. 4.
The plots indicate that the amplitude response decreases drastically with a moder-
ate increase of the amplitude ¥ (for 0 = 0, the approximate amplitude value is
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found to be a &~ 0.003). Instead, when the FHE acts alone the amplitude decreases
moderately (for 0 = 0,a = 0.02) [10] and when the IPD is introduced alone the
amplitude performs a small decrease (for o = 0, a ~ 0.012) [9].

3 Quasi-Periodic Galloping

The influence of both FHE and IPD on the QP galloping and its wind speed onset is
explored analytically in this section. To this end, we shall approximate the periodic
solutions of the slow flow (8), corresponding to the QP responses of the original
system. This can be done by transforming the slow flow (8) from the polar form to the
following Cartesian system using the variable change u = a cos ¢ and v = —a sin ¢

du 2, .2 2 2

E:(U+S3)v—ﬂ+n{S1u—(S2u+S4v+S5)(u +v7) — 28507 — 284u”v}

., (12)
v

i —(o — S3)u + n{S1v + 2S5uv — (SHv + S4u)(u2 + vz) — 2S4uv2}

where 7 is a small bookkeeping parameter introduced in damping and nonlinearity.
Using the second step perturbation procedure [25-28], a second MSM is applied on
the slow flow (12), to approximate a periodic solution which can be sought in the
form

u(t) = ug(Th, Ta) + nui(Ty, 7o) + O (n?)
v(t) = vo(Th, To) + noi (T1, T2) + O (%) (13)

where T1 =t and T, = nt. Introducing D; = 8% yields % = D| +nDy+ 0(n?),
substituting (13) into (12) and collecting terms, we obtain at different order of n
D%uo + )\2140 =0
avy = Diug + B (14)

D%ul + )\.2’/{] =« |:7D21)0 + S1vg + 2S5ugvg — (S2vg + Sauq) (u(% + v%) -
ZS4u0v§:| — Dy Dyug + Sy Dyug — Dy [(S2u0 + Sqvg + S5) (ug + vg) +
254u(2)v0j| — 4S5v9D1vg

avy = Dyuy + Dyug — Sjug + (Saug + Sqvg + Ss) (u% + v(z)) +

28503 + 2S4uvo (15)

where ¢ = 0 + Sz and A = /0% — S32 is the frequency of the periodic solution
of the slow flow (12) corresponding to the frequency of the QP modulation. This
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frequency A depends, to the leading order, only on the parametric excitation u; via
the coefficient S3 given in (8). The solution of the first-order system (14) is given by

uo(Tr, T2) = R(T2) cos(A Ty + 6(T2))

A
vo(T1, Tr) = —&R(Tz) sin(ATy + 0(12)) + g (16)

Substituting (16) into (15) and removing secular terms gives the following
autonomous slowyj,,, flow system on R and 6

dR B2 1 22 5
— =1S1 -2 )R- =S — 5 )R
di ( P72 2) (2 2t a2 2)
a7)
d@ ﬁ_g 3)”'323 BSs 1_,_% R ﬁs SﬂS R3
Rar “\aan™ ™ 2573 o? PR T
A periodic solution of the slow flow (12) is then approximated by

u(t) = Rcos(¢t)

Ao p
v(t) = _ER sin(¢t) + 5 (18)

where the amplitude R is obtained by setting ‘2—15 = 0 and given by

2028 — 4B2S,

Sa(a? +22) (1

which corresponds to the amplitude of the periodic solution (limit cycle) of the slow
flow (12). Using (18), the amplitude modulation of the QP oscillations reads

1 B2 208 . 1 A2
— 2 2 _ZpRpR2_ = p2
a(t) = \/|:2R + 22 R + a2:| [ o2 R sin(¢t) (2R %) R ) cos(2¢t)]
(20)

and the QP modulation envelope is delimited by a;,,;, and a;,4x such that

1 2 2 22
amin:min|\/|:2R2+2R2 i]i—ﬁRi(zR2 2a2R2)] (21)

1 x /32 228 1 22
— 2 2 2 2
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Fig. 5 QP galloping versus o for V = 0.117, u; = 0.033, v = 10. Solid lines Stable; Dashed
lines Unstable; Circle Numerical simulation

The domain of existence of QP galloping is characterized by stable periodic solution
born with zero amplitude. This occurs exactly at critical values where the limit cycle
has zero amplitude. Then, setting R = 0 in (19), we determine the corresponding
critical detuning parameter o, given by the condition

2625,

=5 =x
Oc 3 S|

(23)

which defines the interval [—o., o.] outside which the galloping is QP, while it is
periodic inside the interval.

3.1 Case of External Excitation

In the case of external excitation (#1 # 0, uo» = 0), Fig. 5 shows the QP modulation
envelope, as given by (21) and (22), for given values of V and u; and for different
values of Y. The comparison between the analytical predictions (solid lines) and the
numerical simulations obtained by using Runge-Kutta method (circles) validates the
analytical result. This figure indicates that introducing a small amplitude, ¥ = 0.1,
decreases drastically the amplitude of the QP oscillations, while the modulation
envelope disappear completely to meet the periodic response, as shown in Fig. 5b. It
should be noticed that, for the same value of the amplitude, Y = 0.1, the FHE or the
IPD when applied separately reduces slightly the QP galloping and the modulation
envelope remains relatively large [9, 10].

Figure 6a depicts the variation of the QP galloping as function of the wind speed
for a given value of | and ¥ = 0. It can be seen that the QP galloping triggers at
a certain critical small value of the velocity wind V. Prior to this value, the tower
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Fig. 7 QP galloping domains, #; = 0.033 and v = 10

performs small periodic oscillations due to the external excitation effect, as shown by
time histories of the slow dynamic z(#) inset Fig. 6a obtained by numerical simulation
of (3). The effect of the combined loading is depicted in Fig. 6b, c, for the values
Y = 0.05 and Y = 0.07, respectively. One observes that the QP galloping onset
is substantially retarded as the amplitude Y increases. For instance, for Y = 0.07
(Fig. 6¢) the value of the wind speed corresponding to the QP galloping onset is found
to be V = 0.161. By comparison, it is interesting to notice that for the same value
of Y = 0.07, the QP galloping onset is V = 0.042 when the FHE is applied alone,
and V = 0.019 when the IPD is applied alone. These results clearly demonstrate
a better performance of the combined loading over the cases where the loading
are acted separately [9, 10]. In Fig.7 is shown the domains of existence of QP
galloping (unhatched region) in the parameter plane o, versus V (Fig.7a) and o,
versus Y (Fig.7b), as given by the conditions (23); the periodic galloping occurs in
the hatched region. One observes that for Y = 0 the domain of QP galloping increases
slightly with increasing V (Fig. 7a). More importantly, Fig. 7b shows that there exists
a critical value of the amplitude Y at which the QP galloping disappears completely.
The approximate critical value is found to be ¥ = 0.056 which is coherent with the
plots of Fig. 5b corresponding to ¥ = 0.1 which is chosen beyond the critical value.

Figure 8 depicts the combined effect of the FHE and IPD on the QP galloping
domain in the parameter plane (u1, o). The plots show that the QP galloping domain
decreases substantially by increasing Y. Note that this QP domain decreases slightly
in the case where the IPD is acted alone and it is not affected in the case where the
FHE is acted alone [9, 10].

3.2 Case of Parametric Excitation

In this case (u; = 0, uy #0), Fig.9 shows the influence of both FHE and IPD on
the envelope of the QP oscillations. One observes a decrease of the amplitude and
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Fig. 8 QP galloping
domains in the parameter
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the envelope of the QP galloping with a small increase of Y. The plots show that for
Y = 0.06, the value of the average amplitude of the QP is found to be approximately
a =~ (0.011. Instead, in the case of a separate loading, reducing the average amplitude
of the QP response to the same amplitude (a & 0.011) requires an increase of the
amplitude to ¥ = 0.14 (which is more than twice that of the combined loading) [9,
10]. Figure 10a shows, in the absence of the loadings (Y = 0), the QP galloping
amplitude versus the wind velocity V for a given value of the excitation amplitude
uy. It can be seen that as V is increased from zero, the QP galloping onset increases.
The boxes inset the figure present time histories of the slow dynamic z(¢) for different
values of V. The influence of the combined loading on the QP galloping amplitude
along with time histories is depicted in Fig. 10b indicating a substantial shift of the
QP galloping onset toward higher values of the wind speed and a decrease of the
amplitude.

It should be noticed that, while the combined loading retards the QP galloping
onset to the value V = 0.185 for ¥ = 0.08 (Fig. 10b), the QP galloping onset is



138 L. Mokni et al.

(a) (b)
0.035 0.035
Y=0 Y=0.08
. E .
.
0.025 ' 0.025
,,,,,,
002 a_ 002 -
a QP
QP
0.015 S 0.015 002
, —
o0z 10'
001 001
S s ;
0.005 . 0.005
in
0
0 002004 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 0.02 004 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
v v

Fig. 10 QP envelope versus V for the parameter values of Fig.9 with o = 0.001

@ ®
S — 15 X100 ——
Y=0 V=0.167
1 1
QP galloping QP galloping
0.5 0.5
GC Petiodi PR GC Peripdic
or eftodic 1 0 gallgping
-05| -0.5
QP galloping QP galloping
-1 -1
15 . . . . . . . . . 15 . . . . . . . . .
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Fig. 11 QP galloping domains, uy = 0.1

about (V = 0.046) when the FHE is applied alone [9] and it is not influenced when
the IPD is acted alone [10].

It is worth noticing (as mentioned before) that the modulation frequency A of the
QP galloping caused by the parametric excitation (see inset Fig. 10) is higher than
that produced by the external excitation (see inset Fig. 6).

The domains of existence of periodic (hatched) and QP (unhatched) galloping,
as given by (23), are shown in Fig. 11 indicating that the domain of QP galloping
remains constant with increasing V and decreases slightly with Y.

3.3 Case of External and Parametric Excitations

In the case where the wind activates external and parametric excitations simultane-
ously (11 # 0, uy # 0), Fig. 12a, b show, respectively, the QP modulation envelope
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Fig. 13 The original and the new QP envelopes versus V for the parameter values of Fig.12,
o = 0.001

in the absence and presence of the FHE and IPD. These figures indicate that increas-
ing the amplitude Y of the FHE and IPD, eliminates the principal QP modulation
envelope and gives rise to a new small QP modulation one.

One notices that while in the presence of both FHE and IPD, a decrease of the
amplitude of the QP requires a small excitation amplitude (Fig. 12b), the FHE or the
IPD when applied separately can not achieve the same performance even for large
values of Y [9, 10].

Figure 13a shows, for Y = 0, the original and the small QP modulation envelopes
versus the wind velocity V' for given values of excitation amplitudes u1, u;. One
notices that as Y is increased, the amplitude of the large QP galloping decreases and
its onset is retarded causing the small QP envelope to persists over a large range of
the wind velocity, as shown in the boxes inset Fig. 13b. In this situation, the motionof
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the wind-excited tower remains QP with small amplitude and relatively large mod-
ulation. Finally, a comparison between the different cases of loading indicates that
for the small value of the amplitude ¥ = 0.06, the combined effect of the excitation
retards the QP galloping onsetto V = 0.167 (Fig. 13b). Instead, to achieve a compa-
rable performance when the FHE or the IPD is applied separately, one requires the
amplitude Y to reach twice the value related to the combined excitation (Y = 0.06)
[9, 10].

4 Conclusion

The combined effect of the FHE and IPD on the QP galloping onset of a wind-
excited tower was studied analytically considering a lumped sdof model and using
perturbation methods. The cases where the turbulent wind activates external excita-
tion, parametric one or both have been considered and the analysis was carried out
near the primary resonance. Analytical approximation of the QP solutions as well as
its modulation envelope were obtained and confirmed by comparison to numerical
simulations.

Attention was focused on assessing the performance of the combined influence
of the FHE and IPD over that where FHE or IPD is introduced separately, in terms
of quenching the QP motion and retarding its galloping onset. The results shown
that the combined effect of FHE and IPD greatly improves the decrease of the QP
galloping amplitude and the shift of the QP galloping onset compared to the case
where FHE or IPD is introduced separately.

The analytical results reported in this work, supported by numerical simulations
clearly reveal the importance to analyze the QP galloping onset. In other words,
special attention should be given to QP galloping in any stability analysis of long
flexible structures under turbulent wind flow. Such a galloping should not be neglected
but have to be considered in the design process of buildings in order to enhance their
stability performance.

Appendix 1

The expression of the coefficients of (1) are:

V3ET pAbheU, 4pAsbt 3npA3be/3ET
W=7 , Cqa = , by =cq, by =— , by =————— (24)
heJm 27/BEIm 3m 8hUcvm3
29772
_ 4pAobh~LU; m

by = by, 1 = ny:5,1u0=0+um, (25)

3r3El



Quasi-Periodic Galloping of a Wind-Excited Tower Under External Forcing ... 141

where ¢ is the height of the tower, b the cross-section wide, ET the total stiffness
of the single story, m the mass longitudinal density, / the inter story height, and p
the air mass density. A;, i = 0, ...3 are the aerodynamic coefficients for the squared
cross-section. The dimensional critical velocity is given by

- 4w E/3EI
U, = u (26)
pbAth

where & is the modal damping ratio, depending on both the external and internal
damping according to
¢h? o

§= 24E1w+ 2mw

27)

where ¢ and ¢ are the external and internal damping coefficients, respectively.
Introducing a parametric damper device in the internal damping such as

co = c(1 + yov? cos vr) (28)

where yo and v are the amplitude and the frequency of the internal PD, respectively.
In this case the equation of motion reads

_ b b
X+x+ [ca + Yv2cos vt])’c - ca[U + u(t)])'c +b2)%2 + [% + %u(t)] 3=
mOu() +npU* (29)

ey . . . .
where Y = -=2. Re-arranging terms yields the equation of motion (1).

Appendix 2

. i 5. 2

Introducing Dl.j = 3(;_;} yields % =vDgy+ Dy, 57 = sz(% +2vDgD; + D% and

substituting (2) into (1) gives

1 D¢ + Diz +2DD1¢ + uDi¢ + (ca(1 = U) = biu(0)) (D1z + Do
+uD19) + 2 + pug + Yv* cos(vi) D1z + Dog + uDig) + bz ((D12)?

+2D12(Do¢ + uD1) + (Do) + 2Dod D1 ¢ + (uD1¢)?)
b b
+ (§+ %u(z)) ((D12)* + 3(D12)* (Do + uD1¢)

+3(D12)(Do¢ + nD19)* + (Dop + 1D19)*) = m Uu(t) + naU?
(30)
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Averaging (30) leads to

D}z + (ca(1 = U) — byu(t)) D1z + z + Yv* < cos(Tp) (Dog + uD1¢) >
+by((D12)* + < (Dop)* > + < QuDopD19p) > + < (uD19)* > )

+ (% + %um) ((D12)° +3D12(< (Do9)” > + < 2uDopD19) >

+ < (uD19)* >)) = mUu(t) + nU?
3D

Subtracting (31) from (30) yields

w DG +2D9D1¢p + 1D + (cal = U) — bru(®)) (Do + D19)
+ ue + Yv? cos(TO)(D0¢ + pLD1¢) -2 < cos(Tp) (Do¢ + MD1¢) >

+ b3 (2D12(Dod + Do$)?>— < (Dop)* > +2uDopD1d — (< 2uDopD1$ >
b31 | bxn

+(uD19)*— < (uD1$)* > ) + (7 + U§u<r>) (3(D12)*(Do¢ + D1 $)

+3D12(Do$)? —3D1z < (Dp¢)* > +6D12)(Dop D1 $)
— < 6D1zu(DopD1¢p) > +3D12(uD1¢)? —3D1z < (uD1$)* > + (Do)’

+3u(Do$)> D1¢ + 3Dop (1D19)* + (uD1)°) = —Yv? cos(Tp) D1z
(32)

Using the inertial approximation [20], i.e. all terms in the left-hand side of (32),
except the first, are ignored, one obtains

¢ = Yvcos(To) D1z (33)

Inserting ¢ from (33) into (31), using that < cos?Ty > = 1/2, and keeping only
terms of orders three in z, give the equation governing the slow dynamic of the motion

(3).
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On Optimal Control of a Nonlinear
Robotic Mechanism Using the
Saturation Phenomenon

Jorge Luis Palacios Felix, José Manoel Balthazar, Angelo Marcelo Tusset,
Vinicius Piccirillo, Atila Madureira Bueno and Reyolando Manoel Lopes
Rebello da Fonseca Brasil

Abstract In this paper a robotic arm is modelled by a double pendulum excited in
its base by a DC motor of limited power via crank mechanism and elastic connector.
In the mathematical model, a chaotic motion was identified for a wide range of
parameters. Controlling of the chaotic behaviour of the system were implemented
using two control techniques, the nonlinear saturation control (NSC) and the optimal
linear feedback control (OLFC). The actuator and sensor of the device are allowed
in the pivot and joints of the double pendulum. The NSC is based in the second order
differential equations and its action in the pivot/joint of the robotic arm is through of
quadratic nonlinearities feedback signals. The OLFC involves the application of two
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control signals, a nonlinear feedforward control to maintain the controlled system to
a desired periodic orbit, and a feedback control to bring the trajectory of the system
to the desired orbit. Simulation results, including of uncertainties show the feasibility
of the both methods, for chaos control of the considered system.

1 Introduction

The behavior of dynamical systems with pendulums have been investigated in a vari-
ety of approaches such as theoretical and experimental. The non-ideal autoparametric
system with pendulum was studied by Sado and Kot [1], and autoparametric system
with double pendulum with harmonic excitation was studied by Sado and Gajos [2].
The first detailed study on the non-ideal vibrating systems was done by Kononenko
[3]. Following this contribution, the problem of non-ideal vibrating systems has
been investigated by a number of authors. A complete review of different theories on
non-ideal vibrating systems was discussed and presented in [4]. The dynamic inter-
actions between a parametric pendulum and an electro-dynamical shaker of limited
power was investigated in [5]. The authors described a mathematical model of the
electromechanical shaker and identified its parameters. The saturation control was
proposed in [6—11] using 2:1 internal external resonances in quadratic nonlinearly
coupled systems to suppress steady-state vibrations. The effectiveness of the nonlin-
ear saturation control to a non-ideal portal frame was investigated in [12], OFLC was
proposed in [13]. In Rafikov and Balthazar [13] the quadratic nonlinear Lyapunov
function was proposed to resolve the optimal nonlinear control design problem for a
nonlinear system. Being formulated the linear feedback control strategies for nonlin-
ear systems, asymptotic stability of the closed-loop nonlinear system guaranteeing
both stability and optimality [14].

We organized this chapter as follows. In Sect. 2 we obtain the mathematical model.
In Sects. 3 and 4 we perform the analysis of the dynamic model considering: bifurca-
tion diagrams, time histories, phase portraits, frequency spectrum, wavelet transform
and 0-1 test for chaotic behaviour. In Sect. 5 is implemented the NSC and the OLFC.
In Sect. 6, through computer simulations, the efficiency and the robustness to para-
metric errors of each control technique are verified. Finally, some concluding remarks
are given.

2 System Description and Governing Equations

We consider a robotic arm modelled by a double pendulum excited at its base (sup-
porting) by a DC motor of limited power via a crank mechanism and a spring, such
as the one represented in Fig. 1. The supporting elastic substructure of the robotic
arm consists of a rod of mass m and lengths /1and /> and masses mand m3, stiffness
k and damping ¢, whose motion is in the vertical direction, and the angular deflection
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Fig. 1 Robotic arm excited
by a non-ideal motor via
crank-spring mechanism [15]

of the first pendulum is 6; and of the second pendulum is 8. We assume that the
controlled torque of the unbalanced DC motor as a linear function of its angular
velocity, ') =V, — Cmq3, where V,, is considered as a control parameter and it
can be changed according to the voltage of the DC motor, C,, is a constant for each
DC motor considered. The coupling between the DC motor and robotic arm will be
by a crank mechanism of radius r and elastic connector of stiffness k.

From the Lagrange method, the equations of motion for the system can be
rearranged as follows:

Im+mi4+my)y+cy+ky—1i(m —i—mz)él sin 6] — lzmzéz sin 6,

—(m + mz)llélz cos 0] — mzlzézz cos By = k,rsin¢ (D

1$ =T (¢) + kyr(y — r sin ¢) cos ¢ 2)

[(my + m)36; 4+ malilh6; cos(6r — 01) — mal11263 sin(6 — 6;)
+ (my +m)glysin@ + c16) — c2(62 — 61) = (my +m2)1isin6;  (3)

Imal36; + mal 1261 cos(02 — 01) + magla sin 6y 4+ mal1167 sin(6; — 6;)
+ 02(92 - 91) = mzlzy sin 6, 4)
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where dots indicate differentiations with respect to dimensionless time. The following
dimensionless quantities are introduced for further analysis:

) k . .
T=wot, YYo= T, w(%:—, my =m+my+my, [(P)=a—Dbop, a)]2=£, w%:i,
I my I b

my +m m l krr m 10} 13}

o= gy =2 R=2 g = gy = TR =L 0= 2
my my I klq my +my w) w
cl c (o) krrily kyr?
U= ——s, U= s M3 = ) = » B= :
(m +m2)wol% (my +m2)wolf mza)ol% Ia)(2) Iw(z)

Thus, the dimensionless form of the mathematical model can be written as follows

x{ =1
(5)
xh = ayx) sinx3 + Ray sinxs + oqx‘% cos x3 + Razxg COS X5 — [LoX2 — X1 + 11 sinx7
x5 =x4
(6)
x}y = a3Rxf cos(xs — x3) + x} sinx3 — Q2 sinx3 + Rozx? sin(xs — x3) — 154 + p2(xe — x4)
/ jr—
x5 = X6
/ 1./
Xg = — X4 €08(x5 — x3) + x2 sin x5 — Q sin x5 @)
1.2
— X5 sin(xs — x3) — u3(xe — x4)
[
X7 = X3
3)

xg = a — bxg + (mn2x1 — n3 sinx7) cos x7

where the prime denotes the derivative with respect to time 7 and x; = yo, x2 = Y0,
X3 —91 X4 —91 X5 —92,)66 —92,)67 _¢andxg —¢

For the numerical simulation, the following dimensionless parameters are used:
o = 03,0 = 0.17, 3 = 0.5,R =1, u; = 0.01, up = 0.01, uz = 0.01,
a=122,b=12,Q2 =09,Q2 = 04,n = 005n =02andn = 0.3
[15].

3 Scale Index

The wavelet transform of a one-dimensional (1D) signal consists of the development
into a basis constructed via solutions like functions called wavelet, using various
internal transformations and shifts [16].
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Given f € L? (R), the Continuous Wavelet Transform (CWT) of fat time v,
scale s and time location ¢ is defined as

+00
WF (vs) = (fy) = / FOUE, ©di ©)
where
_ b (t_—v) R.s>0 (10)
1‘[fv,s = «/Ew B ,VEIN,S

and Wf (v, s) provides the frequency component of the signal of f at time v and
scale swith respect to some analyzing wavelet ¥, .
The scalogram of f, , is defined as follows [17]:

1/2

—+00
P ) =W, )l = / (Wf (v, ) dv (11

where g (s) is the energy of the CWT of f at scale s. The scalogram is a useful tool
for studying a signal, since it allows the detection of its most representative scales
(or frequencies).

Then, the innerscalogram of f at scale scan be defined by [17]:

a6 172
P (s) = IWS 0l = | [ WS 0Py (12)
c(s)
where J(s) = [c(s),d(s)] € I is the maximal subinterval in / for which the

supported of ¥, s is included in Ifor all u € J(s) [17]. As regards the length of
J (s) it depends on the scale s, so that the values of the inner scalogram at different
scales cannot be compared. Therefore, the inner scalogram should be normalized as
follows [17]

Boi nner ( S)

PO = G — o)

13)

The scale index in the scale interval [sp, s1] can be defined by the quotient [18]

. __ §(Smin)
lscale *=
£ (Smax)

(14)

where smax 1S the smallest scale such that g (s) < g (smax) for all s € [so, 1], and
Smin the smallest scale such that o (smin) < & (s). Note that for compactly supported
signals only the normalized inner scalogram will be considered [17].
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From its definition, the scale index is.q/. is such that 0 < i;.4. < 1 and it can
be interpreted as a measure of the degree of non-periodicity of the signal: the scale
index will be zero or close to zero for periodic sequences and close to one for highly
non-periodic sequences [18].

According to [17], an important corollary about compactly supported wavelet can
be announce as

Corollary 1 Let f : I = [a, b] — C a T-periodic function in L (a,a + b). If ¥
be a compactly supported wavelet, then (normalized) inner scalogram of f at scale
2T is zero. (for more details, see [17]).

4 Numerical Simulation

This system was simulated using the following initial conditions:
[O 000 1%’0 000 ] Figure 2 shows the bifurcation diagram for the parameter (j0).
It is possible to see that for a given value of the parameter (11) the system of (5)—(8)
have regions with dense bands of points where we cannot identify the period of the
attractor, which indicates a chaotic behavior [15].

In order to determine the value of parameter 1o in which the system is chaotic,
the O0—1 test was applied. The O-1 test for chaos takes as input a time series of
measurements and returns a single scalar value. If this value is closed to O (zero)
then the system is periodic, on the other hand, when the value is closed to 1 (one)
the system is chaotic [20].

According to [19] the correlation coefficient K can be obtained from:

_ cov(X, M(c))
K= (15)
var(X)var(M (c))

where vectors X = [1, 2, ..., nnax], M(c)=[M(1, ¢), ..., M(1, npmax)], ¢ € (0, ) is
a fixed frequency chosen arbitrarily, and:

Fig. 2 Bifurcation diagram 3
for o :

0.04 005 0.06 0.07 008 0.09 0.1

Ho
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N

1
M) = lim =3 [(pG+m = p()? + @G +m —qGn?]  (16)
j=1

pir=" (X’U—_x) cos(je)iq(i) = > (’C’U—_x) sin(je) (17

j=0 X j=0 X

where M (n, c) is the mean square displacement (MSD) of the variables p g, x is the
mean value, o, is the square deviation of examined x; series, and N is the length of
the sampled points in the displacement time series.

As a final result, the value of the searched parameter K. is obtained taking the
median of 100 different values of the parameter ¢ € (0, 7) in (15). A value of K. = 0
indicates a non-chaotic data set while a value of K. = 1 indicates a chaotic data set.
Figure 3 includes the analysis of the system. The parameter range of 1o has been
verified and a region where chaotic orbits are found.

In Figs. 4, 5 and 6 one can observe the behaviour of the system (5)—(8) for o =
0.076.

0.994
0.992
X 099

0.988

0.986
0.04 0.06 0.08 0.1

Ko

Fig. 3 Asymptotic growth rate (K.) from 0-1 test as a function of parameter 11(

@) , (b)
0.5
0.1
S0 =
0.05
-0.5
-1 . . . (L 4 (AT
0 500 1000 1500 2000 0 5 10 15 20
T Frequency (Hz)

Fig. 4 Behaviour of x| for up = 0.076. a Vertical movement. b Frequency spectrum
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(b)
0.1
3 0.08
e
0.06
0.04
0.02
0 . 1 |
0 500 1000 1500 2000 0 5 10 15 20
T Frequency (Hz)

Fig. 5 Behaviour of x3 for o = 0.076. a Angular movement. b Frequency spectrum
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Fig. 6 Behaviour of x5 for o = 0.076. a Angular movement. b Frequency spectrum
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Fig. 7 a Modulus of CWT and b Normalized inner scalogram for o = 0.076

As we can see in Figs.3, 4, 5 and 6 for ug = 0.076, the system (5)—(8)
has a chaotic behaviour. Figure7a shows the modulus of wavelet transform
(i.e. |Wf (u, s)|) for the time series of g = 0.076, the wavelet of the 1D analyzed
signal is shown as surface in 3D space, in which the z-axis denotes the modulus,
the x-axis denotes the time and the y-axis denotes the scales. The relation between
frequency parameter o and scale parameter s is ¢ = 2” [20]. It is seen from Fig. 7b
that the normalized inner scalogram is not zero, therefore the signal is non-periodic;
the same results was observed in 0-1 test. On the other hand, Fig.8b shows that



On Optimal Control of a Nonlinear Robotic Mechanism ...

—

CWT Coefficients (Moduli) ?

§. ;

(b)

w in e

Mormalized inner scalogram

9z 04 @6 08 1 12 14 16 18
Peri

Fig. 8 a Modulus of CWT and b Normalized inner scalogram for ug = 0.0762
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Fig. 9 a Modulus of CWT and b Normalized inner scalogram for uo = 0.0763

Table 1 Comparative analysis of diagnostic scale index

2

153

Parameters Scale index Behavior

1o iscale -

0.076 0.17 Non-periodic
0.0762 0.02 Periodic
0.0763 0.17 Non-periodic

the normalized inner scalogram is equal zero for o = 0.076 which corresponds
to a periodic signal with period 7 = 1. Figure9 shows one of the main obvious
differences is that distribution of scales is randomly vs. time and CWT modulus. It
is worth noting that this observation is verified by the normalized inner scalogram
which is not zero. In Table 1 are listed the values of the scale index, together with the
value of the parameter where highly non-periodic orbits correspond to values close
to 1 and where periodic orbits correspond to the values close to 0.
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5 Proposed Control

In this section, we propose two control methods with the objective of eliminate the
chaotic behaviour of the system (5)—(8). To do so, we consider the introduction of
a control signal U applied in the support of the robotic arm to satisfy the saturation
phenomenon in linear form and no rotational, into the system (5):

x| =x2
/ /2 : 2 2
X5 = a1X, SInx3 + Roy sin x5 + X CO8 X3 + Ropxg COS X5 — [oX2 — X|

+nysinx; + U
(13)

A block diagram representation of the controller proposed in this work is presented
Fig. 10.

5.1 Formulation of NSC

In this section, we implement the following nonlinear saturation control:
U =yu? (19)
where u is obtained from the following equation [12]:
i+ peu + a)fu = yaxiu (20)

where w, is the controller’s natural frequency, y; and y» are positive constants. The
internal resonance condition is considered by letting 2w, & 1 and external resonance

¢ ~1.

Fig. 10 Control applied in -
the support of the robotic Controller Feedback signal
arm asymptotic growth rate
[15]

Control signal v

L J

Double Pendulum
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Fig. 11 Behaviours for ;9 = 0.076. a Vertical movement x;. b Vertical movement x; excluding
the transient behavior. ¢ Angular movement x3. d Angular movement x3 excluding the transient
behavior. e Angular movement xs. f Angular movement x5 excluding the transient behavior

In Fig. 11 we can observe the behaviour of the system (5)—(8) with the pro-
posed control (19) considering the following parameters: y; = 0.01; y» = 0.07;
ue = 0.01; . = 0.5 and initial conditions: #(0) = 0.1 and #(0) = 0, excluding
the transient behavior. Furthermore, if we compare the results obtained in Figs. 11
and 4, adopting the parameter 9 = 0.076, the NSC can effectively suppress the
chaotic behavior, and therefore it becomes possible to change the behavior of the
system.

We can see in Fig. 11 that the nonlinear saturation control is effective in bringing
the system to a periodic behavior with a transient behavior of approximately v ~
1500.
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5.2 Control Using OLFC

Next, we will present the optimal linear control strategy for nonlinear systems [21].
It is important to observe that this approach is analytical, without dropping any
nonlinear term [22]. The vector control U in (18) is consisting of two parts, namely,
U = ug + up, where uy is the feedforward control and ug, is the linear feedback
control. Defining the period orbit, as being a function of [xik(r) x5 (1) ]T, if the
function [xi“ (1) x; (7) ]T is the solution of (18), without the control U, then ug = 0.
In this way, the desired regime is obtained by the following equations:

%
Xp =X
X3 = axysinx3 + Ray sin xs + alx‘% cos x3 + Rozzxg COS X5 — [oX; — X[

+n1sinx7 + ug
(21)

Isolating u in the second equation (20) we obtain the feedforward control:

/ . .
ug = xé‘ — alx:‘ sin x3 — Rop sin x5 — ozlx‘% COS X3 — Ragxg COS X5

. 22
+ pox;s 4+ xj — n1 sinxy (22)

Substituting (22) into (18) and defining the deviation of the desired trajectory as:

7= [’“ _"T] (23)

X2 — X3

The system can be represented in the matrix form 7’ = Az + Bu as:

/
=L L) [ o
The control uz, can be found to solve the following equation:
up = —R'BT Pz (25)
where P is a matrix symmetric, and can be find solving the Algebraic Riccati Equa-
tion:

PA+ATP—PBR'BTP+0=0 (26)

According to [23], if there exist matrices Q and R, with positive definite symmetric
matrix, such that the matrix:

0=0-Gl(z,u" )P — PG(z,u") (27)
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is positive definite for the limited matrix G (z, u*) then the control u, is optimal and
transfers the non-linear systems (18) from any initial state to final state z(co) = O,
minimizing the functional:

J = / (z" Oz + ul Ru,)dt (28)

In addition, with the feedback control (25), there exists a neighborhood I'y C T,
' € N", of the origin such that if zg € g, the solution z(r) = 0,7 > 0, of the
controlled system (18) is locally asymptotically stable, and Jipin = zg Pzp. Finally, if
' = NR" then the solution z(7) = 0, T > 0, of the controlled system (18) is globally
asymptotically stable [13, 14].

What can be demonstrated considering the Dynamic Programming rules is
that if the minimum of functional (28) exists and if V is a smooth function
of the initial conditions, then it satisfies the Hamilton-Jacobi-Bellman equation
[13, 14]:

dv T
min ( — +z7 Qz+u Ru, ) =0 (29)
u \dT

Considering a function:
V=z:"P; (30)

and substituting V in the Hamilton-Jacobi-Bellman equation (29) one obtains:
T [ATP +PA—PBR'BTP+GT(z,u*)P + PG(z, u™) + Q] 2=0 @)

Then O = Q — GT(z, u*)P — PG(z, u*). Note that for positive definite matrices
Q and R, the derivative of the function (30) is given by V=—z Qz — uTRur which
is negative definite. Then, the function (30) is Lyapunov function, and the controlled
system (18) is locally asymptotically stable. Integrating the derivative of the Lya-
punov function (31) givenby V = —z0z — ul Ru, along the optimal trajectory, we
obtain Jmin = 2 I'Pz,. Finally, if ' = 9", global asymptotic stability follows as a
direct consequence of the radial unbondedness condition for the Lyapunov function
(B0) V(z) —» oo as ||z]| — oo [13, 14].

According to [13, 14], and to analyze the cases for which the matrix Q is analyt-
ically difficult, it is possible to analyze numerically considering the function:

L(t) =77 (1) Q(7)z() (32)

Define the desired orbits to periodic orbits obtained with the nonlinear saturation
control (Fig. 11a) obtained through the use of Fourier series, calculated numerically
as [15]:
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x} =0.0393 4 0.1749 sin (% 7)

v = 0398 o (25) e
The matrixes A, B and G may be represented by:
0 1 0 0
A:[_1_0-076:|, B:[l] and G:[O] (34)
By defining:
10* 0
Q—[O 10] R =[10] (35
and solving the Algebraic Riccati equation (26), we get:
| 1442.2713 99.005 (36)
~199.005 14.3467

Substituting it into (25), we obtain the control:
up = —99.005z1 — 14.3467z, = —99.005(x; — x7) — 14.3467(x2 — x3)  (37)
Considering (37) and (22) leads to the control U':

U = -99.005(x; — x{) — 14.3467(x — x3) + x;‘/ — ayx) sinx3 — R sinxs
—ozlx‘% COS X3 — Roczxg cos x5 + poxy + xi — ny sinxy
(33)

InFig. 12 we observe the controlled system (5)—(8) in the orbit (21), with: |x1 —xf ‘ <
1070, excluding the transient behavior.

As can be seen, the proposed control (38), took the system to the desired orbit
(21), with transient less than 27.

It can be observed in Fig. 13 that L(t) is positive semidefinite, which ensures that
the control (37) is optimal.

5.3 Comparison Between NSC Control and OLFC Control

In Fig. 14 we can observe the behavior of the system (5)—(8) using NSC control and
OLFC control.

In Fig. 15 we show the variation of the control signal used to NSC control and
OLFC control.
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Fig. 13 a Variation of the function L(7): (a) Variation by z and 7. b Variation by x and t. ¢ Variation
by x; and x, for ugp = 0.076
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Fig. 14 Phase diagram. a Movement x;. b Angular x3. ¢ Angular x5 for g = 0.076
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Fig. 15 Control signal U. a Signal used in NSC control. b Signal used in OLFC for uo = 0.076

To eliminate the transitory period and maintain the system in a defined orbits, the
OLFC control uses a higher signal than the NSC control. We can also observed in
Fig. 14 that even with x; being similar for the two controls, it was not possible to
obtain the same behavior for other states.

6 Control in the Presence of Parametric Errors

In order to consider the uncertainty effects on the performance of the controller, the
parameters used in the control will be considered as individual variations of 20 %,
and a random error of £20 % [24, 25]. A sensitivity analysis will be carried out
considering the error: ¢; = x; — X; for i 1 : 6, where x; are the states of the
system with control, and without parametric error, and x; are the states with control
and parametric errors.
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6.1 NSC with Parametric Error

In Fig.16 we can observe that the NSC control maintains xj in periodic orbits,
even when parametric errors occur, and in this case we consider: y; = 0.01 x i,
2 =0.07 x ¥, ue =0.01 x ¥, w. = 0.5 x ¥, where y = 0.8 : 1.2.

As can be depicted in Fig. 16d the control is sensitive to variations in the parameter
¢, which should occur because the necessary condition for using this technique is
2w, =~ 1. In Fig.17, we can observe the periodic oscillation of the system (5)—
(8) with control (13) and y; = 0.008 4 0.004 r(¢), y» = 0.056 4 0.028 r (),
e = 0.008 +0.004r (1), . = 0.008 4 0.004r(¢), and r(¢) is normally distributed
random function. Furthermore, in this figure we can observe the ability of the control
to reproduce the behavior of the system without parametric errors.

It can also be observed in Fig. 17 that the control reproduces satisfactorily the
variables x| and x;, but the control is not able to reproduce the behaviour of the other
states.

The behavior of the system (5)—(8) with control (38) is illustrated in Fig. 18,
considering 9 = 0.076 x Yoy = 0.3 x Y, o R =0.17 x Y and n; = 0.05 x .

@) 25 (b) ;55
0.225 0.225
S~ 022 o~ 022

0.215

0.21
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0.6

< 0.4

0.2

0L-
0.8 1 1.2
n

Fig. 16 Sensitivity of NSC control to keep the system on periodic orbits with parametric errors: a
VX e DY Xy ey xy2.d Y X
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Fig. 18 Sensitivity of OLFC control to parametric errors e; = x; —X1:aln(e;).bErrore; = x; —x
by parameter /1

In Fig. 19, we can observe the periodic oscillations of the system (5)—(8) with
control (38), and the following parameters: o1 = 0.24 4+ 0.12 r(¢); o = 0.136 +
0.068 r(t); R = 0.840.4r(t); uo = 0.06084-0.0304 r(t) and 1 = 0.044-0.02 r(¢).

As we can see from Figs. 16 and 17, the NSC control is sensitive in maintaining the
behavior of the system in a periodic orbit obtained with control without uncertainty
in parameters. It is indicated from Figs. 18 and 19 that the OLFC control has proven
to be robust to parameter uncertainties.



On Optimal Control of a Nonlinear Robotic Mechanism ... 163

(@) 107 (b)5 x10°

0 200 400 600 800 1000 0 200 400 600 800 1000
T T
() x10° (d) x10°
2 2
1 1
"0 ST 0
1 1
2 2
0 200 400 600 800 1000 0 200 400 600 800 1000
T T
(€) x10 ® .

0 200 400 600 800 1000 0 200 400 600 800 1000

T T

Fig. 19 Sensitivity of OLFC control to random parametric errors

7 Conclusions

We have considered the robotic arm modeled by a double pendulum excited in its
base (supporting) by a DC motor of limited power via crank mechanism and spring.
The dynamical interactions is investigated by means of phase portraits, bifurcation
diagrams, the power spectrum (FFT), wavelet transform and 0-1 test, showing the
existence of chaotic behavior for some parameters. The two control strategies have
shown to be effective in stabilizing the system in a periodic orbit. With the application
of the time delay control for the desired orbit and optimal control to maintain the
desired orbit, it was possible to associate the two controls to obtain less time and
more robust system a periodic orbit.

NSC technique proved its efficiency to take the system to a periodic orbit, but
requiring a relatively large time. We have observed also through the analysis of
sensitivity to parametric errors, that this approach is not efficient in maintain the



164 J.L.P. Felix et al.

system in its original orbit, considering the case of the control having variations in
their parameters. The results showed that nonlinear saturation control is indicated
for cases where there is no need to maintain the system at predetermined orbits, and
for the cases where the time stabilization is not a priority and must be a relationship
between the internal resonance (w.) and the external resonance (w) is 2w, ~ ).
The OLFC, allow us to obtain a more robust control than the NSC, as demonstrated in
sensitivity simulations to parametric errors. The results demonstrate that this control
is a good choice for those cases where it is desired to minimize the time stabilization
of the system at a predetermined orbit, as well as being able to reproduce the behavior
even though the control is subjected to parametric errors. However, for using this
control strategy efficiently it is necessary to determine the desired behavior, and it is
also necessary to use a much higher control signal used for controlling the NSC.
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Quasi-Coordinates Based Dynamics Control
Design for Constrained Systems

Elzbieta M. Jarzebowska

Abstract The paper presents model-based dynamics control design for constrained
systems which exploits dynamics modeling in quasi-coordinates. These non-inertial
coordinates are useful in motion description of constrained systems as well as in
a controller design, since they offer many advantages in both areas. Specifically, a
dynamics model formulation results in a reduced-state form of the motion equations.
The selection of quasi-coordinates is arbitrary so they may satisfy the constraint
equations and be control inputs directly. The paper presents an approach to control
oriented modeling and a controller design based on the generalized Boltzmann-
Hamel equations where the generalization refers to constraint kinds which may be put
upon systems, i.e. constraints may be material or artificial like control constraints. The
control design framework applies to fully actuated and underactuated systems and it
is computationally efficient. Examples of controller designs and their comparisons
to a traditional Lagrange model-based framework are presented.

1 Introduction

The paper presents model-based control design for constrained systems which applies
dynamics modeling in quasi-coordinates. The constrained systems may be subjected
to holonomic, nonholonomic or programmed constraints as well as be fully actuated
or underactauted. They constitute a large class of systems of a practical interest and
they are usually approached by the Lagrange method with generalized coordinates
or its modifications to obtain motion equations for them. The Lagrange based dy-
namics are also used to generate dynamic control models for these systems. This
traditional, almost routine, approach to dynamics modeling results in dynamics that
lacks some properties significant from the point of view of further control design. Ba-
sically, Lagrange based dynamics can be applied to systems with constraints of first
order and the number of unknowns that result from Lagrange’s equations increases to
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include the multipliers. In order to obtain a dynamic control model, Lagrange’s based
dynamics require the elimination of the constraint reaction forces (Lagrange multi-
pliers). Finally, solutions obtained from the Lagrange based models require numer-
ical stabilization due to differentiation of constraint equations, that may complicate
on-line simulations and control. Only a few works report applying quasi-coordinates
to modeling constrained systems, see e.g. [1, 2].

From the perspective of mechanics and derivation of equations of motion, con-
strained systems may belong to the same class, e.g. be subjected to first order non-
holonomic constraints. From the perspective of nonlinear control theory, they may
differ and may not be approached by the same control strategies and algorithms. Their
control properties depend upon the way they are designed and propelled. Then, from
the nonlinear control theory perspective a system design, way of its propulsion, con-
trol goals, other motion or work-space constraints may determine the way of the
control-oriented modeling.

The dynamics modeling in quasi-coordinates presented herein, which is incorpo-
rated in the model-based control design for constrained systems, eliminates many
disadvantages related to Lagrange’s based dynamics modeling and a subsequent
control design.

Motivations for the development of constrained and control dynamics in quasi-
coordinates come from the author experience in the area of modeling and control of
constrained systems. Firstly, the constraint kinds that have to be dealt with in control
setting are different than the ones considered in analytical dynamics modeling. This
has led to the definition of the unified constraint formulation and the derivation of
the generalized programmed motion equations [3, 4]. Secondly, a dynamics control
model that is passed to a control engineer to design and apply to it an appropriate
controller, may be made a control oriented, i.e. may facilitate this controller design.
The two motivations are not separate from each other. They both can be appropriately
treated at the modeling step of a control design project using the latest modeling tools
and the modeling process may serve an effective control design.

In the paper we present the theoretical model-based control oriented modeling
framework. It yields equations of motion for constrained systems in quasi-coordinates
based on the generalized Boltzmann-Hamel equations [3]. This dynamics framework
yields equations of motion of a constrained system in a reduced-state form, from
which the dynamic control model directly follows. The framework applies to fully
actuated and underactuated systems, it is computationally efficient, and may facilitate
a subsequent controller design. Based on the framework, a tracking control strategy
dedicated to track predefined motions referred to as programmed may be designed.
It is referred to as the model reference tracking control strategy for programmed
motion and has been developed for dynamics in generalized coordinates [4]. It can
be redesigned to constrained dynamics and control dynamics developed in quasi-
coordinates.

The paper contribution is then three folds. Firstly, the model-based control oriented
framework for the generation of dynamics for constrained systems formulated in
quasi-coordinates, where additionally relations between generalized velocities and
quasi-velocities may be nonlinear, is presented. Secondly, the dynamics formulation
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in quasi-coordinates is unified in the sense that it is suitable for systems constrained
by arbitrary order bilateral constraints. Thirdly, based on this formulation a tracking
controller for a system motion along a prescribed program may be designed.

Examples that illustrate the theoretical development demonstrate the effective-
ness of the generation of dynamics models using the model-based control oriented
modeling framework in quasi-coordinates.

2 An Extended Constraint Concept—Material and
Non-material Constraints Imposed Upon System Motions

A control design process consists of three main steps, which are a dynamic model
building, a control algorithm design, and a controller implementation. Starting from
the model building, constraints imposed on a system should be specified first, and
inspected if they are holonomic or nonholonomic. We do not address dynamics
modeling and control design of holonomic systems, since these are considered solved
problems, at least theoretically [5].

Based on the examples of constraints reported in mechanics and control, we
start a control-oriented modeling from a constraint concept revisiting. An extended
understanding of constraints is suitable for both dynamics modeling and control
applications. The constraints can be classified as follows [4]:

1. Material nonholonomic constraints (NC)—they come from an assumption about
rolling vehicle wheels without slipping. They are first order and they are typical
for wheeled mobile vehicles or multi-finger hands working on surfaces. Their
common form reads

Pt q1, s qns 41y s Gn) =0 B=1,....b, b<n (1)

Functions ¢g are defined on a (2n+1)-dimensional manifold and have continuous
derivatives. Often, the kinematic constraints are linear in velocities, i.e.

n
D bpo(t,q1s s n)do + bpolt, 1 oo gn) =0, ©)

o=1

Constraints (1) or (2) restrict accelerations but not positions. They are referred to
as first order constraints. In classical mechanics setting they are known as material
constraints [6, 7].

2. Conservation laws—they come from the angular momentum conservation for
free-floating space manipulators, for an astronaut in a space walk or for a sports-
man in an exercise flying phase. Their equation form is the same as (1) [8]. Notice,
that in mechanics they are not referred to as constraints. They show up in a control
setting.
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3. Tasks (programmed constraints)—they can be formulated for any physical sys-
tem, e.g. a robot or a manipulator and they can specify a task, work to do or a
limitation in a system motion, e.g. a limitation in velocity or acceleration. Also,
they may specify a trajectory to follow but then it is a holonomic constraint. Many
task formulations are reported in [9—12]. However, none of the tasks is formulated
in algebraic or differential constraint equation forms at a system modeling level.
Such equations are formulated later at a level of a controller design and then a
specific controller modification for each task is needed the most often. The earliest
formulation of programmed constraints (PC) known to the author was given by
Appell in [13]. He described them as constraints “that can be realized not through
adirect contact”. Similar ideas were introduced by Mieszczerski at the beginning
of the 20th century. Beghuin [14] developed a concept of servo-constraints. These
new ‘“‘constraint sources” motivated to specify constraints as

(P/S(t»QIa---Jln,q'l,n-,q'n)=0, ﬂ: 1,...,k, k<l’l (3)

The history of evolution of the PC (3) confirms both their usefulness in formula-
tions of requirements for dynamical systems performance and leads to a “unified
constraint formulation”, which is

Bs(t,q, Gy, ) =0, B=1,...k k<n (4)

where p is a constraint order and Bg is a k-dimensional vector. Equation (4)
can be nonlinear in ¢(P). Differentiation of (4) with respect to time, until the
highest derivative of a coordinate is linear, results in constraint equations linear
with respect to this highest coordinate derivative. We assume that “p” stands for
the highest order derivative of a coordinate which appears linearly in a constraint
equation. For simplicity we assume that they are linear in all p-th order derivatives
of ¢’s and we rewrite (4) as

B(t.q.q, ... " Mg +5(t,9,4,....q"") =0, (5)

which is referred to as a unified constraint formulation [4].

4. Design or control constraints—they can be put upon manipulators, robots and
other systems with underactuated degrees of freedom [15]. They have the form
(5) with p = 2.

5. Other design, control or operation constraints on robots, manipulators and other
vehicles or robotic systems, which can be presented as (5):

e in navigation of wheeled mobile robots, to avoid the wheel slippage and me-
chanical shock during motion, dynamic constraints such as acceleration limits
have to be imposed [9, 10],
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e in path planning problems, for car-like robots, to secure motion smoothness
two additional constraints are added: on a trajectory curvature and its time
derivative so additional constraints of the second and third order are imposed
(101,

e in manipulator trajectory tracking, jerk must be limited for reducing manipu-
lator wear and improving tracking accuracy [16],

e in vehicle dynamics, constraints are added when different maneuvers are to
be performed [17],

e in robotics where lateral acceleration must be bounded, e.g. path tracking
experiments depend on the precision of the odometer. If the lateral acceleration
of the vehicle is too large, the wheels can lose close contact to the ground and
the odometer data is no longer meaningful [18].

The constraint classification in classical mechanics and a variety of requirements
on system’s motions reported in the literature can be summarized as follows:

1. Many problems are formulated as synthesis problems and motion requirements
may be viewed as non-material constraints imposed on a system before it is
designed and put into operation.

2. Constraints that specify motion requirements may be of orders higher than one
or two.

3. Non-material constraints may arise in modeling and analysis of electro and bio-
mechanical systems.

4. No unified approach to the specification of non-material constraints or any other
unified constraint has been formulated in classical mechanics.

These conclusions lead to the idea of an extended constraint concept [4]. It is
formulated in two definitions:

Definition 1 A programmed constraint is any requirement put on a physical system
motion specified by (5).

Definition 2 A programmed motion is a system motion that satisfies a programmed
constraint (5).

A system can be subjected to both material and programmed constraints. Pro-
grammed constraints do not have to be satisfied during all motion of a system.

3 Control Oriented Constrained Dynamics
Formulation in Quasi-Coordinates

Nonholonomic systems (NS) are a large class of systems. From the perspective
of mechanics and derivation of equations of motion, many of them belong to the
same class of systems subjected to first order nonholonomic constraints. They may
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be approached by Lagrange’s equations with multipliers and these equations are
used to generate dynamic control models for them most often [7, 19, 20]. From
the perspective of nonlinear control theory, NS differ and may not be approached
by the same control strategies and algorithms. Some of them may be controlled at
the kinematic level and the other at the dynamic level only. Their control properties
depend upon the way they are designed and propelled. Usually, they are divided into
two control groups, which are treated separately, the group of fully actuated and the
group of underactuated NS [6, 7, 15].

The constrained dynamics which we formulate below can be directly used as a
control dynamics, and serves both fully actuated and underactuated systems con-
strained by the constraints (5) [4].

Let us start from recalling the concepts of quasi-coordinates and quasi-velocities.
They were introduced to derive the Boltzmann-Hamel equations of motion. Relations
between the generalized velocities and quasi-velocities were assumed linear and non-
integrable, i.e.

wr = wr(t, 95,40 ), o,r=1,..,n, (6)

With respect to the extended constraint concept (5), our first step is to let (6) be
nonlinear [3]. Inverse transformations for (6) can be computed as

=1t go, ). A=1,..,n (7)

Quasi-coordinates can be introduced as

w
dm, = z aq(:dq(,, r=1,...n (8)

o=1

and (8) are non-integrable. Based on (6)—(8), ¢’s and w’s are related as
9
dg), = —dr,. Ar=1,.., 9
=D o =dmy n ©)
The principal form of the dynamics motion equation [4] has the form

Zpaaqg = 6T + Z Q0845 + Zpg (840) — 5G| 8¢5.  (10)

o=1 o=1

Transforming its left and right hand side terms using the relations between &, and
8¢, we obtain

Z pudm, = 8T + Z 0,87, + Zp, [(67,) — b, ] Zpr z W87,

n=l r=1 r=1 n=1
(1)
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which is the principal form of the equation of motion in quasi-coordinates for non-
linear w, = w,(t, 4o, 4o )- W; are generalized Boltzmann symbols. Quantities p,,,
T, Q,, are all written in quasi-coordinates.

The generalized form of the Boltzmann-Hamel equations can be derived based
on (11). It has the form

Zn: 4 (o —8T+Zn:af = Oy |0m =0 (12)
dt\ dw, ) om, dop TR

n=1 r=1
For a holonomic system, 7, i = 1, ..., n, are independent and equations of motion
are B B B
d (T AT  ~ T -
——)-— W' = . =1,..., 13
dt(aa)#) 8n#+§8w, = Qu ! (13)

Equation (13) are the generalized Boltzmann-Hamel equations for a holonomic sys-
tem with nonlinear relations between quasi and generalized velocities. For linear
relations between quasi and generalized velocities (13) become Boltzmann-Hamel
equations derived in, e.g. [21]. Also, it can be easily verified that when quasi-
coordinates are equivalent to generalized coordinates, i.e. 7, = ¢q,,r = 1, ..., n,
and quasi-velocities are generalized velocities, i.e. w, = ¢, r = 1, ..., n, then (13)
are Lagrange’s equations with W), =y, , = 0.
For a system subjected to material or programmed NC of the form

wg=wg(t, 4o, 4s) =0 B=1,...b (14)
relations
" dwg
S = gy =0, =1,..,b 15
Tp= 3, 2 B (15)
o=1
hold forall wg. A system has (n —b) degrees of freedom and variations p1, ..., 7,

are independent. Then, (n — b) equations of motion, based on (12), have the form

d { aT aT " 9T -
(_)__+Z W;:QM uw=b+1,...n (16)
r=1

dt dwy
to which n kinematic relations
C}AZC}A(t,QJywr), O‘,)L:l,...,n, r=b+11""n (17)

have to be added.

Equation (16) are the generalized Boltzmann-Hamel equations for a NS. Notice that b
of w’s are satisfied based on the constraint equation (17). The rest of quasi-velocities
are selected arbitrarily by a designer. Equations (16) and (17) can be presented as
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M(q)@ + C(q, ®) + D(q) = O,

18
B(q, ») = 0. (1)

A system dynamics control model follows directly from (18) since they are free
from the constraint reaction forces

M@)o+ C(q, ®) + D(q) = O + 7,

19
B(g,w) =0. (19

Equation (16) have to be extended to be applicable to systems subjected to NC of
high order given by (5). To enable this, the following lemma can be formulated [4].

Lemma For a function F of the form
F:I:“(t,qg,a)r), o,r=1,....n (20)

where g, and w, are related by w, = w,(t, qs, 45 ), the following identity holds

d ( oF AFP)  9F
d I L @1)
dl 3a)o_ awp 1) 87Tg

The proof is by mathematical induction [4]. If we replace F by T = T (¢, g5, wo) in
(20) and insert it into the generalized Boltzmann-Hamel equation (12), we get

1 9T (P
Yo (p D

(p+1)}+ZW’ O p=1,on, p=123,

(22)

Equation (22) are the extended form of the Boltzmann-Hamel equations. Now,
modify them for systems with NC of high order

G,g (t,qg,a)r,d),,.. a)fp l)) 0. p=1,...,0b, o,r=1,...n, b<n
(23)

Based on the generalized definition of the virtual displacement

3G
565 =3 261 e =0, (24)

o=1 o

where Gg = Gg(t, 45, 4o s - qu )) are constraints of p-th order specified in ¢'s, we

obtain that

5G =i—aG’3 sm, =0 (25)
g P

r=I1
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In the constraint equation (23) we may partition the vector o~V as 0P~1 =
(a)g"’_l) a),(f_l)) with

a)/(gp D .Q/ép D (t, Gos Wi > Wg s oevy wi{’_l)) . (26)
By differentiating (26) with respect to time we obtain

a)é7 = .Qg (t, Gos Do > Dy ey wf[’_l), a)ﬁ) . 27)

Now, using the lemma result we rewrite (12) in the form

b 1 9T X 5F noaF - 2,
/; A RGN +Z;3—wr 5= QOp (Omp
= -
Z aTP T LooT 29
+ —-(p+D— |+ —W' — 0,8, =0.
et 9w (1? 1) Ay, ;E)wr w Iz "
n 89([7—1)
Based on (25) we have that §7g = Z %57@’ B =1, ... b, and then (28)
p=bt1 OOy
takes the form
% [aai;i)l) (p+ DL ] + Z —W' 0
9T ; 89/(3[171) w=b+1,..,n
Z 8(" ) (P‘*‘l)% 5 — 0p W:

(29)

We refer to (29) as the generalized programmed motion equations (GPME) in quasi-
coordinates. For p =1, (29) become (16). They may be presented in a form similar
to (19)

M(g)o + Clg, ) + D(q) = Q,

- (30)
Gﬂ (ta Go, W, Wr, ..., Q);p ])) 0

4 Design of a Control Strategy Based on the GPME
in Quasi-Coordinates

We have reported the derivation of the generalized programmed motion equations

(GPME) in quasi-coordinates. They enable deriving a constrained system dynamics

with w,(gp -D_ Qép -D (t, o, Wg, Dg s - wff’ ])) If the constraints specify a task
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to be done or motion to be followed, a question arises—how to execute this task and
how to track the desired motion?

A tracking control strategy dedicated to track predefined programmed motions
has been designed. It is referred to as the model reference tracking control strategy for
programmed motion. Itis based on two dynamic models derived in quasi-coordinates:

1. The reference dynamic model. It governs motion equations of a system subjected
to NC, either material, programmed or both. This is the reference dynamics block
of the form (30).

2. The dynamic control model. It takes into account only material constraints and
conservation laws on the system. This is the control dynamics block (19).

Outputs of the reference dynamics are inputs to the control law and the control
dynamics.

Architecture of the tracking strategy, which is presented in Fig. 1, is designed
in such a way that it separates the non-material and material constraints. They are
merged into separate models. It gives rise to an idea of a derivation of both dynamic
models using other set of coordinates.

Definition 3 The unified dynamic model of a constrained system (30) is referred to
as a reference dynamic model for programmed motion.

The reference dynamics (30) serves programmed motion planning. It is defined as
follows.

Definition 4 Programmed motion planning for a system subjected to the constraints
G,g (t, Qo s Oy Op, .., a)fp_l)) = 0 consists in finding time histories of positions

qp (1), quasi-velocities w (1) and their time derivatives in motion consistent with the
constraints.
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The control goal is as follows: Given a programmed motion specified by the con-
straints (23) and the system reference dynamics (30), design a feedback controller
to track the desired programmed motion.

The strategy for programmed motion tracking is not sensitive to the constraint
order and type, and the NS design. This is in contrast to many control designs, in
which each constraint type is treated separately and a controller is modified for each
of them.

5 Examples

5.1 Example I—Motion Control of a Car with a Trailer

A car with a trailer model presented in Fig. 2 consists of three pair of wheels, which
are replaced by unicycles. According to the figure, the coordinate vector is ¢ =
(x1, y1, 01, @1, 62, @2). The controller design for this vehicle model can be found
in literature; however, a controller is designed either at the kinematic level or using
classical approach with the Lagrange equations, e.g. [22, 23]. For the first time,
we take advantage of the GPME in quasi-coordinates to generate the constrained
dynamics and a tracking controller for this model [24].
The wheels do not slip and the three nonholonomic equations have the form

X1 sin (01 + ¢1) — y1 cos (01 + ¢1) — é]L()COS ¢1 =0,
X15in6; — yycos 6 =0,
X18in (02 + ¢2) — y1cos (02 + ¢2) + 02L1 cos ¢ = 0.

The quasi-velocities are introduced such that they naturally conform to the car
driving, i.e.

Fig. 2 A car with a trailer
model
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Fig. 3 Driving a prescribed trajectory by a car with a trailer (blue car and trailer joint motion, red
trailer wheel axis motion, green car front wheel axis motion)
w; =V =x1cos61 + ysin6; =0,
W = ¢1,
w3 = ¢,
w4 = X1 5in (01 + ¢1) — yicos (01 + ¢1) — 01 Lo cos g1 = 0,

w5 = X1 85inf) — yjcos B =0,
we = k1 5in (02 + ¢2) — Y1 cos (624 ¢2) + 62 L1 cos ¢y =0
Matlab symbolic toolbox was used to derive the Boltzmann-Hamel equations and

its control dynamics form. Due to the complexity of the equations, their final form
is (after canceling w4, ws and we)

M@o+Cg,w)=T1

M0 O Mrwiw3 + M3a)% + Mywiwr
with M = 0 10 |, ¢ = 0
0 0 I 0

and o = (w1, w2, ®3)

The control goal is to drive along a circle so the programmed constraint is a desired
trajectory for (x1, y1). It is presented in Fig. 3.
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Fig. 4 Two-link planar
manipulator model

5.2 Example 2—Motion Control of an Underactuated
2-Link Planar Manipulator

A 2-link planar manipulator is a holonomic system. It is presented in Fig. 4. We make
it nonholonomic by an imposition of the NC on it and underactuated by removing the
second actuator. It moves in the horizontal plane (x, y). Two degrees of freedom are
described by ©®1, @,. Its geometry and inertia properties are: [} = 1,1, = 0.6, I;] =
0.12, I, =025,r1 =11/2, m=10h/2andm; =1, mp = 2.

We formulate a programmed constraint that the manipulator end-effector is to move
along a trajectory for which its curvature changes according to a specified function

o* = dcst(t). It has the form

o TPE I [PGT+ 5P + 3OET + §Y)]
B FEF — X)

+ V.
y

Quasi-coordinates may be selected as w| = ® i1, wy= (@ 1+ @g)lg.
The programmed constraint specified in quasi-velocities has the form

[
@y — (11— Fz)l—ziél — Fil, =0,
|

where F| and F; are functions of the manipulator geometric and inertia properties,
@, w1, wy and their first order time derivatives.
The reference dynamics (30) has the form

. by—F»8
(1)1+ 2[22

. 1—F))ls
wy — %wl — Fil, =0.

wr+c¢c=0,

bi—by—F(by—9)
0
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Fig. 5 Tracking by the PD 2
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controller

w = 6O,
wy = (O1 + O)l.
The control dynamics (19) become
w1 =ur,

. —Blhcos®; . —Blhsin®y 2
wy = S w] — 5112 a)l’

wl = O1l,
wy = (01 + O)ly.

Tracking the programmed motion using the PD controller is presented in Fig. 5.

Modeling and the controller design for the manipulator model in quasi-coordinates
result in the compact forms of the reference and control dynamics. Simulations are
faster and numerical stabilization of the constraint equations is not needed.

6 Conclusions

In this chapter we develop the theoretic model-based control oriented modeling
framework. It yields equations of motion for a NS in quasi-coordinates. We demon-
strate that the framework may offer a fast way to obtain equations of motion for a
constrained system either for the dynamic analysis or control. The theoretic model-
based control oriented modeling framewor treats the two types of constraints in
the same way in modelling and a controller design. Simulation results confirm that
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model-based control oriented modeling in quasi-coordinates is efficient and it sup-
ports numerical stabilization of the NC equations. Future research is planned in the
area of design controllers using quasi-velocities description to fully exploit properties
of motion equations in quasi-coordinates and quasi-velocities.

References

13.

14.

15.

16.

17.

18.

20.

21.

. Cameron, J.M., Book, W.J.: Modeling mechanisms with nonholonomic joints using the

Boltzmann-Hamel equations Int. J. Robot. Res. 16(1), 47-59 (1997)

Papastavridis, J.G.: On the Boltzmann-Hamel equations of motion: a vectorial treatment. J.
Appl. Mech. 61, 453-459 (1994)

Jarzgbowska, E.: Quasi-coordinates based dynamics modeling and control design for nonholo-
nomic systems. Nonlin. Anal. 16(16), 1741-1754 (2008)

Jarzgbowska, E.: Model-Based Tracking Control of Nonlinear Systems. CRC Press, Boca
Raton (2012)

Lewis, F., Dowson, D.M., Abdallah, C.T.: Robot Manipulator Control. Theory and Practice
Marcel Dekker Inc., New York (2004)

Kwatny, H.G., Blankenship, G.L.: Nonlinear Control and Analytical Mechanics. Birkhauser,
A Computational Approach. Boston (2000)

Bloch, A.M.: Nonholonomic mechanics and control. Interdisciplinary Applied Mathematics,
vol. 24. Springer, New York (2003)

Crawford, L.S., Sastry, S.S.: Biological motor control approaches for a planar diver. In: Pro-
ceedings of the Conferenc Decision Control, pp. 3881-3886 (1995)

Koh, K.C., Cho, H.S.: A smooth path tracking algorithm for wheeled mobile robots with
dynamic constraints. J. Intell. Robot. Syst. 24, 367-385 (1999)

Scheuer, A., Laugier, Ch.: Planning sub-optimal and continuous-curvature paths for car-like
robots. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 25-31 (1998)

. Vafa.: Space manipulator motion with no satellite attitude disturbances. In: Proceedings of the

IEEE International Conference Robotics and Automation, pp. 1770-1775 (1991)

. Grioli, G.: Particular solutions in stereodynamics. Centro Intern. Matem. Estivo, Roma, 1-65

(1972)

Appell, P.: Exemple de mouvement d’un point assujetti a une liaison exprimée par une relation
non linéaire entre les composantes de la vitesse. Comptes Rendus de I’ Académie des Sciences,
Paris 48-50, (1911)

Beghuin, H.: Cours de mécanique. Gauthier-Villars, Paris (1947)

Seifried, R.: Dynamics of Underactuated Multibody Systems: Modeling, Control and Optimal
Design (Solid mechanics and its applications). Springer, New York (2013)

Macfarlane, S., Croft, E.: Manipulator trajectory planning: design for real-time applications.
IEEE Trans. Robot. Automat. 19(1), 42-51 (2003)

Chee, W., Tomizuka, M., Patwardhan, S., et al.: Experimental study of lane change maneuver
for AHS applications. Proc. Am. Control Conf. 1, 139-143 (1995)

Oriolo, G., De Luca, A., Vendittelli, M.: WMR control via dynamic feedback linearization:
Design, implementation, and experimental validation. IEEE Trans. Contr. Systems Techn.
10(6), 835-852 (2002)

. Zotov, Y.K: Tomofeyev, A.V.: Controllability and stabilization of programmed motions of

reversible mechanical and electromechanical systems. J. Appl. Math. Mech. 56(6), 873—-880
(1992)

Zotov, Y.K.: Controllability and stabilization of programmed motions of an automobile-type
transport robot. J. Appl. Maths. Mech. 67(3), 303-327 (2003)

Nejmark, J.I., Fufaev, N.A.: Dynamics of nonholonomic systems. Am. Math. Soc, Rhode Island
(1972)



182 E.M. Jarzgbowska

22. Divelbiss, A., Wen, J.T.: Trajectory tracking control of a car-trailer system. IEEE Trans. Cont.
Systems Techn. §, 269-278 (1997)

23. Tao Sun, T., He, Y., Esmailzadeh, E., Ren, R.: Lateral stability improvement of car-trailer
systems using active trailer braking control. J. Mech. Eng. Automat. 2, 555-562 (2012)

24. Sowinska, M., Jarzgbowska, E.: Dynamics and control of a car-trailer vehicle using the
Boltzmann-Hamel approach. Techn. Rap. Warsaw Univ, Techn (2013)



Quasi-periodically Actuated Capacitive
MEMS

Faouzi Lakrad and Mohamed Belhaq

Abstract This work reports on the effect of a quasi-periodic (QP) voltage on the
dynamics of a resonant capacitive micro-electro-mechanical system (MEMS) under
DC and AC actuations. We consider that the AC actuation is composed of resonant
AC and non resonant AC voltages. The microstructure device is modelled as a lumped
mass-spring-damper system. Averaging technique and the method of multiple scales
are performed to obtain the modulation equations of the slow dynamic near the
primary resonance. The influence of the amplitude and the frequency of a high
frequency voltage (HFV) on the occurrence of bistability and jumps in the frequency
response is examined and the safe basin of attraction is explored. The results of this
work indicate that when the mechanical parameters of the MEMS device are fixed
and cannot be tuned, a HFV can be used for controlling the dynamic of the resonant
capacitive MEMS.

1 Introduction

Analysis of nonlinear vibrations of MEMS such as resonators, sensors and switches
is an active research topic with applications in many engineering fields such as com-
munications, automotive and robotics, to name just a few. One of the most critical
issues in the design of MEMS is their reliability, life time, survivability and stabil-
ity under mechanical, thermal and electrical loads. From dynamical point of view
one of the key performances of MEMS is the repeatability and the reproducibility
in terms of uniquely determined dynamics. However, this property is affected by
nonlinearities, especially hysteresis and pull-in phenomena. Indeed, in capacitive
MEMS devices hysteresis and pull-in instability constitutes one of the main way to
the device failure [1].
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Various theoretical and experimental works investigated the dynamic of MEMS
actuated by DC and AC resonant voltages. For instance, Mestrom et al. [2] measured
the effects of AC voltage on the hysteresis interval. Sahai et al. [3] used a laser beam
focused on a MEMS structure to tune its nonlinear behavior from softening to hard-
ening. Nayfeh and co-workers [4, 5] studied the mechanisms leading to the dynamic
pull-in of MEMS resonators actuated by a resonant AC voltage. They showed that
AC resonant voltage lowers drastically the pull-in threshold caused by the jumps
phenomena. Alsaleem et al. [6] studied analytically and experimentally nonlinear
resonances and dynamic pull-in of a microbeam. Rhoads et al. [7] studied paramet-
rically excited MEMS oscillators, while Lakrad and Belhaq [8, 9] investigated the
effect of a HFV on the pull-in in a microstructure actuated by mechanical shocks
and electrostatic forces and the effect of a HF AC tension on the pull-in induced by a
DC. Kacem et al. [10] analyzed the nonlinear dynamics of micro- and nanoelectro-
mechanical resonant sensors around the primary resonance. For a comprehensive
review on nonlinear static and dynamics of MEMS, the reader can refer to [1].

All the previously cited works deal with periodically driven MEMS. In the present
paper, the effect of a QP voltage on a capacitive MEMS is investigated. The QP
actuation is composed of a resonant AC voltage and a nonresonant AC one.

The rest of the paper is organized as follows: In Sect. 2, we describe the model, we
perform an averaging technique [11] and then we use the method of multiple scales
[12] to approximate the QP solutions of the MEMS device. In Sect.3, analytical
results are compared to numerical simulations, QP resonance curves are plotted and
the effects of the control parameters are discussed. The dynamic integrity and basin
erosion are also computed and commented. Section4 concludes the work.

2 Equation of Motion and Perturbation Analysis

A single-degree-of-freedom model depicted in Fig.1 is considered to represent a
MEMS device employing DC and AC voltages as actuators. The movable electrode
is modelled as a linear mass-spring-damper system. This linearity is valid when the
thickness of the movable electrode is greater than the initial gap with the stationary
electrode. We suppose that the only nonlinearity exhibited by the MEMS device is
caused by the electric actuation. Thus, the equation of motion can be written as

. . es )
mx—i—cx—l—kx:m\/ ([) (1)

where x(¢) is the displacement of the movable mass m, ¢ and k are the damping and
stiffness of the system, respectively, ¢ is the dielectric constant of the gap medium,
d is the initial capacitor gap width, S is the area of the cross section, and V() is the
electric load.

The electric tension V () is taken as square root of a QP function as follows
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Fig.1 A
single-degree-of-freedom
model used to model the
capacitive MEMS

c k
d lx(t)
Stationary electrode
V() = \/VOZ + U} cos (w*t) + Uj cos (£2*t) )

where Vj is the DC voltage, U} and w™* are the amplitude and the frequency of the
AC resonant actuation, respectively, while U and §2* denote the amplitude and the
frequency of the nonresonant voltage, respectively. The specific form of the input
voltage (2) is chosen in order to decouple the effects of DC and AC voltages, to avoid
the occurrence of other harmonics and to principally prevent coupling with harmonic
resonances. Note that a square root of a harmonic voltage was used in [13, 14] to
decouple parametric and harmonic excitation.

: k w* 2F
By setting X = 7,7 = wot, wop = /5, § = 2’7’fw0, w = :J)—O and 2 = o
where the displacement is normalized with respect to the gap and the frequencies are
normalized with respect to the natural frequency wq of the mass-spring system, the

nondimensional equation of motion reads

« Bcos (wr)  ycos(£27)
(I1-X)2  (1-X)? (1 -X)?

X' 42X +X = 3)

Here the primes denote the derivatives with respect to the normalized time 7, and
the parameters

2
_ SV @
2mwid3
_ 5SU12 )
2mwid>
N = ﬂ (6)
2mwid>

represent the contribution of the DC voltage, the resonant AC and the nonresonant
AC voltages, respectively. It should be pointed out that the parameters «, 3 and ~y
have to be chosen such that the electric tension V (¢) in (2) is real.
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Equation (3) is a quasi-periodically driven system both externally and paramet-
rically. In what follows §2 is taken larger than w and the corresponding voltage is
referred to as HFV.

In the absence of the AC voltages, the application of a DC voltage « causes
an attractive electrostatic force between the two electrodes that causes a permanent
displacement of the mass towards the stationary electrode. The static equilibria X
are given by solving the following algebraic equation

(0%

Xy=——
T (- X,)?

(7

Note that X; = 1 corresponds to the static pull-in phenomenon which leads to
the contact between the two electrodes. This contact is desirable, for instance, for
capacitive switches and undesirable for sensors. In this latter, it can cause stiction,
plastic deformations of the movable electrode or even its failure.

A static analysis reveals that the pull-in occurs for o), = 24—7 ~ 0.148 which
corresponds to a steady state displacement Xy = 1/3. Figure 2 shows the classical
variation of the static equilibria X with the DC voltage «. The stable (lower) branch
and the unstable (upper) branch of equilibrium points collide in a saddle-node bifur-
cation, resulting in the disappearance of both branches. In order to avoid the static
pull-in, the DC voltage « should be taken below 0.148 and the initial conditions
should be taken inside the homoclinic loop of the saddle equilibrium. It is worth
noting that the pull-in phenomenon could happen for values of « lower o), statically
determined, due to the transient dynamics and to the modification of the basin of
attraction.

Fig. 2 Static equilibria X, L T i i i
versus the DC voltage . N
Solid lines stable, dashed s
. 0.8 el
lines unstable ~.
0.6/ e
” ° S
X AN
0.4}
\
0.2
0 : ‘ ‘ ‘ ‘
0.02 0.06 0.1 0.14 0.18
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2.1 Fast Flow Dynamic

The expression of the electric tension V (7) used in (3) contains a slow dynamic which
describes the main motion at time-scale of the microstructure natural vibration and
a fast dynamic at time scale of the HFV. In what follows the two-step perturbation
method is used to approximate QP solutions of (3).

To obtain the main equation governing the slow dynamic of the device, we imple-
ment the method of direct partition of motion [11] by introducing two different
time-scales: a fasttime 7_| = 77_1 7 and a slow time Ty = 7. Then, the displacement
of the mass X (7), around a stable static equilibrium Xy, can be split up into a slow
part Z(Ty) and a fast part ¢(7_1, Tp) as follows

X(1) = Xy + Z(To) + ¢(T-1, To) = X5 +nZ(To) + 1*¢(T—1,To)  (8)

Here the positive parameter 7 is introduced to measure the smallness of other para-
meters (0 < n < 1). The slow part Z(Tp) takes into account the transient motion
composed of the natural damped motion of the microstructure and the response to the
resonant actuation. In order to give a physical meaning to the perturbation parameter
1, the high-frequency is chosen as £2 = ™. The fast motion and its derivatives are
assumed to be 27-periodic functions of the fast time 7 with zero mean value with
respect to it [11]. Thus, (X (7)) = Z(Tp) where (.) = 1 OZW(.)dT_l defines the fast

v
time-averaging operator. Introducing D}, = % yields

d -

——=1"'Doi+ Do+ Dy 417D+ 007 ©
d? 212 1 2
22 =1 DI +n0"2D-1Do + Dy + O(m) (10)

Setting 3 = 1’ 5 and £ = 772§~ where the parameters with tildes are of order O (1)
and substituting (9) and (10) into (3), we obtain up to 0(774) order the following

equation
(D% ,$) + X5 +1[2(D_1 Dod) + (DEZ) + Z1 + n*[(DFP) + 2D_1 D1) + ¢ + 2(Do D1 2)]
+ ’[2(D_1D29) + 2(DoD1§) + 2(Dg D2 Z) + (D} Z) + 2E(D_1$) + 2£(Dy 2)]

1 27
= (I_X)zl[a-i-'YCOS(T1)]+71|:(1Xs)(a+’yc0s(T1)):| (11)

+ 7| ( 32 + % )@+ cos (T_1))
T A Tx? T amxy e

1P 473 N 6Z¢
T a=x)3 T a-x,2

)(o+ 7y cos (T_1)) + Beos (wTo)“ +0a"
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The dominant terms dependent on 7_1 up to the order O(n) in (11) are

(D26) = =gy cos (T (12)

Thus, up to this leading order, the fast motion is given by

H(T-1, Tp) = — cos (T_1) + O(n) (13)

(1—Xy)?

This fast motion ¢ increases by increasing the amplitude v of the HFV and by
considering larger values of static equilibrium X which implies having a large DC
voltage .

2.2 Slow Flow Dynamic

To approximate the equation of the slow dynamic, Eq (11) is averaged over a period
of the fast time scale 7._1. One obtains the following equation up to the order O (n?)

(D§2) +wiZ = nlay Z* — 1+ P lenZ? — 1 Z — 26(DoZ) + By cos (wTp)]  (14)

where

3a 4oy - B 72 3 72

S U T Aoy T Uy T X T =Xy

aq

The parameters «; (i = 1, 2), Bl and 7; (i = 1, 2) represent the effects of the DC
actuation, the AC resonant actuation and the HFV, respectively. The fast dynamic
influences the slow one, in (14), through a biasing term 7y and a linear term 7%y, Z.

The normalized natural frequency of the mass actuated by the DC voltage is
given by

2

(1 -X,)3 (13)

w12 =1
In Fig. 3 the natural frequency w; given in (15) is plotted versus the DC voltage «.
In the same figure are plotted in circles the numerically obtained natural frequencies
of (3) in the absence of the AC voltages (5 = « = 0) and damping. In this case
the system is Hamiltonian and the physically acceptable solutions are centers that
are confined inside a homoclinic loop corresponding precisely to the static pull-in
phenomenon. It should be noted that the fundamental frequency of orbits near the
centers is computed numerically using a fast Fourier transformation analysis. It can

be seen from Fig.3 that the natural frequency is decreasing with respect to « till
reaching zero which corresponds to the pull-in instability.
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Fig. 3 Natural frequency w; 11
versus «. Continuous line

(given by (15)) and circles

(given by numerical o9}
simulation of (3))

1
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©
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Natural frequency ®
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In order to obtain approximations of periodic solutions of the slow dynamic, we
use the multiple scales method [12] up to the second order near the primary resonance
i, w = w; + o where the small detuning parameter o = 7>& is introduced to
measure the closeness of the excitation frequency w to the natural frequency w. New
time scales are introduced 7,, = 7", where n is a positive integer. Then, equating
terms of like power of 7 in (14), we obtain the following hierarchy of problems:

e Order O(1)
D3Zo+wiZy=0 (16)
The solution is written as
Z0(To, Ty, Tr) = A(Ty, Ta) exp (iw1 Tp) + c.c (17)
where cc denotes the complex conjugate of the preceding terms. The complex ampli-

tude A (T1, T) has to be determined by eliminating the secular terms at the next level
of approximations.

e Order O(n)
DyZy +wiZi = a1 Z§ — 1 — 2(Do D1 Zo) (18)
The secular terms elimination condition is given by
DIA=0 19)

and the particular solution up to order O (n) reads
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5= €Xp (2w Ty) + c.c (20)
e Order O (n?)
D(z)Zz + w1222 = — 2(D()D22()) — (D%Zo) + 20112()21
F 073 — T — 26D 7o) + 2 )

Elimination of secular terms leads to

i2w1(D2A) = —i2€wi A+ T1A+ LyA2A + ﬂzl ioTy (22)
where Iy = 2(2 —72and Ly = Oa' + 3ay. The particular solution at this order
1
is given by
~ 1 2a2
Zy=———>\n—- —1 A3e@B3wiTo) 4 (0 23)
8w1 3w1

Using the polar form A = (a/2) exp (i6), where G and 6 are the amplitude and the
phase, respectively, separating real and imaginary parts in (22) leads to the following
modulation equations of amplitude and phase

% =—¢a+n— 2 sin () (24)
dy o[ a a b
QE =o0a+n |:F12—+L2%+2—1008(1/1):| (25)

with ¢» = 6T, — 6. One should point out that stationary solutions of (24) and (25) i.e.,
a=1v=0 correspond to periodic solutions of the slow flow (14) and consequently
to the QP vibrations of the original system (3). In fact, with Z = 772 and a = na, the
amplitude a of these periodic solutions is obtained by solving the following algebraic
equation

2 2 2 a7 By
&a”+ |oa+n F1—+L2— =\— (26)
2w 8w 2w

It can be seen that HFV influences the amplitude a through the parameter I'i. The
approximated QP solution of (3), up to the leading order, is then given by
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X(1) =X, — m cos(£27) 4+ a cos (w7 + )
2
ol a 71 a1 -
+2—<U%E — Qz—u}% — @Cl COS (2(4.)7' — 2¢)
1 2&% 3 4
——2(a2 — —2)a cos Bwt —3¢) + O(n™) 27
32wy 3wy

3 Main Results

In this section, we analyze the effect of different actuations on the dynamic of
the micro-system. To validate the analytical prediction, we compare the analyti-
cal approximation given by (27) with the results obtained by numerical simulations
of (3) using a Fehlberg fourth-fifth order Runge-Kutta method.

Next, attention will be paid on the regions where the behavior of the micro-system
is QP precluding the chaotic regions. Indeed, (3) represents a four-dimensional
dynamical system in the space R> x T2 and can be written in the form

X' =Y

Y = —2¢Y — X + a + [cos (@) + v cos (O)
(1-X)?

¢ =w 28)

O =0

A visual representation of the attractors in the four-dimensional flow (28) can be
achieved using Poincaré map by strobing on the fast-evolving phase ®. The corre-
sponding mapping (X,, X, @n) > (Xn+1, X;H—l’ ®,,41) is three dimensional.

In all numerical computations the damping coefficient £ = 0.0002. In Fig.4 we
show the time histories of (3) obtained analytically (27) and numerically for various
parameters of control. One can observe from these figures a good match between the
analytical and the numerical results.

In Fig.5 are depicted the power spectra and the Poincaré map of the attractors
(shown in Fig. 4a, b) projected on the plane (X,, ®@,), with @, is computed modulo
27“. These plots show that the attractors are QP.

3.1 Case with Resonant Actuation Only

In the absence of the nonresonant voltage (v = 0), the system is subject to a DC and
an AC resonant voltages. Figure 6 shows, for different values of the static voltage «,
the amplitude-frequency response of the mass, as given by (26). The numerical values
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Fig. 4 Time histories for « = 0.12,¢ = 0.0002, 0 = 0 and v = 0.119. Gray line (analytical
solution (27)) and black line (numerical solution of (3)). a = 2.10%and 2 =7.1,b 6= 1073
and 2=4.1,¢3=5.10"% and 2 =4.1
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Fig. 6 Resonance curves for
various values of «, for

v =0, & = 0.0002 and

5 =0.00001. Lines
Analytical solutions (24) and
(25): continuous for stable
and dashed for unstable. The
stars, triangles and circles
for numerical solutions of (3)

Fig. 7 Resonance curves for
various values of 3, for

v =0,§ =0.0002 and

o = 0.12. Continuous lines
for stable, dashed lines to
unstable analytic solutions.
The stars are numerically
computed amplitude
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of the amplitude a of the periodic solutions are obtained by solving the algebraic
equation (26). It can be seen from this figure that increasing the static voltage «
increases the softening behavior of the system.

In Fig.7, we show for fixed DC voltage o = 0.12, the frequency response for
different values of resonant AC voltage 3. One observes that increasing (3 leads to
the softening behavior, hysteresis as well as dynamic pull-in instability [5] for larger

values of (.

The bifurcation curves delimiting the existence regions of solutions are shown
in Fig.8 in the plane of the resonant voltage parameters. It is clear that the region
of multiplicity of solutions (zone I) increases with increasing (3. This results is in
agreement with the softening effect of increasing (3 shown in Fig. 7.
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Fig. 8 Number of solutions X107
in the plane (o, ) for vy = 0,
a = 0.12 and £ = 0.0002:

zone I three solutions and 2.5f
zone II one solution Zone | Zone |l

Fig. 9 Number of solutions 0.12
in the plane (£2, ) for
a=0.12, 0 = —0.002, zone
I three solutions, zone II one
solution

o o
o o o
=3 o o

Amplitude of the HF voltage y
o
(=]
=

0.02

4 5 6 7 8 9 10
Frequency of the HF voltage Q

3.2 Effects of the Nonresonant Voltage

In this subsection we investigate the effect of adding the nonresonant AC voltage on
the frequency response of the moving mass. In particular, we shall investigate how
this voltage can affect the domain of bistability. First, assume that the parameters
of the system are chosen in zone I of Fig.8 (¢ = —0.002, 5 = 0.00001) where
bistability exists. In Fig.9 we show in the parameter plane (v, §2) of the HFV the
region where the bistability can be eliminated (the gray region). Figure9 indicates
that the elimination zone of bistability is optimal for moderate values of the frequency
£2 and high values of the amplitude vy of the HFV.

Figure 10 shows, for fixed £2 = 7.1 and o = 0.12, the influence of the amplitude
~ on the resonance frequency of the slow dynamic obtained analytically in (26).
This figure shows that increasing the amplitude + causes the nonlinear resonance
frequency to shift towards higher frequencies. Figure 10 also indicates that by tuning
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T T T T

0.05F ¥=0.05 ¥=0.1

Amplitude a

Fig. 10 Analytical resonance curves given by (26) versus the shift of the resonance o for various
values of . « = 0.12 and £2 = 7.1

the amplitude of the HFV, the amplitude of the resonant mass response might be
increased or decreased to a desirable value of operation.

In Fig. 11 are shown the numerically computed resonance curves of the original
equation (3) for various values of . This figure shows the maximum values of
the stationary solution of the QP attractors, after disregarding 6600 resonant period,
during 600 times of the resonant period. This figure confirms the analytically obtained
results of Fig. 10. The effect of the amplitude + and frequency £2 of the nonresonant
voltage on the resonance shift is presented in Fig. 12. This figure shows that the
amplitude v and the frequency 2 cause opposite effects on the shift of resonance.
Indeed, increasing y increases the shift, while increasing £2 decreases it towards the
case v = 0.

3.3 Dynamic Integrity and Basin Erosion

It is agreed that the safety of a nonlinear system depends not only on the stability
of its solutions but also on the uncorrupted basin surrounding each solution [15].
Indeed, by performing numerical simulations of trajectories from different starting
points we are able to detect any significant change in the safe basin of attraction. In
this section we analyze and approximate numerically the safe basin of attraction.
The chosen phase space window is X (7) € [0, 0.5] and X'(7) € [—0.2,0.15]
which contains the compact part of the safe basins of attractions. Figures 13 show the
basins evolution for increasing value of the AC voltage (3 in the absence of HFV. The
safe basins correspond to the black regions and the corrupted areas correspond to
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Fig. 11 Numerical resonance curves for different values of v and £2 = 7.1 of (3). 5 = 0.00001,
£ =0.0002, « =0.12
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Fig. 12 Shift of the resonance versus the amplitude of the HF voltage  for various values of £2
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Fig. 13 Basins of attraction for various values of 3 and for « = 0.13,0 = —0.001 and vy = 0. a
B=0.b3=0.003.¢c3=0.007.d 5 =0.01.

the white regions. These latter regions correspond precisely to the occurrence of the
dynamic pull-in phenomenon. The erosion of the safe basins for increasing resonant
voltage amplitude f3 is depicted in Fig. 13.

Figure 14 shows that the safe basin of attraction can be increased by adding a
HFV with v = 0.12 and £2 = 5.1. The effect of adding the nonresonant voltage on
the basins of attractions is given in Fig. 15. It shows the global integrity measure,
representing the normalized area of the safe basin [15], versus the amplitude of
the resonant voltage amplitude [ for various . One observes that increasing the
amplitude v may increase the safe basin of attraction for 5 < 0.005 while the
amplitude of the HFV has no effect on the global integrity measure beyond 3 =
0.005. Indeed, increasing the safe basin offers the movable electrode of the capacitive
MEMS to gain stability and to operate in larger intervals.
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4 Conclusion

The dynamics of a quasi-periodically actuated capacitive MEMS is studied analyti-
cally and numerically. The MEMS is modelled by a lumped single degree of freedom
system actuated by DC and AC electrical voltages. The AC actuation is QP and is
composed of aresonant AC voltage and a non resonant fast AC voltage. The QP attrac-
tors are approximated by using the two-step perturbation technique. The method of
direct partition of motion was performed to approximate the slow dynamic of the
device and the multiple scales method was used to obtain the amplitude-frequency
response of the slow dynamic near the primary resonance.

The results shown that adding a HFV to the resonant AC actuation shifts the
frequency response toward higher frequencies, thereby retarding the occurrence of
bistability and jumps in the response amplitude. It was also shown that for appropriate
values of the amplitude and the frequency of the HFV, jumps phenomena can be
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eliminated. Moreover, by tuning the amplitude of the HFV, the amplitude of the
resonant mass might be increased or decreased to a desirable value of operation which
can be of interest for sensing specific mechanical parameters. It was also shown that
for appropriate amplitude and frequency of the HFV the safe basin of attraction is
increased and consequently the dynamic integrity of the device is improved.

The present work reveals that in certain operations where the original mechanical
characteristics of the MEMS device are assigned and cannot be tuned, HFV can
be considered as a practical alternative for controlling the dynamic of the resonant
capacitive MEMS.
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Localization of Vibratory Energy of Main
Linear/Nonlinear Structural Systems
by Nonlinear Energy Sink

C.-H. Lamarque and A. Ture Savadkoohi

Abstract Two systems are considered: the system I is composed of a main linear
structure which is coupled to a nonsmooth nonlinear energy sink. Here, effects of
the gravity forces are not neglected. The system II consists of a main structure with
a set of parallel Saint-Venant elements that is attached to a nonlinear energy sink
with general odd nonlinear potential function. Time multi-scale energy exchanges
between two oscillators is detected; in detail: the invariant manifold of the system at
fast time scale is traced while detected equilibrium and singular points at slow time
scale give us envision about system behavior(s) at pseudo-steady-state regime(s).
All of detected behaviors provide us design tools for tuning necessary parameters
of nonlinear energy sink for the localization of vibratory energy of main structural
systems.

1 Introduction

It has been proved that pumping the essential part of vibratory energy of main struc-
tures is possible by endowing nonlinear properties of coupled oscillators [1, 2]. Later
on this phenomenon was used for transferring the energy of main systems to sec-
ondary oscillators with very small mass compared to the main one’s and with essential
cubic geometrical nonlinearity. The phenomenon is named as “energy pumping” and
the light and nonlinear oscillator is called as nonlinear energy sink (NES) [3-35].
Efficiency of the NES in localization of vibratory energy and passive control of sys-
tems has been proved experimentally as well [36—43]. However in most of above
mentioned studies, the nonlinearity of the NES is cubic and the main structural sys-
tem is supposed to be linear or to present smooth nonlinearity [16, 26, 27]. Some
research works have been carried out to consider other types of nonlinearities for
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the geometrical potential of the NES and their efficiency in passive control of main
systems, e.g. vibro-impact and non-polynomial nonlinearities, non-smooth poten-
tial function with constant or time-dependent mass [44—50]. There have been some
research works that consider nonlinear main structural system to be controlled by
cubic or non-smooth NES; in detail: a main oscillator with piece-wise linear and also
Dahl-type behavior and a coupled nonsmooth NES [51, 52]; the main system with
hysteresis behavior of Bouc-Wen type and a NES with general nonlinear potential
function [53]; the main structure with single or several Saint-Venant elements [54]
in parallel and a NES with cubic or general potential function [55, 56]. The current
paper is a summary of our two previous research works which deals with the local-
ization of vibratory energy of: (i) vertical main structural systems by a nonsmooth
NES [48] and (i) main structural systems with a set of parallel Saint-Venant elements
by a NES with general potential function [56]. Organization of the chapter is as it
follows: summary of the general methodology to deal with multiple scale dynamics
of a main oscillator and a coupled NES is given in Sect. 2. Energy exchanges between
a vertical linear system and a coupled nonsmooth NES is presented in Sects. 3 and
4 deals with studying of the dynamics of a main structural system including a set of
parallel Saint-Venant elements and a coupled NES with a general nonlinear potential
function. Finally conclusions are collected in Sect. 5.

2 General Methodology to Deal with Two Coupled
Oscillators: A Main System + NES

In order to study multiple energy exchanges between a main oscillator and a coupled
NES, we implement following steps [53]:

e re-scaling the system.

e transferring the system to the center of mass and relative displacement.

e applying complex variables to the system and using Galerkin technique by keeping
first harmonics (and constant terms).

e embedding the time to different scales (fast and slow time scales) and detecting
invariant manifold at the fast time scale and equilibrium points and fold singular-
ities of the reduced order form of the system at the slow time scale.

3 Localization of Vibratory Energy of Vertical Main Linear
Structural Systems by Coupled Non-smooth NES

Here we would like to analyze time multi-scale energy exchanges between a linear
system and a nonsmooth NES. Gravity loads are not neglected. Let us consider the
academic model of a system which is subjected to vertical excitations as is depicted
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Fig. 1 The academic model
of the system under gravity
(g) loads and external force
I sin(2t).m = eM,

0 < ¢ < 1; masses oscillate Y2
vertically |_

k2

Y1 L
M T'sin(Qt)

in Fig. 1. The system is composed of a linear main structure (M) which is coupled to
a non-smooth NES (m) system. Governing system equations can be summarized as:

My +kiyr + F(yr — y2) +n(y1 — y2) + Mg = I' sin(£2t)
(1)
my> + F(y2 — y1) +n(y2 — y1) +mg =0

where 7 is the continues linear damping of the NES and F is the non-smooth potential
function of the NES which is defined as follows:

0 if =6 <z<$

F(z) = —agf) = F(-2) = kaz—8)if z>6 )

kr(z+8)if z<-6

[k
If we suppose that T = ¢ Ml = t1, then the system (1) in the 7 domain reads:

. 2
ORI U S S SN R
kl \/kl_M k1 kl (3)
L N PN S
’ ki B - _— =
J2t g POz =y + o= 0o =0 +
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. . . m Mg n 1
‘We introduce the following variables: ¢ = —,y = —, eA = ,—F(z) =
g v’ T Tk (2)
s 1 k> 2 r .
eF(z),k = —— ,w= — and — = €fy. So, scaled potential of the NES reads:
e ky 0 kq
; 0 if =6§<z<96
F@)=1k(z=8)if z=6 (4)
k(z+38)if z<-6

Following system can be derived:

Fi4+y1+eF(y—y2) +er(i— o) +y = efosin(@T)
) (5)
eyr+eF(y2—y1)+er(n—y1) +ey =0

We are interested to study forced vibration but also the transient behavior occurring
before reaching the steady-state regime. The frequency of the main system in (5)
is equal to “1” and we would like to analyze system behavior in the vicinity of 1:1
resonance. We will suppose that = 1 + o¢ and since ¢ is a small, it means that
we will pinpoint system behavior around 1:1 resonance. Let us transfer the system
to the following coordinates:
v=yt+éen
(6)

w=y1—»n

In the second equation of the system (5), the parameter ¢ has been kept intentionally
in order to show coupling terms between two equations of the system (5) and physical
orders of respective equations. Especially v is associated to the center of two masses
(1, ). If we divide the second equation of the system (5) by ¢, then we will have a
system of two masses at the same order (1, 1), leadingtov = y;+y, andw = y; —y»
which do not have appropriate physical meanings for the system under consideration.
The consequence should be to keep nonlinear terms in both resulting equations for
vand w.

By adding and subtraction two equations of the system (5) we will have:

v+

v+ew)+ vy +e¢) =¢efysin(wT)
1+e¢

(7

W+ v+ ew) + (1 +&)Fw) + (1 4+ &)aw = efp sin(wT)

1+¢

We introduce a modified form of Manevitch’s complex variables [57] to the
system (7):
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B + <p1ei‘“T =v+iwy
3

By + <p26i“’T =W+ iow

with B| = iby, B = iby and i = —1. B; and B, are constant terms taking into
account the fact that the dynamical system (5) (including y) is not written around
the (y1, y2, ¥1, y2) = (0, 0, 0, 0). So, we have to include constant terms to take into
account nonlinear terms in averaging. It corresponds to taking into account constant
terms of Fourier series together with first harmonic terms. We can present the function
F(w) in the form of Fourier series:

~ oz by i ioT x —iwT\Y) _ - . *\ iwjT
Fn = F(Z = 3@ —gie™D) = 37 s 02,99 (9)
Jj=—00

where the * represents the complex conjugate of the function under consideration.
We implement the Galerkin method using a truncated Fourier series (constant and
first harmonic) and then we endow multiple time scales approach to investigate the
evolution of the Fourier-coefficients. The constant and first harmonic of the (7) by
considering variables of (8) and j = 0, 1 in (9) read as:

1 by by
—4+e—)++e)y =0
1) 1)

1+¢
(10
1 b by
1 (— + 8—) + (1 +e) fo(b2, 02, 95) =0
+e \w w
= —efy + (g1 +og2) —
<p1——2€f0 2o +e) 91+ e92) — S0P
. __i i _A(1+8) _i _ «
2= 28]04-§ZRTj;;5(¢14-8¢2) 5 92 0N (I+e)frb2, @2, 93)

(11)
where f; (b2, 92, ¢3) and f¢ (b2, @2, ¢5) are zero and first Fourier coefficients which
can be evaluated as:

2

w [ ~/b i . .

Sz (b2, 2, (0;) = E/O F(; - Z((ﬂzele - (p%‘e le))dT (12)
27

w w ~/b i . . .
frb2, 2, 93) = g/o F(;2 - %((pze“”T - go;e—’”))e—’”dr (13)

It can be proved that [48]:

« 2
fr(b2 g2, %) = —%Gf(|<l72|2) (14)
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where for any variable x > 0

I b
0 ir 24X _
0
k 2b 26
—(n+—2 X — (b — 8w)? — =25 — (by — bw)>—
2mw X X
Gf(X)Z 2b 28
2 x = b+ 8002 = 22 [ — (b2 + 500>+
X X
by +$6 by —§ b
2arccos( 2t C0)-|—2arcsin( 2 a))> if —2+ﬂ25
X X w w
(15)
and
b
0 if by VX
w w
k
—(bzﬂ +\/(b2 + VX = 8w)(=b + /X + dw)—
Tw
f(x) = (16)

V(=by + /X —dw) (b + /X + sw)+

. by —dw . b+ dw
(by — Sw) arcsin + (b + Sw) arcsin (——— )
ir 2 YX s
1) 1)

To deal with the systems (10) and (11), an asymptotic approach [58] by introducing
slow times 71, 72, ...with the fast time 79 can be implemented as follows:

T=1, 11=c¢1,... , a7

" d 3 3
- = 4. 18
dT 3t0+831'1 + (18)

In the next sections we will try to have finer envision into systems (10) and (11) at
different orders of ¢ in order to grasp the system behavior during different scales of
time.
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3.1 Truncated Fourier Series: Constant Term

The general form of the system (10) show that y = fZ(sz). During the £° order, it
leads to:
by =-y (19)

while during the ¢! order we have:

by=-y(2+o0) (20)

3.2 Truncated Fourier Series: First Harmonic

3.2.1 ¢° Order

We assume that the system is around 1:1 resonance (w = 1 + o¢). Equation (11) at
the ¥ order yield to:

09
P 0= g1 =gi(n1) @1
81’0
. 2
8&+1(1—Gf(|<.02| ))+k _i 22)
970 2 92 =59

so, fixed points of the system (@ (t1)) can be evaluated by following equation:

. _ ) 2 )
i(1 Gf(2|q5|))+,\(p=%(pl o3

Let us assume that ¢; = Nje'®' and @ = N»e'%2, so (23) can be re-written as the
following form:
Ny —iANy — G p(NF)Ny = Nyl @15 24)

which leads us to follow invariant manifold of the system during 7 time scale (7o-
invariant):

Ny = Nz\/x2 +(1-Gr(ND)? (25)

A typical invariant manifold for given system parameters is illustrated in Fig.2. It
has been proved that stability borders of the tp-invariant is defined as it follows [48]:

A2+ (1-Gs(ND)(1— H(N3)N, — G¢(N3)) > 0 (26)
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Fig. 2 tp-invariant manifold 4
of the system and its stable
and unstable zones 3.5¢ k=
4=1
3 k=1.
A=0.
2.5¢ .
= 2

Stable; Unstable | Stable

1.5f
1r \
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Stable and unstable zones of the invariant manifold are depicted in Fig.2. In fact
when the system arrives to the vicinity of the unstable zone, it tries to reach another
stable zone via a bifurcation. This will lead to the energy pumping phenomenon.

3.2.2 ¢! Order

At the order of ¢! the first equation of the system (11) reads as:

i i i
9 b L@ —g—op) — & 27
2fo-i- 2( 1 — o) 4 (27)

Let us try to enlighten the behavior of the system at the 77 time scale “around” the
invariant manifold at the time scale ty. By considering (23), following system can
be derived:

)
a—n(qﬁ —iA® — ®G(|PP))

1

(28)
= _(_ fo— 2a(¢ —iAD — Gf(|<b|2)¢) +ird + Gf(|<;b|2)¢)

2

and if we suppose that @ = N»(z1)e!®() | following compact for of equations can

be obtained:
ANy f1(N2, 82)

= 29
a7y g(N2) &

98 _ f2(N2, 82)

= 30
a1 g(N2) 0
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where,
Fi(N2, 82) = fo sin(éz)(Gf (N2) — 1) — ANa + Afo cos(82) 31)
1 — G¢(N?) —2N2G',(N? A
SV i = — 2 2)N 29 2)f0008(52)—ﬁf05in(52)
2 2

=221 +20) + (1= G/ (N) = 2N3G); (N2)) ( = 20 +20G(N3) + G £ (N3))
(32)

¢(No) = 2(1 +32 = 2G 7 (N3) — 2N3G/,(N3) + G%(N3) + 2N22Gf(N22)G’f(N22))
(33)
The relation g(N>) = 0 provides two values for N», namely N»; and N»». They are
called as fold lines of the system. We will use these equations later on for detailed
bifurcation analysis of the system.
For detecting the invariant manifold of the system at the t; time scale

0
(t1-invariant), (28) can be re-written as (8—(p1 =0):
13!

%(—fO—ZU(Qﬁ —ird —Gf(|q>|2)<p) +ikq§+Gf(|®|2)q)) =0 (34

or

fo= Ng\/kz(l +20)2 4+ ((1 +20)G¢(N3) — 20)2 (35)

A typical invariant manifold of the system at the time scale 77 is depicted in Fig. 3.
Intersections of this invariant manifold (for a given f) with the rp-invariant are
positions of fixed points.

Fig. 3 t;-invariant manifold 1.4
of the system
12 7
’ 4=1
k=1.5
1 1=0.2

o8l r981x10™
0.6
0.4

0.2r
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3.3 Analytical Results Versus Numerical Integrations

Since the overall system is under gravity loading, the initial equilibrium state of each
mass (y1o and yz0) should be evaluated. Let us consider different hypothesis as the
equilibrium state for the system (1):

e S<yy—y1<+8soF(y2—y1)=0
This assumption leads us to following system:

kiyi+Mg =0
(36)
mg =0

which is an impossible equality. So, this assumption is not valid at the equilibrium
state of the overall system.

o y2—y1 < =850 F(y2 —y1) =ka(y2 — y1) + k26
This leads to following system:

kiyi —ka(y2 —y1) —kad + Mg =0

37)
ko(y2 — y1) + k26 +mg =0
SO,
M
y10=—k—lg(1+8)=—y(1+8)
(38)
M m M
v ==t +e) =6 - "L =yl +r)—s—e-"
kl k2 k2

This equilibrium point should be considered in all numerical results. We can impose
equilibrium states to the numerical results as follows:

Vaumerical = (Y1 — y10) + €(y2 — ¥20)
(39
Wnumerical = (Y1 — y10) — (y2 — y20)

So, Ny and N» can be defined in terms of original system of equations (N{**“" and
N5*ely as:

foa” = \/(Vnumerical)2 + (yl + 8)’.2)2~ (40)

NZexaCt = \/("Vnumerical)2 + (Y1 - );2)2~ (41)
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Let us consider the following initial conditions for the system:

y1(0) =15+ y0, y1(0) =0
(42)
y2(0) = y20 , ¥2(0) =0

Figure4 presents tp-invariant of the system and corresponding numerical results
which are obtained by direct integration of (5) with the external forcing amplitude
fo = 0.1. When the system arrives to the unstable zone, it tries to reach other stable
zone by an abrupt jump between its stable branches through a bifurcation. This
bifurcation leads the master structure to experience very low amplitude compared to
initial stages of the vibration (see Fig.5).

3.4 Strongly Modulated Response in the Presence of Gravity

The strongly modulated response (SMR) of the system in the vicinity of the 1:1
resonance is characterized by relaxation oscillations between stable branches of the
slow invariant manifold, i.e. switches between slow motions at stable critical mani-
folds of the system and fast jumps between them. Starosvetsky and Gendelman [21]
pinpointed this behavior in two coupled oscillators with essential cubic nonlinearity
for the NES while Lamarque et al. [46] investigated the same behavior in systems
with non-smooth NES. Let us consider (29) and (30). The possible relaxation of the
system can occur if the flow in the vicinity of the lower fold line, i.e. N»1, experiences
some bifurcation, i.e. for some points at the lower fold, Nﬁ changes its direction, so
phase trajectories of the lower stable branch can change their direction and aim at

Fig. 4 tj-invariant manifold 3
of the system in the presence
of the gravity and
. . 2.5 ]
corresponding numerical
result with fy = 0.1.
Numerical results are 2r k=1 1
obtained by direct 8=1
. . k=1.5
integration of (5) = 1.5} 1=0.2 g
€=0.001
1l 0=0.1 ]
¥=9.81x107™*
=0.1
0.5 1
0 L L L L
0 2 4 6 8 10
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Fig. 5 Variation of system (a)
amplitudes with respect to 8
the time (fo = 0.1):a Na; b

Nj. Results are obtained by 7r 1
direct integration of (5)

= 0.8
0.6

0.47

0.27

oO
N
AN
(]
(o]
—_
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the fold line N,; for a jump to upper stable branch. This criterion will be satisfied if
in (29) and (30):
S1(N2,82) =0
(43)
f2(N2,82) =0

which corresponds to ordinary fixed points of the system under consideration. If in
addition to this, g(N3) = 0 (the denominator of (29)) then the system will have
fold singularities, i.e. singularity and equilibrium points coincide, so No = N and
N> = N»p;. It is worthwhile to mention that g(N2) = 0 is exactly equivalent to
stability borders which are presented by (26) [48], i.e.
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A+ (1=Gr(ND)(1— H(N3)N, — G¢(N3)) =0 (44)

Lamarque et al. [46] proved that necessary forcing condition for existence of the first
pair of folded singularities, i.e. (Na1, §21), is:

AN

fo = foaeritical) =
\/ (45)

2 (1-6,0))

and the second pair of folded singularities on the second fold, i.e. (N22, §21) and
(N2, 822), exists if:

AN2

2 46
\/x2+(1—cf(N§2)) (46)

Let us analyze the system under external forcing term fo = 0.3 > fo(icritical)y =
0.254. The global behavior of the system is depicted in Fig. 6 while histories of system
amplitudes are illustrated in Fig. 7. The response of the system is strongly modulated
by trapping into hysteresis loops and bifurcations between its stables branches. In
order to clarify this, phase portraits of the system is depicted in Fig. 8a while a zoomed
area of this figure is illustrated in Fig. 8b. It is seen that some flow lines change their
direction toward the fold line N, which gives a hint of the relaxation of the system
by facing to folded singularities in the form of saddle and node (see Fig. 8b).

fo = foeeritical) =

Fig. 6 tp-invariant manifold 3
of the system in the presence
of the gravity and

. . 25
corresponding numerical
result with fo = 0.3.
Numerical results are 2f
obtained by direct

integration of (5) = 1.5¢

7=9.81x 107
f,=0.3
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Fig. 7 SMR and Beating (a)

response of two oscillators 8

with external forcing term

fo=0.3> foqcriticaty = 7r 1

0.254: a) N»; b) Ni. Results
are obtained by direct
integration of (5)

0.6 1

0.47 1

0.2
T (sec) x 10*

4 Localization of Vibratory Energy of a Main System
with a Set of Saint-Venant Elements by a NES
with General Nonlinearity

4.1 Representation of the System

We consider the system which is depicted in Fig. 9: It consists of two coupled oscilla-
tors. The first one with mass, stiffness and damping as M, ko and ):, which possesses
a set of parallel Saint-Venant elements with characteristics as k; (stiffness) and «;
(threshold of the Saint-Venant element), j = 1, 2, ..., n. Each Saint-Venant element
has an internal variable (displacement u ;). The second oscillator, namely NES has
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Fig. 8 Phase portrait for the (a)
system with fo = 0.3 >

Socteriticany = 0.254, a the

overall view; b the zoomed

area around folded

singularities

(b)
15— T T T T T
141 ]
Node
13k Sa(idli A A
\AAAAAAAAAAAAAAAAAAA % < R’A AAAAAA
1.2k |u|m||| VV B P ) N21
ety oy ui‘\} v, "I,"l.‘
! 1 W “||l‘\c?f£zll 'lllyrl,'l
1 “u“‘tr“\\“‘\‘\ Y ,?r, !
1 \\\\\ Wt i:;/ % ':,%’
W >
\?‘:‘}:{ f‘ &
3 .
SR

the mass, stiffness and damping asm (0 < ¢ = n « 1), & and A;. The potential
of the NES (F) is supposed to be a general “nonlinear” and “odd” function, i.e.
F(—z) = —F(z) (e.g. F(z) = 23) [56]. If x (versus y) be the displacement of the
mass M (respectively mass m), governing equations of the system can be summarized
as:

d*x  -dx
Tt —i—M(—-—)—i—kox—i—Zk uj 4+ Fx—y) = fi(t)
=1
B @B s G —x =0
— ———)+c —Xx) =
mar War LY
du u; dx aj .
=, p==L j=12...,
(dt A ))Bdt " kj J "

(47)
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t

/ fi(t) .
; ko ,—>
L AAMMA—
——H ~

e
/ i = M %;1 m
; ko ag — ——
/ .
/7 bt —en
/]
;
/777777777777777<;%77777;;7777777777777777

Fig.9 Two coupled oscillators: the first one with a set of parallel Saint-Venant elements and under
external force f1(¢); the second one with general and odd nonlinear potential function (m = ¢ M,
0<exkl)

Fig. 10 The B graph in B(x)
Saint-Venant element

The B graph which is depicted in Fig. 10 can be described as it follows:

@ ifxe]— o0, —1[U]l, +oo[
o ifxe]—1,1]
PO=1R_ ifx=—1

Ry ifx =1

(48)
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ko %S

ki Cl
Let us introduce v = ¢ —=z‘/‘t,—=£)»,—]=8k',—=8 >
) M M2 = 0 a2 T ez T EC10
MO fl(%) .
M_ﬁz = eM0, M—ﬂz = Sflo Sln(.Q'C).

We mention that the differential inclusions of the model under consideration come
from basic constitutive equations of the Saint-Venant elements as:

dx du;
kiujeajo(— ——21), j=12,..., 49
jUj ea]o(dl‘ dl) J n (49)
where o is the graph of the sign:
-1 if z<0
o) =1[—-1,1]if z=0 (50)
1 if z>0

d. .
So, one should take into account that 7 =1 e and

T
) dx  du;
kjujeaja(ﬁ(d—x—%)) j=1,2,....n
ds ' dil; D

kjuj eajo((— — =L i=1,2,...,
N ]ujeot]cr((dt e )) Jj n

Finally (47) are equivalent to

d’x Len dx + el (dx dy)+ + Zn:k + ecioF ( )
St 1 Y4+ x+s¢ iuj+ec X —

172 Od‘L' 10 dr  dt = J%J 10 y
= &f10sin(£27)

Py oo =) 4 ey —x) =0 7
e—=+¢ —_ - — ec —Xx) =

dr? 10 dt drt 1058

duj u; dx aj

—J L =) —_—, = =, / = 1,2, ey

(dr +IB(77/‘)) a kj ! ’
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Let us introduce coordinates of the center of mass and relative displacement via

_vtew

vV =x—+¢&y x—l c
Iw=x_y & pvw (53)

I+e¢

System (52) becomes:

d?y v+ ew

s 1+E(d— —) . ++ejzlk,u, = /10 5in(£27)

d*w glo v+ew

— — 4e— k;

a0 1+8(d i)t ++82 i (54)

d
+(1+ s)(m% +cloF (W) = £f10 sm(m>

(G2 +8CD) = G +ei w1

j .
=, =12,...,
1+¢ dr dt kj J "

4.2 Dynamical Behavior Around 1:1 Resonance

d
Letusset7T = 27 and - = T We introduce the following complex variables [57]
T

to the system:

d1ell = Q20 +1v) , pfe T = Q@ —iv)
pre'T = Q200 +iw) , pre™ T = Q0 —iw) (55)
pryje —.Q(u]—i—zu]) ¢>2+J e iT =Qj;—iuj),j=12,...,n

with i2 = —1. To investigate the 1:1 resonance, we assume 2 = 1 + oe.

We consider only equations obtained by Galerkin method and truncated Fourier
series: Indeed we take into account only first harmonic e/’ for each equation. To
calculate the corresponding Fourier coefficients we assume that ¢; and ¢/ (I =
1,2,...,n 4+ j) do not depend on T. We will either verify this assumption during
the multiple scales analysis, or we will assume that after a transient long enough ¢,
and ¢/ (I = 1,2,...,n + j) reach to an “asymptotic state” independently of T.
Nevertheless we also keep ¢ and ¢» in the equations. Then we obtain following
system:
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n
zkj¢j+2

.82 ero(P1 + ¢2) o1+ ed j=1 fio
Qé — = =10
NN T 0T Tagdte ¢ 2:i “2
n
PITE 56)
24 _Q¢ L@ tedr) | drtedr =1
PTG 21 +¢) 2021 +¢) 20Qi
F(+e)(c10F + gy = 22
2 2i
d1+ep . |1 + edr] )
= , —=1.2....,
¢]+2 (1+8)7T€]((1+8)Q )s J n
where 5 o _T
l 4 . ¢lel _¢*efl
ar iT 2
= LA a— N 57
i e ) G

and§;(z)(Vz e Ry, j=1,2,...,n)reads:

T ifz<n;
5i) 0 + e~ sin(0) — 46_’%5111(5) _ ) —i0+%) i, o n; (58)
Z
with
277]
0 = arccos(l — —=) (59)
z

As in the Sect. 3 a multiple scale approach [58] with a small (and given) parameter ¢
is presented by considering fast time Ty = T, and slow times 7 = &/T, [ = 1,2, ...

so that: d J J d
2
—_— = — — 4 ... 60
ar —an, fan T an T (60)

4.2.1 €%-Order of the System

At €% order, following equations can be derived from the system of (56):

d
£=0:¢1=¢1(T1,T2,---) (61)

02 o1 —
a7y + 2i +

A
c10.F + %«pz =0 (62)



220 C.-H. Lamarque and A.Ture Savadkoohi

Biar = ‘f’r—‘s,-a«m), j=1.2....n 63)

We can see from equations that ¢ is a constant versus 7o = T, as well as ¢; 2,
j =1,2,...,n, so the assumption for calculation of Fourier coefficients of el =
¢'T0 is verified a posteriori. For ¢, we can not claim the same property. This is why
we process as follows: We assume that when Ty — 00, ¢, reaches an asymptotic
equilibrium governed by a manifold called Ty-invariant. Then we have:

_ A
P =92\ 0T+ %qsz =0 (64)

so that implicitly ¢» may depend on 71 now, but no longer on Ty (after 7T long enough
to approach the asymptotic state of ¢, governed by (64)). We study modulation of
the dynamics around periodic solution depending on time 7T associated to the Tp-
invariant. Let us also notice that equations for ¢;12, j = 1,2, ..., n are governed
by first order differential equations.

4.2.2 e!-Order of the System and Modulations Around 7y-Invariant
The &' order of the first equation of system (56) reads:

n
> kidia
j=1 _ Jio

O 20 22 i - 65
Tty T 2 65)

Let us consider Tp-invariant and also obtained solutions at ” order for ¢ 12, ] =

1,2, ..., n. We write (64) in the general form:
¢1 = H(d2, $3) (66)
We introduce polar form for ¢, j = 1,2, ..., n + 2 as it follows:
¢;=Nje%i, NjeRy, §; eR (67)

From relation (66) it is clear that we can obtain two explicit analytical solutions
providing Np and §; as functions of N and 6;:

N1 = Hi(N2, 87)
(68)
31 = Hy(N3, 82)
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From the (63) we have:

Njaedi = ZLeidie (N, j=1,2,....n (69)
T
or
i6s2-01) _ V1 ;
Njuad Orm = —g(Ny), j=1.2.....n (70)
so that N
1 .
Njsa=—l&(NDl j=1.2.....n (71)

and 84> depends on Nj and §;. Let us write

5]+2:/0](N1,81)9 ]:1’27111 (72)
From (65) we have:
n
N
ijféj(Nl)
Nt 881 Ao 2041 Ny iy J=t S0 s
oy T N TG 5 Nt e + 2 T
(73)

Introducing real and imaginary parts of &

§j(NY) =§jr(ND) +i§i(N1), j=1,2,....n (714)
finally one can obtain:
n Ny
ij—éji(Nl)
0N 2o j=I T

Ny | Sfio .
— 4+ =N+ —sin(d —8) + F————— = —2=sin(s
T + > 1+ > sin(é, — &1) + > > sin(dy)

n N]
ij—éjr(Nl)
1 T

961 20 +1 N> j= fio
Ni— Ny — — Sh—98)———— = —— 8
3Ty + 5 1= cos(82 — 41) 5 > cos(81)
(75)
oN )
Then, from (68) we can reach a linear system in 2 and 222,
a7y a7
dH| ON. oH, 38
19N> n 1 002 =0
aN, 0T, 06, 0T
(76)

0H, ON, 0Hp 057
H(— — 4+ —=—2)— =0
l(aNz 0T 062 aTl) e
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where
n Hl
DKk Eji(H)
—my = EH +£s1n(6 —H)+l—+@sm(8)
=5+ 2 2 > > 1
n Hl
ij ?Ejr(Hl)
2 1 N =
—my = G; H| — 72005(82 — H)) — jlf + % cos(d1)
)
Finally, by solving the system (76), the following equations are obtained:
N2 fi(N2,82)
0T, g(N2, 82)
(78)
352 (N2, 8)
29T T §(N2. &)
where
f (No.82) = H 0H» JdH,
,6)=H ——m; — —m
104V2, 02 1 35, 1 398, 2
- JH, J0H»
J2(N2, 82) = Nz(—mz — Hy——my) (79)
%) ON;

SNy, 82) = H (3H1 0H> 8H2 3H1
§LN2, 92 ON, 38, 9N, 96,

4.3 Analysis of the Dynamics: General Method

The analysis of the dynamical behavior corresponding to a modulation at 1:1 reso-
nance around the Tp-invariant is given by:

e geometry of the Tp-invariant in the N1, N, and &, space associated to the relation
Ny = Hi(N3, 82).
e equilibrium points of the reduced system (78) are given by:

f1(N2,82) =0, f2(N2,82) =0
(80)
81(N2,82) #0, g2(N2, 82) #0

if f1, f2, g1 and g» correspond to numerators and denominators of the system (78).
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e singular points of the reduced system (78) are given by:
J1(N2,82) =0, f2(N2,82) =0
8D
g1(N2,82) =0, g2(N2,82) =0

if f1, f2, g1 and g» correspond to numerators and denominators of the system
(78). Singular points are potentially associated to bifurcations.

4.4 Analysis of the Dynamics for a Particular Case

Let us choose n = 2 and

F(z)=2° (82)
in such a case, we have
1 2
F = EGG@' ) (83)
with 3
G(x) = XXz 0 (84)
Then
¢ = H(p2, ¢3) = ¢ — 2ic10F — ir10¢n
3 2 . (85)
= ¢ — 1610|¢2| @2 — idj0P2
and
_ 2 3 o0
Hi (N2, 82) = NoyfAjy + (1 40101\’2)
(86)
Hy(N2, 8y) = 6 + arctan( —hio
' 1-— %Closz

Now, m1 and m» can be obtained from the general expression in (77). Moreover, we
have simplified expression for g since H; does not depend on §, and H, depends
linearly on §;.

3(Ny. 80) = Hy 2! (87)
8(N2,02) = 18N2
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From the expression of Hj it is clear that g does not depend on &;. We have also:

fi(N2, 8) = Hym

(88)
~ JdH dH,

N>, 87) = (— H — N
J2(N2, 82) (aszz laszl) 2

Finally, let us give expressions of f1, f2, g1 and g»>. The reduced system of equations
reads:

h_om
o JH;
8

miyi3 + (1 = FeioN3)?
2+ (1= 3c0ND( — Je1oNd)

f> Nz(gH1 my — H, amml)
e 9H
8 H, w .
B 3h0cioNFmy + 2ma (A, + (1 — 4010N2)(1 — Zc10Ny))
213 + (1 = 3cioND(1 = Je10ND) A% + (1 = 3eioND)(1 = JeroND)
(89)
so that:
fi= ml\/?»%o + (1 = 3e10N3)?
fr = 3hocioN3my +2ma (3 + (1 = Fe1oN3) (1 = Fe10N3))
(90)
2 3 2 9 2
g1 =2+ 10— ZCIONQ)(l - ZCIONQ)
g2 = 2g1\/M3y + (1 = JcioND)?
Equilibrium points are given by:
f1i=0,f2=0and g #0 on
and singular points are governed by:
fi=0,f2=0and gy =0 (92)

This is equivalent to:

m; =0
[81 =0 ©3)
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Then g; = 0 provides analytical values of N; (fold lines):

2 /1
Ngzg/——@x,ﬂ—3ﬁ& (94)

€10

For a given N3, m depends only on the variable §, and can be solved numerically.

4.5 Analytical Developments Versus Numerical Integrations

Letussetcig=1,A10=0.1, 20 = 0.1, 9 = 0.1, 50 = 015, k; = 1, kp = 2,
& = 0.001. We consider that f19 = 0.7. Euler’s scheme [54, 59] with time steps as
At = 107* is endowed for solving system of (52). Assumed initial conditions are
x(0) =0.5and y(0) = x(0) = y(0) = u1(0) = u2(0) =0.

Fig. 11 Positions of

equilibrium points and fold
singularities of the system

with external forcing term

fio = 0.7 (see (78) and

©0): fi=0(—), f2=0

(- = =) g1 =0(———, .
i.e. fold lines N>; and Npp). z
The system possesses two

fold singularities (no. 1 and

2) and three equilibrium

points (no. 3, 4 and 5)

Fig. 12 Ty-invariant of the
system (solid blue line) and
corresponding numerical
results (black line) that are
obtained by integration of
(52) with external forcing 1

term fio = 0.7 /

0.5f
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Fig. 13 Histories of system (a)
amplitudes that are obtained 07
by integration of (52) with

external forcing term 0.6¢
fio=0.7:a Ni; b Ny

0.5¢

0.4

0.3

0.2

0.17

(b) x 10

2.5

x 10

Predictions of all possible dynamics of the system until reaching the infinity of the
T time scale are shown in Fig. 1 1. It is seen that the system has two fold singularities
on the first fold line N»j, namely points 1 and 2, two equilibrium points (no. 3 and
no. 4) and another equilibrium point between two fold lines of the system (unstable
area) namely point no. 5. Tp-Invariant of the system and corresponding numerical
results are presented in Fig. 12. The system presents SMR by persisting direct and
reverse bifurcations between its stability borders. This is due to the existence of fold
singularities on fold line(s) of the system [21, 46]. This behavior will be more visible
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Fig. 14 Phase portraits of 0.675
the reduced system with

external forcing term

f1o = 0.7 (see (78), (89) and

(90)) around the singular

point no. 1 (saddle)

= 0.67

0'625075 4.08 4.085 4.09 4.095
8,
Fig. 15 Phase portraits of 0.673— :
the reduced system with L> §
external forcing term 0.6725% . >
fio = 0.7 (see (78), (89) and %
(99)) arouznd th;: singular 0672 7)§ 3
point no. 2 (node) > S
=z 0.67155
0.6711
0.6705
0.67
562 5625 5. 5635 564 5645 565

3,

by looking at the histories of system amplitudes which are obtained by numerical
integration and are illustrated in Fig. 13. Phase portraits of the reduced system (78)
around singular points no. 1 and 2 are presented in Figs. 14 and 15 show that these
singular points are in the form of saddle and nodes on the fold line of the system
(N21). During SMR both oscillators and all of their components present beating
responses: displacement histories of two oscillators which are depicted in Fig. 16
and also histories of internal variables of Saint-Venant elements that are presented in
Fig. 17 show not only beating responses of all components of two oscillators during
SMR but also activations of Saint-Venant elements during energy exchanges. The
SMR of an optimized designed system is a very desirable behavior from passive
control and also energy harvesting view points since both oscillators continue to
exchange the energy with large intervals of energy changes for the NES and small
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Fig. 16 Displacements
histories that are obtained by
integration of (52) with
external forcing term
flo=0.7:ax;by

energy intervals for the main system. The system possesses two equilibrium points
namely points no. 3 and 4 (see Fig. 11). It can be attracted by one of these points
after a very long time at 77 time scale or during higher time scales (73, T3, ...). Due
to costly simulation time we did not run it for very long time scales.
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Fig. 17 Histories of internal (a)
variables of the Saint-Venant 0.1
elements that are obtained by
integration of (52) with
external forcing term

f10 =0.7:a ui, b un

T x 10*

5 Conclusions

Multiple scale energy exchanges of two different coupled systems are considered:
(D) a vertical system (i.e. consideration of effects of the gravity) which consists of a
linear main structural system and a coupled nonsmooth nonlinear energy sink; (II)
a main oscillator with a set of Saint-Venant elements that is coupled to a nonlinear
energy sink with a general odd nonlinear potential function. Invariants of both sys-
tems and their geometries at fast time scale let us understand the process of energy
exchanges between two oscillators with explanation of possible bifurcations between
two coupled oscillators. Reduced form of equations of systems at slow time scale give
us some tools to predict all possible regimes of systems during energy exchanges:
systems can face periodic regimes due to existence of equilibrium points while they
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can present strongly modulated responses when fold singularities are present. These
studies provide analytical design tools for tuning parameters of nonlinear energy sink
according to the design goal which can be passive control of linear/nonlinear main
structural systems by means of nonlinear energy sink. Experimentally realizations
of both systems can be carried out by considering a moving light mass in a (friction-
less) guide which is encased between two elastic walls at each end for representing
a nonsmooth NES of the system I. Identification of parameters of Magnetorheo-
logical dampers which present hysteresis behaviors can lead to models represented
by system II (with potentially added smooth nonlinear terms to the main structure)
[54, 60].
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On the Use of the Multiple Scale Harmonic
Balance Method for Nonlinear Energy Sinks
Controlled Systems

Angelo Luongo and Daniele Zulli

Abstract The Multiple Scale Harmonic Balance Method (MSHBM) is discussed
here for several paradigmatic systems (primary structures) equipped with a Nonlin-
ear Energy Sink (NES). This is a small-mass oscillator with essentially nonlinear
stiffness, used for passive control purpose. The method permits to overcome the dif-
ficulties inherent to standard perturbation methods, which occur as a consequence
of the nonlinearizable nature of the NES equation. It combines the Multiple Scale
Method and the Harmonic Balance Method to furnish Amplitude Modulation Equa-
tions ruling the slow asymptotic dynamics of the augmented system. The MSHBM is
illustrated here for a general, internally non-resonant, multi d.o.f. structure equipped
with a NES and under multiple concurrent actions, namely steady wind inducing
Hopf bifurcation, and 1:1 and 1:3 resonant harmonic forces. The relevant Amplitude
Modulation Equations are specialized for simpler cases, where the single contribu-
tions of each external action is considered separately. The effect of the NES on the
dynamics of the system is discussed for each case and numerical results are displayed.

1 Introduction

Nonlinear Energy Sinks (NES) are strongly nonlinear oscillators, typically equipped
with a small mass, a linear damper and an essentially nonlinear spring, attached to a
primary structure to be controlled. Their main goal is to induce irreversible transfer
of vibrational energy from the primary structure to themselves, and to dissipate it as
a passive control device. A comprehensive report on the characteristics and uses on
NES is found in [1, 2].

The one-way energy convey from the primary structure to the NES, referred
as Target Energy Transfer (TET), and investigated in the literature in analytical,
numerical and experimental sense [3—7], as well as the capacity (in theory) of the
NES of oscillating at any frequencies, giving rise of large band tuning with the
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structure to be controlled, are consequences of the essentially nonlinear nature of
the NES and its lacking of linear stiffness. Moreover, the presence of small mass is
responsible of (almost) singularity in the equations, inducing relaxation oscillations,
typically referred as Weakly Modulated Response (WMR) and Strongly Modulated
Response (SMR) [8, 9].

Recently, these kind of devices have received great attention in the literature, being
used in many applications. In [10, 11], a NES was applied to a main linear oscillator
harmonically excited by a 1:1 resonant force. In [12, 13], multiple parallel NESs were
considered to dissipate first-mode oscillations of a linear structure under impulse as
well as harmonic forcing. In [14] non-smooth NES was considered to control a two-
d.o.f. system. In [15], NES was used to suppress aeroelastic instabilities on a rigid
wing, modeled as a two-d.o.f. section-model, under steady wind. In [16] a single
NES is used to control oscillations of a long-span bridge prone to coupled flutter.

To analytically study the slow-flow dynamics of systems with NES, the researchers
generally make use of two steps: (a) the complexification-averaging procedure by
Manevitch [17], referred as CX-A, recently extended also to non-polynomial non-
linearity [18] and piece-wise systems [14], and, subsequently, (b) the Multiple Scale
Method (MSM, [19]). In fact, due to the non-linearizable nature of the equations of
NES, it was stated in [20], where a grounded NES was studied, that “for this type
of problem the standard analytical techniques from nonlinear dynamics (such as the
method of multiple-scales, and the standard method of averaging), are not directly
applicable, and an alternative approach must be followed”; accordingly, the com-
plexification method was employed. Dealing with the same problem, three different
methods were used in [21], namely, the method of harmonic balance, a combina-
tion of a shooting method and Floquet theory, and direct time integration, but not
the MSM. In the same paper, the authors used an adapted version of the method of
averaging, and defined their theoretical analysis as “limited”.

For all these reasons, the authors of this paper, in a series of work [22-24] in-
vestigated the possibility of implementing a nonstandard version of the MSM, for
general systems equipped with NES, under specific external actions. In particular,
in [22], they used the Multiple Scale Harmonic Balance Method (MSHBM), to get
Amplitude Modulation Equations (AME) for a multi d.o.f. system under 1:1 resonant
external force. The main advantage of the algorithm is that the initial complexifi-
cation procedure is avoided, dealing directly with variables having clear physical
meanings. In [23], the same algorithm was specialized for a system undergoing a
Hopf bifurcation due to steady wind. In [24] the MSHBM was extended to infinite
dimensional systems, in direct approach, to deal with an internally nonresonant string
under a harmonic force considered resonant to a certain mode.

In this paper, the MSHBM is illustrated for a general discrete system under simul-
taneous external actions. The scope of the paper is multifold: (a) to collect old results
by the authors in a more systematic and exhaustive manner; (b) to present new results
concerning subharmonic excitations, not analyzed in the past; (c) to open the way
to further investigations relevant to the interaction among simultaneous excitations,
here accounted for in formulation, but not addressed in the numerical results, yet.
To this ends, a general, nonlinear, multi-d.o.f. system under effect of steady wind,
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which induces a Hopf bifurcation, concurrently acting with external 1:1 and 1:3 res-
onant harmonic excitation, is considered. A NES is attached to it, in order to control
amplitude of vibrations, and the MSHBM is applied to the equations of motion, to
get the AME ruling the dominant dynamics of the system. Then, numerical results
are extracted for simpler cases, when one single component of excitation is applied
in turn, with the aim of analyze the effect on the dynamics of the principal structure
and to check the reliability of the algorithm. However, a complete unfolding of the
dynamics of the proposed examples, as well as a deep analysis of the possible bene-
ficial effect of the NES, are not fulfilled herein, since they are out of the aim of this
paper.

The paper is organized as follows: in Sect. 2, the algorithm is applied to a general
system; in Section 3, some examples are discussed: in Sect.3.1 a one d.o.f. system
under 1:1 resonant force is studied; in Sect. 3.2 the effect of a NES on the dynamics of
aone d.o.f. system under 1:3 subharmonic resonance is discussed; in Sect. 3.3 results
on a two-d.o.f. system under steady wind are analyzed; in Sect. 3.4 a N-d.o.f. inter-
nally nonresonant string with NES and under harmonic excitation is considered; in
Sect.4 some conclusions are drawn.

2 The Multiple Scale Harmonic Balance Method

A nonlinear multi-d.o.f. mechanical systems, which is close to a Hopf bifurcation
caused by aerodynamic forces, and under both 1:1 and 1:3 resonant harmonic ex-
citations, is considered herein. The aerodynamic forces, due to the steady wind of
(non-dimensional) speed p which blows orthogonally to the plane of the structure,
are assumed to be described by the quasi-steady theory. The main system is equipped
with an essentially nonlinear oscillator with small mass and linear damper, behaving
as a Nonlinear Energy Sink (NES), attached at a selected point (see Fig. 1). The
relevant nondimensional equations of motion for the whole system read:

Mx + C()x 4+ K(o, wx + £’ x — pr + kx'x — y)’r
+ n(x, x, x) = n1f] cos(wt) 4+ n3f3 cos(Bwt) (D
myj —E'x — ) —(x'x—y)* =0 )

where: x = x(¢) is the time-depending N-dimensional column matrix of the displace-
ments of the main structure; M is the mass matrix; C(u) is the (non-proportional)
damping matrix and K(o, ) is the stiffness matrix; C depends on u while K de-
pends on p and (linearly) by a structural parameter o'; both u and ¢ act as bifurcation
parameters; n is the column of the (cubic) geometric nonlinearities, f; is a unitary
vector (||f; || = 1) providing the shape of the component of the external force, of am-
plitude 11, which is modulated by the frequency w; in analogy, f3 is the unitary vector
(|/1£3]] = 1) describing the component of the external force modulated by frequency
3w and with amplitude n3; y = y(¢) is the time-depending displacement of the added
oscillator, m its mass, & its damping-ratio and « the coefficient of its essentially
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Fig. 1 Sketchofa f) cos(wt) +f3 cos(3r
multi-d.o.f. system equipped

with a NES

Xi

nonlinear (cubic) spring; r is the influence coefficient column; finally, the dot repre-
sents time-differentiation. It is assumed that, when u is equal to a critical value, the
wind triggers a Hopf bifurcation and the dynamics of the (homogeneous) system with
NES disengaged evolves on a critical mode; moreover, when ¢ = 0, the external ex-
citation f; is 1:1 resonant with the same critical mode of the main structure, and f3 is
1:3 resonant with the same mode as well, whereas no other resonance combinations
are possible; o acts as a detuning parameter.

It is convenient to introduce the relative displacement between main structure and
NES, z :=r'x — v, so that the (1) and (2) become:

MK + C()% + K(o, )X + £2r 4+ k2°r
+ n(x, x, X) = n1f] cos(wt) + n3f3 cos(Bwt) 3)

mr'k —3) —&z2—k2=0 4)

The dependent variables are rescaled through a nondimensional small parameter
e>0,as(x,2):=¢ 172 (X, 7), consistently with the presence of cubic nonlinearity; the
bifurcation parameter u is expressed as © = o+ €1, where p is its critical value,
to be still evaluated, and e is the small deviation from it. The structural parameter
o isrescaled as 0 = 6. The 1:1 external force is rescaled as i1 = £3/27, while the
1:3 force component is rescaled as 13 = £!/27j;. The parameters of the NES are also
rescaled, since both its mass and damping are assumed small: (m, £) := (i, £). The
rescaling and series expansion of C(u) and K(o, w) lead to the following equations,
after omission of tilde and division by £!/2:

Mx + (Co + 1 CXx + (Ko + e 1K, + e0 Ky )x
+ €21 + ekZ°T + en(X, X, X)
= en1f] cos(wt) + n3f3 cosBwt) (®)]

em(r’k —3) —ekz —exz> =0 (6)
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where Cp := C(uo), Ko := K(0, 1), Cy := 9C(no) /o, Ky := 9K(0, no)/ou,
and K, := 0K(0, no)/d0o.
According to the Multiple Scale Method, independent time scales 7y := ¢, = ét,

Hh = &2t, ... are introduced and, consistently, the derivatives expressed as % =

do + edy + €%dr + ... and % = d(z) + 2edod; + (*zz(dl2 + 2dod)) + . ... Moreover,
the dependent variables are expanded in series as:

(= e 2]+

Substituting in (5) and (6) and collecting terms of the same order in ¢, lead to the
following perturbation equations:

order ° :
Md;xo + Codoxo + Koxo = n3f3 cos(3wrp) ®)
order &'
Md;x; + Codox) + Koxi = —2Mdod;xo — CodiXo
— w1 Crdoxg — 1Ky xo — 0Ky xg — Edozor
— KkZyT — n(X, X0, X0) + n1f] cos(wto) 9
m(x! dixo — dizo) — Edozo — kz5 = 0 (10)
order &2 :
Md3x; + Codoxa + Koxa = —M(d7xo
+ 2dodrxo + 2dodix1) — Co(d2xo + diX1)
— u1Ci(doxy + dixo) — o Kox1 — 1 Kpxy

— &(doz1 + dizo)r — 3kziz1T — 3n(xy, X0, X0) (11)
m(ergxl - dgzl) —&dozy — 3/<z(2)zl =
2m(dodyzo — v! dodix0) + Ediz0 (12)

It should be noted that, because of the vanishingly small values of the mass and
damping, as well as of the lack of linear stiffness, no equation of motion relevant
to NES appears in the generator problem (order £°), which therefore describes the
linear dynamics of the main structure alone (as if NES were disengaged).

First, the homogeneous version of (8) is considered, in order to evaluate the critical
condition due to the wind and the complementary function. It is assumed that, at the
specific critical value g, the system experiences a Hopf bifurcation, this entailing
that the relevant eigenvalue problems

(A>M + ACo + Ko)u =0
OMT £ Ch +KDv=0 (13)
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have a solution A; > = =iw, with the associated right (u and u) and left (v and
v) eigenvectors (the overbar denoting the complex conjugate and i the imaginary
unit), whereas all the other eigenvalues have negative real parts and are far from the
imaginary axis.

Then, a particular solution of (8) is sought: the external forces are assumed to be
1:1 and 1:3 resonant with the same critical mode u of the main system (131), and this
entails that the remaining non-resonant modes bring a higher-order contribution to
the overall response. Therefore, only the contribution related to the resonant mode
is retained in the solution of (8), i.e.:

xo(to, t1,...) = A(1y, .. ‘)ueiwto + 773W063iwt0 + cc (14)

where: A(f1, ...) is a complex modal amplitude, whose modulation on the slower
time-scales must be evaluated; cc stands for complex conjugate and wq := %[Ko +
3iwCo — 9’ M]~'f3.

The e-order perturbation equations (9) and (10) are now addressed, and the NES
(10) considered first. Since its (steady) solution cannot be expressed by elementary
(nor Jacobi) functions, the Harmonic Balance Method is used, letting:

20(to, 11, 12) = D Box(t1, 12)e™ + ce (15)
k

where By are complex amplitudes. In this paper, just the terms relevant to the values
k =1, 3 are retained in (15), coherently with the idea of obtaining an approximated
solution, which contains at least the same frequency components of the generat-
ing solution (14). Consequently, balancing the frequencies w and 3w in (10), the
following nonlinear, complex, algebraic equations are obtained:

maw?*(—Bo + uA) + iEwBo) + 3k (B Bo1 + Bo3Bj,

+ 2301303303) =0 (16)
mw*(—9Bo3 + 9n3wo) + 3iEwBoz + k (By; + 3B33Bo3
+6B03Bo1Bo1) = 0 a7

where u := rTu and wy := r'wy.

Equations (16) and (17) provide, at the first order of perturbation, an algebraic
constrain between the (active) resonant amplitude A of oscillation of the main struc-
ture and the (passive) amplitudes of the NES elongation, By; and By3; it, therefore,
describes a manifold in the state-space, on which the asymptotic dynamics takes
place (at the first perturbation order).

Equation (9) is then considered, in which z is assumed as in (15). By requiring
that the resonant forcing term is orthogonal to the null space of the adjoint operator
(solvability condition), the following equation must hold
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vA[(2ioMu + Cou)diA + (iwCru + K, u) 1A
+ 0 KsuA + iwérBy;
+ 3k (B, Bor + Bo3 By, + 2Bo1Bo3Bo3)
+3A%An(@, u, u)
+ 313A%n(W, 1, ) + 673An(Wo, W, w)] = 0 (18)

producing the following differential equation:

c1diA = (uica + ocs + nicg)A + EcaBoi
+ Kkcs (3(2)11_901 + 303331 + 2Bo1 B3 Bos)
+ c6A%A + 13¢7A% 4+ n1c9 (19)

where the expression of the complex coefficients c; is given in Appendix A. It is
worth noticing that, when By; = Bo3 = 13 = 0 is put into (19), this reduces to the
normal form equation for the Hopf bifurcation of the principal system. This entails
that the NES modifies both the bifurcation point and the limit cycle, thus bringing
potential benefits to the mechanical behavior of the original system.

If one decided to stop the perturbation analysis at this step, (19) and (16), (17)
should be considered together. In this case, since the NES provides an algebraic
constraint, its (complex) amplitudes By and B3 would be passive variables, whereas
the dynamic evolution of the (active) amplitude A of the main system would be
completely restrained onto the manifold (16), (17). To overcome this tight limitation,
a further perturbation step must be accomplished.

The non-diverging solution of (9) can now be evaluated, after tacking into account
(19): it contains terms of frequency w, 3w, 5w, 7w and 9w. However, still driven by
the idea of obtaining and approximated solution, just the terms of frequency w and
3w are retained in it, which turns out to be:

X1 (10, 11, 12) = [(L1W1 + W2 + n3W3)A + EWaBo)
+ kws (B3, Bo1 + B3B3, + 2Bo1Bo3Bo3)
+ W6A2A + 773W7A2 + 171W8]eiwt0
+ [13141W9 + n30Wio + EW11B03
+ kw12(B; + 3Bg3Bo3 + 6Bo3Bo1 Bo)
+ Wi3A® + n3Wi4AA 4 p3wy5]ed @0 ec (20)
where w;, (j =1, ..., 15) are defined in Appendix A.

Equation (12) is finally considered: a new harmonic balance is carried out, as-
suming the following expression for z;:

z21(to, t1, ) = ZBlk(tl» )€ 4+ cc 2D
X
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Substituting (14), (15), (20) and (21) in (12) and balancing the w- and 3w-frequency
terms, the following equations are obtained:

— @*m[(uiw1 + owz + m3w3)A + EwaBor + kws (B, Boi
+ Bo3B§, + 2Bo1Bo3Bo3) + weA®A + n3w3A®
+niwg — Bi1] — iw&B1 — 3K(B%11§11 + 2Bo1Bo3B13
+2Bo1Bo3B13 + B13B%, + 2Bo1Bo1B11 + 2B11B3Bos
+2B03Bo1B11) — 2imw(di By — ud)A)
—iwEd1Bo; =0 (22)
—9a*m[n3p1wo + n3owi0 + EBoawit + kwio (B,
+3B3Bo3 + 6Bo3Bo1Bo1) + wi3A® + n3wisAA
+n3wis — Bi3] — 3iwEB13 — 3k (B Bi1 + Bz B3
+2Bo1Bo3B11 + 2Bo1B13Bo1 + 2B03B13Bo3
+2Bo3B11Bo1) — 6iwmd Bys — 3iwéd Byz = 0 (23)

where w; 1= rij,j = 1,...,15. Equations (16) and (22), and (17) and (23), can
be reconstituted, respectively, using the definitions By := Bg; + ¢B11 and B3 :=
Bo3z + ¢B13; coming back to the true time, they become:

— *ml(u+ piwi + ows + m3w3)A + kws(BIB)
+ B3B} 4 2B B3B3) + weA?A + n3w3A”
+miws — (1 — Ewg)B] — iwE By — 3k (BIB,
+2B1B3B3 + B3B?) — 2imw (By — uA)
—iwEB; =0 (24)
— 9% m[n3(wo + 1w + owio) + kwia (B}
+3B3B3 + 6B3B1By) 4+ wi3A® + n3wi4AA
+mwis — (1 — Ewi1)Bs] — 3iwEBs
— k(B3 + 3B3B; + 6B3B1 By)
— 3iEwB3 — 6iwmBs — 3iwEB; = 0 (25)

It appears that (24) and (25) describe the dynamics of the amplitudes B; and B3,
differently from (16) and (17). The key-terms containing Bjand B3 come out only at
the second-order, since they are affected by small coefficients £ and m, thus revealing
the nature of singular perturbation. In contrast, the term proportional to A, which
also appears at this order, does not add any qualitative new contributions, being ruled
by (19).
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If the perturbation procedure is truncated at order & for the main system equation,
the solvability condition (19) can be written in terms of the true time:

1A = (uica + oc3 + nies)A + EcaB)
+ kcs(BiBy + B3B} + 2B B3B3)
+ c6A%A + 13¢7A% + 1o (26)

Therefore, the prevalent dynamics of the primary system coupled with NES is
described by (26), (24), (25), in terms of the complex variables A, By and Bj3.
To get the real form of the system, either the polar or the Cartesian transforma-
tions can be applied to the equations: the first one is A(f) := %a(t)ei“(’) and
By(t) := 3bi(t)e'P®, for k = 1,3; the second one is A(1) = $(p1(t) + iq1 (1)),
Bi(t) = 3(p2(t) + ig2(1)) and B3(r) = %(p3(t) + igz(t)). The substitution
of one of the two kinds of transformations in the equations and the separa-
tion of real and imaginary parts provides the six real ordinary differential equa-
tions in the six real variables (a(?), a(¢), b1(t), B1(¢), b3(t), B3(¢) in the polar case,
p1(8), q1(1), p2(t), g2(1), p3(t), g3(¢) in the Cartesian case). Equilibrium points of the
system represent periodic oscillations in the displacements X, z.

3 Sample Systems and Numerical Results

Sample systems are analyzed here, (a) to investigate the mechanical effects of the
attached NES on the dynamics of the main system; (b) to check the reliability of
the MSHBM via comparison with direct numerical integrations of the equations of
motion.

3.1 One d.o.f. Main System Under 1:1 External Force

A sample system, already studied in [2, 11, 22], is considered here. The main system
consists of aone d.o.f. linear undamped system, with attached NES, a sketch of which
is shown in Fig. 2. The nondimensional equations of motion are:

Y+ (@ +0)x—EG —%) —k(y —x)° = n| cos ot (27)
my+EF — %) +k(y—x)° =0 (28)

that, for z := x — y, become:
Y+ (@ +o)x—E—kD

mE—x)+E2+kz2=0 (30)

= 11 cos wt 29)
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F—=x I
11 cos(t)
K
(0]
N
JR |

O 0O s O

Fig. 2 Principal linear undamped oscillator under 1:1 resonant harmonic force with NES

Therefore, comparing (29) and (30) with (3) and (4), it results N = 1 and:

x=x, M=1, C=0, Ky=0o?, K, =0,
K, =1 nix,x,x)=0, fi=1, f5=0 31D
Since the external excitation has just the component of frequency w, the generating
solution does not contain the component of frequency 3w, and so is it for the terms

zo and z1 (Boz = B3 = 0), leading just to the balance of the frequency w. The
nonlinear manifold, (16), becomes:

mw*(—Bo1 + A) + iwBo1 + 3k B3, Bo; = 0 (32)

which can be easily written in real form in terms of the (real) amplitudes a and by:

2
Wb eb) (S e (33)
8mw 2 2m 4

The set of numerical values considered in [2, 11] is used for this example: m = 0.05,
£=0.01,k =0.067, w = 1.
The Amplitude Modulation Equations (26), (24) read:

o e o
A= lTp_fp g (34)
2w 2 2w 4w

2imwA — imw + £)B) = mw*A
+ (iEw — mw*)By + 3k BIB) (35)

In polar form, they become:

3kb? sin (o — 1 i
a4 = M — —&bycos(a — Br) — nsma (36)
8w 2 2w
3b3k - 1
ag =22 4 3bykcos(a — 1) + —b& sin(a — 1)
2w 8w 2
_ nicosa 37)

2w
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masin(a — B1) + maa cos(a — B1) + ;[51 — mbBl =
@

3
- Tracosi@ — fi) - % + b (38)
mé cos(o — Bi) — mac sin(e — B1) — mby
= h = S+ ™ singe — B) (39)
2w 2 2

When the NES is disengaged, since the main system is linear, the amplitudes of the
periodic solutions in x become

_m

de (40)
o
tane, =27 (41)
2w

which are always stable. They are the equilibrium points of (36), (37),when b = 0.
Due to the lack of damping in the main system, the amplitude tends to infinite when
o goes to zero.

When the NES is considered engaged, the branches of equilibrium points of the
dynamical system (36)—(39), which represent periodic oscillations in the original
variables x and z, are shown in Fig. 3, for n; = 0.075. The figure is obtained via
the software AUTO [25]. It can be observed that multiple solutions exist in some
intervals of o. In particular, the three equilibrium points relevant for o = —0.3 are
marked by colored points, and only the green one is stable, while the yellow and red
ones are unstable; black boxes represent secondary Hopf bifurcation points.

The same three equilibrium points are also shown in Fig. 4, superimposed to the
nonlinear manifold. Strongly modulated responses (SMR) are detected by numerical
integration of the system (36)—(39). They represent quasi-periodic relaxation oscilla-
tions in the variables a and b, typically describing cycles around the two folds of the

1.25 J

1.00

0.50 L
0.25]

- - - 0.00

T
-0.10 0.10 0.30 0.50 -0.50 -0.30 -0.10 0.10 0.30 0.50
-20 0.00 0.20 0.40 -0.40 -0.20 0.00 0.20 0.40

Fig.3 Amplitudes a and b when NES is engaged, whenm = 0.05,§ = 0.01,x = 0.067,w = 1 and
n1 = 0.075. The filled squares indicate Hopf bifurcation points. The colored points are equilibria
referred to following figures. Continuous line stable; dashed line unstable
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Fig. 4 Nonlinear manifold (blue line), three equilibrium points (red, green and yellow points),
Poincaré map of the SMR response (magenta points), and transitional motion (black line) falling
to the equilibrium point, when o = —0.3, f = 0.075, m = 0.05, & = 0.01, « = 0.067, 0w = 1

0.4-
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Fig. 5 SMR for example 1, when ¢ = —0.3, n; = 0.075, m = 0.05, £ = 0.01, « = 0.067,
w = 1; x(t) as numerical integration of the original (27), (28) (red dashed line) and as reconstituted
response from (36)—(39) (blue continuous line)

nonlinear manifold shown in Fig. 4. They are triggered in dependence of the position
of the equilibrium points. In particular, a Poincaré section is shown (magenta points).
For initial conditions close to the stable equilibrium point, a trajectory asymptoti-
cally falling on it is also found (black line). The corresponding time evolutions of
the (reconstituted) displacement x(¢) is shown in Fig. 5, in good agreement with the
solutions obtained by numerical integration of the original (27), (28).

A discussion on the use of the higher harmonics (3w, .. .) for this example and
the evaluation of their negligible contribution is given in [22].
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3.2 One d.o.f. Main System Under 1:3 External Force

A second example is considered here concerning an external force in 1:3 subhar-
monic resonance. The relevant results are believed to be new, and deserve further
investigation.

The principal system is of a one d.o.f. nonlinear damped system, with attached
NES, as shown in Fig. 6. The nondimensional equations of motion are:

3é+2§w)'c+w2(l — 00X + ox
+Kk(x — y)3 + & — ) = n3 cos(3wt)
my—k(x—y) —EGE—3) =0 (42)

that, for z := x — y, become:

X+ 2Cwx + w2(1 —o)x + Koo
+ k2> + £% = n3 cos(3wr)
mGE—%) +k+£6:=0 (43)

Therefore, comparing (43) with (3) and (4), it results N = 1 and:

x=x, M=1, C:Z;a), K():a)z, KIL:()’
K, =—1, nx,x,x) =«x, £1=0, f3=1 (44)

Here the generating solution of the principal structure contains both the com-
ponents of frequency w and 3w, therefore the balance of both those frequencies in
the NES equation is carried out in this case. The polar form of the three Amplitude
Modulation Equations (26), (24), (25) reads:

F—=x ==

N3 cos(3wt
W, K, 2(30r) K

v I N %

JE B 11

20 O O ¢ O

Fig. 6 Principal nonlinear oscillator under 1:3 resonant harmonic force with NES
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a= Fi(a, by, b3, a, B, B3) (45)
aé = F(a, by, b3, a, B1. B3) (46)

mwasin(a — B) + mwd cos(a — f) + %iyl
— mwb 1 = F3(a. by, bz, o, P1. B3) (47)

mwacos(a — f1) — mwa sin(a — B) — %bBl

— mwby = Fy(a, by, b, a, B1, B3) (48)
%ba — 3mwbs 3 = Fs(a, by, by, a, Bi, B3) (49)
5 bfis + 3mebs = Fe(a, b1, by, @, B, B3) (50)

2

where ﬁj, j=1,...,6,are reported in Appendix A.

If the NES were disengaged, just (45) and (46) would be retained, being by =
Brx = 0, and the steady state response of the system, describing periodic oscillations
for x(t), is described by the solution of the system %], = %, = 0 (see [19]).
In particular the steady state response is governed by the equation

o+ (PR -G @

which, besides a = 0 existing everywhere, defines the non-trivial response for the
subharmonic resonance condition, which exists in the range

2Undke 2568200

52
~ 2560° 3n3ke 62

The frequency-response plot of the subharmonic response is shown in Fig. 7 in
black line, for n3 = 0.3,¢ = 0.0l,w = 1,k = —5. It is superimposed to
the corresponding one, which is obtained when NES is engaged (red line) for
m = 0.05,& = 0.01,« = 1. In particular, the NES reduces the amplitude of the
subharmonic response and its domain of existence; furthermore, in comparison with
the case with NES disengaged, it is found that the basin of attraction of the sub-
harmonic response in presence of NES is noticeably reduced in favor of the trivial
solution. Moreover, relaxation oscillations are found by means of numerical integra-
tions of (45)—(50). Their phase plot is shown in Fig. 8 (red line) as superimposed
to the nonlinear manifold (gray points), which is a surface in the (b1, b3, a) space.
The relaxation oscillations here described have maximum amplitudes smaller than
the corresponding (periodic) oscillations which occur when the NES is disengaged
(see Fig. 9).
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Fig.7 Frequency-response curve in correspondence of the 1:3 resonance for the system with NES
disengaged (black line) and with NES engaged (red line), for n3 = 0.3. Continuous line stable;
dashed line unstable

06000

Fig. 8 Nonlinear manifold (gray points) and relaxation oscillations (red line) for o = —0.5,
n3 =0.3

3.3 A Two d.o.f. Airfoil

A sample system, already considered in [15, 23], is used to investigate the mechanics
of a primary structure subjected to steady wind. It is constituted by a two d.o.f. rigid
airfoil engaged to a NES and subjected to the (non-dimensional) steady wind pu,
and is sketched in Fig. 10. The (non-dimensional) Lagrangian parameters are x and
o, representing the plunge and the pitch, respectively. The two nonlinear springs,
extensional and rotational respectively, have both linear and cubic coefficients. The
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Fig. 9 Time-evolution of the primary system with NES disengaged in subharmonic resonance
(black line) and with NES engaged (red line), for n3 = 0.3 and 0 = —0.5

Fig. 10 Rigid airfoil with NES under steady wind

position of the NES with respect to the center of mass of the airfoil is described
by the (non-dimensional) parameter §: if it is positive, then the NES is windward,
otherwise, if § is negative, the NES is leeward. The non-dimensional equations of
motion are

¥4 n¢ + pugnik + Qix + ulgig — G — i + d)
—K(y—x+a8)3+n1x3 =0
¥ + 2@ + nga1 g + karx + (nn — plgan)e
+EG—X+a8)d+k(y—x+ad) s +me’ =0
my+E@ —k4+ad) +xk(y—x+ad) =0 (53)

The comparison between (53) and (1) allows one to identify N = 2 and the relevant
matrices and columns as
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X 1 np g1 0]
= s M = N C - 9
¥ [w] [nlz nzz} W) =p [821 0

Q* ulgn 1 nx
K(p) = , = , = 54
) [k21 Ny — prgal = ny’ >
The following numerical values are chosen, corresponding to those used in [15]:
nip = nyp = 0.2, npp = 0.25, g11 = 0.2, go1 = —0.08, Q@ = 0.5, ko1 = 0,

ny = ny = 1, m = 0.02, £ = 0.008. For the specified values, the critical wind
turns out to be o = 0.8704, the corresponding critical frequency w = 0.8704
(imaginary part of the eigenvalue) and the right and left eigenvectorsu = {0, 1}” and
v = {—0.6521—0.5635i, 0.5217 +2.7486i}T, respectively. The relevant Amplitude
Modulation Equations are not reported in their explicit form for the sake of brevity.

InFig. 11 the equilibrium branches of the AME, corresponding to periodic motions
in the variables x, ¢, z, are shown for (a) windward NES (6 = 0.75) and (b) leeward
NES (6 = —0.75). The red line describes the branch when the NES is disengaged,
and the dots represent results of the numerical integration of the original equations
(53), which are in good agreement. It can be seen that, when the NES is disengaged,
a super-critical Hopf bifurcation occurs at 1 = 0 and stable periodic motions are
triggered for increasing values of 11, whose amplitudes are represented by the red
line. The NES shifts forward the position of the bifurcation points, but it also makes
the bifurcation sub-critical. Indeed two turning points occur, as well as two secondary
Hopf bifurcation points which trigger stable periodic motions in a, corresponding to
quasi-periodic motions in x, ¢ and z (the amplitude of the limit cycles are shown in the
pictures). In case of windward NES (Fig. 11a), next to the second turning point, the
amplitude of the branch is larger than that without NES. It means that, in this case, the
NES gives a harmful contribution to the dynamics of the system. On the other hand,
in case of leeward NES (Fig. 11b), the branch of the amplitude is always underneath
the one corresponding to the case without NES. Therefore, for leeward NES, the

(a) (b)
025 / 025
/ wo. NES
0.20 | g 0.20 |
wo. NES
0.15 4 0.15 4
a a /
0.10 L/ secondary Hopf 0.10 /
S e |
005 I f/ﬁ 005 /‘%
It I
0.00 T 1 T T T 0.00 T \‘ T T T
-0.10  -0.05 0.00 0.05 0.10 0.15 0.20 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20
My My

Fig. 11 Equilibrium branches of the slow flow on the plane (uy,a): a k = 10, = 0.75; b
k = 10,8 = —0.75. Red line without NES; black line with NES; dots numerical integrations of the
originating equations; continuous line stable; dashed line unstable; black square secondary Hopf
point
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Fig. 12 Phase portrait on the plane (b, a): a k = 10, u; = 0.05,8 = 0.75; b« = 10, 1 = 0.07,
8 = —0.75. Red line manifold; blue line trajectory; black circle stable equilibrium point; black
cross unstable equilibrium point

effective reduction of the amplitude of oscillations is accomplished. These results are
in agreement with [2]. The two vertical dashed-dotted green lines in Fig. 11 represent
the values of w; for which the phase portraits of Fig. 12 are produced (11 = 0.05
and p1 = 0.07, respectively). In particular, from Fig. 12a it is evident how the stable
equilibrium point (black circle), which lies on the manifold, asymptotically attracts
the dynamic evolution of the system; as a correspondence, periodic oscillations in
the variables (x, ¢, z) are produced. On the other hand, in Fig. 12b, realized for a
value of u1 between the two secondary Hopf bifurcations, the equilibrium points
are unstable, and a limit cycle in (b, a) is obtained. It corresponds to quasi-periodic
oscillations in (x, ¢, z), which are in good agreement with the relevant results of the
numerical integrations of the originating equations (53).

3.4 Nonlinear Elastic String

A nonlinear extensible elastic string PQ is considered (see Fig. 13 and [24] for details
on this case study). The string is restrained at P, while a concentrated mass mgp and a
vertical elastic spring of linear stiffness kg are applied at Q. The string is supposed of
initial length ¢ and prestress tensile force N. An external, distributed, harmonically
time-dependent, force p(x) cos(£2¢) is supposed to be applied to the string (x being
the abscissa measured in the prestressed configuration and ¢ the time). The mass per
unit length of the string is p and its longitudinal stiffness EA. A NES characterized
by a mass m, cubic stiffness coefficient k£ and linear damping coefficient c, is linked
to the string at point C, corresponding to the abscissa xc. Denoting by v(x, ¢) the
in-plane transverse displacement of a generic point of the string and by y(¢) the dis-
placement of the NES, the nonlinear equations of motion, up to the cubic order, read
(see [19, 26] for the equations of motion of the string, obtained after the classic con-
densation procedure of the longitudinal displacement and valid under the hypothesis
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Fig. 13 Internally f(x l‘)

nonresonant elastic string ’

equipped with a NES W\ W\ T T T T T /F
v(x,1)

ot

of large ratio between the celerity of longitudinal vs. transverse waves)
G2(x, 1)
2
+ p(x) cos(§) — [k, 1) = (1)}
+e(@, 1) —y)]8(x—xc) =0
mi() — [koe, ) = y@)?
+elxe,n) =y@)] =0 (55)

AT EA 7 .
NV (x, 1)+ TV (x, 1) |:/ dxi| — pv(x, 1)
0

where §(x) is the Dirac delta, the dot indicates time-derivative and the prime space-
derivative.

The geometric boundary condition at P states that v(0, r) = 0, while the mechan-
ical boundary condition, to be applied at Q, reads

l..2
e n+Byen [/ mdx]
7 y 2
— —kov(L, 1) — mg¥(€, 1) (56)

In nondimensional form, the partial differential problem becomes:

L33 . 1 /! 1V/2
Vv —v' —nv —dx
0o 2

+ [KZ3 + 52] §(x — xc) = pcos(K2r)
mE —Ve) +kz® +E2=0 (57)
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and the relevant boundary conditions are:

v(0.1) =0
lv/2
V(LD 4+ V(1,1 [/ —dxi|
0o 2
= —kov(1, 1) — mo¥(1, 1) (58)

where ve(t) = v(xe, 1), n = EA/N and z(r) := v(xc, t) — y(t), and an external
linear damping is introduced through the coefficient ¢.

The application of a Galerkin projection of (57)—(58), using as trial functions
the first N eigenfunctions ¢;(x) = sin(w;x) (j = 1,...,N) of the homogeneous
linearized problem when NES is disengaged (w; are the natural frequencies of the
string), allows one to obtain a discrete, approximate, version of the equations of
motion, which read as (3) and (4). In particular, indicating with x;(#) the unknown
modal amplitudes (v(x, t) = Z;\;l xj(1)¢;j(x)), the relevant matrices and columns
read:

x = {xp}, M= {mp}, C={cm},
K = {kne}, v = {ra}, n = {np} (59)

where

1 2&,0p w? h=k
= , = k=1 " 60
Mk {0 Chik [0 hk [0 ht k (60)

and

N
r={pn(xc)}, n= {”hxh ijsz},
j=1

fi ={pn}, f5={0} (61)

with ny, elastic coefficients, &, modal damping factors and p; modal forces, h, k =
I,...,N.

Actually, the MSHBM was extended in [24] for infinite dimensional systems,
i.e. directly working on partial differential equations as (57) with b.c. (58). Being
the results in very good agreement with those obtained for a Galerkin projection
with large N, here pictures relevant to the direct case of [24] are shown, obtained
when n = 2.825, mp = 0.3167 and kg = 3.9 x 1073, the external force is assumed
as uniform (p(x) = p) with frequency Q2 = w;(1 + o) close to the 1:1 resonance
with the second mode of the string (here the detuning is directly applied to the
forcing frequency and not considered as a modification of the stiffness) and the
external damping coefficient of the string is ¢ = 1.557%. The (nondimensional)
parameters of the NES are m = 0.05, « = 400, £ = 0.01. Moreover, the first four



On the Use of the Multiple Scale Harmonic Balance Method ... 255

(nondimensional) natural frequencies of the string are w; = 1.208, w>» = 3.831,
w3 = 6.722, ws = 9.738. The NES is supposed to be applied at about the antinode
of the resonant mode, i.e. xc = 0.4. In the generating solution, the contribution of the
resonant mode is retained only, so that it contains just the term of frequency w = w;;
the harmonic balance is then applied exclusively in correspondence of the frequency
. The relevant Amplitude Modulation Equations are not shown here for the sake of
brevity.

Amplitude of periodic motions of both the string and NES, for force amplitude
value n; = 0.007, are shown in Fig. 14 in terms of frequency detuning o . In particular,
in Fig. 14a, the frequency-response curve obtained for disengaged NES (black curve)
is superimposed to the corresponding curve obtained when NES is engaged (red line).
In Fig. 14b, the amplitude of oscillation b of the NES is shown. Blue points represent
Hopf bifurcations. It is evident the beneficial effect of the NES, whose presence
reduces the peak of the string amplitude of oscillations a.

In Fig. 15a, b, the WMR (for o = 0.064) and SMR (for o = 0.070) are superim-
posed to the invariant manifold, respectively. The first one develops itself close to the
fold of the invariant manifold, while the second one describes relaxation oscillations
around it.

In Fig. 16, the periodic time-evolutions of the vertical displacement of the mid-
span of the string (v, := v(1/2, t))is shown for o = 0.02. They are superimposed
to the corresponding evolutions (dotted line) obtained by time-integration of the
approximated system of ODE, which is drawn after the Galerkin projection of (57),
(58) on a basis constituted by the 8 first natural modes of the string. They show a
very good agreement.
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Fig. 14 Frequency-response curves of the string (a) and NES (b), for n; = 0.007. Red line
response with NES at the antinode; black line response with NES disengaged. Blue points indicate
Hopf bifurcations. Continuous line stable; dashed line unstable
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Fig. 15 Weakly modulated response (o = 0.064, blue line (a)) and strongly modulated response
(o = 0.070, black line (b)) with NES at the antinode, for n; = 0.007; red line invariant manifold.
Continuous line stable; dashed line unstable
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Fig. 16 Periodic time-evolution of the string mid-span, for p = 0.007 and o = 0.02. Continuous
line reconstituted functions from MSHBM; dotted line reconstituted functions from a discrete
Galerkin model

4 Conclusions

In this paper, a general, nonlinear, multi-d.o.f. system, equipped with an essentially
nonlinear oscillator with small mass, NES, is considered. Aim of the NES is to
passively control the amplitude of vibrations of the primary system, which here is
excited by concurrent effect of steady wind, inducing a Hopf bifurcation, and both 1:1
and 1:3 resonant harmonic forces; no internal resonances are allowed. The MSHBM
is applied in order to obtain the Amplitude Modulation Equations, which turn out
to be singular perturbed equations. Numerical results are shown for different case
studies, in order to detect the single effect of the excitations and how the NES modifies
the predominant dynamics of the principal system. The outcomes guarantee good
agreement with the response as obtained by numerical integrations of the equations
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of motion; moreover they assure good reliability of the MSHBM (a) to detect the
predominant dynamics of the system and (b) to be used as valid tool for optimization
purposes in the choice of the parameters and position of the NES.
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Appendix A: Coefficients of the Equations

The index H indicates the Hermitian (transpose and complex conjugate). The ex-
pression of the coefficients of (19) are:

c1 = 2iwvi Mu + vHCu, = —inHC1u — VHKuu,
c3 = —VHKgu, c4 = —ia)vHr, cs = —3vHr,
cg = —3VHll(ll, uu), c7= —3an(w0, u,u,
1
cs = —6vn(u, wo, Wo), cg = EVHfl (62)
In (20) the column matrices w; (j = 1, ..., 8) are the solutions of the following

singular algebraic problems:
Wi (Ko + ioCy — a)zM)W1 = —iw(Clu

1 ,
— Z (" Cyu)QiwMu + Cou))
1

|
- (Kﬂu — — (VK u)ioMu + Cou)) (63)
ci
wai (Ko +ioCo— o?Mw; = —(Kyu
1 ,
— — (WK, u)(2ioMu + Cou)) (64)
ci
w3 Ko + iwCy — a)ZM)W3 = —6(n(u, w0, Wo)
1
— —vHn(u, wo, W) (2iwMu + Cou)) (65)
(&)
wi: (Ko +ioCo— o*Myws = —iw(r
1
— —VHrQioMu + Cou)) (66)
ci

ws: (Ko + ioCo — o*M)ws = —3(r

]
— —vHrQioMu + Cou)) (67)
ci
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Wg - (Ko + iowCp — a)zM)w6 = —6(n(u, u, u)
1, .
— —v'n(u, u, 1) QZioMu + Cou)) (68)
Cl
Wi (Ko 4 ioCo— o*M)w; = —6(n(w0, i, i)
1
— —vHn(wo. @i, i) (2iwMu + Cou)) (69)
cl
. 2 1
Wwg (Ko + iwCy — wo"M)wg = _E(fl
I gy .
— v QiwMu + Cou)) (70)

C1

The solution is made unique by the normalization condition iju =0.

Moreover w; (j = 9,...,15) are the solutions of the following non-singular
algebraic problems, in which, however, compatibility is satisfied.

wo: (Ko + 3iwCo — 90*M)wy = —3iC1wy — K, wo (71)
wio: (Ko 3ioCo — 99°M)wig = —K,wo (72)
wii: (Ko + 3ioCo — 90°M)wy| = —3iwr (73)
wia: (Ko +3ioCo — 99°M)Wwis = —r (74)
wiz: (Ko +3iwCo — 90°M)wi3 = —n(u, u, u) (75)
wia: (Ko + 3ioCo — 99°M)wis = —6n(wo, u, i) (76)
wis: (Ko + 3ioCo — 99°M)wis = —3n(wo, Wo, Wo) (77)

In (45)—(50), the expressions of the right hand side terms are:

3 1
F| = —{wa — m;73/(Cc12 sin(3a) — Eébl cos(a — f1)

3 3
+ %Kb? sin(a — B1) + %Kb%ln sin(a + 281 — B3)

3
+ —/cblb% sin(a — B1) (78)
4w
3 ow 3 3
}’2 = mn%xca — 7& — @773/{602 COS(SO[) + %Kca3

1 3
+ —&b;sin(e — B1) + —Kb? cos(a — fB1)
2 8w

3 3
+ ——kbibycos(a 4 2B — B3) + Ekblbg cos(a — Bi) (79)

8w

1 1
F3 = —Ema)za cos(a — B) + zmwzbl
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3 3

- gxb%bg cos(381 — B3) — belbg (80)
ar 1 2 1 3 2 .
Ty = S me asin(a — B) + Eé'a)bl - gKb1b3 sin(381 — B3) (81)

9 9 27 i
Fs5 = gnm cos(B3) — oMo cos(B3) + —=n3m¢ sin(B3)

32
27

+ ———n3mi. cos(B3) +

10968 n3micca® cos(B3)

128w?

9 1
- axcmcﬁ cos(3a — B3) — gxbf cos(3B1 — B3)

9 9
- aKmb? cos(3B1 — B3) + Ema)2b3

3, 9 . 3,9 X
- Z(l n gm)/cblb3 — g(l n gul)/cb3 (82)
27 9 1 ,
Fe = 5773771{ cos(B3) — §<1 - gd)%m sin(f3)
2T Scemsin(Bs) — — ? sin(Bs)
—_— Sin _ Sin
4096¢s6 131 IS T g el SIS
9 1, 9
_ axcmcﬁ sin(3a — fB3) — g(l 4 gm)xb? sin(381 — f3)
3, 9
- 5(1 n gm)gwb3 (83)
References

1. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.:
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems I. Springer, New
York (2008)

2. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.:
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems II. Springer,
New York (2008)

3. Maniadis, P., Kopidakis, G., Aubry, S.: Classical and quantum targeted energy transfer between
nonlinear oscillators. Physica D 188, 153-177 (2004)

4. Kerschen, G., Kowtko, J.J., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Theoretical and
experimental study of multimodal targeted energy transfer in a system of coupled oscillators.
Nonlinear Dyn. 47, 285-309 (2007)

5. Panagopoulos, P.N., Gendelman, O., Vakakis, A.F.: Robustness of nonlinear targeted energy
transfer in coupled oscillators to changes of initial conditions. Nonlinear Dyn. 47, 377-387
(2007)

6. Aubry, S., Kopidakis, G., Morgante, A.M., Tsironis, G.P.: Analytic conditions for targeted
energy transfer between nonlinear oscillators or discrete breathers. Physica B: Phys. Conden.
Matter 296, 222-236 (2001)



260 A. Luongo and D. Zulli

7. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman,
L.A.: Complex dynamics and targeted energy transfer in linear oscillatorscoupled to multi-
degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48, 285-318 (2007)

8. Guckenheimer, J., Wechselberger, M., Young, L.-S.: Chaotic attractors of relaxation oscillators.
Nonlinearity 19, 701-720 (2006)

9. Guckenheimer, J., Hoffman, K., Weckesser, W.: Bifurcations of relaxation oscillations near
folded saddles. Int. J. Bifurcat. Chaos 15, 3411-3421 (2005)

10. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear
oscillator with attached nonlinear energy sink. Part I: description of response regimes. Nonlinear
Dyn. 51, 31-46 (2008)

11. Starosvetsky, Y., Gendelman, O.V.: Response regimes of linear oscillator coupled to nonlinear
energy sink with harmonic forcing and frequency detuning. J. Sound Vib. 315, 746765 (2008)

12. Vaurigaud, B., Savadkoohi, A.T., Lamarque, C.-H.: Targeted energy transfer with parallel
nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66(4),
763-780 (2011)

13. Savadkoohi, A.T., Vaurigaud, B., Lamarque, C.-H., Pernot, S.: Targeted energy transfer with
parallel nonlinear energy sinks. Part II: theory and experiments. Nonlinear Dyn. 67(1), 37-46
(2012)

14. Lamarque, C.-H., Gendelman, O.V., Savadkoohi, A.T., Etcheverria, E.: Targeted energy transfer
in mechanical systems by means of non-smooth nonlinear energy sink. Acta Mechanica 221,
175-200 (2011)

15. Gendelman, O.V., Vakakis, A.F., Bergman, L.A., McFarland, D.M.: Asymptotic analysis of
passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow.
SIAM J. Appl. Math. 70(5), 1655-1677 (2010)

16. Vaurigaud, B., Manevitch, L.I., Lamarque, C.-H.: Passive control of aeroelastic instability in a
long span bridge model prone to coupled flutter using targeted energy transfer. J. Sound Vib.
330, 2580-2595 (2011)

17. Manevitch, L.: The description of localized normal modes in a chain of nonlinear coupled
oscillators using complex variables. Nonlinear Dyn. 25, 95-109 (2001)

18. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J.
Sound Vib. 315, 732-745 (2008)

19. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

20. Jiang, X., McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Steady state passive nonlinear
energy pumping in coupled oscillators: theoretical and experimental results. Nonlinear Dyn.
33, 87-102 (2003)

21. Malatkar, P, Nayfeh, A.H.: Steady-state dynamics of a linear structure weakly coupled to an
essentially nonlinear oscillator. Nonlinear Dyn. 47, 167-179 (2007)

22. Luongo, A., Zulli, D.: Dynamic analysis of externally excited NES-controlled systems via a
mixed Multiple Scale/Harmonic Balance algorithm. Nonlinear Dyn. 70(3), 2049-2061 (2012)

23. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed
Multiple Scale/Harmonic Balance Method. J. Vib. Control 20(13), (2014)

24. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant
elastic string. Meccanica (2014). doi:10.1007/s11012-014-0057-0

25. Doedel, E.J., Oldeman, B.E.: AUTO-07P: Continuation and Bifurcation Software for Ordinary
Differential Equation (2012). http://cmvl.cs.concordia.ca/auto/

26. Nayfeh, S.A., Nayfeh, A.H., Mook, D.T.: Nonlinear response of a taut string to longitudinal
and transverse end excitation. J. Vib. Control 1(3), 307-334 (1995)


http://dx.doi.org/10.1007/s11012-014-0057-0
http://cmvl.cs.concordia.ca/auto/

Hysteretic Beam Model for Steel Wire
Ropes Hysteresis Identification

Biagio Carboni, Carlo Mancini and Walter Lacarbonara

Abstract A nonlinear hysteretic beam model based on a geometrically exact planar
beam theory combined with a continuum extension of the Bouc-Wen model of hys-
teresis is proposed to describe the memory-dependent dissipative response of short
wire ropes which have the unique feature of exhibiting hysteretic energy dissipation
due to the interwire friction. With the proposed model, hysteresis is introduced in
the constitutive equation between the bending moment and the curvature within the
special Cosserat theory of shearable beams. The model is indeed capable of describ-
ing the hysteretic behavior exhibited by short steel wire ropes subject to flexural
cycles. The model parameters which best fit a series of experimental measurements
for selected wire ropes are identified employing the Particle Swarm Optimization
method. The identified parameters are used to reproduce other experimental tests on
the same wire ropes obtaining a good accuracy.

1 Introduction

Wire ropes are structural elements usually employed to resist large axial loads while
providing high strength, durability and reliability. In these applications the ropes
length is much larger than the diameter usually resulting in a negligible bending
stiffness along the cable length except in regions near the boundaries or point loads
where boundary layers are produced. On the contrary, when the wire ropes are rel-
atively short (i.e., the ratio between length and diameter is comparable to that char-
acteristic for beams) and subject to cyclic loadings, the bending stiffness cannot be
neglected and the force-displacement response shows hysteresis loops due to the
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relative sliding between the wires. The idea of exploiting the bending behavior of
short wire ropes to absorb and dissipate energy was proposed for the first time by
Stockbridge in the last century [36]. More recently, several applications based on
the interwire friction exhibited by short wire ropes have been explored [6, 11, 17,
18, 37, 43]. Within this context, Carboni et al. proposed a new rheological device
capable of providing several types of hysteretic responses employing assemblies of
wire ropes made of steel and shape memory alloy materials [5].

Challenging issues are inherent in the mathematical modeling and prediction of
the complicated mechanical behavior of wire ropes. Costello [9] proposed a theory in
which the individual wires are modeled using Loves equations for bending and twist-
ing of thin helical rods [26]. However, this model does not describe the frictional
effects. A direct approach based on the finite element method (FEM) consists in
constructing solid models which, upon reflecting the actual helical wire rope geom-
etry, are treated as a deformable continuum with frictional contacts [27, 30, 44].
The high computational burden due to the complexity associated with handling the
evolving contact regions between the wires does not allow to use three-dimensional
FEM models for predicting the wire rope hysteretic behavior. Analytical [20, 21]
or semi-analytical methods based on one-dimensional polar continuum formulations
supplemented by rheological models for the constitutive laws are more suitable for
describing the hysteresis exhibited by wire ropes. Sauter and Hagedorn [32] extended
the Masing model for a continuous system to model the short cables of a Stockbridge
damper. Rafik and Gerges [16] developed a model based on a curved beam to describe
wire rope springs deforming in tension-compression cycles.

A phenomenological model often used to describe the mechanical behavior of
hysteretic systems is the Bouc-Wen (BW) model [3, 45]. It has been used in a wide
variety of studies for modeling discrete hysteretic restoring forces or stresses. Several
extended versions of the BW model have been proposed to take into account stiffness
and strength degradation or pinching behavior [1, 2, 5]. Recently, the BW model has
been generalized to continuous systems for describing materially nonlinear problems
such as elastoplastic structures. Sivaselvan and Reinhorn [35], starting from the orig-
inal model proposed by Bouc [3], developed a smooth hysteretic method based on the
viscoplasticity theory in the context of the flexibility approach to simulate inelastic
frame structures according to a state space formulation [34]. A three-dimensional
BW-type model obtained by smoothening a three-dimensional yield surface was
proposed by Casciati [7]. Triantafyllou and Koumousis [39] introduced an elasto-
plastic hysteretic constitutive relationship derived by the BW model in the classical
Euler-Bernoulli beam formulation to conduct small and large displacement dynamic
analysis of frame structures. The same authors [38, 40] extended the plastic formu-
lation based on the BW model to plane stress elements.

Another important task in the design of applications that rely on hysteretic behav-
iors is represented by the identification of the model parameters on the basis of exper-
imental measurements. Identification strategies can be classified according to several
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criteria. A useful distinction is between parametric and non parametric methods. An
example of a non parametric method is the restoring force method initially developed
by Masri and Caughey [28] and by Donnell and Crawley [10]. This method deals with
the identification of nonlinear dynamical systems for which accelerations, velocities
and displacements are directly measured or obtained via integration/differentiation.
Extensive studies were carried out to devise suitable techniques for data processing
[46] and suitable excitation signals selection [47].

More recently there has been an extensive use of heuristic methods belonging
to the family of genetic algorithms for global optimization problems. The Particle
Swarm Optimization (PSO) is a gradient-free method proposed by Kennedy and
Eberhart [22]. The main advantages are (i) the applicability to a single type of data
without requiring differentiation or integration, (ii) the robustness against instrumen-
tal noise, and (iii) the property of converging to the global minimum of an objective
function without restrictions. On the other hand, the main disadvantage consists in
the lack of well-posed proofs of convergence. The PSO algorithm has been used
for a wide number of applications such as topology and shape optimization [14,
15], truss and frame structures optimization [12, 19, 33], aircraft wings optimization
[41]. Several variants of the original PSO algorithm have been proposed mainly tar-
geted to the identification or optimization of nonlinear hysteretic and chaotic systems
[23, 25, 48]. Charalampakis and Dimou [8] employed two variants of the PSO algo-
rithm to calibrate the BW model parameters which best fitted the hysteretic force-
displacement curves of a steel welded-bolted joint. Quaranta et al. [31] compared
different PSO versions for identifying the parameters of the van der Pol-Duffing
oscillators.

In this paper, a continuum hysteretic beam formulation based on the BW model of
hysteresis is proposed to describe the hysteretic behavior of steel wire ropes subject
to flexural cycles (see Fig. 1). The considered theory is the Special Cosserat theory
of shear deformable planar beams undergoing finite displacements and rotations. A
BW-type hysteretic relationship is established between the bending moment and the
associated curvature. Experimental quasistatic tests are performed on assemblies of
steel wire ropes, clamped at both ends, fixing one end and prescribing to the other end
a cyclic displacement in the direction orthogonal to the ropes length. The restoring
forces developed by the wire ropes are measured for several displacement amplitudes.
The wire ropes undergo a deflection with opposite curvatures having the nodal point
at the midspan. The parameters which best fit the experimentally obtained force-
displacement curves are identified by means of the PSO algorithm. The proposed
model represents a step forward from phenomenological towards mechanical mod-
eling. The equivalent beam model presents the actual geometric features (length and
circular cross section) and boundary conditions of the wire rope while the BW-type
moment-curvature constitutive law is adopted for modeling the memory effects due
to the interwire friction. Hysteresis is introduced in the bending moment according
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Fig. 1 The investigated wire ropes: a 7 x 19 and ¢ 7 x 7 and their cross sections (b) and (d),
respectively

to the assumption that this loading state causes most of the relative sliding of the
wires. For more general loading states, hysteresis can be also associated to the axial
force by defining a suitable interaction law with the hysteretic bending moment.

2 The Bouc-Wen Model of Hysteresis

The restoring force f of the BW model enhanced with a cubic term is the summation
of the elastic force k.x +k3x> and hysteretic force z, respectively, in which x denotes
the displacement, k. indicates the elastic stiffness and k3 is the coefficient of the
cubic restoring term. The hysteretic force evolution is described by the first-order
differential equation

z = lka — (v + B sgn(zx)) |z|"]x D

where k4, 7, 5 and n together with k, and k3 are the constitutive parameters of the
model and the overdot indicates differentiation with respect to time ¢. The tangent
stiffness of the hysteretic force denoted by z, is obtained by multiplying the left- and
right-hand sides of (1) by dt, and dividing the resulting equation by dx thus giving

2x = ka — (v + B sgn(zx) |z|" . @)

The hysteretic tangent stiffness at the origin is k4, while the tangent stiffness of the
overall restoring force f is k. + k4. Along the loading and unloading branches, the
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hysteretic force z reaches upper and lower bounds equal to £[k; /(v + ﬁ)]% when
the displacement is such that z,, = 0. Thus, if the cubic restoring term is set to zero,
the tangent stiffness of the restoring force becomes k., which thus represents the
post-elastic stiffness. These considerations are valid only when v + (3 > 0 for which
the model exhibits a softening behavior. Moreover, these model properties can guide
the initial choice of the parameters design space.

The nondimensional form of the restoring force and the evolution equation of the
hysteretic component read

f =06+ (1—08)z7+ksi3, 3)
=1 -+ Bsgnz0) 12I"I%, (4)

respectively, where the overdot denotes differentiation with respect to nondimen-
sional time 7 and the following nondimensional variables and parameters are intro-
duced:

- k - kax2
=t F=wr =2 f=—l0 =20
X0 20 ke 4+ kqa ke 4+ kqa

(&)

In (5), xo indicates a characteristic displacement, zo = kgxo, w = +/No/(xom) with
No = (ke + kg)xo and m denoting a characteristic mass. The other dimensionless
2 n—1

parameters are (7, 3) = (v, 3)xozg

3 The Hysteretic Beam Model

The formulation of the shearable nonlinear beam follows [24]. Let us consider a
fixed reference frame (O, ey, €2, e3) and a straight reference configuration for the
beam centerline described by the vector r°(s) = se| where s € [0, [] is the arclength
parameter and / denotes the initial beam length. The orientation of the beam cross
section in the reference configuration is described by the intrinsic frame (b, g g’)
of which b{ and (b3, b3) are collinear with e; and the principal axes of inertia of
the cross section, respectively. The reference position of the material points of the
beam is defined by the position vector p°(s) = r(s) + x2(s)b5 + x3(s)b3. The
cross sections are assumed to be locally rigid implying the preservation of planarity.
We consider only planar motions for the beam centerline which can be described by
the displacement vector u(s, t) = u(s, t)e; + v(s, t)e> while we let the rotation of
the cross sections about e3 be described by (s, ¢). The actual configuration of the
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centerline is given by the position vector r (s, t) = r°(s, t) + u(s, t) while the actual
orientation of the cross sections is described by the triad (by, b>, b3). The unit vector
b1 makes the angle 0(s, 1) with b{ = e;. The position vector of a material point in
the actual beam configuration is described by p(s, ) = r(s, t) + x2(s)b2 + x3(s)b3
where by = cos fe| +sinfe,, by = — sin fe + cos fe;, and b3 = e3. The kinematic
unknowns are (u(s, t), v(s, t), 6(s, t)). Denoting by 0 differentiation with respect
to s, the stretch vector is defined as v := J;r and expressed as

v(s,t) =v(s,)bi(s,t) + n(s, )ba(s, 1) (6)

where v and 7 represent the beam stretch and shear strain, respectively. The third
generalized strain is the bending curvature p given by

(s, t) = 0s0. (7N

The stretch and the shear strain can be expressed in terms of the displacement gradient
and the flexural rotation angle as

v(s,t) = (1+0su) cos 0+0svsin b, 7(s,t) = —(14+9su) sin 0+ 0sv cos f. (8)

The generalized strains (v, 1, pt) are related through the constitutive relationships
to the generalized stress resultants and moment resultant, also referred to as con-
tact forces and contact couple. The contact force vector is n = N(s, )b (s, t) +
QO(s, )by (s, t) while the bending moment is M (s, ¢). The linear constitutive equa-
tions for an elastic isotropic beam read

N(s,t) = EA(v(s,t) — 1), 0(s,t) = GA™n(s, 1), M(s,t) = EJu(s, t),
9

where E and G represent Young’s modulus and the shear modulus, respectively; A
is the area of the cross section, A* is the shear area and J is the area moment of
inertia about the principal axis b3.

The equations of motion read

pAdyu = DyN — pQ)cosh — (95 Q + uN)sind + fi, (10)
pAOv = (OsN — 1 Q)sinf + (05 Q + uN)cost + f2, (11
pJ 00 =0OsM +vQ —nN +c, (12)

where p is the mass density, f1, f>, and c indicate the forces and the couple per unit
reference length, respectively. Equations (10)—(12) are obtained from the balance of
linear and angular momentum in the fixed reference frame. They are supplemented
by general boundary and initial conditions expressed as
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Fig. 2 The planar beam in b, b2 b
the reference (dashed lines) Lby b
and actual configurations o

(solid lines)

u(0,1) =u(t), 60,1 =0(@), u(l,t)=u@®), 01,1t = ﬁ(t) t [0, T],
(13)

u(s,0) = i(s), 0(s,0)=0(s) sel0,1], (14)

where [0, T'] denotes the time integration domain. Figure2 shows the beam in the
reference configuration that undergoes a planar motion to the actual configuration.
In the present model, hysteresis is introduced in the constitutive equation (9)3
between the bending moment and the flexural curvature. The hysteretic constitutive
equation reads
M(s, 1) = EJopt + My, + k3 (15)

where k3 represents the coefficient of the cubic elastic bending moment, M}, is the
hysteretic bending moment whose evolution is governed by the first-order differential
equation

OrMy = {EJy — [ + Bsgn(Mp0y0) | IMal" } O (16)

with J; denoting differentiation with respect to time 7. The parameters (vy, 3, n) are
the same as those defined in (1). The tangent stiffness of the bending moment at the
origin p = 0 1is EJ; = EJ, + EJ, while the post-elastic bending stiffness is EJ,,
attained when 9, My, = 0, My, = £[EJy, /(v + 3)]* and k3 = 0.

The main objective of the hysteretic beam model is to describe the experimentally
obtained hysteretic responses of steel wire ropes subject to bending cycles. The
nonlinear beam model can reproduce the actual geometry (length and cross section)
of the wire rope, boundary and loading conditions during the tests. The hysteretic
bending moment, introduced in the constitutive equation, has the designated function
of describing the hysteretic behavior due to the interwire friction within the rope.
The beam cross section is assumed as the circular envelope of the actual cross section
of the wire rope. However, to take into account the fact that the cross section of a
wire rope is not compact but is constituted by an assembly of individual wires, an
additional parameter ¢ € (0, 1] is introduced to reduce the bending stiffness EJ of
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the compact circular cross section bounding the actual rope cross section. By letting
the new parameter § € (0, 1) denote the post-elastic-to-elastic bending stiffness (in
the limit n = 00), we set

EJ EJ
c—y, Zh_q_y. (17)
EJ,

E]I - wEJ,

The parts of the bending stiffness indicated by EJ, and EJj, respectively, can be
written as

EJ, = 6EJ, = SyEJ, EJy = (1 —90)EJ = (1 — S)YEJ. (18)

The beam length, Young’s modulus, cross section (zeroth and second area
moments), boundary and loading conditions are assumed on the basis of the actual
wire ropes geometrical and mechanical features. The hysteresis parameters (v, /3, n)
and the stiffness parameters (1), d) are calibrated to best fit the experimental measure-
ments. This model has the purpose of describing, among other goals, the applications
exploiting the frictional dissipation of wire ropes [4, 5]. The hysteretic features of
the response of a given wire rope type under bending can be evaluated carrying out
an experimental campaign whose results are used for identifying the parameters of
the proposed model. The advantage is that the identified model of a given wire rope
can be used during the design process of the specific application which makes use of
wire ropes thus drastically reducing the number of experimental tests required and
the overall design costs.

Equations (10)-(12) can be rendered nondimensional introducing the following
nondimensional variables and parameters [24]: § = s/, = wet, it = u/l, v =
v/l we = [EJ/(pAIN'2 kg = EAPJ(ED), ks = GA*I*/(E]), ks = k3/(EJ),
( fl, fz) = (f1, fz)l3 /(EJ), ¢ = cl? /(EJ). The nondimensional hysteretic moment
is given by

My, = Myl/EJ (19)

whose evolution is described by the following nondimensional equation:

My = {(1 -0 — [ﬁ + Bsgn(Mhan)] ‘Mh‘n} O (20)

where

F=~EN"T 1, F=BENTI 1)
The nondimensional equations of motion read
Ot = [kaO5v — kynOz0]cost — [ksO5n + kq (v — 1)050]sind + f1. (22)

D= = [k Q51 — ksnd501sind + [k D51 + ko (v — 1)050]1cos0 + fo, (23)
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0ii0/ ka = (W6 + k3)s0 + O: My + ks —kaw — D +&  (24)

where the assumption that the beam has a uniform cross section along the overall
span has been adopted. These equations are supplemented by boundary and initial
conditions expressed by (13) and (14). The solution can be obtained via a finite ele-
ment discretization [24]. The solution at each step is obtained employing a Newton-
Raphson iterative scheme.

4 Experimental Bending Tests for Steel Wire Ropes

The complex geometry of the contact areas between the wires of spiral and stranded
wire ropes makes the experimental tests necessary for quantifying the dissipation
capacity. An experimental campaign was carried out to evaluate the hysteresis cycles
of two stranded steel wire ropes subject to bending cycles. The investigated wire
ropes have a diameter equal to 10 and 6 mm and are constituted by 7 strands of 19
steel wires and 7 strands of 7 steel wires of diameter equal to 0.65 mm, respectively.
Figure 1 shows the wire ropes and their cross sections. The tests were performed
employing the Material Testing System (MTS) in the DISG laboratory at Sapienza
University of Rome (Italy). Two groups of four parallel 7 x 19 and 7 x 7 wire ropes
were tested with the experimental setup illustrated in Fig. 3. The wire ropes ends are
clamped at the two thick steel bars denoted by B and B, the former being connected
to the piston P of the MTS machine. Bar B; is passed through by two smooth rods
(denoted by S and S;) and one threaded cylindrical rod (denoted by t). The threaded
bar does not touch the bar B, while between the smooth rods s; and s, and B, two
self-lubricated clinched joints are placed to allow a relative frictionless sliding. The
rods t, s; and s, are welded to a third steel bar denoted by B3 that is, in turn, fixed to
a load cell.

A sinusoidal displacement with a relatively low frequency equal to 0.1 Hz is
applied to B along the direction orthogonal to the wire ropes whose restoring force
is measured by the load cell (see Fig. 3). The wire ropes are subject to pure bending
thanks to the free sliding of bar B, on rods s; and s». The two bolts (denoted by b
and by) on the threaded bar t can be used both for mounting the system and realizing
another testing setup in which the sliding of B; is prevented. In the latter case, tensile
loads arise in the ropes and the measured force-displacement curves exhibit a strong
hardening behavior. In this paper only pure bending tests are presented.

Figure4 shows the experimental setup with the undeformed and some deformed
configurations of the specimen. The wire ropes present a deflected shape character-
ized by a change of curvature through the midspan. Table 1 lists the experimental
tests for the 7 x 19 and 7 x 7 wire ropes. For each wire rope length and displacement
amplitude, 15 hysteresis cycles were measured to obtain a stabilized loop.
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Fig. 3 Experimental setup
with the tested wire ropes
and their fixtures. The arrow
indicates the cyclic
displacement provided by
the MTS testing machine

Fig. 4 The experimental
setup showing the wire ropes
in the undeformed (a) and
deformed (b), (¢)
configurations

Load
Cell

B2

S1

b1

S2

B3

RTINS

7x19 wire ropes

T TTRTITTTENNY
S

7x19 wire rope:

U

B. Carboni et al.

Y,

(@) (b) (c)

Table 1 List of the performed experimental tests in which the wire rope section, the wire rope
length and the prescribed displacement are indicated

Wire rope Length (mm) | Displacement amplitude (mm)

cross section

7% 19 75 5 10 15 20
7% 19 85 5 10 15 20
7% 19 90 5 10 15 -
7x7 100 5 10 15 20
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5 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a heuristic global optimization method based
on the swarm intelligence theory and inspired from the social interactions in bird
flocks, schools of fish or swarms of insects. The algorithm starts from an initial
population (the particles) formed by several sets of parameters to optimize with
respect to an objective function (OF). Each particle is modified iteratively by a
velocity vector that is function of the best particle within the population and the best
values assumed by the particle itself until the considered iteration.

Here, we seek to identify the model parameters of the hysteretic beam which best
fit the experimentally obtained restoring forces as function of the prescribed dis-
placements. The measured restoring force is denoted by f (y) while the model-based
restoring force is indicated by f (y). The mean square error (MSE) between mea-
sured and model-based restoring forces is assumed as objective function to minimize
and expressed as

SN o0 — FOuloP

OF(x) = 5
Naf

(25)

where 0% and N are the variance and the number of samples of the experimentally
obtained restoring force, respectively, x denotes the parameters vector of the model,
and y indicates the displacement. Considering the particles x; (i = 1, 2, .., p) and the
lower and upper bounds x 1 p and x 7 p for the particle values, respectively, the initial
population is a matrix formed by p vectors whose values are drawn by a Gaussian
distribution on their ranges of variation. The particles are updated at the jth iteration
according to the following expression:

X =xij+vi, i=L2.p j=12..4¢ (26)

where time is assumed to be equal to unity and ¢ is the number of iterations. The
velocity is

Vij+1 = wvij+cirio(p;j —Xij)+carao(p; —xij) 27

where w is the inertia factor; ¢y, ¢ are the cognitive and social parameters, respec-
tively. These parameters in the simple PSO algorithm are constant and can be set to
w = 0.8, c; = 2.8, and ¢ = 1.3. A study about the effect of the values assigned
at the inertia factor and cognitive and social parameters can be found in [13]. The
vector p; ; represents the ith best ever particle at the jth iteration with respect to the
criterion expressed by (25). The vector p; denotes the best ever particle at the jth
iteration between all vectors of the population. The notation o indicates element-by-
element multiplication and the vectors r; and r, are formed by random variables
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with uniform distributions in the interval [0, 1]. When a particle element exceeds
the assigned range of variation, its value is reset to the value belonging to the clos-
est boundary. The number of iterations ¢ is chosen by the user according to the
values achieved by MSE that must be lower than a given tolerance for which the
identification is considered acceptable.

6 Identification Results

The experimentally obtained force-displacement hysteresis cycles are identified
using the proposed hysteretic beam model. The measured restoring forces are divided
by the number of wire ropes according to the fact that they work in parallel and equally
contribute to the total restoring force. The tests with the 7 x 19 wire rope of length
equal to 75 mm are identified with an individual parameters set for each displacement
amplitude. The set of model parameters, obtained by averaging the thus obtained val-
ues, is used to compute the hysteresis cycles for the other wire ropes lengths and
compared with the experimental measurements. The test with the 7 x 7 wire rope
for a displacement amplitude equal to 15 mm is identified with a parameters set that
is later employed to compute the hysteresis cycles for different displacement ampli-
tudes. Thus, the model-based cycles are compared with the experimentally obtained
curves.

The same geometric features and boundary conditions of the wire ropes are
assigned to the hysteretic beam. In particular, the beam length and the diameter
of the circular cross section are assumed equal to those of the wire ropes. The beam
ends are both clamped. The Young modulus and Poisson coefficient are assumed
equal to 206 GPa and 0.3, respectively, while the parameters (¥, 9, 7, 3, n, k3) to
identify are assigned ranges of variation according to the PSO algorithm. One end
of the beam (i.e., that at s = [) is subject to the displacement x = A sinwt along
e; (see Fig.2) where A is the amplitude (equal, in turn, to that of the experimental
tests), w = 0.628 rad/s is the circular frequency, and ¢t € (0, T') is the time. The
generalized force f(s,t) = N(s,t)sinf(s, 1)+ Q(s, t) cos O(s, t) along e ats = 0,
which coincides with the shear force Q(0, ¢) (since the clamp implies 6(0, t) = 0),
is the restoring force. Therefore, (x(¢), f(0, 1), t € (t1, t2)) represent the displace-
ment and force to compare with the experimental measurements, #; and f, are the
time instants delimiting a stabilized hysteresis cycle. Time ¢ can be seen as a para-
meter because the frequency w is assumed so low that the inertia forces and rotary
inertia become negligible. The boundary and initial conditions for the beam can be
summarized as follows
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u(0,t) =0(0,1) =0, v(l,t) =x(@), 6d,t)=0, tel0,T] (28)

u(s,0) =46(s,0) =0, s €[0,1]. (29)
Note that the horizontal displacement u(¢) at s = [ is not restricted.

The identification task is performed employing concurrently the finite element
solver COMSOL Multiphysics [29] and Matlab [42]. The computational architecture
is managed by Matlab to which the input data are fed. COMSOL Multiphysics is used
for the computation of the hysteretic beam response across the beam span. At each
iteration of the PSO algorithm, the beam model parameters, evaluated by Matlab, are
given as input to COMSOL that performs the finite element discretization and solves
the problem. The vectors (x, f) are fed back to Matlab for computing the OF (i.e.,
MSE) and performing the identification. The number of particles p and iterations g
are set to 10 and 75, respectively. Table 2 shows the assigned ranges of variation for
the parameters to identify. The coefficient of the cubic term k3 is set to zero a priori
and is not reported in the following results. These initial input data are evaluated by
means of some preliminary calculations.

Table 3 summarizes the optimal parameter sets selected by the PSO algorithm for
the 7 x 19 wire rope whose length is 75 mm while in Fig. 5 the comparisons between
the model-based and the experimentally obtained hysteresis cycles are shown. The
identification is accurately performed and the parameters which exhibit the lowest
variation with the displacement amplitude are ) and ¢ regulating the elastic and
hysteretic stiffnesses. This suggests that the hysteretic beam model is suitable for
reproducing the hysteretic wire ropes response. For the displacement amplitude of
20 mm (Fig. 5d), both the experimentally obtained and model-based restoring forces
show a slight hardening. This is more pronounced for the model-based curves and is
due to the geometric effect of the bending curvature that takes finite values. Figure 6
shows a cycle of (a) the total and (b) the hysteretic bending moments as function of
the curvature at s = 0 for the beam length equal to 75 mm and the prescribed end

Table 2 Ranges of variation for the parameters to identify

¢ (=) 5§ y(N''m2= ) | B(NT="m? ") | n (-)
Min 0.008 0.1 0.8 0.8 1.0
Max 0.025 0.6 2 2 1.3

Table 3 Identified parameters and associated MSEs for the 7 x 19 wire rope of length equal to

75 mm
A (mm) | ¢ (-) 6 v n(-) MSE (%)
(lenm27n ) (lenm2fn )
5 0.0159 0.251 1.478 1.729 1.275 0.43
10 0.0162 0.240 1.391 1.103 1.152 0.44
15 0.0166 0.21 1.218 1.151 1.165 0.40
20 0.0168 0.186 1.684 1.989 1.285 0.50
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Fig. 5 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5mm (a), 10 mm (b), 15 mm (¢) and 20 mm
(d); the employed model parameters are reported in Table 3 and the identified tests are those for the
7 x 19 wire rope of length equal to 75 mm
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Fig. 6 a Total and b hysteretic bending moments versus the curvature at s = O for the beam length
of 75 mm with the model parameters of Table4 and the prescribed end displacement equal to 5 mm
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Fig. 7 a Elastic and b hysteretic bending moments across the beam span whose length is equal to
75 mm with the model parameters of Table 4 and for the prescribed end displacement equal to 5 mm

Table 4 Values of the model parameters obtained as mean values of the parameters in Table 3

b (=) 4= v (N''m2=m) B (NI m2—") n(-)
0.0164 0.222 1.443 1.493 1.219
(a) (b)
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Fig. 8 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5mm (a) and 10mm (b); the employed
model parameters are reported in Table 3 and the identified tests are those for the 7 x 19 wire rope
whose length is 75 mm

displacement of 5 mm. The elastic and hysteretic bending moments along the beam
length are illustrated in Fig. 7. The mean values of the model parameters reported in
Table4 are used to reproduce the hysteresis curves for the other wire rope lengths.
Figures 8, 9 and 10 show the comparisons between the model-based and the experi-
mentally obtained hysteresis cycles for the wire rope lengths of 75, 80, and 90 mm,
respectively. The associated MSEs are given in Table5. The mean values of the
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Fig. 9 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5mm (a), 10mm (b), 15 mm (c¢) and 20 mm
(d); the employed model parameters are reported in Table 4 and the identified tests are those for the
7 x 19 wire rope whose length is 80 mm

parameters identified for the 7 x 19 wire rope of length equal to 75 mm are capable
of accurately describing the hysteresis curves obtained for the lengths equal to 75,
80, and 90 mm. The best results are achieved for the displacement amplitudes of
5, 10 and 15 mm while for the displacement amplitude of 20 mm some discrepan-
cies are observed. This loss of accuracy is mainly due to the hardening behavior
exhibited by both the model-based and experimentally obtained hysteretic cycles for
large displacement amplitudes. The hardening is more significant in the model-based
response, thus a variation of the constitutive parameters for different displacement
amplitudes is required for an accurate description of the experimentally obtained
curves. However, the achieved accuracy level is consistent with the practical require-
ments.
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Fig. 10 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5mm (a), 10mm (b) and 15mm (c); the
employed model parameters are reported in Table 4 and the identified tests are those for the 7 x 19
wire rope whose length is 90 mm

The experimentally obtained hysteretic cycles for the 7 x 7 wire rope can be accu-
rately described identifying the model parameters according to a single displacement
amplitude cycle. This is due to the fact that the ratio between the displacement ampli-
tudes and wire rope length is small enough to induce weak nonlinearities and the
parameters change with the displacement amplitude is negligible. In Table6 the
parameters identified for fitting the hysteretic curve of the 7 x 7 wire rope for a
displacement amplitude equal to 15mm are shown. The comparisons between the
experimentally obtained and model-based curves are shown in Fig. 11 with the asso-
ciated MSEs given in Table 7.
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Fig. 11 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5mm (a), 10 mm (b), 15 mm (¢) and 20 mm
(d); the employed model parameters are reported in Table 6 and the identified tests are those for the

7 x 7 wire rope

Table 5 MSEs between the model-based and experimentally obtained hysteresis cycles of Figs. 8,
9 and 10, identified by the wire rope type, length / and displacement amplitude A

Wire rope type [ (mm) A (mm) MSE (%)
7% 19 75 5 0.63
7 x 19 75 10 0.92
7 x 19 80 5 0.94
7% 19 80 10 0.89
7% 19 80 15 0.53
7 x 19 80 20 0.68
7 x 19 90 5 0.71
7% 19 90 10 0.71
7 x 19 90 15 0.87
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Table 6 Identified model parameters which best fit the experimentally obtained hysteretic curve
of the 7 x 7 wire rope for a displacement amplitude equal to 15 mm

IS 56 v (N'rm2my | g (NI m2 ) (o)
0.0355 0.201 1.987 1.188 1.134

Table 7 MSEs between the model-based and experimentally obtained hysteresis cycles of Fig. 11,
identified according to the wire rope type, length / and displacement amplitude A

Wire rope type [ (mm) A (mm) MSE (%)
7x7 100 5 1.1

7x7 100 10 0.68
7x7 100 15 0.45
7x7 100 20 0.51

7 Conclusions

A nonlinear hysteretic beam model based on the formulation of an equivalent shear
deformable beam with geometric nonlinearities and an extension of the Bouc-Wen
model of hysteresis to the one-dimensional polar continuum was proposed. Hys-
teresis is introduced in the constitutive equation for the bending moment given as a
direct summation of elastic and hysteretic components. The model aims to describe
the hysteretic behavior of steel wire ropes subject to bending cycles. Experimental
tests were performed by means of an ad hoc setup for evaluating the restoring force
exhibited by a group of steel wire ropes clamped at both ends and subject to a qua-
sistatic displacement of one end in the direction orthogonal to the wire ropes rest
position. The energy dissipation within the wire ropes is due to the interwire fric-
tion. Several tests were executed for three lengths of the wire ropes and for different
prescribed displacement amplitudes. The proposed model reduces the actual wire
rope to a compact nonlinear beam in which the hysteretic bending moment describes
the frictional dissipation in a phenomenological fashion and the Cosserat-type non-
linear beam formulation reproduces the actual mechanics. Thus the geometric and
boundary conditions of the beam are assumed as those of the wire ropes while the
dissipation properties are identified on the basis of experimental tests. Moreover, the
bending stiffness is reduced by an additional parameter denoted by 1 to take into
account the lack of compactness of the rope with respect to the equivalent cylindri-
cal rod. The parameters regulating the hysteretic moment and the parameter ¢ were
identified using the PSO algorithm by best fitting the experimentally obtained curves
for the 7 x 19 wire rope of length equal to 75 mm and for the 7 x 7 wire rope subject to
a displacement amplitude of 15 mm. Thus, the identified parameters were employed
to reproduce the hysteresis curves obtained for different lengths of the 7 x 19 wire
rope and for different displacement amplitudes of the 7 x 7 wire rope. These curves
show a good agreement with the experimental results confirming that the proposed



280 B. Carboni et al.

model is a valid tool for the design of a wide range of applications based on wire
ropes hysteretic behaviors.
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An Investigation into the Dynamic
Interaction Between an Electro-dynamic
Shaker and a Test Structure with Cubic
Nonlinearity

Gianluca Gatti, Michael J. Brennan and Ivana Kovacic

Abstract This chapter describes the dynamic behaviour of a coupled system where
a nonlinear oscillator is attached and driven harmonically by an electro-dynamic
shaker. The shaker is modelled as a linear single degree-of-freedom oscillator and
the nonlinear attachment is modelled as a hardening Duffing oscillator. The attach-
ment consists of four elastic wires, represented as springs, and its nonlinearity is
due to the geometric configuration of the springs, which incline as they extend. The
mass of the nonlinear system is much less than the moving mass of the shaker so
that the nonlinear system has little effect on the shaker dynamics. The objective is
to explore the dynamic behaviour of this system under a range of different condi-
tions. Of particular interest is the situation when the linear natural frequency of the
nonlinear system is less than 