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Preface

Structural nonlinear dynamics and diagnosis (SNDD) are of great concern to
engineers, physicists, and mathematicians. They are multidisciplinary and
encountered in many applications such as vibro-impact of mechanical structures,
aeroelastic flutter, fatigue fracture, microelectromechanical systems, and energy
harvesting systems. The aim of the two international conferences CSNDD’2014 and
CSNDD’2014 held, respectively, in Marrakech (Morocco), April 30–May 2, 2012
and in Agadir (Morocco), May 21–23, 2014, is to provide a forum for the dis-
cussion of recent developments in the theory and industrial applications of struc-
tural nonlinear dynamics and diagnosis. This SNDD biannual conference offers a
meeting place where scientists from different branches of applied mathematics,
applied mechanics, and advanced physics working in nonlinear dynamics and
control can meet to discuss the latest achievements and to exchange ideas in the-
oretical, numerical, and experimental advances in the field. Focuses are directed
toward diverse topics, ranging from the theoretical of dynamical systems to dif-
ferent physical and engineering applications. The link between fundamental and
applied nonlinear dynamics is one of the stimulating goals of the SNDD conference.
A special effort has been to invite active researchers from engineering, science, and
applied mathematics communities. These two technical meetings have indeed
updated engineers with recent analytical developments of SNDD and at the same
time allowed engineers and industrial practioners to alert mathematicians with their
unresolved issues.

This book presents the contributions of some distinguished participants in the
two meetings. Both conferences were organized by the nonlinear dynamic group
of the Hassan II University of Casablanca and have attracted representatives from
the international scientific community in nonlinear dynamics, from more than 30
nationalities. There were more than 250 communications from scientists working in
nonlinear dynamics from all over the world and more than 350 participants attended
the meetings. The book addresses the state of the art and presents the most active
current lines of research in the field of structural nonlinear dynamics. A wide
audience of researchers in this field may have an advantage of the material
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presented in this book. The book includes 22 chapters contributed by outstanding
colleagues covering various aspects of applications grouped as follows:

• The first group comprises of six chapters related to structural health monitoring,
diagnosis, damage detection, and energy harvesting.

• The second group consists of six chapters covering experimental methods,
active vibration control, passive control of structures via nonlinear energy sinks,
and microelectromechanical systems.

• The third group is comprised of ten chapters dealing with nonlinear dynamics,
vibro-impact dynamics, and aeroelastic dynamics.

Researchers and engineers interested in challenges and opportunities posed by
nonlinearities in the development of structural health monitoring, diagnosis and
damage detection, control strategies, energy harvesting, novel design criteria,
modeling, and characterization will find an outstanding introduction and useful
resources of their current needs. We hope this book will provide valuable resources
to graduate students involved in structural nonlinear dynamics and diagnosis.

The organizers of CSNDD 2012 and CSNDD 2014 would like to thank the
generous contributions made by a number of individuals and institutions. In par-
ticular, the organizers would like to acknowledge the financial contributions of the
University Hassan II-Casablanca, the University de Le Havre, University Mohamed
I-Oujda, École Centrale de Lyon, ENSEM—Casablanca, the Academy Hassan II of
Sciences and Techniques, CNRST, International Union of Mathematics,
Polytechnic Institute of Casablanca, MANAGEM group, SOGELAB, and
MASTE TEC.

June 2015 Mohamed Belhaq
Laboratory of Mechanics

Hassan II University of Casablanca
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Recent Advances of Structural Life
Assessment and Related Problems

Raouf A. Ibrahim

Abstract Structural life assessment (SLA) is a diversified field and is based on the
theories of fracture mechanics, fatigue damage process, probability of failure and
reliability. SLA is not only governed by the theory of fracture mechanics and fatigue
damage process, but by the type of loading. The theory of fracture mechanics may be
classified into quasi-static fracture mechanic and dynamic fracture mechanics. The
problem of singularity encountered in fracture mechanics has been resolved by the
new theory of peridynamics described by integro-differential equation of motion.
The basic ingredients of the theory of fracture mechanics will be presented in terms
of linear elastic fracture mechanics (LEFM) and elasto-plastic fracture mechanics
(EPFM), dynamic fracturemechanics and peridynamics. The amount of energy avail-
able for fracture is usually governed by the stress field around the crack, which is
measured by the stress intensity factor. SLA depends on the failure modes and the
probabilistic description of failure.

1 Introduction

Structural life assessment (SLA) periodically evaluates the state and condition of a
structural system and provides recommendations for possible maintenance actions
or the end of structural service life. It basically relies on the theory of fracture
mechanics and reliability theory. Fracture mechanics deals with the study of the
propagation of cracks in a structural element. It seeks to establish the local stress
and strain fields around a crack tip in terms of local parameters such as the loading
and the geometry of the structure. The theory of fracture mechanics opens the way
to analyze engineering structures that experience predetermined amounts of stable
and unstable crack growth. On the other hand, the reliability theory describes the
probability of a structure to perform its expected function during an interval of time.
The opposite of reliability is failure probability per unit time or over time, such as a
life cycle.

R.A. Ibrahim (B)

Department of Mechanical Engineering, Wayne State University, Detroit 48098, USA
e-mail: ibrahim@eng.wayne.edu

© Springer International Publishing Switzerland 2015
M. Belhaq (ed.), Structural Nonlinear Dynamics and Diagnosis,
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2 R.A. Ibrahim

Reliability-based methods include the analysis of fatigue life of structural details
based on the cyclic stress against the logarithmic scale of cycles to failure (known as
S-N curve) approach and on the assumption that fatigue damage accumulation is a
linear phenomenon. The S-N curve is based on experimentalmeasurements of fatigue
life in terms of cycles to failure for different loading levels and specimen geometries.
For some materials there is a theoretical value for stress amplitude below which it
will not fail for any number of cycles, called fatigue limit, endurance limit, or fatigue
strength. Fatigue life is thus specified by the number of stress cycles of a specified
character that a specimen sustains before failure of a specified nature occurs.

SLA and structural health monitoring (SHM) are linked and complement each
other with the purpose of maintaining structural systems in operation in spite of
inevitable aging and degradations resulting fromoperational environments. The pres-
ence of a fatigue crack can lead to loss of effectiveness of a structural element when
the crack reaches a critical size. Thus, the net section that resists longitudinal loads
is reduced. The two main approaches for assessing fatigue strength are the S-N for
crack initiation assessment and fracture mechanics for crack propagation assess-
ment. The S-N approach predicts the strength based on crack initiation of a critical
structural detail as a function of the number of stress cycles. The fracture mechanics
approach can be used in risk analysis based on crack propagation assessment.

While SLA relies on periodic evaluations of structure conditions, SHM deals
with the detection and identification of the structure damage and its location during
operation. SHM also involves the observation of a structure over time using sam-
pled dynamic response measurements from an array of sensors, the extraction of
damage-sensitive features from these measurements, and the statistical analysis of
these features to determine the current state of the structure health. The damage may
be manifested by changes in the material and/or geometric properties of a structural
system, including changes to the boundary conditions and system connectivity. These
changes adversely affect the structure performance. SLA and SHM are overlapping
in the some aspects of structural systems integrity. However, in SHM, the assessment
of damage requires a comparison between two system states, namely the state of per-
fect structure characteristics and the state of defected structure characteristics. SLA
and SHM share common issues such as identification and quantification of cracks,
fatigue assessment, and impact-induced damage.

An approach for integrating the information obtained from SHM in the life-
cycle performance assessment of ship structures under uncertainty was developed
by Okasha and Frangopol [69] and Okasha et al. [70]. A strategy was proposed
by Lynch et al. [62] for fatigue life estimation of a ship hull using a wireless sen-
sor network installed in the hull for autonomous health monitoring. Experimental
tests were conducted on an aluminum hull stiffened element specimen as part of the
monitored aluminum hull integrity test program to verify the embedded fatigue life
estimation procedures. The Office of Naval Research (ONR) Ship Structural Relia-
bility Program Sielski et al. [83] indicated that SHM can enhance safety and reduce
total ownership costs for all ships, particularly high-speed aluminum vessels. The
prior experience of high-speed vessels is limited and the operational demands of
these vessels require a means to assess the performance of such high-speed ships and
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evaluate their structural health conditions in real time. A fully-effective monitoring
system would monitor operational loads, detect performance degradation and struc-
tural damage in the earliest possible stage, predicting the time to potential structural
failure and providing strategies for corrective actions.

This paper is organized as follows. Section2 provides a brief account of the theory
of fracture mechanics starting from the linear elastic fracture mechanics (LEFM)
inaugurated by Griffith’s criterion and its sequence to the elasto-plastic fracture
mechanics (EPFM) described the J -integral. In view of the limitations of quasi-
static fracture mechanics, the need for the dynamic fracture characterized for non-
Hookean materials (hyperelasticity) is addressed in Sect. 3 including an introduction
to the basic foundation of peridynamic as an emerging theory in solid mechanics.

2 Fundamentals of Fracture Mechanics

2.1 Linear and Weakly Nonlinear Criteria

Fracture mechanics was inaugurated by Griffith [43] criterion of linear elastic strains
of brittlematerials. Fracturemechanics is basedon the existence of an initial crack and
subsequent crack propagation under cyclic loading. Generally, the theory of fracture
mechanics is divided into linear elastic fracturemechanics (LEFM)and elastic-plastic
fracture mechanics (EPFM). LEFM is convenient for brittle-elastic materials such
as low-carbon steel, stainless steel, certain aluminum alloys and polymers. Plasticity
will always precede fracture. The linear theory (LEFM) is governed by a parameter
called the stress intensity factor, which determines the entire crack tip stress field and
measures the material toughness [80]. On the other hand, if fracture is accompanied
by considerable plastic deformation the EPFM is used. The fracture parameters used
in EPFM is referred to as the J -integral, which measures the strain energy release
rate,1 and the crack-tip opening displacement (CTOD). The next few subsections
provide a brief description of these criteria.

Griffith [43] developed a linear elastic fracture criterion for brittle materials. He
recognized that the difference between the energy released if a crack was extended
and the energy needed to create new surfaces would result in a force for crack
extension. Figure 1 shows a cracked structure with a crack length 2a and subjected
to uniaxial loading of stress σ. Griffith estimated the strain energy stored per unit
thickness to be

Ue = −πa2σ2

E
(1)

1Note that the term “rate” does not refer to derivative with respect to time. In this context it refers
to derivative with respect to the size of the crack.
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Fig. 1 Cracked structure
under uniaxial tension
showing the stress
concentration at the crack tip

σ

σ

2a

where E is Young’s modulus of the material and the minus sign indicates that this
energy would be released from the material. The energy associated with the surface
area of the crack per unit thickness is

Us = 2(2a)γ (2)

where γ is the material specific surface energy density. Griffith assumed that the
crack will propagate under constant applied stress, σ, if an incremental increase in
crack length produces no change in the total energy of the surface. In other words,
the derivative of the total energy with respect to a vanishes, i.e.,

d

da
[Ue + Us] = 0 (3)

This condition results in the critical stress, σcr ,

σcr =
√
2Eγ

πa
(4)

Condition (4) is known as the Griffith criterion, which states that the change of
surface energy must be greater than the change of strain energy in order to maintain
the integrity of a structure member.

In ductile materials, a plastic zone may develop at the tip of the crack as shown
in Fig. 2. As the applied load increases, the plastic zone increases in size until the
crack grows and the material behind the crack tip unloads. The plastic loading and
unloading cycle near the crack tip leads to the dissipation of energy in the formof heat.
Hence, a dissipative term has to be added to the energy balance relation devised by
Griffith for brittle materials. In physical terms, additional energy is needed for crack
growth in ductilematerials when compared to brittlematerials. Irwin [51, 52] divided
the energy into the stored elastic strain energy, which is released as a crack grows,
and another portion due to the dissipated energy, which includes plastic dissipation
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Fig. 2 The plastic zone around a crack tip in a ductile material

and the surface energy. The dissipated energy provides the thermodynamic resistance
to fracture and its value per unit area of the crack (G = −∂U/∂a) is

G = 2γ + G p (5)

where Gp is the plastic dissipation (and dissipation from other sources) per unit
area of crack growth. The modified version of Griffith’s energy criterion can then be
written as

σ f =
√

EG

πa
(6)

Note that the crack extension occurs when G = 2γ = R, where R is called the
material resistance to crack extension.Depending onhowG and R varywith the crack
size the crack growth may be stable or unstable. A plot of R versus crack extension
is called a resistance or R-curve. The corresponding plot of G versus crack extension
is the driving force. Condition for the stable crack growth is dG

d R ≤ d R
da , while the

condition for unstable crack growth is dG
d R > d R

da . A material with a rising R-curve,
however, cannot be uniquely characterized with a single value of G. According to
the condition of unstable crack growth a flawed structure fails when the driving force
curve is tangent with R curve, but this point of tangency depends on the shape of the
driving force, which depends on configuration of the structure.

The stress intensity factor is usually used to determine the stress state near the
tip of a crack. It is applied to homogeneous, linear elastic material and is useful
for providing a failure criterion for brittle materials. Irwin determined the amount
of energy available for fracture in terms of the asymptotic stress and displacement
fields around a crack front in linear elastic solids. This asymptotic expression for the
stress field near a crack tip is given in terms of polar coordinates, r, θ by the formula

σij ≈
(

K√
2πr

)
fij(θ) + higher order terms (7)
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Fig. 3 Stress field with arbitrary crack under mod-I loading

Fig. 4 Modes of crack loading

where σi j are the Cauchy stresses, r is the distance from the crack tip, θ is the angle
with respect to the plane of the crack, and fi j are (nondimensional) functions that
are dependent on the geometry and loading conditions (see Fig. 3). Irwin called the
quantity K as the stress intensity factor. It is seen that (7) involves singularity close
to the tip as r → 0. Since the quantity fi j is dimensionless, the stress intensity factor
can be expressed in units of stress × √

length.
Three linearly independent crackingmodes are used in fracturemechanics usually

referred as mode-I, -II, or -III as shown in Fig. 4.Mode-I is an opening (tensile) mode
where the crack surfaces move directly apart. Mode-II is a sliding (in-plane shear)
mode where the crack surfaces slide over one another in a direction perpendicular to
the leading edge of the crack. Mode-III is a tearing (anti-plane shear) where the crack
surfaces move relative to one another and parallel to the leading edge of the crack.
The energy release rate for crack growth or strain energy release rate may then be
calculated as the change in elastic strain energy per unit area of crack growth, i.e.,

G = −
(

∂U

∂a

)
P

= −
(

∂U

∂a

)
u

(8)

where U is the elastic energy of the system. Subscripts P and u stand for fixed load
and fixed displacement, respectively, while evaluating the above expressions.
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For isotropic, homogeneous and linear elastic material, Irwin showed that the
strain energy release rate, G, for a mode-I crack (opening mode) is related to the
stress intensity factor K I :

G = G I =
⎧⎨
⎩

K 2
I

E plane stress(
1−ν2

)
K 2

I
E plain strain

(9a)

where ν is Poisson’s ratio, and K I is the stress intensity factor in mode-I. Irwin also
showed that the strain energy release rate of a planar crack in a linear elastic body can
be expressed in terms of the three modes’ stress intensity factors for the most general
loading conditions. For pure mode-II loading relations (9a) are valid by replacing K I

by KII. For mode-III loading, the strain energy release rate is given by the expression

G = K 2
III

(
1

2Ḡ

)
(9b)

where Ḡ is the shearmodulus. Under general loading in plane strain, the strain energy
release rate takes the following expression

G =
(

K 2
I + K 2

II

) (
1 − ν2

)
E

+ K 2
III

1

2Ḡ
(9c)

Irwin made an additional assumption that the size and shape of the energy dissi-
pation zone remain approximately constants during brittle fracture. This assumption
suggests that the energy needed to create a unit fracture surface is a constant and
depends only on the material. This new material property was given the name frac-
ture toughness and designated by GIc. It is referred to as the critical stress intensity
factor, Kc. For mode-I, fracture occurs when K I ≥ KIc.

The material fracture toughness and energy release rate are usually measured by a
crack tip opening displacement test. The crack opening displacement (COD) method
employs the crack-tip opening displacement (CTOD), see Fig. 5. Crack-tip opening
displacement (CTOD or δ) is defined as the displacement transverse to the crack-tip.
The apparent advance of the crack tip is known as the crack opening stretch (COS).
CTOD is used for materials that can show some plastic deformation before failure
occurs causing the tip to stretch open.

The CTOD is estimated from the measurement of the displacement of a clip gage
across the crack tips. It is assumed that the CTOD, δ, is the sum of elastic δe and
plastic, δp, components i.e., δ = δe + δp. Approximate expressions for CTOD are
given in Broek [16] for LEFM and EPFM as follows:

δe ≈ G

σy
= K 2

Eσy
(LEFM) (10a)
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Fig. 5 Definition of crack tip opening displacement (CTOD), crack opening stretch (COS), and
clip gage displacement (CGD) or crack opening displacement (COD)

δ ≈ J

σy
(EPFM) (10b)

where G is the energy release rate (dU /da) and σy is the yield stress. Fracture occurs
at a critical value of G, (or K ) or a critical value of the J -integral.

Paris and Erdogan [75] introduced a power law relationship between the crack
growth rate during cyclic loading and the range of the stress intensity factor �K =
Kmax − Kmin, where Kmax and Kmin are the maximum and minimum stress intensity
factors, respectively, in the form

da

d N
= c (�K )m (11)

where N is the number of load cycles, m is the slope between da/d N and �K
(in log-log scale) as shown in Fig. 6. c is the material constant and represents the
coefficient at the interception of the log-log plot. The term on the left side, known as
the crack growth rate, denotes the infinitesimal crack length growth per increasing
number of load cycles. The three regions shown in Fig. 6 are: region-I exhibits a
slow crack growing, region-II represents the power-law region, and region-III is the
terminal stage whose end defines the ultimate fracture.

Paris’ law can be used to quantify the residual life (in terms of load cycles) of a
specimen for a given crack size. Defining the crack intensity factor as

K = σY
√

πa (12)

where σ is a uniform tensile stress perpendicular to the crack plane and Y is a dimen-
sionless parameter that depends on the geometry. The range of the stress intensity
factor is

�K = �σY
√

πa (13)
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Fig. 6 Typical relationship between the crack growth rate and the range of the stress intensity factor
showing three regions of crack development for a given stress ratio

where �σ is the range of cyclic stress amplitude. Y = 1 is taken for the case of a
center crack in an infinite sheet. The remaining cycles can be found by substituting
this equation in the Paris law

da

d N
= C (�K )m = C

(
�σY

√
πa

)m
(14)

For relatively short cracks, Y can be assumed to be independent of a and the
differential equation can be solved using separation of variables to give

N f =
2

(
a

2−m
2

c − a
2−m
2

i

)

C(2 − m)
(
�σY

√
π
)m (15)

where N f is the remaining number of cycles to fracture, ac is the critical crack length
above which instantaneous fracture will occur, and ai is the initial crack length above
which fatigue crack growth starts for the given stress range�σ. If Y strongly depends
on a, numerical methods might be required to find reasonable solutions.

2.2 Nonlinear Criterion and the J-Integral

Most engineeringmaterials show some nonlinear elastic and inelastic behavior under
operating conditions involving large loads. In suchmaterials the plastic zone at a crack
tip may have a size of the same order of magnitude as the crack size. Furthermore,
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Fig. 7 J -integral around a
crack tip in two dimensions

the size and shape of the plastic zone may change as the applied load increases
and also as the crack length increases. The J -integral describes the strain energy
release rate, −dU /da, or energy per unit fracture surface area in a body subjected to
monotonic loading. Rice [79] showed that the value of the J -integral represents the
energy release rate for planar crack growth. With reference to Fig. 7, the J -integral
is a line integral given by the expression

J =
∫

�

(
W (x, y)dy − �T · ∂ �u

∂x
ds

)
(16)

where W (x, y) = ∫ εi j
0 σi j · d(εi j ) is the strain energy density, �T = �n · �σ is the

surface traction vector acting on a segment ds, �σ is the Cauchy stress tensor, �n is the
normal to the curve �, �u is a displacement vector along arc s. For plane strain, under
mode -I loading, this relation takes the form (see (9a)):

JI c = G I c = K 2
I c

(
1 − ν2

E

)
(17)

where G I c is the critical strain energy release rate, K I c is the fracture toughness
in mode-I loading. For mode-II and mode-III loadings, the relation between the
J -integral and the mode fracture toughness takes the same form after replacing the
subscript I by II or III, respectively.

2.3 Boundary-Layer Effect

The behavior of a multilayered fiber-reinforced composite laminate near its geomet-
ric boundaries received extensive experimental and analytical studies (see, e.g., [53,
71–74, 76–78, 96, 100]). These studies revealed that complex stress states with rapid
change of gradients occur along the edges of composite laminates. This phenomenon
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is due to interactions of geometric discontinuities of the composite and materials dis-
continuities through the laminate thickness. It was found to occur only within very
local region near the geometric boundaries of a composite laminate. It is frequently
referred to as “boundary-layer effect” or “free-edge effect.” This problem is unique
to composite laminates and not observed in homogeneous solids in general. It was
shown that the boundary-layer effect is three-dimensional in nature and is considered
as oneof themost fundamental and important problems in themechanics andmechan-
ical behavior of composite laminates. The high interlaminar stresses are known to be
the dominant factor causing delamination. Wang and Choi [97–99] concluded that
the boundary-layer or free-edge stress field in a composite laminate is inherently
singular in nature due to the geometric and material discontinuities. Furthermore,
the order of boundary-layer stress singularity can be determined by solving for the
transcendental characteristic equation obtained from the homogeneous solution of
the governing partial differential equations. The boundary-layer stress singularity
depends only upon material’s elastic constants and fiber orientations of adjacent
plies in composite laminates.

Pipes et al. [77], Herakovich et al. [49] and Sun and Zhou [95] found that the high
stresses developed in the boundary-layer region coupled with the low interlaminar
strength are responsible for the initiation and growth of local heterogeneous damage
in the forms of interlaminar (delamination) and intralaminar (transverse cracking)
fracture in composite laminates under static loading. Christensen [22] and Wilkins
et al. [102] found that these stresses have significant effects on the long term strength
of composite laminates under cyclic fatigue loading.

The three-dimensional stress field, developed at the free-edge of an externally
loaded composite laminated plate, was found to exist in a thin layer close to the free-
edge layer. It may cause delamination, well before the expected failure of the matrix
or fibers. It is mainly explained by the mismatch of the elastic material properties
between two adjacent dissimilar laminate layers. The free-edge effect is characterized
by the concentrated three-dimensional and singular stress fields at the free edges in
the interfaces between two layers of composite laminates.An assessment ofmodeling
techniques and the effect of stress field for symmetric laminates subjected to different
load condition was presented by Soni and Pagano [93], Murthy and Chamis [67],
Bar-Yoseph and Ben-David [6, 7] and Mittelstedt and Becker [66]. It was found that
the edge effect is more dominant in tension than in bending loading for symmetric
and unsymmetric laminates, and more pronounced for symmetric angle-ply than for
unsymmetric angle-ply laminates. The main difficulty of analyzing unsymmetrically
laminated shells is due to the coupling of different modes of loading and deflection.

Gu and Reddy [46] developed a finite-element model based on the quasi-three-
dimensional elasticity theory of Pipes and Pagano [76, 78] to examine the effect of
geometric nonlinearity on free-edge stress fields in composite laminates subjected
to in-plane loads. It was found that the qualitative nature of the stresses remains
the same as those obtained in the linear analysis, but the nonlinear stresses are
larger in magnitude by 5–40%, depending on the laminate. However, in most cases
the difference was found to be about 10%. An analytical, parametric study of the
attenuation of bending boundary layers in balanced and unbalanced, symmetrically
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and unsymmetrically laminated thin cylindrical shells was presented by Nemeth and
Smeltzer [68] for nine contemporary material systems. It was found that the effect of
anisotropy in the formof coupling between pure bending and twisting has a negligible
effect on the size of the bending boundary-layer attenuation length of symmetrically
laminated cylinders. Moreover, the results showed that the coupling of the mem-
brane and flexural anisotropy and the anisotropy caused by unsymmetric lamination
is generally unimportant with regards to the primary effect of the individual shell
anisotropies on the bending boundary-layer decay length.

Stress singularities in a laminated composite wedge under real three-dimensional
corner effects were studied by Dimitrov et al. [26, 27] who developed a numerical
approach for the asymptotic analysis of the linear-elastic solution in the neighborhood
of some three-dimensional singular points. Their results revealed a strongdependence
of the singular exponents on the wedge angle, for wedge angles smaller than π
(convex wedges) the singularity is relatively weak, whereas for angles greater than
π (concave wedges) the dominant singularity is significantly stronger and reaches
quickly its minimum near 0.5. This means, that holes with sharp edges or concave
corners are much more dangerous for the composite structures than convex corners
or edges.

3 Dynamic Fracture and Peridynamics

3.1 Fracture Dynamics/Instability of Cracks

It is believed that Freund [36] introduced the basic theory of dynamic fracture,
which deals with fracture phenomena on a time scale for which inertial resistance
of the material to motion is significant. The deformable body typically contains a
dominant crack or other stress concentrating defect, and the phenomena of primary
interest are those associated with conditions for the onset of extension of a crack
or its arrest. Material inertia can have a significant effect in a variety of ways. The
fundamental theory of dynamic fracture iswell documented byFreund [38].Dynamic
fracture in solids has attracted the interest of engineers and physicists due both to its
technological interest and to inherent scientific challenge. The relationship between
the crack driving force and the crack tip speed was developed in terms of crack tip
plastic fields by Freund [37]. The mechanics of crack tip plasticity in dynamic crack
growth influences two modes of dynamic fracture, namely cleavage and micro-void
nucleation, growth and coalescence. As the fracture energy approaches zero, a crack
propagating at its asymptotic velocity is equivalent to a disturbance moving along
a free surface. Stroh [94] predicted the crack’s limiting velocity to be the Rayleigh
wave speed, VR , which is the highest speed at which a wave can move along a free
surface.

Early results revealed some discrepancies. For example, Yoffe [104] predicted that
the instability speed of cracks is about 73% of the Rayleigh-wave speed, VR , (see
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also [15, 38]). On the other hand, experiments measurements showed that the critical
instability speed can be much lower than that value for different types of materials.
Fineberg et al. [31] and Sharon et al. [82] found experimentally that the instability
speed is about one third of the Rayleigh wave speed. Later, Gao [39] showed that
Yoffe’s model is consistent with a criterion of crack kinking into the direction of
maximum energy release rate.

Some experimental observations of fracturemechanics were reported by Fineberg
and Marder [34]. In particular, it was indicated that once the flux of energy to a
crack tip passes a critical value, the crack becomes unstable, and it propagates in
increasingly complicated ways. As a result, the crack cannot travel as quickly as
theory had supposed, fracture surfaces become rough, it begins to branch and radiate
sound, and the energy cost for crack motion increases considerably. When energy
flux to a crack tip passes a certain critical value, efficient steady motion of the tip
becomes unstable to the formation of micro-cracks that propagate away from the
main crack. The dynamic energy release rate of a rapidly moving crack allows the
possibility for the crack to split into multiple branches at a critical speed of about
50 % of the Raleigh speed as indicated by Freund [35]. According to Fineberg and
Marder [34] as the crack undergoes a hierarchy of instabilities, the ability of the
crack tip to absorb energy is enormously increased.

Abraham et al. [3] proposed that the onset of instability can be understood from
the point of view of reduced local lattice vibration frequencies due to softening at
the crack tip. Later, Abraham [1] described the onset of the instability in terms of the
secant modulus. Close to crack tips, material deformation was found to be extremely
large, leading to significant changes of local elasticity, referred to as hyperelasticity.
Gao [40, 41] indicated that the atomic bonding in real materials tends to soften with
increasing strain, leading to the onset of instability when the crack speed becomes
faster than the local wave speed. Buehler and Gao [20] emphasized that the hypere-
lasticity is the key to understanding the existing discrepancies among theory, exper-
iments and simulations on dynamical crack instability. There is a very special set of
forces between atoms as reported originally by Slepyan [92]. These forces make it
possible to develop analytical solutions for cracks moving in lattices. The behavior
of cracks in these models has the following three features proposed by Marder and
Gross [64] and Marder and Fineberg [65]:

Birth: There is a range of velocities starting at zero until around 20% of the sound
speed at which steady crack motion is forbidden. Above this range the crack
motion becomes possible.

Childhood: Above the above range of velocity a steady stable crackmotion is allowed
and perfectly stable. At exactly the same externally applied stress, however, a
stationary crack could also be stable.

Crisis: Above a critical velocity steady crack motion becomes unstable.

As the crack speeds up, the relativistic contraction discovered by Yoffe [104]
becomesmore andmore important, until eventually horizontal bonds above the crack
line begin to snap. The results of numerical simulations are shown in the upper right
of Fig. 8. The crack might decide to build tree-like patterns of subsurface cracks once
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Fig. 8 Computer simulations in a simple model at the atomic scale showing a transition between
smoothly moving cracks and a violent branching instability that is similar to experiment. The
transition is a function of the energy stored per unit length to the right of the crack [65]

steady motion became impossible. Figure 8 also shows the computer simulations of
the evolution of crack velocity in a simple model at the atomic scale showing a
transition between smoothly moving cracks and a violent branching instability that
is similar to experiment. The transition is a function of the energy stored per unit
length to the right of the crack.

Micro-branching is a form of instability of fracture dynamics [33]. Fineberg [30]
presented an overview of the dynamics of fast fracture in brittle amorphousmaterials.
The review provided some details on the numerous effects commonly observed in
dynamic fracture resulting from an intrinsic (micro-branching) instability of a rapidly
moving crack. This micro-branching instability was found to result in large velocity
oscillations, the formation of non-trivial fracture surface structure, a large increase in
the overall fracture surface area, and a corresponding sharp increase of the fracture
energywith themean crack velocity. It was demonstrated that the loss of translational
invariance resulting from crack-front interactions with localized material inhomo-
geneities causes both localized waves that propagate along the crack front and the
acquisition of an effective inertia by the crack. Crack-front inertia coupled with the
micro-branching instability provided an explanation of the chain-like form of the
micro-branch induced patterns observed both on and beneath the fracture surface.

Large-scale molecular dynamics studies of dynamic fracture in brittle materials
involving the limiting speed of cracks, crack tip instabilities and crack dynamics at
interfaces were considered by Buehler and Gao [20]. The local elasticity was found
to govern the dynamics of fracture, in which case the assumption of linear elastic
material behavior becomes insufficient to describe the physics of fracture as indi-
cated by Buehler [17] and Buehler and Gao [18, 19]. The dynamics of fracture that
lead to material failure were found to be governed entirely by the material’s behavior
at the smallest scales as presented by Buehler [17] and Fineberg [29]. Hyperelastic
deformation (elasticity of large strain) near a crack tip was found to provide expla-
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(a)

(b)

Fig. 9 Crack propagation showing: a the dynamical mirror-mist-hackle transition as the crack
speed increases, and b the crack velocity history (normalized by the Rayleigh-wave speed)

nations for a number of phenomena including the “mirror-mist-hackle” instability
widely observed in experiments as well as supersonic crack propagation in elastically
stiffeningmaterials. The relation of stress and strain in real solids is strongly nonlinear
near a moving crack tip. Buehler and Gao [19, 20] showed that hyperelasticity plays
an important role in dynamical crack tip instabilities. It was found that the dynamical
instability of cracks can be regarded as a competition between different instability
mechanisms controlled by local energy flow and local stress field near the crack tip.
The result of a large-scale molecular dynamics simulation illustrating the mirror-
mist-hackle transition is shown in Fig. 9. Figure 9a shows the transition process of
the dynamical mirror-mist-hackle as the crack speed increases, while Fig. 9b shows
the time evolution of the crack velocity normalized by the Rayleigh-wave speed.

Fracture surfaces in brittle materials usually have the feature of what is known
as “mirror-mist-hackle”. This feature is characterized by the crack face morphology
changes as the crack speed increases and is referred to as dynamic instability of



16 R.A. Ibrahim

cracks. Up to a critical speed of about one third of the Rayleigh-wave speed, the
crack surface is atomically flat (mirror regime). For higher crack speeds the crack
starts to roughen (mist regime) and eventually becomes very rough (hackle regime),
accompanied by extensive crack branching and perhaps severe plastic deformation
near the macroscopic crack tip. The phenomenon of mirror-mist-hackle was found to
be a universal behavior that appears in various brittle materials, including ceramics,
glasses and polymers. This dynamical crack instabilitywas also observed in computer
simulations performed by Abraham et al. [2], Marder and Gross [64], Gumbsch et al.
[47], Holland and Marder [50] and Deegan et al. [25].

Crack dynamics in brittle materials was found to be governed by dynamical
instabilities of the crack tip (see, e.g., [31]). Gross et al. [45] reported experi-
mental measurements of acoustic emission, crack velocity, and surface structure.
The results demonstrated quantitatively similar dynamical fracture behavior in
polymethylmethacrylate and soda-lime glass samples. This unexpected agreement
suggests that there exist universal features of the fracture energy that result from
dissipation of energy in a dynamical instability. Improved measurements with high
resolution measurements of the crack’s velocity at 1/20µs intervals for about 10,000
points throughout the duration of an experiment with velocity resolution of ±5 m/s
were reported by Gross [44] and Marder and Gross [64] made it possible to follow
the long-time dynamics of a crack in more details. In applications to the fracture
of Polymethylmethacrylate (PMMA) a spatial resolution between measurements of
order 0.2mm was obtained by Fineberg et al. [32], Sharon et al. [82] and Fineberg
and Marder [34]. Figure 10 shows the time evolution of the measured crack velocity
propagating in PMMA as reported by Fineberg and Marder [34]. It is seen that the
crack first accelerates abruptly, over a time of less than 1µs, to a velocity on the
order of 250 m/s. Above the critical velocity vc, the crack velocity exhibits rapid
oscillations. As the crack’s velocity increases, these oscillations increase in ampli-
tude. The crack begins at rest and the tip has ample time to become slightly blunted
making it difficult for the crack to begin moving.

High speed interferometric measurements on dynamically propagating interfacial
cracks were reported by Lambros and Rosakis [57, 58] for Polymethylmethacrylate
(PMMA)/steel bi-material specimen. Impact loadings, using either a drop weight
tower device or a high speed gas gun, were used. In gas gun experiments, terminal
crack tip speeds of up to 1.5CPMMA

s , where CPMMA
s is the shear wave speed of

PMMA, were measured. Very large dynamic effects were observed in all dynamic
bi-material tests. It was concluded that the whole process of interfacial crack initi-
ation and growth in these tests is driven by energy “leaking” from the metal side to
the PMMA side of the bond. Furthermore, very severe transient effects occurred dur-
ing the early stages of crack growth. Dynamic complex stress factor histories were
obtained by fitting the experimental data to available asymptotic crack-tip fields. A
dynamic crack growth criterion for crack growth along bi-material interfaces was
proposed. In the subsonic regime of crack growth it was found that the opening and
shearing displacements behind the propagating crack tip remain constant and equal
to their value at initiation. The dynamic fracture toughness of PMMA compact com-
pression specimen under transient loading was studied by Rittel and Maigre [81].
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Fig. 10 Measured time
evolution of a crack tip
velocity in PMMA material.
After an initial jump to about
250m/s the crack accelerates
smoothly up to a critical
velocity vc shown by the
dotted horizontal line.
Beyond this velocity, strong
oscillations in the
instantaneous velocity of the
crack develop and the mean
acceleration of the crack
slows [34]

The evolution of both the mode-I and mode-II stress intensity factors were assessed
from the onset of loading until early crack propagation detected by a fracture gage.
Dynamic fracture toughness was taken as the value of the mode-I stress intensity
factor at fracture time. The fracture toughness was observed to increase markedly
with the stress intensity rate. Fractographic examination showed the existence of a
characteristic rough zone directly ahead of the notch-tip of dynamically fractured
specimen.

Several attempts were made to understand various aspects of the high velocity
crack tip instabilities in the framework of linear elastic fracture mechanics by Adda-
Bedia [4], Katzav et al. [54], Bouchbinder et al. [8] and Bouchbinder and Procaccia
[9]. Direct measurements of the deformation surrounding the tip of dynamic mode-I
cracks propagating in brittle elastomers at velocities ranging from 0.2 to 0.8 of the
shear wave speed were performed by Bouchbinder et al. [11–14]. The measurements
demonstrated how linear elastic fracture mechanics (LEFM) breaks down near the
tip of a crack. This breakdown was quantitatively described by extending LEFM to
the weakly nonlinear regime, by considering nonlinear elastic constitutive laws up to
second-order in the displacement-gradients. It was shown that the scale of the near-tip
region is delineated by a dynamic length-scale, �nl , from the crack tip. At this scale
the weakly nonlinear theory was found to provide an excellent description of the
measured deformation fields. The dynamic length-scale, �nl , is an important scale as
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it denotes the scale where LEFM breaks down, second order displacement-gradients
become non-negligible compared to the first order ones, and deformation-dependent
material behavior is initiated as demonstratedbyGao [40],Buehler et al. [17],Buehler
and Gao [19], Bouchbinder et al. [11] and Bouchbinder and Lo [10].

The critical fracture velocity, VC , was found to be roughly linearly dependent on
the lowest crack acceleration rates in PMMAand glass as reported by Livne et al. [59]
and Bouchbinder et al. [13]. However, it is seen large apparent scatter in the values
of the critical fracture velocity VC for a given value of the crack acceleration. This
uncertainty is believed to be due to the micro-branching instability in gels, which
undergoes a sub-critical bifurcation (hysteretic transition) from a single crack to a
multiple-crack state. The reverse transition from a crack state with micro-branches
to a single-crack state occurs at velocities far less than VC . Once the system falls
within the bistable region of velocities, either a single or multi-crack state can exist.

Bouchbinder et al. [13] indicated that the micro-branching instability can be sup-
pressed by reducing the sample thickness h in the Z-direction. When the thickness
h is sufficiently reduced the total number of “noise” (activation) sources was found
to be significantly reduced. In addition, any micro-branch chain soon encounters a
sample edge and disappears. When this occurs, Livne et al. [60] found that a new
and unexpected oscillatory instability is observed at a critical velocity of 0.9 VR .
The characteristic scales of this instability such as oscillation wavelengths, λ, or
amplitudes, A, are dependent on sample geometry or dimensions. Although such a
high velocity oscillatory instability was shown to occur in LEFM, Bouchbinder and
Procaccia [9] suggested that the predicted oscillation wavelength must scale with
the sample dimensions in the LEFM framework on the account that no other scale
exists. It was believed that these observations indicate a new intrinsic/dynamical
scale, which is needed to describe these dynamics. The oscillatory instability shown
in Fig. 11a contains a sequence of photographs of a propagating crackwith an interval
of 0.69-ms between each shot. The first top two photo frames indicate that the crack is
smooth and then undergoes transition to oscillatory motion in the subsequent frames
at approximate speed of 0.9 VR when micro-branching is suppressed. Figrue 11b
shows two frames, the top is the XY profile, while the bottom is the XZ fracture
surface of a 0.2-mm thick gel sample where oscillations are developed. Figure 11c
is for the case of a 2.0-mm thick gel where the crack preserves its straight line tra-
jectory. The shown fracture surface in Fig. 11c is dominated by micro-branching,
while the oscillating crack of Fig. 11b is a mirror surface. Figure 11d, e shows the
steady state amplitude and wave-length as functions of the applied stress, respec-
tively for the gel compositions used in Fig. 11a–c. The transition time evolution of
the oscillation amplitude and wave-length are shown in the insets of Fig. 11d, e,
respectively. The measured and LEFM predictions and measured crack-tip open-
ing displacement (CTOD) were compared by [61] and the results revealed that the
discrepancies become significant as the crack velocity increases.
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Fig. 11 Oscillatory instability of a crack: a a sequence of photographs of a propagating crack, b
photographs of XY profile (top) and (XZ) fracture surface (bottom), of a 0.2mm thick gel sample, c
the fracture surface is micro-branch dominated, d steady state amplitude of oscillations versus the
applied stress, e wavelengths of the oscillations as a function of the applied stress [9, 13, 60]

3.2 Peridynamics

The classical theory of continuum mechanics is based on partial differential equa-
tionswhose partial derivatives are continuous. Since partial derivatives do not exist on
crack surfaces and other singularities, the classical equations of continuum mechan-
ics cannot be applied directly when such features are present in the structure. Cracks
in structural material form discontinuities and their modeling requires special formu-
lation. Such formulation was proposed by Silling [84] who developed the “peridy-
namic”model of continuummechanicswith discontinuities of fracture. Peridynamics
treats internal forces within a continuous solid as a network of pair interactions, sim-
ilar to springs, which can be nonlinear. The response of the springs depends on their
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Fig. 12 Spherical region
(horizon) in a solid showing
the bond between two points
and the force density vector
(pair-wise) applied at both
points [86]

direction in the reference configuration, and their length. Pairs of material points can
interact through a spring up to a maximum distance, called the horizon.

The peridynamic theory is based on integral equations and thus does not require
spatial derivatives to be evaluated within the structure body Silling [84, 85], Silling
et al. [87], Silling and Askari [88, 89], Silling and Bobaru [90] and Weckner and
Abeyaratne [101]. It was indicated that peridynamics unifies the mechanics of con-
tinuous and discontinuous media within a single set of equations. Peridynamics is a
recent developed theory in solid mechanics since it replaces the partial differential
equations of classical continuum theories with integro-differential equations. The
basic equation of peridynamics is usually written in the form:

ρ(x)ü(x, t) =
∫

H

f
(
u(x ′, t) − u(x, t)

)
dVx ′ + b(x, t) (18)

where x is a point in a body horizon H , and u is the displacement vector field.
The vector valued function f is the force density that x ′ exerts on x as shown in
Fig. 12. This force density depends on the relative displacement and relative position
vectors between x ′ and x . This force describes how the internal forces depend on
the deformation. The term b represents the body force density field. The interaction
between any x and x ′ is called a “bond.” The force density f is assumed to vanish if
the point x ′ is outside a neighborhood of x in the undeformed configuration, which
is called the horizon. Note that bonds can break irreversibly and broken bonds carry
no force.

In peridynamics, particles interact nonlocally through a “bond” across the distance
between them,much as inmolecular dynamics [91]. The term “nonlocal” implies that
points separated by a finite distance may exert force upon each other. Values of some
quantity at a point are strongly influenced by values of the field in a neighborhood of
that point. This is in contrast to the classical partial differential equations models in
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which the particles interact locally through direct contact with each other. Chen and
Gunzburger [21] applied finite element methods as well as discontinuous Galerkin
methods to implement the peridynamic model. They used piecewise constant and
discontinuous piecewise linear functions in regionswhere discontinuitiesmay appear
and continuous piecewise linear function in areas where the solutions is smooth.
They proposed a methodology to combine the two methods. Peridynamic theory
was employed by Henke [48] to describe the mechanical response of the polymer
and polymer-nano-tube interfaces. The continuum formulation used in peridynamics
allowed the polymermaterial to be coarse-grained to the scale of the reinforcing nano-
fibers. Furthermore failure via nano-tube pull-out and matrix tearing are possible
based on energetic considerations alone.

The peridynamic theory depends crucially upon the non-locality of the force inter-
actions and does not explicitly involve the notion of deformation gradients. The lin-
ear bond-based non-local peridynamic models with reference to problems associated
with nonstandard nonlocal displacement loading conditions were studied by Zhou
and Du [106]. Both stationary and time-dependent problems were considered for a
one-dimensional scalar equation defined on a finite bar and for a two-dimensional
system defined on a square. The studywas supported by applications to the numerical
analysis of the finite-dimensional approximations to peridynamic models. A review
of peridynamic models including the ordinary bond-based, state-based models and
non-ordinary triclinic model was presented by Zhou [105]. Later, a functional ana-
lytical framework for a linear peridynamic model of a spring network system in any
space dimension was developed by Du and Zhou [28]. Different properties of the
peridynamic operators were examined for general micro-modulus functions. These
properties were utilized to establish the well-posedness of both the stationary peri-
dynamic model and the Cauchy problem of the time dependent peridynamic model.

As an application of peridynamic formulation of elasticity theory, Silling [85]
considered the deformation of an infinite bar subjected to a self-equilibrated load
distribution. The bar problem was formulated as a linear Fredholm integral equation
and solved using Fourier transform methods. The solution was found to exhibit fea-
tures such as decaying oscillations in the displacement field and progressively weak-
ening discontinuities that propagate outside of the loading region. It was argued that
these features, when present, are guaranteed to decay provided that the wave speeds
are real. This would lead to a one-dimensional version of St. Venant’s principle for
peridynamic materials that ensures the increasing smoothness of the displacement
field remotely from the loading region. The peridynamic result was found to con-
verge to the classical result in the limit of short-range forces. Silling [85] highlighted
some advantages of the peridynamic model. For example it allows for the sponta-
neous emergence of discontinuities, in contrast to the classical theory, which predicts
deformations with infinite smoothness. Furthermore, the model includes long-range
forces between material particles, unlike the classical theory, which generally deals
only with contact forces between particles.

The peridynamic theory was employed for damage prediction of many problems.
For example, Silling [85] considered the Kalthoff–Winkler experiment in which a
plate having two parallel notches was subjected to impact by a cylindrical impactor,
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and the peridynamic simulations successfully captured the angle of crack growth
observed in the experiments. Impact damage was also predicted using peridynamics
by Silling and Askari [88, 89] who considered a plate with a center crack to show the
convergence of their numerical method. A new constitutivemodel was introduced for
tearing and stretching of rubberymaterials by Silling andAskari [89]. The oscillatory
crack path was predicted when a blunt tool is forced through a membrane. The
peridynamic theory was also applied to damage analysis of plain and reinforced
concrete structures by Gerstle and Sau [42]. Askari et al. [5] and Colavito et al. [23,
24] utilized peridynamic to predict damage in laminated composites subjected to
low-velocity impact and static indentation. Xu et al. [103] and Kilic [55] considered
notched laminated composites under biaxial loads.

In order to take advantage of the computational robustness of finite element
method, Macek and Silling [63] implemented the peridynamic model in a conven-
tional finite element analysis code, ABAQUS, by representing the peridynamic inter-
actions with truss elements and using embedded element technique for the overlap
region. Macek and Silling [56] adopted the peridynamic theory since it uses dis-
placements rather than displacement derivatives. They developed an approach to
combine the peridynamic theory and finite element analysis in one treatment. The
regions where failure is expected were modeled using peridynamics while remaining
regions were modeled utilizing the finite element method. The coupling introduced
an overlap region in which both the peridynamic and finite element equations are
used simultaneously.

4 Closing Remarks

Structural life assessment relies on the theory of fracture mechanics, which deals
with the study of the propagation of cracks in a structural element under static and
dynamic loadings. The basic ingredients of the theory of fracture mechanics in terms
of linear elastic fracture mechanics (LEFM) and elasto-plastic fracture mechanics
(EPFM) has been briefly outlined. The amount of energy available for fracture is
usually governed by the stress field around the crack, which is measured by the
stress intensity factor. The value of the stress intensity factor, which depends on
the loading mode, has been evaluated by different methods developed by many
researchers. Complex stress states with rapid change of gradients occur along the
edges of composite laminates. This phenomenon is due to interactions of geometric
discontinuities of the composite and materials discontinuities and is found to occur
only within very local region known as “boundary-layer effect” or “free-edge effect.”
This problem is unique to composite laminates and not observed in homogeneous
solids in general. It was shown that the boundary-layer effect is three-dimensional
in nature and is considered as one of the most fundamental and important problems
in the mechanics and mechanical behavior of composite laminates.

Equally important is the dynamic fracture phenomena when inertial resistance
of the material to motion is significant. A rapidly running crack emits stress waves
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which can be geometrically reflected or scattered back to the region of the crack.
Close to crack tips, material deformation is extremely large, leading to significant
changes of local elasticity known as hyperelasticity. Hyperelastic deformation near
a crack tip has shown to provide explanations for a number of phenomena includ-
ing the “mirror-mist-hackle” instability widely observed in experiments as well as
supersonic crack propagation in elastically stiffening materials. Since partial deriva-
tives do not exist on crack surfaces and other singularities, the classical equations of
continuum mechanics cannot be applied directly when such features are present in
the structure. Cracks in structural material form discontinuities and their modeling
requires special formulation such as the peridynamic model of continuummechanics
with discontinuities of fracture. The development of peridynamics is in its early stage
and has not been fully implemented to handle practical engineering problems such
as ships and aerospace structures under extreme loadings.
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Electromagnetic Impact Vibration
Energy Harvesters

Mohamed Bendame, Eihab Abdel-Rahman and Mostafa Soliman

Abstract Vibration energy harvesting is the focus of extensive research as an alter-
native power source for low-power electronic devices. First generation of vibration
energy harvesters were based on linear oscillators designed to harvest vibrations in
a narrow band in the vicinity of their natural frequency. However, in environments
where vibrations are random or distributed over a wide spectrum, those harvesters
prove ineffective. In this chapter, we present a new architecter for nonlinear vibra-
tion energy harvesters, namely the ‘Springless’ vibration energy harvesting, that can
effectively harvest vibrations over a wide bandwidth and at low levels of vibra-
tion. It employs impact oscillators as the harvesting element. We study, characterize,
and qualify the performance of those harvesters experimentally, analytically, and
numerically.

1 Introduction

Advances in silicon electronics and MEMS technology reduced significantly the
power consumption of devices, Table1, such as wireless sensors, portable, and wear-
able electronics. A large number of the locations, where those devices are used, are
either remote or inaccessible. Most of these low-power devices rely heavily on elec-
trochemical batteries as a source of power. However, batteries have a limited life span
and number of recharging cycles. They are also constantly in need for recharging
or replacement. For applications such as wireless sensing and remote monitoring,
battery replacement or recharging can be expensive, challenging or impossible in
some cases. Examples include human implants, sensing devices intended for long
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Table 1 Selected
battery-operated systems

Device type Power consumption

Smartphone 1W

MP3 player 50mW

Hearing aid 1mW

Wireless sensor 100µW

Cardiac pacemaker 50µW s

Quartz watch 5µW

duration, and systems that are physically placed in remote areas [1]. Another serious
problem with batteries is the fact that they contain hazardous chemical materials that
are harmful to the environment if not recycled. In Canada, for example, over 600
million primary consumer batteries were sold in 2007 and about 95% of them end up
in landfills [2]. With the world’s growing reliance on wireless and low-power elec-
tronics and the push for a green environment, there is a great need for self-powering
and self-sustaining low-power electronic devices.

The low power design trends combined with self-sustainability needs presented
an opportunity for researchers to find alternative ways to power such devices and
eliminate or reduce dependency on batteries. One promising avenue to achieve this
goal is to exploit ambient vibration energy sources. Vibration energy harvesting
technology has been making significant strides over the last few years as it aims to
provide a continuous and uninterrupted source of power for low-power electronic
devices and wireless sensors. While the idea of converting environmental vibration
energy into electrical energy has been used before, advances in micro-electronics
and low power consumption of silicon-based electronics and wireless sensors have
given it an added significance.

In the research literature, the first description of an inertial micro-power-generator
was an electromagnetic vibration energy harvester (VEH) presented by Williams
and Yates in 1995 [3]. Since then a great deal of research has been conducted in the
area of vibration energy harvesting. Earlier works by Beeby, Glynne-Jones, Roundy
[4–6] and others focused on the implementation of linear oscillators to maximize
the harvested energy at resonance. In this type of harvesters, the seismic mass of the
VEH moves under the influence of base excitation supported by a linear spring. The
oscillator attains maximum velocity, and thus input kinetic energy, in a frequency
band around its natural frequency,

ω =
√

k

m
, (1)

where k is the spring stiffness andm is the effectivemass of themechanical oscillator.
While systems in this arrangement are capable of generating electrical energywith

output power on the order of few milli-Watts [6, 7], their natural frequency must be
tuned to match the frequency of ambient vibrations. In fact these harvesters are
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Table 2 Electromagnetic micro-power generators

Generator f (Hz) Accel (m/s2) m (g) Power (µW)

Beeby et al. [6] 52 0.589 0.66 45

Glynne-Jones [4] 99 6.85 2.96 4990

Ching et al. [27] 110 95.5 – 830

designed to harvest at a single frequency. A high Q-factor to minimize energy losses
means a very limited bandwidths over which energy can be harvested [8]. However,
in environments where ambient vibrations are distributed over a wide spectrum of
frequencies, with significant predominance of low frequency components, linear
harvesters prove to be ineffective because of their high center frequencies and narrow
bandwidth [9–11]. It is therefore impractical to use linear VEHs with relatively high
center frequency (≥20Hz) and narrow bandwidth to harvest ambient wideband and
low frequency environmental vibrations. Examples of some linear harvesters that
have been proposed over the years are listed in Table 2, a more comprehensive
lists of electromagnetic energy harvesters can be found in [12]. We note that linear
harvesters have high operating frequencies and low power densities. For example,
the electromagnetic VIBES harvester (first line in Table2) has a center frequency of
52Hz and a maximum power of 45µW.

Due to these limitations, attention in recent years has focused on the imple-
mentation of self-tuning and nonlinear systems in order to increase the vibration
energy harvester’s frequency bandwidth. A number of approaches have been tried
for this purpose including nonlinear stiffness, resonant frequency tuning, mechanical
stoppers and exploitation of nonlinear structures that display bandwidth widening
behavior. These approaches lead to three main types of nonlinear vibration energy
harvesters; Duffing, array, and impact harvesters.

The Duffing type harvester gets its name from the Duffing oscillator since its
governing equation reduces to a Duffing equation. In this case, the nonlinearity is
added to the harvester either by using nonlinear springs or by introducing magnetic
forces to alter the overall system stiffness and make it appear as a nonlinear quantity
in the system’s model. The Duffing harvester can be classified in three categories:
hardening, bistable, and softening [13]. Mann and Sims [10] presented a Duffing
type harvester that uses magnetic restoring forces to levitate an oscillating center
magnet. The governing equation for the harvester’s mass displacement reduces to a
Duffing equation, and the introduction of nonlinearities through magnetic levitation
resulted in large motion over a wide band of frequencies. Using a similar approach,
Mann and Owens [9] presented a nonlinear vibration energy harvester with a bistable
well. Theoretical and experimental results reveal that the nonlinear generator with a
bistable potential well can be used to broaden the frequency response of the harvester.
The output power of the proposed harvester varied from 5 to 200mW for input
accelerations ranging from 5 to 10m/s2, and from the presented results the frequency
bandwidth was 1, 2, and 3Hz for input accelerations between 5 and 6.5m/s2, and
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2Hz for 10m/s2 respectively. Further examples of Duffing-type and other nonlinear
vibration energy harvesters can be found in reviews of recently published work
[8, 14, 15].

Array harvesters employ a series of mechanical resonators, usually a series of
cantilever beams with varying length and center frequencies. The cantilevers are
tuned in a way that all resonance frequencies are close to each other. The resonance
frequencies are adjusted by tuning the geometry of each energy scavenger or by
applying a proof mass. As long as the source vibration has dominant frequency
within the band of the array, at least one of the beams operates at its resonance
frequency. Hence, as more beams are added to the array, as much bigger is the
possible bandwidth [16]. Sari et al. [17] proposed a harvester that used an array
of piezoelectric oscillators made of cantilever beams on which planar gold coils
were fabricated. The reported generator covers a wide band of external vibration
frequencies by implementing a number of serially connected cantilevers of different
lengths resulting in an array of cantilevers with varying natural frequencies. The
device generates 0.4W of continuous power in a frequency range covering a band
of 800Hz. Similar approaches were used by Lien and Shu [18] and Rezaeisary et
al. [19]. In [20], Yan et al. proposed a multi-frequency energy harvester consisting
of three permanent magnets and three sets of two-layer coils supported by a beam.
The idea here is that energy is harvested under the first, second, and third resonant
modes.

It has been shown that impact harvesters increase the frequency bandwidth and
output power of vibration energy harvesters [21–24]. Impact harvesters are realized
usingmechanical stoppers that limit themotionof the seismicmass.When the seismic
mass impacts the stoppers, the overall stiffness of the system is reduced to a piecewise
linear or nonlinear function, that results in a nonsmooth system [23]. Soliman et al.
[25] proposed a wideband micropower generator that utilized a mechanical stopper
placed within the stroke and the cantilever beam. When the cantilever oscillates, it
engages the stopper during motion, and therefore changes its stiffness from k1 to k2
with (k1 � k2). Le Cuong et al. [26] presented a double-impact electrostatic energy
harvester that used a reference device with end-stops and an impact device with
movable end-stops functioning as slave transducers. The impact harvester resulted
in bandwidth increase by up to a factor of 20 compared to conventional approaches.

In this chapter, we analyze a new architecture of nonlinear VEHs that uses a
double-impact oscillator, namely the “Springless” VEH, as its harvesting element.
Specifically, we study the response of the horizontally aligned configuration of the
VEH experimentally, numerically, and analytically.

2 Springless Vibration Energy Harvester

The schematic of the “Springless” VEH, shown in Fig. 1, consists of an electromag-
netic transducer and a double-impact oscillator. The oscillator is composed of an
inertial mass comprising four permanent magnets residing inside a steel cage, and
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Fig. 1 Schematic of the
horizontally-aligned VEH

Fig. 2 Prototype of
springless vibration energy
harvester

two end limiters made of two identical springs attached to two resin walls at each end
of the housing unit. The carriage carrying the magnetic seismic mass moves freely
along the linear guide with respect to a stationary concentric coil in response to base
excitations. A prototype of the VEH is shown in Fig. 2.

The motion of the magnetic carriage induces an electromotive force (emf) across
the coil terminals according to Faraday’s law of induction;

V = dφ

dt
(2)

where φ is the total magnetic flux given by;

φ = BA (3)

where A is the area vector and B is the magnetic field vector. For a coil that consists
of N loops, the total induced voltage would be N times as large, and (2) becomes;

V = N
d

dt
(BA cos θ) (4)
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Differentiating (4) with respect to time we obtain:

V = N

(
dB

dt
A cos θ + B

dA

dt
cos(θ) + BA

dθ

dt

)
(5)

From (5), the harvested power depends on the magnetic field density B provided
by the permanent magnets, the coil’s cross-section area A of the coil, and the angle
between the magnetic field B and the normal to the coil cross section area A. It is
desired to maximize the output voltage by operating with an angle θ of zero and
maximize the constant field density B. In this case, the first and last terms of (5) will
be suppressed and the equation reduces to:

V = NB
dA

dt
(6)

The coil’s shape is rectangular with length l and width x, during operation the length
l remains constant and the width x varies with respect to the moving mass. This
reduces (6) to the following:

V = NBl
dx

dt
, (7)

where dx
dt is the velocity of the moving mass.

2.1 Magnetic Field Model

One of the most important elements of the electromagnetic VEH is the magnetic flux
density. It is therefore important to accurately design the magnetic circuit with the
objective to maximize and stabilize the flux density around the coil. The magnetic
circuit of the VEH is shown in Fig. 3, it consists of four magnets arranged as shown
in the figure, a steel cage, and an air gap separating the two sets of magnets. The
material for the steel cage is mild steel and the magnets are Sintered Neodymium.

The finite element modeling software ANSYS was used to determine the mag-
netic flux density. The FEM simulations results are compared with measured results
for validation purposes. The FEM simulation results of the magnetic field strength
obtained from ANSYS are shown in Figs. 4 and 5, while the measured results are
shown in Fig. 6.

Themeasured and simulated results of themagnetic circuit show that themagnetic
flux density is constant (0.74T) but has opposite signs on each side of the magnetic
circuit. This is due to the fact that the polarities of the two sets ofmagnets are reversed
(S-N and N-S). This setup allows the induced voltage across the coil to add up and
hence maximize the harvested power. From Fig. 6, we recognize that the flux density
is maximum over a 6–7mm range, where it is desired that the magnets oscillate with
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Fig. 3 Magnetic circuit

Fig. 4 Calculated magnetic flux density

Fig. 5 Calculated magnetic field distribution
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Fig. 6 Measured magnetic
flux density

respect to the stationary coil in order to reduce any magnetic softening effects in the
harvester.

2.2 Damping

Damping in the vibration energy harvester comes from two sources, mechanical and
electrical energy losses. Themechanical damping is usually approximated as viscous
linear damping, but in the case of the impact VEH cubic nonlinear damping is added
to account for energy losses when the seismic mass impacts the end limiters. The
cubic damping is defined as:

Fn = bnẋ x2 (8)

where bn is the nonlinear damping coefficient, and found by fitting experimental data
of the frequency-response curve of the model.

2.2.1 Electrical Damping

In electromagnetic vibration energy harvesters, when the current passes through the
coil it creates a magnetic field that opposes the field produced by the magnets. The
interaction between the two fields produces a force which opposes the motion of
the inertial mass. Consequently, the interaction force that acts as electromagnetic
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damping produces the harvested power delivered to the load, and it can be expressed
as [28]

Fem = be
dx

dt
(9)

The electrical power is extracted from the mechanical oscillator and is given by [6]

Pem = Fem
dx

dt
(10)

A small part of this power is dissipated in the coil resistance Rc, and the rest is
delivered to the load resistance RL . Equating the power dissipated to that generated
by the electromagnetic force gives

Pem = be

(
dx

dt

)2

= V 2

RL + RC + jωL
(11)

where L is the coil inductance. Substituting for the voltage using (2), we can write
the electromagnetic damping as

be = 1

RL + RC + j ω L

(
dφ

dx

)2

(12)

Assuming that the coil inductance is negligible and the magnetic field intensity B is
constant, the electromagnetic damping coefficient can be expressed as:

be = (Bl)2

RL + RC
(13)

where l is the effective length of the coil. The electrical damping can, therefore, be
calculated using (13) and the parameter values given in Table 3.

2.2.2 Mechanical Damping

The viscous mechanical damping is estimated from the measured open-load
frequency-response curve of the harvester, which determines the quality factor Q
of the VEH, while the nonlinear damping coefficient is found by matching the exper-
imental frequency-response curve to the numerical results of the model.

Table 3 Electromagnetic
transducer parameters

Parameter Value

Magnetic field B (T) 0.74

Effective coil length l (m) 1.75

Coil resistance RC (Ω) 3.4
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Table 4 Mechanical
damping parameters

Parameter Value

Mass, m (kg) 0.12

Stiffness, k1 (N/m) 950

Center frequency, f0 (Hz) 21

Low cut-off frequency, f1 (Hz) 20.2

High cut-off frequency, f2 (Hz) 22.5

The quality factor of the VEH is defined as:

Qm = f0
Δf

(14)

where f0 is the center frequency andΔf = f2−f1, with f1 and f2 are the two half-power
frequencies. The quality factor relates to the mechanical damping of the harvester as
follows;

Qm = m ω

bm
(15)

where bm is the mechanical damping coefficient of the open-load harvester. The
mechanical damping is found using (14) and (15) and the values of the VEH’s
parameters given in Table 4, bm = 1.16 kg/s. The center frequency and half-power
bandwidth were found from a frequency-sweep curve of the base acceleration of the
VEH at an amplitude of A0 = 0.05g.

2.3 Gravity

The response of the VEH undergoes significant qualitative changes when the orien-
tation of the gravitational field with respect to the linear guide changes. When the
linear guide is aligned horizontal with respect to the surface of earth, such that gravity
is perpendicular to the track, the harvester motions are symmetric with respect to
the track mid-point. As soon as a component of the gravitational field acts along the
track, it breaks the symmetry of the harvester motions.

First, in Sect. 3, the response of the symmetric HEV is analyzed when it is aligned
horizontally. Then, in Sect. 4, we will model and analyze the response of the limiting
case for asymmetric VEHs, a VEH aligned vertically.
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3 Horizontal VEH

3.1 Model

The harvester is modeled as a single degree of freedom oscillator with piecewise-
linear stiffness, Fig. 7, subject to harmonic base excitations applied directly to the
housing unit.

We set the origin of the coordinate system used to describe the motion of seismic
mass at the half point between the springs. The seismic mass m is assumed to be
a point mass, as shown in Fig. 8. The free distance along the rail (not occupied by
the cage) between the upper and lower uncompressed springs is denoted L. The
uncompressed length of each spring is denoted xs and the fully compressed length
is denoted xc. In this configuration, the governing equation of motion of the moving
mass is given by:

Fig. 7 Horizontal VEH schematic

Fig. 8 Horizontal VEH
simplified schematic
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m ẍ + bm ẋ + bn x2 ẋ + Fe + F(x) = −m ÿ (16)

where x and y are the displacements of the seismic mass m and the housing unit,
respectively, and F(x) is a nonsmooth function representing the system’s stiffness
given by (19), and Fe is the induced emf given by (9),

Fe = be ẋ (17)

Substituting (17) in (16) we obtain the equation of motion of the “Springless” VEH;

m ẍ + (bm + be) ẋ + bn x2 ẋ + F(x) = −m ÿ (18)

The restoring force F(x) is defined such that:

• The springs stiffness is set to the linear stiffness of the spring k1 when it is not
fully compressed (no impact)

• The springs stiffness is set to a higher stiffness k2 when it is fully compressed
(impact) with k2 � k1

The force-displacement relationship shown in Fig. 9, F(x) can be written as follows:

F(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −xs ≤ x ≤ xs

k1(x − xs) xs < x ≤ xc

k2(x − xc) + k1(xc − xs) xc < x ≤ L
2

k1(x + xs) −xc < x < −xs

k2(x + xc) + k1(xs − xc) −L
2 ≤ x ≤ −xc

(19)

k1

k2

k1

k2

xs-xs xc-xc

-0.005 0.005
x(m)

-10

-5
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F(N)

Fig. 9 Force-displacement relationship
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The VEH scavenges vibration energy transmitted to it from an environmental
vibration source represented by the base acceleration,

ÿ = a(t) = A0 cosω t (20)

where A0 and ω are the amplitude and frequency of the external excitation. The
equation of motion (18) is nondimensionalized using the nondimensional variables,

ωn =
√

k1
m

, ωh =
√

k2
m

, α1 = xs

L
, α2 = xc

L
, ζ2 = bn

2m ωn

A = A0

L m ω2
n
, ζ1 = be + bm

2m ωn
, γ =

(
ωh

ωn

)2

, Ω = ω

ωn
.

(21)

and is written as,
ẍ = A cos(Ωt) − 2 ẋ (ζ1 + ζ2 x2) − F(x) (22)

where the nondimensional restoring force is given by:

F(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 −α1 ≤ x ≤ α1

x − α1 α1 < x ≤ α2

−α1 + α2 + γ (x − α2) α2 < x ≤ 1

α1 + x −α2 ≤ x < −α1

α1 − α2 + γ (α2 + x) −1 ≤ x < −α2.

(23)

3.2 Experimental Results

The “Springless” VEH was tested using a feedback-controlled vibration shaker that
provides base excitations with constant acceleration and different frequencies. The
testing setup is shown in Fig. 10. Different experiments were performed to examine
the harvesters time response and frequency response. Different time response wave-
forms of the VEH, shown in Fig. 11, were obtained by applying different input base
excitations with constant amplitude at different frequencies, the figures show wave-
forms for an input amplitude A0 = 0.5g at frequencies in the region of the natural
frequency of the oscillator ( f = 15,17, 18, 20Hz).

The frequency response curves shown in Fig. 12 represent the up and down fre-
quency sweep for input accelerations A0 = 0.3−0.6g and a 40 turns concentric coil.
We note from Fig. 12 a number of characteristics associated with nonlinear systems:
(1) The existence of a hysteresis band between the up and down frequency sweep,
(2) existence of the jump phenomena, (3) the frequency response curve peak shifts
to the right as the amplitude of input excitation is increased, and (4) the frequency
bandwidth increases with increase in the base excitation amplitude. We also confirm
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Fig. 10 Experimental setup of the horizontal “Springless” VEH

Fig. 11 Experimental time
response waveforms of the
“Springless” VEH for input
A0 = 0.5g and frequencies
Ω = 15, 17, 18 and 20 Hz

from the results shown in Fig. 13 that as the coil’s number of turns is increased the
output voltage increases as well as the frequency bandwidth. The increase in the
frequency bandwidth is due to the increase of the parasitic resistance which in turns
reduces the electrical damping of the system.

Testswere carried out on theVEH todetermine its optimal power andoptimal load.
A resistive loadwas connected across the coil’s terminals and the base excitation input
frequency was varied over the frequency range f = 5–20 Hz. The test was repeated
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Fig. 12 VEH Experimental
frequency response curves
for input accelerations
A0 = 0.3 − 0.6g

Fig. 13 Experimental
frequency response curves
for coils with number of
turns N = 25, 40, and 60

using different values of the resistive load. Results shown in Fig. 14 represent the
frequency-response curves of the VEH for different loads. From the figures, we
conclude that the optimal power is 8.5 and 12mW while the optimal voltage is 0.8
and 1.2 mV for a 40 and 60 turns coil respectively.
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Fig. 14 Harvester’s output
voltage for input acceleration
A0 = 0.5g and a coil with 60
turns for loads R = 1−7 Ω

3.3 Numerical Results

Nonlinear dynamical systems are usually solved using numerical long-time integra-
tion. However, the long-time integration method might not yield periodic solutions
easily and provides no information about the system’s stability. Therefore, other
numerical methods for finding periodic solutions and analyzing their stability must
be used. The shooting method is a well known numerical method that uses numer-
ical integration in conjunction with Floquet theory to obtain periodic solution and
assesses their stability [29]. For validation purposes, the averaging method is used
to find approximate closed-loop form solutions.

3.3.1 Shooting Method

The shooting method described in [29] is applied to the VEH equation of motion
given by (18), which is written as a system of first order differential equation:

ẋ1 = x2
ẋ2 = − be + bm

m x2 − bn
m x2 x21 − Fst(x1)

m − y
(24)

Equation (24) can be written as;

ẋ = F(x, t), (25)
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where x is the state variables vector (x1, x2), and F is a vector function. The shooting
method is used to find a periodic solution, x(t) = x(t + T), that satisfies (25) by
solving the boundary-value problem:

ẋ = F(x, t)

x(0) = η, x(T) = η
(26)

where η is a vector of initial guesses and T is the period, both of which are in
general unknown a priori. Applying the shooting technique, the two-point boundary-
value problem is converted into a initial-value problem, and the resulting system of
equations is

ẋ = F(x)

x(0) = η0, x(T) = η0

d

dt

(
∂x
∂η

)
= DxF(x)

∂x
∂η

∂x
∂η

(0) = I

(27)

where I is the two dimensional identity matrix. Applying the shooting method to our
system we obtain the following system of differential equations;

ẋ1(t) = x2(t)

ẋ2(t) = −x2(t)
be + bm

m
− x2(t) x1(t)

2 bn

m
− Fst

m
− y(t)

d

dt

(
∂x1
∂η1

)
= ∂x2

∂η1

d

dt

(
∂x1
∂η2

)
= ∂x2

∂η2

d

dt

(
∂x2
∂η1

)
= −be + bm

m

∂x2
∂η1

− bn

m

∂(x2 x21)

∂η1
− 1

m

∂Fst

∂x1

∂x1
∂η1

d

dt

(
∂x2
∂η2

)
= −be + bm

m

∂x2
∂η2

− bn

m

∂(x2 x21)

∂η2
− 1

m

∂Fst

∂x1

∂x1
∂η2

x(0) = η0

∂x1
∂η1

(0) = 1,
∂x1
∂η2

(0) = 0,
∂x2
∂η1

(0) = 0,
∂x2
∂η2

(0) = 1

(28)

The shooting algorithm requires an initial guess, this is done by solving (24)
by long time integration for a given base acceleration amplitude and frequency,
then a point on the obtained orbit is used as an initial guess to solve the system
of (27). A periodic solution is found once the change in the initial guess between
two iterations falls within a predefined error criteria. The amplitude or frequency
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Fig. 15 Harvester’s
experimental and model
output voltage for input
acceleration A0 = 0.5g and
frequency f = 18Hz, and a
coil with 60 turns

of base acceleration is then updated and the process is repeated to obtain an orbit
corresponding to the new forcing parameters. Figure15 shows the waveforms of the
VEH obtained numerically and experimentally. From the figure we note a very close
match between numeric and experimental results. Figure16 shows the numeric and
experimental frequency response curves of the VEH. The numerical results match
those experimentally indicating the model captures and reproduces the behavior of
the VEH.

3.4 Analytical Results

The averaging method is used to obtain an approximate closed-form solution of the
harvester’s equation of motion given by (18). We assume a solution of the form:

x(t) = a sin(Ω t + β) (29)

where a and β are slowly varying amplitude and phase. We also assume that:

ẋ(t) = aΩ cos(Ω t + β) (30)

subject to the constraint:
ȧ sin φ + aβ̇ cosφ = 0. (31)
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Fig. 16 VEH’s experimental
and numerical frequency
response curves for input
acceleration A0 = 0.5g and a
coil with 60 turns

where we set φ = Ω t +β. Using (29) and (30) in the normalized equation of motion
(18), we obtain the second constraint:

ȧ cosφ + 2 a ζ cosφ ((1 + a2) sin(t + β))2)) + F(x)

= a(β̇ + 1) sin φ + A cos(Ω t).
(32)

Solving (31) and (32) for ȧ and β̇ yields:

ȧ = −[
2 a ζ cosφ (1 + a2 sin2 φ) − a sin(φ) − A cos(Ωt) + F(φ)

]
cosφ (33)

a β̇ = [
2a ζ cos(φ) (1 + a2 sin2 φ) − a sin(φ) − A cos(Ω t) + F(φ)

]
sin(φ)

(34)
Next, we use (29) to write the restoring force in terms of the phase angle φ as

F(φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ φ ≤ φ1
a sin φ − α1 φ1 ≤ φ ≤ φ2
aγ sin φ + α2(1 − γ ) − α1 φ2 ≤ φ ≤ π − φ2
0 π − φ1 ≤ φ ≤ φ1 + π

a sin φ + α1 φ1 + π ≤ φ ≤ φ2 + π

aγ sin φ + α2(γ − 1) + α1 φ2 + π ≤ φ ≤ 2π − φ2
a sin φ + α1 2π − φ2 ≤ φ ≤ 2π − φ1
0 2π − φ1 ≤ φ ≤ 2π

(35)
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where
φ1 = sin−1

(α1

a

)
, φ2 = sin−1

(α2

a

)

are the phase angles corresponding the seismic mass contacting the linear spring at
x = xs and the fully compressed spring x = xc, respectively.

We define a detuning parameter describing the difference between the forcing
frequency Ω and ωn as

σ = Ω − 1

and average (33) and (34) over the interval of one period (0, 2π ) to obtain the
modulation equations

ȧ = − a
1

2
ζ (4 + a2) + A

2
cos(σ t − β)

β̇ = 1

2π

[
− 2α2(γ − 1)

√
1 − α2

2

a2
− 2α1

√
1 − α2

1

a2

+ a

(
− 2(γ − 1) sin−1

(
α2

a

)
− 2 sin−1

(
α1

a

)
+ πγ

)]
− 1

2

− A

2a
sin(σ t − β)

(36)

Defining the phase angle ψ = σ t − β, we write the modulation equations in
autonomous form as

ȧ = − a
1

2
ζ (4 + a2) + A

2
cosψ

ψ̇ = σ − 1

2π

[
2α2(γ − 1)

√
1 − α2

2

a2
+ 2α1

√
1 − α2

1

a2

+ a

(
− 2(γ − 1) sin−1

(
α2

a

)
− 2 sin−1

(
α1

a

)
+ πγ

)]
− 1

2

− A

2a
sinψ

(37)

The steady-state periodic solutions correspond to the fixed points (a0, ψ0) of the
modulation equations. These equations are solved numerically for the fixed points as
a function of the detuning parameter σ . Substituting the fixed point at σ = 0, which
corresponds to the resonance frequency, in the assumed solution form, (29), we
obtain the seismic mass response shown in Figs. 17 and 18. Figure17 shows the time
response of the seismic mass displacement when the frequency of base excitation
matches the natural frequency of the oscillator. Figure18 shows the corresponding
orbits of the seismic mass obtained numerically and analytically.
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4 Vertical Configuration

A vertical implementation of the VEH, is suitable for environments where motions
are predominantly in the vertical direction. The linear guide, aligned vertically as
shown in Fig. 19, allows the carriage tomove freely along the rail.When the assembly
vibrates due to a base excitation y(t), the seismic mass m moves with respect to the
housing producing a relative displacement x(t). In this section the mathematical
model of the vertically aligned VEH is derived and the numerical method used to
obtain the periodic orbits of the system. Experimental results are then used to validate
the model.

Fig. 17 Displacement of
VEH’s mass m: numerical
(red) and analytical (blue)
for base acceleration
amplitude of A0 = 0.6g

Fig. 18 VEH orbits:
numerical (blue) and
averaging (green) for base
acceleration amplitude of
A0 = 0.6g
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Fig. 19 Schematic of the
vertically-aligned springless
VEH

4.1 Model

The equation of motion of the vertically-aligned harvester can be written as:

m ẍ = − (be + bm) ẋ − Fst(x) − m ÿ − m g, (38)

where Fst(x) is the restoring force. The VEH harvests kinetic energy transmitted to
it from the host vibrations represented by the base acceleration

ÿ = A0 cos(Ω t), (39)

where A0 and Ω are the amplitude and frequency of the external excitation.
The origin of the coordinate system is placed at the point where mass m rests on

the lower spring. The seismic mass m is assumed to be a point mass, as shown in
Fig. 20. The free distance along the rail, not occupied by the cage, between the upper
and lower uncompressed springs is denoted xt . The uncompressed length of each
spring is denoted xs and the fully compressed length is denoted xc. The restoring
force Fst(x) varies with the position of the inertial mass m according to the equation:
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Fig. 20 Simplified
schematic of the VEH

Fst(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ x ≤ xt

k1x xc − xs < x ≤ 0
k1(xc − xs)+
k2(−xc + xs + x) −xs ≤ x ≤ xc − xs

k1(x − xt) xt < x < −xc + xs + xt

k1(xs − xc)+ −xc + xs + xt < x < xs + xt

k2(xc − xs − xt + x)

(40)

where xs is the position where the mass touches the uncompressed spring, xc is
the position where the spring is fully compressed, k1 is the linear spring stiffness,
and k2 the linear stiffness of the fully compressed spring. The force-displacement
relationship is shown in Fig. 21.

5 Results

A prototype of the VEH is mounted on an electromagnetic shaker as shown in Fig. 22
and a base acceleration is applied as input excitationwith amplitudeA0 and frequency
Ω . The voltage across the coil terminals is measured using an oscilloscope.

Experimental results show that the vertically-aligned harvester possesses three
different regions of operation. For amplitudes (A0 ≤ 0.05g), the VEH response
is linear, since the seismic mass remains attached to the lower spring throughout
motion, this region will be known as the linear regime. For acceleration amplitudes
in the range (0.1g < A0 < 0.5g), the mass detaches from the lower spring during
motion without impacting the upper one. In this region, the response is that of a
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Fig. 21 Restoring force-displacement relationship

Fig. 22 Experimental setup
of the VEH

single-impact oscillator and will be therefore called the single impact regime. For
acceleration amplitudes (A0 > 0.5g), the mass impacts both springs and the response
is that of a double-impact oscillator, this will be called the double impact regime.
The experimental and numerical results for the three different regimes are presented
next.
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Fig. 23 The numerical (red
line) and experimental (blue
+) open circuit voltage
(RMS) for an excitation of
amplitude A0 = 0.03g
(Color figure Online)

5.1 Linear Regime

In this case, the mass remains in contact with the lower spring. Test results show that
the response of the VEH is linear. Figure23 shows the measured and numerically
obtained frequency-response curves of the voltage (RMS) across the open circuit
terminals of the coil. Base acceleration amplitude is held constant at A0 = 0.03g,
while the frequency is swept up and down in the range 12–30 Hz.

Since the response of the VEH system is linear, the piecewise restoring force
reduces to a linear relationship between stiffness and displacement, and the equation
of motion is reduced to a simple spring-mass-damper model given by:

ẍ = −bm

m
ẋ − k1

m
x − ÿ − g, (41)

The steady-state response x of linear model under a base acceleration

ÿ = Ω2 Y0 cosΩ t = A0 cosΩ t (42)

is given by:
x (t) = a cos (Ω t + Φ) (43)

where a and Φ are the amplitude and phase of the system response and their expres-
sions can be found in books that deal with linear one DOF oscillators. The open
circuit voltage is given by:

VL = Blẋ (44)



54 M. Bendame et al.

Fig. 24 Frequency-response
curves of the VEH under
base acceleration amplitudes
in the range of
A0 = 0.2−0.5g

The harvester’s response is obtained by substituting the parameter values listed in
Table4 into (41) and numerically integrating. The results, shown in Fig. 23, agree
reasonablywell with the experimental results. Themaximumoutput voltage is 18mV
obtained at the center frequency fc = 21Hz and the harvesting bandwidth is 3 Hz.

5.2 Single Impact

The experimental frequency-response curves of the voltage across the open circuit
terminals of the coil for base acceleration amplitudes in the range 0.2–0.5 g are shown
inFig. 24.Thefigure shows the up- anddown-sweeps in the frequency range5–35 Hz.
We note the existence of hysteresis between the up and down frequency sweeps
and jumps between an upper and a lower branches of response in the frequency-
response curves. We note in Fig. 24 that the jump to the lower branch occurs as the
frequency is swept down indicating the existence of a softening nonlinearity in the
VEH [29]. The hysteresis range increases with base acceleration amplitude from
1Hz at A0 = 0.2g−3Hz at A0 = 0.5g.

The harvester response for a base acceleration amplitude A0 = 0.4g was obtained
numerically and the results compare reasonably well with the experimental results
as shown in Fig. 25. The stiffness and damping were reduced for this regime to
k1 = 880 N/m and bm = 0.6 N m/s, respectively. This is expected since in this
regime the mass looses contact with the spring and spends significant time in air and
thus reducing the effective stiffness and damping of the VEH.
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Fig. 25 The open circuit
voltage between the coil
terminals for a base
acceleration amplitude
A0 = 0.4g

We note that the reduction in effective stiffness shifts the center frequency from
fc = 21Hz to the range 12–16.5 Hz, which indicates that nonlinearities in the system
facilitate low frequency harvesting. Further, as the base acceleration amplitude was
increased, the peak frequency dropped, from fc = 16.5 Hz at A0 = 0.2g−fc =
14.5 Hz at A0 = 0.3g and fc = 12 Hz at A0 = 0.4g, as the carriage spent more time
in air away from the lower spring.

Meanwhile, the maximum output voltage continued to increase with base accel-
eration amplitude as expected. For base acceleration amplitude A0 = 0.4g, the max-
imum output voltage was 110 mV (RMS) obtained at a frequency of fc = 12 Hz.

5.3 Double Impact

For large excitations, the base acceleration amplitude was set to the range of A0 =
0.6 − 1g. Figure26 shows the frequency-response curves obtained for the open-
circuit output voltage of the VEH. As in the case of moderate excitations, note the
up and down jumps between branches of response and hysteresis between up and
down-sweeps in the frequency range of 5–35 Hz.

We also observe a new branch of responses in the harvester frequency response.
Two additional jumps appear to the right (at higher frequency) of the two original
jumps in the frequency-response curves leading up to the new branch during fre-
quency down-sweeps and down from it during up-sweeps. The harvester response is
linear along this new branch. For instance, for base acceleration amplitudeA0 = 0.8g
the new jumps occur at f = 13 and fc = 15 Hz.
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Fig. 26 Frequency-response
curves of the VEH for base
acceleration amplitude in the
range of A0 = 0.6−1g

This new phenomenon is attributed to large seismic mass motions covering the
entire track between the two springs. Along this branch of response, themassmotions
reach the maximum allowable displacement

D ≈ xt + xs − xc

which remains almost constant as the excitation frequency varies since it is limited
by the two hard springs k2. As a result, the velocity along this branch is

ẋ ≈ ωD sin(ωt + φ)

Using (44), we obtain the output voltage (RMS) as

V = B l D√
2

ω (45)

We note that the measured output voltage varies linearly with the frequency, Fig. 26,
in accordance with (45). Further, since base acceleration amplitude does not appear
in (45), the voltage output falls on the same line for all acceleration amplitude values
reported here.
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6 Conclusion

In this paper we investigated the response of a wideband impact VEH numerically
and experimentally when aligned horizontally and vertically. Results show that using
a double-impact oscillator and a concentric coil enhanced the harvester’s output
power and its bandwidth. A maximum output power of 12mW over a frequency
bandwidth BW = 6 Hz was achieved using a 60 turns coil with an effective length
l = 1.75 m and a 3.6Ω , from an input acceleration A0 = 0.6g. We also note that the
impact produced a hardening/softening type nonlinearity in the horizontal/vertical
configuration of VEH. The VEH’s bandwidth increased with increase of the input
acceleration and an increase in the number of turns in the concentric coil. Numerical
analysis of the VEH show the existence of nonlinear phenomena that are reminiscent
of impact oscillator, in particular, the jump phenomena in the frequency response of
the VEH and the existence of hysteresis.
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Abstract Use of modal curvatures obtained from modal displacement data for
damage detection in isotropic and composite laminated plates is addressed through
numerical examples and experimental tests. Numerical simulations are carried out
employing COMSOL Multiphysics as finite element solver of the equations gov-
erning the Mindlin-Reissner plate model. Damages are introduced as localized non-
smooth variations of the bending stiffness of the baseline (healthy) configuration.
Experiments are also performed on steel and aluminum plates using scanning laser
vibrometry. The obtained results confirm that use of the central difference method
to compute modal curvatures greatly amplifies the measurement errors and its appli-
cation leads to unreliable predictions for damage detection, even after denoising.
Therefore, specialized ad hoc numerical techniques must be suitably implemented
to enable structural health monitoring via modal curvature changes. In this study,
the Savitzky-Golay filter (also referred to as least-square smoothing filter) is con-
sidered for the numerical differentiation of noisy data. Numerical and experimental
results show that this filter is effective for the reliable computation ofmodal curvature
changes in plate structures due to defects and/or damages.
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1 Introduction

Vibration-based damage detection techniques have an advantage associated with
their global approach by which faults within a mechanical system can be identified
without a priori information about their location and regardless of their accessibility.
Moreover, automatic real-time vibration-based structural health monitoring (SHM)
systems can be effectively implemented. In this context, approaches based on changes
of the modal characteristics of the structure induced by damages are widely used.
While the validity of modal damping as damage index is still a controversial topic,
variations of natural frequencies and mode shapes have been largely exploited to
assess the occurrence of damage. Natural frequencies are particularly attractive for
damage identification because they can be estimated from a fewmeasurement points
and are usually contaminated by small levels of noise, however, their sensitivity
to damage is rather poor. Changes in mode shapes yield local information which
turn out to be more suitable for damage localization than variations of the natural
frequencies, provided that a sufficient number of measurement points is acquired.
Notwithstanding the mentioned desirable features, several studies have shown that
modal displacements, as expected, are not very sensitive to faults.

Conversely, changes in the modal curvatures with respect to those of the baseline
(healthy) structure lead to a more effective definition and computation of damage
indices. In [14] it was observed that the localized occurrence of a spike in the function
obtained by subtracting the modal curvature of the undamaged structure from that of
the damaged situation is an indicator of the damage location. Therefore, in view of
practical applications, the main issue is concerned with the processing of the modal
curvatures, a task that can be accomplished by means of direct measurements or via
numerical methods. The possibility of directly measuring modal curvatures using
optical fibre strain sensors was discussed in [6], but most of the current applications
are based on the extraction of modal displacements from dynamic measurements.
To this end, the use of accelerometers, electronic speckle pattern interferometry or
scanning laser vibrometry is frequent. In this scenario, the whole reliability of the
damage detection procedure largely depends on the accuracy of the numerical differ-
entiation procedure. Attention has to be paid on the calculation of modal curvatures
because differentiation of noisy data is well known to be an ill-posed problem. The
central difference method is certainly the most popular tool for estimating the cur-
vatures from modal displacements, see for instance [1, 2, 7, 12]. However, some
studies have shown that errors amplification may become so large as to make the
central difference method inappropriate for reliable damage localization [2]. As a
consequence, some recent attempts have been made to circumvent the difficulties
that can be found when implementing damage detection techniques based on numer-
ically obtained modal curvatures. They include the use of wavelets [4, 8], Gaussian
function derivatives [13], Laplace operator [5], smoothing spline and Savitzky-Golay
filter [16].

The present contribution is part of a larger effort aimed at assessing the effec-
tiveness of damage detection by modal curvatures as well as at improving their
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reliability for practical SHM applications. This chapter is concerned with the use of
modal curvatures for damage detection in thin plate structures. Along these lines,
damage detection in composite laminated plates based on modal curvatures has been
discussed in [15]. Bending modal curvatures were calculated using the central differ-
ence method, and dynamic measurements were acquired by using a scanning laser
vibrometer (SLV). Curvatures obtained from measured modal displacements were
also recently considered to identify defects in composite T-stiffened panels [10].

In the present work, an extensive numerical study is conducted for isotropic
and composite laminated plates. Simulations are performed using COMSOL Mul-
tiphysics. The Mindlin-Reissner plate model is implemented and defects are intro-
duced as localized non-smooth variations of the bending stiffness of the baseline
configuration. Experiments are also performed on steel and aluminum plates using
SLV. Although the central difference method is often preferred to calculate the modal
curvatures, our study confirms that it greatly amplifies measurement errors. Its final
outcomes are ineffective for damage detection, even if measurement errors are as low
as possible and denoising is performed. On the contrary, numerical and experimental
investigations demonstrate that the Savitzky-Golay filter yields reliable predictions
of modal curvatures changes for practical SHM applications.

2 Damage Detection by Modal Curvatures

We assume that noisy modal displacements φi are available at positions (xi , y j ), and
the measurement points along a given y coordinate are taken to be spaced by the
constant sampling distance Δx . The problem is concerned with the determination of
the second derivative with respect to x denoted by φ′′(xi ), i.e., a suitable estimate
of the exact modal curvature at xi about direction y = y j (note that this is the
exact linear bending curvature within the Kirchhoff-Love plate theory whereby the
transverse shear strains are neglected). Therefore, the 2D numerical differentiation
problem is reduced tomultiple 1D problems, as it was done in previous works [15]. In
the present study, two numerical differentiation techniques are considered, namely,
the standard central difference approximation and the Savitzky-Golay filter. The
methods described below apply to all targeted mode shapes and plate configurations
(undamaged or damaged). Any reference to the mode number and to the structural
configuration is, therefore, omitted for sake of conciseness.

The most popular approach for obtaining curvatures via numerical differentiation
from (displacement) mode shapes φ is based on the central difference approximation.
For the i th point, the central difference method yields the following expression:

φ′′(xi ) = φi−1 − 2φi + φi+1

Δx2
. (1)

The original Savitzky-Golay filter [17] (also referred to as least-square smoothing
filter) and its variants represent an important class of local methods for numerical
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differentiation of noisy data [3]. In their seminal paper, Savitzky and Golay demon-
strated that fitting a polynomial to a set of input samples and then evaluating the
obtained polynomial at a single point within the approximation interval is equiva-
lent to discrete convolution with a fixed impulse response. The key derivation steps
are summarized next for a better appreciation of the proposed application to dam-
age detection. A set of (2m + 1) consecutive samples is considered together with a
local coordinate system, i.e., q ∈ {−m, . . . , 0, . . . ,+m}. The lth-order least-square
polynomial is represented by

f (q) =
l∑

r=0

br qr . (2)

The Savitzky-Golay approach applies (2) at the midpoint only (q = 0) whereas the
value of the output at the next sample is obtained by shifting the analysis interval
to the right by one sample and repeating the procedure at the new midpoint. The
sth-order derivative of f (q) in (2) evaluated at q = 0 only requires the expression
for bs . The central sth-order derivative of the polynomial form in (2) can also be
expressed as

φs(0) =
m∑

q=−m

hs
qφq (3)

in which hs
q is the convolution weight of the qth filter point. Instead of considering

a power series, the approach developed in [9] is based on use of discrete orthogonal
polynomials, whereby the Gram polynomials turn out to be particularly suitable to
the present case. In doing so, the sth-order derivative at any point ξ is obtained by
using the following expression:

φs(ξ) = 1

(Δx)s

m∑
q=−m

hξ,s
q φq (4)

where the scale factor is needed when the original coordinate system is considered
(i.e., the points are separated by Δx �= 1). The convolution weight for φq with
−m ≤ q ≤ m has the form:

hξ,s
q =

l∑
r=0

(2r + 1)(2m)(r)

(2m + r + 1)(r+1)
Pm

r (q)Pm,s
r (ξ), (5)

where

Pm
r (ξ) =

r∑
a=0

(−1)a+r (a + r)(2a)(m + ξ)(a)

(a!)2(2m)(a)
(6)
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and

Pm,s
r (q) = 2(2r − 1)

r(2m − r + 1)

[
q Pm

r−1(q) + s Pm,s−1
r−1 (q)

]
− (r − 1)(2m + r)

r(2m − r + 1)
Pm,s

r−2(q)

(7)

denote the r th-order Gram polynomial and its sth-order derivative, respectively. The
calculation of the modal curvature through (4) is best performed by constructing the
table Hs(ξ, q) = {hξ,s

q : −m ≤ ξ ≤ +m,−m ≤ q ≤ +m, s = 2} using (5). This
strategy is computationally efficient because the convolution weights do not change,
provided that the measurement points as well as m and l do not vary with the mode
shape number in both undamaged and damaged situations. Note that the classical
Savitzky-Golay approach [17] does not allow the calculation of the modal curvatures
at the first m points and at the last m points. By using the Gram polynomial-based
strategy developed in [9], the curvatures at the first m points and at the last m points
are calculated by using the coefficients of Hs(ξ, q) for ξ from −m to −1 and for ξ

from 1 to m, respectively. As in the classical Savitzky-Golay approach, the rest of
the n samples uses the center point weighting, which is obtained by setting ξ = 0.

Once the experimental modal displacements have been acquired, the modal cur-
vatures are numerically obtained and the damage can be identified by comparison. To
this end, the modal curvature-based damage index I (xi |y = y j ) proposed in [1] is

I (xi |y = y j ) =
nt∑

k=1

∣∣∣φ0′′
ik − φ′′

ik

∣∣∣ (8)

where nt is the number of target modes, φ0′′
ik is a numerical estimate of the modal

curvature of the kth undamagedmode shape at the i thmeasurement point xi about the
direction y = y j , and φ′′

ik is the corresponding curvature for the damaged structure.
Ho and Ewins [11] (see also [2]) presented themode shape curvature squaredmethod
based on the following proposition of the damage index:

I (xi |y = y j ) =
nt∑

k=1

∣∣∣φ0′′
ik
2 − φ′′

ik
2
∣∣∣ . (9)

On the other hand, the following different formulation of the damage index was
proposed in [16]:

I (xi |y = y j ) =
( nt∑

k=1

(
φ0′′

ik − φ′′
ik

)2)p

. (10)

Numerical analyses presented in [16] showed that if the numerical estimation of
the modal curvatures is sufficiently accurate, then the damage index given by (10)



64 F. Mosti et al.

with p > 1 (e.g., p = 2) magnifies the distance between peaks due to damage and
those that appear in other positions. This turns out to be beneficial in reducing false
positives when noisy data are considered.

3 Numerical and Experimental Applications

TheMindlin-Reissner platemodel is consideredwherein damage or defects are intro-
duced as localized non-smooth variations of the bending stiffness of the undamaged
original configuration. The finite element software COMSOL Multiphysics is used
to perform FE discretization of the equations of motion provided in PDE form.
The considered composite plate has four layers with lay-up 0◦/45◦/90◦/−45◦. The
elastic constants are: E1 = 137.137 GPa, E2 = 9.308 GPa, ν12 = 0.304,
ν21 = 0.017, G12 = 4.551 GPa, G23 = 4.206 GPa, and the mass per unit vol-
ume is ρ = 1568 kg/m3. A specific damage is introduced by halving the stiffness of
the second layer within a region having an extension equal to 4% of the plate side
length. AwhiteGaussian noisewas added to themodal displacements so that the final
error (about 1%) is able to simulate experimental data after denoising. The damage
index is computed according to (10) with nt = 5 and p = 1. The damage index
function is then normalized by dividing it by its absolute maximum value. Figure 1
shows a sample of the obtained numerical results for the composite laminated plate.

These results show that the central difference method does not lead to the proper
damage identification because of countless false positives. On the other hand, use
of the Savitzky-Golay filter gives a clear definite spike at the exact damage location
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Fig. 1 Damage detection in composite laminated plate based on numerical data (the coordinates
of the midpoint of the narrow damaged region are x = 0.67 and y = 0.59): comparison between
central difference method (left) and Savitzky-Golay filter (right)
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Fig. 2 Experimental layout (clockwise from the upper left corner): Polytec scanning laser vibrom-
eter, piezoelectric actuator, undamaged and damaged 50mm × 50mm aluminum and steel plates
(thickness equal to 0.5mm). The plates have clamped boundary conditions on two sides and free
conditions on the other two sides. Damage is introduced by halving the plate thickness within a
circle having 2mm diameter and the center about 14mm far from one corner

while reducing the number of peaks due to error amplifications induced by the numer-
ical differentiation procedure.

Experiments were also performed on isotropic plate structures using SLV (see
Fig. 2 for an overview of the experimental layout). The results shown in Fig. 3 fur-
ther confirm that use of the Savitzky-Golay filter for the computation of the modal
curvatures provides a satisfactory identification of the damage in thin plate-like struc-
tures (the damage index is computed according to (10) with p = 1). The purposefully
introduced damage is well identified in both cases, i.e., the maximum values of the
damage index (red-colored zone) lie within the region of the plate where the defect
is introduced whereas very low values can be found elsewhere. The center of the
identified damaged region and that of the defect are roughly coincident for the steel
plate. For the aluminum plate, the location of the center is slightly off from the exact
one.

The effectiveness of the Savitzky-Golay filter with respect to the central difference
method was also evaluated for defects having different shapes. The experimental
results shown in Fig. 4, for instance, are referred to a stretched narrow damaged
region (the damage index is here computed according to (10) with p = 2). Results
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Fig. 3 Damage detection in isotropic plates based on experimental data (the curvatures are com-
puted by the Savitzky-Golay filter over a 50 × 50 grid of points centered at the damaged region):
steel plate (left) and aluminum plate (right)
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Fig. 4 Detection of a stretched damaged region in an isotropic plate based on experimental data
(the vertical axis of the damaged region is x = 1 and the curvatures are computed over a 50 ×
50 grid): results obtained using the central difference method (left) and the Savitzky-Golay filter
(right)

in Fig. 4 corroborate the fact that the central difference method does not provide a
clear evidence about the existence of damage whereas the defect is well identified
by means of the Savitzky-Golay filter. Specifically, high values of the damage index
calculated through the Savitzky-Golay filter can be easily recognized at the bounds
of the stretched damaged region, thus highlighting the location and extension of the
defect.
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4 Conclusions

This chapter provides an overview of a computational procedure for damage detec-
tion in plate structures based on modal curvatures estimated via numerical differen-
tiation of modal displacement data. The ill-posedness of such inverse problem can
cause abnormal amplifications in the calculation of the numerical derivatives, espe-
cially when considering relatively dense arrays of measurement points. Although
the central difference method is extensively employed, this study—in consonance
with previous recent works—confirmed that this method is not suitable for damage
detection. Keeping measurement errors as low as possible and reducing the noise
level may turn out to be beneficial to some extent for damage identification but does
not fix the problem. Therefore, different numerical procedures have to be explored
and, in this perspective, the present work illustrates the application of the least-square
smoothing filter, also known as Savitzky-Golay filter. Despite its simplicity, this tech-
nique proved to be a reliable, rapid tool for a satisfactory numerical estimation of
the modal curvatures from noisy modal displacements. Numerical and experimental
results discussed herein demonstrated that the implementation of the Savitzky-Golay
filter leads to a more effective identification of relatively small damages in thin plate
structures together with a remarkable reduction of the number of false alarms.
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Abstract Nowadays, new technologies have triggered the needs of new energy
sources, smaller and more efficient, so the research about energy harvesting has
increased substantially. Several researchers have developed the conversion of wasted
mechanical energy to electrical energy using piezoelectric materials as a
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transducer. This chapter proposes a mathematical model for the constitutive equation
of a piezoelectric transducer. Experimental results involving piezoelectric elements
were considered. The proposed mathematical model allows a considerably better
description. The results are closer to those obtained in a real system, reducing inac-
curacy of predictive behaviour of the piezoelectric energy harvesting system. In
this work, the numerical simulations show a significant difference between results
obtained with the proposed model and other models available in literature.

1 Introduction

Nowadays, new technologies have triggered the needs of new energy sources, smaller
and more efficient. The research on energy harvesting system has increased substan-
tially. Several different devices have been developed. In all these devices, a new way
to harvest energy is the use of piezoelectric material as a transducer to harvest energy
from ambient mechanical vibrations. Many researchers have recently explored this
sort of energy harvesting based on piezoelectric material. As some examples, we
mention that the piezoceramics can be used as piezomagnetoelasctic structure and
harvest energy from an ambient vibration [1, 2]. A vast and important study of piezo-
electric energy harvesting system can be found in [3–5]. These authors explored the
reuse of the wasted energy that is very important nowadays to some applications,
including renewable energy.

Linear and nonlinear piezoelectric coupling have been considered. The nonlinear
coupling incorporates the more realistic effects of the piezo elements, because of
the constitutive laws of piezoelectric materials specifically the nonlinear relation-
ship between the strain and the electric field in the piezoceramic material [6–9]. A
good approximation to a relation of the nonlinear piezoelectric coupling was firstly
developed by Triplett and Quinn [10] that shows good results comparing to the
experimental results. Hence, the authors conclude that the role of nonlinearities in
the piezoelectric materials has a great impact over the responses of the system. Thus,
for better design of an energy harvester, the nonlinear effects of electromechanical
coupling must be taken into account [11].

In order to check this, we propose a new approximation of experimental curve of
the piezoelectric material response to modelling this behaviour. Using the theoretical
model of piezoelectric energy harvesting in [12–14], a comparison was performed
among a reference function (RF) proposed by Triplett and Quinn [10] for piezoelec-
tric coupling and the proposed model (PM) by us present in this work.

This chapter is organized into five sections. Section 1 is essentially an introduction
to energy harvesting vibrating systems. Section 2 presents the proposedmathematical
nonlinear piezoelectric coupling, showing how it can be relevant in the mathematical
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modelling of the real problem, taking into account the nonlinear coupling proposed by
Triplett and Quinn [10]. Section 3 presents the mathematical modelling of the energy
harvesting system considering a proposal nonlinear piezoelectric coupling. Section 4
exhibits the results of numerical simulations, those were carried out, comparing the
average power using the reference function to the proposedmodel. Section 5 presents
the main conclusion of the work.

2 The Proposed Nonlinear Coupling Term

The piezoelectric element behaviour was checked experimentally by Crawley and
Anderson [7] as we can observe in Fig. 1. Figure1b shows the function to dimen-
sionless piezoelectric coupling coefficient suggested by [10], where the dimen-
sional piezoelectric coefficient d(x) were approximated to: d(x) = dlinear (1 +
dnonlinear |x |), having defined as the dimensionless counter-party as: d̂(x) = θ(1 +
Θ|x |), where the piezoelectric coefficient is constituted by a linear part represented
by θ and a nonlinear part represented by Θ . In Fig. 1a, the nonlinear model curve is
the approximation stipulated by Triplett and Quinn [10].

As can be seen in Fig. 1a, neither linear model and nonlinear approximation nor
the model of Fig. 1b are good approximations of experimental model. We can also
observe that the experimental model try to reach a saturation point, behaviour that is
not observed in the models. The goal of this research is to determine a model which
has a better mathematical representation of the experimental model. For this, we are

Fig. 1 aThe experimental curveobtainedbyCrawley andAnderson [7].bReference approximation
of piezoelectric nonlinearity defined by Triplett and Quinn [10]
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Fig. 2 Proposed model to
approximation of
piezoelectric nonlinearity

going to consider an approximation normalized function y = d∗[pmV −1]/408 and
x = Microstrain/500 determined by using the least square method [15, 16]. The
method could show us the approximation normalized functions as

y = 0.0610646e5.6668x

1.01 + 0.06046e5.6668x
+ e−2.8x (0.3654cos2x + 1.2sin2x) (1)

In Fig. 2 we can observe a comparison considering the dimensional model pro-
posed in (1).

3 Mathematical Modelling

In this section will be shown the energy harvesting mathematical model using a
nonlinear piezoelectric coupling and the governing equations of movement of the
system.

The energy harvesting model in Fig. 3 was proposed in [12–14], that are studied
using the proposed nonlinear piezoelectric coupling of Triplett and Quinn [10]. This
time, the new nonlinear piezoelectric coupling was used to compare its efficient with
the other coupling in [10].

The coupled equations of motion were defined in the dimensionless form in
[12–14] as:

x ′′ + εαx ′ + βx + εβ1x3 + εψv = εδ1φ
′′cosφ − εδ2φ

′2sinφ

φ′′ = εμ1 − μ2φ
′ + εγ x ′′cosφ

ρv′ − �x + v = 0 (2)
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Fig. 3 Mathematical model
of the energy harvester
proposed in [12–14]

The parameter� in (2) represents the piezoelectric coupling function. The dimen-
sionless electrical power harvested from the system has the form P = ρv′2. The
averaged power harvested is given by

Paverage = 1

T

∫ T

0
P(τ )dτ (3)

4 Numerical Simulations and Results

In Figs. 4 and 5, we can observe the behaviour of the system (2) for the following
parameters [10, 14]:α = 0.01,β = 1.00,β1 = 0.25,ρ = 1.00, ε = 0.10, δ1 = 0.40,
δ2 = 0.40, γ = 0.60, μ2 = 1.50, θ = 1.00, Θ = 1.00, x1(0) = 0, x2(0) = 0,
x3(0) = 0, x4(0) = 0, x5(0) = 0. The μ1 parameter had to be adjusted in order to
reach the resonant frequency of the model for each of the tested functions.

Figure4a, b are depicting the resonance curve of the system using the reference
function RF, proposed model PM, and as can be seen the jumping occurs for the
value of the parameter μ1 = 1.55 and μ1 = 1.52, respectively.

Figure5 shows the dynamic response of the system comparing the proposedmodel
PM to the reference function RF proposed in [10]. Figure5a, b show the phase
plane and the time history of the displacement of the two functions, respectively.
We observe that the PM starts with a higher amplitude and at steady state keeps a
little higher amplitude of displacement than in the RF. To see what happens with
the power harvested Fig. 5c, d show the time history of the power harvested and the
average power, respectively. We can see the power harvested has higher peaks in
the PM than in RF, but it doesn’t occur to the average power. We see that at steady
state the average power of the PM is a little lower than the RF. It was expected
by the fact shown in Fig. 2 that the PM approximates is closer to the experimental
result than the RF. Hence, the energy harvesting would be a little lower in PM
than in RF.
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5 Conclusions

By using the least square method proposed in [15, 16], it was possible to obtain the
nonlinear model, Fig. 2, which resulted in an approximation function that considers
the operation mode d31, where mechanical strain is applied in the axial direction,
but the voltage is obtained from the perpendicular direction. With the application
of the proposed model, it was possible to observe the change of the Sommerfield
effect (μ1 = 1.55 (RF) for μ1 = 1.52 (PM)). This is an important point because
it indicates a reduction in the quantity of energy necessary to the system to achieve
the resonant frequency corresponding to of maximum displacement that can harvest
more energy.

We also observed in Fig. 5c, d that the curve represented by (1) has a little lower
energy harvester forecast as regard to the reference function, indicating that wewould
be overestimating the power generation in numerical simulations, while the reference
function continue to be a good approximation. This is because the overestimated
power harvested is just a little part of it, considering the piezoelectricmaterial harvests
low amount of energy.

It can be concluded that the obtained results shown the efficiency of the proposed
model in improving the prediction of the piezoelectric energy harvested in steady
state, thereby correcting the values obtained previously by the reference function,
due to a correct matching with the profile of the behaviour of the experimental curve
in Fig. 1a.
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Effect of Reinforced Concrete Deterioration
and Damage on the Seismic Performance
of Structures

Michel S. Chalhoub

Abstract The response of a system to dynamic excitation depends on the interaction
between the forcing function and the system. Inpractice, change inmaterial properties
due to aging, fatigue, or the experience of a hazard are major challenges to the
designer. This chapter discusses the effect of material deterioration on the dynamic
properties of reinforced concrete structureswith consideration to strain compatibility.
Aging and loss of steel bond to concrete have significant effects on dynamic response.
Aging causes a drop in compressive strength, hence in axial and flexural capacity,
altering column interaction diagrams, or beam-column joint strength. The effect
of aging in standing structures can be measured through coring and lab tests, but
loss of bond is harder to evaluate because its mechanism is interior to structural
members. Causes of bond deterioration include poor concrete mix, placement, or
protection fromchemical agents.However,well-designedmixes and placedmaterials
may lose bond when subjected to an earthquake. Steel bond testing was performed
and documented in literature, but there is still a gap in field data. A mathematical
model is developed to illustrate the relationship between bond loss and concrete
frame stiffness. Field assessment and remedial measures are discussed for structures
that are suspected of, or diagnosed with, loss of bond. If the structure is salvageable,
such effects call for specialized repairs as a preventive measure against subsequent
events. But if loss of bond during an earthquake goes into an irreversible deformation
range, the possibility of collapse increases or the structure becomes a candidate for
disposal.

1 Introduction

Concrete behavior is complex due to the development of cracks at low stress lev-
els, weathering, creep, and aging effects. Two major reasons for the deterioration
of reinforced concrete are attributed to weather changes, including freezing and
thawing, and corrosion of reinforcing steel. The structure becomes more susceptible
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to weathering if protective finishing works are not completed within a reasonable
time frame from the completion of the structural system [1]. Common design con-
siderations make an implicit assumption about compressive strength and concrete
mechanical properties without much consideration of material life span and building
service life. In the 1940s, early construction materials research addressed the porous
nature of concrete and its vulnerability through exposure to exterior agents using
hydraulic pressure theory. It was found that susceptibility of concrete to changes in
weather, especiallywhen it involves frosting and thawing, increases significantlywith
porosity [2].

The majority of residential and office buildings in countries around the world
are built with reinforced concrete due to its ease of placement and construction.
The appeal of using concrete, advances in cement manufacturing technology, and
the development of higher strength formulas made reinforced concrete a sustainable
construction material [3]. In addition, concrete offers desirable features in terms of
low sound and thermal transmission, availability of local expertise and materials in
most countries. Whether in residential or office buildings, low noise transmission is
one of the typical serviceability requirements. With increasing interest and concern
for energy efficiency and environmentally friendly buildings, high thermal insulation
properties are sought after [4, 5].

Concrete technology is considered to have made large strides over the last sixty
years, which places it today at an advantage over other construction materials such
as unreinforced or reinforced masonry, and at almost equal footing with industrial
steel for a certain range of buildings. In fact, back in the 1950s and 1960s research
was conducted on the vulnerabilities of concrete as building construction mater-
ial, emphasizing fatigue combined with loss of material strength. Concrete exhibits
different behaviors under different stress states. Under simple compressive stress,
concrete exhibits a linear-elastic stress-strain curve until it reaches about one third
of its compressive strength because the small cracks remain closed [6–8]. Hydraulic
pressure and osmotic pressure theories were used for the purpose of early modeling
of concrete behavior [9].

Many researchers attribute the attractiveness of concrete to the fact that it lends
itself to almost any desired shape, and may be customized to any loading rate or
pattern. For example, it was shown in the mid-sixties that concrete resistance to
impact increases with the rate of application of the load and is positively correlated
with aggregate size [10]. However, cyclic loading in the range of 50% of f’c causes
a decrease in both the elastic modulus of concrete and its compressive strength and
exhibits hysteretic behavior. These findings indicate that concrete is vulnerable to
load reversals [11]. While considered a weakness, that same micro-crack formation
activates the internal friction in concrete, and its hysteretic behavior provides large
energy dissipation throughout the structure, attenuates response to dynamic loading,
and curbs motion amplification.

As discussed in the following sections, our interest in the present chapter is mainly
about changes in reinforced concrete properties especially those caused by deterio-
ration.
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2 Background: Reinforced Concrete in Use

Along with its vulnerabilities, concrete offers several advantages related to sustain-
ability and serviceability. It minimizes noise and vibration transfer, and has relatively
favorable thermal characteristics and applications in fire protection. Concrete also
offers strength suitable for a wide range of building heights as it has been used in
low-rise and high-rise building construction [12]. In 1919, the Japanese Urban Build-
ing Law limited the height of reinforced concrete buildings to 100 feet in an attempt
to minimize risk emanating from the use of such material. Further, lessons learned
in 1924 from Japan’s earthquake that imparted damage to reinforced concrete build-
ings were rapidly turned into Code upgrades [13]. Almost a century later, reinforced
concrete is used in high-rise construction with supporting Codes that provide the
design engineer with simplified procedures to perform the necessary calculations
while meeting some basic requirements related to ductility, energy dissipation, and
resilience in sustaining tremors [14, 15].

In the United States, the leap into skyscraper construction owes it by and large to
advances in industrial steel manufacturing, standard shape production, and accompa-
nying design guidelines [16, 17]. Another challenge faced by the steel construction
industry was posed by the scarce execution resources; workers, welders, forepersons,
and project managers. However, reinforced concrete remained a viable candidate for
high-rise construction with and without its combination with structural steel shapes
[18–20].

With the advantages of concrete, there are shortcomings related to environmental
impact, especially at itsmanufacturing stages [21]. Cementmanufacturing processes,
among other industries, came under scrutiny with the increased public awareness
about global warming and the negative effects of industrial activity on the environ-
ment [22, 23]. But using concrete entails more than just its manufacturing stages.
It involves mixing, placement, maintenance, and down the line disposal or recy-
cling [24, 25]. Crushing of recycled concrete has become a source of aggregates
and a means of avoiding volumes of dump material that is neither biodegradable,
nor suitable as soil. The approach of recycling concrete has also been applied in
bridge construction where reclaimed concrete is used [26, 27]. Testing and studies
performed on structural elements and sub-assemblages also showed that recycled
concrete was a viable construction material [28]. Concrete mixing processes gradu-
ally moved from individual mixers that belong to specific construction sites to ready
mix concrete factories. Although these factories provide economies of scale catering
from one source to various destinations, they pose problems in terms of increased
industrial activity. In many, if not most, countries where concrete is mainstream
material for the construction industry, factory emissions control is not yet a priority
on the environmental agenda [29, 30].
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3 Effect of Aging of Concrete on Strength

A dimension of great interest in construction material science is the durability and
performance of concrete [31, 32]. What factors affect its life time? How does it age?
How does concrete aging affect its strength and interaction with other materials?
Deterioration through exposure to weather conditions, effect of chemicals, and crack
formation are related in an intricate cause-and-effect [33, 34].

Concrete aging comprises a broader range of effects than chemical or mechanical
deterioration. Such effects which include creep and shrinkage have been researched
extensively in the 1950s and the 1960s and were found to have direct impact on
strength and serviceability [35, 36]. More recently, shrinkage effects were studied
further with the inclusion of recycled aggregates [37]. Aged concrete tends to dete-
riorate and to exhibit hairline cracks, which may grow and allow weather agents to
infiltrate and attack reinforcing steel causing loss of strength [38]. Loss of strength
may be dormant until it manifests itself in case of excessive loading beyond safety
margins. For this reason it is important to differentiate the effects of aging on static
from the effects on dynamic properties [39]. There are distinctive loading types that
cause fatigue and cyclic deformation which in turn contribute to the acceleration of
concrete aging, hence deterioration and drop in strength [40].

Conversely, overloading causes damage, crack formation, and hence deteriora-
tion that accelerates aging of concrete. In both cases, aging is an important aspect
of reinforced concrete performance, especially in seismic zones where structural
elements are expected to sustain reversal in loading, fatigue, and peak stress levels
that may exceed design levels dictated by Codes [41, 42]. Past research on aging of
concrete addressed deterioration at a material level, including transformation of the
microstructure. However, there is a need to address the cumulative effects on overall
structural response taking into consideration changes in material properties such as
compressive strength or splitting strength due to aging [43, 44].

American and European Codes have explicit criteria related to the control of
cracking and to the repair of damaged concrete [45, 46]. A question precedes a
repair proposal in that does the structure, or a structural member, lend itself to repair
or should it be disposed of, replaced, or re-cast? When this question is posed at
the level of the entire building that has undergone severe irreversible damage from
an earthquake, and may pose public hazard, demolition may be the only solution
[47]. Therefore, any concrete repair proposal, plan, or operation requires a priori a
meticulous assessment of the structural member and a detailed recommendation of a
course of action [48]. To reach a reasonable repair recommendation, an assessment
needs to reach tangible results such as the extent to which compressive strength
f ′
c has dropped, or permeability has changed, or porosity has increased by orders

of magnitude, among other parametric studies [49, 50]. To answer these questions,
it has been common place to take cores out of an existing structure and test the
cored samples at the lab. The challenge in this case is threefold. First, coring is an
intrusive testing methodology whereby cylinders have to be cut out of members.
Second, cores may not fully describe the structural health. Third, even the most
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professionally clustered cores do not accurately reveal to what extent the structure
has been subjected to loss of bond between the reinforcing steel and the surrounding
concrete [51, 52].

Loss of bond is therefore one of the most difficult phenomena to field-
test realistically, and therefore it is critical to develop new methodologies that reflect
how much a bond has weakened or total detachment has occurred between the rein-
forcing steel and the surrounding concrete [53]. It is also critical to relate this type
of damage to other properties of the building whether physical, or dynamic, such as
the natural frequency and equivalent viscous damping.

One of the well-documented consequences of de-bonding between steel and con-
crete is a significant drop in stiffness. So considering an unchanged mass—of course
unless substantial shake-off of concrete occurs—the frequency expressed as

√
k/m

clearly drops. This drop leads to a clear downwards shift in the building response
to a given earthquake. Such shift may create a discrepancy between the assumed or
anticipated structural performance during its design phase, and its actual real life
performance.

4 Basic Assumptions

Due to its anisotropic nature and its non-homogeneous mechanical properties, rein-
forced concrete requires special assumptions in the development of governing equa-
tions in design. In reinforced concrete design literature, the step-wise procedures
whether in textbooks or Codes adopt similar simplifying assumptions. Some of the
assumptions rely on basic mechanics, and others utilize strain compatibility. For
example, in the design of members subjected to bending, assumptions from basic
mechanics involve the consideration of plane sections remaining plane in flexure.
In the design of members subject to axial loads, mechanics assumptions involve the
uniformity of stress distribution on the entire cross section.

Assumptions of strain compatibility are not only a means to simplify calculations
and to reach coherent procedures for beam flexure, column axial-flexural interaction
equations, and other design formulas, but to also reflect a necessity in maintaining
that compatibility in real life applications [54]. This differentiation is very impor-
tant in design because it dictates the strength and serviceability performance once
the structure is put in operation. Depending on several factors which include mix
design, placement quality and procedures, or operational loads, strain compatibility
may not remain applicable throughout the lifetime of the building. Research litera-
ture addressed concrete aging and its effect on overall structural performance [55,
56]. Other studies addressed steel-concrete bond theoretically and experimentally
and found that it has a great effect on reinforced concrete member behavior. Early
research on bond comprised straight pull out tests that confirmed a significant change
in capacity with deterioration of bond [57, 58].
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5 Effect of Steel-Concrete Bond

5.1 Localized Versus Member Level Bond Effects

The bond between reinforcing steel and concrete governs the transfer of stress
between these two materials. A distinction should be drawn between bond at the
localized stress field level, and bond at the reinforced concrete member level. The
first category addresses themicro-structure interface whereby the concrete is crushed
by the steel lug edge [59, 60]. The second category addresses the cumulative effects
of rebar pull-out causing excessive rotation at beam-column joints or crack forma-
tion in the tension zone. These effects have a direct effect in the overall stiffness of
the structure. They can be modeled directly in the stiffness matrix and found mathe-
matically to impact eigenvalues yielding lower frequencies [61, 62]. Cyclic loading
causes alternation between tension and compression at the same member location,
and therefore requires the investigation of reversal of member forces computed from
static analysis.

5.2 Bond Deterioration at the Local Bar Level

Bond requires development length. If bond resistance deteriorates, reinforcing bars
are likely to slip and destroy the steel-concrete composite action. A severe loading
such as impulse or earthquakemay cause brittle failure. Therefore, bond has multiple
functions including overall strength and ductility. It is affected by many factors
including concrete cover, rebar spacing, bundling, and position. Depending on the
manufacturer, certain bars have ribs at an angle that influences bond and pull-out
behavior. It was shown in early research and testing that for the same configuration,
bond resistance to straight pull-out is greater under dynamic loading than it is under
static loading [63]. This conclusion may not hold under dynamic cyclic loads [64].

Research showed that bond strength decreases as bar diameter increases. This
conclusion shed light on the selection of reinforcing steel in practical design, follow-
ing the determination of a total required steel area [65]. For example a choice of #9
versus #6 bars would not only be affected by placement, but also by increasing the
contact surface, or the frictional interface. In this case, smaller bar diameters would
be favored, all other design parameters being equal.

Development length of bars was also studied with the effect of confinement. Other
factors being constant, ultimate bond stress varies as a function of f

′
c because it is

related to concrete tensile strength [66]. From traditional tri-axial stress relationships,
confinement causes an increase in f

′
c and provides larger normal stress between steel

and concrete.
Rebar placement, spacing, member width and anchorage also affect bond strength

in terms of concrete splitting failure [67]. Studies considering a variety of deformed
bar surface properties established a relationship between concrete cracking and
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slippage along the embedment length. Results helped formulate resistance to pull-
out along embedment length [68]. Related research showed that since confinement
increases normal stress around the bar, it has a significant effect on bond [69].

5.3 Bond Slip Effects at the Member Level

The cumulative effects of localized bond slip result in overall drop in performance
at the reinforced concrete member level. In particular, beam-column joints would
undergo additional rotation beyond the level captured by linear elastic analysis [64].
Once reinforcing steel starts to move relative to concrete, the members connected at
the joints go through additional rotation relative to each other. Areas in the vicinity of
beam-columns joints in moment-resisting frames subjected to dynamic loading are
affected the most [62]. This result is expected because the energy imparted into the
superstructure by the earthquake is dissipated through ductile behavior at the joints
[70].

6 Model Development

6.1 Mathematical Derivation

We develop a mathematical model that represents the bond slip behavior. Consider
the ring of concrete in touch with the bar in between two consecutive lugs. Denote
by σ the normal stress exerted by the lug on the concrete. Consider the lug as having
an angle θ with the longitudinal axis of the rebar where 45◦ ≤ θ ≤ 90◦. Let db

denote bar diameter and tl the height of the lug above the steel surface. The area on
the wedge of the steel lug concentric to the bar axis is:

Ao = π

4

[(
2tl
sin θ

+ db

)2

− d2
b

]
(1)

For an embedment length ld , the resultant is:

Ro = σ sin θπ tl(tl + db)
ld
s

(2)

The projected lug area concentric to the rebar axis is:

At = π [tl + db] tl
tan θ

(3)



84 M.S. Chalhoub

The component of σ exerted on this area contributes to concrete splitting effect. Its
resultant is:

Rt =
∑

ld

σ cos θπ [tl + db] tl
tan θ

(4)

Rt = σ cos θπ [tl + db] tl
tan θ

ld
s

(5)

The concrete shear area adjacent to the lugis:

Acv = π [2tl + db]
[

2tl
tan θ

+ s

]
(6)

If fcv is the concrete shear strength, shear resistance is:

Rcv =
∑

td

fcvπ [2tl + db]
[

2tl
tan θ

+ s

]
(7)

Rcv = fcvπ [2tl + db]
[

2tl
tan θ

+ s

]
ld
s

(8)

The area of an infinitesimal element around the circumference of the steel segment
within the clear spacing of two consecutive lugs is:

d Ac = db

2
dαdx (9)

where dα is an infinitesimal angle about the rebar centroid, and dx is an infinitesimal
distance parallel to the longitudinal rebar axis. Among the range of deformed bar
patterns, the simplest pattern has lugs that are parallel to each other, spaced at about
1/2′′ to 1′′ and orthogonal to the bar axis.

To express the frictional resistance mathematically, we consider that the confine-
ment stress, denoted f

′
1 contributes to frictional resistance to motion, at both the

concrete-concrete interface and the steel-concrete interface. Denote μ the friction
coefficient, which depends on the pull-out displacement rate, ẋ = dx/dt and on the
angular location around the rebar periphery, α. The differential force due to friction
can be expressed as:

d Rs = μ(ẋ, α) f
′
1

(
db

2

)
.dα.dx (10)

The resultant is a double integral over α and x , over the inter-lug segment, summed
over the embedment length:
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Rs =
∑

ld

f
′
1

db

2

2π∫

0

s∫

0

μ(ẋ, α)dα.dx (11)

The inclusion of α in the expression ofμ is due to the fact that there may be localized
imperfections around the rebar such as air pockets, or a large aggregate instead
of bonding mortar, which may cause an uneven frictional resistance around the
circumference of the bar. Such local imperfections and their effects can be accounted
for separately through a safety reduction factor related to concretemix and placement
quality. As for the relative pull-out displacement rate or velocity range expected at
incipient bond slip, we consider that the steel-concrete friction coefficientis constant
along the embedment length. Applying these two simplifications to expression (11),
performing double integration, and summing over the development length, we have:

Rs = πμ f
′
1dbld (12)

Thederivation sheds light on the difference between reversible and irreversible effects
of loading. For a steel bar whose strength exceeds the bond slip load level, the effect
is considered reversible. However, if bond slip occurs at a load level below the
development of the bar strength the effect becomes irreversible.

6.2 Application to Static Equilibrium

The stress resultants in expressions (2), (5), (8) and (12) can be used in equilibrium
equations in the longitudinal direction. As discussed earlier, (2), (5) and (12) could
be extended into a dynamic equilibrium where the rate of change of the friction
coefficient, inertia effects, and other related factors, are accounted for. However,
the dynamic equilibrium is treated undera separate scope. Several cases could be
identified, which we simplify under two main conditions that are most relevant to
our scope. Case 1 pertains to the rebar reaching its full development function, while
Case 2 corresponds to a pull-out prior to reaching yield. An optimal equilibrium
would be reached under strength and economic conditions simultaneously. Denoting
by Ts the tensile force applied to the bar:

Ts = Ast fs (13)

where Ast is a single bar steel section and fs is the stress applied to that section. If
there is no bond slip, we have:

Ts = Ast fs ≤ Ro + Rs (14)
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otherwise, the bar would pull-out under the applied section stresses. In this case, we
have:

Ts = Ast fs ≥ Rcv (15)

Once the concrete shear resistance fails at the envelope layer, both the lug resistance
and the frictional resistance along the steel segment between the lugs no longer
contribute to bond. Research on steel-concrete friction coefficients shows that their
values vary between 0.47 and 0.7 depending on finishing parameters and other factors
[71, 72]. For the purpose of the present illustrative examples, we use 0.5. However,
the same present derivation and resulting formulas could used over a range for values
of the friction coefficient.

The relationship between bar tensile force and bond resistance for a No. 5 bar in
4000psi compression strength concrete is shown in Fig. 1, where tensile resistance
is plotted against development length factor. Yield forces in the bar are Ty (4)= 12.4
k and Ty (6) = 18.6 k for fy = 40ksi and fy = 60 ksi, respectively. Development
length required by ACI is 37 db, for fy = 40ksi, and 57db for fy = 60ksi. For
both fy values, inequality (14) is satisfied and the bar will yield before reaching the
pull-out limit. However, shear strengthin the concrete in the vicinity of the bond area
is enough to carry the bar to yield for fy = 40ksi, but bond slip will occur before the
bar yields for fy = 60ksi (Fig. 1). A similar analysis could be performed for various
bar diameters, concrete compressive strength, and steel yield stress.

Fig. 1 Bond and frictional
tensile resistance versus
development length factor
for No. 5 deformed bar in
4000 psi concrete
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7 Effect on Overall Structural Health

7.1 Effect of Bond Deterioration

Bond deterioration has a significant effect on local critical zones, and it has an
influence on the overall structural behavior, especially when subjected to dynamic
loading. The additional rotation at the joints due to bond slip exhibits hysteresis
behavior represented by a nonlinear curve [64, 70]. The force-deformation curve
starts with a straight line over the elastic range then reaches a plateau where the
joint rotates at no additional moment. When load reversal occurs, the joint starts
rotating in the opposite direction while engaging the bar in friction until it bears
against concrete. At that point, the bar on the opposite side of the beam starts its
pulling cycle. Theoretically, reversal exhibits equal and opposite values. But if decay
is included in the model, cycle i + 1 will exhibit deterioration with respect to cycle
i , until collapse of the joint, should the cyclic load continue.

7.2 Effect of Aging

Aging of concrete is one of the most determining phenomena in the behavior of
structures. Early studies in the 1950s followed by research at the turn of century
show continuous interest in long term effects in concrete behavior [32, 35]. There
are no standardized direct experimental processes to deliberately age concrete and
test it on that basis. For this reason, the most reliable lab for aging would be the
outdoors real life situation in cities where reinforced concrete constitutes the vast
majority of buildings.

Data collected in various cities in Lebanon was compiled by building age, con-
dition, and ambient environmental effects. A subset of 140 buildings was studied
analytically. But coring and compressive strength tests were performed on only 5
buildings that were considered as representative of the others in the sample. The
5 buildings are not statistically significant, but their results were within a coherent
range and therefore provided an indication of the state of the concrete in these older
buildings. Some of the cylinders gave a compressive strength as low as 790 psi.
The detailed field-related experiments were left outside the scope of this paper as a
subject of future research [73].

7.3 Effect of Design and Placement Quality

Mix and structural design, and placement quality are very important and have a direct
relationship with the two features above; bond deterioration and aging. Concrete
that is well proportioned has a superior longevity to concrete that is not. Structural
systems that are designed to withstand dynamic loading defined by code, will
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Table 1 Basic decision rule that differentiates localized damage from overall distress

Damage categories Potential causes Reversibility

Concrete cover spalling Under-designed cover Uncover, treat bars, provide
new cover

Mild rebar corrosion

Chunking around bars Stress exceeds design stresses Remove, track damage, rebar
implants, re-cast

Severe corrosion

Localized steel corrosion
stains

Lack of vibration during
placement

Uncover, treat bars, provide
new cover

Hairline cracks; air, water,
chemicals reach bars

Fluffy plaster, caulking, or
paint

Damage due to humidity or
water seepage

Uncover, treat bars, provide
new cover

Large structural cracks and
visible deflections

Bond deterioration Fix depends on localized
damage

Inject bond agent, cast shadow
member

Alternative solutions involve
exterior wrap

Beam-column joint slack Bond deterioration Building may pose hazard in
the following event

Bar pull-out Consider disposal

Fatigue, distress

Structure exhibiting
misalignment or out-of-plumb

Bond deterioration Dispose

Major loss of strength

obviously perform better than the ones that are not. Some of the field challenges that
we encountered had to do with all three components; mix, design, and placement.
In the present paper, we mention some of those challenges as they cannot be fixed
retroactively, but we shall rather provide a rational approach for decision-making in
terms of types of actions that could be taken.

A challenge in many less developed countries is the lack of code guidelines.
Another challenge is the poor or lack of supervision. Even when designed per Euro-
pean or US codes, the execution leaves room for mismanagement of resources and
potential mishaps during construction.

7.4 Remediation Choices

Although extensive research on reinforced concrete damage caused by bond deteri-
oration was performed in the 1960s, interest in bond effects for both steel and fiber
reinforced concrete resurged in later decades as seismic codes grew more stringent
[74, 75].
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For existing buildings, parameters needed to perform calculations may not be
easily available. To determine f

′
c in an older building, coring and testing may be

performed. But results from various parts of the same building may exhibit a large
spread [73]. A simpler decision rule involves the overall state of the building. Table1
provides a set of inspection results, with possible solutions. Three categories are
defined for strength, serviceability, and aesthetic requirements (Table1).

8 Effect on Dynamic Behavior

8.1 Effect on Fundamental Period

Studies conducted on beam-column assemblages attempted to cast complex dynamic
behavior in formulas. Approaches proposed in literature account for bond slip effect
on overall structural dynamic behavior [64, 76].

To get a preliminary result on dynamic performance, considera single bay and
three degrees of freedom, one translation u1 and two rotations at the joints, u2 and
u3, respectively. We have:

⎡
⎣ k11 k12 k13

k21 k22 k23
k31 k32 k33

⎤
⎦

⎡
⎣u1
u2
u3

⎤
⎦ =

⎡
⎣ fe

0
0

⎤
⎦ (16)

k∗
11u1 = fe (17)

where k∗
11 condenses the ki j stiffness coefficients (i = 1, 2, 3; and j = 1, 2, 3;

i �= 1, and j �= 1) and fe is the elastic force. The mathematical derivation is under
separate scope to focus here on the practical formulas for designers [73]. We define
a girder-column stiffness ratio:

ϕ = Ecg IgLc

Ecc Ic Lg
(18)

where Ecg and Ecc are the moduli of elasticity for the concrete in the girder and
in the column respectively, Ig and Ic are the moments of inertia of the girder and
column, respectively, and Lg and Lc are the span of the girder and column height
respectively. We have:

k∗
11 = Ecc Ic

L3
c

(
a + b.ϕ

c + d.ϕ

)
(19)

where a, b, c, and d, are constants that depend on column and girder properties
[73]. Degradation in girder-column stiffness ratio is denoted by δϕ . The drop in the
condensed stiffness term differs whether the deterioration is occurring in the girder
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Fig. 2 Drop in condensed
stiffness as a function of
deterioration in the girder
moment of inertia

or the column. In both cases, however, it results in a significant drop in natural
frequencies of the structural system. Figure2 shows the drop in stiffness due to
degradation in the girder, while Fig. 3 shows results for degradation in the column.

For a stiffness ratio of 5 that decreases 60% through deterioration of girder
moment of inertia, the condensed stiffness drops from 22 to 19.5. While for the
same stiffness ratio, 5, that decreases 60% through deterioration of column moment
of inertia, the condensed stiffness drops from 22 to 9 (Fig. 3). These numerical exam-
ples support the strong column weak girder approach in the seismic design of RC
structures.

The results can be related to linear elastic structural analysis using basic element
stiffness coefficients with various boundary conditions. For example, a free stand-
ing cantilever column whose top joint is allowed to rotate and translate without any
restraints has a lateral stiffness coefficient equal to 3EI/L3, where E , I and L are
the modulus of elasticity, moment of inertia, and span, respectively. If the top joint
of the column is fixed against rotation, but is allowed to translate horizontally, the
lateral stiffness coefficient is 12EI/L3. For a portal, the results in the first case yield a
coefficient of 6 and in the second case, a coefficient of 24. Therefore, the worst case
scenario of girder failure comprises bond deterioration in the girder at the column
face, leaving the joint in the column to rotate freely, or with very low deteriorated
rotational stiffness. The worst case scenario of column failure through bond deteri-
oration would be a hinge in the column leading to collapse, which is unacceptable
form a reinforced concrete design perspective.
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Fig. 3 Drop in condensed
stiffness as a function of
deterioration in the column
moment of inertia

9 Conclusions

Methodologies for predicting earthquake response of a structure based on its known
properties and for a given excitation are well established. The challenge resides in
the ability to define those properties, especially when the construction material is
susceptible to substantial changes through time, or in the wake of a tasking event.
For reinforced concrete structures, these two factors are particularly important; aging
of concrete is accompanied by shrinkage and creep effects, and events such as earth-
quakes could drive the members into reversals that change their mechanical proper-
ties. What makes the analysis and design of reinforced concrete more demanding is
that related formulas are based on strain compatibility assumptions. These assump-
tions that of steel and concrete deforming in compatible increments as the elements
develop nominal strength, do not hold throughout the life of the reinforced concrete
member. These assumptions become less applicable to real life behavior when con-
crete elements age or undergo cyclic loading. Another challenge is related to the
possibility of performing tests on various lifetime intervals to ascertain, or adjust,
properties in models. The use of field sampling to determine concrete compressive
strength may be performed by coring and lab testing. However, field-testing for bond
deterioration is much more complex and cannot be determined by sampling an exist-
ing structure. Loss of bond between reinforcing steel and surrounding concrete is a
complex, internal, often invisible phenomenon that is hard to capture through com-
mon sampling techniques. The model developed in the present paper analyzes the
structural health of reinforced concrete buildings taking into consideration concrete
damage through loss of bond. The analytical model relates steel loading that causes
bond distress to design parameters such as development length and bar properties.
Potentially, new methodologies for field measurements could be developed to target
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bond deterioration through the observation of dynamics properties. This is based
on the premise that loss of bond leads to reduced stiffness which results in lower
natural frequencies. Those reduced or modified stiffness coefficient could be calcu-
lated for mass values kept constant. The analytical model could be checked against
the dynamic model and could be complemented by field measurements in future
research. The diagnosis method presented in this paper discusses the sustainabil-
ity of the structure and offers a simplified decision rule whether to perform minor
fixes, major rehabilitation, or disposal. The model draws a distinction between joint
damage in the girder as opposed to the column, and makes the case for weak-girder
strong-column design. Plastic joints formed in the girder may potentially lend them-
selves to concrete repair, while plastic hinges in the column may cause catastrophic
collapse, and thus make the structural health condition irreversible. Empirical results
were partially used and discussed to illustrate field challenges that are faced when
the structure is subjected to earthquake motion or other severe conditions such as
impulse loading.
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Recurrence and Joint Recurrence
Analysis of Multiple Attractors
Energy Harvesting System

C.A. Kitio Kwuimy and C. Nataraj

Abstract The method of recurrence plots and joint recurrence plots are considered
as tools for the nonlinear analysis of a dimensionlessmodel ofmagnetoelastric piezo-
electric energy harvester under wind flow excitation with low Reynolds number. The
dynamics of the system is investigated by considering the bifurcation of the recur-
rence rate, the laminarity and the determinism and illustrations of system response
are presented though the recurrence plots and phase diagrams. In order to enhance
the efficiency of the system, a second degree of freedom is added to the mechanical
part. The method of joint recurrence plot is used to analyze the global synchroniza-
tion of the system. In this spirit, a feedback Master-Slave configuration is adopted to
ensure optimal synchronized mechanical excursion and thus maximal electric volt-
age harvested in the electric load. Throughout the paper, attention is focussed on the
effects of feedback coupling and mistuning parameter, as well as the relevance of
the method of recurrence plots and joint recurrence plots in the analysis of such sys-
tem. Specifically, it is shown that the joint recurrence plot synchronization parameter
effectively detects domain of maximal output electric power as well as domain of
out-of-phase motion leading to minimal output power.

1 Introduction

Energy harvesting systems are designed to transform available ambient energy into
electrical energy for small and/or portable devices. These harvesters involve struc-
tural vibration, wind flow, physiological and chemical reactions. For the last 10years
several harvesters based on structure excitation and fluid flow have been analyzed
[4, 19–22, 31, 42, 43] (and references therein). Although common transduction
mechanisms are electromagnetic, piezoelectric and electrostatic, the piezoelectric
transducing mechanism is in general preferable because it has highest energy den-
sity and no reliance on external magnetic field or initial DC voltage [41]. These
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systems were found to be only efficient near sole resonance frequency and this limit
their applicability in frequency variant, amplitude variant or random excitations.
Considerable efforts have been devoted to enhance the performance of these systems
by using nonlinear phenomena such as multiple resonance, snap through instabil-
ity, bifurcation, stochastic resonance [20, 21, 30] and material with fractional order
properties [27].

To optimize the harvesting mechanism, multiple degree of freedom systems have
been considered. Shahruz [39] analyzed a set of parallel single degree of freedom
harvesters tuned at slightly different resonant frequencies, whereas Erturk et al. [10]
considered a harvester as a serial set of two beams connected to each other to form
an L-shape. Ferrari et al. [12] investigated a piezoelectric multiple frequency energy
converter for power harvesting in autonomous microsystems. Ramlan et al. [37] con-
sidered a harvester made of two oblique springs and analyzed the potential benefits of
the hardening effects of the spring on the output energy. Liu et al. [32] considered an
adaptive harvester for wind flow induced vibration involving an additional mechani-
cal arm acting as flow sensor. However, a network of harvesting system is not always
optimal since the out of phasemotion andmistuning leading to a reduction of the out-
put energy can appear [41]. Litak et al. [31] analyzed the stochastic response of two
magnetopiezoelastic energy harvesters with mistuning. Also, for a multiple ampli-
tude response (such as in systems with hysteresis for example), it appears that, some
elements of the network can vibrate with lower amplitude [36]. These two problems
have lead to the development of the synchronized charge extraction technique [41]
(and references therein), the impedance adaptation technique [13] and the synchro-
nized switching harvesting on an inductor technique or voltage source [13, 16, 29].
These techniques have been considered for theoretical and experimental investiga-
tions under various assumptions such as resonance, linearity, in-phase motion and
weak coupling. Although they give information for the design of network of har-
vesters, these assumptions are not realistic since mistuning always happen as well
as out-of resonance motion [31, 41, 46]. Moreover, for self-excited systems such as
wind-induced vibration, out-of phase motion, hysteresis and multiple limit cycle can
appear [7].

The idea of extracting useful energy from the surrounding fluid flow has been
considered by several authors [2, 5, 6, 20, 21] and they discussed the conditions for
efficiency of the harvesters. The motivation of this paper is to investigate the effi-
ciency and the synchronization of multiple attractor wind-induced vibration energy
harvester system at low Reynolds number by recurrence. The dynamics under mul-
tiple attractors condition were ignored or briefly mentioned in previous contribu-
tions [3, 5–7, 19–21, 23]. The originality of this contribution, in addition to its
theoretical contribution in energy harvesting, is its relevance to hybrid method for
system analysis. Thus, the interest for the method of recurrence is based on the fact
that, the recurrence plot (RP) is now a strong numerical tool for time series analy-
sis of complex systems. Very few contributions have considered nonlinear analysis,
synchronization or control of complex systems based on RP, see for instance [9, 25,
27]. This could potentially reveals details that can be used in practical applications
such as system diagnostics and enhance system design [11, 15, 28, 38]. Recently,
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we used the method of RP to investigate the responses of a nonlinear pendulum and
detection of dynamics change in the system response [25]. This was extended to the
mathematical model describing the behavior of biological oscillator [27].

The rest of the paper is organized as follows: In Sect. 2 we present the physi-
cal system and the mathematical model based on the work of Barrero-Gil et al. [7,
8]. Illustration of birhythmicity is highlighted as well as the effects of an additive
harmonic excitation. The third Section discusses the possibility of a complete syn-
chronization of the system. The last section recalls and discusses the main results.

2 Brief Review of the Model and System Characterization

2.1 The Mathematical Model

The physical model is made of a cantilevered beam with piezoelectric patches under
a transversal wind flow (Fig. 1). It is constituted of an electrical circuit having a
load resistance R� and a flexible beam with distributed piezoelectric patches. The
modeling equation of the system is given as

ρb S
∂2W

∂τ 2
+ E I

∂4W

∂ X4 + ca
∂W

∂τ
= Fa(τ ) + K0V (τ ) f (X) (1)

C p
dV

dτ
+ V

R
= −K1

∫ L

0
f (X)

∂3W

∂ X2∂τ
d X (2)

where W (X, τ ) is the transversal beam deflection function of time τ and a coordinate
along the beam element X, E is the Young modulus, S is the beam cross section, ρb

is the beam mass density, L is the beam length, ca is the viscous damping, Fa(τ ) the
aerodynamics force, K0 and K1 are the piezoelectric coupling terms acting exclu-
sively on the area of the piezoelectric patches, C p is the inherent capacitance of
the piezoelectric element, R� is the resistive load, V is the voltage generated by the
piezoelectric element. f (X) = H(X) − H(X − X1) + H(X − X2) − H(X − L)

is a spatial function used to specify that the piezoelectric patches are localized in
the region 0 < X < X1 and X2 < X < L , where H(.) denotes the Heaviside
step function. For the beam in Fig. 1, the displacement and slope at the clamped end
(X = 0) are zero. Also, at the free end (X = L), the bending moment and the share
force are zero. The conditions are formulated as [26, 44]

W (0, τ ) = ∂W

∂ X
(0, τ ) = ∂2W

∂ X2 (L , τ ) = ∂3W

∂ X3 (L , τ ) = 0 (3)
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Fig. 1 Schematic
representation of the energy
harvesting system under
wind flow

For systemwith small Reynolds number (Re < 200), Barrero-Gil et al. [7, 8] showed
that the aerodynamics force is given as

Fa(τ ) = 1

2
ρa DU2

[
a1

1

U

∂W

∂τ
− a3

(
1

U

∂W

∂τ

)3
+ a5

(
1

U

∂W

∂τ

)5
− a7

(
1

U

∂W

∂τ

)7
]

(4)

whereU is the wind velocity,D is characteristic constant of the system, ρa is themass
density of the fluid, the coefficients ai (i=1, 3, 5, 7) are empirical functions of the
Reynolds number and the “+” and “−” are dictated by experimental considerations
and the Dan Hartog stability criteria [14].

2.2 Garlekin Approximation: Modal Equations

To facilitate the analysis, we use the dimensionless variables Y = W
h , x = X

L ,
v = V

V0
, t = τ

T and u = U
U0

where V0, T and U0 are characteristic parameters to be
determined. The new form of the equations of the device is thus

∂2Y

∂t2
+ ∂4Y

∂x4
− F(t) = η0v f (x), (5)

dv

dt
+ γ v = −η1

∫ 1

0
f (x)

∂3Y

∂t∂x2
dx, (6)

with

F(t) = g1(u, Re)
∂Y

∂t

[
1 − g2(u, Re)

(
∂Y

∂t

)2
+ g4(u, Re)

(
∂Y

∂t

)4
− g6(u, Re)

(
∂Y

∂t

)6
]

(7)
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g1(u, Re) = −ε0 − a1u, g2(u, Re) = a3
u(a1u − ε0)

, (8)

g4(u, Re) = a5
u3(a1u − ε0)

, g6(u, Re) = a7
u5(a1u − ε0)

(9)

and

T =
√

ρb SL4

E I
, ε0 = Ca T

ρb A
, η0 = K0T 2V0

ρb Ahb
, γ = T

RC p
, η1 = K1h

C pV0L2 , U0 = h

√
2ρb Shb

T 2ρa D

(10)

The boundaries conditions are also transformed into

Y (x, t) = 0 and
∂Y (x, t)

∂x
= 0 (11)

at the clamped end, and

∂2Y (x, t)

∂x2
= 0 and

∂Y (x, t)

∂t
= 0 (12)

at the free end.
The dimensionlessmodel (5) and (6) is a set of linear ordinary differential equation

(ODE) coupled to a nonlinear partial differential equation (PDE). For simplicity in
the analysis, we decompose the PDE into ODEs by using modal approach. Using
the Galerkin decomposition method, the transversal deflection of the beam can be
rewritten in single mode decomposed in the following form

Y (x, t) = ym(t)Φm(x), (13)

where ym(t) is the time dependent function of each mode and Φm(x) is the shape
function obtained from the undamped natural equation of the beam

∂2Y

∂t2
+ ∂4Y

∂x4
= 0, (14)

with boundaries conditions given in (11) and (12). Thus, one has

Φm(x) = cos km x − coshkm x − cos km + coshkm

sin km + sinhkm
[sin km x − sinhkm x] (15)

where km is eigenvalue, solution of the transcendatal equation

cos kmcoshkm + 1 = 0 (16)
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Substituting the resulting mode decomposition in (5) and (6) and projecting back
on the mth mode [24, 35] yields the following set of equations

d2y

dt2
− μ∗F(t) + Ω2

0 y = +η0mv, (17)

dv

dt
+ γ v = −η1m

dy

dt
, (18)

where F(t) is actually defined as

F(t) = dy

dt

[
1 − g2(u, Re)α2

(
dy

dt

)2
+ g4(u, Re)α4

(
dy

dt

)4
− g6(u, Re)α6

(
dy

dt

)6
]

(19)

and

αi =
∫ 1

0
(Φm(x))i+1dx, Ω2

0m = (km)4, μ∗ = g1(u, Re)α1, ηim = ηiΦm(xm)

(20)

In these equations, xm is the mth solution of transcendental equation (16); based
on previous results [24], we consider only one mode of vibration (n = m = 1) and
the corresponding indices were simply removed for simplicity.

2.3 Existence of Birythmcity

In order to state the conditions for the existence of limit cycle and the number of
limit cycle, we set q = √

g2(u, Re)α2
dy
dt and v = dv∗

dt and follow the application of
the Liénard theorem [40, 45]. We rewrite (17) and (18) in the standard form

dq

dt
= −p − μF(q) + η0v (21)

dp

dt
= q (22)

dv∗

dt
= −γ v∗ − η1

dp

dt
(23)

where F(q) is defined as

F(q) = −q + q3

3
− αq5

5
+ βq7

7
(24)
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and

μ = μ∗

Γ
, α = g4(u, Re)α4

Γ 4 , β = g6(u, Re)α6

Γ 6 , Γ = √
g2(u, Re)α2 (25)

In the rest of the paper, we will simply ignore the asterisk.
Since the 3rd variable v does not change the dynamics properties of the fix point

q = 0, the results of [27], obtained for η0 = η1 = 0 can be transported here. Hence,
we recall the following theorem which proof can be developed as in [27].

Theorem

Setting H(α, β) as the discriminant of the algebraic equation g(ζ ) = −1 + ζ/3 −
αζ 2/5 + βζ 3/7 = 0, the dynamics system in (21)–(23) has

1. exactly one limit cycle under the condition H(α, β) > 0
2. at least one stable limit cycle under the condition H(α, β) < 0

where H(α, β) is the discriminant of g(ζ ) = 0 and is defined as

H(α, β) = −768

225
+ α2

225
+ 13188

19845
β − 27

49
β2 (26)

Figure2a shows the area of existence of one and two limit cycles in the plane
(β, α). One notes that the area of parameters leading to birhythmicity is quite small.
However, it is interesting to analyze the system in this domain. In fact, for application
such as energy harvesting where one takes advantage of large mechanical excursion
in producing an important mechanical deformation and thus an important amount of
harvested electric power, the limit cycle of large amplitude is advantageous. Thus,
it is important to understand how the system behaves in case of birhythmicity in
order to efficiently control its dynamics. This states the problem of control and
synchronization of the orbit since the behavior of the system in one or another
orbit depends on the initial conditions of the system, whose are quite impossible to
determine a priori in practise.

As illustration, for μ = 3.5, α = 0.144, β = 0.005, η0 = 0.1, η1 = 0.25
and γ = 0.2 with the initial condition of the electrical voltage set at zero (at it is
throughout the paper), one obtains the basin of attraction of Fig. 2b. The inner domain
(in blue color) corresponds to the domain of attraction of the lower amplitude limit
cycle, while the outer domain (in red color) corresponds to the highest amplitude
limit cycle. This basin of attraction was obtained by scanning the initial conditions
in the space [−5, 5] × [−5, 5], and solving the differential equations (21)–(23). We
found that, as the initial conditions change, the final state of the system converges
into two possible limit cycles. Practically, this simply means that, a system initially
set in the blue domain will provide less amount of electrical energy than a system
set with initial conditions in the red domain. The analytical results of Barrero-Gil
et al. [7] show three possible amplitudes: a small one (which corresponds here to
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Fig. 2 (Color online) a
Birithmicity: Boundary of
existence of stable limit
cycles. The inner domain is
the subspace in the (α, β)

space leading to 2 limits
cycle. The outer domain
corresponds to 1 limit cycle.
b Basins of attraction of two
coexisting limit cycles. The
parameters are α = 0.144,
β = 0.005 and μ = 0.1
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the lower amplitude limit cycle) and a large (which corresponds here to the upper
amplitude limit cycle), and an intermediate one which is unstable. Moreover, in their
study of birhythmicity in biological systems, Kadji et al. [17, 18] obtained the same
result using perturbation method and they showed that, the frequency of each limit
cycle depends (in a nonlinear fashion) on the amplitude. This can be extended to the
phase [35]. The immediate consequence is the possible out of phase motion (case of
multi degree of freedom oscillations) leading to minimal harvested energy [41].

3 Recurrence Analysis

3.1 Birhythmicity and Recurrence Analysis

Recurrence analysis for time series are based on the analysis of a matrix R whose
elements are defined as

Ri j = 1 : Φi ≈ Φ j ,

0 : Φi �= Φ j ,
, i, j = 1, ..., N , (27)

where Φ(q, p, v) is the state vector, N is the length of the time series, i and j are
related respectively to the line and column of the matrix, Φi ≈ Φ j means equality
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up to an error ε. These indices are also related to the time t = iΔt (Δt = 0.01 being
the sampling time). The elements of the matrix R are obtained by comparing the
state of the system at time i and j with a threshold precision ε. Thus, formally one
has

Ri j = θ(ε − ||Φi − Φ j ||), (28)

with ||(.)|| been the Euclidian norm (L2-norm) and θ(r) = 1 for r > 0 , θ(r) = 0
for r < 0 is the heaviside function. A RP graph is obtained by plotting the Ri j

elements with different colours. The common use consists of using inked colour for
Ri j = 1 and white colour for Ri j = 0. By this definition, a RP graph is always
symmetric (Ri j = R j i ) and always has colored central diagonal. Note that, for data-
based time series analysis it is crucial to reconstruct the phase space of the system (in
order to extract dynamic features) by estimating the embedded dimension; that is the
dimension of the homeomorphism image of the actual (real) phase space (for which
the structure is unknown), in which the dynamics of the system is fully described.
In this analysis, it is assumed without lost of generality, that the homeomorphism
image is the actual space itself (for which the structure is known). In other words,
the embedding dimension is equal to two (dimension of the state vector Φ(q, p))
and the time delay between q and p can be determined using the average mutual
information [1].

It is important to recall that the choice of ε is critical. In fact, by definition
(see (28)), an ε too small will lead to a no recurrence behavior and an ε too large
will lead to an all-to-all recurrence. In this contribution, in order to estimate the
best neighbourhood size, we use an optimization procedure proposed by Matassini
et al. [34]. The procedure consists of minimizing the quantity

Γ =
∣∣(Nn(ε) − Np(ε)

∣∣
Nn(ε)

(29)

where Nn = ∑
i, j Ri j/N is the average number of neighbor that points have and

Np is the number of peaks which is estimated from the histogram along the main
diagonal direction hi = ∑

k− j=i R jk . See the paper by Matassini et al. [34] for
details. In the rest of the paper, the value of ε used was such that the quantity Γ was
minimal.

Figures3 and 4 show the RP of the system as well as the phase diagram of the
mechanical system and the time history of the electrical system for different set
of the initial conditions and μ = 0.05 (Fig. 3) and μ = 3.5 (Fig. 4). The graphs
corresponding to the initial conditions (q0, p0, v0) = (0.1, 0, 0) are plotted in blue,
while those for the initial conditions (q0, p0, v0) = (5, 5, 0) are plotted in red.

In Fig. 3, the RP of both initial conditions (Fig. 3a) are indiscernible. However,
considering some recurrence quantification analysis parameters (RQA), namely the
recurrence rate (RR), the laminarity (LAM) and the determinism (DET) (defined in the
Appendix). One observes that, the RP are graphically similar; the distance between
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Fig. 3 Response of the
system for μ = 0.05,
α = 0.144, β = 0.005 and
initial conditions vary. a The
recurrence plot of the
system. b Phase diagram of
the mechanical arm. c Time
response of the electrical
voltage
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diagonal along the main diagonal is constant: This implies that both limit cycles
have very close (almost equal with the precision used here) period. The RQA vary
as shown in Table1. This is compatible with the phase diagram of the mechanical
variable (Fig. 3b) and the time history of the electric variable (Fig. 3c). One notes
that the attractor of large amplitude (outer orbit) has a small recurrence rate (large
diameter of the attractor) in comparison with the recurrence rate of the inner attractor
(small diameter of the attractor). This is simply due to the fact that, since the number
of points collected N is maintained constant, and the path in the outer orbit is longer
than the one in the inner orbit, less points recur for the outer orbit. Similar observation
is made for the determinism, whose reduction is simply due to change in the basin of
the initial conditions, rather than increases in the level of complexity in the system
(quasi periodic motion, chaos, transient motion,...). However, this observation on the
DET cannot be generalized. In fact for a large value of μ = 3.5 (Fig. 4), leading
to relaxation oscillation, the recurrence rate has still decreased from the inner orbit
to the outer orbit. The decreasing in the determinism in this case is due to combine
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Fig. 4 Response of the
system for μ = 3.5,
α = 0.144, β = 0.005 and
initial conditions vary. a The
recurrence plot of the
system. b Phase diagram of
the mechanical arm. c Time
response of the electrical
voltage
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effects of change in initial conditions (diameter of the attractor) and the presence of
more complexity (wiggles and distortion) as shown in the phase diagram of Fig. 5b.
Note that, the recurrence plots for both set of initial conditions contains parallel
diagonals whose pattern are now discernable. The gap between consecutive red and
blue diagonal is different; that is the upper and lower limit cycle have different period.
We conducted various numerical simulations corresponding to different value of μ

and came to the conclusion that, as general rule, the RP of both orbits are totaly
indiscernible for regular oscillation (superposed parallel diagonals) and graphically
discernable for relaxation oscillations (combination of strictly parallel diagonals and
superposed diagonals). These investigations are corroborated by on the analytical
investigation of Kadji et al. [18]. In fact, in their analysis, they showed that the
frequency of each limit cycle linearly increases with the square of the damping
coefficient (μ2) and nonlinearly changes with the amplitude of the limit cycle. The
graphs of Figs. 4c and 5c obviously show that the inner limit cycle leads to a small
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Table 1 Recurrence rate and determinism as function of the initial conditions and the system
damping

μ Initial
conditions (q0, p0, v0)

RR DET

0.07 (1,0,0) 0.0063 0.934

0.07 (5,5,0) 0.0034 0.103

3.5 (1,0,0) 0.0092 0.9523

3.5 (5,5,0) 0.00506 0.8431

amount of electrical energy, while the outer orbit leads to a large amount of electrical
energy. For the set of parameter used in this paper, the electric voltage is almost
double when changing the initial conditions from the inner to the outer domain.

3.2 Bifurcation and Chaotic Dynamics

The previous sub-section considered the system free of additional excitation.
Although this can happen in some environments, it is of interest to consider the
effects on the system response of an harmonic perturbation of amplitude e0 and
frequency Ω . Harmonic perturbation can be due to structural excitation, kinematic
excitation and perturbation in the fluid flow.

The bifurcation diagrams of the RR, LAM and DET as function of the ampli-
tude of excitation are plotted in Fig. 5. Changing e0 ∈ [0, 14], one obtains the RR,
DET and the LAM plotted in Fig. 5a–c for β = 0.05, Ω = 3.5, μ = 3.5 and
(x0, y0, v0) = (5, 5, 0). The RQA parameters have higher values for e0 = 0 and
as e0 increases in the first phase of motion, the system progressively becomes more
complex marked by a reduction of RR. Since the determinism and laminarity are
almost constant, one concludes that the system undergoes quasi-periodic motion
with superimposed chaotic dynamics [9, 33]. This domain of constant DET and
LAM is followed by an abrupt transition to chaos combined with windows of less
complexity (quasi-periodicity, periodicity,...) signed by the presence of distinct max-
ima peaks at lowest values of the RQA parameters. Beyond the chaotic domain, an
abrupt increases in theRR is noted, followed by a continuous decrease of theRR,LAM
and DET. One can suspect in this domain multi periodic dynamics [33]. A second
chaotic domain appears followed by another abrupt increases of theRR. Interestingly,
beyond the second chaotic domain, the DET is smaller than (and decreasing) in the
chaotic domain. This is awkward as decreasing in the DET (in addition to decreasing
in the RR) always implies transition from regularity to complexity (non stochastic
system). Our explanation is that, the threshold value ε = 0.05 (kept constant) was
not appropriate for large value of e0. In fact, the RR is less sensitive to ε than the DET
and LAM. That is, the effects of ε is more visible on the DET and LAM. Practically,
taking ε by using the standard deviation or the phase space diameter would have give
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Fig. 5 Bifurcations of the
RQA as function of the
driven amplitude. a
Bifurcation of the RR. b
Bifurcation of the DET. c
Bifurcation of the LAM
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a variable ε which can be more appropriated. By choosing a fix value of ε for the
bifurcation analysis has highlighted to sensitivity and importance of ε. Globally, one
can state that as e0 increases from zero the following transitions occur in the system
response: Periodicity-chaos-multi-periodicity-chaos-multi-periodicity.

The bifurcation diagrams of the RQA parameters are not able to detect all details
in the system bifurcation (number of period for example). Rather, they give a global
picture of the system response. In order to capture details on the system dynamics,
we plot the RP (Fig. 6) along with the phase diagram (for consistency—Fig. 7) for
the values of Fig. 5.

1. For e0 = 1.4, theRP (Fig. 6a) showa full diagonal and regularly spaced irregularly
broken diagonal. This kind of structure is known as signature of quasi-periodic
motion [33]. The phase diagram of Fig. 7a corroborates the RP.
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Fig. 6 Recurrence plots of
the system under harmonic
perturbation. a e0 = 1.4,
Quasi-periodic motion. b
e0 = 6, Period 4 motion. c
e0 = 10.4, Chaotic motion. d
e0 = 12.4, Period 2 motion
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2. The RP of Fig. 6b show regularly spaced full diagonal separated by four regularly
broken diagonals that can be classified into two groups according to the scapement
between the points along each broken diagonal. This structure corresponds to a
4-period dynamics classified into two groups according to their amplitude and
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Fig. 7 Phase diagrams of
the system under harmonic
perturbation. a e0 = 1.4,
Quasi periodic. b e0 = 6,
Period 4 motion. c
e0 = 10.4, Chaotic motion. d
e0 = 12.4, Period 2 motion
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frequency (and thus, rate of recurrence). This is confirmed by the phase diagram
of Fig. 7b, which is typical for a 4-period motion.

3. For e0 = 10.4, the RP of Fig. 6c has the structure of chaotic motion: irregularly
spaced diagonal with possible a white domain. As well, the phase diagram of
Fig. 7c is typically chaotic.
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4. For e0 = 12.4, the RP of Fig. 6d show full diagonals as well as regularly broken
diagonals. Here, the number of broken diagonal between the two full diagonal
is not consistent (as it is for multi periodic motion). In fact, some diagonal seem
slightly broken. One can conclude that, for these diagonals, the threshold para-
meter ε was too small to complete the full diagonal. With larger value of ε, the
structure of the RP will be the one of two periodic motion (regularly spaced full
diagonal, separated by a regularly broken diagonal). This is consistent with the
phase diagram of Fig. 7d and the observations made in the bifurcation diagram of
the DET for large value of e0.

The analysis of the harvesting systemwith a single degree of freedommechanical
oscillator, shows possibility of birhythmicity and complex dynamics in presence of
harmonic excitation. These nonlinear phenomena can have drastic consequences in
the harvesting process in the case of multi degree of freedom mechanical oscilla-
tor. The following section considers a unidirectional coupling between mechanical
oscillators to overcome these difficulties.

4 Synchronization Charge Extraction:
The Joint Recurrence Plot

4.1 Master-Slave Scheme and Joint Recurrence Plot

Practically, in order to ensure optimal harvested energy, one can consider an unidi-
rectional coupling also calledmaster-slave synchronization. Themaster is the system
with higher diameter of the attractor, while the slave is the system with lower diam-
eter. The schematization of Fig. 8 implies that a fraction of the signal of the master
is added to the slave. Practically, this can be ensured through a set of sensors and
actuators or set of diodes and condensers [26]. The mathematical model for such
enslavement is given as

dqm

dt
= −pm − μF(qm) + η0v (30)

dqs

dt
= −ps − μF(qs) + η0v (31)

dpm

dt
= qm (32)

dps

dt
= qs + κ(qm − qs) (33)
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Fig. 8 Schematisation of
coupled energy harvesters
systems

dv

dt
= −γ v − η1

(
dpm

dt
+ dps

dt

)
(34)

where, m and s respectively stand for the master and the slave, κ is the coupling
strength.

For coupled systems, the joint recurrence (JR) matrix is more suitable to ana-
lyze the response of the systems as comparing with recurrence and cross recurrence
matrices. In fact the JR gives possibility to analyze the dynamics of two interacting
sub-systems by examining their recurrence patterns. Each sub-system has a given
dynamics in its phase space and both dynamics can be coupled. This is done by
considering the JR matrix defined as

JRi j (ε
m, εs) = θ

(
εm− ‖ Φm

i − Φm
j ‖

)
×

θ
(
εs− ‖ Φs

i − Φs
j ‖

)
(35)

The JR matrix is in fact obtained as product of the recurrence matrix of the master
system

Ri j = θ
(
εm− ‖ Φm

i − Φm
j ‖

)
(36)

and the slave system

Ri j = θ
(
εs− ‖ Φs

i − Φs
j ‖

)
(37)

with Φm ≡ (xm, ym, v) and Φs ≡ (xs, ys, v). The affectivity of the synchronization
is measured by the following dimensionless quantity [33]

J = RRms

RRm
(38)
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where J ≈ 1 for global synchronization, and J ≈ 0 if the master and the slave are
independent. In fact the probability of recurrence R Rms = R Rm = R Rs for global
synchronization, and R Rms = R Rm R Rs for independent systems. Practically, in
order to evaluate J , the mathematical model of the master and slave are integrated
simultaneously with κ = 0. After a transient time, the feedback coupling term is
set κ �= 0 and the following 8000 points are ignored. Then we collected the next
N = 8000 points for analysis.

4.2 Synchronization of Limit Cycles

The graphs of Fig. 9 are plotted for e0 = 0 and the values of Fig. 4 with initial
conditions (q0, p0, v0) = (5, 5, 0) for the master and (q0, p0, v0) = (0.1, 0, 0) for
the slave. The probability of recurrence of the master R Rm , the salve R Rs and the
coupled system R Rms are plotted in Fig. 9a; while the synchronization parameter
is plotted in Fig. 9b. Clearly, the recurrence rate of the slave (in blue) is the highest
(from the previous section) and the recurrence of the joint system is the lowest.
One observes a singularity at κ = 0.12 which can be due to nonlinear interplay
between the master and the slave. Note that, in contrary to the classic master-slave
coupling [26], the master is not totally independent of the slave. In fact, there is
a feedback through the electrical circuit. For κ > κc = 1.51, one has a global
synchronization: R Rm = R Rs = R Rms .

Fig. 9 Recurrence of the
system. a Comparative
analysis between R R, R Rm
and R Rs . b The
synchronization parameter as
function of the threshold
parameter ε
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Fig. 10 Effects of
mistuning. a Mistuning and
synchronization parameter. b
Mistuning and output voltage
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Figure9b illustrates the effects of the threshold parameter ε on the synchronization
parameter. In each case, the parameter ε is maintained constant. For small values of
κ , the transition regime is very sensitive to ε. Similarly, the threshold for global
synchronization is sensitive to ε. However, on observes an increases in the value of
J for κ > κc and ε ∈ {0.01, 0.075, 0.025}, while J ≈ 1 for ε = 0.05.

The effects of mistuning on the synchronization parameter and the output voltage
are illustrated in Fig. 10a. Line (i) in blue corresponds to mistuning in the linear
system; that is the linear stiffness of the slave reads (1 − σ) where σ is a random
number between 0 and 1. Line (ii) in red corresponds to the mistuning in coupling:
η0(1−σ). Line (iii) corresponds to σ = 0. Globally, the mistuning plays against the
global synchronization and can even lead to desynchronization (minimal value of J ).
Similar observations are made for the output current in Fig. 10b. Here, it is clearly
visible that (as state in the introductive part of this paper), an energy harvester system
with multi degree of freedom mechanical arm does not always led to optimal output.
Mistuning is an important factor as well as the coupling factor, which need to be
appropriately selected in order to overcome the mistuning effects and the “negative”
consequence of the nonlinear dynamics interplay.

A visual analysis of the singularity observed for κ = 0.12 is made in Fig. 11a, b
where the phase diagram of the master and the slave are plotted along with the output
voltage (Fig. 11b). Here the number (i) and (ii) respectively stand for the slave before
and after the onset of coupling. For this value of κ , there is no synchronization, rather,
the in-phase motion of the slave has turned to out-of-phase motion (in comparison
with the master phase) with similar amplitude and frequency. This corresponds to
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Fig. 11 Synchronization
phenomena. a and b Out of
phase motion, κ = 0.12. c
and d Global
synchronization, κ = 1.6
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a lowest value of the synchronization parameter J . Thus, the output of the electric
circuit is minimal (see Fig. 10b). For a different value of κ = 1.6, the phase diagram
of the master and slave as well as their time histories are indiscernible (Fig. 11c, d).
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4.3 Synchronization of Chaotic States

It is unclearwhether the chaotic regime of a single degree of freedomenergy harvester
system provides more energy than a periodic regime. However, it is certain that for a
two or multi degree of freedom system, since chaos is sensitive to initial conditions,
difference in dynamics paths and phase angle will appear and thus, an efficient output
will be obtained when a global synchronization is achieved. Interestingly, coupling
two chaotic devices does not always results in a chaotic system. It is the case for the
values of Fig. 7c. In this section, we use the following parameters β = 0.05, e0 = 12.
The intent is not to repeat the previous analysis but to illustrate some important facts.

Figure12a–d show the RP of the master (in red crosses) as well as the RP of the
slave (in blue squares) for different values of the feedback coupling: κ = 0, κ = 0.1,
κ = 1.2, κ = 2, respectively. The crosses and squares were magnified for better
visibility. The corresponding electric voltage is plotted in Fig. 13. In all cases, the
initial conditions of the master is set at (q0, p0, v0) = (5, 5, 0), and the slave initial
conditions are set at (q0, p0, v0) = (1, 0, 0).

1. For κ = 0, there is no feedback coupling. Thus the master and the slave are
quasi-independent. In fact, there is still a undirect coupling between the master
and the slave through the electric circuit. This is confirmed by the non-zero value
of the synchronization parameter as shown in Table2. The recurrence rates obey
R Rm > R Rs ; and based on previous analysis, one suspects that the path of the
orbit displays by the master is longer than with the slave. The corresponding RP
in Fig. 12a is typically chaotic for both sub-system.

2. For κ = 0.1, the synchronization parameter has increased aswell as the recurrence
rate of the master while the rate of the slave is remained constant. The pattern of
the RP (Fig. 12b) has changed and become more dense.

3. For κ = 1.2, the synchronization parameter has almost double and the RP
(Fig. 12c) is almost red with some presence of blue point. The recurrence rate
of the master has increased.

4. For κ = 2, the synchronization parameter is J = 1 and the RP (Fig. 12d) is totally
mono color. The recurrence rate of the master and slave are obviously identical.

5. In comparison, Fig. 13 shows the electric voltage for those values of the feedback
coupling. One notes that, for κ = 0 and κ = 0.1 one obtains to a relative small
amount of electric voltage (Line (i) and (ii)). Line (iii) and line (iv) correspond to

Table 2 Probability of recurrence and synchronization parameter as function of feedback coupling

κ R Rm R Rs J

0 0.000737 0.00069 0.4269

0.1 0.000775 0.00069 0.4525

1.2 0.000775 0.001654 0.89106

2 0.000782 0.000782 1
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Fig. 12 Synchronization of
chaotic dynamics, the master
RP in red while the slave RP
in blue. a κ = 0. b κ = 0.1.
c κ = 1.2. d κ = 2
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Fig. 13 Harvested electric
voltage in chaotic regime.
Line (i)—κ = 0. Line
(ii)—κ = 0.1. Line
(iii)—κ = 1.2. Line
(iv)—κ = 2
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the same values of the electric voltage (the line are superimposed). Note that, the
synchronization has also contributed, in a progressive way, in suppressing chaos
as also observed on the RP of Fig. 12d.

5 Summary and Discussion

The interest of this paper was twofold:

• Discuss the harvesting process in a multi limit cycle energy harvesting system and
the synchronized charge extraction for both limit cycle and chaotic states under a
Master-Slave coupling scheme. This was motivated by the fact that wind-induced
vibration for energy harvesting system has strong potential applications. Previous
research has mentioned the possibility of multi limit cycles without specifically
analyzing its conditions and the system dynamics under such conditions.

• The second interest of the paper was the use of the methods of recurrence (RP)
and joint recurrence (JRP) for the analysis and synchronization of physics based
mathematical model of a dynamic system. In fact, very few contributions have
considered the RP as tool for nonlinear analysis of mathematical based physical
systems despite the potential use of such approach in hybrid approach of diagnostic
(combination of physics based and data driven models).

Themethod of recurrence was used to study the dynamics of the limit cycle system as
well as the system response under harmonic perturbation. For optimization purpose,
a second mechanical degree of freedom is added to the system and the Master-Slave
synchronization scheme is used with the method of JRP to ensure synchronized
charge extraction in the system. The effects of mistuning and threshold parameters
were highlighted. The main results are as follows:

• The existence of birythmicity depends only on two parameters α and β whose
practically depend on the fluid flowaverage velocity and the piezomaterial physical
properties.
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• Our simulations show that, the domain of birythmicity is quite small as well as the
basin of attraction of lower amplitude limit cycle.

• The phase diagram of the lower and upper limit cycle amplitudes limit cycle were
discernable.However, theRPwere discernable only for large values of the damping
which corresponds to relaxation oscillations. The RR of the upper limit cycle was
in general smaller than the RR of the lower limit cycle. Similar conclusion was
made for the DET and the LAM without generalization. In fact, complexity such
as wiggles and distortion also affects the variation of the DET and the LAM.

• Obviously, due to the linear nature of the transducingmechanics, the output voltage
is higher for the upper limit cycle.

• Considering a harmonic perturbation, the bifurcation of the RR and the DET were
plotted in terms of the amplitude e0 of the perturbation. Region of quasi-periodic,
periodic, multiple periodic and chaotic response was identified. Illustrations of
these phenomenon were showed using the RP and the phase diagrams.

• For a twodegree of freedommechanical system, theMaster-Slave coupling scheme
was used to synchronize limit cycle dynamics (toward the upper limit cycle) and
perturbed periodic and chaotic dynamics. It was found that, for large value of the
synchronization parameter κ the global synchronization is obtained, leading to
highest output electric power. However, for small values of κ , complex response
of the system is obtained, including out of phase motion leading to minimal output
power. The synchronization criterion was defined as the ration between the RR of
the master and the slave.

• The effects of mistuning and threshold recurrence parameter ε were discussed.
It was shown that mistuning can lead to minimal output power, specifically for a
small coupling parameter. Also, the domain of global synchronization is shifted
in presence of mistuning.

Globally, beyond the interesting results obtained, themethod of RP has demonstrated
potential for the feature extraction for application in diagnostics and detection of
dynamics change. As for example, the variation of RR due to sole changes in initial
conditions in the absence of additional excitation is due to existence of multi limit
cycle: RR can be seen as a feature to detect birhythmicity. In a similar way, the DET
can be used to measure relaxation in the system. The joint probability of recurrence
and the synchronization parameter J are a third feature which can be used tomeasure
the performance of the system: J = 1 corresponds to optimal performance and J < 1
is an indication to change the coupling parameter. These features can also be used
to measure the intensity of mistuning in the system.

Acknowledgments This work has been founded by the US Office of Naval research under the
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Appendix: Definition of Recurrence Quantification
Analysis Parameters

1. RR which defines the percentage of recurring points in the whole matrix. The RR
is higher for periodic dynamics and smaller for chaotic or random dynamics. By
definition, one has

R R = 1

N 2

N∑
i, j=1

Ri, j (ε)· (39)

2. The percentage of recurrent points that form diagonal lines (of at least length
�min) parallel to the main diagonal DET gives information on the deterministic
nature of the system. A chaotic system tends to have none or very short diagonals
in opposite to periodic or quasi-periodic dynamics which tend to form regular
diagonals parallel to the central diagonal along with mixture of short and long
diagonals. The DET is defined as

DET =
∑N

�=�min
�P(�)∑N

�=1 �P(�)
, (40)

where � is the length of the diagonal line and P(x) is the histogram of x for a
given threshold ε. If v is the length of the vertical line, one has

L AM =
∑N

v=vmin
vP(v)∑N

v=1 vP(v)
(41)

LAM decreases if the RP consists of more single recurrence points than ver-
tical structures. This is related to the existence of intermittency in the system
response [33].

In obtaining the RP of the system, we used the fourth order RungeKutta algorithm
to obtain sets of N=8000 points for time series. The first 1000 values were ignored
(transient time) and the time step was kept constant Δt = 0.01. The RR and DET
are evaluated using the above definitions in a self made codes. However, various
numerical codes are available online.

The bifurcation diagrams were obtained by increasing adiabatically (constant
initial conditions) the bifurcation parameter and used the above procedure to generate
the RR, LAM and DET.
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Quasi-Periodic Galloping of a Wind-Excited
Tower Under External Forcing and
Parametric Damping

Lahcen Mokni, Ilham Kirrou and Mohamed Belhaq

Abstract This paper investigates the influence of combined fast external excitation
and internal parametric damping on the amplitude and the onset of the quasi-periodic
galloping of a tower submitted to steady and unsteady wind flow. The study is carried
out considering a lumped single degree of freedom model and the cases where the
turbulent wind activates different excitations are explored. The method of direct par-
tition of motion followed by the multiple scales technique are applied to derive the
slow flow dynamic near the primary resonance. The influence of the combined load-
ing consisting in external excitation and parametric damping on the quasi-periodic
galloping onset is explored. The performance of the combined loading is compared
with the cases where the external excitation and the parametric damping are intro-
duced separately. The results show that the performance of the combined loading
on retarding the quasi-periodic galloping onset and quenching the corresponding
amplitude is better in all cases of the turbulent wind excitations.

1 Introduction

Considerable efforts have been done to investigate galloping of tall building induced
by steady and unsteady wind [1–8]. Such oscillations occur as the wind speed exceeds
the onset of galloping resulting in large amplitude oscillations of the structure. To
reduce the amplitude of galloping and retard its onset some techniques are used,
including, for instance, mass tuned dampers, tuned liquid dampers, friction dampers
[6], external excitation [9] and parametric damping [10]. A survey of some control
methods in civil infrastructure applications is given in [11].
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The effect of unsteady wind on the galloping onset of towers has been receiv-
ing growing interest. The influence of the unsteady wind on the critical wind speed
above which galloping occurs was investigated considering a single degree of free-
dom (sdof) model [4] and using the multiple scales method (MSM) [12]. It was
concluded that the unsteady wind decreases significantly the galloping onset near
the primary resonance. The effect of parametric, external and self-induced excitation
on galloping onset was examined for a single tower in [7] and for two towers linked
by a nonlinear viscous device [8]. The periodic galloping was studied analytically
using perturbation method and the quasi-periodic (QP) modulation envelope was
approximated numerically. The effects of the unsteady wind on the dynamics of the
tower [7] and on the viscous device of the system [8] have been analyzed. Note that
the problem of investigating the dynamics of some nonlinear oscillators under the
combined effect of parametric, external and self-induced excitation was studied in
[13–16]. Frequency response has been examined using the MSM, while the QP mod-
ulation envelope was approximated using numerical simulations [15, 16]. Specific
phenomena including frequency locking have been presented.

In previous works, attention has been focused on examining the effect of unsteady
wind on the periodic galloping onset [3, 4, 7]. The influence of unsteady wind on the
QP galloping onset, on the other hand, has been studied recently by Kirrou et al. [17].
Specifically, analytical results supported by numerical simulations shown that QP
galloping may occur for relatively small values of the wind velocity demonstrating
clearly that the effect of the turbulent wind on the QP galloping onset should not
be neglected. Instead, it must be systematically evaluated and considered in the
design process of tall buildings in order to enhance their stability performance to QP
galloping. Thus, a challenging problem that has arisen is to develop methods able to
control such QP galloping. In this context, two techniques have been implemented
to tune the QP onset toward higher values of the turbulent wind speed. Firstly, it was
shown that introducing a fast harmonic excitation (FHE) retards significantly the QP
galloping onset [9]. On the other hand, it was demonstrated that when an internal
parametric damping (IPD) is applied, the amplitude of the QP galloping decreases
while the QP galloping onset is not influenced [10, 18]. The natural question that
arises is how the FHE and IPD influence the QP galloping onset when they are acted
simultaneously. Recently, the influence of the combined loading was examined only
on the periodic galloping onset [19]. In particular, it was shown that the combined
loading of the FHE and IPD not only reduces the amplitude of the periodic galloping,
but also retards its galloping onset substantially comparing to the cases where the
FHE and the IPD are acted separately [9, 18].

In this paper, we extend the results related to the periodic galloping under the
combined loading [19] to the case of the QP galloping. The performance of the
combined effect on the QP galloping onset is systematically compared with the
cases where the FHE and IPD are introduced separately. In Sect. 2 a brief description
of the reduced equation of motion governing the dynamics of the tower exposed to
steady and unsteady wind and under the FHE and IPD is provided. The method of
direct partition of motion [20, 21] is performed and the MSM is applied to derive
the modulation equations of the slow dynamic near the primary resonance. A brief
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description of the results on the periodic galloping onset is given [19]. Section 3
explores the effect of FHE and IPD on the QP galloping onset in the cases where the
unsteady wind activates different excitations. Section 4 concludes the work.

2 Equation of Motion and Periodic Galloping

The dimensionless sdof equation of motion of a tower subjected to steady and
unsteady wind and to the combined effect of FHE and IPD can be written in the
form

ẍ + x + [
ca(1 − Ū ) − b1u(t)

]
ẋ + Yν2 cos(νt)ẋ + b2 ẋ2 +

[
b31

Ū
+ b32

Ū 2
u(t)

]
ẋ3

= η1Ūu(t) + η2Ū 2 + Y cos(νt)

(1)

where the dot denotes differentiation with respect to the non-dimensional time t .
Note that the case where the FHE and IPD are absent has been considered in
[4, 7]. Equation (1) contains, in addition to the elastic, viscous and inertial linear
terms, quadratic and cubic components in the velocity generated by the aerodynamic
forces. The steady component of the wind velocity is represented by Ū and the turbu-
lent wind flow is approximated by a periodic force, u(t), which is assumed to include
the two first harmonics, u(t) = u1 sin Ωt + u2 sin 2Ωt , where u1, u2 and Ω are,
respectively, the amplitudes and the fundamental frequency of the response. The co-
efficients of (1) are given in Appendix 1 and the derivation of the original model ((1)
with Y = 0) can be found in [7]. Equation (1) also includes the FHE and IPD terms
in which Y and ν are, respectively, the dimensionless amplitude and the frequency
of the FHE and the IPD. To simplify the calculation, it is convenient to assume that
both FHE and IPD have the same amplitude Y and the same frequency ν. However,
while the case in which the HFE and IPD have different amplitudes, say Y1 and Y2,
can be handled without apparent difficulties, the case of different frequencies, say ν1
and ν2, would present a serious complexity due to the introduction of an additional
frequency in the problem [22].

We shall analyze the case of external excitation, u(t) = u1 sin Ωt , parametric
one, u(t) = u2 sin 2Ωt , and the case where both external and parametric excita-
tions are present simultaneously. Notice that the introduction of a FHE as a control
technique was motivated by the experimental work [23] made for vibrating testing
purpose of a full size tower. The mechanical vibration exciter system used in such
an experiment is placed on the top of the structure and debits a harmonic excitation
to the structure. The introduction of the IPD component, on the other hand, can be
carried out, for instance, via a damper device in the interfloors damping [24]. Its
use as a control strategy was motivated by its simple implementation and beneficial
effect in reducing vibration in many applications, including automotive, aerospace,
civil and mechanical engineering. To the best of the authors’ knowledge, a practical
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application of the FHE and IPD devices simultaneously as a control technique has
not been reported in the literature.

Equation (1) includes a slow dynamic due to the steady and unsteady wind and
a fast dynamic induced by the fast harmonic PD. To separate these dynamics, we
perform the method of DPM on (1) by defining a fast time T0 = νt and a slow time
T1 = t , and splitting up x(t) into a slow part z(T1) and a fast part φ(T0, T1) as

x(t) = z(T1) + μφ(T0, T1) (2)

where z describes the slow main motions at time-scale of oscillations, μφ stands
for an overlay of the fast motions and μ indicates that μφ is small compared to z.
Since ν is considered as a large parameter, we choose μ ≡ ν−1 for convenience.
The fast part μφ and its derivatives are assumed to be 2π−periodic functions of fast
time T0 with zero mean value with respect to this time, so that < x(t) >= z(T1)

where <>≡ 1
2π

∫ 2π

0 () dT0 defines time-averaging operator over one period of the
fast excitation with the slow time T1 fixed. Averaging procedure gives the following
equation governing the slow dynamic of motion

z̈ + z +
[

ca(1 − Ū ) − b1u(t) − H0 +
(

b31

Ū
+ b32

Ū2
u(t)

)
H1

]
ż +

[
B − B0

(
b31

Ū

+ b32

Ū2
u(t)

)]
ż2 +

[
b31

Ū
+ b32

Ū2
u(t)

]
H2 ż3 = η1Ūu(t) + η2Ū2 + G (3)

where H0 = 4b2Y 2, H1 = 6
(Y

ν

)2
, H2 = 1 + 6Y 2ν2, B = b2(1 + 2Y 2ν2),

B0 = 12Y 2 and G = −2b2
(Y

ν

)2
. Note that the case without FHE component in (3)

has been studied in [9], the case without IPD term was considered in [10], while the
case without FHE and IPD (Y = 0) has been examined in [7].

To obtain the modulation equations of the slow dynamic (3) near the primary
resonance, the MSM is performed by introducing a bookkeeping parameter ε, scaling

as z = ε
1
2 z, b1 = εb1, H0 = εH0, H1 = εH1, B = ε

1
2 B, B0 = ε

1
2 B0, η1 = ε

3
2 η1,

η2 = ε
3
2 η2 and assuming that Ū = 1 + εV [7] where V stands for the mean wind

velocity. With the resonance condition Ω = 1+ εσ where σ is a detuning parameter
and scaling H = εH , a two-scale expansion of the solution is sought in the form

z(t) = z0(t0, t1) + εz1(t0, t1) + O(ε2) (4)

where ti = εi t (i = 0, 1). In terms of the variables ti , the time derivatives become
d
dt = d0 + εd1 + O(ε2) and d2

dt2 = d2
0 + 2εd0d1 + O(ε2), where d j

i = ∂ j

∂ j ti
.

Substituting (4) into (3), equating coefficients of the same power of ε, we obtain the
two first orders of approximation

d2
0 z0 + z0 = G (5)
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d2
0 z1 + z1 = −2d0d1z0 + (ca V + b1u(t0) + H0 − H1(b31 + b32u(t0)))(d0z0)

− (B − B0(b31 + b32u(t0)))(d0z0)2 − H2(b31 + b32u(t0))(d0z0)3 + η1u(t0) + η2 (6)

A solution of (5) is given by

z0 = A(t1) exp(i t0) + Ā(t1) exp(−i t0) + G (7)

where i is the imaginary unit and A is an unknown complex amplitude.
Equation (6) can be solved for the complex amplitude A by introducing its polar

form as A = 1
2 aeiφ . Substituting the expression of A into (6) and eliminating the

secular terms, the modulation equations of the amplitude a and the phase φ can be
extracted as
⎧⎨
⎩

ȧ = [S1 − S3 sin(2φ)]a − S5 cos(φ)a2 + [−S2 + 2S4 sin(2φ)]a3 − β cos(φ)

aφ̇ = [σ − S3 cos(2φ)]a + 3S5 sin(φ)a2 + [S4 cos(2φ)]a3 + β sin(φ)

(8)

where S1 = 1
2 (ca V + H0 − H1b31), S2 = 3

8 b31 H2, S3 = 1
4 (b1 − H1b32)u2, S4 =

1
8 b32 H2u2, S5 = 1

8 b32 B0u1 and β = η1u1
2 . Before investigating the QP galloping

onset, we shall briefly present some results on the influence of both FHE and IPD
on the periodic galloping one [19]. The equilibria of (8), corresponding to periodic
oscillations of the system, are giving by setting ȧ = φ̇ = 0. In the absence of
unsteady wind (u1 = u2 = 0), only the first equation of system (8) is used. Besides
the trivial solution, a = 0, the amplitude of the periodic response is given by

a =
√

4(ca V + H0 − H1b31)

3b31 H2
(9)

Figure 1 shows the periodic galloping amplitude a versus the wind velocity V in the
absence of the unsteady wind (u1 = 0, u2 = 0), as given by (9), for σ = 0 and for
two different values of the amplitude Y . It can be seen that increasing the amplitude
Y , the galloping onset shifts substantially toward higher values of the wind velocity
with a significant decrease of the galloping amplitude. It should be noticed that, for
the fixed value of Y = 0.3, while the combined effect of the FHE and IPD retards
substantially the onset of periodic galloping to V ≈ 2.6 (Fig. 1), the FHE when
applied alone shifts the galloping onset slightly to V ≈ 0.65 [9] and the IPD when
applied alone does not influence it at all [10].

In the case of turbulent wind with external excitation (u1 �= 0, u2 = 0), analysis
of equilibria of the slow flow (8) yields the following amplitude-response equation

(S1a − S2a3)2

(β + S5a2)2 + (−σa)2

(β + 3S5a2)2 = 1 (10)
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Fig. 1 Effect of Y on the
periodic galloping onset
versus V for u1 = 0, u2 = 0,
ν = 8. Solid line Stable;
Dashed line Unstable

.

.

.

.

.

Fig. 2 Effect of Y on the
periodic galloping onset
versus V for u1 = 0.1,
u2 = 0, σ = 0, ν = 10. Solid
line Stable; Dashed line
Unstable; Circle Numerical
simulation
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In Fig. 2 we illustrate the variation of the periodic galloping amplitude versus the wind
velocity V , as given by (10), for a given value of the external excitation amplitude
u1 and for Y = 0 and Y = 0.2. The solid line corresponds to the stable branch, the
dashed line corresponds to the unstable one and circles are obtained by numerical
simulations. One observes that the combined effect of the FHE and IPD decreases
significantly the galloping amplitude and shifts substantially its onset toward higher
values of the wind speed. It is worthy noticing that, for the fixed value of Y = 0.2,
while the combined loading decreases the periodic galloping and retards its onset
significantly (Fig. 2), the IPD when applied alone produces a similar but moderate
effect [10] and the FHE when applied alone only shifts the amplitude curve slightly
to the right [9].

In the case of turbulent wind with parametric excitation (u1 = 0, u2 �= 0), the
amplitude-response equation reads
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Fig. 3 Effect of Y on the
periodic galloping onset
versus V for u1 = 0,
u2 = 0.1, σ = 0, ν = 8.
Solid line Stable; Dashed
line Unstable; Circle:
Numerical simulation
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Fig. 4 Effect of Y on the
amplitude-frequency
response for V = 0.11,
u1 = 0.1, u2 = 0.1. Solid
line Stable, Dashed line
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simulation
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(−S3a + 2S4a3)2 + (−σa)2

(−S3a + S4a3)2 = 1 (11)

Figure 3 shows, for a given value of the excitation u2, the effect of the combined
loading on the amplitude versus V , as given by (11), indicating also a decrease of
the amplitude and a shift of the galloping onset as Y is increased. Note that in this
case also, for a fixed value of Y = 0.2, the combined loading reduces the amplitude
and retards the galloping onset much more comparing to the case where the FHE or
the IPD is applied alone [9, 10].

Finally, in the case where the external and parametric excitations are acted simul-
taneously (u1 �= 0, u2 �= 0), the amplitude-frequency response is shown in Fig. 4.
The plots indicate that the amplitude response decreases drastically with a moder-
ate increase of the amplitude Y (for σ = 0, the approximate amplitude value is
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found to be a ≈ 0.003). Instead, when the FHE acts alone the amplitude decreases
moderately (for σ = 0, a ≈ 0.02) [10] and when the IPD is introduced alone the
amplitude performs a small decrease (for σ = 0, a ≈ 0.012) [9].

3 Quasi-Periodic Galloping

The influence of both FHE and IPD on the QP galloping and its wind speed onset is
explored analytically in this section. To this end, we shall approximate the periodic
solutions of the slow flow (8), corresponding to the QP responses of the original
system. This can be done by transforming the slow flow (8) from the polar form to the
following Cartesian system using the variable change u = a cos φ and v = −a sin φ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

du

dt
= (σ + S3)v − β + η{S1u − (S2u + S4v + S5)(u2 + v2) − 2S5v2 − 2S4u2v}

dv

dt
= −(σ − S3)u + η{S1v + 2S5uv − (S2v + S4u)(u2 + v2) − 2S4uv2}

(12)

where η is a small bookkeeping parameter introduced in damping and nonlinearity.
Using the second step perturbation procedure [25–28], a second MSM is applied on
the slow flow (12), to approximate a periodic solution which can be sought in the
form

u(t) = u0(T1, T2) + ηu1(T1, T2) + O(η2)

v(t) = v0(T1, T2) + ηv1(T1, T2) + O(η2) (13)

where T1 = t and T2 = ηt . Introducing Di = ∂
∂Ti

yields d
dt = D1 + ηD2 + O(η2),

substituting (13) into (12) and collecting terms, we obtain at different order of η

D2
1u0 + λ2u0 = 0

αv0 = D1u0 + β (14)

D2
1u1 + λ2u1 = α

[
−D2v0 + S1v0 + 2S5u0v0 − (S2v0 + S4u0)

(
u2

0 + v2
0

)
−

2S4u0v2
0

]
− D1 D2u0 + S1 D1u0 − D1

[
(S2u0 + S4v0 + S5)

(
u2

0 + v2
0

)
+

2S4u2
0v0

]
− 4S5v0 D1v0

αv1 = D1u1 + D2u0 − S1u0 + (S2u0 + S4v0 + S5)
(

u2
0 + v2

0

)
+

2S5v2
0 + 2S4u2

0v0 (15)

where α = σ + S3 and λ =
√

σ 2 − S2
3 is the frequency of the periodic solution

of the slow flow (12) corresponding to the frequency of the QP modulation. This
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frequency λ depends, to the leading order, only on the parametric excitation u2 via
the coefficient S3 given in (8). The solution of the first-order system (14) is given by

u0(T1, T2) = R(T2) cos(λT1 + θ(T2))

v0(T1, T2) = −λ

α
R(T2) sin(λT1 + θ(T2)) + β

α
(16)

Substituting (16) into (15) and removing secular terms gives the following
autonomous slowslow flow system on R and θ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d R

dt
=

(
S1 − 2

β2

α2 S2

)
R −

(
1

2
S2 + λ2

2α2 S2

)
R3

R
dθ

dt
=

(
3β2

2αλ
S4 − 3λβ2

2α3 S4 − βS5

λ

(
1 + 3λ2

α2

))
R −

(
3λ3

8α3 S4 − 3α

8λ
S4

)
R3

(17)

A periodic solution of the slow flow (12) is then approximated by

u(t) = R cos(φt)

v(t) = −λ

α
R sin(φt) + β

α
(18)

where the amplitude R is obtained by setting d R
dt = 0 and given by

R =
√

2α2S1 − 4β2S2

S2(α2 + λ2)
(19)

which corresponds to the amplitude of the periodic solution (limit cycle) of the slow
flow (12). Using (18), the amplitude modulation of the QP oscillations reads

a(t) =
√[

1

2
R2 + λ2

2α2 R2 + β2

α2

]
−

[
2λβ

α2 R sin(φt) −
(

1

2
R2 − λ2

2α2 R2
)

cos(2φt)

]

(20)
and the QP modulation envelope is delimited by amin and amax such that

amin = min

⎧⎨
⎩

√[
1

2
R2 + λ2

2α2 R2 + β2

α2

]
± 2λβ

α2 R ±
(

1

2
R2 − λ2

2α2 R2
)⎫⎬

⎭ (21)

amax = max

⎧⎨
⎩

√[
1

2
R2 + λ2

2α2 R2 + β2

α2

]
± 2λβ

α2 R ±
(

1

2
R2 − λ2

2α2 R2
)⎫⎬

⎭ (22)



134 L. Mokni et al.

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

σ

a

(a) (b)
Y = 0

4 5 6 7

x 10
4

−0.02

0

0.02

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−3

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

σ

a
4 5 6 7

x 10
4

−0.02

0

0.02

Y = 0.1

Fig. 5 QP galloping versus σ for V = 0.117, u1 = 0.033, ν = 10. Solid lines Stable; Dashed
lines Unstable; Circle Numerical simulation

The domain of existence of QP galloping is characterized by stable periodic solution
born with zero amplitude. This occurs exactly at critical values where the limit cycle
has zero amplitude. Then, setting R = 0 in (19), we determine the corresponding
critical detuning parameter σc given by the condition

σc = S3 ±
√

2β2S2

S1
(23)

which defines the interval [−σc, σc] outside which the galloping is QP, while it is
periodic inside the interval.

3.1 Case of External Excitation

In the case of external excitation (u1 �= 0, u2 = 0), Fig. 5 shows the QP modulation
envelope, as given by (21) and (22), for given values of V and u1 and for different
values of Y . The comparison between the analytical predictions (solid lines) and the
numerical simulations obtained by using Runge-Kutta method (circles) validates the
analytical result. This figure indicates that introducing a small amplitude, Y = 0.1,
decreases drastically the amplitude of the QP oscillations, while the modulation
envelope disappear completely to meet the periodic response, as shown in Fig. 5b. It
should be noticed that, for the same value of the amplitude, Y = 0.1, the FHE or the
IPD when applied separately reduces slightly the QP galloping and the modulation
envelope remains relatively large [9, 10].

Figure 6a depicts the variation of the QP galloping as function of the wind speed
for a given value of u1 and Y = 0. It can be seen that the QP galloping triggers at
a certain critical small value of the velocity wind V . Prior to this value, the tower
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Fig. 7 QP galloping domains, u1 = 0.033 and ν = 10

performs small periodic oscillations due to the external excitation effect, as shown by
time histories of the slow dynamic z(t) inset Fig. 6a obtained by numerical simulation
of (3). The effect of the combined loading is depicted in Fig. 6b, c, for the values
Y = 0.05 and Y = 0.07, respectively. One observes that the QP galloping onset
is substantially retarded as the amplitude Y increases. For instance, for Y = 0.07
(Fig. 6c) the value of the wind speed corresponding to the QP galloping onset is found
to be V = 0.161. By comparison, it is interesting to notice that for the same value
of Y = 0.07, the QP galloping onset is V = 0.042 when the FHE is applied alone,
and V = 0.019 when the IPD is applied alone. These results clearly demonstrate
a better performance of the combined loading over the cases where the loading
are acted separately [9, 10]. In Fig. 7 is shown the domains of existence of QP
galloping (unhatched region) in the parameter plane σc versus V (Fig. 7a) and σc

versus Y (Fig. 7b), as given by the conditions (23); the periodic galloping occurs in
the hatched region. One observes that for Y = 0 the domain of QP galloping increases
slightly with increasing V (Fig. 7a). More importantly, Fig. 7b shows that there exists
a critical value of the amplitude Y at which the QP galloping disappears completely.
The approximate critical value is found to be Y = 0.056 which is coherent with the
plots of Fig. 5b corresponding to Y = 0.1 which is chosen beyond the critical value.

Figure 8 depicts the combined effect of the FHE and IPD on the QP galloping
domain in the parameter plane (u1, σ ). The plots show that the QP galloping domain
decreases substantially by increasing Y . Note that this QP domain decreases slightly
in the case where the IPD is acted alone and it is not affected in the case where the
FHE is acted alone [9, 10].

3.2 Case of Parametric Excitation

In this case (u1 = 0, u2 �=0), Fig. 9 shows the influence of both FHE and IPD on
the envelope of the QP oscillations. One observes a decrease of the amplitude and
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Fig. 8 QP galloping
domains in the parameter
plane u1 versus σc,
V = 0.167 and ν = 10
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Fig. 9 QP galloping versus
σ for V = 0.167, ν = 8 and
u2 = 0.1
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the envelope of the QP galloping with a small increase of Y . The plots show that for
Y = 0.06, the value of the average amplitude of the QP is found to be approximately
a ≈ 0.011. Instead, in the case of a separate loading, reducing the average amplitude
of the QP response to the same amplitude (a ≈ 0.011) requires an increase of the
amplitude to Y = 0.14 (which is more than twice that of the combined loading) [9,
10]. Figure 10a shows, in the absence of the loadings (Y = 0), the QP galloping
amplitude versus the wind velocity V for a given value of the excitation amplitude
u2. It can be seen that as V is increased from zero, the QP galloping onset increases.
The boxes inset the figure present time histories of the slow dynamic z(t) for different
values of V . The influence of the combined loading on the QP galloping amplitude
along with time histories is depicted in Fig. 10b indicating a substantial shift of the
QP galloping onset toward higher values of the wind speed and a decrease of the
amplitude.

It should be noticed that, while the combined loading retards the QP galloping
onset to the value V = 0.185 for Y = 0.08 (Fig. 10b), the QP galloping onset is
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Fig. 10 QP envelope versus V for the parameter values of Fig. 9 with σ = 0.001
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about (V = 0.046) when the FHE is applied alone [9] and it is not influenced when
the IPD is acted alone [10].

It is worth noticing (as mentioned before) that the modulation frequency λ of the
QP galloping caused by the parametric excitation (see inset Fig. 10) is higher than
that produced by the external excitation (see inset Fig. 6).

The domains of existence of periodic (hatched) and QP (unhatched) galloping,
as given by (23), are shown in Fig. 11 indicating that the domain of QP galloping
remains constant with increasing V and decreases slightly with Y .

3.3 Case of External and Parametric Excitations

In the case where the wind activates external and parametric excitations simultane-
ously (u1 �= 0, u2 �= 0), Fig. 12a, b show, respectively, the QP modulation envelope
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Fig. 12 QP galloping versus σ for ν = 8, V = 0.11, u1 = 0.1 and u2 = 0.1
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Fig. 13 The original and the new QP envelopes versus V for the parameter values of Fig. 12,
σ = 0.001

in the absence and presence of the FHE and IPD. These figures indicate that increas-
ing the amplitude Y of the FHE and IPD, eliminates the principal QP modulation
envelope and gives rise to a new small QP modulation one.

One notices that while in the presence of both FHE and IPD, a decrease of the
amplitude of the QP requires a small excitation amplitude (Fig. 12b), the FHE or the
IPD when applied separately can not achieve the same performance even for large
values of Y [9, 10].

Figure 13a shows, for Y = 0, the original and the small QP modulation envelopes
versus the wind velocity V for given values of excitation amplitudes u1, u2. One
notices that as Y is increased, the amplitude of the large QP galloping decreases and
its onset is retarded causing the small QP envelope to persists over a large range of
the wind velocity, as shown in the boxes inset Fig. 13b. In this situation, the motionof
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the wind-excited tower remains QP with small amplitude and relatively large mod-
ulation. Finally, a comparison between the different cases of loading indicates that
for the small value of the amplitude Y = 0.06, the combined effect of the excitation
retards the QP galloping onset to V = 0.167 (Fig. 13b). Instead, to achieve a compa-
rable performance when the FHE or the IPD is applied separately, one requires the
amplitude Y to reach twice the value related to the combined excitation (Y = 0.06)
[9, 10].

4 Conclusion

The combined effect of the FHE and IPD on the QP galloping onset of a wind-
excited tower was studied analytically considering a lumped sdof model and using
perturbation methods. The cases where the turbulent wind activates external excita-
tion, parametric one or both have been considered and the analysis was carried out
near the primary resonance. Analytical approximation of the QP solutions as well as
its modulation envelope were obtained and confirmed by comparison to numerical
simulations.

Attention was focused on assessing the performance of the combined influence
of the FHE and IPD over that where FHE or IPD is introduced separately, in terms
of quenching the QP motion and retarding its galloping onset. The results shown
that the combined effect of FHE and IPD greatly improves the decrease of the QP
galloping amplitude and the shift of the QP galloping onset compared to the case
where FHE or IPD is introduced separately.

The analytical results reported in this work, supported by numerical simulations
clearly reveal the importance to analyze the QP galloping onset. In other words,
special attention should be given to QP galloping in any stability analysis of long
flexible structures under turbulent wind flow. Such a galloping should not be neglected
but have to be considered in the design process of buildings in order to enhance their
stability performance.

Appendix 1

The expression of the coefficients of (1) are:

ω = π

√
3E I

h�
√

m
, ca = ρ A1bh�Ūc

2π
√

3E I m
, b1 = ca , b2 = − 4ρ A2b�

3πm
, b31 = − 3πρ A3b�

√
3E I

8hŪc
√

m3
(24)

b32 = −b31, η1 = 4ρ A0bh2�Ū 2
c

3π3 E I
, η2 = η1

2
, U (t) = Ū + u(t), (25)
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where � is the height of the tower, b the cross-section wide, EI the total stiffness
of the single story, m the mass longitudinal density, h the inter story height, and ρ

the air mass density. Ai , i = 0, ...3 are the aerodynamic coefficients for the squared
cross-section. The dimensional critical velocity is given by

Ūc = 4πξ
√

3E I m

ρbA1h�
(26)

where ξ is the modal damping ratio, depending on both the external and internal
damping according to

ξ = ζh2

24E I
ω + c0

2mω
(27)

where ζ and c0 are the external and internal damping coefficients, respectively.
Introducing a parametric damper device in the internal damping such as

c0 = c(1 + y0ν
2 cos νt) (28)

where y0 and ν are the amplitude and the frequency of the internal PD, respectively.
In this case the equation of motion reads

ẍ + x + [
ca + Yν2 cos νt

]
ẋ − ca

[
Ū + u(t)

]
ẋ + b2 ẋ2 +

[
b31

Ū
+ b32

Ū2
u(t)

]
ẋ3 =

η1Ūu(t) + η2Ū2 (29)

where Y = cy0
mω

. Re-arranging terms yields the equation of motion (1).

Appendix 2

Introducing D j
i ≡ ∂ j

∂ j Ti
yields d

dt = νD0 + D1, d2

dt2 = ν2 D2
0 + 2νD0 D1 + D2

1 and
substituting (2) into (1) gives

μ−1 D2
0φ + D2

1 z + 2D0 D1φ + μD2
1φ + (

ca(1 − Ū ) − b1u(t)
)(

D1z + D0φ

+ μD1φ
) + z + μφ + Yν2 cos(νt)

(
D1z + D0φ + μD1φ

) + b2
(
(D1z)2

+ 2D1z(D0φ + μD1φ) + (D0φ)2 + 2μD0φD1φ + (μD1φ)2)

+
(

b31

Ū
+ b32

Ū 2
u(t)

) (
(D1z)3 + 3(D1z)2(D0φ + μD1φ)

+ 3(D1z)(D0φ + μD1φ)2 + (D0φ + μD1φ)3) = η1Ūu(t) + η2Ū 2

(30)
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Averaging (30) leads to

D2
1 z + (

ca(1 − Ū ) − b1u(t)
)
D1z + z + Yν2 < cos(T0)

(
D0φ + μD1φ

)
>

+ b2
(
(D1z)2 + < (D0φ)2 > + < (2μD0φD1φ) > + < (μD1φ)2 >

)

+
(

b31

Ū
+ b32

Ū 2
u(t)

) (
(D1z)3 + 3D1z(< (D0φ)2 > + < (2μD0φD1φ) >

+ < (μD1φ)2 >)
) = η1Ūu(t) + η2Ū 2

(31)

Subtracting (31) from (30) yields

μ−1 D2
0φ + 2D0 D1φ + μD2

1φ + (
ca(1 − Ū ) − b1u(t)

)(
D0φ + μD1φ

)
+ μφ + Yν2 cos(T0)

(
D0φ + μD1φ

) − Yν2 < cos(T0)
(
D0φ + μD1φ

)
>

+ b2
(
2D1z(D0φ + D0φ)2− < (D0φ)2 > + 2μD0φD1φ − (< 2μD0φD1φ >

+ (μD1φ)2− < (μD1φ)2 >
) +

(
b31

Ū
+ b32

Ū2
u(t)

) (
3(D1z)2(D0φ + μD1φ)

+ 3D1z(D0φ)2 − 3D1z < (D0φ)2 > + 6D1zμ(D0φD1φ)

− < 6D1zμ(D0φD1φ) > + 3D1z(μD1φ)2 − 3D1z < (μD1φ)2 > + (D0φ)3

+ 3μ(D0φ)2 D1φ + 3D0φ(μD1φ)2 + (μD1φ)3) = −Yν2 cos(T0)D1z

(32)

Using the inertial approximation [20], i.e. all terms in the left-hand side of (32),
except the first, are ignored, one obtains

φ = Yν cos(T0)D1z (33)

Inserting φ from (33) into (31), using that < cos2T0 >= 1/2, and keeping only
terms of orders three in z, give the equation governing the slow dynamic of the motion
(3).
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On Optimal Control of a Nonlinear
Robotic Mechanism Using the
Saturation Phenomenon
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Vinícius Piccirillo, Atila Madureira Bueno and Reyolando Manoel Lopes
Rebello da Fonseca Brasil

Abstract In this paper a robotic arm is modelled by a double pendulum excited in
its base by a DC motor of limited power via crank mechanism and elastic connector.
In the mathematical model, a chaotic motion was identified for a wide range of
parameters. Controlling of the chaotic behaviour of the system were implemented
using two control techniques, the nonlinear saturation control (NSC) and the optimal
linear feedback control (OLFC). The actuator and sensor of the device are allowed
in the pivot and joints of the double pendulum. The NSC is based in the second order
differential equations and its action in the pivot/joint of the robotic arm is through of
quadratic nonlinearities feedback signals. The OLFC involves the application of two
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control signals, a nonlinear feedforward control to maintain the controlled system to
a desired periodic orbit, and a feedback control to bring the trajectory of the system
to the desired orbit. Simulation results, including of uncertainties show the feasibility
of the both methods, for chaos control of the considered system.

1 Introduction

The behavior of dynamical systems with pendulums have been investigated in a vari-
ety of approaches such as theoretical and experimental. The non-ideal autoparametric
system with pendulum was studied by Sado and Kot [1], and autoparametric system
with double pendulum with harmonic excitation was studied by Sado and Gajos [2].
The first detailed study on the non-ideal vibrating systems was done by Kononenko
[3]. Following this contribution, the problem of non-ideal vibrating systems has
been investigated by a number of authors. A complete review of different theories on
non-ideal vibrating systems was discussed and presented in [4]. The dynamic inter-
actions between a parametric pendulum and an electro-dynamical shaker of limited
power was investigated in [5]. The authors described a mathematical model of the
electromechanical shaker and identified its parameters. The saturation control was
proposed in [6–11] using 2:1 internal external resonances in quadratic nonlinearly
coupled systems to suppress steady-state vibrations. The effectiveness of the nonlin-
ear saturation control to a non-ideal portal frame was investigated in [12], OFLCwas
proposed in [13]. In Rafikov and Balthazar [13] the quadratic nonlinear Lyapunov
function was proposed to resolve the optimal nonlinear control design problem for a
nonlinear system. Being formulated the linear feedback control strategies for nonlin-
ear systems, asymptotic stability of the closed-loop nonlinear system guaranteeing
both stability and optimality [14].

We organized this chapter as follows. In Sect. 2we obtain themathematicalmodel.
In Sects. 3 and 4 we perform the analysis of the dynamic model considering: bifurca-
tion diagrams, time histories, phase portraits, frequency spectrum, wavelet transform
and 0–1 test for chaotic behaviour. In Sect. 5 is implemented the NSC and the OLFC.
In Sect. 6, through computer simulations, the efficiency and the robustness to para-
metric errors of each control technique are verified. Finally, some concluding remarks
are given.

2 System Description and Governing Equations

We consider a robotic arm modelled by a double pendulum excited at its base (sup-
porting) by a DC motor of limited power via a crank mechanism and a spring, such
as the one represented in Fig. 1. The supporting elastic substructure of the robotic
arm consists of a rod of mass m and lengths l1and l2 and masses m1and m2, stiffness
k and damping c, whose motion is in the vertical direction, and the angular deflection
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Fig. 1 Robotic arm excited
by a non-ideal motor via
crank-spring mechanism [15]

of the first pendulum is θ1 and of the second pendulum is θ2. We assume that the
controlled torque of the unbalanced DC motor as a linear function of its angular
velocity, �(φ̇) = Vm − Cm φ̇, where Vm is considered as a control parameter and it
can be changed according to the voltage of the DC motor, Cm is a constant for each
DC motor considered. The coupling between the DC motor and robotic arm will be
by a crank mechanism of radius r and elastic connector of stiffness kr .

From the Lagrange method, the equations of motion for the system can be
rearranged as follows:

l (m + m1 + m2) ÿ + cẏ + ky − l1(m1 + m2)θ̈1 sin θ1 − l2m2θ̈2 sin θ2

− (m1 + m2)l1θ̇
2
1 cos θ1 − m2l2θ̇

2
2 cos θ2 = krr sin φ (1)

I φ̈ = �(φ̇) + krr(y − r sin φ) cos φ̇ (2)

l(m1 + m2)l
2
1 θ̈1 + m2l1l2θ̈2 cos(θ2 − θ1) − m2l1l2θ̇

2
2 sin(θ2 − θ1)

+ (m1 + m2)gl1 sin θ1 + c1θ̇1 − c2(θ̇2 − θ̇1) = (m1 + m2)l1 ÿ sin θ1 (3)

lm2l22 θ̈2 + m2l1l2θ̈1 cos(θ2 − θ1) + m2gl2 sin θ2 + m2l1l2θ̇
2
1 sin(θ2 − θ1)

+ c2(θ̇2 − θ̇1) = m2l2 ÿ sin θ2 (4)
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where dots indicate differentiationswith respect to dimensionless time.The following
dimensionless quantities are introduced for further analysis:

τ = ω0t, y0 = y

l1
, ω2

0 = k

mt
, mt = m + m1 + m2, �(φ̇) = a − bφ̇, ω2

1 = g

l1
, ω2

2 = g

l2
,

α1 = m1 + m2

mt
, α2 = m2

mt
, R = l2

l1
, η1 = kr r

kl1
, α3 = m2

m1 + m2
, 	1 = ω1

ω2
, 	2 = ω2

ω0
,

μ1 = c1
(m1 + m2) ω0l21

, μ2 = c2
(m1 + m2) ω0l21

, μ3 = c2
m2ω0l22

, η2 = kr rl1
Iω2

0

, η3 = kr r2

Iω2
0

.

Thus, the dimensionless form of the mathematical model can be written as follows

⎧⎨
⎩

x ′
1 = x2

x ′
2 = α1x ′

4 sin x3 + Rα2 sin x5 + α1x24 cos x3 + Rα2x26 cos x5 − μ0x2 − x1 + η1 sin x7

(5)

⎧⎨
⎩

x ′
3 = x4

x ′
4 = α3Rx ′

6 cos(x5 − x3) + x ′
2 sin x3 − 	2

1 sin x3 + Rα3x26 sin(x5 − x3) − μ1x4 + μ2(x6 − x4)
(6)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x ′
5 = x6

x ′
6 = − 1

R x ′
4 cos(x5 − x3) + 1

R x ′
2 sin x5 − 	2

2 sin x5

− 1
R x24 sin(x5 − x3) − μ3(x6 − x4)

(7)

⎧⎪⎪⎨
⎪⎪⎩

x ′
7 = x8

x ′
8 = a − bx8 + (η2x1 − η3 sin x7) cos x7

(8)

where the prime denotes the derivative with respect to time τ and x1 = y0, x2 = ẏ0,
x3 = θ1, x4 = θ̇1, x5 = θ2, x6 = θ̇2, x7 = φ and x8 = φ̇.

For the numerical simulation, the following dimensionless parameters are used:
α1 = 0.3, α2 = 0.17, α3 = 0.5, R = 1, μ1 = 0.01, μ2 = 0.01, μ3 = 0.01,
a = 1.22, b = 1.2, 	1 = 0.9, 	2 = 0.4, η1 = 0.05, η2 = 0.2 and η2 = 0.3
[15].

3 Scale Index

The wavelet transform of a one-dimensional (1D) signal consists of the development
into a basis constructed via solutions like functions called wavelet, using various
internal transformations and shifts [16].
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Given f ∈ L2 (R), the Continuous Wavelet Transform (CWT) of f at time v,
scale s and time location t is defined as

W f (v, s) := 〈
f, ψ∗

v,s

〉 =
+∞∫

−∞
f (t) ψ∗

v,s (t) dt (9)

where

ψv,s = 1√
s
ψ

(
t − v

s

)
, v ∈ R, s > 0 (10)

and W f (v, s) provides the frequency component of the signal of f at time v and
scale swith respect to some analyzing wavelet ψv,s .

The scalogram of f , ℘, is defined as follows [17]:

℘(s) := ‖W f (v, s)‖ =
⎛
⎝

+∞∫
−∞

|W f (v, s)|2 dv

⎞
⎠

1/2

(11)

where ℘(s) is the energy of the CWT of f at scale s. The scalogram is a useful tool
for studying a signal, since it allows the detection of its most representative scales
(or frequencies).

Then, the innerscalogram of f at scale scan be defined by [17]:

℘inner (s) := ‖W f (v, s)‖J (s) =
⎛
⎜⎝

d(s)∫

c(s)

|W f (v, s)|2 dv

⎞
⎟⎠

1/2

(12)

where J (s) = [c (s) , d(s)] ⊆ I is the maximal subinterval in I for which the
supported of ψu,s is included in I for all u ∈ J (s) [17]. As regards the length of
J (s) it depends on the scale s, so that the values of the inner scalogram at different
scales cannot be compared. Therefore, the inner scalogram should be normalized as
follows [17]

℘̄inner (s) = ℘inner (s)

(d(s) − c(s))1/2
(13)

The scale index in the scale interval [s0, s1] can be defined by the quotient [18]

iscale := ℘(smin)

℘ (smax)
(14)

where smax is the smallest scale such that ℘(s) ≤ ℘(smax) for all s ∈ [s0, s1], and
smin the smallest scale such that ℘(smin) ≤ ℘(s). Note that for compactly supported
signals only the normalized inner scalogram will be considered [17].
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From its definition, the scale index iscale is such that 0 ≤ iscale ≤ 1 and it can
be interpreted as a measure of the degree of non-periodicity of the signal: the scale
index will be zero or close to zero for periodic sequences and close to one for highly
non-periodic sequences [18].

According to [17], an important corollary about compactly supported wavelet can
be announce as

Corollary 1 Let f : I = [a, b] → C a T-periodic function in L2 (a, a + b). If ψ

be a compactly supported wavelet, then (normalized) inner scalogram of f at scale
2T is zero. (for more details, see [17]).

4 Numerical Simulation

This system was simulated using the following initial conditions:[
0 0 0 0 5π

180 0 0 0
]
. Figure2 shows the bifurcation diagram for the parameter (μ0).

It is possible to see that for a given value of the parameter (μ0) the system of (5)–(8)
have regions with dense bands of points where we cannot identify the period of the
attractor, which indicates a chaotic behavior [15].

In order to determine the value of parameter μ0 in which the system is chaotic,
the 0–1 test was applied. The 0–1 test for chaos takes as input a time series of
measurements and returns a single scalar value. If this value is closed to 0 (zero)
then the system is periodic, on the other hand, when the value is closed to 1 (one)
the system is chaotic [20].

According to [19] the correlation coefficient K̄ can be obtained from:

K̄ = cov(X, M(c))√
var(X)var(M(c))

(15)

where vectors X = [1, 2, . . ., nmax], M(c)= [M(1, c), …, M(1, nmax)], c ∈ (0, π) is
a fixed frequency chosen arbitrarily, and:

Fig. 2 Bifurcation diagram
for μ0
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M(n, c) = lim
N→∞

1

N

N∑
j=1

[
(p( j + n) − p( j))2 + (q( j + n) − q( j))2

]
(16)

p(i) =
i∑

j=0

(
x j − x̄

)
σx

cos( jc); q(i) =
i∑

j=0

(
x j − x̄

)
σx

sin( jc) (17)

where M(n, c) is the mean square displacement (MSD) of the variables p q, x̄ is the
mean value, σx is the square deviation of examined xi series, and N is the length of
the sampled points in the displacement time series.

As a final result, the value of the searched parameter Kc is obtained taking the
median of 100 different values of the parameter c̄ ∈ (0, π) in (15). A value of Kc ∼= 0
indicates a non-chaotic data set while a value of Kc ∼= 1 indicates a chaotic data set.
Figure3 includes the analysis of the system. The parameter range of μ0 has been
verified and a region where chaotic orbits are found.

In Figs. 4, 5 and 6 one can observe the behaviour of the system (5)–(8) for μ0 =
0.076.

0.04 0.06 0.08

μ
0.1

0.986

0.988

0.99

0.992

0.994

0

K
c

Fig. 3 Asymptotic growth rate (Kc) from 0–1 test as a function of parameter μ0
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Fig. 4 Behaviour of x1 for μ0 = 0.076. a Vertical movement. b Frequency spectrum
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Fig. 5 Behaviour of x3 for μ0 = 0.076. a Angular movement. b Frequency spectrum
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Fig. 6 Behaviour of x5 for μ0 = 0.076. a Angular movement. b Frequency spectrum

Fig. 7 a Modulus of CWT and b Normalized inner scalogram for μ0 = 0.076

As we can see in Figs. 3, 4, 5 and 6 for μ0 = 0.076, the system (5)–(8)
has a chaotic behaviour. Figure7a shows the modulus of wavelet transform
(i. e. |W f (u, s)|) for the time series ofμ0 = 0.076, the wavelet of the 1D analyzed
signal is shown as surface in 3D space, in which the z-axis denotes the modulus,
the x-axis denotes the time and the y-axis denotes the scales. The relation between
frequency parameter α and scale parameter s is α = 2π

s [20]. It is seen from Fig. 7b
that the normalized inner scalogram is not zero, therefore the signal is non-periodic;
the same results was observed in 0–1 test. On the other hand, Fig. 8b shows that
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Fig. 8 a Modulus of CWT and b Normalized inner scalogram for μ0 = 0.0762

Fig. 9 a Modulus of CWT and b Normalized inner scalogram for μ0 = 0.0763

Table 1 Comparative analysis of diagnostic scale index

Parameters Scale index Behavior

μ0 iscale –

0.076 0.17 Non-periodic

0.0762 0.02 Periodic

0.0763 0.17 Non-periodic

the normalized inner scalogram is equal zero for μ0 = 0.076 which corresponds
to a periodic signal with period T = 1. Figure9 shows one of the main obvious
differences is that distribution of scales is randomly vs. time and CWT modulus. It
is worth noting that this observation is verified by the normalized inner scalogram
which is not zero. In Table1 are listed the values of the scale index, together with the
value of the parameter where highly non-periodic orbits correspond to values close
to 1 and where periodic orbits correspond to the values close to 0.
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5 Proposed Control

In this section, we propose two control methods with the objective of eliminate the
chaotic behaviour of the system (5)–(8). To do so, we consider the introduction of
a control signal U applied in the support of the robotic arm to satisfy the saturation
phenomenon in linear form and no rotational, into the system (5):

⎧⎨
⎩

x ′
1 = x2

x ′
2 = α1x ′

4 sin x3 + Rα2 sin x5 + α1x24 cos x3 + Rα2x26 cos x5 − μ0x2 − x1
+ η1 sin x7 + U

(18)

A block diagram representation of the controller proposed in this work is presented
Fig. 10.

5.1 Formulation of NSC

In this section, we implement the following nonlinear saturation control:

U = γ1u2 (19)

where u is obtained from the following equation [12]:

ü + μcu̇ + ω2
c u = γ2x1u (20)

where ωc is the controller’s natural frequency, γ1 and γ2 are positive constants. The
internal resonance condition is considered by letting 2ωc ≈ 1 and external resonance
φ̇ ≈ 1.

Fig. 10 Control applied in
the support of the robotic
arm asymptotic growth rate
[15]
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Fig. 11 Behaviours for μ0 = 0.076. a Vertical movement x1. b Vertical movement x1 excluding
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In Fig. 11 we can observe the behaviour of the system (5)–(8) with the pro-
posed control (19) considering the following parameters: γ1 = 0.01; γ2 = 0.07;
μc = 0.01; ωc = 0.5 and initial conditions: u(0) = 0.1 and u̇(0) = 0, excluding
the transient behavior. Furthermore, if we compare the results obtained in Figs. 11
and 4, adopting the parameter μ0 = 0.076, the NSC can effectively suppress the
chaotic behavior, and therefore it becomes possible to change the behavior of the
system.

We can see in Fig. 11 that the nonlinear saturation control is effective in bringing
the system to a periodic behavior with a transient behavior of approximately τ ≈
1500.
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5.2 Control Using OLFC

Next, we will present the optimal linear control strategy for nonlinear systems [21].
It is important to observe that this approach is analytical, without dropping any
nonlinear term [22]. The vector control U in (18) is consisting of two parts, namely,
U = uff + ufb, where uff is the feedforward control and ufb is the linear feedback

control. Defining the period orbit, as being a function of
[

x∗
1 (τ ) x∗

2 (τ )
]T , if the

function
[

x∗
1 (τ ) x∗

2 (τ )
]T is the solution of (18), without the controlU , then ufb = 0.

In this way, the desired regime is obtained by the following equations:

⎧⎨
⎩

x∗′
1 = x∗

2
x∗′
2 = α1x ′

4 sin x3 + Rα2 sin x5 + α1x24 cos x3 + Rα2x26 cos x5 − μ0x∗
2 − x∗

1+η1 sin x7 + uff
(21)

Isolating uff in the second equation (20) we obtain the feedforward control:

uff = x∗′
2 − α1x ′

4 sin x3 − Rα2 sin x5 − α1x24 cos x3 − Rα2x26 cos x5
+μ0x∗

2 + x∗
1 − η1 sin x7

(22)

Substituting (22) into (18) and defining the deviation of the desired trajectory as:

z =
[

x1 − x∗
1

x2 − x∗
2

]
(23)

The system can be represented in the matrix form z′ = Az + Bu as:

[
z′
1

z′
2

]
=

[
0 1
−1 −μ0

] [
z1
z2

]
+

[
0
1

]
ufb (24)

The control ufb can be found to solve the following equation:

ufb = −R−1BT Pz (25)

where P is a matrix symmetric, and can be find solving the Algebraic Riccati Equa-
tion:

P A + AT P − P B R−1BT P + Q = 0 (26)

According to [23], if there exist matrices Q and R, with positive definite symmetric
matrix, such that the matrix:

Q̃ = Q − GT (z, u∗)P − PG(z, u∗) (27)
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is positive definite for the limited matrix G(z, u∗) then the control ur is optimal and
transfers the non-linear systems (18) from any initial state to final state z(∞) = 0,
minimizing the functional:

J =
∞∫

0

(zT Q̃z + uT
r Rur )dt (28)

In addition, with the feedback control (25), there exists a neighborhood �0 ⊂ �,
� ⊂ �n , of the origin such that if z0 ∈ �0, the solution z(τ ) = 0, τ ≥ 0, of the
controlled system (18) is locally asymptotically stable, and Jmin = zT

0 Pz0. Finally, if
� = �n then the solution z(τ ) = 0, τ > 0, of the controlled system (18) is globally
asymptotically stable [13, 14].

What can be demonstrated considering the Dynamic Programming rules is
that if the minimum of functional (28) exists and if V is a smooth function
of the initial conditions, then it satisfies the Hamilton-Jacobi-Bellman equation
[13, 14]:

min
u

(
dV

dT
+ zT Q̃z + uT

r Rur

)
= 0 (29)

Considering a function:
V = zT Pz (30)

and substituting V̇ in the Hamilton-Jacobi-Bellman equation (29) one obtains:

zT
[

AT P + P A − P B R−1BT P + GT (z, u∗)P + PG(z, u∗) + Q̃
]

z = 0 (31)

Then Q̃ = Q − GT (z, u∗)P − PG(z, u∗). Note that for positive definite matrices
Q̃ and R, the derivative of the function (30) is given by V̇ = −z Q̃z − uT

r Rur which
is negative definite. Then, the function (30) is Lyapunov function, and the controlled
system (18) is locally asymptotically stable. Integrating the derivative of the Lya-
punov function (31) given by V̇ = −z Q̃z − uT

r Rur along the optimal trajectory, we
obtain Jmin = zT

0 Pzo. Finally, if � = �n , global asymptotic stability follows as a
direct consequence of the radial unbondedness condition for the Lyapunov function
(30) V (z) → ∞ as ‖z‖ → ∞ [13, 14].

According to [13, 14], and to analyze the cases for which the matrix Q̃ is analyt-
ically difficult, it is possible to analyze numerically considering the function:

L(τ ) = zT (τ )Q̃(τ )z(τ ) (32)

Define the desired orbits to periodic orbits obtained with the nonlinear saturation
control (Fig. 11a) obtained through the use of Fourier series, calculated numerically
as [15]:
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⎧⎪⎪⎨
⎪⎪⎩

x∗
1 = 0.0393 + 0.1749 sin

( 2π
7 τ

)

x∗
2 = 0.3498π

7 cos
( 2π

7 τ
) (33)

The matrixes A, B and G may be represented by:

A =
[
0 1
−1 −0.076

]
, B =

[
0
1

]
and G =

[
0
0

]
(34)

By defining:

Q =
[
104 0
0 10

]
, R = [10] (35)

and solving the Algebraic Riccati equation (26), we get:

P =
[
1442.2713 99.005
99.005 14.3467

]
(36)

Substituting it into (25), we obtain the control:

ufb = −99.005z1 − 14.3467z2 = −99.005(x1 − x∗
1 ) − 14.3467(x2 − x∗

2 ) (37)

Considering (37) and (22) leads to the control U :

U = −99.005(x1 − x∗
1 ) − 14.3467(x2 − x∗

2 ) + x∗′
2 − α1x ′

4 sin x3 − Rα2 sin x5
−α1x24 cos x3 − Rα2x26 cos x5 + μ0x∗

2 + x∗
1 − η1 sin x7

(38)

InFig. 12weobserve the controlled system (5)–(8) in the orbit (21),with:
∣∣x1 − x∗

1

∣∣ <

10−6, excluding the transient behavior.
As can be seen, the proposed control (38), took the system to the desired orbit

(21), with transient less than 2τ .
It can be observed in Fig. 13 that L(τ ) is positive semidefinite, which ensures that

the control (37) is optimal.

5.3 Comparison Between NSC Control and OLFC Control

In Fig. 14 we can observe the behavior of the system (5)–(8) using NSC control and
OLFC control.

In Fig. 15 we show the variation of the control signal used to NSC control and
OLFC control.
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To eliminate the transitory period and maintain the system in a defined orbits, the
OLFC control uses a higher signal than the NSC control. We can also observed in
Fig. 14 that even with x1 being similar for the two controls, it was not possible to
obtain the same behavior for other states.

6 Control in the Presence of Parametric Errors

In order to consider the uncertainty effects on the performance of the controller, the
parameters used in the control will be considered as individual variations of ±20%,
and a random error of ±20% [24, 25]. A sensitivity analysis will be carried out
considering the error: ei = xi − x̃i for i = 1 : 6, where xi are the states of the
system with control, and without parametric error, and x̃i are the states with control
and parametric errors.
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6.1 NSC with Parametric Error

In Fig. 16 we can observe that the NSC control maintains x1 in periodic orbits,
even when parametric errors occur, and in this case we consider: γ1 = 0.01 × ψ ,
γ2 = 0.07 × ψ , μc = 0.01 × ψ , ωc = 0.5 × ψ , where ψ = 0.8 : 1.2.

As can be depicted in Fig. 16d the control is sensitive to variations in the parameter
ωc, which should occur because the necessary condition for using this technique is
2ωc ≈ 1. In Fig. 17, we can observe the periodic oscillation of the system (5)–
(8) with control (13) and γ1 = 0.008 + 0.004 r(t), γ2 = 0.056 + 0.028 r(t),
μc = 0.008+ 0.004r(t), ωc = 0.008+ 0.004r(t), and r(t) is normally distributed
random function. Furthermore, in this figure we can observe the ability of the control
to reproduce the behavior of the system without parametric errors.

It can also be observed in Fig. 17 that the control reproduces satisfactorily the
variables x1 and x2, but the control is not able to reproduce the behaviour of the other
states.

The behavior of the system (5)–(8) with control (38) is illustrated in Fig. 18,
consideringμ0 = 0.076×ψ ,α1 = 0.3×ψ , α2R = 0.17×ψ and η1 = 0.05×ψ .

(a) (b)

(c) (d)

Fig. 16 Sensitivity of NSC control to keep the system on periodic orbits with parametric errors: a
ψ × μc. b ψ × γ1. c ψ × γ2. d ψ × ωc
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In Fig. 19, we can observe the periodic oscillations of the system (5)–(8) with
control (38), and the following parameters: α1 = 0.24 + 0.12 r(t); α2 = 0.136 +
0.068 r(t); R = 0.8+0.4r(t);μ0 = 0.0608+0.0304 r(t) andη1 = 0.04+0.02 r(t).

Aswe can see fromFigs. 16 and 17, theNSC control is sensitive inmaintaining the
behavior of the system in a periodic orbit obtained with control without uncertainty
in parameters. It is indicated from Figs. 18 and 19 that the OLFC control has proven
to be robust to parameter uncertainties.
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7 Conclusions

We have considered the robotic arm modeled by a double pendulum excited in its
base (supporting) by a DC motor of limited power via crank mechanism and spring.
The dynamical interactions is investigated by means of phase portraits, bifurcation
diagrams, the power spectrum (FFT), wavelet transform and 0–1 test, showing the
existence of chaotic behavior for some parameters. The two control strategies have
shown to be effective in stabilizing the system in a periodic orbit.With the application
of the time delay control for the desired orbit and optimal control to maintain the
desired orbit, it was possible to associate the two controls to obtain less time and
more robust system a periodic orbit.

NSC technique proved its efficiency to take the system to a periodic orbit, but
requiring a relatively large time. We have observed also through the analysis of
sensitivity to parametric errors, that this approach is not efficient in maintain the
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system in its original orbit, considering the case of the control having variations in
their parameters. The results showed that nonlinear saturation control is indicated
for cases where there is no need to maintain the system at predetermined orbits, and
for the cases where the time stabilization is not a priority and must be a relationship
between the internal resonance (ωc) and the external resonance (ω) is (2ωc ≈ ω).
TheOLFC, allow us to obtain amore robust control than the NSC, as demonstrated in
sensitivity simulations to parametric errors. The results demonstrate that this control
is a good choice for those cases where it is desired to minimize the time stabilization
of the system at a predetermined orbit, as well as being able to reproduce the behavior
even though the control is subjected to parametric errors. However, for using this
control strategy efficiently it is necessary to determine the desired behavior, and it is
also necessary to use a much higher control signal used for controlling the NSC.
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Quasi-Coordinates Based Dynamics Control
Design for Constrained Systems

Elżbieta M. Jarzȩbowska

Abstract The paper presents model-based dynamics control design for constrained
systems which exploits dynamics modeling in quasi-coordinates. These non-inertial
coordinates are useful in motion description of constrained systems as well as in
a controller design, since they offer many advantages in both areas. Specifically, a
dynamics model formulation results in a reduced-state form of the motion equations.
The selection of quasi-coordinates is arbitrary so they may satisfy the constraint
equations and be control inputs directly. The paper presents an approach to control
oriented modeling and a controller design based on the generalized Boltzmann-
Hamel equations where the generalization refers to constraint kinds which may be put
upon systems, i.e. constraints may be material or artificial like control constraints. The
control design framework applies to fully actuated and underactuated systems and it
is computationally efficient. Examples of controller designs and their comparisons
to a traditional Lagrange model-based framework are presented.

1 Introduction

The paper presents model-based control design for constrained systems which applies
dynamics modeling in quasi-coordinates. The constrained systems may be subjected
to holonomic, nonholonomic or programmed constraints as well as be fully actuated
or underactauted. They constitute a large class of systems of a practical interest and
they are usually approached by the Lagrange method with generalized coordinates
or its modifications to obtain motion equations for them. The Lagrange based dy-
namics are also used to generate dynamic control models for these systems. This
traditional, almost routine, approach to dynamics modeling results in dynamics that
lacks some properties significant from the point of view of further control design. Ba-
sically, Lagrange based dynamics can be applied to systems with constraints of first
order and the number of unknowns that result from Lagrange’s equations increases to

E.M. Jarzȩbowska (B)

Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics,
Nowowiejska 24 Street, 00-665 Warsaw, Poland
e-mail: elajarz@meil.pw.edu.pl

© Springer International Publishing Switzerland 2015
M. Belhaq (ed.), Structural Nonlinear Dynamics and Diagnosis,
Springer Proceedings in Physics 168, DOI 10.1007/978-3-319-19851-4_9

167



168 E.M. Jarzȩbowska

include the multipliers. In order to obtain a dynamic control model, Lagrange’s based
dynamics require the elimination of the constraint reaction forces (Lagrange multi-
pliers). Finally, solutions obtained from the Lagrange based models require numer-
ical stabilization due to differentiation of constraint equations, that may complicate
on-line simulations and control. Only a few works report applying quasi-coordinates
to modeling constrained systems, see e.g. [1, 2].

From the perspective of mechanics and derivation of equations of motion, con-
strained systems may belong to the same class, e.g. be subjected to first order non-
holonomic constraints. From the perspective of nonlinear control theory, they may
differ and may not be approached by the same control strategies and algorithms. Their
control properties depend upon the way they are designed and propelled. Then, from
the nonlinear control theory perspective a system design, way of its propulsion, con-
trol goals, other motion or work-space constraints may determine the way of the
control-oriented modeling.

The dynamics modeling in quasi-coordinates presented herein, which is incorpo-
rated in the model-based control design for constrained systems, eliminates many
disadvantages related to Lagrange’s based dynamics modeling and a subsequent
control design.

Motivations for the development of constrained and control dynamics in quasi-
coordinates come from the author experience in the area of modeling and control of
constrained systems. Firstly, the constraint kinds that have to be dealt with in control
setting are different than the ones considered in analytical dynamics modeling. This
has led to the definition of the unified constraint formulation and the derivation of
the generalized programmed motion equations [3, 4]. Secondly, a dynamics control
model that is passed to a control engineer to design and apply to it an appropriate
controller, may be made a control oriented, i.e. may facilitate this controller design.
The two motivations are not separate from each other. They both can be appropriately
treated at the modeling step of a control design project using the latest modeling tools
and the modeling process may serve an effective control design.

In the paper we present the theoretical model-based control oriented modeling
framework. It yields equations of motion for constrained systems in quasi-coordinates
based on the generalized Boltzmann-Hamel equations [3]. This dynamics framework
yields equations of motion of a constrained system in a reduced-state form, from
which the dynamic control model directly follows. The framework applies to fully
actuated and underactuated systems, it is computationally efficient, and may facilitate
a subsequent controller design. Based on the framework, a tracking control strategy
dedicated to track predefined motions referred to as programmed may be designed.
It is referred to as the model reference tracking control strategy for programmed
motion and has been developed for dynamics in generalized coordinates [4]. It can
be redesigned to constrained dynamics and control dynamics developed in quasi-
coordinates.

The paper contribution is then three folds. Firstly, the model-based control oriented
framework for the generation of dynamics for constrained systems formulated in
quasi-coordinates, where additionally relations between generalized velocities and
quasi-velocities may be nonlinear, is presented. Secondly, the dynamics formulation
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in quasi-coordinates is unified in the sense that it is suitable for systems constrained
by arbitrary order bilateral constraints. Thirdly, based on this formulation a tracking
controller for a system motion along a prescribed program may be designed.

Examples that illustrate the theoretical development demonstrate the effective-
ness of the generation of dynamics models using the model-based control oriented
modeling framework in quasi-coordinates.

2 An Extended Constraint Concept—Material and
Non-material Constraints Imposed Upon System Motions

A control design process consists of three main steps, which are a dynamic model
building, a control algorithm design, and a controller implementation. Starting from
the model building, constraints imposed on a system should be specified first, and
inspected if they are holonomic or nonholonomic. We do not address dynamics
modeling and control design of holonomic systems, since these are considered solved
problems, at least theoretically [5].

Based on the examples of constraints reported in mechanics and control, we
start a control-oriented modeling from a constraint concept revisiting. An extended
understanding of constraints is suitable for both dynamics modeling and control
applications. The constraints can be classified as follows [4]:

1. Material nonholonomic constraints (NC)—they come from an assumption about
rolling vehicle wheels without slipping. They are first order and they are typical
for wheeled mobile vehicles or multi-finger hands working on surfaces. Their
common form reads

ϕβ(t, q1, ..., qn, q̇1, ..., q̇n) = 0 β = 1, ..., b, b < n (1)

Functions ϕβ are defined on a (2n+1)-dimensional manifold and have continuous
derivatives. Often, the kinematic constraints are linear in velocities, i.e.

n∑
σ=1

bβσ (t, q1, ..., qn)q̇σ + bβo(t, q1, ..., qn) = 0, (2)

Constraints (1) or (2) restrict accelerations but not positions. They are referred to
as first order constraints. In classical mechanics setting they are known as material
constraints [6, 7].

2. Conservation laws—they come from the angular momentum conservation for
free-floating space manipulators, for an astronaut in a space walk or for a sports-
man in an exercise flying phase. Their equation form is the same as (1) [8]. Notice,
that in mechanics they are not referred to as constraints. They show up in a control
setting.



170 E.M. Jarzȩbowska

3. Tasks (programmed constraints)—they can be formulated for any physical sys-
tem, e.g. a robot or a manipulator and they can specify a task, work to do or a
limitation in a system motion, e.g. a limitation in velocity or acceleration. Also,
they may specify a trajectory to follow but then it is a holonomic constraint. Many
task formulations are reported in [9–12]. However, none of the tasks is formulated
in algebraic or differential constraint equation forms at a system modeling level.
Such equations are formulated later at a level of a controller design and then a
specific controller modification for each task is needed the most often. The earliest
formulation of programmed constraints (PC) known to the author was given by
Appell in [13]. He described them as constraints “that can be realized not through
a direct contact”. Similar ideas were introduced by Mieszczerski at the beginning
of the 20th century. Beghuin [14] developed a concept of servo-constraints. These
new “constraint sources” motivated to specify constraints as

ϕβ(t, q1, ..., qn, q̇1, ..., q̇n) = 0, β = 1, ..., k, k < n (3)

The history of evolution of the PC (3) confirms both their usefulness in formula-
tions of requirements for dynamical systems performance and leads to a “unified
constraint formulation”, which is

Bβ(t, q, q̇, ..., q(p)) = 0, β = 1, ..., k, k < n (4)

where p is a constraint order and Bβ is a k-dimensional vector. Equation (4)
can be nonlinear in q(p). Differentiation of (4) with respect to time, until the
highest derivative of a coordinate is linear, results in constraint equations linear
with respect to this highest coordinate derivative. We assume that “p” stands for
the highest order derivative of a coordinate which appears linearly in a constraint
equation. For simplicity we assume that they are linear in all p-th order derivatives
of q’s and we rewrite (4) as

B(t, q, q̇, ..., q(p−1))q(p) + s(t, q, q̇, ..., q(p−1)) = 0, (5)

which is referred to as a unified constraint formulation [4].
4. Design or control constraints—they can be put upon manipulators, robots and

other systems with underactuated degrees of freedom [15]. They have the form
(5) with p = 2.

5. Other design, control or operation constraints on robots, manipulators and other
vehicles or robotic systems, which can be presented as (5):

• in navigation of wheeled mobile robots, to avoid the wheel slippage and me-
chanical shock during motion, dynamic constraints such as acceleration limits
have to be imposed [9, 10],
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• in path planning problems, for car-like robots, to secure motion smoothness
two additional constraints are added: on a trajectory curvature and its time
derivative so additional constraints of the second and third order are imposed
[10],

• in manipulator trajectory tracking, jerk must be limited for reducing manipu-
lator wear and improving tracking accuracy [16],

• in vehicle dynamics, constraints are added when different maneuvers are to
be performed [17],

• in robotics where lateral acceleration must be bounded, e.g. path tracking
experiments depend on the precision of the odometer. If the lateral acceleration
of the vehicle is too large, the wheels can lose close contact to the ground and
the odometer data is no longer meaningful [18].

The constraint classification in classical mechanics and a variety of requirements
on system’s motions reported in the literature can be summarized as follows:

1. Many problems are formulated as synthesis problems and motion requirements
may be viewed as non-material constraints imposed on a system before it is
designed and put into operation.

2. Constraints that specify motion requirements may be of orders higher than one
or two.

3. Non-material constraints may arise in modeling and analysis of electro and bio-
mechanical systems.

4. No unified approach to the specification of non-material constraints or any other
unified constraint has been formulated in classical mechanics.

These conclusions lead to the idea of an extended constraint concept [4]. It is
formulated in two definitions:

Definition 1 A programmed constraint is any requirement put on a physical system
motion specified by (5).

Definition 2 A programmed motion is a system motion that satisfies a programmed
constraint (5).

A system can be subjected to both material and programmed constraints. Pro-
grammed constraints do not have to be satisfied during all motion of a system.

3 Control Oriented Constrained Dynamics
Formulation in Quasi-Coordinates

Nonholonomic systems (NS) are a large class of systems. From the perspective
of mechanics and derivation of equations of motion, many of them belong to the
same class of systems subjected to first order nonholonomic constraints. They may
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be approached by Lagrange’s equations with multipliers and these equations are
used to generate dynamic control models for them most often [7, 19, 20]. From
the perspective of nonlinear control theory, NS differ and may not be approached
by the same control strategies and algorithms. Some of them may be controlled at
the kinematic level and the other at the dynamic level only. Their control properties
depend upon the way they are designed and propelled. Usually, they are divided into
two control groups, which are treated separately, the group of fully actuated and the
group of underactuated NS [6, 7, 15].

The constrained dynamics which we formulate below can be directly used as a
control dynamics, and serves both fully actuated and underactuated systems con-
strained by the constraints (5) [4].

Let us start from recalling the concepts of quasi-coordinates and quasi-velocities.
They were introduced to derive the Boltzmann-Hamel equations of motion. Relations
between the generalized velocities and quasi-velocities were assumed linear and non-
integrable, i.e.

ωr = ωr (t, qσ , q̇σ ), σ, r = 1, ..., n, (6)

With respect to the extended constraint concept (5), our first step is to let (6) be
nonlinear [3]. Inverse transformations for (6) can be computed as

q̇λ = q̇λ(t, qσ , ωr ). λ = 1, ..., n (7)

Quasi-coordinates can be introduced as

dπr =
n∑

σ=1

∂ωr

∂q̇σ

dqσ , r = 1, ..., n (8)

and (8) are non-integrable. Based on (6)–(8), q’s and ω’s are related as

dqλ =
n∑

μ=1

∂q̇λ

∂ωμ

dπμ. λ = 1, ..., n (9)

The principal form of the dynamics motion equation [4] has the form

d

dt

n∑
σ=1

pσ δqσ = δT +
n∑

σ=1

Qσ δqσ +
n∑

σ=1

pσ

[
(δqσ )· − δq̇σ

]
δqσ . (10)

Transforming its left and right hand side terms using the relations between δπr and
δqλ we obtain

d

dt

n∑
μ=1

p̃μδπμ = δT̃ +
n∑

μ=1

Q̃μδπμ +
n∑

r=1

p̃r
[
(δπr )

· − δωr
] −

n∑
r=1

p̃r

n∑
μ=1

W r
μδπμ

(11)
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which is the principal form of the equation of motion in quasi-coordinates for non-
linear ωr = ωr (t, qσ , q̇σ ). W r

μ are generalized Boltzmann symbols. Quantities p̃μ,

T̃ , Q̃μ are all written in quasi-coordinates.
The generalized form of the Boltzmann-Hamel equations can be derived based

on (11). It has the form

n∑
μ=1

[
d

dt

(
∂ T̃

∂ωμ

)
− ∂ T̃

∂πμ

+
n∑

r=1

∂ T̃

∂ωr
W r

μ − Q̃μ

]
δπμ = 0. (12)

For a holonomic system, δπμ,μ = 1, ..., n, are independent and equations of motion
are

d

dt

(
∂ T̃

∂ωμ

)
− ∂ T̃

∂πμ

+
n∑

r=1

∂ T̃

∂ωr
W r

μ = Q̃μ. μ = 1, ..., n (13)

Equation (13) are the generalized Boltzmann-Hamel equations for a holonomic sys-
tem with nonlinear relations between quasi and generalized velocities. For linear
relations between quasi and generalized velocities (13) become Boltzmann-Hamel
equations derived in, e.g. [21]. Also, it can be easily verified that when quasi-
coordinates are equivalent to generalized coordinates, i.e. πr = qr , r = 1, ..., n,
and quasi-velocities are generalized velocities, i.e. ωr = q̇r , r = 1, ..., n, then (13)
are Lagrange’s equations with W r

μ = γ r
αμ = 0.

For a system subjected to material or programmed NC of the form

ωβ = ωβ(t, qσ , q̇σ ) = 0 β = 1, ..., b (14)

relations

δπβ =
n∑

σ=1

∂ωβ

∂q̇σ

δqσ = 0, β = 1, ..., b (15)

hold for all ωβ . A system has (n−b) degrees of freedom and variations δπb+1, ..., δπn

are independent. Then, (n − b) equations of motion, based on (12), have the form

d

dt

(
∂ T̃

∂ωμ

)
− ∂ T̃

∂πμ

+
n∑

r=1

∂ T̃

∂ωr
W r

μ = Q̃μ μ = b + 1, ..., n (16)

to which n kinematic relations

q̇λ = q̇λ(t, qσ , ωr ), σ, λ = 1, ..., n, r = b + 1, ..., n (17)

have to be added.
Equation (16) are the generalized Boltzmann-Hamel equations for a NS. Notice that b
of ω’s are satisfied based on the constraint equation (17). The rest of quasi-velocities
are selected arbitrarily by a designer. Equations (16) and (17) can be presented as
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M(q)ω̇ + C(q, ω) + D(q) = Q̃,

B(q, ω) = 0.
(18)

A system dynamics control model follows directly from (18) since they are free
from the constraint reaction forces

M(q)ω̇ + C(q, ω) + D(q) = Q̃ + τ̃ ,

B(q, ω) = 0.
(19)

Equation (16) have to be extended to be applicable to systems subjected to NC of
high order given by (5). To enable this, the following lemma can be formulated [4].

Lemma For a function F̃ of the form

F̃ = F̃(t, qσ , ωr ), σ, r = 1, ..., n (20)

where qσ and ωr are related by ωr = ωr (t, qσ , q̇σ ), the following identity holds

d

dt

(
∂ F̃

∂ωσ

)
= 1

p

(
∂ F̃ (p)

∂ω
(p−1)
σ

− ∂ F̃

∂πσ

)
. p = 1, 2, 3, .. (21)

The proof is by mathematical induction [4]. If we replace F̃ by T̃ = T̃ (t, qσ , ωσ ) in
(20) and insert it into the generalized Boltzmann-Hamel equation (12), we get

1

p

[
∂ T̃ (p)

∂ω
(p−1)
μ

− (p + 1)
∂ T̃

∂πμ

]
+

n∑
r=1

∂ T̃

∂ωr
Wr

μ = Q̃μ. μ = 1, ..., n, p = 1, 2, 3,

(22)

Equation (22) are the extended form of the Boltzmann-Hamel equations. Now,
modify them for systems with NC of high order

G̃β

(
t, qσ , ωr , ω̇r , ..., ω

(p−1)
r

)
= 0. β = 1, ..., b, σ, r = 1, ..., n, b < n

(23)

Based on the generalized definition of the virtual displacement

δGβ =
n∑

σ=1

∂Gβ

∂q(p)
σ

δqσ = 0, (24)

where Gβ = Gβ(t, qσ , q̇σ , ..., q(p)
σ ) are constraints of p-th order specified in q ′s, we

obtain that

δG̃β =
n∑

r=1

∂G̃β

∂ω
(p−1)
r

δπr = 0. (25)
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In the constraint equation (23) we may partition the vector ω(p−1) as ω(p−1) =(
ω

(p−1)
β ω

(p−1)
μ

)
with

ω
(p−1)
β = Ω

(p−1)
β

(
t, qσ , ωσ , ωσ , ..., ω(p−1)

μ

)
. (26)

By differentiating (26) with respect to time we obtain

ω
p
β = Ω

p
β

(
t, qσ , ωσ , ωσ , ..., ω(p−1)

μ , ωp
μ

)
. (27)

Now, using the lemma result we rewrite (12) in the form

b∑
β=1

⎧⎨
⎩

1

p

⎡
⎣ ∂ T̃ (p)

∂ω
(p−1)
β

− (p + 1)
∂ T̃

∂πβ

⎤
⎦ +

n∑
r=1

∂ T̃

∂ωr
W r

β − Q̃β

⎫⎬
⎭δπβ

+
n∑

μ=b+1

{
1

p

[
∂ T̃ (p)

∂ω
(p−1)
μ

− (p + 1)
∂ T̃

∂πμ

]
+

n∑
r=1

∂ T̃

∂ωr
W r

μ − Q̃μ

}
δπμ = 0.

(28)

Based on (25) we have that δπβ =
n∑

μ=b+1

∂Ω
(p−1)
β

∂ω
(p−1)
μ

δπμ, β = 1, ..., b, and then (28)

takes the form

1
p

[
∂ T̃ (p)

∂ω
(p−1)
μ

− (p + 1) ∂ T̃
∂πμ

]
+

n∑
r=1

∂ T̃

∂ωr
W r

μ − Q̃μ

+
b∑

β=1

⎧⎨
⎩

1

p

⎡
⎣ ∂ T̃ (p)

∂ω
(p−1)
β

− (p + 1)
∂ T̃

∂πβ

⎤
⎦ +

n∑
r=1

∂ T̃

∂ωr
W r

β − Q̃β

⎫⎬
⎭

∂Ω
(p−1)
β

∂ω
(p−1)
μ

= 0.

μ = b + 1, ..., n

(29)

We refer to (29) as the generalized programmed motion equations (GPME) in quasi-
coordinates. For p =1, (29) become (16). They may be presented in a form similar
to (19)

M(q)ω̇ + C(q, ω) + D(q) = Q̃,

G̃β

(
t, qσ , ωr , ω̇r , ..., ω

(p−1)
r

)
= 0

(30)

4 Design of a Control Strategy Based on the GPME
in Quasi-Coordinates

We have reported the derivation of the generalized programmed motion equations
(GPME) in quasi-coordinates. They enable deriving a constrained system dynamics

with ω
(p−1)
β = Ω

(p−1)
β

(
t, qσ , ωσ , ωσ , ..., ω

(p−1)
μ

)
. If the constraints specify a task
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Fig. 1 Architecture of the
model reference tracking
control strategy for
programmed motion
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to be done or motion to be followed, a question arises—how to execute this task and
how to track the desired motion?

A tracking control strategy dedicated to track predefined programmed motions
has been designed. It is referred to as the model reference tracking control strategy for
programmed motion. It is based on two dynamic models derived in quasi-coordinates:

1. The reference dynamic model. It governs motion equations of a system subjected
to NC, either material, programmed or both. This is the reference dynamics block
of the form (30).

2. The dynamic control model. It takes into account only material constraints and
conservation laws on the system. This is the control dynamics block (19).

Outputs of the reference dynamics are inputs to the control law and the control
dynamics.

Architecture of the tracking strategy, which is presented in Fig. 1, is designed
in such a way that it separates the non-material and material constraints. They are
merged into separate models. It gives rise to an idea of a derivation of both dynamic
models using other set of coordinates.

Definition 3 The unified dynamic model of a constrained system (30) is referred to
as a reference dynamic model for programmed motion.

The reference dynamics (30) serves programmed motion planning. It is defined as
follows.

Definition 4 Programmed motion planning for a system subjected to the constraints

G̃β

(
t, qσ , ωr , ω̇r , ..., ω

(p−1)
r

)
= 0 consists in finding time histories of positions

qp(t), quasi-velocities ωp(t) and their time derivatives in motion consistent with the
constraints.
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The control goal is as follows: Given a programmed motion specified by the con-
straints (23) and the system reference dynamics (30), design a feedback controller
to track the desired programmed motion.

The strategy for programmed motion tracking is not sensitive to the constraint
order and type, and the NS design. This is in contrast to many control designs, in
which each constraint type is treated separately and a controller is modified for each
of them.

5 Examples

5.1 Example 1—Motion Control of a Car with a Trailer

A car with a trailer model presented in Fig. 2 consists of three pair of wheels, which
are replaced by unicycles. According to the figure, the coordinate vector is q =
(x1, y1, θ1, Φ1, θ2, Φ2). The controller design for this vehicle model can be found
in literature; however, a controller is designed either at the kinematic level or using
classical approach with the Lagrange equations, e.g. [22, 23]. For the first time,
we take advantage of the GPME in quasi-coordinates to generate the constrained
dynamics and a tracking controller for this model [24].

The wheels do not slip and the three nonholonomic equations have the form

ẋ1 sin (θ1 + φ1) − ẏ1 cos (θ1 + φ1) − θ̇1L0 cos φ1 = 0,

ẋ1 sin θ1 − ẏ1 cos θ1 = 0,

ẋ1 sin (θ2 + φ2) − ẏ1 cos (θ2 + φ2) + θ̇2L1 cos φ2 = 0.

The quasi-velocities are introduced such that they naturally conform to the car
driving, i.e.

Fig. 2 A car with a trailer
model
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Fig. 3 Driving a prescribed trajectory by a car with a trailer (blue car and trailer joint motion, red
trailer wheel axis motion, green car front wheel axis motion)

ω1 = V = ẋ1 cos θ1 + ẏ1 sin θ1 = 0,

ω2 = φ̇1,

ω3 = φ̇2,

ω4 = ẋ1 sin (θ1 + φ1) − ẏ1 cos (θ1 + φ1) − θ̇1L0 cos φ1 = 0,

ω5 = ẋ1 sin θ1 − ẏ1 cos θ1 = 0,

ω6 = ẋ1 sin (θ2 + φ2) − ẏ1 cos (θ2 + φ2) + θ̇2L1 cos φ2 = 0

Matlab symbolic toolbox was used to derive the Boltzmann-Hamel equations and
its control dynamics form. Due to the complexity of the equations, their final form
is (after canceling ω4, ω5 and ω6)

M(q)ω̇ + C(q, ω) = τ

with M =
⎡
⎣ M1 0 0

0 Ik1 0
0 0 Ik2

⎤
⎦ , C =

⎡
⎢⎣

M2ω1ω3 + M3ω
2
1 + M4ω1ω2

0
0

⎤
⎥⎦

and ω = (ω1, ω2, ω3)

The control goal is to drive along a circle so the programmed constraint is a desired
trajectory for (x1, y1). It is presented in Fig. 3.
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Fig. 4 Two-link planar
manipulator model
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5.2 Example 2—Motion Control of an Underactuated
2-Link Planar Manipulator

A 2-link planar manipulator is a holonomic system. It is presented in Fig. 4. We make
it nonholonomic by an imposition of the NC on it and underactuated by removing the
second actuator. It moves in the horizontal plane (x, y). Two degrees of freedom are
described by Θ1,Θ2. Its geometry and inertia properties are: l1 = 1, l2 = 0.6, Iz1 =
0.12, Iz2 = 0.25, r1 = l1/2, r2 = l2/2 and m1 = 1, m2 = 2.

We formulate a programmed constraint that the manipulator end-effector is to move
along a trajectory for which its curvature changes according to a specified function

Φ∗ = dΦ(t)
dt . It has the form

...
x = −Φ(ẋ2 + ẏ2)2

[
Φ̇(ẋ2 + ẏ2) + 3Φ(ẋ

...
x + ẏ

...
y )

]
ẏ(ẋ ÿ − ...

x ẏ)
+ ...

y
ẋ

ẏ
.

Quasi-coordinates may be selected as ω1 = Θ̇1l1, ω2 = (Θ̇1 + Θ̇2)l2.
The programmed constraint specified in quasi-velocities has the form

ω̈2 − (1 − F2)
l2
l1

ω̈1 − F1l2 = 0,

where F1 and F2 are functions of the manipulator geometric and inertia properties,
Φ, ω1, ω2 and their first order time derivatives.
The reference dynamics (30) has the form

b1−b2−F2(b2−δ)
l1

ω̇1 + b2−F2δ
l2

ω̇2 + c = 0,

ω̈2 − (1−F2)l2
l1

ω̈1 − F1l2 = 0.
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Fig. 5 Tracking by the PD
controller
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ω1 = Θ̇1l1,

ω2 = (Θ̇1 + Θ̇2)l2.

The control dynamics (19) become

ω̇1 = u1,

ω̇2 = −βl2 cos Θ2
δl1

ω̇1 − −βl2 sin Θ2

δl2
1

ω2
1,

ω1 = Θ̇1l1,

ω2 = (Θ̇1 + Θ̇2)l2.

Tracking the programmed motion using the PD controller is presented in Fig. 5.
Modeling and the controller design for the manipulator model in quasi-coordinates

result in the compact forms of the reference and control dynamics. Simulations are
faster and numerical stabilization of the constraint equations is not needed.

6 Conclusions

In this chapter we develop the theoretic model-based control oriented modeling
framework. It yields equations of motion for a NS in quasi-coordinates. We demon-
strate that the framework may offer a fast way to obtain equations of motion for a
constrained system either for the dynamic analysis or control. The theoretic model-
based control oriented modeling framewor treats the two types of constraints in
the same way in modelling and a controller design. Simulation results confirm that
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model-based control oriented modeling in quasi-coordinates is efficient and it sup-
ports numerical stabilization of the NC equations. Future research is planned in the
area of design controllers using quasi-velocities description to fully exploit properties
of motion equations in quasi-coordinates and quasi-velocities.
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Quasi-periodically Actuated Capacitive
MEMS

Faouzi Lakrad and Mohamed Belhaq

Abstract This work reports on the effect of a quasi-periodic (QP) voltage on the
dynamics of a resonant capacitive micro-electro-mechanical system (MEMS) under
DC and AC actuations. We consider that the AC actuation is composed of resonant
AC and non resonant AC voltages. The microstructure device is modelled as a lumped
mass-spring-damper system. Averaging technique and the method of multiple scales
are performed to obtain the modulation equations of the slow dynamic near the
primary resonance. The influence of the amplitude and the frequency of a high
frequency voltage (HFV) on the occurrence of bistability and jumps in the frequency
response is examined and the safe basin of attraction is explored. The results of this
work indicate that when the mechanical parameters of the MEMS device are fixed
and cannot be tuned, a HFV can be used for controlling the dynamic of the resonant
capacitive MEMS.

1 Introduction

Analysis of nonlinear vibrations of MEMS such as resonators, sensors and switches
is an active research topic with applications in many engineering fields such as com-
munications, automotive and robotics, to name just a few. One of the most critical
issues in the design of MEMS is their reliability, life time, survivability and stabil-
ity under mechanical, thermal and electrical loads. From dynamical point of view
one of the key performances of MEMS is the repeatability and the reproducibility
in terms of uniquely determined dynamics. However, this property is affected by
nonlinearities, especially hysteresis and pull-in phenomena. Indeed, in capacitive
MEMS devices hysteresis and pull-in instability constitutes one of the main way to
the device failure [1].
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Various theoretical and experimental works investigated the dynamic of MEMS
actuated by DC and AC resonant voltages. For instance, Mestrom et al. [2] measured
the effects of AC voltage on the hysteresis interval. Sahai et al. [3] used a laser beam
focused on a MEMS structure to tune its nonlinear behavior from softening to hard-
ening. Nayfeh and co-workers [4, 5] studied the mechanisms leading to the dynamic
pull-in of MEMS resonators actuated by a resonant AC voltage. They showed that
AC resonant voltage lowers drastically the pull-in threshold caused by the jumps
phenomena. Alsaleem et al. [6] studied analytically and experimentally nonlinear
resonances and dynamic pull-in of a microbeam. Rhoads et al. [7] studied paramet-
rically excited MEMS oscillators, while Lakrad and Belhaq [8, 9] investigated the
effect of a HFV on the pull-in in a microstructure actuated by mechanical shocks
and electrostatic forces and the effect of a HF AC tension on the pull-in induced by a
DC. Kacem et al. [10] analyzed the nonlinear dynamics of micro- and nanoelectro-
mechanical resonant sensors around the primary resonance. For a comprehensive
review on nonlinear static and dynamics of MEMS, the reader can refer to [1].

All the previously cited works deal with periodically driven MEMS. In the present
paper, the effect of a QP voltage on a capacitive MEMS is investigated. The QP
actuation is composed of a resonant AC voltage and a nonresonant AC one.

The rest of the paper is organized as follows: In Sect. 2, we describe the model, we
perform an averaging technique [11] and then we use the method of multiple scales
[12] to approximate the QP solutions of the MEMS device. In Sect. 3, analytical
results are compared to numerical simulations, QP resonance curves are plotted and
the effects of the control parameters are discussed. The dynamic integrity and basin
erosion are also computed and commented. Section 4 concludes the work.

2 Equation of Motion and Perturbation Analysis

A single-degree-of-freedom model depicted in Fig. 1 is considered to represent a
MEMS device employing DC and AC voltages as actuators. The movable electrode
is modelled as a linear mass-spring-damper system. This linearity is valid when the
thickness of the movable electrode is greater than the initial gap with the stationary
electrode. We suppose that the only nonlinearity exhibited by the MEMS device is
caused by the electric actuation. Thus, the equation of motion can be written as

mẍ + cẋ + kx = εS

2(d − x)2 V 2(t) (1)

where x(t) is the displacement of the movable mass m, c and k are the damping and
stiffness of the system, respectively, ε is the dielectric constant of the gap medium,
d is the initial capacitor gap width, S is the area of the cross section, and V (t) is the
electric load.

The electric tension V (t) is taken as square root of a QP function as follows
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Fig. 1 A
single-degree-of-freedom
model used to model the
capacitive MEMS

 Stationary electrode

 x(t)  d 
 V(t) 

 m 

 c k

V (t) =
√

V 2
0 + U 2

1 cos (ω∗t) + U 2
2 cos (Ω∗t) (2)

where V0 is the DC voltage, U1 and ω∗ are the amplitude and the frequency of the
AC resonant actuation, respectively, while U2 and Ω∗ denote the amplitude and the
frequency of the nonresonant voltage, respectively. The specific form of the input
voltage (2) is chosen in order to decouple the effects of DC and AC voltages, to avoid
the occurrence of other harmonics and to principally prevent coupling with harmonic
resonances. Note that a square root of a harmonic voltage was used in [13, 14] to
decouple parametric and harmonic excitation.

By setting X = x
d , τ = ω0t , ω0 =

√
k
m , ξ = c

2mω0
, ω = ω∗

ω0
and Ω = Ω∗

ω0
,

where the displacement is normalized with respect to the gap and the frequencies are
normalized with respect to the natural frequency ω0 of the mass-spring system, the
nondimensional equation of motion reads

X ′′ + 2ξX ′ + X = α

(1 − X)2 + β cos (ωτ )

(1 − X)2 + γ cos (Ωτ )

(1 − X)2 (3)

Here the primes denote the derivatives with respect to the normalized time τ , and
the parameters

α = εSV 2
0

2mω2
0d3

(4)

β = εSU 2
1

2mω2
0d3

(5)

γ = εSU 2
2

2mω2
0d3

(6)

represent the contribution of the DC voltage, the resonant AC and the nonresonant
AC voltages, respectively. It should be pointed out that the parameters α,β and γ
have to be chosen such that the electric tension V (t) in (2) is real.
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Equation (3) is a quasi-periodically driven system both externally and paramet-
rically. In what follows Ω is taken larger than ω and the corresponding voltage is
referred to as HFV.

In the absence of the AC voltages, the application of a DC voltage α causes
an attractive electrostatic force between the two electrodes that causes a permanent
displacement of the mass towards the stationary electrode. The static equilibria Xs

are given by solving the following algebraic equation

Xs = α

(1 − Xs)2 (7)

Note that Xs = 1 corresponds to the static pull-in phenomenon which leads to
the contact between the two electrodes. This contact is desirable, for instance, for
capacitive switches and undesirable for sensors. In this latter, it can cause stiction,
plastic deformations of the movable electrode or even its failure.

A static analysis reveals that the pull-in occurs for αp = 4
27 ≈ 0.148 which

corresponds to a steady state displacement Xs = 1/3. Figure 2 shows the classical
variation of the static equilibria Xs with the DC voltage α. The stable (lower) branch
and the unstable (upper) branch of equilibrium points collide in a saddle-node bifur-
cation, resulting in the disappearance of both branches. In order to avoid the static
pull-in, the DC voltage α should be taken below 0.148 and the initial conditions
should be taken inside the homoclinic loop of the saddle equilibrium. It is worth
noting that the pull-in phenomenon could happen for values of α lower αp, statically
determined, due to the transient dynamics and to the modification of the basin of
attraction.

Fig. 2 Static equilibria Xs
versus the DC voltage α.
Solid lines stable, dashed
lines unstable
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2.1 Fast Flow Dynamic

The expression of the electric tension V (τ ) used in (3) contains a slow dynamic which
describes the main motion at time-scale of the microstructure natural vibration and
a fast dynamic at time scale of the HFV. In what follows the two-step perturbation
method is used to approximate QP solutions of (3).

To obtain the main equation governing the slow dynamic of the device, we imple-
ment the method of direct partition of motion [11] by introducing two different
time-scales: a fast time T−1 = η−1τ and a slow time T0 = τ . Then, the displacement
of the mass X (τ ), around a stable static equilibrium Xs , can be split up into a slow
part Z(T0) and a fast part φ(T−1, T0) as follows

X (τ ) = Xs + Z(T0) + φ(T−1, T0) ≡ Xs + η Z̃(T0) + η2φ̃(T−1, T0) (8)

Here the positive parameter η is introduced to measure the smallness of other para-
meters (0 < η � 1). The slow part Z(T0) takes into account the transient motion
composed of the natural damped motion of the microstructure and the response to the
resonant actuation. In order to give a physical meaning to the perturbation parameter
η, the high-frequency is chosen as Ω = η−1. The fast motion and its derivatives are
assumed to be 2π-periodic functions of the fast time T0 with zero mean value with
respect to it [11]. Thus, 〈X (τ )〉 = Z(T0) where 〈.〉 = 1

2π

∫ 2π
0 (.)dT−1 defines the fast

time-averaging operator. Introducing Dn
m = ∂n

∂T n
m

yields

d

dτ
= η−1 D−1 + D0 + ηD1 + η2 D2 + O(η3) (9)

d2

dτ2 = η−2 D2−1 + η−12D−1 D0 + D2
0 + O(η) (10)

Setting β = η3β̃ and ξ = η2ξ̃ where the parameters with tildes are of order O(1)

and substituting (9) and (10) into (3), we obtain up to O(η4) order the following
equation

(D2−1φ̃) + Xs + η[2(D−1 D0φ̃) + (D2
0 Z̃) + Z̃ ] + η2[(D2

0 φ̃) + 2(D−1 D1φ̃) + φ̃ + 2(D0 D1 Z̃)]
+ η3[2(D−1 D2φ̃) + 2(D0 D1φ̃) + 2(D0 D2 Z̃) + (D2

1 Z̃) + 2ξ̃(D−1φ̃) + 2ξ̃(D0 Z̃)]

= 1

(1 − Xs )2

{[
α + γ cos (T−1)

]
+ η

[
2Z̃

(1 − Xs )
(α + γ cos (T−1))

]
(11)

+ η2

[
(

3Z̃2

(1 − Xs )2 + 2φ̃

(1 − Xs )
)(α + γ cos (T−1))

]

+ η3

[
(

4Z̃3

(1 − Xs )3 + 6Z̃ φ̃

(1 − Xs )2 )(α + γ cos (T−1)) + β̃ cos (ωT0)

]}
+ O(η4)
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The dominant terms dependent on T−1 up to the order O(η) in (11) are

(D2−1φ̃) = γ

(1 − Xs)2 cos (T−1) (12)

Thus, up to this leading order, the fast motion is given by

φ̃(T−1, T0) = − γ

(1 − Xs)2 cos (T−1) + O(η) (13)

This fast motion φ increases by increasing the amplitude γ of the HFV and by
considering larger values of static equilibrium Xs which implies having a large DC
voltage α.

2.2 Slow Flow Dynamic

To approximate the equation of the slow dynamic, Eq (11) is averaged over a period
of the fast time scale T−1. One obtains the following equation up to the order O(η3)

(D2
0 Z̃) + ω2

1 Z̃ = η[α1 Z̃2 − γ1] + η2[α2 Z̃3 − γ2 Z̃ − 2ξ̃(D0 Z̃) + β̃1 cos (ωT0)] (14)

where

α1 = 3α

(1 − Xs)4 , α2 = 4α

(1 − Xs)5
, β̃1 = β̃

(1 − Xs)2 , γ1 = γ2

(1 − Xs)5
, γ2 = 3γ2

(1 − Xs)6

The parameters αi (i = 1, 2), β̃1 and γi (i = 1, 2) represent the effects of the DC
actuation, the AC resonant actuation and the HFV, respectively. The fast dynamic
influences the slow one, in (14), through a biasing term ηγ1 and a linear term η2γ2 Z̃ .

The normalized natural frequency of the mass actuated by the DC voltage is
given by

ω2
1 = 1 − 2α

(1 − Xs)3 (15)

In Fig. 3 the natural frequency ω1 given in (15) is plotted versus the DC voltage α.
In the same figure are plotted in circles the numerically obtained natural frequencies
of (3) in the absence of the AC voltages (β = γ = 0) and damping. In this case
the system is Hamiltonian and the physically acceptable solutions are centers that
are confined inside a homoclinic loop corresponding precisely to the static pull-in
phenomenon. It should be noted that the fundamental frequency of orbits near the
centers is computed numerically using a fast Fourier transformation analysis. It can
be seen from Fig. 3 that the natural frequency is decreasing with respect to α till
reaching zero which corresponds to the pull-in instability.
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Fig. 3 Natural frequency ω1
versus α. Continuous line
(given by (15)) and circles
(given by numerical
simulation of (3))
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In order to obtain approximations of periodic solutions of the slow dynamic, we
use the multiple scales method [12] up to the second order near the primary resonance
i.e., ω = ω1 + σ where the small detuning parameter σ = η2σ̃ is introduced to
measure the closeness of the excitation frequency ω to the natural frequency ω1. New
time scales are introduced Tn = ηnτ , where n is a positive integer. Then, equating
terms of like power of η in (14), we obtain the following hierarchy of problems:

• Order O(1)

D2
0 Z̃0 + ω2

1 Z̃0 = 0 (16)

The solution is written as

Z̃0(T0, T1, T2) = Ã(T1, T2) exp (iω1T0) + c.c (17)

where cc denotes the complex conjugate of the preceding terms. The complex ampli-
tude Ã(T1, T2) has to be determined by eliminating the secular terms at the next level
of approximations.

• Order O(η)

D2
0 Z̃1 + ω2

1 Z̃1 = α1 Z̃2
0 − γ1 − 2(D0 D1 Z̃0) (18)

The secular terms elimination condition is given by

D1 Ã = 0 (19)

and the particular solution up to order O(η) reads
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Z̃1 = α1

ω2
1

Ã ¯̃A − γ1

2ω2
1

− α1 Ã2

3ω2
1

exp (i2ω1T0) + c.c (20)

• Order O(η2)

D2
0 Z̃2 + ω2

1 Z̃2 = − 2(D0 D2 Z̃0) − (D2
1 Z̃0) + 2α1 Z̃0 Z̃1

+ α2 Z̃3
0 − γ2 Z̃0 − 2ξ(D0 Z̃0) + β̃1

2
e(iωT0) (21)

Elimination of secular terms leads to

i2ω1(D2 Ã) = −i2ξ̃ω1 Ã + Γ1 Ã + L2 Ã2 ¯̃A + β̃1

2
eiσT0 (22)

where Γ1 = − 2α1γ1

ω2
1

−γ2 and L2 = 10α2
1

3ω2
1

+ 3α2. The particular solution at this order

is given by

Z̃2 = − 1

8ω2
1

(
α2 − 2α2

1

3ω2
1

)
Ã3e(i3ω1T0) + cc (23)

Using the polar form Ã = (ã/2) exp (iθ), where ã and θ are the amplitude and the
phase, respectively, separating real and imaginary parts in (22) leads to the following
modulation equations of amplitude and phase

dã

dτ
= −ξã + η2 β̃1

2ω1
sin (ψ) (24)

ã
dψ

dτ
= σã + η2

[
Γ1

ã

2ω1
+ L2

ã3

8ω1
+ β̃1

2ω1
cos (ψ)

]
(25)

with ψ = σ̃T2 −θ. One should point out that stationary solutions of (24) and (25) i.e.,
ȧ = ψ̇ = 0 correspond to periodic solutions of the slow flow (14) and consequently
to the QP vibrations of the original system (3). In fact, with Z = η Z̃ and a = ηã, the
amplitude a of these periodic solutions is obtained by solving the following algebraic
equation

ξ2a2 +
[
σa + η2Γ1

a

2ω1
+ L2

a3

8ω1

]2

=
(

β1

2ω1

)2

(26)

It can be seen that HFV influences the amplitude a through the parameter Γ1. The
approximated QP solution of (3), up to the leading order, is then given by
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X (τ ) = Xs − γ

Ω2(1 − Xs)2 cos(Ωτ ) + a cos (ωτ + ψ)

+ α1

2ω2
1

a2

Ω2 − γ1

Ω2ω2
1

− α1

6ω2
1

a2 cos (2ωτ − 2ψ)

− 1

32ω2
1

(α2 − 2α2
1

3ω2
1

)a3 cos (3ωτ − 3ψ) + O(η4) (27)

3 Main Results

In this section, we analyze the effect of different actuations on the dynamic of
the micro-system. To validate the analytical prediction, we compare the analyti-
cal approximation given by (27) with the results obtained by numerical simulations
of (3) using a Fehlberg fourth-fifth order Runge-Kutta method.

Next, attention will be paid on the regions where the behavior of the micro-system
is QP precluding the chaotic regions. Indeed, (3) represents a four-dimensional
dynamical system in the space R2 × T 2 and can be written in the form

X ′ = Y

Y ′ = −2ξY − X + α + β cos (Φ) + γ cos (Θ)

(1 − X)2

Φ ′ = ω (28)

Θ ′ = Ω

A visual representation of the attractors in the four-dimensional flow (28) can be
achieved using Poincaré map by strobing on the fast-evolving phase Θ . The corre-
sponding mapping (Xn, X ′

n, Φn) → (Xn+1, X ′
n+1, Φn+1) is three dimensional.

In all numerical computations the damping coefficient ξ = 0.0002. In Fig. 4 we
show the time histories of (3) obtained analytically (27) and numerically for various
parameters of control. One can observe from these figures a good match between the
analytical and the numerical results.

In Fig. 5 are depicted the power spectra and the Poincaré map of the attractors
(shown in Fig. 4a, b) projected on the plane (Xn, Φn), with Φn is computed modulo
2π
ω . These plots show that the attractors are QP.

3.1 Case with Resonant Actuation Only

In the absence of the nonresonant voltage (γ = 0), the system is subject to a DC and
an AC resonant voltages. Figure 6 shows, for different values of the static voltage α,
the amplitude-frequency response of the mass, as given by (26). The numerical values
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Fig. 4 Time histories for α = 0.12, ξ = 0.0002,σ = 0 and γ = 0.119. Gray line (analytical
solution (27)) and black line (numerical solution of (3)). a β = 2.10−6 and Ω = 7.1, b β = 10−5

and Ω = 4.1, c β = 5.10−5 and Ω = 4.1
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Fig. 6 Resonance curves for
various values of α, for
γ = 0, ξ = 0.0002 and
β = 0.00001. Lines
Analytical solutions (24) and
(25): continuous for stable
and dashed for unstable. The
stars, triangles and circles
for numerical solutions of (3)
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Fig. 7 Resonance curves for
various values of β, for
γ = 0, ξ = 0.0002 and
α = 0.12. Continuous lines
for stable, dashed lines to
unstable analytic solutions.
The stars are numerically
computed amplitude
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of the amplitude a of the periodic solutions are obtained by solving the algebraic
equation (26). It can be seen from this figure that increasing the static voltage α
increases the softening behavior of the system.

In Fig. 7, we show for fixed DC voltage α = 0.12, the frequency response for
different values of resonant AC voltage β. One observes that increasing β leads to
the softening behavior, hysteresis as well as dynamic pull-in instability [5] for larger
values of β.

The bifurcation curves delimiting the existence regions of solutions are shown
in Fig. 8 in the plane of the resonant voltage parameters. It is clear that the region
of multiplicity of solutions (zone I) increases with increasing β. This results is in
agreement with the softening effect of increasing β shown in Fig. 7.
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Fig. 8 Number of solutions
in the plane (σ,β) for γ = 0,
α = 0.12 and ξ = 0.0002:
zone I three solutions and
zone II one solution
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Fig. 9 Number of solutions
in the plane (Ω, γ) for
α = 0.12, σ = −0.002, zone
I three solutions, zone II one
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3.2 Effects of the Nonresonant Voltage

In this subsection we investigate the effect of adding the nonresonant AC voltage on
the frequency response of the moving mass. In particular, we shall investigate how
this voltage can affect the domain of bistability. First, assume that the parameters
of the system are chosen in zone I of Fig. 8 (σ = −0.002,β = 0.00001) where
bistability exists. In Fig. 9 we show in the parameter plane (γ,Ω) of the HFV the
region where the bistability can be eliminated (the gray region). Figure 9 indicates
that the elimination zone of bistability is optimal for moderate values of the frequency
Ω and high values of the amplitude γ of the HFV.

Figure 10 shows, for fixed Ω = 7.1 and α = 0.12, the influence of the amplitude
γ on the resonance frequency of the slow dynamic obtained analytically in (26).
This figure shows that increasing the amplitude γ causes the nonlinear resonance
frequency to shift towards higher frequencies. Figure 10 also indicates that by tuning
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Fig. 10 Analytical resonance curves given by (26) versus the shift of the resonance σ for various
values of γ. α = 0.12 and Ω = 7.1

the amplitude of the HFV, the amplitude of the resonant mass response might be
increased or decreased to a desirable value of operation.

In Fig. 11 are shown the numerically computed resonance curves of the original
equation (3) for various values of γ. This figure shows the maximum values of
the stationary solution of the QP attractors, after disregarding 6600 resonant period,
during 600 times of the resonant period. This figure confirms the analytically obtained
results of Fig. 10. The effect of the amplitude γ and frequency Ω of the nonresonant
voltage on the resonance shift is presented in Fig. 12. This figure shows that the
amplitude γ and the frequency Ω cause opposite effects on the shift of resonance.
Indeed, increasing γ increases the shift, while increasing Ω decreases it towards the
case γ = 0.

3.3 Dynamic Integrity and Basin Erosion

It is agreed that the safety of a nonlinear system depends not only on the stability
of its solutions but also on the uncorrupted basin surrounding each solution [15].
Indeed, by performing numerical simulations of trajectories from different starting
points we are able to detect any significant change in the safe basin of attraction. In
this section we analyze and approximate numerically the safe basin of attraction.

The chosen phase space window is X (τ ) ∈ [0, 0.5] and X ′(τ ) ∈ [−0.2, 0.15]
which contains the compact part of the safe basins of attractions. Figures 13 show the
basins evolution for increasing value of the AC voltage β in the absence of HFV. The
safe basins correspond to the black regions and the corrupted areas correspond to
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Fig. 13 Basins of attraction for various values of β and for α = 0.13,σ = −0.001 and γ = 0. a
β = 0. b β = 0.003. c β = 0.007. d β = 0.01.

the white regions. These latter regions correspond precisely to the occurrence of the
dynamic pull-in phenomenon. The erosion of the safe basins for increasing resonant
voltage amplitude β is depicted in Fig. 13.

Figure 14 shows that the safe basin of attraction can be increased by adding a
HFV with γ = 0.12 and Ω = 5.1. The effect of adding the nonresonant voltage on
the basins of attractions is given in Fig. 15. It shows the global integrity measure,
representing the normalized area of the safe basin [15], versus the amplitude of
the resonant voltage amplitude β for various γ. One observes that increasing the
amplitude γ may increase the safe basin of attraction for β < 0.005 while the
amplitude of the HFV has no effect on the global integrity measure beyond β =
0.005. Indeed, increasing the safe basin offers the movable electrode of the capacitive
MEMS to gain stability and to operate in larger intervals.
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Fig. 14 Basins of attraction
for α = 0.13,β =
0.00001, ξ = 0.0002,σ =
−0.001 and Ω = 5.1. The
gray zone corresponds to
γ = 0 and the black zone to
γ = 0.12
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4 Conclusion

The dynamics of a quasi-periodically actuated capacitive MEMS is studied analyti-
cally and numerically. The MEMS is modelled by a lumped single degree of freedom
system actuated by DC and AC electrical voltages. The AC actuation is QP and is
composed of a resonant AC voltage and a non resonant fast AC voltage. The QP attrac-
tors are approximated by using the two-step perturbation technique. The method of
direct partition of motion was performed to approximate the slow dynamic of the
device and the multiple scales method was used to obtain the amplitude-frequency
response of the slow dynamic near the primary resonance.

The results shown that adding a HFV to the resonant AC actuation shifts the
frequency response toward higher frequencies, thereby retarding the occurrence of
bistability and jumps in the response amplitude. It was also shown that for appropriate
values of the amplitude and the frequency of the HFV, jumps phenomena can be
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eliminated. Moreover, by tuning the amplitude of the HFV, the amplitude of the
resonant mass might be increased or decreased to a desirable value of operation which
can be of interest for sensing specific mechanical parameters. It was also shown that
for appropriate amplitude and frequency of the HFV the safe basin of attraction is
increased and consequently the dynamic integrity of the device is improved.

The present work reveals that in certain operations where the original mechanical
characteristics of the MEMS device are assigned and cannot be tuned, HFV can
be considered as a practical alternative for controlling the dynamic of the resonant
capacitive MEMS.
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Localization of Vibratory Energy of Main
Linear/Nonlinear Structural Systems
by Nonlinear Energy Sink

C.-H. Lamarque and A. Ture Savadkoohi

Abstract Two systems are considered: the system I is composed of a main linear
structure which is coupled to a nonsmooth nonlinear energy sink. Here, effects of
the gravity forces are not neglected. The system II consists of a main structure with
a set of parallel Saint-Venant elements that is attached to a nonlinear energy sink
with general odd nonlinear potential function. Time multi-scale energy exchanges
between two oscillators is detected; in detail: the invariant manifold of the system at
fast time scale is traced while detected equilibrium and singular points at slow time
scale give us envision about system behavior(s) at pseudo-steady-state regime(s).
All of detected behaviors provide us design tools for tuning necessary parameters
of nonlinear energy sink for the localization of vibratory energy of main structural
systems.

1 Introduction

It has been proved that pumping the essential part of vibratory energy of main struc-
tures is possible by endowing nonlinear properties of coupled oscillators [1, 2]. Later
on this phenomenon was used for transferring the energy of main systems to sec-
ondary oscillatorswith very smallmass compared to themain one’s andwith essential
cubic geometrical nonlinearity. The phenomenon is named as “energy pumping” and
the light and nonlinear oscillator is called as nonlinear energy sink (NES) [3–35].
Efficiency of the NES in localization of vibratory energy and passive control of sys-
tems has been proved experimentally as well [36–43]. However in most of above
mentioned studies, the nonlinearity of the NES is cubic and the main structural sys-
tem is supposed to be linear or to present smooth nonlinearity [16, 26, 27]. Some
research works have been carried out to consider other types of nonlinearities for
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the geometrical potential of the NES and their efficiency in passive control of main
systems, e.g. vibro-impact and non-polynomial nonlinearities, non-smooth poten-
tial function with constant or time-dependent mass [44–50]. There have been some
research works that consider nonlinear main structural system to be controlled by
cubic or non-smooth NES; in detail: a main oscillator with piece-wise linear and also
Dahl-type behavior and a coupled nonsmooth NES [51, 52]; the main system with
hysteresis behavior of Bouc-Wen type and a NES with general nonlinear potential
function [53]; the main structure with single or several Saint-Venant elements [54]
in parallel and a NES with cubic or general potential function [55, 56]. The current
paper is a summary of our two previous research works which deals with the local-
ization of vibratory energy of: (i) vertical main structural systems by a nonsmooth
NES [48] and (ii) main structural systemswith a set of parallel Saint-Venant elements
by a NES with general potential function [56]. Organization of the chapter is as it
follows: summary of the general methodology to deal with multiple scale dynamics
of amain oscillator and a coupled NES is given in Sect. 2. Energy exchanges between
a vertical linear system and a coupled nonsmooth NES is presented in Sects. 3 and
4 deals with studying of the dynamics of a main structural system including a set of
parallel Saint-Venant elements and a coupled NES with a general nonlinear potential
function. Finally conclusions are collected in Sect. 5.

2 General Methodology to Deal with Two Coupled
Oscillators: A Main System + NES

In order to study multiple energy exchanges between a main oscillator and a coupled
NES, we implement following steps [53]:

• re-scaling the system.
• transferring the system to the center of mass and relative displacement.
• applying complex variables to the system and usingGalerkin technique by keeping
first harmonics (and constant terms).

• embedding the time to different scales (fast and slow time scales) and detecting
invariant manifold at the fast time scale and equilibrium points and fold singular-
ities of the reduced order form of the system at the slow time scale.

3 Localization of Vibratory Energy of Vertical Main Linear
Structural Systems by Coupled Non-smooth NES

Here we would like to analyze time multi-scale energy exchanges between a linear
system and a nonsmooth NES. Gravity loads are not neglected. Let us consider the
academic model of a system which is subjected to vertical excitations as is depicted
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Fig. 1 The academic model
of the system under gravity
(g) loads and external force
Γ sin(Ωt). m = εM ,
0 < ε � 1; masses oscillate
vertically

k1

M Γ sin(Ωt)

y1

y2

m

k2

k2

η

δ

δ

g

in Fig. 1. The system is composed of a linear main structure (M) which is coupled to
a non-smooth NES (m) system. Governing system equations can be summarized as:

⎧⎨
⎩

M ÿ1 + k1y1 + F(y1 − y2) + η(ẏ1 − ẏ2) + Mg = Γ sin(Ωt)

mÿ2 + F(y2 − y1) + η(ẏ2 − ẏ1) + mg = 0
(1)

where η is the continues linear damping of theNES and F is the non-smooth potential
function of the NES which is defined as follows:

F(z) = −∂V (z)

∂z
= −F(−z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if −δ ≤ z ≤ δ

k2(z − δ) if z ≥ δ

k2(z + δ) if z ≤ −δ

(2)

If we suppose that T = t

√
k1
M

= tϑ , then the system (1) in the T domain reads:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ÿ1 + y1 + 1

k1
F(y1 − y2) + η√

k1M
(ẏ1 − ẏ2) + Mg

k1
=

Γ sin(
Ω

ϑ
T )

k1

ε ÿ2 + 1

k1
F(y2 − y1) + η√

k1M
(ẏ2 − ẏ1) + mg

k1
= 0

(3)
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We introduce the following variables: ε = m

M
, γ = Mg

k1
, ελ = η√

k1M
,
1

k1
F(z) =

ε F̃(z), k = 1

ε

k2
k1

, ω = Ω

ϑ
and

Γ

k1
= ε f0. So, scaled potential of the NES reads:

F̃(z) =
⎧⎨
⎩
0 i f −δ ≤ z ≤ δ

k(z − δ) i f z ≥ δ

k(z + δ) i f z ≤ −δ

(4)

Following system can be derived:

⎧⎨
⎩

ÿ1 + y1 + ε F̃(y1 − y2) + ελ(ẏ1 − ẏ2) + γ = ε f0 sin(ωT )

ε ÿ2 + ε F̃(y2 − y1) + ελ(ẏ2 − ẏ1) + εγ = 0
(5)

We are interested to study forced vibration but also the transient behavior occurring
before reaching the steady-state regime. The frequency of the main system in (5)
is equal to “1” and we would like to analyze system behavior in the vicinity of 1:1
resonance. We will suppose that ω = 1 + σε and since ε is a small, it means that
we will pinpoint system behavior around 1:1 resonance. Let us transfer the system
to the following coordinates: ⎧⎨

⎩
v = y1 + εy2

w = y1 − y2
(6)

In the second equation of the system (5), the parameter ε has been kept intentionally
in order to show coupling terms between two equations of the system (5) and physical
orders of respective equations. Especially v is associated to the center of two masses
(1, ε). If we divide the second equation of the system (5) by ε, then we will have a
system of twomasses at the same order (1, 1), leading to v = y1+y2 andw = y1−y2
which do not have appropriate physical meanings for the system under consideration.
The consequence should be to keep nonlinear terms in both resulting equations for
v and w.
By adding and subtraction two equations of the system (5) we will have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v̈ + 1

1 + ε
(v + εw) + γ (1 + ε) = ε f0 sin(ωT )

ẅ + 1

1 + ε
(v + εw) + (1 + ε)F̃(w) + (1 + ε)λẇ = ε f0 sin(ωT )

(7)

We introduce a modified form of Manevitch’s complex variables [57] to the
system (7):
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⎧⎨
⎩

B1 + ϕ1eiωT = v̇ + iωv

B2 + ϕ2eiωT = ẇ + iωw
(8)

with B1 = ib1, B2 = ib2 and i2 = −1. B1 and B2 are constant terms taking into
account the fact that the dynamical system (5) (including γ ) is not written around
the (y1, y2, ẏ1, ẏ2) = (0, 0, 0, 0). So, we have to include constant terms to take into
account nonlinear terms in averaging. It corresponds to taking into account constant
terms of Fourier series togetherwith first harmonic terms.We can present the function
F̃(w) in the form of Fourier series:

F̃(w) = F̃
(b2

ω
− i

2ω
(ϕ2eiωT − ϕ∗

2e−iωT )
)

=
+∞∑

j=−∞
f j (b2, ϕ2, ϕ

∗
2 )e

iω jT (9)

where the ∗ represents the complex conjugate of the function under consideration.
We implement the Galerkin method using a truncated Fourier series (constant and
first harmonic) and then we endow multiple time scales approach to investigate the
evolution of the Fourier-coefficients. The constant and first harmonic of the (7) by
considering variables of (8) and j = 0, 1 in (9) read as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

1 + ε

(
b1
ω

+ ε
b2
ω

)
+ (1 + ε)γ = 0

1

1 + ε

(
b1
ω

+ ε
b2
ω

)
+ (1 + ε) fz(b2, ϕ2, ϕ

∗
2 ) = 0

(10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ̇1 = − i

2
ε f0 + i

2ω(1 + ε)
(ϕ1 + εϕ2) − i

2
ωϕ1

ϕ̇2 = − i

2
ε f0 + i

2ω(1 + ε)
(ϕ1 + εϕ2) − λ(1 + ε)

2
ϕ2 − i

2
ωϕ2 − (1 + ε) f f (b2, ϕ2, ϕ

∗
2 )

(11)
where fz(b2, ϕ2, ϕ

∗
2 ) and f f (b2, ϕ2, ϕ

∗
2 ) are zero and first Fourier coefficients which

can be evaluated as:

fz(b2, ϕ2, ϕ
∗
2 ) = ω

2π

∫ 2π
ω

0
F̃

(b2
ω

− i

2ω
(ϕ2eiωT − ϕ∗

2e−iωT )
)

dT (12)

f f (b2, ϕ2, ϕ
∗
2 ) = ω

2π

∫ 2π
ω

0
F̃

(b2
ω

− i

2ω
(ϕ2eiωT − ϕ∗

2e−iωT )
)

e−iωT dT (13)

It can be proved that [48]:

f f (b2, ϕ2, ϕ
∗
2 ) = − iϕ2

2
G f

(|ϕ2|2
)

(14)
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where for any variable χ ≥ 0

G f
(
χ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f
b2
ω

+
√

χ

ω
< δ

k

2πω

(
π + 2b2

χ

√
χ − (b2 − δω)2 − 2δω

χ

√
χ − (b2 − δω)2−

2b2
χ

√
χ − (b2 + δω)2 − 2δω

χ

√
χ − (b2 + δω)2+

2 arccos
(b2 + δω√

χ

) + 2 arcsin
(b2 − δω√

χ

))
i f

b2
ω

+
√

χ

ω
≥ δ

(15)
and

fz
(
χ

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f
b2
ω

+
√

χ

ω
< δ

k

πω

(
b2π +

√
(b2 + √

χ − δω)(−b + √
χ + δω)−

√
(−b2 + √

χ − δω)(b2 + √
χ + δω)+

(b2 − δω) arcsin
(b2 − δω√

χ

) + (b2 + δω) arcsin
(b2 + δω√

χ

))

i f
b2
ω

+
√

χ

ω
≥ δ

(16)

To deal with the systems (10) and (11), an asymptotic approach [58] by introducing
slow times τ1, τ2, …with the fast time τ0 can be implemented as follows:

T = τ0, τ1 = ετ0, . . . , (17)

so,
d

dT
= ∂

∂τ0
+ ε

∂

∂τ1
+ · · · (18)

In the next sections we will try to have finer envision into systems (10) and (11) at
different orders of ε in order to grasp the system behavior during different scales of
time.
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3.1 Truncated Fourier Series: Constant Term

The general form of the system (10) show that γ = fz(N 2
2 ). During the ε0 order, it

leads to:
b1 = −γ (19)

while during the ε1 order we have:

b2 = −γ (2 + σ) (20)

3.2 Truncated Fourier Series: First Harmonic

3.2.1 ε0 Order

We assume that the system is around 1:1 resonance (ω = 1 + σε). Equation (11) at
the ε0 order yield to:

∂ϕ1

∂τ0
= 0 ⇒ ϕ1 = ϕ1(τ1) (21)

∂ϕ2

∂τ0
+

i
(
1 − G f

(|ϕ2|2
)) + λ

2
ϕ2 = i

2
ϕ1

(22)

so, fixed points of the system (Φ(τ1)) can be evaluated by following equation:

i
(
1 − G f

(|Φ|2)) + λ

2
Φ = i

2
ϕ1

(23)

Let us assume that ϕ1 = N1eiδ1 and Φ = N2eiδ2 , so (23) can be re-written as the
following form:

N2 − iλN2 − G f (N 2
2 )N2 = N1ei(δ1−δ2) (24)

which leads us to follow invariant manifold of the system during τ0 time scale (τ0-
invariant):

N1 = N2

√
λ2 + (

1 − G f (N 2
2 )

)2 (25)

A typical invariant manifold for given system parameters is illustrated in Fig. 2. It
has been proved that stability borders of the τ0-invariant is defined as it follows [48]:

λ2 + (
1 − G f (N 2

2 )
)(
1 − H(N 2

2 )N2 − G f (N 2
2 )

)
> 0 (26)
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Fig. 2 τ0-invariant manifold
of the system and its stable
and unstable zones
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Stable and unstable zones of the invariant manifold are depicted in Fig. 2. In fact
when the system arrives to the vicinity of the unstable zone, it tries to reach another
stable zone via a bifurcation. This will lead to the energy pumping phenomenon.

3.2.2 ε1 Order

At the order of ε1 the first equation of the system (11) reads as:

∂ϕ1

∂τ1
= − i

2
f0 + i

2
(Φ − ϕ1 − σϕ1) − i

2
σϕ1 (27)

Let us try to enlighten the behavior of the system at the τ1 time scale “around” the
invariant manifold at the time scale τ0. By considering (23), following system can
be derived:

∂

∂τ1

(
Φ − iλΦ − ΦG f (|Φ|2))

= i

2

(
− f0 − 2σ

(
Φ − iλΦ − G f

(|Φ|2)Φ)
+ iλΦ + G f

(|Φ|2)Φ
) (28)

and if we suppose that Φ = N2(τ1)eiδ2(τ1), following compact for of equations can
be obtained:

∂ N2

∂τ1
= f1(N2, δ2)

g(N2)
(29)

∂δ2

∂τ1
= f2(N2, δ2)

g(N2)
(30)
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where,

f1(N2, δ2) = f0 sin(δ2)
(

G f
(
N 2
2

) − 1
)

− λN2 + λ f0 cos(δ2) (31)

f2(N2, δ2) = −1 − G f
(
N 2
2

) − 2N 2
2 G ′

f

(
N 2
2

)
N2

f0 cos(δ2) − λ

N2
f0 sin(δ2)

− λ2(1 + 2σ) +
(
1 − G f

(
N 2
2

) − 2N 2
2 G ′

f

(
N 2
2

))(
− 2σ + 2σ G f

(
N 2
2

) + G f
(
N 2
2

))
(32)

g(N2) = 2
(
1 + λ2 − 2G f

(
N2
2

) − 2N2
2 G′

f

(
N2
2

) + G2
f

(
N2
2

) + 2N2
2 G f

(
N2
2

)
G′

f

(
N2
2

))
(33)

The relation g(N2) = 0 provides two values for N2, namely N21 and N22. They are
called as fold lines of the system. We will use these equations later on for detailed
bifurcation analysis of the system.

For detecting the invariant manifold of the system at the τ1 time scale

(τ1-invariant), (28) can be re-written as (
∂ϕ1

∂τ1
= 0):

i

2

(
− f0 − 2σ

(
Φ − iλΦ − G f

(|Φ|2)Φ)
+ iλΦ + G f

(|Φ|2)Φ
)

= 0 (34)

or

f0 = N2

√
λ2(1 + 2σ)2 +

(
(1 + 2σ)G f

(
N 2
2

) − 2σ
)2

(35)

A typical invariant manifold of the system at the time scale τ1 is depicted in Fig. 3.
Intersections of this invariant manifold (for a given f0) with the τ0-invariant are
positions of fixed points.

Fig. 3 τ1-invariant manifold
of the system
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3.3 Analytical Results Versus Numerical Integrations

Since the overall system is under gravity loading, the initial equilibrium state of each
mass (y10 and y20) should be evaluated. Let us consider different hypothesis as the
equilibrium state for the system (1):

• −δ < y2 − y1 < +δ so F(y2 − y1) = 0
This assumption leads us to following system:

⎧⎨
⎩

k1y1 + Mg = 0

mg = 0
(36)

which is an impossible equality. So, this assumption is not valid at the equilibrium
state of the overall system.

• y2 − y1 < −δ so F(y2 − y1) = k2(y2 − y1) + k2δ
This leads to following system:

⎧⎨
⎩

k1y1 − k2(y2 − y1) − k2δ + Mg = 0

k2(y2 − y1) + k2δ + mg = 0
(37)

so, ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y10 = − Mg

k1
(1 + ε) = −γ (1 + ε)

y20 = − Mg

k1
(1 + ε) − δ − mg

k2
= −γ (1 + ε) − δ − ε

Mg

k2

(38)

This equilibrium point should be considered in all numerical results. We can impose
equilibrium states to the numerical results as follows:

⎧⎨
⎩

vnumerical = (y1 − y10) + ε(y2 − y20)

wnumerical = (y1 − y10) − (y2 − y20)
(39)

So, N1 and N2 can be defined in terms of original system of equations (N exact
1 and

N exact
2 ) as:

N exact
1 = √

(vnumerical)2 + (ẏ1 + ε ẏ2)2. (40)

N exact
2 = √

(wnumerical)2 + (ẏ1 − ẏ2)2. (41)
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Let us consider the following initial conditions for the system:

⎧⎨
⎩

y1(0) = 1.5 + y10 , ẏ1(0) = 0

y2(0) = y20 , ẏ2(0) = 0
(42)

Figure4 presents τ0-invariant of the system and corresponding numerical results
which are obtained by direct integration of (5) with the external forcing amplitude
f0 = 0.1. When the system arrives to the unstable zone, it tries to reach other stable
zone by an abrupt jump between its stable branches through a bifurcation. This
bifurcation leads the master structure to experience very low amplitude compared to
initial stages of the vibration (see Fig. 5).

3.4 Strongly Modulated Response in the Presence of Gravity

The strongly modulated response (SMR) of the system in the vicinity of the 1:1
resonance is characterized by relaxation oscillations between stable branches of the
slow invariant manifold, i.e. switches between slow motions at stable critical mani-
folds of the system and fast jumps between them. Starosvetsky and Gendelman [21]
pinpointed this behavior in two coupled oscillators with essential cubic nonlinearity
for the NES while Lamarque et al. [46] investigated the same behavior in systems
with non-smooth NES. Let us consider (29) and (30). The possible relaxation of the
system can occur if the flow in the vicinity of the lower fold line, i.e. N21, experiences
some bifurcation, i.e. for some points at the lower fold, N ′

2 changes its direction, so
phase trajectories of the lower stable branch can change their direction and aim at

Fig. 4 τ0-invariant manifold
of the system in the presence
of the gravity and
corresponding numerical
result with f0 = 0.1.
Numerical results are
obtained by direct
integration of (5)
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Fig. 5 Variation of system
amplitudes with respect to
the time ( f0 = 0.1): a N2; b
N1. Results are obtained by
direct integration of (5)
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the fold line N21 for a jump to upper stable branch. This criterion will be satisfied if
in (29) and (30):

f1(N2, δ2) = 0

f2(N2, δ2) = 0
(43)

which corresponds to ordinary fixed points of the system under consideration. If in
addition to this, g(N2) = 0 (the denominator of (29)) then the system will have
fold singularities, i.e. singularity and equilibrium points coincide, so N2 = N21 and
N2 = N22. It is worthwhile to mention that g(N2) = 0 is exactly equivalent to
stability borders which are presented by (26) [48], i.e.
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λ2 + (
1 − G f (N 2

2 )
)(
1 − H(N 2

2 )N2 − G f (N 2
2 )

) = 0 (44)

Lamarque et al. [46] proved that necessary forcing condition for existence of the first
pair of folded singularities, i.e. (N21, δ21), is:

f0 ≥ f0(1cri tical) = λN21√
λ2 +

(
1 − G f

(
N 2
21

))2 (45)

and the second pair of folded singularities on the second fold, i.e. (N22, δ21) and
(N22, δ22), exists if:

f0 ≥ f0(2cri tical) = λN22√
λ2 +

(
1 − G f

(
N 2
22

))2 (46)

Let us analyze the system under external forcing term f0 = 0.3 > f0(1cri tical) =
0.254. The global behavior of the system is depicted in Fig. 6while histories of system
amplitudes are illustrated in Fig. 7. The response of the system is strongly modulated
by trapping into hysteresis loops and bifurcations between its stables branches. In
order to clarify this, phase portraits of the system is depicted in Fig. 8awhile a zoomed
area of this figure is illustrated in Fig. 8b. It is seen that some flow lines change their
direction toward the fold line N21 which gives a hint of the relaxation of the system
by facing to folded singularities in the form of saddle and node (see Fig. 8b).

Fig. 6 τ0-invariant manifold
of the system in the presence
of the gravity and
corresponding numerical
result with f0 = 0.3.
Numerical results are
obtained by direct
integration of (5)
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Fig. 7 SMR and Beating
response of two oscillators
with external forcing term
f0 = 0.3 > f0(1cri tical) =
0.254: a) N2; b) N1. Results
are obtained by direct
integration of (5)
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4 Localization of Vibratory Energy of a Main System
with a Set of Saint-Venant Elements by a NES
with General Nonlinearity

4.1 Representation of the System

We consider the systemwhich is depicted in Fig. 9: It consists of two coupled oscilla-
tors. The first one with mass, stiffness and damping as M , k0 and λ̃, which possesses
a set of parallel Saint-Venant elements with characteristics as k̃ j (stiffness) and α j

(threshold of the Saint-Venant element), j = 1, 2, . . . , n. Each Saint-Venant element
has an internal variable (displacement u j ). The second oscillator, namely NES has
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Fig. 8 Phase portrait for the
system with f0 = 0.3 >

f0(1cri tical) = 0.254, a the
overall view; b the zoomed
area around folded
singularities
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the mass, stiffness and damping as m (0 < ε = m

M
� 1), c̃1 and λ̃1. The potential

of the NES (F) is supposed to be a general “nonlinear” and “odd” function, i.e.
F(−z) = −F(z) (e.g. F(z) = z3) [56]. If x (versus y) be the displacement of the
mass M (respectivelymassm), governing equations of the system can be summarized
as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
d2x

dt2
+ λ̃

dx

dt
+ λ̃1(

dx

dt
− dy

dt
) + k0x +

n∑
j=1

k̃ j u j + c̃1F(x − y) = f1(t)

m
d2y

dt2
+ λ̃1(

dy

dt
− dx

dt
) + c̃1F(y − x) = 0

(du j

dt
+ β(

u j

η j
)
)


 dx

dt
, η j = α j

k̃ j
, j = 1, 2, . . . , n

(47)
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k̃n

α1
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αn

M

f1(t)

x

c̃1

λ̃1 m

y

Fig. 9 Two coupled oscillators: the first one with a set of parallel Saint-Venant elements and under
external force f1(t); the second one with general and odd nonlinear potential function (m = εM ,
0 < ε � 1)

Fig. 10 The β graph in
Saint-Venant element

x

β(x)

−1 +1

The β graph which is depicted in Fig. 10 can be described as it follows:

β(x) =

⎧⎪⎪⎨
⎪⎪⎩

∅ if x ∈ ] − ∞,−1[∪]1,+∞[
0 if x ∈ ] − 1, 1[
R− if x = −1
R+ if x = 1

(48)
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Let us introduce τ = t

√
k0
M

= ϑ t ,
λ̃ϑ

Mϑ2 = ελ0,
k̃ j

Mϑ2 = εk j ,
c̃1

Mϑ2 = εc10,

λ̃1ϑ

Mϑ2 = ελ10,
f1(

τ
ϑ
)

Mϑ2 = ε f10 sin(Ωτ).

We mention that the differential inclusions of the model under consideration come
from basic constitutive equations of the Saint-Venant elements as:

k j u j ∈ α jσ(
dx

dt
− du j

dt
), j = 1, 2, . . . , n (49)

where σ is the graph of the sign:

σ(z) =
⎧⎨
⎩

−1 if z < 0
[ − 1, 1] if z = 0
1 if z > 0

(50)

So, one should take into account that
d.

dt
= ϑ

d.

dτ
and

k̃ j u j ∈ α jσ
(
ϑ(

dx

dτ
− du j

dτ
)
)

j = 1, 2, . . . , n

⇔ k̃ j u j ∈ α jσ
(
(
dx

dτ
− du j

dτ
)
)

j = 1, 2, . . . , n
(51)

Finally (47) are equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2x

dτ 2
+ ελ0

dx

dτ
+ ελ10(

dx

dτ
− dy

dτ
) + x + ε

n∑
j=1

k j u j + εc10F(x − y)

= ε f10 sin(Ωτ)

ε
d2y

dτ 2
+ ελ10(

dy

dτ
− dx

dτ
) + εc10F(y − x) = 0

(du j

dτ
+ β(

u j

η j
)
)


 dx

dτ
, η j = α j

k̃ j
, j = 1, 2, . . . , n

(52)
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Let us introduce coordinates of the center of mass and relative displacement via

{
v = x + εy
w = x − y

⇔

⎧⎪⎨
⎪⎩

x = v + εw

1 + ε

y = v − w

1 + ε

(53)

System (52) becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2v

dτ 2
+ ελ0

1 + ε
(

dv

dτ
+ ε

dw

dτ
) + v + εw

1 + ε
+ +ε

n∑
j=1

k j u j = ε f10 sin(Ωτ)

d2w

dτ 2
+ ελ0

1 + ε
(

dv

dτ
+ ε

dw

dτ
) + v + εw

1 + ε
+ +ε

n∑
j=1

k j u j

+(1 + ε)(λ10
dw

dτ
+ c10F(w)) = ε f10 sin(Ωτ)

(du j

dτ
+ β(

u j

η j
)
)


 1

1 + ε
(

dv

dτ
+ ε

dw

dτ
), η j = α j

k̃ j
, j = 1, 2, . . . , n

(54)

4.2 Dynamical Behavior Around 1:1 Resonance

Let us set T = Ωτ and · = d

dτ
. We introduce the following complex variables [57]

to the system:

φ1eiT = Ω(v̇ + ıv) , φ∗
1e−iT = Ω(v̇ − iv)

φ2eiT = Ω(ẇ + iw) , φ∗
2e−iT = Ω(ẇ − iw)

φ2+ j eiT = Ω(u̇ j + iu j ) , φ∗
2+ j e

−iT = Ω(u̇ j − iu j ) , j = 1, 2, . . . , n
(55)

with i2 = −1. To investigate the 1:1 resonance, we assume Ω = 1 + σε.
We consider only equations obtained by Galerkin method and truncated Fourier
series: Indeed we take into account only first harmonic eiT for each equation. To
calculate the corresponding Fourier coefficients we assume that φl and φ∗

l (l =
1, 2, . . . , n + j) do not depend on T . We will either verify this assumption during
the multiple scales analysis, or we will assume that after a transient long enough φl

and φ∗
l (l = 1, 2, . . . , n + j) reach to an “asymptotic state” independently of T .

Nevertheless we also keep φ̇l and φ̇2 in the equations. Then we obtain following
system:
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Ωφ̇1 − Ω

2i
φ1 + ελ0(φ1 + εφ2)

2(1 + ε)
+ φ1 + εφ2

2iΩ(1 + ε)
+ ε

n∑
j=1

k jφ j+2

2Ωi
= ε

f10
2i

Ωφ̇2 − Ω

2i
φ2 + ελ0(φ1 + εφ2)

2(1 + ε)
+ φ1 + εφ2

2iΩ(1 + ε)
+

n∑
j=1

k jφ j+2

2Ωi

+(1 + ε)(c10F + λ10

2
φ2) = ε

f10
2i

φ j+2 = φ1 + εφ2

(1 + ε)π
ξ j

( |φ1 + εφ2|
(1 + ε)Ω

)
, j = 1, 2, . . . , n

(56)

where

F = 1

2π

∫ 2π

0
e−iT F

(φ1eiT − φ∗
2e−iT

2iΩ

)
dT (57)

and ξ j (z)(∀z ∈ R+, j = 1, 2, . . . , n) reads:

ξ j (z) =
⎧⎨
⎩

π if z � η j

θ + e−iθ sin(θ) − 4e−i θ
2 sin(

θ

2
) − 4η j

z
e−i(θ+ π

2 ) if z > η j
(58)

with

θ = arccos(1 − 2η j

z
) (59)

As in the Sect. 3 a multiple scale approach [58] with a small (and given) parameter ε

is presented by considering fast time T0 = T , and slow times Tl = εl T , l = 1, 2, . . .
so that:

d

dT
= d

dT0
+ ε

d

dT1
+ ε2

d

dT2
+ . . . (60)

4.2.1 ε0-Order of the System

At ε0 order, following equations can be derived from the system of (56):

∂φ1

∂T0
= 0 ⇒ φ1 = φ1(T1, T2, . . .) (61)

∂φ2

∂T0
+ φ1 − φ2

2i
+ c10F + λ10

2
φ2 = 0 (62)
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φ j+2 = φ1

π
ξ j (|φ1|), j = 1, 2, . . . , n (63)

We can see from equations that φ1 is a constant versus T0 = T , as well as φ j+2,
j = 1, 2, . . . , n, so the assumption for calculation of Fourier coefficients of eiT =
eiT0 is verified a posteriori. For φ2, we can not claim the same property. This is why
we process as follows: We assume that when T0 → ∞, φ2 reaches an asymptotic
equilibrium governed by a manifold called T0-invariant. Then we have:

φ1 − φ2

2i
+ c10F + λ10

2
φ2 = 0 (64)

so that implicitlyφ2 may depend on T1 now, but no longer on T0 (after T0 long enough
to approach the asymptotic state of φ2 governed by (64)). We study modulation of
the dynamics around periodic solution depending on time T0 associated to the T0-
invariant. Let us also notice that equations for φ j+2, j = 1, 2, . . . , n are governed
by first order differential equations.

4.2.2 ε1-Order of the System and Modulations Around T0-Invariant

The ε1 order of the first equation of system (56) reads:

dφ1

dT1
+ λ0

2
φ1 + φ2

2i
− 2σ + 1

2i
φ1 +

n∑
j=1

k jφ j+2

2i
= f10

2i
(65)

Let us consider T0-invariant and also obtained solutions at ε0 order for φ j+2, j =
1, 2, . . . , n. We write (64) in the general form:

φ1 = H(φ2, φ
∗
2 ) (66)

We introduce polar form for φ j , j = 1, 2, . . . , n + 2 as it follows:

φ j = N j eiδ j , N j ∈ R+, δ j ∈ R (67)

From relation (66) it is clear that we can obtain two explicit analytical solutions
providing N1 and δ1 as functions of N2 and δ2:

N1 = H1(N2, δ2)

δ1 = H2(N2, δ2)

(68)



Localization of Vibratory Energy of Main Linear/Nonlinear … 221

From the (63) we have:

N j+2eiδ j+2 = N1

π
eiδ1ξ j (N1), j = 1, 2, . . . , n (69)

or

N j+2ei(δ j+2−δ1) = N1

π
ξ j (N1), j = 1, 2, . . . , n (70)

so that

N j+2 = N1

π
|ξ j (N1)|, j = 1, 2, . . . , n (71)

and δ j+2 depends on N1 and δ1. Let us write

δ j+2 = ρ j (N1, δ1), j = 1, 2, . . . , n (72)

From (65) we have:

∂ N1

∂T1
+ i N1

∂δ1

∂T1
+ (

λ0

2
− 2σ + 1

2i
)N1 + N2

2i
ei(δ2−δ1) +

n∑
j=1

k j
N1

π
ξ j (N1)

2i
= f10

2i
e−iδ1

(73)
Introducing real and imaginary parts of ξ

ξ j (N1) = ξ jr (N1) + iξ j i (N1), j = 1, 2, . . . , n (74)

finally one can obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ N1

∂T1
+ λ0

2
N1 + N2

2
sin(δ2 − δ1) +

n∑
j=1

k j
N1

π
ξ j i (N1)

2
= − f10

2
sin(δ1)

N1
∂δ1

∂T1
+ 2σ + 1

2
N1 − N2

2
cos(δ2 − δ1) −

n∑
j=1

k j
N1

π
ξ jr (N1)

2
= − f10

2
cos(δ1)

(75)

Then, from (68) we can reach a linear system in
∂ N2

∂T1
and

∂δ2

∂T1
:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ H1

∂ N2

∂ N2

∂T1
+ ∂ H1

∂δ2

∂δ2

∂T1
− m1 = 0

H1(
∂ H2

∂ N2

∂ N2

∂T1
+ ∂ H2

∂δ2

∂δ2

∂T1
) − m2 = 0

(76)
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where

−m1 = λ0

2
H1 + N2

2
sin(δ2 − H2) +

n∑
j=1

k j
H1

π
ξ j i (H1)

2
+ f10

2
sin(δ1)

−m2 = 2σ + 1

2
H1 − N2

2
cos(δ2 − H2) −

n∑
j=1

k j
H1

π
ξ jr (H1)

2
+ f10

2
cos(δ1)

(77)
Finally, by solving the system (76), the following equations are obtained:

∂ N2

∂T1
= f̃1(N2, δ2)

g̃(N2, δ2)

N2
∂δ2

∂T1
= f̃2(N2, δ2)

g̃(N2, δ2)

(78)

where

f̃1(N2, δ2) = H1
∂ H2

∂δ2
m1 − ∂ H1

∂δ2
m2

f̃2(N2, δ2) = N2(
∂ H1

∂ N2
m2 − H1

∂ H2

∂ N2
m1)

g̃(N2, δ2) = H1(
∂ H1

∂ N2

∂ H2

∂δ2
− ∂ H2

∂ N2

∂ H1

∂δ2
)

(79)

4.3 Analysis of the Dynamics: General Method

The analysis of the dynamical behavior corresponding to a modulation at 1:1 reso-
nance around the T0-invariant is given by:

• geometry of the T0-invariant in the N1, N2 and δ2 space associated to the relation
N1 = H1(N2, δ2).

• equilibrium points of the reduced system (78) are given by:

⎧⎨
⎩

f1(N2, δ2) = 0, f2(N2, δ2) = 0

g1(N2, δ2) �= 0, g2(N2, δ2) �= 0
(80)

if f1, f2, g1 and g2 correspond to numerators and denominators of the system (78).
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• singular points of the reduced system (78) are given by:

⎧⎨
⎩

f1(N2, δ2) = 0, f2(N2, δ2) = 0

g1(N2, δ2) = 0, g2(N2, δ2) = 0
(81)

if f1, f2, g1 and g2 correspond to numerators and denominators of the system
(78). Singular points are potentially associated to bifurcations.

4.4 Analysis of the Dynamics for a Particular Case

Let us choose n = 2 and
F(z) = z3 (82)

in such a case, we have

F = 1

2i
G(|φ2|2)φ2 (83)

with

G(χ) = 3

4
χ , χ ≥ 0 (84)

Then
φ1 = H(φ2, φ

∗
2 ) = φ2 − 2ic10F − iλ10φ2

= φ2 − 3

4
c10|φ2|2φ2 − iλ10φ2

(85)

and

H1(N2, δ2) = N2

√
λ210 + (1 − 3

4
c10N 2

2 )2

H2(N2, δ2) = δ2 + arctan
( −λ10

1 − 3
4c10N 2

2

) (86)

Now, m1 and m2 can be obtained from the general expression in (77). Moreover, we
have simplified expression for g̃ since H1 does not depend on δ2 and H2 depends
linearly on δ2.

g̃(N2, δ2) = H1
∂ H1

∂ N2
(87)
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From the expression of H1 it is clear that g̃ does not depend on δ2. We have also:

f̃1(N2, δ2) = H1m1

f̃2(N2, δ2) = (∂ H1

∂ N2
m2 − H1

∂ H2

∂ N2
m1

)
N2

(88)

Finally, let us give expressions of f1, f2, g1 and g2. The reduced system of equations
reads:

f̃1
g̃

= m1
∂ H1
∂ N2

=
m1

√
λ210 + (1 − 3

4c10N 2
2 )2

λ210 + (1 − 3
4c10N 2

2 )(1 − 9
4c10N 2

2 )

f̃2
g̃

= N2(
∂ H1
∂ N2

m2 − H1
∂ H2
∂ N2

m1)

H1
∂ H1
∂ N2

= 3λ10c10N 2
2m1 + 2m2

(
λ210 + (1 − 3

4c10N 2
2 )(1 − 9

4c10N 2
2 )

)
2
(
λ210 + (1 − 3

4c10N 2
2 )(1 − 9

4c10N 2
2 )

)√
λ210 + (1 − 3

4c10N 2
2 )(1 − 9

4c10N 2
2 )

(89)
so that:

f1 = m1

√
λ210 + (1 − 3

4c10N 2
2 )2

f2 = 3λ10c10N 2
2m1 + 2m2

(
λ210 + (1 − 3

4c10N 2
2 )(1 − 9

4c10N 2
2 )

)

g1 = λ210 + (1 − 3

4
c10N 2

2 )(1 − 9

4
c10N 2

2 )

g2 = 2g1
√

λ210 + (1 − 3
4c10N 2

2 )2

(90)

Equilibrium points are given by:

f1 = 0 , f2 = 0 and g1 �= 0 (91)

and singular points are governed by:

f1 = 0 , f2 = 0 and g1 = 0 (92)

This is equivalent to: {
m1 = 0
g1 = 0

(93)
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Then g1 = 0 provides analytical values of N2 (fold lines):

N2 = 2

3

√
1

c10

(
2 ∓

√
1 − 3λ210

)
(94)

For a given N2, m1 depends only on the variable δ2 and can be solved numerically.

4.5 Analytical Developments Versus Numerical Integrations

Let us set c10 = 1, λ10 = 0.1, λ0 = 0.1, η1 = 0.1, η2 = 0.15, k1 = 1, k2 = 2,
ε = 0.001. We consider that f10 = 0.7. Euler’s scheme [54, 59] with time steps as
Δτ = 10−4 is endowed for solving system of (52). Assumed initial conditions are
x(0) = 0.5 and y(0) = ẋ(0) = ẏ(0) = u1(0) = u2(0) = 0.

Fig. 11 Positions of
equilibrium points and fold
singularities of the system
with external forcing term
f10 = 0.7 (see (78) and
(90)): f1 = 0 (—), f2 = 0
(− − −), g1 = 0 (−· −· −,
i.e. fold lines N21 and N22).
The system possesses two
fold singularities (no. 1 and
2) and three equilibrium
points (no. 3, 4 and 5)
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Fig. 12 T0-invariant of the
system (solid blue line) and
corresponding numerical
results (black line) that are
obtained by integration of
(52) with external forcing
term f10 = 0.7
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Fig. 13 Histories of system
amplitudes that are obtained
by integration of (52) with
external forcing term
f10 = 0.7: a N1; b N2
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Predictions of all possible dynamics of the system until reaching the infinity of the
T1 time scale are shown in Fig. 11. It is seen that the system has two fold singularities
on the first fold line N21, namely points 1 and 2, two equilibrium points (no. 3 and
no. 4) and another equilibrium point between two fold lines of the system (unstable
area) namely point no. 5. T0-Invariant of the system and corresponding numerical
results are presented in Fig. 12. The system presents SMR by persisting direct and
reverse bifurcations between its stability borders. This is due to the existence of fold
singularities on fold line(s) of the system [21, 46]. This behavior will be more visible
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Fig. 14 Phase portraits of
the reduced system with
external forcing term
f10 = 0.7 (see (78), (89) and
(90)) around the singular
point no. 1 (saddle)
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Fig. 15 Phase portraits of
the reduced system with
external forcing term
f10 = 0.7 (see (78), (89) and
(90)) around the singular
point no. 2 (node)
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by looking at the histories of system amplitudes which are obtained by numerical
integration and are illustrated in Fig. 13. Phase portraits of the reduced system (78)
around singular points no. 1 and 2 are presented in Figs. 14 and 15 show that these
singular points are in the form of saddle and nodes on the fold line of the system
(N21). During SMR both oscillators and all of their components present beating
responses: displacement histories of two oscillators which are depicted in Fig. 16
and also histories of internal variables of Saint-Venant elements that are presented in
Fig. 17 show not only beating responses of all components of two oscillators during
SMR but also activations of Saint-Venant elements during energy exchanges. The
SMR of an optimized designed system is a very desirable behavior from passive
control and also energy harvesting view points since both oscillators continue to
exchange the energy with large intervals of energy changes for the NES and small
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Fig. 16 Displacements
histories that are obtained by
integration of (52) with
external forcing term
f10 = 0.7: a x ; b y
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energy intervals for the main system. The system possesses two equilibrium points
namely points no. 3 and 4 (see Fig. 11). It can be attracted by one of these points
after a very long time at T1 time scale or during higher time scales (T2, T3, …). Due
to costly simulation time we did not run it for very long time scales.
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Fig. 17 Histories of internal
variables of the Saint-Venant
elements that are obtained by
integration of (52) with
external forcing term
f10 = 0.7: a u1; b u2
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5 Conclusions

Multiple scale energy exchanges of two different coupled systems are considered:
(I) a vertical system (i.e. consideration of effects of the gravity) which consists of a
linear main structural system and a coupled nonsmooth nonlinear energy sink; (II)
a main oscillator with a set of Saint-Venant elements that is coupled to a nonlinear
energy sink with a general odd nonlinear potential function. Invariants of both sys-
tems and their geometries at fast time scale let us understand the process of energy
exchanges between two oscillators with explanation of possible bifurcations between
two coupled oscillators. Reduced formof equations of systems at slow time scale give
us some tools to predict all possible regimes of systems during energy exchanges:
systems can face periodic regimes due to existence of equilibrium points while they
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can present strongly modulated responses when fold singularities are present. These
studies provide analytical design tools for tuning parameters of nonlinear energy sink
according to the design goal which can be passive control of linear/nonlinear main
structural systems by means of nonlinear energy sink. Experimentally realizations
of both systems can be carried out by considering a moving light mass in a (friction-
less) guide which is encased between two elastic walls at each end for representing
a nonsmooth NES of the system I. Identification of parameters of Magnetorheo-
logical dampers which present hysteresis behaviors can lead to models represented
by system II (with potentially added smooth nonlinear terms to the main structure)
[54, 60].
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On the Use of the Multiple Scale Harmonic
Balance Method for Nonlinear Energy Sinks
Controlled Systems

Angelo Luongo and Daniele Zulli

Abstract The Multiple Scale Harmonic Balance Method (MSHBM) is discussed
here for several paradigmatic systems (primary structures) equipped with a Nonlin-
ear Energy Sink (NES). This is a small-mass oscillator with essentially nonlinear
stiffness, used for passive control purpose. The method permits to overcome the dif-
ficulties inherent to standard perturbation methods, which occur as a consequence
of the nonlinearizable nature of the NES equation. It combines the Multiple Scale
Method and the Harmonic Balance Method to furnish Amplitude Modulation Equa-
tions ruling the slow asymptotic dynamics of the augmented system. TheMSHBM is
illustrated here for a general, internally non-resonant, multi d.o.f. structure equipped
with a NES and under multiple concurrent actions, namely steady wind inducing
Hopf bifurcation, and 1:1 and 1:3 resonant harmonic forces. The relevant Amplitude
Modulation Equations are specialized for simpler cases, where the single contribu-
tions of each external action is considered separately. The effect of the NES on the
dynamics of the system is discussed for each case and numerical results are displayed.

1 Introduction

Nonlinear Energy Sinks (NES) are strongly nonlinear oscillators, typically equipped
with a small mass, a linear damper and an essentially nonlinear spring, attached to a
primary structure to be controlled. Their main goal is to induce irreversible transfer
of vibrational energy from the primary structure to themselves, and to dissipate it as
a passive control device. A comprehensive report on the characteristics and uses on
NES is found in [1, 2].

The one-way energy convey from the primary structure to the NES, referred
as Target Energy Transfer (TET), and investigated in the literature in analytical,
numerical and experimental sense [3–7], as well as the capacity (in theory) of the
NES of oscillating at any frequencies, giving rise of large band tuning with the
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structure to be controlled, are consequences of the essentially nonlinear nature of
the NES and its lacking of linear stiffness. Moreover, the presence of small mass is
responsible of (almost) singularity in the equations, inducing relaxation oscillations,
typically referred as Weakly Modulated Response (WMR) and Strongly Modulated
Response (SMR) [8, 9].

Recently, these kind of devices have received great attention in the literature, being
used in many applications. In [10, 11], a NES was applied to a main linear oscillator
harmonically excited by a 1:1 resonant force. In [12, 13],multiple parallel NESswere
considered to dissipate first-mode oscillations of a linear structure under impulse as
well as harmonic forcing. In [14] non-smooth NES was considered to control a two-
d.o.f. system. In [15], NES was used to suppress aeroelastic instabilities on a rigid
wing, modeled as a two-d.o.f. section-model, under steady wind. In [16] a single
NES is used to control oscillations of a long-span bridge prone to coupled flutter.

To analytically study the slow-flowdynamics of systemswithNES, the researchers
generally make use of two steps: (a) the complexification-averaging procedure by
Manevitch [17], referred as CX-A, recently extended also to non-polynomial non-
linearity [18] and piece-wise systems [14], and, subsequently, (b) the Multiple Scale
Method (MSM, [19]). In fact, due to the non-linearizable nature of the equations of
NES, it was stated in [20], where a grounded NES was studied, that “for this type
of problem the standard analytical techniques from nonlinear dynamics (such as the
method of multiple-scales, and the standard method of averaging), are not directly
applicable, and an alternative approach must be followed”; accordingly, the com-
plexification method was employed. Dealing with the same problem, three different
methods were used in [21], namely, the method of harmonic balance, a combina-
tion of a shooting method and Floquet theory, and direct time integration, but not
the MSM. In the same paper, the authors used an adapted version of the method of
averaging, and defined their theoretical analysis as “limited”.

For all these reasons, the authors of this paper, in a series of work [22–24] in-
vestigated the possibility of implementing a nonstandard version of the MSM, for
general systems equipped with NES, under specific external actions. In particular,
in [22], they used the Multiple Scale Harmonic Balance Method (MSHBM), to get
AmplitudeModulation Equations (AME) for amulti d.o.f. system under 1:1 resonant
external force. The main advantage of the algorithm is that the initial complexifi-
cation procedure is avoided, dealing directly with variables having clear physical
meanings. In [23], the same algorithm was specialized for a system undergoing a
Hopf bifurcation due to steady wind. In [24] the MSHBM was extended to infinite
dimensional systems, in direct approach, to deal with an internally nonresonant string
under a harmonic force considered resonant to a certain mode.

In this paper, theMSHBM is illustrated for a general discrete system under simul-
taneous external actions. The scope of the paper is multifold: (a) to collect old results
by the authors in a more systematic and exhaustive manner; (b) to present new results
concerning subharmonic excitations, not analyzed in the past; (c) to open the way
to further investigations relevant to the interaction among simultaneous excitations,
here accounted for in formulation, but not addressed in the numerical results, yet.
To this ends, a general, nonlinear, multi-d.o.f. system under effect of steady wind,



On the Use of the Multiple Scale Harmonic Balance Method ... 237

which induces a Hopf bifurcation, concurrently acting with external 1:1 and 1:3 res-
onant harmonic excitation, is considered. A NES is attached to it, in order to control
amplitude of vibrations, and the MSHBM is applied to the equations of motion, to
get the AME ruling the dominant dynamics of the system. Then, numerical results
are extracted for simpler cases, when one single component of excitation is applied
in turn, with the aim of analyze the effect on the dynamics of the principal structure
and to check the reliability of the algorithm. However, a complete unfolding of the
dynamics of the proposed examples, as well as a deep analysis of the possible bene-
ficial effect of the NES, are not fulfilled herein, since they are out of the aim of this
paper.

The paper is organized as follows: in Sect. 2, the algorithm is applied to a general
system; in Section 3, some examples are discussed: in Sect. 3.1 a one d.o.f. system
under 1:1 resonant force is studied; in Sect. 3.2 the effect of a NES on the dynamics of
a one d.o.f. system under 1:3 subharmonic resonance is discussed; in Sect. 3.3 results
on a two-d.o.f. system under steady wind are analyzed; in Sect. 3.4 a N-d.o.f. inter-
nally nonresonant string with NES and under harmonic excitation is considered; in
Sect. 4 some conclusions are drawn.

2 The Multiple Scale Harmonic Balance Method

A nonlinear multi-d.o.f. mechanical systems, which is close to a Hopf bifurcation
caused by aerodynamic forces, and under both 1:1 and 1:3 resonant harmonic ex-
citations, is considered herein. The aerodynamic forces, due to the steady wind of
(non-dimensional) speed μ which blows orthogonally to the plane of the structure,
are assumed to be described by the quasi-steady theory. The main system is equipped
with an essentially nonlinear oscillator with small mass and linear damper, behaving
as a Nonlinear Energy Sink (NES), attached at a selected point (see Fig. 1). The
relevant nondimensional equations of motion for the whole system read:

Mẍ + C(μ)ẋ + K(σ, μ)x + ξ(rT ẋ − ẏ)r + κ(rT x − y)3r

+ n(x, x, x) = η1f1 cos(ωt) + η3f3 cos(3ωt) (1)

mÿ − ξ(rT ẋ − ẏ) − κ(rT x − y)3 = 0 (2)

where: x = x(t) is the time-dependingN-dimensional columnmatrix of the displace-
ments of the main structure; M is the mass matrix; C(μ) is the (non-proportional)
damping matrix and K(σ, μ) is the stiffness matrix; C depends on μ while K de-
pends onμ and (linearly) by a structural parameter σ ; bothμ and σ act as bifurcation
parameters; n is the column of the (cubic) geometric nonlinearities, f1 is a unitary
vector (||f1|| = 1) providing the shape of the component of the external force, of am-
plitude η1, which is modulated by the frequencyω; in analogy, f3 is the unitary vector
(||f3|| = 1) describing the component of the external force modulated by frequency
3ω and with amplitude η3; y = y(t) is the time-depending displacement of the added
oscillator, m its mass, ξ its damping-ratio and κ the coefficient of its essentially
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Fig. 1 Sketch of a
multi-d.o.f. system equipped
with a NES

nonlinear (cubic) spring; r is the influence coefficient column; finally, the dot repre-
sents time-differentiation. It is assumed that, when μ is equal to a critical value, the
wind triggers aHopf bifurcation and the dynamics of the (homogeneous) systemwith
NES disengaged evolves on a critical mode; moreover, when σ = 0, the external ex-
citation f1 is 1:1 resonant with the same critical mode of the main structure, and f3 is
1:3 resonant with the same mode as well, whereas no other resonance combinations
are possible; σ acts as a detuning parameter.

It is convenient to introduce the relative displacement between main structure and
NES, z := rT x − y, so that the (1) and (2) become:

Mẍ + C(μ)ẋ + K(σ, μ)x + ξ żr + κz3r

+ n(x, x, x) = η1f1 cos(ωt) + η3f3 cos(3ωt) (3)

m(rT ẍ − z̈) − ξ ż − κz3 = 0 (4)

The dependent variables are rescaled through a nondimensional small parameter
ε > 0, as (x, z) := ε1/2(x̃, z̃), consistentlywith the presence of cubic nonlinearity; the
bifurcation parameterμ is expressed asμ = μ0 +εμ1, whereμ0 is its critical value,
to be still evaluated, and εμ1 is the small deviation from it. The structural parameter
σ is rescaled as σ = εσ̃ . The 1:1 external force is rescaled as η1 = ε3/2η̃1, while the
1:3 force component is rescaled as η3 = ε1/2η̃1. The parameters of the NES are also
rescaled, since both its mass and damping are assumed small: (m, ξ) := ε(m̃, ξ̃ ). The
rescaling and series expansion of C(μ) and K(σ, μ) lead to the following equations,
after omission of tilde and division by ε1/2:

Mẍ + (C0 + εμ1C1)ẋ + (K0 + εμ1Kμ + εσKσ )x

+ εξ żr + εκz3r + εn(x, x, x)

= εη1f1 cos(ωt) + η3f3 cos(3ωt) (5)

εm(rT ẍ − z̈) − εξ ż − εκz3 = 0 (6)



On the Use of the Multiple Scale Harmonic Balance Method ... 239

where C0 := C(μ0), K0 := K(0, μ0), C1 := ∂C(μ0)/∂μ, Kμ := ∂K(0, μ0)/∂μ,
and Kσ := ∂K(0, μ0)/∂σ .

According to theMultiple ScaleMethod, independent time scales t0 := t, t1 := εt,
t2 = ε2t, . . . are introduced and, consistently, the derivatives expressed as d

dt =
d0 + εd1 + ε2d2 + . . . and d2

dt2
= d2

0 + 2εd0d1 + ε2(d2
1 + 2d0d1) + . . .. Moreover,

the dependent variables are expanded in series as:

{
x
z

}
=

{
x0
z0

}
+ ε

{
x1
z1

}
+ ε2

{
x2
z2

}
+ . . . (7)

Substituting in (5) and (6) and collecting terms of the same order in ε, lead to the
following perturbation equations:

order ε0 :
Md2

0x0 + C0d0x0 + K0x0 = η3f3 cos(3ωt0) (8)

order ε1 :
Md2

0x1 + C0d0x1 + K0x1 = −2Md0d1x0 − C0d1x0
− μ1C1d0x0 − μ1Kμx0 − σKσ x0 − ξd0z0r

− κz30r − n(x0, x0, x0) + η1f1 cos(ωt0) (9)

m(rT d2
0x0 − d2

0z0) − ξd0z0 − κz30 = 0 (10)

order ε2 :
Md2

0x2 + C0d0x2 + K0x2 = −M(d2
1x0

+ 2d0d2x0 + 2d0d1x1) − C0(d2x0 + d1x1)

− μ1C1(d0x1 + d1x0) − σKσ x1 − μ1Kμx1

− ξ(d0z1 + d1z0)r − 3κz20z1r − 3n(x1, x0, x0) (11)

m(rT d2
0x1 − d2

0z1) − ξd0z1 − 3κz20z1 =
2m(d0d1z0 − rT d0d1x0) + ξd1z0 (12)

It should be noted that, because of the vanishingly small values of the mass and
damping, as well as of the lack of linear stiffness, no equation of motion relevant
to NES appears in the generator problem (order ε0), which therefore describes the
linear dynamics of the main structure alone (as if NES were disengaged).

First, the homogeneous version of (8) is considered, in order to evaluate the critical
condition due to the wind and the complementary function. It is assumed that, at the
specific critical value μ0, the system experiences a Hopf bifurcation, this entailing
that the relevant eigenvalue problems

(λ2M + λC0 + K0)u = 0

(λ̄2MT + λ̄CT
0 + KT

0 )v = 0 (13)
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have a solution λ1,2 = ±iω, with the associated right (u and ū) and left (v and
v̄) eigenvectors (the overbar denoting the complex conjugate and i the imaginary
unit), whereas all the other eigenvalues have negative real parts and are far from the
imaginary axis.

Then, a particular solution of (8) is sought: the external forces are assumed to be
1:1 and 1:3 resonant with the same critical mode u of the main system (131), and this
entails that the remaining non-resonant modes bring a higher-order contribution to
the overall response. Therefore, only the contribution related to the resonant mode
is retained in the solution of (8), i.e.:

x0(t0, t1, . . .) = A(t1, . . .)ueiωt0 + η3w0e3iωt0 + cc (14)

where: A(t1, . . .) is a complex modal amplitude, whose modulation on the slower
time-scales must be evaluated; cc stands for complex conjugate and w0 := 1

2 [K0 +
3iωC0 − 9ω2M]−1f3.

The ε-order perturbation equations (9) and (10) are now addressed, and the NES
(10) considered first. Since its (steady) solution cannot be expressed by elementary
(nor Jacobi) functions, the Harmonic Balance Method is used, letting:

z0(t0, t1, t2) =
∑

k

B0k(t1, t2)e
ikωt0 + cc (15)

where B0k are complex amplitudes. In this paper, just the terms relevant to the values
k = 1, 3 are retained in (15), coherently with the idea of obtaining an approximated
solution, which contains at least the same frequency components of the generat-
ing solution (14). Consequently, balancing the frequencies ω and 3ω in (10), the
following nonlinear, complex, algebraic equations are obtained:

mω2(−B01 + uA) + iξωB01 + 3κ(B2
01B̄01 + B03B̄2

01

+ 2B01B03B̄03) = 0 (16)

mω2(−9B03 + 9η3w0) + 3iξωB03 + κ(B3
01 + 3B2

03B̄03

+ 6B03B01B̄01) = 0 (17)

where u := rT u and w0 := rT w0.
Equations (16) and (17) provide, at the first order of perturbation, an algebraic

constrain between the (active) resonant amplitude A of oscillation of the main struc-
ture and the (passive) amplitudes of the NES elongation, B01 and B03; it, therefore,
describes a manifold in the state-space, on which the asymptotic dynamics takes
place (at the first perturbation order).

Equation (9) is then considered, in which z0 is assumed as in (15). By requiring
that the resonant forcing term is orthogonal to the null space of the adjoint operator
(solvability condition), the following equation must hold
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vH [(2iωMu + C0u)d1A + (iωC1u + Kμu)μ1A

+ σKσ uA + iωξrB01

+ 3κr(B2
01B̄01 + B03B̄2

01 + 2B01B03B̄03)

+ 3A2Ān(ū, u, u)

+ 3η3Ā2n(w0, ū, ū) + 6η23An(w0, w̄0, u)] = 0 (18)

producing the following differential equation:

c1d1A = (μ1c2 + σc3 + η23c8)A + ξc4B01

+ κc5(B
2
01B̄01 + B03B̄2

01 + 2B01B03B̄03)

+ c6A2Ā + η3c7Ā2 + η1c9 (19)

where the expression of the complex coefficients ci is given in Appendix A. It is
worth noticing that, when B01 = B03 = η3 = 0 is put into (19), this reduces to the
normal form equation for the Hopf bifurcation of the principal system. This entails
that the NES modifies both the bifurcation point and the limit cycle, thus bringing
potential benefits to the mechanical behavior of the original system.

If one decided to stop the perturbation analysis at this step, (19) and (16), (17)
should be considered together. In this case, since the NES provides an algebraic
constraint, its (complex) amplitudesB01 andB03 would be passive variables, whereas
the dynamic evolution of the (active) amplitude A of the main system would be
completely restrained onto the manifold (16), (17). To overcome this tight limitation,
a further perturbation step must be accomplished.

The non-diverging solution of (9) can now be evaluated, after tacking into account
(19): it contains terms of frequency ω, 3ω, 5ω, 7ω and 9ω. However, still driven by
the idea of obtaining and approximated solution, just the terms of frequency ω and
3ω are retained in it, which turns out to be:

x1(t0, t1, t2) = [(μ1w1 + σw2 + η23w3)A + ξw4B01

+ κw5(B
2
01B̄01 + B03B̄2

01 + 2B01B03B̄03)

+ w6A2Ā + η3w7Ā2 + η1w8]eiωt0

+ [η3μ1w9 + η3σw10 + ξw11B03

+ κw12(B
3
01 + 3B2

03B̄03 + 6B03B01B̄01)

+ w13A3 + η3w14AĀ + η33w15]e3iωt0 + cc (20)

where wj, (j = 1, . . . , 15) are defined in Appendix A.
Equation (12) is finally considered: a new harmonic balance is carried out, as-

suming the following expression for z1:

z1(t0, t1, t2) =
∑

k

B1k(t1, t2)e
ikωt0 + cc (21)
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Substituting (14), (15), (20) and (21) in (12) and balancing the ω- and 3ω-frequency
terms, the following equations are obtained:

−ω2m[(μ1w1 + σw2 + η33w3)A + ξw4B01 + κw5(B
2
01B̄01

+ B03B̄2
01 + 2B01B03B̄03) + w6A2Ā + η3w3Ā2

+ η1w8 − B11] − iωξB11 − 3κ(B2
01B̄11 + 2B01B̄03B13

+ 2B01B03B̄13 + B13B̄2
01 + 2B01B̄01B11 + 2B11B̄03B03

+ 2B03B̄01B̄11) − 2imω(d1B01 − ud1A)

− iωξd1B01 = 0 (22)

−9ω2m[η3μ1w9 + η3σw10 + ξB03w11 + κw12(B
3
01

+ 3B2
03B̄03 + 6B03B01B̄01) + w13A3 + η3w14AĀ

+ η33w15 − B13] − 3iωξB13 − 3κ(B2
01B11 + B2

03B̄13

+ 2B01B03B̄11 + 2B01B13B̄01 + 2B03B13B̄03

+ 2B03B11B̄01) − 6iωmd1B03 − 3iωξd1B03 = 0 (23)

where wj := rT wj, j = 1, . . . , 15. Equations (16) and (22), and (17) and (23), can
be reconstituted, respectively, using the definitions B1 := B01 + εB11 and B3 :=
B03 + εB13; coming back to the true time, they become:

−ω2m[(u + μ1w1 + σw2 + η33w3)A + κw5(B
2
1B̄1

+ B3B̄2
1 + 2B1B3B̄3) + w6A2Ā + η3w3Ā2

+ η1w8 − (1 − ξw4)B1] − iωξB1 − 3κ(B2
1B̄1

+ 2B1B̄3B3 + B3B̄2
1) − 2imω(Ḃ1 − uȦ)

− iωξ Ḃ1 = 0 (24)

− 9ω2m[η3(w0 + μ1w9 + σw10) + κw12(B
3
1

+ 3B2
3B̄3 + 6B3B1B̄1) + w13A3 + η3w14AĀ

+ η33w15 − (1 − ξw11)B3] − 3iωξB3

− κ(B3
1 + 3B2

3B̄3 + 6B3B1B̄1)

− 3iξωB3 − 6iωmḂ3 − 3iωξ Ḃ3 = 0 (25)

It appears that (24) and (25) describe the dynamics of the amplitudes B1 and B3,
differently from (16) and (17). The key-terms containing Ḃ1and Ḃ3 come out only at
the second-order, since they are affected by small coefficients ξ andm, thus revealing
the nature of singular perturbation. In contrast, the term proportional to Ȧ, which
also appears at this order, does not add any qualitative new contributions, being ruled
by (19).
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If the perturbation procedure is truncated at order ε for the main system equation,
the solvability condition (19) can be written in terms of the true time:

c1Ȧ = (μ1c2 + σc3 + η23c8)A + ξc4B1

+ κc5(B
2
1B̄1 + B3B̄2

1 + 2B1B3B̄3)

+ c6A2Ā + η3c7Ā2 + η1c9 (26)

Therefore, the prevalent dynamics of the primary system coupled with NES is
described by (26), (24), (25), in terms of the complex variables A, B1 and B3.
To get the real form of the system, either the polar or the Cartesian transforma-
tions can be applied to the equations: the first one is A(t) := 1

2a(t)eiα(t) and
Bk(t) := 1

2bk(t)eiβk(t), for k = 1, 3; the second one is A(t) := 1
2 (p1(t) + iq1(t)),

B1(t) := 1
2 (p2(t) + iq2(t)) and B3(t) := 1

2 (p3(t) + iq3(t)). The substitution
of one of the two kinds of transformations in the equations and the separa-
tion of real and imaginary parts provides the six real ordinary differential equa-
tions in the six real variables (a(t), α(t), b1(t), β1(t), b3(t), β3(t) in the polar case,
p1(t), q1(t), p2(t), q2(t), p3(t), q3(t) in the Cartesian case). Equilibrium points of the
system represent periodic oscillations in the displacements x, z.

3 Sample Systems and Numerical Results

Sample systems are analyzed here, (a) to investigate the mechanical effects of the
attached NES on the dynamics of the main system; (b) to check the reliability of
the MSHBM via comparison with direct numerical integrations of the equations of
motion.

3.1 One d.o.f. Main System Under 1:1 External Force

A sample system, already studied in [2, 11, 22], is considered here. The main system
consists of a one d.o.f. linear undamped system,with attachedNES, a sketch ofwhich
is shown in Fig. 2. The nondimensional equations of motion are:

ẍ + (ω2 + σ)x − ξ(ẏ − ẋ) − κ(y − x)3 = η1 cosωt (27)

mÿ + ξ(ẏ − ẋ) + κ(y − x)3 = 0 (28)

that, for z := x − y, become:

ẍ + (ω2 + σ)x − ξ ż − κz3 = η1 cosωt (29)

m(z̈ − ẋ) + ξ ż + κz3 = 0 (30)
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Fig. 2 Principal linear undamped oscillator under 1:1 resonant harmonic force with NES

Therefore, comparing (29) and (30) with (3) and (4), it results N = 1 and:

x = x, M = 1, C = 0, K0 = ω2, Kμ = 0,

Kσ = 1, n(x, x, x) = 0, f1 = 1, f3 = 0 (31)

Since the external excitation has just the component of frequencyω, the generating
solution does not contain the component of frequency 3ω, and so is it for the terms
z0 and z1 (B03 = B13 = 0), leading just to the balance of the frequency ω. The
nonlinear manifold, (16), becomes:

mω2(−B01 + A) + iξωB01 + 3κB2
01B̄01 = 0 (32)

which can be easily written in real form in terms of the (real) amplitudes a and b1:

(
3κb21
8mω

+ ωb1
2

)2

+
(

ξb1
2m

)2

− ω2a2

4
= 0 (33)

The set of numerical values considered in [2, 11] is used for this example: m = 0.05,
ξ = 0.01, κ = 0.067, ω = 1.

The Amplitude Modulation Equations (26), (24) read:

Ȧ = iσ

2ω
A − ξ

2
B1 − 3iκ

2ω
B2
1B̄ − iη1

4ω
(34)

2imωȦ − (2imω + ξ)Ḃ1 = mω2A

+ (iξω − mω2)B1 + 3κB2
1B̄1 (35)

In polar form, they become:

ȧ = 3kb31 sin(α − β1)

8ω
− 1

2
ξb1 cos(α − β1) − η1 sin α

2ω
(36)

aα̇ = aσ

2ω
+ 3b31k cos(α − β1)

8ω
+ 1

2
b1ξ sin(α − β1)

− η1 cosα

2ω
(37)
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mȧ sin(α − β1) + maα̇ cos(α − β1) + ξ

2ω
ḃ1 − mbβ̇1 =

− mω

2
a cos(α − β1) − 3b31k

8ω
+ mω

2
b1 (38)

mȧ cos(α − β1) − maα̇ sin(α − β1) − mḃ1

− ξ

2ω
b1β̇1 = ξ

2
b1 + mω

2
a sin(α − β1) (39)

When the NES is disengaged, since the main system is linear, the amplitudes of the
periodic solutions in x become

ae = η1

σ
(40)

tan αe = aeσ

2ω
(41)

which are always stable. They are the equilibrium points of (36), (37),when b = 0.
Due to the lack of damping in the main system, the amplitude tends to infinite when
σ goes to zero.

When the NES is considered engaged, the branches of equilibrium points of the
dynamical system (36)–(39), which represent periodic oscillations in the original
variables x and z, are shown in Fig. 3, for η1 = 0.075. The figure is obtained via
the software AUTO [25]. It can be observed that multiple solutions exist in some
intervals of σ . In particular, the three equilibrium points relevant for σ = −0.3 are
marked by colored points, and only the green one is stable, while the yellow and red
ones are unstable; black boxes represent secondary Hopf bifurcation points.

The same three equilibrium points are also shown in Fig. 4, superimposed to the
nonlinear manifold. Strongly modulated responses (SMR) are detected by numerical
integration of the system (36)–(39). They represent quasi-periodic relaxation oscilla-
tions in the variables a and b, typically describing cycles around the two folds of the

Fig. 3 Amplitudes a and bwhenNES is engaged, whenm = 0.05, ξ = 0.01, κ = 0.067,ω = 1 and
η1 = 0.075. The filled squares indicate Hopf bifurcation points. The colored points are equilibria
referred to following figures. Continuous line stable; dashed line unstable
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Fig. 4 Nonlinear manifold (blue line), three equilibrium points (red, green and yellow points),
Poincaré map of the SMR response (magenta points), and transitional motion (black line) falling
to the equilibrium point, when σ = −0.3, f = 0.075, m = 0.05, ξ = 0.01, κ = 0.067, ω = 1

t

x

Fig. 5 SMR for example 1, when σ = −0.3, η1 = 0.075, m = 0.05, ξ = 0.01, κ = 0.067,
ω = 1; x(t) as numerical integration of the original (27), (28) (red dashed line) and as reconstituted
response from (36)–(39) (blue continuous line)

nonlinear manifold shown in Fig. 4. They are triggered in dependence of the position
of the equilibrium points. In particular, a Poincaré section is shown (magenta points).
For initial conditions close to the stable equilibrium point, a trajectory asymptoti-
cally falling on it is also found (black line). The corresponding time evolutions of
the (reconstituted) displacement x(t) is shown in Fig. 5, in good agreement with the
solutions obtained by numerical integration of the original (27), (28).

A discussion on the use of the higher harmonics (3ω, . . .) for this example and
the evaluation of their negligible contribution is given in [22].
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3.2 One d.o.f. Main System Under 1:3 External Force

A second example is considered here concerning an external force in 1:3 subhar-
monic resonance. The relevant results are believed to be new, and deserve further
investigation.

The principal system is of a one d.o.f. nonlinear damped system, with attached
NES, as shown in Fig. 6. The nondimensional equations of motion are:

ẍ + 2ζωẋ + ω2(1 − σ)x + κcx3

+ κ(x − y)3 + ξ(ẋ − ẏ) = η3 cos(3ωt)

mÿ − κ(x − y)3 − ξ(ẋ − ẏ) = 0 (42)

that, for z := x − y, become:

ẍ + 2ζωẋ + ω2(1 − σ)x + κcx3

+ κz3 + ξ ż = η3 cos(3ωt)

m(z̈ − ẍ) + κz3 + ξ ż = 0 (43)

Therefore, comparing (43) with (3) and (4), it results N = 1 and:

x = x, M = 1, C = 2ζω, K0 = ω2, Kμ = 0,

Kσ = −1, n(x, x, x) = κcx3, f1 = 0, f3 = 1 (44)

Here the generating solution of the principal structure contains both the com-
ponents of frequency ω and 3ω, therefore the balance of both those frequencies in
the NES equation is carried out in this case. The polar form of the three Amplitude
Modulation Equations (26), (24), (25) reads:

yx

1 m

η3 cos(3ωt)
ω ,κc κ

2ζω ξ

Fig. 6 Principal nonlinear oscillator under 1:3 resonant harmonic force with NES
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ȧ = F1(a, b1, b3, α, β1, β3) (45)

aα̇ = F2(a, b1, b3, α, β1, β3) (46)

mωȧ sin(α − β1) + mωα̇ cos(α − β1) + ξ

2
ḃ1

− mωb1β̇1 = F3(a, b1, b3, α, β1, β3) (47)

mωȧ cos(α − β1) − mωα̇ sin(α − β1) − ξ

2
bβ̇1

− mωḃ1 = F4(a, b1, b3, α, β1, β3) (48)

ξ

2
ḃ3 − 3mωb3β̇3 = F5(a, b1, b3, α, β1, β3) (49)

ξ

2
bβ̇3 + 3mωḃ3 = F6(a, b1, b3, α, β1, β3) (50)

where Fj, j = 1, . . . , 6, are reported in Appendix A.
If the NES were disengaged, just (45) and (46) would be retained, being bk ≡

βk ≡ 0, and the steady state response of the system, describing periodic oscillations
for x(t), is described by the solution of the system F1 = F2 = 0 (see [19]).
In particular the steady state response is governed by the equation

(ζω)2 +
((

−σω

2
+ 3κcη

2
3

64ω5

)
+ 3κc

8ω
a2

)2 =
(3κcη3a

32ω3

)2
(51)

which, besides a = 0 existing everywhere, defines the non-trivial response for the
subharmonic resonance condition, which exists in the range

σ ≥ 21η33κc

256ω6 + 256ζ 2ω6

3η23κc
(52)

The frequency-response plot of the subharmonic response is shown in Fig. 7 in
black line, for η3 = 0.3, ζ = 0.01, ω = 1, κc = −5. It is superimposed to
the corresponding one, which is obtained when NES is engaged (red line) for
m = 0.05, ξ = 0.01, κ = 1. In particular, the NES reduces the amplitude of the
subharmonic response and its domain of existence; furthermore, in comparison with
the case with NES disengaged, it is found that the basin of attraction of the sub-
harmonic response in presence of NES is noticeably reduced in favor of the trivial
solution. Moreover, relaxation oscillations are found by means of numerical integra-
tions of (45)–(50). Their phase plot is shown in Fig. 8 (red line) as superimposed
to the nonlinear manifold (gray points), which is a surface in the (b1, b3, a) space.
The relaxation oscillations here described have maximum amplitudes smaller than
the corresponding (periodic) oscillations which occur when the NES is disengaged
(see Fig. 9).
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σ

a

Fig. 7 Frequency-response curve in correspondence of the 1:3 resonance for the system with NES
disengaged (black line) and with NES engaged (red line), for η3 = 0.3. Continuous line stable;
dashed line unstable

b1

a

b3

Fig. 8 Nonlinear manifold (gray points) and relaxation oscillations (red line) for σ = −0.5,
η3 = 0.3

3.3 A Two d.o.f. Airfoil

A sample system, already considered in [15, 23], is used to investigate the mechanics
of a primary structure subjected to steady wind. It is constituted by a two d.o.f. rigid
airfoil engaged to a NES and subjected to the (non-dimensional) steady wind μ,
and is sketched in Fig. 10. The (non-dimensional) Lagrangian parameters are x and
ϕ, representing the plunge and the pitch, respectively. The two nonlinear springs,
extensional and rotational respectively, have both linear and cubic coefficients. The
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t

x

Fig. 9 Time-evolution of the primary system with NES disengaged in subharmonic resonance
(black line) and with NES engaged (red line), for η3 = 0.3 and σ = −0.5

Fig. 10 Rigid airfoil with NES under steady wind

position of the NES with respect to the center of mass of the airfoil is described
by the (non-dimensional) parameter δ: if it is positive, then the NES is windward,
otherwise, if δ is negative, the NES is leeward. The non-dimensional equations of
motion are

ẍ + n12ϕ̈ + μg11ẋ + �2x + μ2g11ϕ − ξ(ẏ − ẋ + α̇δ)

− κ(y − x + αδ)3 + n1x3 = 0

n12ẍ + n22ϕ̈ + μg21ϕ̇ + k21x + (n22 − μ2g21)ϕ

+ ξ(ẏ − ẋ + α̇δ)δ + κ(y − x + αδ)3δ + n2ϕ
3 = 0

mÿ + ξ(ẏ − ẋ + α̇δ) + κ(y − x + αδ)3 = 0 (53)

The comparison between (53) and (1) allows one to identify N = 2 and the relevant
matrices and columns as
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x =
{

x
ϕ

}
, M =

[
1 n12

n12 n22

]
, C(μ) = μ

[
g11 0
g21 0

]
,

K(μ) =
[
�2 μ2g11
k21 n22 − μ2g21

]
, r =

{
1

−δ

}
, n =

{
n1x3

n2ϕ3

}
(54)

The following numerical values are chosen, corresponding to those used in [15]:
n12 = n21 = 0.2, n22 = 0.25, g11 = 0.2, g21 = −0.08, � = 0.5, k21 = 0,
n1 = n2 = 1, m = 0.02, ξ = 0.008. For the specified values, the critical wind
turns out to be μ0 = 0.8704, the corresponding critical frequency ω = 0.8704
(imaginary part of the eigenvalue) and the right and left eigenvectors u = {0, 1}T and
v = {−0.6521−0.5635i, 0.5217+2.7486i}T , respectively. The relevant Amplitude
Modulation Equations are not reported in their explicit form for the sake of brevity.

InFig. 11 the equilibriumbranches of theAME, corresponding to periodicmotions
in the variables x, ϕ, z, are shown for (a) windward NES (δ = 0.75) and (b) leeward
NES (δ = −0.75). The red line describes the branch when the NES is disengaged,
and the dots represent results of the numerical integration of the original equations
(53), which are in good agreement. It can be seen that, when the NES is disengaged,
a super-critical Hopf bifurcation occurs at μ1 = 0 and stable periodic motions are
triggered for increasing values of μ1, whose amplitudes are represented by the red
line. The NES shifts forward the position of the bifurcation points, but it also makes
the bifurcation sub-critical. Indeed two turning points occur, as well as two secondary
Hopf bifurcation points which trigger stable periodic motions in a, corresponding to
quasi-periodicmotions in x,ϕ and z (the amplitude of the limit cycles are shown in the
pictures). In case of windward NES (Fig. 11a), next to the second turning point, the
amplitude of the branch is larger than that without NES. It means that, in this case, the
NES gives a harmful contribution to the dynamics of the system. On the other hand,
in case of leeward NES (Fig. 11b), the branch of the amplitude is always underneath
the one corresponding to the case without NES. Therefore, for leeward NES, the
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Fig. 11 Equilibrium branches of the slow flow on the plane (μ1, a): a κ = 10, δ = 0.75; b
κ = 10, δ = −0.75. Red line without NES; black line with NES; dots numerical integrations of the
originating equations; continuous line stable; dashed line unstable; black square secondary Hopf
point
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Fig. 12 Phase portrait on the plane (b, a): a κ = 10, μ1 = 0.05, δ = 0.75; b κ = 10, μ1 = 0.07,
δ = −0.75. Red line manifold; blue line trajectory; black circle stable equilibrium point; black
cross unstable equilibrium point

effective reduction of the amplitude of oscillations is accomplished. These results are
in agreement with [2]. The two vertical dashed-dotted green lines in Fig. 11 represent
the values of μ1 for which the phase portraits of Fig. 12 are produced (μ1 = 0.05
and μ1 = 0.07, respectively). In particular, from Fig. 12a it is evident how the stable
equilibrium point (black circle), which lies on the manifold, asymptotically attracts
the dynamic evolution of the system; as a correspondence, periodic oscillations in
the variables (x, ϕ, z) are produced. On the other hand, in Fig. 12b, realized for a
value of μ1 between the two secondary Hopf bifurcations, the equilibrium points
are unstable, and a limit cycle in (b, a) is obtained. It corresponds to quasi-periodic
oscillations in (x, ϕ, z), which are in good agreement with the relevant results of the
numerical integrations of the originating equations (53).

3.4 Nonlinear Elastic String

Anonlinear extensible elastic stringPQ is considered (see Fig. 13 and [24] for details
on this case study). The string is restrained at P, while a concentrated mass mQ and a
vertical elastic spring of linear stiffness kQ are applied at Q. The string is supposed of
initial length � and prestress tensile force N̄ . An external, distributed, harmonically
time-dependent, force p(x) cos(�t) is supposed to be applied to the string (x being
the abscissa measured in the prestressed configuration and t the time). The mass per
unit length of the string is ρ and its longitudinal stiffness EA. A NES characterized
by a mass m, cubic stiffness coefficient k and linear damping coefficient c, is linked
to the string at point C, corresponding to the abscissa xC . Denoting by v(x, t) the
in-plane transverse displacement of a generic point of the string and by y(t) the dis-
placement of the NES, the nonlinear equations of motion, up to the cubic order, read
(see [19, 26] for the equations of motion of the string, obtained after the classic con-
densation procedure of the longitudinal displacement and valid under the hypothesis
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Fig. 13 Internally
nonresonant elastic string
equipped with a NES

y

P
Qv(x, t)

xC
x

k c

m

kQ

mQ
NC

f (x, t)

of large ratio between the celerity of longitudinal vs. transverse waves)

N̄v′′(x, t) + EA

�
v′′(x, t)

[∫ �

0

v′2(x, t)

2
dx

]
− ρv̈(x, t)

+ p(x) cos(�t) −
[
k(v(x, t) − y(t))3

+ c(v̇(x, t) − ẏ(t))
]
δ(x − xC) = 0

mÿ(t) −
[
k(v(xC, t) − y(t))3

+ c (v̇(xC, t) − ẏ(t))
] = 0 (55)

where δ(x) is the Dirac delta, the dot indicates time-derivative and the prime space-
derivative.

The geometric boundary condition at P states that v(0, t) = 0, while the mechan-
ical boundary condition, to be applied at Q, reads

N̄v′(�, t) + EA

�
v′(�, t)

[∫ �

0

v′2(x, t)

2
dx

]

= −kQv(�, t) − mQv̈(�, t) (56)

In nondimensional form, the partial differential problem becomes:

v̈ + ζ v̇ − v′′ − ηv′′
[∫ 1

0

v′2

2
dx

]

+
[
κz3 + ξ ż

]
δ(x − xC) = p cos(�t)

m(z̈ − v̈C) + κz3 + ξ ż = 0 (57)
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and the relevant boundary conditions are:

v(0, t) = 0

v′(1, t) + ηv′(1, t)

[∫ 1

0

v′2

2
dx

]

= −kQv(1, t) − mQv̈(1, t) (58)

where vC(t) := v(xC, t), η = EA/N̄ and z(t) := v(xC, t) − y(t), and an external
linear damping is introduced through the coefficient ζ .

The application of a Galerkin projection of (57)–(58), using as trial functions
the first N eigenfunctions ϕj(x) = sin(ωjx) (j = 1, . . . , N) of the homogeneous
linearized problem when NES is disengaged (ωj are the natural frequencies of the
string), allows one to obtain a discrete, approximate, version of the equations of
motion, which read as (3) and (4). In particular, indicating with xj(t) the unknown
modal amplitudes (v(x, t) = ∑N

j=1 xj(t)ϕj(x)), the relevant matrices and columns
read:

x = {xh}, M = {mhk}, C = {chk},
K = {khk}, r = {rh}, n = {nh} (59)

where

mhk =
{
1

0
, chk =

{
2ξhωh

0
, khk =

{
ω2

h h = k

0 h �= k
(60)

and

r = {ϕh(xC)}, n =
{

nhxh

N∑
j=1

j2x2j

}
,

f1 = {ph}, f3 = {0} (61)

with nh elastic coefficients, ξh modal damping factors and ph modal forces, h, k =
1, . . . , N .

Actually, the MSHBM was extended in [24] for infinite dimensional systems,
i.e. directly working on partial differential equations as (57) with b.c. (58). Being
the results in very good agreement with those obtained for a Galerkin projection
with large N , here pictures relevant to the direct case of [24] are shown, obtained
when η = 2.825, mQ = 0.3167 and kQ = 3.9× 10−3, the external force is assumed
as uniform (p(x) ≡ p) with frequency � = ω2(1 + σ) close to the 1:1 resonance
with the second mode of the string (here the detuning is directly applied to the
forcing frequency and not considered as a modification of the stiffness) and the
external damping coefficient of the string is ζ = 1.557%. The (nondimensional)
parameters of the NES are m = 0.05, κ = 400, ξ = 0.01. Moreover, the first four
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(nondimensional) natural frequencies of the string are ω1 = 1.208, ω2 = 3.831,
ω3 = 6.722, ω4 = 9.738. The NES is supposed to be applied at about the antinode
of the resonant mode, i.e. xC = 0.4. In the generating solution, the contribution of the
resonant mode is retained only, so that it contains just the term of frequency ω = ω2;
the harmonic balance is then applied exclusively in correspondence of the frequency
ω. The relevant Amplitude Modulation Equations are not shown here for the sake of
brevity.

Amplitude of periodic motions of both the string and NES, for force amplitude
valueη1 = 0.007, are shown inFig. 14 in terms of frequencydetuningσ . In particular,
in Fig. 14a, the frequency-response curve obtained for disengaged NES (black curve)
is superimposed to the corresponding curve obtainedwhenNES is engaged (red line).
In Fig. 14b, the amplitude of oscillation b of the NES is shown. Blue points represent
Hopf bifurcations. It is evident the beneficial effect of the NES, whose presence
reduces the peak of the string amplitude of oscillations a.

In Fig. 15a, b, the WMR (for σ = 0.064) and SMR (for σ = 0.070) are superim-
posed to the invariant manifold, respectively. The first one develops itself close to the
fold of the invariant manifold, while the second one describes relaxation oscillations
around it.

In Fig. 16, the periodic time-evolutions of the vertical displacement of the mid-
span of the string (vm := v(1/2, t))is shown for σ = 0.02. They are superimposed
to the corresponding evolutions (dotted line) obtained by time-integration of the
approximated system of ODE, which is drawn after the Galerkin projection of (57),
(58) on a basis constituted by the 8 first natural modes of the string. They show a
very good agreement.

σ

a

(a)

σ

b

(b)

Fig. 14 Frequency-response curves of the string (a) and NES (b), for η1 = 0.007. Red line
response with NES at the antinode; black line response with NES disengaged. Blue points indicate
Hopf bifurcations. Continuous line stable; dashed line unstable
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Fig. 15 Weakly modulated response (σ = 0.064, blue line (a)) and strongly modulated response
(σ = 0.070, black line (b)) with NES at the antinode, for η1 = 0.007; red line invariant manifold.
Continuous line stable; dashed line unstable
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Fig. 16 Periodic time-evolution of the string mid-span, for p = 0.007 and σ = 0.02. Continuous
line reconstituted functions from MSHBM; dotted line reconstituted functions from a discrete
Galerkin model

4 Conclusions

In this paper, a general, nonlinear, multi-d.o.f. system, equipped with an essentially
nonlinear oscillator with small mass, NES, is considered. Aim of the NES is to
passively control the amplitude of vibrations of the primary system, which here is
excited by concurrent effect of steadywind, inducing aHopf bifurcation, and both 1:1
and 1:3 resonant harmonic forces; no internal resonances are allowed. The MSHBM
is applied in order to obtain the Amplitude Modulation Equations, which turn out
to be singular perturbed equations. Numerical results are shown for different case
studies, in order to detect the single effect of the excitations and how theNESmodifies
the predominant dynamics of the principal system. The outcomes guarantee good
agreement with the response as obtained by numerical integrations of the equations
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of motion; moreover they assure good reliability of the MSHBM (a) to detect the
predominant dynamics of the system and (b) to be used as valid tool for optimization
purposes in the choice of the parameters and position of the NES.
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Appendix A: Coefficients of the Equations

The index H indicates the Hermitian (transpose and complex conjugate). The ex-
pression of the coefficients of (19) are:

c1 = 2iωvHMu + vHCu, c2 = −iωvHC1u − vHKμu,

c3 = −vHKσ u, c4 = −iωvHr, c5 = −3vHr,

c6 = −3vHn(u, u, ū), c7 = −3vHn(w0, ū, ū),

c8 = −6vHn(u, w0, w̄0), c9 = 1

2
vH f1 (62)

In (20) the column matrices wj (j = 1, . . . , 8) are the solutions of the following
singular algebraic problems:

w1 : (K0 + iωC0 − ω2M)w1 = −iω
(

C1u

− 1

c1
(vHC1u)(2iωMu + C0u)

)

−
(

Kμu − 1

c1
(vHKμu)(2iωMu + C0u)

)
(63)

w2 : (K0 + iωC0 − ω2M)w2 = −
(

Kσ u

− 1

c1
(vHKσ u)(2iωMu + C0u)

)
(64)

w3 : (K0 + iωC0 − ω2M)w3 = −6
(

n(u, w0, w̄0)

− 1

c1
vHn(u, w0, w̄0)(2iωMu + C0u)

)
(65)

w4 : (K0 + iωC0 − ω2M)w4 = −iω
(

r

− 1

c1
vHr(2iωMu + C0u)

)
(66)

w5 : (K0 + iωC0 − ω2M)w5 = −3
(

r

− 1

c1
vHr(2iωMu + C0u)

)
(67)
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w6 : (K0 + iωC0 − ω2M)w6 = −6
(

n(u, u, ū)

− 1

c1
vHn(u, u, ū)(2iωMu + C0u)

)
(68)

w7 : (K0 + iωC0 − ω2M)w7 = −6
(

n(w0, ū, ū)

− 1

c1
vHn(w0, ū, ū)(2iωMu + C0u)

)
(69)

w8 : (K0 + iωC0 − ω2M)w8 = −1

2

(
f1

− 1

c1
vH f1(2iωMu + C0u)

)
(70)

The solution is made unique by the normalization condition wT
j u = 0.

Moreover wj (j = 9, . . . , 15) are the solutions of the following non-singular
algebraic problems, in which, however, compatibility is satisfied.

w9 : (K0 + 3iωC0 − 9ω2M)w9 = −3iC1w0 − Kμw0 (71)

w10 : (K0 + 3iωC0 − 9ω2M)w10 = −Kσ w0 (72)

w11 : (K0 + 3iωC0 − 9ω2M)w11 = −3iωr (73)

w12 : (K0 + 3iωC0 − 9ω2M)w12 = −r (74)

w13 : (K0 + 3iωC0 − 9ω2M)w13 = −n(u, u, u) (75)

w14 : (K0 + 3iωC0 − 9ω2M)w14 = −6n(w0, u, ū) (76)

w15 : (K0 + 3iωC0 − 9ω2M)w15 = −3n(w0, w0, w̄0) (77)

In (45)–(50), the expressions of the right hand side terms are:

F1 = −ζωa − 3

32ω3 η3κca2 sin(3α) − 1

2
ξb1 cos(α − β1)

+ 3

8ω
κb31 sin(α − β1) + 3

8ω
κb21b3 sin(α + 2β1 − β3)

+ 3

4ω
κb1b23 sin(α − β1) (78)

F2 = 3

64ω5
η23κca − σω

2
a − 3

32ω3 η3κca2 cos(3α) + 3

8ω
κca3

+ 1

2
ξb1 sin(α − β1) + 3

8ω
κb31 cos(α − β1)

+ 3

8ω
κb21b3 cos(α + 2β1 − β3) + 3

4ω
κb1b23 cos(α − β1) (79)

F3 = −1

2
mω2a cos(α − β1) + 1

2
mω2b1
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− 3

8
κb21b3 cos(3β1 − β3) − 3

4
κb1b23 (80)

F4 = 1

2
mω2a sin(α − β1) + 1

2
ξωb1 − 3

8
κb21b3 sin(3β1 − β3) (81)

F5 = 9

8
η3m cos(β3) − 9

64
η3mσ cos(β3) + 27

32
η3mζ sin(β3)

+ 27

4096ω6 η33mκc cos(β3) + 27

128ω2 η3mκca2 cos(β3)

− 9

64
κcma3 cos(3α − β3) − 1

8
κb31 cos(3β1 − β3)

− 9

64
κmb31 cos(3β1 − β3) + 9

2
mω2b3

− 3

4

(
1 + 9

8
μ1

)
κb21b3 − 3

8

(
1 + 9

8
μ1

)
κb33 (82)

F6 = 27

32
η3mζ cos(β3) − 9

8

(
1 − 1

8
σ
)
η3m sin(β3)

− 27

4096ω6 η33κcm sin(β3) − 27

128ω2 η3κcma2 sin(β3)

− 9

64
κcma3 sin(3α − β3) − 1

8

(
1 + 9

8
m

)
κb31 sin(3β1 − β3)

− 3

2

(
1 + 9

8
m

)
ξωb3 (83)
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Hysteretic Beam Model for Steel Wire
Ropes Hysteresis Identification

Biagio Carboni, Carlo Mancini and Walter Lacarbonara

Abstract A nonlinear hysteretic beam model based on a geometrically exact planar
beam theory combined with a continuum extension of the Bouc-Wen model of hys-
teresis is proposed to describe the memory-dependent dissipative response of short
wire ropes which have the unique feature of exhibiting hysteretic energy dissipation
due to the interwire friction. With the proposed model, hysteresis is introduced in
the constitutive equation between the bending moment and the curvature within the
special Cosserat theory of shearable beams. The model is indeed capable of describ-
ing the hysteretic behavior exhibited by short steel wire ropes subject to flexural
cycles. The model parameters which best fit a series of experimental measurements
for selected wire ropes are identified employing the Particle Swarm Optimization
method. The identified parameters are used to reproduce other experimental tests on
the same wire ropes obtaining a good accuracy.

1 Introduction

Wire ropes are structural elements usually employed to resist large axial loads while
providing high strength, durability and reliability. In these applications the ropes
length is much larger than the diameter usually resulting in a negligible bending
stiffness along the cable length except in regions near the boundaries or point loads
where boundary layers are produced. On the contrary, when the wire ropes are rel-
atively short (i.e., the ratio between length and diameter is comparable to that char-
acteristic for beams) and subject to cyclic loadings, the bending stiffness cannot be
neglected and the force-displacement response shows hysteresis loops due to the
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relative sliding between the wires. The idea of exploiting the bending behavior of
short wire ropes to absorb and dissipate energy was proposed for the first time by
Stockbridge in the last century [36]. More recently, several applications based on
the interwire friction exhibited by short wire ropes have been explored [6, 11, 17,
18, 37, 43]. Within this context, Carboni et al. proposed a new rheological device
capable of providing several types of hysteretic responses employing assemblies of
wire ropes made of steel and shape memory alloy materials [5].

Challenging issues are inherent in the mathematical modeling and prediction of
the complicated mechanical behavior of wire ropes. Costello [9] proposed a theory in
which the individual wires are modeled using Loves equations for bending and twist-
ing of thin helical rods [26]. However, this model does not describe the frictional
effects. A direct approach based on the finite element method (FEM) consists in
constructing solid models which, upon reflecting the actual helical wire rope geom-
etry, are treated as a deformable continuum with frictional contacts [27, 30, 44].
The high computational burden due to the complexity associated with handling the
evolving contact regions between the wires does not allow to use three-dimensional
FEM models for predicting the wire rope hysteretic behavior. Analytical [20, 21]
or semi-analytical methods based on one-dimensional polar continuum formulations
supplemented by rheological models for the constitutive laws are more suitable for
describing the hysteresis exhibited by wire ropes. Sauter and Hagedorn [32] extended
the Masing model for a continuous system to model the short cables of a Stockbridge
damper. Rafik and Gerges [16] developed a model based on a curved beam to describe
wire rope springs deforming in tension-compression cycles.

A phenomenological model often used to describe the mechanical behavior of
hysteretic systems is the Bouc-Wen (BW) model [3, 45]. It has been used in a wide
variety of studies for modeling discrete hysteretic restoring forces or stresses. Several
extended versions of the BW model have been proposed to take into account stiffness
and strength degradation or pinching behavior [1, 2, 5]. Recently, the BW model has
been generalized to continuous systems for describing materially nonlinear problems
such as elastoplastic structures. Sivaselvan and Reinhorn [35], starting from the orig-
inal model proposed by Bouc [3], developed a smooth hysteretic method based on the
viscoplasticity theory in the context of the flexibility approach to simulate inelastic
frame structures according to a state space formulation [34]. A three-dimensional
BW-type model obtained by smoothening a three-dimensional yield surface was
proposed by Casciati [7]. Triantafyllou and Koumousis [39] introduced an elasto-
plastic hysteretic constitutive relationship derived by the BW model in the classical
Euler-Bernoulli beam formulation to conduct small and large displacement dynamic
analysis of frame structures. The same authors [38, 40] extended the plastic formu-
lation based on the BW model to plane stress elements.

Another important task in the design of applications that rely on hysteretic behav-
iors is represented by the identification of the model parameters on the basis of exper-
imental measurements. Identification strategies can be classified according to several
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criteria. A useful distinction is between parametric and non parametric methods. An
example of a non parametric method is the restoring force method initially developed
by Masri and Caughey [28] and by Donnell and Crawley [10]. This method deals with
the identification of nonlinear dynamical systems for which accelerations, velocities
and displacements are directly measured or obtained via integration/differentiation.
Extensive studies were carried out to devise suitable techniques for data processing
[46] and suitable excitation signals selection [47].

More recently there has been an extensive use of heuristic methods belonging
to the family of genetic algorithms for global optimization problems. The Particle
Swarm Optimization (PSO) is a gradient-free method proposed by Kennedy and
Eberhart [22]. The main advantages are (i) the applicability to a single type of data
without requiring differentiation or integration, (ii) the robustness against instrumen-
tal noise, and (iii) the property of converging to the global minimum of an objective
function without restrictions. On the other hand, the main disadvantage consists in
the lack of well-posed proofs of convergence. The PSO algorithm has been used
for a wide number of applications such as topology and shape optimization [14,
15], truss and frame structures optimization [12, 19, 33], aircraft wings optimization
[41]. Several variants of the original PSO algorithm have been proposed mainly tar-
geted to the identification or optimization of nonlinear hysteretic and chaotic systems
[23, 25, 48]. Charalampakis and Dimou [8] employed two variants of the PSO algo-
rithm to calibrate the BW model parameters which best fitted the hysteretic force-
displacement curves of a steel welded-bolted joint. Quaranta et al. [31] compared
different PSO versions for identifying the parameters of the van der Pol-Duffing
oscillators.

In this paper, a continuum hysteretic beam formulation based on the BW model of
hysteresis is proposed to describe the hysteretic behavior of steel wire ropes subject
to flexural cycles (see Fig. 1). The considered theory is the Special Cosserat theory
of shear deformable planar beams undergoing finite displacements and rotations. A
BW-type hysteretic relationship is established between the bending moment and the
associated curvature. Experimental quasistatic tests are performed on assemblies of
steel wire ropes, clamped at both ends, fixing one end and prescribing to the other end
a cyclic displacement in the direction orthogonal to the ropes length. The restoring
forces developed by the wire ropes are measured for several displacement amplitudes.
The wire ropes undergo a deflection with opposite curvatures having the nodal point
at the midspan. The parameters which best fit the experimentally obtained force-
displacement curves are identified by means of the PSO algorithm. The proposed
model represents a step forward from phenomenological towards mechanical mod-
eling. The equivalent beam model presents the actual geometric features (length and
circular cross section) and boundary conditions of the wire rope while the BW-type
moment-curvature constitutive law is adopted for modeling the memory effects due
to the interwire friction. Hysteresis is introduced in the bending moment according
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(a) (b)

(c) (d)

Fig. 1 The investigated wire ropes: a 7 × 19 and c 7 × 7 and their cross sections (b) and (d),
respectively

to the assumption that this loading state causes most of the relative sliding of the
wires. For more general loading states, hysteresis can be also associated to the axial
force by defining a suitable interaction law with the hysteretic bending moment.

2 The Bouc-Wen Model of Hysteresis

The restoring force f of the BW model enhanced with a cubic term is the summation
of the elastic force kex +k3x3 and hysteretic force z, respectively, in which x denotes
the displacement, ke indicates the elastic stiffness and k3 is the coefficient of the
cubic restoring term. The hysteretic force evolution is described by the first-order
differential equation

ż = [kd − (γ + β sgn(zẋ)) |z|n]ẋ (1)

where kd , γ, β and n together with ke and k3 are the constitutive parameters of the
model and the overdot indicates differentiation with respect to time t . The tangent
stiffness of the hysteretic force denoted by zx is obtained by multiplying the left- and
right-hand sides of (1) by dt , and dividing the resulting equation by dx thus giving

zx = kd − (γ + β sgn(zẋ)) |z|n . (2)

The hysteretic tangent stiffness at the origin is kd , while the tangent stiffness of the
overall restoring force f is ke + kd . Along the loading and unloading branches, the
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hysteretic force z reaches upper and lower bounds equal to ±[kd/(γ + β)] 1
n when

the displacement is such that zx = 0. Thus, if the cubic restoring term is set to zero,
the tangent stiffness of the restoring force becomes ke which thus represents the
post-elastic stiffness. These considerations are valid only when γ +β > 0 for which
the model exhibits a softening behavior. Moreover, these model properties can guide
the initial choice of the parameters design space.

The nondimensional form of the restoring force and the evolution equation of the
hysteretic component read

f̃ = δx̃ + (1 − δ)z̃ + k̃3 x̃3, (3)

˙̃z = [1 − (γ̃ + β̃ sgn(z̃ ˙̃x)) |z̃|n] ˙̃x, (4)

respectively, where the overdot denotes differentiation with respect to nondimen-
sional time t̃ and the following nondimensional variables and parameters are intro-
duced:

x̃ = x

x0
, t̃ = ωt, z̃ = z

z0
, δ = ke

ke + kd
, k̃3 = k3x2

0

ke + kd
. (5)

In (5), x0 indicates a characteristic displacement, z0 = kd x0, ω = √
N0/(x0m) with

N0 = (ke + kd)x0 and m denoting a characteristic mass. The other dimensionless
parameters are (γ̃, β̃) = (γ,β)x0zn−1

0 .

3 The Hysteretic Beam Model

The formulation of the shearable nonlinear beam follows [24]. Let us consider a
fixed reference frame (O, e1, e2, e3) and a straight reference configuration for the
beam centerline described by the vector ro(s) = se1 where s ∈ [0, l] is the arclength
parameter and l denotes the initial beam length. The orientation of the beam cross
section in the reference configuration is described by the intrinsic frame (bo

1, bo
2, bo

3)

of which bo
1 and (bo

2, bo
3) are collinear with e1 and the principal axes of inertia of

the cross section, respectively. The reference position of the material points of the
beam is defined by the position vector po(s) = ro(s) + x2(s)bo

2 + x3(s)bo
3. The

cross sections are assumed to be locally rigid implying the preservation of planarity.
We consider only planar motions for the beam centerline which can be described by
the displacement vector u(s, t) = u(s, t)e1 + v(s, t)e2 while we let the rotation of
the cross sections about e3 be described by θ(s, t). The actual configuration of the



266 B. Carboni et al.

centerline is given by the position vector r(s, t) = ro(s, t)+ u(s, t) while the actual
orientation of the cross sections is described by the triad (b1, b2, b3). The unit vector
b1 makes the angle θ(s, t) with bo

1 = e1. The position vector of a material point in
the actual beam configuration is described by p(s, t) = r(s, t)+ x2(s)b2 + x3(s)b3
where b1 = cos θe1+sin θe2, b2 = − sin θe1 + cos θe2, and b3 = e3. The kinematic
unknowns are (u(s, t), v(s, t), θ(s, t)). Denoting by ∂s differentiation with respect
to s, the stretch vector is defined as ν := ∂s r and expressed as

ν(s, t) = ν(s, t)b1(s, t) + η(s, t)b2(s, t) (6)

where ν and η represent the beam stretch and shear strain, respectively. The third
generalized strain is the bending curvature μ given by

μ(s, t) = ∂sθ. (7)

The stretch and the shear strain can be expressed in terms of the displacement gradient
and the flexural rotation angle as

ν(s, t) = (1+∂su) cos θ+∂sv sin θ, η(s, t) = −(1+∂su) sin θ+∂sv cos θ. (8)

The generalized strains (ν, η,μ) are related through the constitutive relationships
to the generalized stress resultants and moment resultant, also referred to as con-
tact forces and contact couple. The contact force vector is n = N (s, t)b1(s, t) +
Q(s, t)b2(s, t) while the bending moment is M(s, t). The linear constitutive equa-
tions for an elastic isotropic beam read

N (s, t) = E A(ν(s, t) − 1), Q(s, t) = G A∗η(s, t), M(s, t) = EJμ(s, t),
(9)

where E and G represent Young’s modulus and the shear modulus, respectively; A
is the area of the cross section, A∗ is the shear area and J is the area moment of
inertia about the principal axis b3.

The equations of motion read

ρA∂t t u = (∂s N − μQ)cosθ − (∂s Q + μN )sinθ + f1, (10)

ρA∂t t v = (∂s N − μQ)sinθ + (∂s Q + μN )cosθ + f2, (11)

ρJ∂t tθ = ∂s M + νQ − ηN + c, (12)

where ρ is the mass density, f1, f2, and c indicate the forces and the couple per unit
reference length, respectively. Equations (10)–(12) are obtained from the balance of
linear and angular momentum in the fixed reference frame. They are supplemented
by general boundary and initial conditions expressed as
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Fig. 2 The planar beam in
the reference (dashed lines)
and actual configurations
(solid lines)

u(0, t) = u(t), θ(0, t) = θ(t), u(l, t) = û(t), θ(l, t) = θ̂(t) t ∈ [0, T ],
(13)

u(s, 0) = ŭ(s), θ(s, 0) = θ̆(s) s ∈ [0, l], (14)

where [0, T ] denotes the time integration domain. Figure 2 shows the beam in the
reference configuration that undergoes a planar motion to the actual configuration.

In the present model, hysteresis is introduced in the constitutive equation (9)3
between the bending moment and the flexural curvature. The hysteretic constitutive
equation reads

M(s, t) = EJeμ + Mh + k3μ
3 (15)

where k3 represents the coefficient of the cubic elastic bending moment, Mh is the
hysteretic bending moment whose evolution is governed by the first-order differential
equation

∂t Mh = {
EJh − [

γ + β sgn(Mh∂tμ)
] |Mh |n}

∂tμ (16)

with ∂t denoting differentiation with respect to time t . The parameters (γ,β, n) are
the same as those defined in (1). The tangent stiffness of the bending moment at the
origin μ = 0 is EJt = EJe + EJh while the post-elastic bending stiffness is EJe,

attained when ∂t Mh = 0, Mh = ±[EJh/(γ + β)] 1
n and k3 = 0.

The main objective of the hysteretic beam model is to describe the experimentally
obtained hysteretic responses of steel wire ropes subject to bending cycles. The
nonlinear beam model can reproduce the actual geometry (length and cross section)
of the wire rope, boundary and loading conditions during the tests. The hysteretic
bending moment, introduced in the constitutive equation, has the designated function
of describing the hysteretic behavior due to the interwire friction within the rope.
The beam cross section is assumed as the circular envelope of the actual cross section
of the wire rope. However, to take into account the fact that the cross section of a
wire rope is not compact but is constituted by an assembly of individual wires, an
additional parameter ψ ∈ (0, 1] is introduced to reduce the bending stiffness EJ of
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the compact circular cross section bounding the actual rope cross section. By letting
the new parameter δ ∈ (0, 1) denote the post-elastic-to-elastic bending stiffness (in
the limit n = ∞), we set

EJt = ψEJ,
EJe

EJt
= δ,

EJh

EJt
= 1 − δ. (17)

The parts of the bending stiffness indicated by EJe and EJh , respectively, can be
written as

EJe = δEJt = δψEJ, EJh = (1 − δ)EJt = (1 − δ)ψEJ. (18)

The beam length, Young’s modulus, cross section (zeroth and second area
moments), boundary and loading conditions are assumed on the basis of the actual
wire ropes geometrical and mechanical features. The hysteresis parameters (γ,β, n)
and the stiffness parameters (ψ, δ) are calibrated to best fit the experimental measure-
ments. This model has the purpose of describing, among other goals, the applications
exploiting the frictional dissipation of wire ropes [4, 5]. The hysteretic features of
the response of a given wire rope type under bending can be evaluated carrying out
an experimental campaign whose results are used for identifying the parameters of
the proposed model. The advantage is that the identified model of a given wire rope
can be used during the design process of the specific application which makes use of
wire ropes thus drastically reducing the number of experimental tests required and
the overall design costs.

Equations (10)–(12) can be rendered nondimensional introducing the following
nondimensional variables and parameters [24]: s̃ = s/ l, t̃ = ωct , ũ = u/ l, ṽ =
v/ l, ωc = [EJ/(ρAl4)]1/2, ka = E Al2/(EJ), ks = G A∗l2/(EJ), k̃3 = k3/(EJ),
( f̃1, f̃2) = ( f1, f2)l3/(EJ), c̃ = cl2/(EJ). The nondimensional hysteretic moment
is given by

M̃h = Mhl/EJ (19)

whose evolution is described by the following nondimensional equation:

∂t̃ M̃h =
{
(1 − δ)ψ −

[
γ̃ + β̃ sgn(Mh∂t̃μ)

] ∣∣∣M̃h

∣∣∣n}
∂t̃μ (20)

where
γ̃ = γ(EJ)n−1/ ln, β̃ = β(EJ)n−1/ ln . (21)

The nondimensional equations of motion read

∂t̃ t̃ ũ = [ka∂s̃ν − ksη∂s̃θ]cosθ − [ks∂s̃η + ka(ν − 1)∂s̃θ]sinθ + f̃1, (22)

∂t̃ t̃ ṽ = [ka∂s̃ν − ksη∂s̃θ]sinθ + [ks∂s̃η + ka(ν − 1)∂s̃θ]cosθ + f̃2, (23)
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∂t̃ t̃θ/ka = (ψδ + k̃3)∂s̃ s̃θ + ∂s̃ M̃h + ksνη − ka(ν − 1)η + c̃ (24)

where the assumption that the beam has a uniform cross section along the overall
span has been adopted. These equations are supplemented by boundary and initial
conditions expressed by (13) and (14). The solution can be obtained via a finite ele-
ment discretization [24]. The solution at each step is obtained employing a Newton-
Raphson iterative scheme.

4 Experimental Bending Tests for Steel Wire Ropes

The complex geometry of the contact areas between the wires of spiral and stranded
wire ropes makes the experimental tests necessary for quantifying the dissipation
capacity. An experimental campaign was carried out to evaluate the hysteresis cycles
of two stranded steel wire ropes subject to bending cycles. The investigated wire
ropes have a diameter equal to 10 and 6 mm and are constituted by 7 strands of 19
steel wires and 7 strands of 7 steel wires of diameter equal to 0.65 mm, respectively.
Figure 1 shows the wire ropes and their cross sections. The tests were performed
employing the Material Testing System (MTS) in the DISG laboratory at Sapienza
University of Rome (Italy). Two groups of four parallel 7 × 19 and 7 × 7 wire ropes
were tested with the experimental setup illustrated in Fig. 3. The wire ropes ends are
clamped at the two thick steel bars denoted by B1 and B2, the former being connected
to the piston P of the MTS machine. Bar B2 is passed through by two smooth rods
(denoted by S1 and S2) and one threaded cylindrical rod (denoted by t). The threaded
bar does not touch the bar B2 while between the smooth rods s1 and s2 and B2 two
self-lubricated clinched joints are placed to allow a relative frictionless sliding. The
rods t, s1 and s2 are welded to a third steel bar denoted by B3 that is, in turn, fixed to
a load cell.

A sinusoidal displacement with a relatively low frequency equal to 0.1 Hz is
applied to B1 along the direction orthogonal to the wire ropes whose restoring force
is measured by the load cell (see Fig. 3). The wire ropes are subject to pure bending
thanks to the free sliding of bar B2 on rods s1 and s2. The two bolts (denoted by b1
and b2) on the threaded bar t can be used both for mounting the system and realizing
another testing setup in which the sliding of B2 is prevented. In the latter case, tensile
loads arise in the ropes and the measured force-displacement curves exhibit a strong
hardening behavior. In this paper only pure bending tests are presented.

Figure 4 shows the experimental setup with the undeformed and some deformed
configurations of the specimen. The wire ropes present a deflected shape character-
ized by a change of curvature through the midspan. Table 1 lists the experimental
tests for the 7×19 and 7×7 wire ropes. For each wire rope length and displacement
amplitude, 15 hysteresis cycles were measured to obtain a stabilized loop.



270 B. Carboni et al.

Fig. 3 Experimental setup
with the tested wire ropes
and their fixtures. The arrow
indicates the cyclic
displacement provided by
the MTS testing machine

Load
Cell

s1

s2

t
b1 b2

P

7x19 wire ropes

7x19 wire ropes

B1

B2

B3

Fig. 4 The experimental
setup showing the wire ropes
in the undeformed (a) and
deformed (b), (c)
configurations

(a) (b) (c)

Table 1 List of the performed experimental tests in which the wire rope section, the wire rope
length and the prescribed displacement are indicated

Wire rope
cross section

Length (mm) Displacement amplitude (mm)

7 × 19 75 5 10 15 20

7 × 19 85 5 10 15 20

7 × 19 90 5 10 15 −
7 × 7 100 5 10 15 20
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5 Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a heuristic global optimization method based
on the swarm intelligence theory and inspired from the social interactions in bird
flocks, schools of fish or swarms of insects. The algorithm starts from an initial
population (the particles) formed by several sets of parameters to optimize with
respect to an objective function (OF). Each particle is modified iteratively by a
velocity vector that is function of the best particle within the population and the best
values assumed by the particle itself until the considered iteration.

Here, we seek to identify the model parameters of the hysteretic beam which best
fit the experimentally obtained restoring forces as function of the prescribed dis-
placements. The measured restoring force is denoted by f (y) while the model-based
restoring force is indicated by f̂ (y). The mean square error (MSE) between mea-
sured and model-based restoring forces is assumed as objective function to minimize
and expressed as

OF(x) =
∑N

k=1 [ f (yk) − f̂ (yk |x)]2

Nσ2
f

(25)

where σ2
f and N are the variance and the number of samples of the experimentally

obtained restoring force, respectively, x denotes the parameters vector of the model,
and y indicates the displacement. Considering the particles xi (i = 1, 2, .., p) and the
lower and upper bounds xL B and xU B for the particle values, respectively, the initial
population is a matrix formed by p vectors whose values are drawn by a Gaussian
distribution on their ranges of variation. The particles are updated at the j th iteration
according to the following expression:

xk
i, j+1 = xi, j + vk

i, j+1 i = 1, 2, .., p, j = 1, 2, .., q (26)

where time is assumed to be equal to unity and q is the number of iterations. The
velocity is

vi, j+1 = wvi, j + c1r1 ◦ ( pi, j − xi, j ) + c2r2 ◦ ( p j − xi, j ) (27)

where w is the inertia factor; c1, c2 are the cognitive and social parameters, respec-
tively. These parameters in the simple PSO algorithm are constant and can be set to
w = 0.8, c1 = 2.8, and c2 = 1.3. A study about the effect of the values assigned
at the inertia factor and cognitive and social parameters can be found in [13]. The
vector pi, j represents the i th best ever particle at the j th iteration with respect to the
criterion expressed by (25). The vector p j denotes the best ever particle at the j th
iteration between all vectors of the population. The notation ◦ indicates element-by-
element multiplication and the vectors r1 and r2 are formed by random variables
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with uniform distributions in the interval [0, 1]. When a particle element exceeds
the assigned range of variation, its value is reset to the value belonging to the clos-
est boundary. The number of iterations q is chosen by the user according to the
values achieved by MSE that must be lower than a given tolerance for which the
identification is considered acceptable.

6 Identification Results

The experimentally obtained force-displacement hysteresis cycles are identified
using the proposed hysteretic beam model. The measured restoring forces are divided
by the number of wire ropes according to the fact that they work in parallel and equally
contribute to the total restoring force. The tests with the 7 × 19 wire rope of length
equal to 75 mm are identified with an individual parameters set for each displacement
amplitude. The set of model parameters, obtained by averaging the thus obtained val-
ues, is used to compute the hysteresis cycles for the other wire ropes lengths and
compared with the experimental measurements. The test with the 7 × 7 wire rope
for a displacement amplitude equal to 15 mm is identified with a parameters set that
is later employed to compute the hysteresis cycles for different displacement ampli-
tudes. Thus, the model-based cycles are compared with the experimentally obtained
curves.

The same geometric features and boundary conditions of the wire ropes are
assigned to the hysteretic beam. In particular, the beam length and the diameter
of the circular cross section are assumed equal to those of the wire ropes. The beam
ends are both clamped. The Young modulus and Poisson coefficient are assumed
equal to 206 GPa and 0.3, respectively, while the parameters (ψ, δ, γ,β, n, k3) to
identify are assigned ranges of variation according to the PSO algorithm. One end
of the beam (i.e., that at s = l) is subject to the displacement x = A sin ωt along
e2 (see Fig. 2) where A is the amplitude (equal, in turn, to that of the experimental
tests), ω = 0.628 rad/s is the circular frequency, and t ∈ (0, T ) is the time. The
generalized force f (s, t) = N (s, t) sin θ(s, t)+ Q(s, t) cos θ(s, t) along e2 at s = 0,
which coincides with the shear force Q(0, t) (since the clamp implies θ(0, t) = 0),
is the restoring force. Therefore, (x(t), f (0, t), t ∈ (t1, t2)) represent the displace-
ment and force to compare with the experimental measurements, t1 and t2 are the
time instants delimiting a stabilized hysteresis cycle. Time t can be seen as a para-
meter because the frequency ω is assumed so low that the inertia forces and rotary
inertia become negligible. The boundary and initial conditions for the beam can be
summarized as follows
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u(0, t) = θ(0, t) = 0, v(l, t) = x(t), θ(l, t) = 0, t ∈ [0, T ] (28)

u(s, 0) = θ(s, 0) = 0, s ∈ [0, l]. (29)

Note that the horizontal displacement u(t) at s = l is not restricted.
The identification task is performed employing concurrently the finite element

solver COMSOL Multiphysics [29] and Matlab [42]. The computational architecture
is managed by Matlab to which the input data are fed. COMSOL Multiphysics is used
for the computation of the hysteretic beam response across the beam span. At each
iteration of the PSO algorithm, the beam model parameters, evaluated by Matlab, are
given as input to COMSOL that performs the finite element discretization and solves
the problem. The vectors (x, f ) are fed back to Matlab for computing the OF (i.e.,
MSE) and performing the identification. The number of particles p and iterations q
are set to 10 and 75, respectively. Table 2 shows the assigned ranges of variation for
the parameters to identify. The coefficient of the cubic term k3 is set to zero a priori
and is not reported in the following results. These initial input data are evaluated by
means of some preliminary calculations.

Table 3 summarizes the optimal parameter sets selected by the PSO algorithm for
the 7×19 wire rope whose length is 75 mm while in Fig. 5 the comparisons between
the model-based and the experimentally obtained hysteresis cycles are shown. The
identification is accurately performed and the parameters which exhibit the lowest
variation with the displacement amplitude are ψ and δ regulating the elastic and
hysteretic stiffnesses. This suggests that the hysteretic beam model is suitable for
reproducing the hysteretic wire ropes response. For the displacement amplitude of
20 mm (Fig. 5d), both the experimentally obtained and model-based restoring forces
show a slight hardening. This is more pronounced for the model-based curves and is
due to the geometric effect of the bending curvature that takes finite values. Figure 6
shows a cycle of (a) the total and (b) the hysteretic bending moments as function of
the curvature at s = 0 for the beam length equal to 75 mm and the prescribed end

Table 2 Ranges of variation for the parameters to identify

ψ (–) δ (–) γ (N1−nm2−n ) β (N1−nm2−n ) n (–)

Min 0.008 0.1 0.8 0.8 1.0

Max 0.025 0.6 2 2 1.3

Table 3 Identified parameters and associated MSEs for the 7 × 19 wire rope of length equal to
75 mm

A (mm) ψ (–) δ (–) γ
(N1−nm2−n )

β
(N1−nm2−n )

n (–) MSE (%)

5 0.0159 0.251 1.478 1.729 1.275 0.43

10 0.0162 0.240 1.391 1.103 1.152 0.44

15 0.0166 0.21 1.218 1.151 1.165 0.40

20 0.0168 0.186 1.684 1.989 1.285 0.50
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Fig. 5 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a), 10 mm (b), 15 mm (c) and 20 mm
(d); the employed model parameters are reported in Table 3 and the identified tests are those for the
7 × 19 wire rope of length equal to 75 mm

(a) (b)

Fig. 6 a Total and b hysteretic bending moments versus the curvature at s = 0 for the beam length
of 75 mm with the model parameters of Table 4 and the prescribed end displacement equal to 5 mm
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(a) (b)

Fig. 7 a Elastic and b hysteretic bending moments across the beam span whose length is equal to
75 mm with the model parameters of Table 4 and for the prescribed end displacement equal to 5 mm

Table 4 Values of the model parameters obtained as mean values of the parameters in Table 3

ψ (–) δ (–) γ (N1−nm2−n) β (N1−nm2−n) n (–)

0.0164 0.222 1.443 1.493 1.219
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Fig. 8 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a) and 10 mm (b); the employed
model parameters are reported in Table 3 and the identified tests are those for the 7 × 19 wire rope
whose length is 75 mm

displacement of 5 mm. The elastic and hysteretic bending moments along the beam
length are illustrated in Fig. 7. The mean values of the model parameters reported in
Table 4 are used to reproduce the hysteresis curves for the other wire rope lengths.
Figures 8, 9 and 10 show the comparisons between the model-based and the experi-
mentally obtained hysteresis cycles for the wire rope lengths of 75, 80, and 90 mm,
respectively. The associated MSEs are given in Table 5. The mean values of the
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Fig. 9 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a), 10 mm (b), 15 mm (c) and 20 mm
(d); the employed model parameters are reported in Table 4 and the identified tests are those for the
7 × 19 wire rope whose length is 80 mm

parameters identified for the 7 × 19 wire rope of length equal to 75 mm are capable
of accurately describing the hysteresis curves obtained for the lengths equal to 75,
80, and 90 mm. The best results are achieved for the displacement amplitudes of
5, 10 and 15 mm while for the displacement amplitude of 20 mm some discrepan-
cies are observed. This loss of accuracy is mainly due to the hardening behavior
exhibited by both the model-based and experimentally obtained hysteretic cycles for
large displacement amplitudes. The hardening is more significant in the model-based
response, thus a variation of the constitutive parameters for different displacement
amplitudes is required for an accurate description of the experimentally obtained
curves. However, the achieved accuracy level is consistent with the practical require-
ments.
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Fig. 10 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a), 10 mm (b) and 15 mm (c); the
employed model parameters are reported in Table 4 and the identified tests are those for the 7 × 19
wire rope whose length is 90 mm

The experimentally obtained hysteretic cycles for the 7×7 wire rope can be accu-
rately described identifying the model parameters according to a single displacement
amplitude cycle. This is due to the fact that the ratio between the displacement ampli-
tudes and wire rope length is small enough to induce weak nonlinearities and the
parameters change with the displacement amplitude is negligible. In Table 6 the
parameters identified for fitting the hysteretic curve of the 7 × 7 wire rope for a
displacement amplitude equal to 15 mm are shown. The comparisons between the
experimentally obtained and model-based curves are shown in Fig. 11 with the asso-
ciated MSEs given in Table 7.
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Fig. 11 Comparison between the experimentally obtained (circles) and model-based (solid lines)
hysteresis cycles for displacement amplitudes equal to 5 mm (a), 10 mm (b), 15 mm (c) and 20 mm
(d); the employed model parameters are reported in Table 6 and the identified tests are those for the
7 × 7 wire rope

Table 5 MSEs between the model-based and experimentally obtained hysteresis cycles of Figs. 8,
9 and 10, identified by the wire rope type, length l and displacement amplitude A

Wire rope type l (mm) A (mm) MSE (%)

7 × 19 75 5 0.63

7 × 19 75 10 0.92

7 × 19 80 5 0.94

7 × 19 80 10 0.89

7 × 19 80 15 0.53

7 × 19 80 20 0.68

7 × 19 90 5 0.71

7 × 19 90 10 0.71

7 × 19 90 15 0.87
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Table 6 Identified model parameters which best fit the experimentally obtained hysteretic curve
of the 7 × 7 wire rope for a displacement amplitude equal to 15 mm

ψ (–) δ (–) γ (N1−nm2−n) β (N1−nm2−n) n (–)

0.0355 0.201 1.987 1.188 1.134

Table 7 MSEs between the model-based and experimentally obtained hysteresis cycles of Fig. 11,
identified according to the wire rope type, length l and displacement amplitude A

Wire rope type l (mm) A (mm) MSE (%)

7 × 7 100 5 1.1

7 × 7 100 10 0.68

7 × 7 100 15 0.45

7 × 7 100 20 0.51

7 Conclusions

A nonlinear hysteretic beam model based on the formulation of an equivalent shear
deformable beam with geometric nonlinearities and an extension of the Bouc-Wen
model of hysteresis to the one-dimensional polar continuum was proposed. Hys-
teresis is introduced in the constitutive equation for the bending moment given as a
direct summation of elastic and hysteretic components. The model aims to describe
the hysteretic behavior of steel wire ropes subject to bending cycles. Experimental
tests were performed by means of an ad hoc setup for evaluating the restoring force
exhibited by a group of steel wire ropes clamped at both ends and subject to a qua-
sistatic displacement of one end in the direction orthogonal to the wire ropes rest
position. The energy dissipation within the wire ropes is due to the interwire fric-
tion. Several tests were executed for three lengths of the wire ropes and for different
prescribed displacement amplitudes. The proposed model reduces the actual wire
rope to a compact nonlinear beam in which the hysteretic bending moment describes
the frictional dissipation in a phenomenological fashion and the Cosserat-type non-
linear beam formulation reproduces the actual mechanics. Thus the geometric and
boundary conditions of the beam are assumed as those of the wire ropes while the
dissipation properties are identified on the basis of experimental tests. Moreover, the
bending stiffness is reduced by an additional parameter denoted by ψ to take into
account the lack of compactness of the rope with respect to the equivalent cylindri-
cal rod. The parameters regulating the hysteretic moment and the parameter ψ were
identified using the PSO algorithm by best fitting the experimentally obtained curves
for the 7×19 wire rope of length equal to 75 mm and for the 7×7 wire rope subject to
a displacement amplitude of 15 mm. Thus, the identified parameters were employed
to reproduce the hysteresis curves obtained for different lengths of the 7 × 19 wire
rope and for different displacement amplitudes of the 7 × 7 wire rope. These curves
show a good agreement with the experimental results confirming that the proposed
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model is a valid tool for the design of a wide range of applications based on wire
ropes hysteretic behaviors.
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An Investigation into the Dynamic
Interaction Between an Electro-dynamic
Shaker and a Test Structure with Cubic
Nonlinearity

Gianluca Gatti, Michael J. Brennan and Ivana Kovacic

Abstract This chapter describes the dynamic behaviour of a coupled system where
a nonlinear oscillator is attached and driven harmonically by an electro-dynamic
shaker. The shaker is modelled as a linear single degree-of-freedom oscillator and
the nonlinear attachment is modelled as a hardening Duffing oscillator. The attach-
ment consists of four elastic wires, represented as springs, and its nonlinearity is
due to the geometric configuration of the springs, which incline as they extend. The
mass of the nonlinear system is much less than the moving mass of the shaker so
that the nonlinear system has little effect on the shaker dynamics. The objective is
to explore the dynamic behaviour of this system under a range of different condi-
tions. Of particular interest is the situation when the linear natural frequency of the
nonlinear system is less than the natural frequency of the shaker such that the fre-
quency response curve of the nonlinear system bends to higher frequencies and thus
interacts with the resonance frequency of the shaker. It is found that for some values
of the system parameters a two-part frequency response curve can occur: a closed
detached curve can appear as a part of the overall amplitude-frequency response, and
this detached curve can lie outside or inside the main continuous resonance curve.

1 Introduction

When a nonlinear oscillator is attached to a linear host structure, complex dynamics
can occur [1, 2]. In particular, if it is assumed that the linear system is excited by a
harmonic force, and that the responses of the two degree-of-freedom (DOF) system
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are predominantly harmonic at the frequency of excitation, multi-valuedness of the
steady-state solution may occur, which affects the shape of the frequency response
curve (FRC). Due to the coupling with the attachment, and for some particular
combinations of the system parameters, the FRC can have interesting features, such
as a detached resonance curve (DRC), lying inside or outside the main continuous
FRC. Outer DRCs have been identified in several studies for the case of a purely
nonlinear attachment with no linear stiffness term [3–7]. For the same condition,
i.e. in the case when the attachment has a quasi-zero-stiffness (QZS) characteristic
around the equilibriumposition, innerDRCsmay also appearwith stable andunstable
parts. These inner DRCs are of particular interest in this chapter.

For the sake of clarity, some assumptions are adopted in this study. The general
aim is to limit the number of system parameters, so that on the one hand, their
effect on the main features of the system dynamics are retained, and on the other
hand, a quantitative insight is possible without additional cumbersome mathematical
formulation. Further, it is assumed that the mass of the nonlinear attachment is
small compared to that of the linear system. The effect of this assumption is that
the nonlinear system does not have an appreciable effect on the vibration of the
forced linear system. Although such an assumption is reasonable for the testing of a
nonlinear attachment by a shaker, it excludes the nonlinear absorber as an application
example. However, the interested reader can find more on this latter application in
[8]. Regarding the type of excitation, it is assumed to be a harmonic force with a
constant amplitude as frequency changes. With reference to the test of a nonlinear
system using an electro-dynamic shaker, this implies that the shaker is supplied with
a constant current at each frequency. This can easily be achieved in practice using
commercially available shakers and controllers.

2 Mechanical and Mathematical Model

2.1 System Description

The practical system of interest in this chapter is depicted in Figs. 1 and 2. Pho-
tographs of the system are shown in Fig. 1a, b, and a schematic representation is
shown in Fig. 2. A small mass m, is attached to a large shaker via a support frame,
and the connection between the small mass and the support frame is made by four
elastic wires, which can be modelled as four springs of stiffness k and a damper c.
The initial tension in the wires can be adjusted upon assembly and has a profound
effect on the stiffness of the system attached to the shaker. When the small mass
vibrates in the horizontal direction, the springs stretch in tension, thus creating a
geometric stiffness nonlinearity. The electro-dynamic shaker, which is used to excite
the system, can be modelled as a linear system consisting of a parallel combination
of a spring ks and a damper cs connected to a mass ms , which is made up of the
moving mass of the shaker and the support frame, and is much larger than the mass
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Fig. 1 Practical system under consideration, consisting of a nonlinear system attached to an electro-
dynamic shaker: a photograph of the system, b photograph showing the details of the nonlinear
system attached to the shaker

Fig. 2 Schematic view of
the shaker and the nonlinear
attachment

m. If the shaker is driven by a constant current at each frequency, the excitation can
be modelled as a harmonic force with constant amplitude, F cos(ωt) as shown in
Fig. 2.

2.2 System Modelling

The wires connecting the small mass to the support structure can be modelled as
shown in Fig. 3a. The distance d is equal to the length of the springs when they are
assembled and the system is at rest. When the mass moves in the z direction, the
springs incline to accommodate the motion as shown in the figure and it is the change
in their length that causes the nonlinearity. Note that the effect of gravity on the mass
is neglected. The relationship between the static restoring force f in Fig. 3a, and
the resulting relative displacement z between the mass and the support structure, is
given by
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Fig. 3 Nonlinear system attached to the shaker: a schematic view; b non-dimensional restoring
force as a function of the non-dimensional relative displacement for d0/d = 0.9, exact expression
(solid line), approximate expression (dashed line)

f = 4kz

(
1 − d0√

z2 + d2

)
, (1)

where d0 ≤ d is the length of the unstretched spring.
Using the McLaurin expansion to the third order for small z, (1) can be written as

f ≈ k1z + k3z3, (2)

where k1 = 4k
(
1 − d0

d

)
and k3 = 2k d0

d3 . The non-dimensional form of (1) and its

approximation given by (2) are illustrated in Fig. 3b, for the particular case when
d0
d = 0.9. It can be seen that for a relative displacement z = xs − x less than about
40% of the length d, the percentage error between (1) and (2) is less than 5%.
Furthermore, this error reduces for decreasing values of d0

d .
Using the approximate expression for the spring restoring force, the equations of

motion of the two DOF system depicted in Fig. 2 are given by

ms ẍs + cs ẋs + ks xs + cż + k1z + k3z3 = F cos (ωt), (3a)

mẍ − cż − k1z − k3z3 = 0 (3b)

Equations (3a), (3b) correspond to the simplified system depicted in Fig. 4 and can
be written in non-dimensional form as

y′′
s + 2ζs y′

s + ys + μy′′ = cos (�τ), (4a)

w′′ + 2ζw′ + ω2
0w + γ w3 = y′′

s (4b)

where x0 = F/ks is the static displacement of the primary mass; ys = xs
x0

, y =
x
x0

, w = z
x0

are the non-dimensional displacement of the primary and secondary

mass, and the corresponding relative displacement, respectively; ωs =
√

ks
ms

, ω1 =
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Fig. 4 Simplified model of
the nonlinear system
attached to the shaker

√
k1
m , ω0 = ω1

ωs
are the undamped natural frequency of the primary mass alone on its

suspension, the linearized undamped natural frequency of the secondary mass alone
on its suspension, and the ratio between the two, respectively; ζs = cs

2msωs
, ζ = c

2mωs
are the damping ratios of the primary and secondary masses, respectively; τ =
ωs t,� = ω

ωs
, μ = m

ms
are the non-dimensional time, non-dimensional frequency

and mass ratio, respectively; γ = k3
μks

x20 is the nonlinear coefficient; and the primes
denote differentiation with respect to the non-dimensional time.

It should be noted that a change in γ can be interpreted as a change in the non-
linearity or in the amplitude of excitation or in the mass ratio, or a combination of
the three.

By assuming that the mass of the nonlinear attachment is small compared to that
of the linear system, so that

∣∣y′′
s

∣∣ � ∣∣μy′′∣∣, as in the practical situation discussed,
(4a), (4b) reduce to

y′′
s + 2ζs y′

s + ys = cos (�τ) (5a)

w′′ + 2ζw′ + ω2
0w + γ w3 = y′′

s . (5b)

Equation (5a) shows that the nonlinear system attached to the shaker has a negli-
gible effect on the shaker vibration so that the shaker vibrates predominantly as a
disconnected linear system, while (5b) describes a base-excited hardening Duffing
oscillator [2].
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3 Steady-State Response: Approximate Analytical Solution

3.1 Primary Resonance Response

Approximate solutions for the equations of motion given by (5a), (5b) are found
in terms of the primary resonance responses, assuming that the system responds
predominantly at the frequency of excitation, so that

ys ≈ Ys cos (�τ + ϕs), (6a)

w ≈ W cos (�τ + ϕ) (6b)

which also means that higher and lower order harmonics are negligible in the system
response.

Substituting (6a), (6b) into (5a), (5b) and applying the harmonic balance method
[9] results in

Y 2
s

[(
1 − �2

)2 + 4ζ 2s �2
]

= 1 (7a)

9

16
γ 2W 6 + 3

2
γ W 4

(
ω2
0 − �2

)
+ W 2

(
�4 + 4ζ 2�2 + ω4

0 − 2ω2
0�

2
)

− �4Y 2
s = 0.

(7b)

Equations (7a), (7b) define the amplitude-frequency behaviour of the system response
and show that the frequency response of the primary mass, is decoupled from the
motion of themass of the nonlinear attachment. This is due to the assumption adopted
that the mass ratio is relatively small. However, (7b) is coupled with (7a) by the
amplitude of the response of the primary mass Ys .

The focus of this chapter is on the amplitude-frequency relationships only, so the
expressions for the phases ϕs and ϕ in (6a), (6b) are not given.

Combining (7a) and (7b), gives the implicit amplitude-frequency equation, which
can be written as

9

16
γ 2W 6 − 3

2
γ W 4

(
�2 − ω2

0

)
+ W 2

(
�4 + 4ζ 2�2 + ω4

0 − 2ω2
0�

2
)

− �4[(
�2 − 1

)2 + 4ζ 2
s �2

] = 0. (8)

Equation (8) is used to plot the FRC shown later in this chapter. It is interesting
to note that, since it is cubic in W 2, this equation can yield up to three real solutions,
and thus a multi-valued response for the steady-state can occur.
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3.2 Stability

The stability of the steady-state solutions is calculated following the procedure in
[9] and the limits for stability are determined to be

�1,2 =

√√√√(
3

2
W 2γ − 2ζ 2 + ω2

0

)
±

√(
− 3

2
W 2γ + 2ζ 2 − ω2

0

)2
− 27

16
W 4γ 2 − ω4

0 − 3W 2γω2
0 .

(9)

Both (8) and (9) involve a relationship between the amplitude of the non-dimensional
relative displacement W and the non-dimensional frequency �. However, while (8)
is an implicit polynomial equation whose roots can be solved numerically in terms
of W for each value of � and of the system parameters, (9) is explicitly written in
terms of � as a function of W and of the system parameters. Both (8) and (9) can
then be plotted in the � − W plane. The solutions of (8) which are enclosed by the
two curves given by (9) correspond to unstable solutions. In the FRCs plotted in this
chapter, the unstable solutions are depicted by dashed lines while stable solutions
are represented by solid lines.

4 Steady-State Response: Experimental Work

4.1 Setup Configuration

The experimental setup is depicted in Fig. 5. The electro-dynamic shaker was driven
by a signal generator supplying a stepped-sine signal. Accelerometers were attached
to the support structure and to the small mass, while a signal conditioner and a
two-channel oscilloscope were used to observe the system response.

Before collecting data, two tests were carried out to broadly investigate the
dynamic behaviour of the system. For each test, the support wires had a differ-
ent initial tension. In the first test, a slow frequency sweep was applied from zero to

Fig. 5 Experimental set-up
configuration
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about 28Hz and the response of the system was monitored using the oscilloscope.
The first resonance was observed to be at about 19Hz, with both masses vibrating
with large amplitudes. As the frequency was increased beyond this, a second reso-
nance occurred at about 26Hz, in which only the vibration of the suspended mass
was large. This was followed by a sudden decrease in the motion of the suspended
mass (a jump-down). The frequency was then slowly swept down. A sudden increase
in the amplitude was observed at a frequency of about 22Hz, again for the suspended
mass only (a jump-up). At about 19Hz, the resonance response in which there was
large motion of both the support structure and the suspended mass was observable.
In the second test, similar behaviour was observed, but the jump-up and jump down
frequencies were found to occur at about 29 and 34Hz respectively.

To collect data, the shaker was then driven at discrete frequencies for the sys-
tem with the wires set with low and high initial tension, corresponding to the cases
described above, respectively. The excitation frequency was increased from 10 to
36Hz, with a 1Hz increment, and then decreased to 10Hz with the same frequency
increment. As mentioned previously, the amplitude of the excitation force was main-
tained at a constant level for all excitation frequencies, by manually adjusting the
power amplifier so that the current was 0.8 A. At each frequency, once the system
was at steady-state, five-second acceleration time histories were captured using a fre-
quency analyser. Subsequently, these data were processed to give the displacement
of the support structure and the suspended mass. The data are presented in terms of
the absolute displacement xs of the support structure and the relative displacement
z = xs − x between the support structure and the suspended mass. The Fourier
series coefficients are extracted from these two time histories and the amplitude of
the first harmonic of each data set is plotted at the corresponding frequency. This
can be seen in Fig. 6a, b for the system in which the springs have low initial tension,
and in Fig. 6c, d for the high initial tension springs, respectively. The data points in
each graph are denoted by a ‘+’ for increasing frequency and a ‘×’ for decreasing
frequency.

In Fig. 6a, c, which depict the response of the support structure, it can be seen
that, in each case, the FRC is similar, resembling the response of a single DOF linear
system. The peak, at about 19.5Hz corresponds broadly to the resonance frequency of
the shaker and the attached mass of the support structure. It is evident, therefore, that
the nonlinear system attached to the shaker has only a small effect on its response.
This is because the combined mass of the moving part of the shaker and support
structure is much greater than that of the suspended mass.

In the FRCs of the relative displacement Z , shown in Fig. 6b, d, in addition to the
peak associated with the resonance frequency of the shaker, a jump-down and jump-
up frequency can be seen, due to the response of the suspended mass. These are the
frequencies where there is a sudden change in the amplitude of the response when the
excitation frequency is changed very slowly [10]. The jump-down frequencies occur
at approximately 26 and 33Hz for the low initial tension and high initial tension cases,
respectively, and the corresponding jump-up frequencies at about 21 and 31Hz.
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Fig. 6 Analytical, simulated and experimental results for step-sine input to the shaker: a andbwires
with low initial tension; c and d wires with high initial tension. Analytical solution: stable solu-
tion (solid line), unstable solution (dashed line). Numerical solution (‘◦’). Experiment: increasing
frequency (‘+’), decreasing frequency (‘×’)

4.2 Parameter Estimation and Model Validation

To compare the experimental results with the predictions from the model, the sys-
tem parameters are required. One group of parameters (ms, ks, cs, m) was measured
independently, and the other group (k1, k3, c) is considered to be unknown and cho-
sen so that the FRCs are a best fit to the experimental data. Both sets of parameters
are given in Table1. The first group was estimated as follows. The combined mass
of the moving part of the shaker and the support structure ms , together with the stiff-
ness ks and damping cs of the shaker were estimated through measurements made
from an impact hammer test. With the suspended mass m detached and measured
directly, the frequency response function (FRF) of the shaker and attached support
structure was measured. The system parameters were estimated by fitting a theoreti-
cal single DOF FRF to the experimental FRF. Once these parameters were estimated,
the electro-mechanical constant of the shaker, defined as the ratio of the force over
the electric current (assumed to be constant), was estimated by measuring the FRF of
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Table 2 Equivalent non-dimensional system parameters

μ ω0 γ ζs ζ

Wires with
low initial
tension

0.011 0.677 4.6 × 10−3 0.046 0.050

Wires with
high initial
tension

0.011 1.394 5.4 × 10-3 0.046 0.026

the same system when driven by a random signal from the signal generator through
the power amplifier. For a given input current of 0.8A, the force amplitude is calcu-
lated and is given in Table1.

The second group of parameters is chosen to best fit the experimental data as
follows. Noting that, for fairly weak nonlinearity, the damping has a negligibly small
effect on the jump-up frequency and the corresponding FRC amplitude [11], a first
two-parameter fit is performed to match those values, and k1, k3 are estimated. The
remaining parameter c is then estimated by matching the jump-down frequency,
which is affected by the degree of nonlinearity and damping. These three parameters
are also listed in Table1, but in parenthesis to indicate that they are estimated thisway.
For completeness, Table2 lists the equivalent system parameters for the equation of
motion written in the non-dimensional form of (4a), (4b).

Using the parameters in Table2 and their relation to the dimensional parameters
in Table1, the FRCs described by (7a), (7b) are plotted in Fig. 6a–d together with
the experimental results for comparison.

5 Steady-State Response: Numerical Solution

The FRCs reported in the section above are plotted using the approximate amplitude-
frequency equations given in (7a), (7b), which are derived based on the assumption
that the system response is predominately harmonic at the frequency of excitation.
In this section it is shown how this assumption is verified and the analytical FRCs
are validated.

The original equations of motion of the system, given in (4a), (4b), without the
assumption for the mass ratio, are numerically integrated for a value of μ = 0.001,
which satisfies the assumption |μÿ| � |ÿs |, and the Fourier series coefficients are
extracted from the time history of the non-dimensional absolute displacement of
the primary mass, ys , and from the non-dimensional relative displacement between
the primary and secondary mass, w. The amplitude of the first Fourier coefficient
of the time response of w, which corresponds to the component at the frequency of
excitation, is plotted as a circle in the FRCs shown in Fig. 6a–d. For the parameters of
the experimental rig, higher- and lower-order harmonics are found to be negligible
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compared to the first harmonic; the small differences between the analytical and
numerical results around the resonances are due to the fact that the assumption | ÿs | �
|μÿ| does not hold in these frequency regions. Examining Fig. 6a–d it can be seen
that there is reasonably good agreement between the approximate analytical solution
and the experimental results. Thus, the analytical model qualitatively captures the
behaviour of the system.

Furthermore, for the numerical results superimposed on the FRCs reported in
the figures of this chapter it is also verified that the amplitudes of the higher- and
lower-order harmonics were negligible (less than 5%) compared to that of the funda-
mental. A similar validation is performed on the time response of the displacement
ys . Although the FRCs of the corresponding amplitude are not reported here, a ver-
ification of the assumption is performed and, also in this case, it is valid for ys .

6 Frequency-Response Curves for a QZS Attachment

Themodel developed in the previous sections is used here to investigate the effects of
the system parameters on the FRC of the relative displacement W , and in particular
on the interaction of the two resonances of the two DOF system depicted in Fig. 4.
Of particular interest is the case where the natural frequency of the underlying linear
system of the nonlinear attachment is lower than the natural frequency of the primary
system. In this case, the FRC of the two DOF system will have a lower resonance
frequency which is related to the nonlinear attachment and a higher resonance fre-
quency which is related to the primary system. Due to the hardening characteristics
of the nonlinear attachment, the bending of the first resonance peak to higher fre-
quencies interacts with the second resonant peak, yielding the specific shape of the
FRC. To limit the number of system parameters, the particular case is considered
where the nonlinear attachment has a very small linear stiffness coefficient k1, which
can be practically achieved by a very low tightening of the suspension wires during
assembly of the mechanical rig showed in Fig. 1. As a result, the non-dimensional
frequency ratio is very small, i.e. ω0 ≈ 0 and this corresponds to a QZS configura-
tion around the equilibrium position [12]. For the results related to the case of the
non-QZS configuration, the interested reader is directed to [13].

6.1 Effect of System Parameters: Jumps and Detachments

In this section, the FRCs of the non-dimensional relative displacement amplitude W
are illustrated for some particular combinations of the systems parameters, in which
ω0 is set to zero, for the sake of simplicity. To this end, (8) is solved numerically for
different values of frequency and for different combinations of the systemparameters.
The stability of the solution is checked by applying (9). The FRCs of the displacement
amplitude of the primary mass, which are governed by (7a) are not shown here, since



An Investigation into the Dynamic Interaction … 295

this is assumed to be not affected by the nonlinear attachment, due to the assumption
of the small mass ratio. The FRC of Ys thus corresponds to the frequency response
of a linear single DOF oscillating system.

In Figs. 7 and 8, two sets of sub-figures are reported, where the effect of the
nonlinear parameter γ is shown for a similar value of the damping ζs in the primary
system and two different values of the damping ζ in the attachment, respectively.

It can be seen from Figs. 7 and 8 that a variety of different shapes of the FRCs
are obtained, depending on the values of the system parameters. In both figures,
sub-figures a-f correspond to increasing values of the nonlinear parameter γ . It can
be seen that the shapes of the FRCs in Figs. 7 and 8 are qualitatively the same, except
for sub-plots c.

In particular, Figs. 7a and 8a refer to low values of the nonlinearity, and show a
single-valued FRC which is qualitatively similar to that of a linear two DOF system
with one of the stiffness equal to zero, since it is QZS. This shape is labelled as Type
I (see the upper-right corner of the sub-figure). When the nonlinearity increases, an
outer detached resonance curve, having a stable and an unstable branch, appear above
the main continuous FRC. This shape is labelled as Type II. The detached resonance
curve comes ‘from above’ in the sense that as the nonlinearity increases from zero to
a specific value, it moves downwards until it merges with the main continuous curve.
At this stage, two different types of behaviour may occur: the detached curve merges
at � ≈ 1, which occurs in Fig. 7c; or it merges at � ≈ 0, which occurs in Fig. 8c.
These two qualitatively different types of behaviour are labelled, respectively, as
Type IIIa and IIIb. If the nonlinearity is increased further, the detached resonance
curve appears inside the main continuous resonance curve, and this behaviour is
again qualitatively similar for the sub-plots d in Figs. 7 and 8. The appearance of the
inner detached resonance curve is associated with a FRC with a shape of Type IV.
Such a detached curve decreases in size as the nonlinearity increases, as shown in
sub-plots e, until it disappears. The shape of the FRC which is qualitatively similar
to those shown in sub-plots f is labelled as Type V.

It is also interesting to note the typical bending of the resonance peak to the
right (i.e. to higher frequencies), which is related to a hardening type nonlinearity.
Such bending, which is clearly seen in the FRC of Type V, is associated with the
jump frequencies. A lower jump-up frequency and a higher jump-down frequency
are evident in the FRCs of the sub-plots f.

When an inner detached resonance curve appears, two new jump-up frequencies
appear in the FRC, as shown in the sub-plots d and e. They are always lower than
� = 1. The outer detached resonance curves, shown in sub-plots b, appear above
the main continuous FRC and introduce two jump-down frequencies, one of which
corresponds to the frequency higher than � = 1, while the other one corresponds to
the frequency lower than � = 1.
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Fig. 7 FRCs of the normalized relative displacement W as a function of the normalized frequency
� for ζs = 0.046, ζ = 0.026, and for different values of the nonlinear parameter γ : a γ = 10−5;
b γ = 10−3; c γ = 3.3× 10−3; d γ = 10−2; e γ = 2.6× 10−2; f γ = 3× 10−2. Stable solutions
(solid lines), unstable solutions (dashed lines). Numerical solution (‘◦’)
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Fig. 8 FRCs of the normalized relative displacement W as a function of the normalized frequency
� for ζs = 0.046, ζ = 0.015, and for different values of the nonlinear parameter γ : a γ = 10−5;
b γ = 10−3; c γ = 1.4 × 10−3; d γ = 10−2; e γ = 2.6× 10−2;f γ = 3 × 10−2. Stable solutions
(solid lines), unstable solutions (dashed lines). Numerical solution (‘◦’)
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6.2 Insight into the FRC Shape

In this section a detailed analysis is performed with the aim of showing the effect of
the system parameters on the shapes of the FRC and to categorize themain qualitative
features. Again, for the sake of simplicity, the frequency ratio ω0 is set to zero and
(8) is rewritten as

9

16
γ 2W 6 − 3

2
γ W 4�2 + W 2�2

(
�2 + 4ζ 2

)
− �4[(

�2 − 1
)2 + 4ζ 2

s �2
] = 0. (10)

As mentioned earlier, (10) is cubic in W 2, and depending on the sign of the dis-
criminant of the corresponding polynomial, it can yield up to three real solutions for
the steady-state response of the system at a given excitation frequency. In particular,
if its discriminant is negative, (10) has one distinct real root and a pair of complex
conjugate roots; if it is positive, there are three distinct real roots; and if it is zero,
then two roots coincide.

The transition between a single-valued and multi-valued response is determined
by setting the discriminant to zero to get a quadratic equation in terms of the nonlinear
parameter γ , and solving to give the following two solutions

γu,l = 8

81�

[
36ζ 2� + �3 ±

(
�2 − 12ζ 2

) 3
2
] [(

�2 − 1
)2 + 4ζ 2

s �2
]

, (11)

where the sub-scripts u and l stands for upper and lower, respectively. For values of
the nonlinear parameter between γu and γl , the amplitude-frequency equation in (10)
yields three distinct real solutions for the steady-state amplitude response W , while
for values of γ equal to γu or γl , there are two coincident real solutions, and this
occurs at the jump-up or jump-down frequencies. Thus, (11) give implicit expressions
for the frequencies where a jump occurs. When (11) is plotted in the�−γ plane, the
curves obtained are referred to as the transition curves or bifurcation curves. They
are plotted in Figs. 9 and 10 to show the effects of the damping ratios in the linear
and nonlinear oscillator. It can be seen that the transition curves are not defined for
a value of the non-dimensional frequency lower than �C, as indicated in the figures.
Point C is obtained by setting γu = γl in (11) to give

(
�C, γC

) =
(
2
√
3ζ,

128

27
ζ 2

[(
1 − 12ζ 2

)2 + 48ζ 2ζ 2
s

])
. (12)

It should be observed that �C increases linearly with ζ and does not depend on ζs.
In particular, the bifurcation curves inFig. 9 are shown for afixedvalueof ζ = 0.03

and for several values of ζs . It can be seen that a change in the value of ζs has the
same effect on γu and γl , i.e. only shifting the position of the local minima of these
curves, which occur approximately at � ≈ 1.
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Fig. 9 Effects of the
damping parameter ζs on the
bifurcation curves depicted
by a thick line (γu) and by a
thin line (γl ), for ζ = 0.03:
ζs = 0.005 (solid curve);
ζs = 0.03 (dash curve);
ζs = 0.07 (dot curve)

Fig. 10 Effects of the
damping parameter ζ on the
bifurcation curves depicted
by a thick line (γl ) and by a
thin line (γl ), for ζs = 0.03:
ζ = 0 (solid curve);
ζ = 0.03 (dash curve);
ζ = 0.07 (dot curve);
ζ = 0.15 (dash-dot curve)

In Fig. 10, the transition curves are shown for a fixed value of ζs = 0.03 and
for different values of ζ . They illustrate that the damping in the attached nonlinear
system has a different effect on γu andγl . It should be noted that, depending on the
value of ζ , both curves can be with or without a local maximum point, which occurs
at different frequencies, and may be with or without local minimum points, which
occur at � ≈ 1. This local minimum of the upper curve is slightly affected by ζ .

It is also noted that if �C is greater than unity, which occurs when ζ ≈ 1/2
√
3,

no local maxima or minima exists, while in the special case when ζ = 0, (11) reduce
to γl = 0 and to

γu = 16

81

[
�2

(
�2 − 1

)2 + 4�4ζ 2
s

]
. (13)
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For the combination of parameters below this curve, depicted by the solid line in
Fig. 10, three distinct real roots of (10) exist. In this case, point C coincides with the
origin, and a multi-valued response occurs for any value of frequency.

Approximate relationships for the local maxima and minima of the bifurcation
curves can be derived analytically by assuming that the damping in the linear oscil-
lator is light, i.e. ζs � 1. To this end, the local maxima on the upper and lower
bifurcation curve are labelled as Umax and Lmax, respectively, while the local min-
ima on the upper and the lower curve are labelled Umin and Lmin, respectively.

From Figs. 9 and 10, it can be observed that point C and point Lmax are almost
indistinguishable from each other, so that

(
�Lmax

, γLmax

) ≈ (
�C, γC

) ≈
(
2
√
3ζ,

128

27
ζ 2

(
1 − 12ζ 2

)2)
. (14)

It can also be observed that the frequency corresponding to the relative maximum
of the upper curve, Umax, seems not to be greatly affected by either damping ratios.
If these are then neglected in (11), a quadratic equation in terms of �2 is obtained.
This can be solved to give � = 1/

√
3 and � = 1, which correspond approximately

to the frequencies where the maximum and minimum points of the upper transition
curve occur. If the value � = 1/

√
3 is substituted back into (11), the coordinates of

point Umax in the � − γ plane are determined to be

(
�Umax , γUmax

) ≈
(

1√
3
,

32

2187

[
1 + 108ζ 2 +

√
− (

36ζ 2 − 1
)3])

. (15)

Finally, it can be noted that the frequency corresponding to the relative minima of
the upper and lower curves appears at � ≈ 1. By substituting this value into (11),
the coordinates of points Umin and Lmin are obtained as

(
�Umin , γUmin

) ≈
(
1,

32

81
ζ 2

s

[
1 + 36ζ 2 +

√(
1 − 12ζ 2

)3])
, (16)

(
�Lmin , γLmin

) ≈
(
1,

32

81
ζ 2

s

[
1 + 36ζ 2 −

√(
1 − 12ζ 2

)3])
. (17)

Points Umax, Lmax, Umin, Lmin and C are used to define regions in the � − γ plane
which characterize the different shapes of the FRCs. These are shown in Fig. 11a, b
for two different combinations of ζ and ζs . Although Fig. 11a, b appear to be similar,
they are different with respect to the relative positions of points Lmax and Umin. The
characteristic regions where a specific shape in the FRC is achieved are indicated as
I, II, IIIa, IV and V in Fig. 11a, and as regions I, II, IIIb, IV and V in Fig. 11b. They
are also shaded by using different grey-scales. Each region in Fig. 11 is associated
with the corresponding type of shape of the FRC, as indicated in the upper-right
corners of Figs. 7 and 8 and discussed in the previous section.
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Fig. 11 Characteristic
regions I–V in the � − γ

plane, where the FRC of W
exhibits different shapes, for
ζs = 0.046: a ζ = 0.026; b
ζ = 0.015. Characteristic
points Umax, Lmax, Umin,
Lmin and C are also labelled

To emphasize the relationship between the bifurcation curves in the � − γ plane
and the FRCs in the � − W plane, a three-dimensional plot involving the three vari-
ables �, γ, W is reported in Fig. 12. Two graphs are shown (Fig. 12a, b) to illustrate
the relationship between the bifurcation curves in Fig. 11 and the FRCs of Figs. 7
and 8. It can be seen that a straight line, drawn for a particular value of γ , may be
interpreted as the projection of the corresponding FRC on the � − γ plane. More-
over, the intersections between this straight line and the bifurcation curves give the
values of the jump frequencies: jump-up points on the upper bifurcation curve, and
jump-down points on the lower bifurcation curve.
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Fig. 12 Three-dimensional plot illustrating the relationship between the bifurcation curves and the
FRCs

7 Summary

This chapter has presented an investigation into the dynamics of a nonlinear system
attached to a shaker which is driven harmonically, where the mass of the nonlinear
system is much less than that of the support structure and the shaker. Consequently,
the nonlinear system has a negligible effect on the response of the shaker for the
majority of frequencies. The stiffness nonlinearity of the attached system is due to
the particular geometrical configuration of the elastic wires, represented as springs.
The system has been modelled as a two degree-of-freedom system with a cubic type
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nonlinearity and solved using the harmonic balance method to determine the primary
frequency response equation and the stability conditions, which define the stable and
unstable steady-state solutions. The system of equations has been decoupled and
solved in closed-form. Good agreement has been found between the experimental
results and the analytical and numerical solutions.

The effect of the system parameters on the frequency response curves was further
investigated through simulations and it has been found that they can have different
shapes. In particular, ofmain interest has been the casewhen the nonlinear attachment
has a quasi-zero-stiffness. In this situation, closed detached resonance curves can
appear. They can lie outside or inside the main resonance curve, and have stable
and unstable parts. Approximate analytical expressions that define the boundaries
between the shapes of the frequency response have been determined, enabling the
parameters that influence the shape of the frequency response curves to be identified.
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Axial Non-linear Dynamic Soil-Pile
Interaction

A. Holeyman and V. Whenham

Abstract This chapter describes recent analytical and numerical advances in the
modeling of the axial nonlinear dynamic interaction between a single pile and its
embedding soil. On one hand, analytical solutions are developed for assessing the
nonlinear axial dynamic response of the shaft of a pile subjected to dynamic loads,
and in particular to vibratory loads. Radial inhomogeneity arising from shear mod-
ulus degradation is evaluated over a range of parameters and compared with those
obtained by other authors and by a numerical radial discrete model simulating the
pile and soil movements from integration of the laws of motion. New approximate
nonlinear solutions for axial pile shaft behaviour developed from general elastody-
namic equations are presented and compared to existing linear solutions. The soil
nonlinear behaviour and its ability to dissipatemechanical energy upon cyclic loading
are shown to have a significant influence on the mechanical impedance provided by
the surrounding soil against pile shaft movement. The limitations of over-simplified
modelling of pile response are highlighted.
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Cza = � {Iz} /(ω · Gs0) Dimensionless damping parameter (–)
f “Loading factor” or soil strength mobilization ratio at r =

r0 (–)
G Shear modulus (kPa)
G∗ Complex shear modulus G · (1 + 2iξ) (kPa)
Gmax Initial (maximal) shear modulus (kPa)
Gs Secant shear modulus (kPa)
Gs0 Shear modulus at the pile shaft-soil interface (r = r0)

(kPa)
H2

n Hankel function Jν − iYν

I0 Modified Bessel function of order 0 of first type
Iz Unit (lineal) shear impedance of the soil against the pile

shaft movement in the z direction (kPa)
Jυ Bessel function of order υ of first type
k Shear wave number ω/Vs (m−1)
k∗ Complex shear modulus ω/V ∗

s (m−1)
k∗

ff Complex shear modulus in the free field a∗
ff /r0 (m−1)

K0 Modified Bessel function of order 0 of second type
Kz The stiffness coefficient (kPa)
Kza Dimensionless stiffness � {Iz} /Gs0 (–)
r Distance to the pile shaft (m)
r0 Pile shaft radius (m)
Rm Influence radius of shear strain field
t Time (s)
Vs Shear wave velocity

√
Gs/ρ (m s−1)

V ∗
s Complex value of shear wave velocity

√
G∗

s /ρ (m s−1)
Vs0 Shear wave velocity at the pile shaft-soil-soil interface√

Gs0/ρ (m s−1)
Vff Shear wave velocity in the free field

√
Gmax/ρ (ms−1)

w Displacement (m)
wc Time-independent value of displacement (m)
wo Displacement at the pile shaft (m)
woc Amplitude of imposed displacement at the pile shaft (m)
Yυ Bessel function of order υ of second type
γ Shear strain (–)
γ̇ Shear strain rate (s−1)
γc Amplitude of shear strain (–)
γr Reference strain τmax/Gmax (–)
ξ Damping coefficient (–)
ρ Soil density (T/m3)
τ Shear stress (kPa)
τc Amplitude of shear stress (kPa)
τ0 Shear stress at the pile shaft-soil interface (kPa)
τ0c Amplitude of shear stress at the pile shaft-soil-soil inter-

face (kPa)
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τmax Maximal shear stress (shear strength) (kPa)
ω Circular frequency (rad s−1)
ς Dimensionless distance to the pile shaft r/r0 > 1 (–)

The asterisk indicates that the viscous soil behavior (characterized by the Kelvin-
Voigt formulation) is taken into consideration.

1 Introduction

1.1 Typical Situations

Piles are used to support civil engineering structures whenever loads are concentrated
relative to the soil bearing capacity and thus strength. They consist of elongated struc-
tural elements that are embedded in the soil to a depth that will allow bearing layers
to develop a safe resistance. Typical situations where piles are used are illustrated on
Fig. 1. In the most common case referred to as “active” pile, the pile head receives
the load from the superstructure and transmits it to the resisting soil.

Although all 6 load components (forces components andmoments about 3 orthog-
onal axes) need to be considered, the pile axial component generally governs the
design of the pile and in particular its embedment depth. In addition to static loads
resulting from gravity, operational transient or periodic loads may warrant special
design requirements. In response to the quickly expanding market of offshore renew-
able energy [1], piles have been recently used in several configurations to support
wind turbines, as illustrated in Fig. 1.

Fig. 1 Typical use of piles to support wind turbines: Tripod, Jacket, and Monopile [1]
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Extreme loading cases have also to be considered due to the fact that piles have
to be installed at depth: such cases involve pile impact driving as well as vibratory
driving.

Due to space and time constraints, this chapterwill only focus on the axial response
of a pile subjected to a harmonic axial load. Similar contributions can be developed
on the pile lateral response, torsional response and would justify a discussion on the
coupling. Finally, most of the discussion will revolve about the friction component
of the pile resistance, leaving out the singularity brought about by the pile bottom
end.

Whatever the mode considered, the engineering picture needs to involve three
main ingredients: the complete definition of all actions on the pile, the structural
characterization of the pile, and the characterization of the embedding medium, i.e.
the soil.

1.2 Pile Characterization

Piles used for large projects are commonly made of concrete or steel. Generally
concrete is used for onshore applications while steel is used for offshore applications.
In the later case, steel pipes are used to construct “pipe piles”. The advantage of that
geometry is that the volume of soil to be displaced to accommodate pile insertion
into the soil is a very small fraction of the gross pile volume that will govern the
geotechnical capacity of the pile. For large diameter piles, the inertia of the soil
volume inside the pipe will prevent the soil core from moving down in unison with
the pile during driving, leading to what is termed a “coring” mode of driving.

Most tubular piles are driven by impact using special pieces of equipment
(hydraulic pile hammers) set on top of the pile during installation. More rarely,
piles can be vibrated into the ground using vibratory hammers. Once installed to an
appropriate depth, a pile will develop its bearing capacity over time, moving from
its end-of-installation capacity towards its long-term capacity. The pile geotechnical
capacity will come from contact stresses generated by the soil along two interfaces:
a shear stress along the pile lateral surface (called shaft) and a normal stress against
the pile end bearing area (called toe).

The axial bearing performance of a pile can be characterized by its response under
axial static loading. As illustrated in Fig. 2a, the pile load-settlement curve provides
the overall relationship between the applied load F and the pile settlement s. One
can notice that under limited loads, the pile responds linearly, but endures non recov-
erable displacements under larger loads, with the ultimate limit state being defined
by unlimited displacements under an asymptotic load. This reflects the nonlinear
behaviour of the soil while the pile material remains well within its elastic realm.
This forces us to address an essential feature of the system, namely the soil behaviour
that will be characterized in Sect. 2.
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(a) (b)

Fig. 2 a Global load-settlement curve at top of pile. b Embedded pile as continuously supported
column

1.3 Simplified Soil-Pile Interaction

Engineeringmethods that are commonly applied to assess pile response under a static
load applied at the head of the pile treat the pile as a column collecting reactions
along its shaft and at the pile toe. Assuming that the embedding medium is elastic,
it would appear possible to model each local reaction as proportional to the local
displacement. Further assuming that each equivalent spring is independent from its
neighbours allows one to treat each soil layer with its own properties.

This simplification known as a “Winkler” model has been extended to cope with
nonlinear behaviour, leading to what is known in the geotechnical jargon as “t-z”
and “Q-z” curves. A “t-z” curve models the nonlinear development of the local
shear stress along the pile shaft versus local vertical displacement while a “Q-z”
curve models the nonlinear development of the pile toe resistance versus the pile
base displacement. Figure2b schematizes such simplified modelling of the soil-pile
interaction.

By extending Winkler approach initially developed in the static domain, the
dynamic response of pile shafts embedded in an elastic medium can be studied
by replacing the soil surrounding the pile with a series of independent springs and
dashpots. Notably, Smith [2] used that approach to model soil resistance to pile
driving, leading to the emergence of soil-pile dynamic interaction parameters known
as “quake” and “damping”, as illustrated as Q and J in Fig. 3.

For a pile undergoing harmonic axial motion, coefficients of the Winkler springs
and dashpots depend on the frequency. Such coefficients can be obtained by con-
sidering the elastodynamic problem of an infinitely long pile subjected to harmonic
vertical displacements.

An alternative approach consists in modelling fully coupled 3D pile-soil inter-
actions, for example by means of the finite element method. However because of
the complexity of the problem, especially when the pile is subjected to high strain
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Fig. 3 Smith
visco-elasto-plastic
load-deformation curve for
local slice of pile shaft
(adapted from [2])

loading conditions, this approach makes it difficult to properly simulate the essential
phenomena at play and is faced with the challenge to harness adequate model para-
meters. Practical use of the full 3D finite element approach is further hampered by
its high demand for computer resources.

While structural engineers are quite fond of simplifications of the pile behaviour
boiling it down to a single spring and sometimes a dashpot, they tend to overlook
that a pile is a complex infrastructural system that interacts with the soil surrounding
and with the superstructure. Furthermore soil is a medium that is far from behaving
linearly, as can be summarized below.

2 Soil Characterization

Soil is a multiphase medium made of solid particles whose composite behaviour
depends on many factors: attributes of particles, fluid filling the voids left between
the solids, stress history, just to name a few. While the particles can be characterized
by their nature, size, and shape, their overall behaviour with respect to the water
content can be characterized by their plasticity index (PI). The PI of sand is zero
while clay minerals can exhibit values in excess of 50, with silts having intermediate
values.

Volume variations and distortion of soil depend solely on the soil “effective”
stress, i.e. the stress between particles, the pore pressure having no intrinsic role
other than taking a part of the total stress. One rather unique feature of soil behaviour
is its tendency to change volume when sheared. Loosely packed soils tend to contract
while densely packed soils tend to dilate. Soil shear strength essentially comes from
friction, which is controlled by effective stress while the effective internal friction
angle generally assumes a value close to 30◦.

When saturated with water, a contractant assemblage of particles can only modify
its volume inasmuch water has the time to drain away from it. This means that low
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permeability soils or soils undergoing fast loading have to deform without changing
their volume, which implies a substantial change in their effective stress. Such a
volumetric constraint explains why the strength of a soil depends so drastically upon
its loading rate. At one extreme, loading is so slow that volume changes can be
accommodated without any interference from the pore fluid, and the soil will behave
as “drained”. At the other extreme, loading is so fast that volume remains constant
and the material will behave as undrained.

Whether drained or undrained, the latter case being more common under dynamic
loading, soil behavior exhibits several features that are characterized in the follow-
ing section, namely, stiffness, strain hardening and yield criteria, implying material
damping upon cyclic loading.

2.1 Key Attributes of Soil Behavior

2.1.1 Small Strain Stiffness

An initial (or maximum) shear modulus can be calculated for rounded grained sands
using the relation of Hardin and Black [3]:

Gmax = 6908
(2.17 − e)2

1 + e
σ ′0.5(kPa) (1)

where e is the soil void ratio and σ ′ is the effective confining mean stress usually
calculated as:

σ ′ = σ ′
v + 2σ ′

r,0

3
(2)

where σ ′
v is the easily calculated effective initial vertical stress, σ ′

r,0 = kσ ′
v is the

effective horizontal stress, with k being the coefficient of horizontal stress in the soil.
For a “wished-in-place” pile assumption, an at rest coefficient is estimated herein
using Jacky’s formula k = 1 − sin ϕ′ wherein ϕ′ is the soil internal friction angle.

2.1.2 Strain Hardening

Thanks to numerous forms of soil testing, the relationship between shear stress and
shear strain has been shown to deviate from the initial tangent value Gmax defined
above as shear strain increases, as shown in Fig. 4. This can be viewed as “strain
hardening” since the shear stress increases beyond an “elastic” limit to be identified.
In soil mechanics, this feature is preferably described in terms of shear modulus
degradation [4] inasmuch the secant modulus Gs degrades with strain. Two examples
of models commonly accepted to characterize the shear modulus degradation are
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Fig. 4 Hyperbolic shear
stress—shear strain model
for soils [4]

discussed in Sects. 2.2 and2.3. Densely packed soils, such as stiff clays can also
exhibit some form of strain softening, which will not be covered in this chapter.

At large strains, the soil reaches a “critical state” shear strength characterized by
a constant volume and mean stress. That ultimate limit state will be characterized by
the value of τmax shown on Fig. 4.

2.1.3 Material Damping and Viscous Equivalent

According to Masing rules [5] which will be deemed applicable, if the loading curve
is characterized by the relationship f (F, δ) = 0 with F the load and δ the displace-
ment, then for a cycle between points (δc, Fc) and (−δc,−Fc), the loading-unloading
curves are:

f

(
δ − δ∗

c

2
,

F − F∗
c

2

)
= 0 (3)

where (δ∗
c , F∗

c ) is the point of loading inversion. Figure5 provides an illustration
of Masing’s rules, showing how the backbone loading curve can be expanded and
rotated to generate the unloading and reloading curves.

The loop developed within this stress-strain plane highlights the dissipation of
mechanical energy during a complete loading cycle. Such a material dissipation is
characterized by the soil “damping coefficient”, a relative measure of the dissipated
energy W within one cycle to the maximum accumulated elastic energy. If τc is
the amplitude of the shear stress and γc the amplitude of the shear strain, the soil
damping coefficient is defined as ξ = W/(4πW), with W = γc · τc/2.

It should be noted that for a given τmax the material damping depends on γc

but not on the frequency of a potentially considered harmonic movement. Harmonic
displacements prescribed by the pile generate cyclic deformations and stresseswithin
the influenced soil zone that can be conveniently expressed by:

τ = τc · eiωt = G · (1 + 2iξ) · γc · eiωt = G∗ · γc · eiωt
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Fig. 5 Masing’s rules [5]
applied to stress-strain
curves

where G∗ is the complex shear modulus.
Such an expression postulates that energy losses canbe attributed to anout of phase

term treating the soil as visco-elastic. In that case, a so called “linear equivalent” soil
model is invoked, although strictly speaking, it is linear only under static conditions.

Assuming hysteretic energy losses can be handled at a given frequency by
an equivalent viscous-elastic shear modulus G∗ = G · (1 + 2iξ), the equiva-
lent soil viscosity can be expressed under harmonic conditions at frequency ω as
η = ∂τ/∂γ̇ =2Gξ/ω, with γ̇ being the shear strain rate. Although it does not respect
the shape of the stress-strain loop, the assumption of the “linear equivalent” medium
is generally accepted because of its mathematical convenience, as will be shown in
Sect. 3.3.

2.1.4 Cyclic Degradation and Liquefaction

Beyond strain related shear modulus “degradation” discussed above, soil is subject to
fatigue whenever strain cycles of sufficient amplitude accumulate. In loose granular
soils that are saturated, the cyclic degradation can be compounded by the onset
of “liquefaction”. This phenomenon occurring in contractive materials involves the
increase of the pore pressure to the point that effective stresses vanish. Since soil
strength is intrinsically related to friction, the removal of any effective stress actually
transforms the soil into a medium unable to resist to shear stress, i.e. a fluid.

2.2 Hardin and Drnevich [4] Model

The relationship between shear stress and shear strain under undrained conditions
can be assumed to follow the soil model suggested by Hardin and Drnevich [4] and
based on Kondner [6] formulation.

τ = γ

1/Gmax + γ /τmax
= τmax · γ

γ + γr
(4)
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where τ is the shear stress, γ is the shear strain, τmax is themaximal shear stress (shear
strength), Gmax is the initial shear modulus and γr = τmax/Gmax is the reference
strain. Degradation of the secant shear modulus with the shear strain can therefore
be defined by:

G = τ

γ
= τmax

γ + γr
= Gmax · γr

γ + γr
= Gmax ·

(
1 − τ

τmax

)
(5)

Applying Masing’s rules to the Hardin and Drnevich [4] loading curve leads to the
following expression of the damping coefficient as a function of γc:

ξ = 2

π
·
(
2

γr

γ 2
c

· (γr + γc) · ln
(

γr

γr + γc

)
+ 2

γr

γc
+ 1

)
(6)

Illustrations of the Hardin and Drnevich [4] formulation and Masing’s rules [5] are
provided in Figs. 4, 5 and 6.

2.3 Ishibashi and Zhang [7] Model

Alternatively, the stress-strain relation suggested by Ishibashi and Zhang [7] can be
considered to characterize soil nonlinearity, especially in the weakened zone close to
the pile shaft. The degradation of the secant shear modulus is expressed as a function
of the shear strain γ , of the effective confining mean stress σ ′, and of the plasticity
index IP:

G

Gmax
= 0.5

{
1 + tanh

(
0.492 ln

0.000102 + n

γ

)}
σ ′m (7a)

where

m = 0.272

{
1 − tanh

(
0.4 ln

0.000556

γ

)}
e−0.0145IP1.3

(7b)

n =

⎧⎪⎪⎨
⎪⎪⎩

0.0 for IP = 0
3.37 × 10−6IP1.404 for 0 < IP ≤ 15
7 × 10−7IP1.976 for 15 < IP ≤ 70
2.7 × 10−5IP1.115 for IP > 70

(7c)
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Fig. 6 Soil damping
coefficient ξ as a function of
cyclic shear strain γc:
experimental curves versus
models [4, 7]

The hysteretic damping coefficient resulting from (7a), (7b), (7c) can be
expressed as [7]:

ξ = 1 + e−0.0145IP1.3

6

[
0.586

(
G

Gmax

)2

− 1.547
G

Gmax
+ 1

]
(8)

The asymptotic value of ξ depends on the plasticity index

(
ξmax

IP = 1+ e−0.0145IP1.3

6

)
,

reaching a maximum of 33% for IP = 0 and 18.3% for IP = 50. This feature makes
the Ishibashi and Zhang’s model more flexible than the basic hyperbolic model [4]
and applicable to several types of soils according to their plasticity attributes.

2.4 Experimental Evidence and Complicating Factors

Figure6 presents a comparison between experimental curves established by Vucetic
and Dobry [8] for soils of varying PI and the above theoretical formulations of the
damping coefficient (6 and 8), for various reference strains. It can be noted that
experimental values of ξ can typically range between 0 and 0.4.

In soils that are subject to cyclic degradation, such as loose sands or sensitive
clays, the maximum shear stress (shear strength) τmax evolves as cycles accumulate.
Such an evolution is not explicitly accounted for in the analytical models presented
hereafter; rather it is accounted in the choice of an equivalent τmax that takes a
representative number of cycles and degradability into account. That refinement can
however be explicitly accounted for in the numerical models developed byHoleyman
[9], where several degradation laws of τmax are implemented according to the local
shear strain history.
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2.5 More Advanced Models

Many more models have been developed by researchers attempting to capture var-
ious features of the complex soil behaviour. These can be approached by separat-
ing recoverable and non recoverable deformations, the latter being handled through
plastic theory. Three-dimensional representations of the yield function in the stress
space and the choice of flow rules in the strain space are then necessary, requiring the
knowledge of up to tens of parameters that are difficult to determine experimentally
for many engineering projects.

The separation between elastic and plastic domains can be circumvented by the
use of so-called “Hypoplasticity”, which appears to gain popularity thanks to a more
reasonable number of parameters. While the initial hypoplastic model [10] required
8 parameters, those incorporating the intergranular concept and cyclic features [11]
can go up to 13. That number contrasts with the more manageable 2 or 3 parameters
necessary to understand what are believed to be the essentials of pile response used
in the remainder of this invited contribution. Moreover the basic parameters used
(e and PI or Gmax and τmax) are standard geotechnical parameters widely available
from customary site characterization.

3 Problem Statement and Linear Solution

3.1 Idealized Conditions

The problem considered in this chapter involves a vertical cylindrical floating pile
shaft of infinite length and rigidity, embedded within an infinite homogeneous soil
medium. The pile shaft is subjected to a purely harmonic axial displacement pre-
scribed by w0 = w0c · cosωt where w0c is the amplitude of displacement of the pile
shaft, and ω is the circular frequency, and t the time. The examined system is a unit
slice of the problem as shown on Fig. 7, isolating a single pile shaft segment and
associated unit thickness soil layer of infinite radial extent. Plane strain conditions
prevail across any horizontal slice because of the infinite extent of the considered
problem in the axial direction and uniformity of the prescribed movement along the
vertical direction. The layer outside the pile can be viewed as an infinite shear plate
with a circular hole about which the harmonic vertical motion is prescribed.

The prescribed dynamic displacement generates cyclic deformations and stresses
within the analyzed soil layer shown on Fig. 7 that can be represented by τc ·cos(ωt−
θ)where τc is the stress at radial distance r and θ is the phase difference with respect
to the displacement applied at the soil-shaft interface.

In practice, stress anisotropy induced due to the weight of the soil will result in
a specific distribution of the shear modulus with depth. Furthermore, soil layering
is not homogeneous as the pile can endure axial compression, making the infinite
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Fig. 7 Unit layer considered
within infinite pile shaft and
embedding soil

extent of the pile and surrounding soil assumption less legitimate. Averaging of soil
properties along the depth of the pile shaft should be considered prior to using a
single layer model.

Relationship between shear stress and shear strain under undrained conditions
will be assumed to follow the soil model suggested by Hardin and Drnevich [4] and
based on Kondner [6] formulation.

3.2 Soil Impedance to Pile Shaft Movement

Under the assumption of small deformations and absence of slippage at the pile shaft-
soil interface, and provided radial deformations as well as the pile mass effect can
be neglected in the analysis, the differential equation describing the vertical motion
w(r, t) of a floating rigid pile shaft embedded in a homogeneous isotropic elastic soil
medium of shear modulus G and volumetric mass ρ is given by:

G
∂2w

∂r2
+

(
G

r
+ ∂G

∂r

)
· ∂w

∂r
= ρ · ∂2w

∂t2
(9)

Let us consider further that the vertical movement is harmonic and stationary; it
can be characterized by the following relationship: w(r, t) = wc · eiωt , where wc is
the amplitude of the soil displacement that solely depends on the radial distance r.
Assuming hysteretic energy losses can be handled at a given frequency by an equiv-
alent viscous-elastic shear modulus G∗ = G.(1 + 2iξ), the equation of movement
becomes:

G∗ ∂2w

∂r2
+

(
G∗

r
+ ∂G∗

∂r

)
· ∂w

∂r
= ρ · ∂2w

∂t2
(10)
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Fig. 8 Equivalent Winkler
spring-dashpot soil model
supporting the pile shaft

Extending the Winkler concept introduced in Sect. 1.3, the dynamic reaction of the
soil surrounding the pile shaft may be expressed with reference to an equivalent
spring-dashpot system anchored to a stationary point, as illustrated by Fig. 8. The
dynamic soil reaction opposing the prescribed pile shaft movement can then be
expressed as

Pz(r, t) = Cz · ẇ(r, t) + Kz · w(r, t) (11)

with Pz the soil reaction per unit length of shaft, Cz the damping coefficient and Kz

the stiffness coefficient. Since the problem has been stated within a unit thickness
soil layer, it should be noted that Pz, Cz, and Kz are expressed per unit length of pile
shaft, and thus typically in the following respective units (kN/m), (kPa/s), and (kPa).

Assuming Pz(r, t) is harmonic, we can define the unit (lineal) shear impedance
of the soil against the pile shaft movement in the z direction as:

Iz = Pzc
wc

= (Cz · i · ω + Kz)

= Gs0(Cza · i + Kza) = 2π ·r0
wc(r0)

· τc(r0)
(12)

with Gs0 the shear modulus at the pile shaft-soil interface (r = r0), and

Kza = �{Iz} /Gs0 (13)

Cza = � {Iz} /(ω · Gs0)

are the dimensionless stiffness and damping parameters, respectively.
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3.3 Analytical Solution for Equivalent Medium

Assuming that the shear modulus is independent of the radial distance r to the pile
shaft, a unique shear wave velocity can be defined as: Vs = √

Gs/ρ for a purely
elastic medium (or V ∗

s = √
G∗

s /ρ for the equivalent visco-elastic medium) (10) can
be thus expressed as:

∂2wc

∂r2
+ 1

r
· ∂wc

∂r
+ (k∗)2 · wc = 0 (14)

where k = ω/Vs is the shearwave number, the asterisk indicating that the viscous soil
behavior (characterized by the Kelvin-Voigt formulation) is taken into consideration,
i.e. k∗ = ω/V ∗

s .
Defining the dimensionless frequency for the pile shaft-soil interface as a =

ω · r0/Vs or a∗ = ω · r0/V ∗
s , the general solution of (14) is given by

wc = w0c · H(2)
0

(
a∗. r

r0

)
/H(2)

0

(
a∗) (15)

with H(2)
υ = Jυ − i · Yυ the Hankel function and Jν , Yν , Bessel functions of order

υ of the first and second type, respectively. Based on the τ(r, t) = G∗ · ∂w(r, t)/∂r
relationship, the solution can also be expressed in terms of stress amplitudes:

τc = Gs · (1 + 2iξ) · a∗ · w0c

r0
· H(2)

1

(
a∗ · r

r0

)
/H(2)

0

(
a∗) (16)

Particular solutions can be obtained by applying adequate boundary conditions.
A first boundary condition corresponds to the imposed displacement at the pile
shaft-soil interface, i.e. wc = w0c for r = r0. The second boundary condition is
a radiation condition imposing that the wave should only propagate away from the
vibration source at the outer boundary (w(r → ∞, t), also known as “Sommerfeld”
condition [12]).

→ w̄c(r) = √�2 {wc(r)} + �2 {wc(r)}

= w0c

√
J20 ·

(
a· r

r0

)
+ Y2

0 ·
(

a r
r0

)
J20 ·(a) + Y2

0 ·(a)

(17)

→ τ̄c(r) = √�2 {τc(r)} + �2 {τc(r)}

= Gs · a·w0c
r0

·
√

J21 ·
(

a· r
r0

)
+ Y2

1 ·
(

a· r
r0

)
J20 ·(a) + Y2

0 ·(a)

(18)
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Fig. 9 Impedance parameters for homogeneous shear modulus

Using (8) we deduce the equivalent impedance:

Iz = −2π · a∗ · Gs(1 + 2iξ) · H(2)
1 (a∗)

H(2)
0 (a∗)

(19)

Dimensionless impedance parameters defined by (12) and (13) are depicted in Fig. 9,
emphasizing the influence of the hysteretic damping coefficient. In the absence of vis-
cous damping (ξ = 0) only radiation or geometrical damping prevails. In that case,
the stiffness parameter (real part Kz,a of impedance) tends toward π for increasing
frequencies (a → ∞), per (9). Except for low a values, the dimensionless damp-
ing term Cz,a linearly increases with frequencies at a rate of Cz,a = 2πa. An
increased hysteretic damping coefficient enhances the quasi-linear increase of the
total (hysteretic and radiation) damping term, but decreases the in-phase stiffness
component. Figure9 also shows that Kz,a can become equal to 0 at particular values
of a

(
a(Kz,a=0)

)
, implying a potential for some form of ‘resonance’ effect. Influence

of the hysteretic damping on the infinite annular shear plate apparent ‘resonant’ fre-
quency can be appreciated in Fig. 10. The physical reason for that effect remains
unclear, despite the fact that similar phenomena have been experimentally observed
on model tests [13].

Typical results expressed in terms of dimensionless displacement and stress ampli-
tudes profiles are presented in Fig. 11 for two dimensionless frequency values and
two damping coefficients. The dimensionless displacement (stress) amplitude is the
ratio between the displacement (stress) amplitude wc (τc) at a given radial distance
to that w0c (τ0c) at the pile shaft-soil interface.

For ξ = 0 and high a values, displacement amplitudes attenuate according to the
inverse of the square root of the radial distance, while for ξ = 0 and low a values,
shear stress amplitudes attenuate according to the inverse of the radial distance. These
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Fig. 10 Dimensionless
“resonant” frequency of the
soil annular shear plate
versus hysteretic damping
coefficient

Fig. 11 Radial distribution
of displacement and shear
stress amplitudes
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results can be demonstrated by considering the asymptotic behavior of the Bessel
functions for a → ∞ (17) and (18). It can also be noted that material damping
enhances the radial attenuation of both displacement and stress amplitudes.

Impedance parameters for use in theWinkler approach have been studied bymany
researchers in the past. First models (e.g. Novak [14]) were based on the assumptions
that the soil behavior is governed by the laws of (viscous-) elasticity and the soil is
perfectly bonded to the pile. In practice however the soil region immediately adjacent
to the pile can undergo a large degree of straining which causes the soil-structure
system to behave non-linearly and even degrade under cyclic loading. Slippage can
also occur about the contact area.

4 Nonlinear Aspects

4.1 Literature Review

Nonlinear models of axial pile-soil vibration started with the works of Novak and
Sheta [15], Mitwally and Novak [16], Han and Sabin [17], and El Naggar and Novak
[18, 19] who suggested distinguishing two separate radial soil zones around the pile
shaft: an inner zone with reduced shear stiffness and an outer zone where the elastic
solution is considered.

To eliminate undulations in the impedance functions due to wave reflections from
the interface between the two media, some researchers proposed a continuously
increasing modulus with radial distance to the pile shaft. Gazetas and Dobry [20]
and Veletos and Dotson [21] suggested schemes in which the modulus increased
unboundedly. Han and Sabin [17] formulated impedances based on a parabolic
variation of the medium properties so that the inner zone has properties smoothly
approaching those of the outer zone.

These contributions however address the problem of lateral soil heterogeneity
with only qualitative reference to the nonlinear soil response, since the variations
of soil properties invoked are merely hypothetical. To aid practical applications,
Michaelides et al. [22, 23] utilized experimental data (e.g. Vucetic and Dobry [8])
characterizing the dependence of the secant shear modulus and hysteretic damping
of soil on the shear strain amplitude and the nature of the soil (the latter represented
by the plasticity index PI). The variation of modulus and damping is then related to
the magnitude of the applied load through the amplitude of the shear strains induced
within a succession of co-axial cylinders. Such an approach involves assumptions
related to the shear stress distribution and implies the use of an iterative procedure
to calculate the variation of modulus as a function of the distance to the pile shaft.

Some modifications to the Michaelides et al.’s model have been proposed by
Holeyman et al. [24] to simplify definitions of the model parameters as well as
calculation procedures. Using the modified method, a refined soil discretization can
be achieved based on more rigorous soil behavior description and without a priori
assumptions about the shear modulus or shear stress radial distributions.
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The following sections describe analytical solutions assuming various theoret-
ical radial variations of shear modulus. The results are evaluated over a range
of parameters and compared with those obtained from the semi-analytical model
derived from [22, 23], and from a radial discrete model simulating the pile shaft and
soil movements by integrating of the laws of motion [25–27] (pile driving model),
[9, 28, 29] (Vibratory pile driving).

4.2 Radius-Dependent Shear Modulus

Assuming that the stress developed into the soil attenuates according to the inverse of
the radial distance, which is exact in the static case, the following can be established:
τ/τ0 = r0/r. If we further consider that the stress τ0 is a fraction f of the shear
strength τmax, i.e. τ/τmax = f · r0/r, (5) becomes:

Gs = Gmax ·
(
1 − f ·

( r0
r

))
(20)

where f can be viewed as a “loading factor” or soil strength mobilization ratio at
r = r0: it is actually the inverse of the factor of safety of the pile shaft capacity.

Because of the variation of the shearmoduluswith the radial distance, two extreme
shear wave velocities can be distinguished: Vs0 = √

Gs0/ρ at the pile shaft-soil
interface and Vff = √

Gmax/ρ in the free field at the furthest distance away from
the pile. Dimensionless frequencies can thus be defined respectively for the pile
shaft-soil interface: a0 = ω · r0/Vs0 (or a∗

0 = a0/
√
1 + 2iξ = ω · r0/V ∗

s0) and the
free-field: aff = ω · r0/Vff (or a∗

ff = aff /
√
1 + 2iξ). Defining ς = r/r0 > 1 the

dimensionless distance to the pile shaft, the general equation of movement becomes:

∂2wc

∂ζ 2 + 1

ζ
· ζ

ζ − f
· ∂wc

∂ζ
+ (a∗

ff )
2 · ζ

ζ − f
· wc = 0 (21)

Analytical solutions of (21) are presented in [24] and discussed below. Influence of
the ‘f ’ parameter on the shear modulus distribution is depicted in Fig. 12. The reader
is referred to Bertin [30] for solutions based on other assumptions of shear modulus
distributions.

4.3 Semi-analytical Solutions

Michaelides et al. [22, 23] suggested the use of a radial discretization and approx-
imation of the shear modulus Gs distribution within each zone using the following
expression

G = G∗
s0 ·

(
r

r0

)m

(22)
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Fig. 12 Influence of ‘f’
parameter on the shear
modulus distribution,
assuming stress attenuation
according to r−1

with m values decreasing with the distance to the pile shaft. This discretization also
allows taking into account damping coefficients ξ varying with r, albeit through a
piecewise approximation.

Michaelides et al. assume that the shear stress distribution is independent from
the shear modulus distribution, in order to alleviate interdependence between Gs, τc

and γc. Based on this assumption and the use of empirical rules for the shear modulus
distribution, they proposed following equation:

Gs = Gmax ·
(
1 −

{
� · r0

r
· h(ar)

}0.72)
(23)

where � = τ/τmax is a loading intensity factor and h(ar) a shape function. Since
the method imposes the use of iterations to determine h(ar) values, Michaelides
limited the number of radial increments to four. That approximation has been further
enhanced by Bertin [30], who developed a special routine able to iterate on many
more radial increments.

Because of the limitations of theMichaelides et al.’smethod,Bertin [30] suggested
another approach based on analytical elements to discretize the radial coordinate.
The shear modulus distribution is still described by a set of parabolas, but based
on the Hardin and Drnevich [4] functions and Masing rules [5]. Furthermore, a
higher number of radial steps, up to 270, is considered. Because values of m and ξ

are different for each element, displacements and stresses are obtained by assuring
continuity of displacement and stress equilibrium. For each discretization step, the
following (24) are used:
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Fig. 13 Shear stress radial
distributions for different
values of m exponent
compared to [30] enhanced
approximation

wc(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ
m0/2
(i−1) ·

⎡
⎣ A(i−1) · Jχ(i−1)−1 ·

(
χ(i−1) · λ0(i−1) · ζ

1/χ(i−1)
(i−1)

)

+B(i−1) · Yχ(i−1)−1 ·
(
χ(i−1) · λ0(i−1) · ζ

1/χ(i−1)
(i−1)

)
⎤
⎦ if r ≤ ri

ζ
m1/2
(i) ·

⎡
⎣ A(i) · Jχ(i)−1 ·

(
χ(i) · λ0(i) · ζ

1/χ(i)
(i)

)

+B(i) · Yχ(i)−1 ·
(
χ(i) · λ(i) · ζ

1/χ(i)
(i)

)
⎤
⎦ if ri ≤ r ≤ ri+1

(24)

The four integration constants A(i−1), A(i), B(i−1) and B(i) are deduced from conti-
nuity and equilibriumconditions, adopting previously described boundary conditions
(imposed displacement and outer radiation).

As illustrated by Fig. 13, Bertin analytical elements approximation [30] emulating
Michaelides et al.’s concept is correct for low values of the dimensionless frequency,
but is more questionable for higher values.
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4.4 Numerical Solution

4.4.1 Model

Holeyman [26–29] has suggested the use of a radial discrete model (see Fig. 14) to
calculate the vertical shear waves propagating away from the pile shaft. The pile is
considered as a rigid body and the soil is represented by discretizing the medium
into concentric rings that have their own individual masses and that transmit forces
to their neighbouring ones. The movement of the pile and the rings is calculated
from time integration of the law of motion: the equations of movement are integrated
for each cylinder based on their dynamic shear equilibrium in the vertical direction.
An energy absorbing boundary condition in accordance with plane-strain elasticity
theory [14] limits the lateral extent of the model.

The model makes use of constitutive relationships representing the large-strain,
dynamic and cyclic shear stress-strain strength behavior of the medium surrounding
the pile shaft. Initially implemented for vibratory driving modeling in a Basic com-
puter code “Hipervib-II” [9], it applied the hyperbolic Kondner law (4) and Masing
rules [5] to model the shear force-displacement relationships between successive
rings.

The program was further developed using Matlab� routines [30] to produce the
results presented herein with a view to compare themwith the above described semi-
analytical methods. Strain rate effects as well as cyclic degradation effects which are
accounted for in the Hipervib-II program were however disabled to produce results
compatible with the assumptions adopted in the other methods discussed in this
paper.

When comparing Hipervib-II with the (semi-) analytical methods, following con-
siderations are made: (a) only results corresponding to the steady state (after a few
second of simulations) are presented herein, (b) impedance parameters are calculated
as follows:

Fig. 14 Numerical model geometry (adapted from [28])
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Iz = 2π · r0 ·
∫ 2π/ω

0 τ(r0, t)dt∫ 2π/ω

0 w(r0, t)dt
(25)

withw(t) imposed at the pile shaft boundary and τ(t) calculated by Hipervib-II at the
pile shaft-soil interface. In order to compare the numerical results with the analytical
ones presented herein for the shaft only, the base resistance that can be modeled in
Hipervib-II has been set to zero.

4.4.2 Radial Distribution of Shear Modulus

Relevant results are related to the evolution of the shear modulus as a function
of the radial distance, by reference to its value at the pile shaft-soil interface.
Figure15 shows results obtained with three methods: the analytical solution to (21),
Michaelides et al. original approximation (4 increments, labelled as “M-4”), and
Hipervib-II program.

Fig. 15 Shear modulus
distributions according to
different approaches for
same acceleration amplitude
of 9.9m/s2
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Table 1 Reference parameters for comparative study

Soil density (ρ) 1.8 T/m3

Maximum shear modulus (Gmax) 60 MPa

Free field shear wave celerity (Vff ) 183 m/s

Shear strength (τmax) 0.15 MPa

Reference shear strain (γr) 1.25 10−3

Hysteretic damping value (ξ ) 0 –

Pile shaft radius (r0) 0.5 m

Reference parameters used to that end are summarized in Table1, for two different
combinations of imposed displacement amplitude and frequency leading to a given
acceleration amplitude of 9.9 m/s2.

For the same imposed acceleration amplitude (w0c ·ω2), all threemethods indicate
a more heavily degraded shear modulus at the pile shaft-soil interface for a larger dis-
placement amplitude. When however compared to the Michaelides original method,
the analytical results [30] better match those of the numerical model.

4.5 Comparison of Calculated Impedance Parameters

Impedance parameters deduced from application of the semi-analyticalmethod using
Table1 parameters are presented in Fig. 16 with a view to emphasize the influence
of the imposed displacement amplitude. Figure16 represents the real and imaginary
parts of the impedance versus the dimensionless frequency aff for three displacement
amplitudes.

Comments made for the homogeneous model in Sect. 3.3 are also applicable to
the non-homogeneous models, as far as the evolution of the impedance curves as
functions of the dimensionless frequency is concerned, when trading the hysteretic
damping coefficient for the amplitude of displacement. A comparison between semi-
analytical and analytical results is presented in Fig. 17, indicating some quantitative
variations in the impedance results that mainly depend on the free field dimensionless
frequency. In the above example, analytical results are quite close to the Bertin [30]
approximation. If that observation could be extended to other values of woc/ro and
ξ , it would mean that the simplest form of stress attenuation (corresponding to the
static case) could be adopted for the dynamic cases.
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Fig. 16 Stiffness and
damping parameters deduced
from the semi-analytical
method (see Table1 for
reference parameters)

Fig. 17 Comparison of
analytical and
semi-analytical solutions for
woc/ro = 0.4 10−3 (see
Table1 for reference
parameters)



330 A. Holeyman and V. Whenham

Fig. 18 Impedance
parameters as functions of
the imposed displacement
(analytical model for Table1
parameters)

Combined influences of frequency and imposed displacement amplitudes are rep-
resented in Fig. 18 for the analytical method. Both real and imaginary parts of the
impedance decrease as the imposed displacement increases, whatever the frequency.
Inspection of (12) andFig. 19 showshow the stress value at the pile shaft-soil interface
naturally tends towards the shear strength with increasing displacements, evidencing
another manifestation of stiffness degradation.

The evolutions of the pile shaft friction mobilization ratio (τoc/τmax) versus
dimensionless displacement (woc/ro ) shown in Fig. 19 can be compared to so-called
“t-z curves” published in the literature to evaluate the pile shaft load-displacement
behavior under axial static (aff = 0) conditions. As an example, static friction mobi-
lization curves adopted by Holeyman [25] based on an extension of the influence
radius Rm approach suggested by Randolph and Wroth [31] to incorporate a hyper-
bolic stress-strain law are also plotted in Fig. 19 for two values of the boundary radius
Rm. Confirmation of the effective reduction of the apparent “quake” value as velocity
increases, observed by Holeyman [7] can be found in Fig. 19 for increasing values
of aff .
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Fig. 19 Shear stress
developed at the pile
shaft-soil interface as a
function of the imposed
cyclic displacement
amplitude (analytical model
with Table1 parameters vs.
typical static t-z curve)

5 Conclusions

The dynamic axial response of pile shafts can be approached using the concept of a
continuously distributed mechanical impedance replacing the embedding medium.
Equivalent impedance parameters can be defined to characterize the equivalent in-
phase ‘spring’ and the equivalent out-of-phase ‘dashpot’. When considering a pile
shaft undergoing axial oscillations, shear strains (and shear stresses) are induced in
the surrounding soil, the amplitude of which attenuates radially away from the pile
shaft. Analytical equivalent linear methods and a numerical method are shown to
adequately derive those amplitudes of shear stresses and shear strains as functions
of the radial distance r to the pile shaft. The corresponding dynamic impedance
components are then readily determined.

The analytical solution proposed herein accommodates a continuous variation
of soil properties alleviating wave reflections and avoiding numerical convergence
problems. By contrast, the semi-analyticalmethod suffers from numerical limitations
arising from the radial soil discretization. The semi-analytical method correctlymod-
els a radial variation of the soil hysteretic damping, contrary to the analytical method
which assumes a homogeneous hysteretic damping.
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Similar approaches can be used to address the dynamic nonlinear response of
piles under a lateral mode of deformation [32], as well as coupling effects between
the axial and lateral modes of deformation [33].

References

1. Upwind—IntegratedWind TurbineDesign. Project funded by the EuropeanCommission under
the 6th (EC) RTD Project No. 019945 (SE6), (2010)

2. Smith, E.A.L.: Pile driving analysis by the wave equation. J. Soil Mech. Found. 86(4), 35–61
(1960)

3. Hardin, B.O., Black, W.L.: Vibration modulus of normally consolidated clay. J. Soil Mech.
Found. Div. ASCE 92(2), 353–369 (1968)

4. Hardin, B.O., Drnevich, V.P.: Shearmodulus and damping in soils: design equations and curves.
J. Soil Mech. Found. Div. ASCE 98(7), 667–692 (1972)

5. Masing, G., Eigenspannungen und Verfeistigung beim Messing. In: Proceedings of the 2nd
International Congress of Applied Mechanics, pp. 332–335 (1926)

6. Kondner, R.L.: Hyperbolic stress-strain response: cohesive soils. J. Soil Mech. Found. Div.
ASCE 89(SM1), 115–143 (1963)

7. Ishibashi, I., Zhang, X.: Unified dynamic shear moduli and damping ratios of sand and clay.
Soils Found. 33(1), 182–191 (1993)

8. Vucetic, M., Dobry, R.: Effect of soil plasticity on cyclic response. J. Geotech. Eng. ASCE
117(1), 89–107 (1991)

9. Holeyman, A.: HIPERVIB-II, A detailed numerical model proposed for future computer imple-
mentation to evaluate the penetration speed of vibratory driven sheet Piles Research report for
BBRI. EarthSpectives, Irvine, CA, USA, 54p (1993)

10. Bauer, E.: Calibration of a comprehensive hypoplastic model for granular materials. Soils
Found. 36(1), 13–26 (1996)

11. Von Wolffersdorff, P.A.: A hypoplastic relation for granular materials with a predefined limit
state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)

12. Sommerfeld, A.: Mechanics, Lectures on Theoretical Physics. Academic press Inc., New York
(1952)

13. Storz, M.: Chaotic motion in pile-driving. First International Conference Soil Dynamics and
Earthquake Engineering. Southhampton, England: Computational Mechanics, pp. 503–512
(1991)

14. Novak, M.: Dynamic stiffness and damping of piles Can. Geotech. J. 11(4), 574–598 (1974)
15. Novak, M., Sheta, M.: Approximate approach to contact effects of piles. In: O’Neill M. W.,

Dobry R. (eds.) Special technical publication on dynamic response of pile foundations: ana-
lytical aspects. New York, ASCE (1980)

16. Mitwally, H., Novak,M.: Pile driving analysis using shaft and FEM. In: Proceedings of the third
international conference on the application of stress wave theory to piles. Bitech Publishers,
Vancouver (1988)

17. Han, Y.C., Sabin, G.C.: Impedances for radially inhomogeneous viscoelastic soil media. J.
Eng. Mech. 121(9), 939–947 (1995)

18. El Naggar, M., Novak, M.: Nonlinear axial interaction in pile dynamics. J. Geotech. Eng.
120(4), 678–696 (1994)

19. El Naggar, M., Novak, M.: Nonlinear model for dynamic axial pile response. J. Geotech. Eng.
120(2), 308–329 (1994)

20. Gazetas, G., Dobry, R.: Simple radiation damping model for piles and footings. J. Eng. Mech.
ASCE 10(6), 937–956 (1984)

21. Veletsos, A.S., Dotson, K.W.: Vertical and torsional vibration of foundations in inhomogeneous
media. J. Geotech. Eng. Div. ASCE 114(9), 1002–1021 (1988)



Axial Non-linear Dynamic Soil-Pile Interaction 333

22. Michaelides, O., Gazetas, G., Bouckovalas, G., Chrysikou, E.: Approximate nonlinear dynamic
axial response of piles. Geotechnique 48(1), 33–53 (1997)

23. Michaelides, O., Bouckovalas, G., Gazetas, G.: Non-linear soil properties and impedances for
axially vibrating pile elements. Soils Found. 38(3), 129–142 (1988)

24. Holeyman, A., Bertin, R., Whenham, V.: Impdedance of pile shafts under axial vibratory loads.
Soil Dyn. Earthq. Eng. 44, 115–126 (2013). doi:10.1016/j.soildyn.2012.09.006

25. Holeyman, A.: Contribution à l’étude du comportement transitoire non-linéaire des pieux pen-
dant leur battage. Doctoral thesis, Université Libre de Bruxelles, April 1984, 584p (1984)

26. Holeyman, A.: Dynamic non-linear skin friction of piles. In: Proceedings of the International
Symposium on Penetrability and Drivability of Piles, vol. 1, San Francisco, 10 Aug, pp. 173–
176 (1985)

27. Holeyman, A.: Technology of pile dynamic testing. In: Barends, F. (ed.) Application of Stress-
Wave Theory to Piles, pp. 195–215. Rotterdam, Balkema (1992)

28. Holeyman, A., Legrand, C.: Soil modeling for pile vibratory driving. In: U.S. FHWA Inter-
national Conference on Design and Construction of Deep Foundations, Orlando, Florida, Dec
1994, vol. II, pp. 1165–1178 (1994)

29. Holeyman, A.: Vibratory Pile Driving. In: Nyyama S., Beim J. (eds.) Quality Assurance on
Land and Offshore Piling, Balkema Publishers, Rotterdam, pp. 479–494 (2000)

30. Bertin, R.: Modélisation de l’interaction axiale sol-pieu—Détermination des paramètres
d’impédance d’un milieu non-homogène, MS thesis, Université Catholique de Louvain (2009)

31. Randolph, M.F., Wroth, C.P.: Analysis of deformation of vertically loaded piles. J. Geotech.
Eng. Div. ASCE 104(GT12), 1465–1488 (1978)

32. Malek, A., Holeyman, A.: Flexural analysis in dynamic pinned head pile testing. Geotech.
Geol. Eng. 32, 59–70 (2014)

33. Malek,A., Holeyman,A.: Numerical evaluation of nonlinear lateral pile vibrations on nonlinear
axial response of pile shaft. Soils Found. (2013). doi:10.1016/j.sandf.2013.04.002

http://dx.doi.org/10.1016/j.soildyn.2012.09.006
http://dx.doi.org/10.1016/j.sandf.2013.04.002


Linear and Nonlinear Damping Effects
on the Stability of the Ziegler Column

Angelo Luongo and Francesco D’Annibale

Abstract The destabilizing effect of damping on both linear and nonlinear behavior
of the Ziegler column is discussed. The paper addresses classical and non-classical
aspects related to the ‘Ziegler paradox’. First, the linear problem is illustrated in
a new perspective, according to which no discontinuities in the critical load exist
between undamped and damped systems. Second, it furnishes a first overview of
the mechanical behavior of the system in the post-critical range. The equations of
motion for the system are derived via the extendedHamilton’s principle. Then a linear
stability analysis is performed via a perturbation approach, inwhich, however, simple
and not double eigenvalues are perturbed, in contrast with a commonly pursued
strategy in the literature. According to this idea, a series expansion around the distinct
purely imaginary eigenvalues of the undamped and under-critically loaded system is
carried out, with the load kept as a fixed, although unknown, parameter. By pursuing
the same idea, an algorithm based on the Multiple Scale Method is developed to
investigate the post-critical behavior of the system. The role played by the nonlinear
damping on the existence of limit-cycles is discussed.

1 Introduction

The Ziegler Paradox is a well-known mechanical phenomenon, according to which
when a strictly dissipative and vanishing damping is added to a linear circulatory
system (i.e. to an undamped system loaded by a positional nonconservative force)
a finite lowering of the critical load is experienced. Thus, in spite of the confidence
we have with damping, when added to conservative system, the same damping could
have a detrimental effect when added to nonconservative systems [1–6].
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The paradox attracted the attention of dozens of researchers. An exhaustive review
of the argument is given in [7], which the reader is referred to. Recently, the authors
of the present paper gave a new key for an understanding of the problem [8, 9], using
a perturbation method in a way which is not the usual way followed in the literature
(e.g. [10–12]). It was shown there, that the best way of looking at the phenomenon
consists in considering the damped critical system not as a perturbation of the (unique
and known) undamped critical system (a point of view which leads to the amazing
paradox), but rather as a perturbation of one of the infinitely many (and therefore
unknown) undamped stable systems (a point of view for which no surprises arise at
all). In other words the destabilization paradox is caused by the transformation of a
marginally stable circulatory system (which cannot be rendered unstable below the
critical load) into an incipiently unstable system, when it is embedded in a larger
class of damped system (where destabilization is instead possible at this lower load).

After having accepted the idea that damping can be destabilizing, one should ask
to himself if such a destabilization has ‘practical’ effects on the mechanical system.
Since the previous reasoning revealed us that the system loses stability through a
(simple) Hopf bifurcation, we expect that a limit-cycle exists around the bifurcation
point, so that, if this is supercritical, the motion is confined to a neighborhood of the
equilibrium. To check this property, a nonlinear analysis has to be carried out. How-
ever, in spite of the obvious curiosity a researcher should have about this question, it
seems, at the best of the author’s knowledge, that this problem has not been exhaus-
tively addressed in the literature, yet (except for [13] where a particular system has
been studied).

In this paper, a first analysis of the nonlinear problem is attempted. Guided by the
considerations developed for the linear stability analysis, a perturbation procedure,
based on a proper use of the Multiple Scale Method, is developed here, leading to a
bifurcation equation governing the formation and stability of a limit-cycle close to
the Hopf bifurcation point. Qualitative and quantitative information is drawn from
this equation.

The paper is organized as follows. In Sect. 2, the nonlinear model of the Ziegler
column is derived. In Sect. 3, a synthesis of previous results of the literature concern-
ing the linear stability analysis is given. In Sect. 4 the nonlinear problem is addressed
via theMultiple ScaleMethod, andnumerical results are presented. Section5 resumes
the main conclusions and an Appendix furnishes details.

2 The Model

The equations of motion of the upward double-pendulum depicted in Fig. 1, are
derived for finite rotations. The system consists of a two hinged weightless rigid
bars of equal length �, carrying two concentrated masses, m1 := 2m at the common
hinge (point B in the figure), and m2 := m at the tip (point C in the figure), visco-
elastically constrained at the hinges by: (a) two linear springs of stiffness k1 := k
and k2 := k and (b) two nonlinear (cubic) dashpots of Van der Pol type, having linear
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Fig. 1 Nonlinear Ziegler
column
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viscosity coefficients c11 and c12, respectively, and cubic viscosity coefficients c31
and c32. The system is loaded at the free end by a follower force of intensity F ,
which keeps his direction parallel to the upper bar. When infinitesimal rotations of
the two bars are considered and when nonlinear viscous damping is neglected, the
system degenerates into the well-known Ziegler column [1].

By following the Extended Hamilton’s approach, the following variational prin-
ciple must be satisfied:

δH :=
∫ t2

t1
(δT − δWint + δWext ) dt = 0 (1)

for any kinematically admissible motions. Here δT is the variation of the kinetic
energy, δWint is the virtual internal work done by the visco-elastic constraints and
δWext is the virtual external work done by the follower force.

By taking the rotations of the two bars as Lagrangian coordinates, viz. ϑ1 and ϑ2,
the following kinematic relations hold:

u B = � sin (ϑ1)

vB = −� [1 − cos (ϑ1)]

uC = � [sin (ϑ1) + sin (ϑ2)]

vC = −� [2 − cos (ϑ1) − cos (ϑ2)]

χ1 = ϑ1

χ2 = ϑ2 − ϑ1

(2)
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being u H and vH (H = B, C) the horizontal and vertical displacements of the hinges,
respectively, and χ j ( j = 1, 2) the ‘lumped curvatures’ (i.e. the relative rotations) at
the hinges.

The constitutive behavior of the visco-elastic devices is taken in the following
form:

M j = k jχ j + c1 j χ̇ j + c3 jχ
2
j χ̇ j , j = 1, 2 (3)

where M j ( j = 1, 2) are the internal couples, k j , c1 j , c3 j ( j = 1, 2) are the consti-
tutive constants referred to elasticity of the springs, linear and cubic (Van der Pol)
part of viscous damping.

The first variation δT , and the virtual works δWint and δWext , appearing in (1),
can be, therefore, written as:

δT := m1 (u̇ Bδu̇ B + v̇Bδv̇B) + m2 (u̇Cδu̇C + v̇Cδv̇C )

δWint := M1δχ1 + M2δχ2

δWext := −F [sin (ϑ2) δuC + cos (ϑ2) δvC ]

(4)

By using (4) and (2) in (1) and integrating by parts, the following balance equations
are obtained:

⎧⎪⎨
⎪⎩

(m1 + m2) �2ϑ̈1 + m2�
2ϑ̈2 cos (ϑ1 − ϑ2) + m2�

2ϑ̇2
2 sin (ϑ1 − ϑ2) + M1

− M2 − F� sin (ϑ1 − ϑ2) = 0

m2�
2ϑ̈2 + m2�

2ϑ̈1 cos (ϑ1 − ϑ2) − m2�
2ϑ̇2

1 sin (ϑ1 − ϑ2) + M2 = 0
(5)

Then, by substituting (3) in (5) and by introducing the following quantities (account-
ing for m1 = 2m, m2 = m, k1 = k2 = k):

τ = ωt, ω2 = k

m�2
, μ = F

m�ω2

ξ1 = c11
m�2ω

, ξ2 = c12
m�2ω

, ζ1 = c31
m�2ω

, ζ2 = c32
m�2ω

(6)

the nondimensional form of the equations of motion is finally obtained:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3ϑ̈1 + ϑ̈2 cos (ϑ1 − ϑ2) + ϑ̇2
2 sin (ϑ1 − ϑ2) + (ξ1 + ξ2) ϑ̇1 − ξ2ϑ̇2

+ 2ϑ1 − ϑ2 − μ sin (ϑ1 − ϑ2) + ζ1ϑ
2
1ϑ̇1 − ζ2 (ϑ2 − ϑ1)

2 (
ϑ̇2 − ϑ̇1

) = 0

ϑ̈2 + ϑ̈1 cos (ϑ1 − ϑ2) − ϑ̇2
1 sin (ϑ1 − ϑ2) + ξ2

(
ϑ̇2 − ϑ̇1

) + (ϑ2 − ϑ1)

+ ζ2 (ϑ2 − ϑ1)
2 (

ϑ̇2 − ϑ̇1
) = 0

(7)



Linear and Nonlinear Damping Effects on the Stability of the Ziegler Column 339

where 0 < μ ∈ R is the load parameter. In view of a perturbation solution, we
need to expand (7) in series; by retaining up to the cubic terms in displacements and
velocities, we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3ϑ̈1 + ϑ̈2 + (ξ1 + ξ2) ϑ̇1 − ξ2ϑ̇2 + 2ϑ1 − ϑ2 + μ (ϑ2 − ϑ1)

+ 1

6
μ (ϑ1 − ϑ2)

3 + ζ1ϑ
2
1ϑ̇1 − ζ2 (ϑ2 − ϑ1)

2 (
ϑ̇2 − ϑ̇1

)

− 1

2
(ϑ1 − ϑ2)

2ϑ̈2 + (ϑ1 − ϑ2) ϑ̇2
2 = 0

ϑ̈1 + ϑ̈2 + ξ2
(
ϑ̇2 − ϑ̇1

) + (ϑ2 − ϑ1) − 1

2
(ϑ1 − ϑ2)

2ϑ̈1 − (ϑ1 − ϑ2) ϑ̇2
1

+ ζ2 (ϑ2 − ϑ1)
2 (

ϑ̇2 − ϑ̇1
) = 0

(8)

Finally, these latter can be written in matrix form as (see the Appendix A for further
details):

Mq̈ + Cq̇ + (K + μH) q = μF1 (q, q, q) + F2 (q, q̇, q̇)

+ F3 (q, q, q̈) + F4 (q, q, q̇)
(9)

where the following definitions hold:

q :=
[

ϑ1
ϑ2

]
, M :=

[
3 1
1 1

]
, C :=

[
ξ1 + ξ2 −ξ2
−ξ2 ξ2

]

K :=
[

2 −1
−1 1

]
, H :=

[−1 1
0 0

] (10)

while F j (·), j = 1, · · · , 4 are trilinear vector functions with respect to their argu-
ments. Among them, F4 accounts for nonlinear damping, the remaining describing
geometrical nonlinearities related to the follower force, viz. F1, and inertial forces,
viz. F2, F3.

3 Linear Stability Analysis

Here, we briefly present the linear bifurcation scenario of the (linear) Ziegler column.
We first recall the well-known results of the exact analysis; then we resume the main
achievements of the asymptotic analysis developed in [8, 9].

Let us consider the linear part of (9), for which the trivial equilibrium position
q = 0 is asymptotically stable when μ = 0; the goal of the analysis is to find
the smallest (critical) value μd of μ at which the equilibrium manifests incipient
instability. To solve the problem, q = w exp (λt) is posed in the linearized (9), and
the following algebraic eigenvalue problem is obtained:
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[
λ2M + λC + (K + μH)

]
w = 0 (11)

When the system is undamped (usually referred as circulatory [1, 2]), and μ = 0,
all the (distinct) eigenvalues lie on the imaginary axis in pairs of complex conjugate,
so that the system is (marginally) stable. If μ is increased from zero, the eigenvalues
move on the imaginary axis, assuming the values ±iω j and still remaining distinct.
When the load reaches a critical value, namely μ = μc, a couple of them (e.g. iω1,
iω2), together with their complex conjugate, collide (circulatory or reversible Hopf
bifurcation) and if an infinitesimal increment δμ > 0 is given, they separate, one on
the left, the other on the right of the complex plane, thus entailing instability.

When the system is damped, namelyC is positive definite, the eigenvalue analysis
furnishes the eigenvalues λ = λ (μ). The critical load μd is the smallest μ at which
an eigenvalue, viz. the j-th (together with its complex conjugate), crosses from the
left the imaginary axis, i.e. Re

[
λ j (μd)

] = 0, (d/dμ)Re
[
λj (μ)

]
μ=μd

> 0. It has

been shown in the literature (see e.g. [1, 2, 12, 14]) that, when the damping is
vanishingly small, μd < μc. Therefore small damping has a detrimental effect on
stability of circulatory systems. The phenomenon is known in the literature as the
‘Ziegler paradox’, or the ‘destabilizing effect of damping’.

3.1 Exact Analysis

First, we tackle the problem throughout an exact analysis. When damping is zero, the
characteristic equation of the problem (11) is bi-quadratic; it admits purely imaginary
eigenvalues of modulus:

ω1,2 = 1

2
(7 − 2μ ∓ �(μ))

1
2 , � (μ) :=

√
4μ2 − 28μ + 41 (12)

together with their complex conjugate. A circulatory Hopf bifurcation occurs when
μ = μc := 7/2 − √

2. On the other side, when damping is different from zero, the
characteristic equation is a complete degree-4 polynomial equation and, by using
the Routh-Hurwitz criterion, a piecewise critical locus in the (μ, ξ1, ξ2)-space of
parameter (Fig. 2a) can be found.

The effect of damping on the stability of the Ziegler column is mostly detrimental,
since the critical load of the damped system is lower with respect to the undamped
one, except for a small region (Fig. 2b) in the neighborhood of an optimal direction
(dashed line in the figure): on the left side of this latter the stability is governed by
the first mode; on the right side, by the second mode.
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3.2 Asymptotic Analysis

In this section we will briefly resume the theory developed in [8, 9], where an
asymptotic method is discussed in order to evaluate the eigenvalue sensitivities of a
general circulatory system, when a small damping is introduced as a perturbation.

Differently from the common approach followed in the literature [10], in which a
perturbation of the (defective) double eigenvalue at μc is performed, here the starting
point of the asymptotic expansion is a simple eigenvalue of a sub-critically loaded
undamped system (μ < μc), where the parameter μ is arbitrary and unknown in the
interval (0,μc). Then, the rescaling C → εC, where 0 < ε � 1 is a perturbation
parameter, and the following series expansions for the eigenpairs are introduced:

λ = λ0 + ελ̂0 + ε2
ˆ̂
λ0 + . . .

w = w0 + εŵ0 + ε2 ˆ̂w0 + . . .
(13)

By substituting (13) in the eigenvalue problem (11) and by requiring it is satisfied
for any ε, we obtain the following perturbation equations:

ε0 :
[
λ2
0M + (K + μH)

]
w0 = 0

ε1 :
[
λ2
0M + (K + μH)

]
ŵ0 = −λ0

(
C + 2λ̂0M

)
w0

(14)

Generating solution of the ε0-order problem is represented by the eigenpairs of the
sub-critically loaded undamped system, namely (λ0 (μ) , w0 (μ)) = (±iω j (μ) ,

u j (μ)
)
, with u j ∈ R

n . Due to the non-self-adjointness of the problem, the left
eigenvectors v j (μ) ∈ R

n , which form the dual basis, are also of interest. Right and
left eigenvectors satisfy, respectively:

[
(K + μH) − ω2

j M
]

u j = 0[(
K + μHT

)
− ω2

j M
]

v j = 0
(15)

Moreover, they are bi-orthogonal with respect the mass matrix, according to
vT

k Mu j = 0 if k �= j , and can be normalized to satisfy vT
j Mu j = 1.

Compatibility of the ε-order problem furnishes the first sensitivity of iω j to the
damping, which turns out to be [8, 9]:

λ̂ j = −1

2
vT

j (μ) Cu j (μ) (16)

Therefore, the first sensitivity is found to be real and implicitly dependent of μ by
the way of the eigenvectors. It is important to remark that λ̂ j can be either negative
or positive; hence, differently to what happens in conservative systems, damping can
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have a stabilizing as well as a destabilizing effect. Moreover, the previous analysis
only holds for μ < μc: indeed when μ = μc a special perturbation analysis must be
carried out (see, e.g. [10, 12]).

By coming back to the Ziegler column, right and left eigenvectors associated with
the frequencies (12) are:

u1 = b1

{−�(μ) − 6μ + 11

3�(μ) + 2μ − 13
, 1

}T

, u2 = b2

{
− �(μ) − 6μ + 11

3�(μ) − 2μ + 13
, 1

}T

v1 = d1

{
1,

−�(μ) − 6μ + 11

�(μ) + 2μ − 3

}T

, v2 = d2

{
1,−�(μ) − 6μ + 11

�(μ) − 2μ + 3

}T
(17)

where the coefficients b j and d j , not reported here, are evaluated by the normalization
conditions

∥∥u j
∥∥ = 1andvT

j Mu j = 1.Then, (16) provides thefirst-order sensitivities
of the two eigenvalues, namely:

λ̂1 = −ξ1(� (μ) + 2μ − 3) + 6ξ2(� (μ) + 2μ) − 38ξ2
8�(μ)

λ̂2 = −ξ1(� (μ) − 2μ + 3) + 6ξ2(� (μ) − 2μ) + 38ξ2
8�(μ)

(18)

By equating to zero λ̂1 and λ̂2, two surfaces in the (μ, ξ1, ξ2)-parameter space are
found. The lower envelope of the two graphs is the critical locus which is represented
in the (μ, ξ1, ξ2)-parameter space in Fig. 2a and by μ-isolines in the plane of the
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Fig. 2 Exact versus asymptotic stability boundaries for the Ziegler column: a critical manifolds in
the (μ, ξ1, ξ2)-parameter space:S stable region,U unstable region,Ex exact boundary,As asymptotic
boundary; b μ-isolines
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damping parameters (Fig. 2b). These latter are straight lines outgoing from the origin,
for μ spanning the range (1/3, 2): when they are compared with the isolines of the
exact solution, it is seen that for small damping the approximation is excellent far
from the optimal direction, progressively worsening while moving close to it. In
the shaded region in the figure, it is μ > μc, i.e. damping stabilizes the circulatory
system, provided it is not evanescent.

4 Post-critical Behavior

To investigate themechanical behavior of the system in the post-critical range (i.e. for
μ > μd), we aim to approach the nonlinear problem by using the Multiple Scale
Method [15–19]. The bifurcation equations are first built-up, and then they are ana-
lytically studied. Numerical results are finally illustrated.

4.1 Bifurcation Equations

Guided by the linear analysis, the starting point of perturbation is a sub-critically
loaded undamped system (μ < μc) for which μ is a unknown critical load. First, we
perform the rescaling: q → ε1/2q̃, C → εC̃, where 0 < ε � 1 is a perturbation
parameter; by omitting the tilde, (9) reads:

Mq̈ + εCq̇ + (K + μH) q = εμF1 (q, q, q) + εF2 (q, q̇, q̇)

+ εF3 (q, q, q̈) + εF4 (q, q, q̇)
(19)

Then, by introducing in (19) several independent time scales, namely t0 = t , t1 =
εt , · · · so that d/dt = d0 + εd1 + · · · , and by expanding the unknown vector q in
series of integer powers of ε, namely q = q0 + εq1 + · · · , we get the following
perturbation equations:

ε0 :
[
Md20 + (K + μH)

]
q0 = 0

ε :
[
Md20 + (K + μH)

]
q1 = − (C + 2Md1) d0q0 + μF1 (q0, q0, q0)

+ F2 (q0, d0q0, d0q0) + F3

(
q0, q0, d

2
0q0

)
+ F4 (q0, q0, d0q0)

(20)

Solution of the ε0-order problem reads:

q0 = A j (t1, · · · ) u j e
iω j t0 + c.c. (21)

where A j is the unknown (complex) amplitude and
(
ω j (μ) , u j (μ)

) ∈ R are the
eigenpairs of problem (15)a, j = 1, 2. Since just one eigenvalue is critical, j = 1 or
j = 2 must alternatively be taken.
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By substituting (21) into the ε-order problem, this latter reads:

ε :
[
Md20 + (K + μH)

]
q1 = −iω j (C + 2Md1) A j u j e

iω j t0

+ 3A2
j Ā jμF1

(
u j , u j , u j

)
eiω j t0 + iω j A2

j Ā j F4
(
u j , u j , u j

)
eiω j t0

+ ω2
j A2

j Ā j
[
F2

(
u j , u j , u j

) − 3F3
(
u j , u j , u j

)]
eiω j t0 + c.c. + N RT

(22)

where N RT denotes ‘non-resonant terms’. This is a non-homogeneous problem in
the unknown q1. In order it can be solved, the known term must belong to the range
of the operator; this solvability condition requires that:

− iω j vT
j (C + 2Md1) A j u j + ω2

j A2
j Ā j vT

j

[
F2

(
u j , u j , u j

) − 3F3
(
u j , u j , u j

)]
+ 3A2

j Ā jμvT
j F1

(
u j , u j , u j

) + iω j A2
j Ā j vT

j F4
(
u j , u j , u j

) = 0
(23)

that furnishes:

d1A j = −1

2
cA j + 1

2
n4A2

j Ā j − 3

2ω j
iμn1A2

j Ā j − 1

2
iω j (n2 − 3n3) A2

j Ā j (24)

where the following (real) scalar quantities, depending on μ, have been introduced.

c (μ) := vT
j Cu j , n1 (μ) := vT

j F1
(
u j , u j , u j

)
, n2 (μ) := vT

j F2
(
u j , u j , u j

)
n3 (μ) := vT

j F3
(
u j , u j , u j

)
, n4 (μ) := vT

j F4
(
u j , u j , u j

)
(25)

Finally, by reabsorbing the ε-parameter and coming back to the true time, (24) can
be written in real variables as:

ȧ j = −1

2
ca j + 1

8
n4a3

j

a j φ̇ j = −
a3

j

(
3μn1 + n2ω

2
j − 3n3ω

2
j

)
8ω j

(26)

where a j (t) and φ j (t) are the (real) amplitude and phase, respectively (i.e. A j :=
a j/2 exp(iφ j )). They constitute the bifurcation equations sought for.

4.2 Qualitative Analysis

The bifurcation equation (26)a governs the modulation of the amplitude of the (at
this order) harmonic evolution (21) of the system. Amplitude a j depends on the load
parameter μ by the way of the coefficients c = c (μ) and n4 = n4 (μ). It should be
remarked, that the eigenvalue associated to the linear part of (26)a, coincides with
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that furnished by the sensitivity analysis, since −c/2 = λ̂ j (see (16)). Therefore,
when μ < μd , since c (μ) > 0, the equilibrium point a j = 0 is asymptotically
stable; when, μ > μd , since c (μ) < 0, the equilibrium is unstable. A limit-cycle of
amplitude a j = a je = const however exists, provided n4 �= 0; it is given by:

a je := ±2

√
c (μ)

n4 (μ)
(27)

This limit-cycle is supercritical (μ > μd ), and therefore stable, if n4 (μd) < 0 and
subcritical (μ < μd ), and therefore unstable, if n4 (μd) > 0. If, in contrast, n4 = 0,
i.e. if the system does not possess nonlinear damping at all, then, no limit-cycle does
exist around the bifurcation. This, of course, does not mean that the motion increases
unbounded once the critical load has been overcame, since the asymptotic analysis
loses its validity far from bifurcation. However, this circumstance signals that if a
limit-cycle does exist, it occurs at large amplitudes.

Since n4 (μd) is a degree-1 homogeneous function of the nonlinear damping
coefficients (see (25)e and (31)d), i.e. it is n4 (μd) = b1ζ1 + b2ζ2, with b1, b2
coefficients, it exists in the plane (ζ1, ζ2) a straight line outgoing from the origin,
which separates systems undergoing supercritical from subcritical Hopf bifurcations.
Therefore, nonlinear damping has a beneficial effect in a half-plane, and a detrimental
effect in the other half-plane. If this line crosses the first quadrant of the plane, where
one would expect that ζ1 > 0, ζ2 > 0 always increase the dissipation capability
of the system, one finds that this is not the case. In other words, another aspect of
the Ziegler paradox exists even in the nonlinear range, where ‘presumed’ dissipation
sources, cause, indeed, worsening of the mechanical performances.

It is interesting to note that the other nonlinear effects, of geometrical nature,
encompassed by the coefficients n1, n2, n3, are ineffective at this order on the for-
mation of the limit-cycle, since they only affect its frequency, ruled by (26)b.

It can be concluded that the Ziegler column calls for an accurate description of
damping, since its linear part is responsible for the critical load, and its nonlinear
part for the existence and position of a limit-cycle.

4.3 Numerical Results

Some numerical results are illustrated concerning the post-critical behavior of the
Ziegler column.Results fromasymptotic analysis are comparedwith direct numerical
integrations of the equations of motion. To this end, we first introduce the moduli
ρL , ρN L and ratios ϕL , ϕN L , for the linear (subscript L) and nonlinear (subscript
N L) part of damping, respectively, such as: ξ1 = ρL cos (ϕL), ξ2 = ρL sin (ϕL),
ζ1 = ρN L cos (ϕN L), ζ2 = ρN L sin (ϕN L), where ϕL , ϕN L span the range (0,π/2)
(positive damping coefficients). Then, three case studies, labeled with black circles
in Fig. 2b, are considered, namely:
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• case study I: ρL = 0.25, ϕL = 9π/20, ρN L = 25, ϕN L = 3π/8, for which the
asymptotic analysis developed in Sect. 3.2 furnishes μd � 0.654 (μd � 0.658
exact), and where the critical mode is the first one;

• case study II: ρL = 0.25, ϕL = π/5, ρN L = 25, ϕN L = π/24, for which the
asymptotic analysis developed in Sect. 3.2 furnishes μd � 1.626 (μd � 1.641
exact), and where the critical mode is again the first one;

• case study III: ρL = 0.1, ϕL = 0, ρN L = 30, ϕN L = π/8, for which the
asymptotic analysis developed in Sect. 3.2 furnishes μd � 2 (μd � 2 exact), and
where the critical mode is the second one.

First, the system deprived of the nonlinear damping, namely with ρN L = 0, is
analyzed. Since the asymptotic analysis fails in this case, numerical integrations in
time of the third-order equations of motion are performed for (I) μ = 0.758, (II)
μ = 1.741, (III) μ = 2.08, displayed in Fig. 3. It can be seen that, in all the cases,
after a transient has been exhausted, a limit-cycle is reached, in which at least one
of the rotations is large. In particular, the following maximum values (amplitudes)
are found: (I) ϑ1 � 0.80 rad, ϑ2 � 1.2 rad; (II) ϑ1 � 0.37 rad, ϑ2 � 0.71 rad; (III)
ϑ1 � 0.007 rad, ϑ2 � 0.73 rad.

The effects of nonlinear damping on the post-critical behavior of the system are
then studied. As discussed in Sect. 4.2, the qualitative influence of the nonlinear
damping can be conveniently represented in the plane (ζ1, ζ2), where the sign of
n4 (μd) is analyzed. For the three cases under study, results are displayed in Fig. 4,
where a straight line outgoing from the origin separates systems undergoing super-
critical (shaded region in the figure) from subcritical bifurcations. The angle that this
line forms with the ζ1-axis is defined as the critical angle ϕc

N L , since a transition
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Fig. 3 Time-histories ϑ1 (t), ϑ2 (t) for linearly damped systems (ρN L = 0), from numerical inte-
grations of the third-order equations of motion: a case study I; b case study II; c case study III
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Fig. 4 Supercritical (shaded) and subcritical (white) regions in the (ζ1, ζ2)-plane: a case study I;
b case study II; c case study III
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Fig. 5 Asymptotic bifurcation diagram for the case study I: a critical locus in the (μ,ϕN L , a)-
parameter space; b ϕN L -isolines

from a supercritical to a subcritical Hopf bifurcation occurs there. The following
values are found: (I) ϕc

N L = 1.537 rad; (II) ϕc
N L = 0.677 rad; (III) ϕc

N L = 0.050
rad. It is noticed that a qualitative exchange occurs between cases (I) (II), in which
the critical mode is the lowest, and case (III), in which the critical mode is the highest.
Indeed, supercritical bifurcations occur when ϕN L < ϕc

N L in the former case, and
when ϕN L > ϕc

N L in the latter case.
To investigate the dependence of the amplitude of the limit-cycles on both the load

and the nonlinear damping ratio, we plot bifurcation diagrams in the (μ,ϕN L , a)-
parameter space, as furnished by the asymptotic analysis (see Figs. 5, 6, 7 for the
three case studies, respectively). In the same figures, some cross-sections of the
surface for selected values of ϕN L are shown. Both the representations show the
sub-supercritical transition, when the nonlinear damping ratio is varied, and how the
amplitude of the relevant unstable/stable limit-cycle, also varies with the load. It is
seen that, consistently with the previous analysis, case I (Fig. 5) and case II (Fig. 6)
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Fig. 6 Asymptotic bifurcation diagram for the case study II: a critical locus in the (μ,ϕN L , a)-
parameter space; b ϕN L -isolines
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Fig. 7 Asymptotic bifurcation diagram for the case study III: a critical locus in the (μ,ϕN L , a)-
parameter space; b ϕN L -isolines

are qualitatively similar, although the subcritical bifurcation region is greater in latter
case II. In contrast, case III (Fig. 7) exhibits ‘reversed’ aspects.

Finally, the previous findings have been corroborated by numerical integrations
of the third-order equations of motion, shown in Figs. 8, 9, 10 for the three cases,
respectively. In particular, the asymptotic amplitudes modulation equations have
been numerically integrated for μ = μd + δμ, with δμ = 0.1 (for cases I and
II) and with δμ = 0.08 (case III), which have been labeled with black circles in
Figs. 5b, 6b, 7b. It is found that, the obtained asymptotic results (black curves in the
figures), compared with numerical integrations (gray curves in the figures), are all in
good qualitative accordance. However, while in the cases I and II also an excellent
quantitative accordance is found, in the case III quite significant numerical differences
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Fig. 10 Numerical versus asymptotic amplitudes ϑ1, ϑ2 for the case study III

are present. This circumstance is tentatively attributed to the fact that, in case III, the
stable (lower) mode is associated with eigenvalues which, although are on the left
side of the complex plane, are quite close to the imaginary axis, i.e. they are not well-
separated by the critical ones, as instead supposed in the asymptotic analysis (and,
in general, by the Center Manifold approach). Therefore, an interaction between the
two modes is suspected to occur, that would require further and much more complex
investigation along the lines, e.g., of [20–22].

5 Conclusions

The mechanical behavior of a nonlinear, nonconservative two-degree-of freedom
system, known in the linear range as the Ziegler column, has been analyzed. The
‘destabilization paradox’, according to which a small, strictly dissipative, damping
has a detrimental effect on linear stability of the column, has been explained in a new
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perspective. According to it, the critical damped system is not a (finite) perturba-
tion of the known critical undamped system, but rather an infinitesimal perturbation
of an unknown undamped (circulatory) system, which is loaded below the critical
value, and therefore is stable. Thus, the paradox is the result of destabilization of a
marginally stable circulatory system. A perturbation method has been consistently
developed.

Then the analysis of the nonlinear problem has been carried out, aimed to inves-
tigate the evolution of the column, once its critical load is exceeded. An asymp-
totic analysis, carried out via the Multiple Scale Method, consistently with the ideas
springing from the linear study, has been performed. The analysis provides bifur-
cation equations governing the evolution of amplitude and phase of the motion. It
has been found that a supercritical limit-cycle, limiting the motion of the unstable
column, does exist, provided a suitable nonlinear damping is present in the system.
In contrast, geometrical nonlinearities related to the load and the inertia forces are
unable (at the first order) to lead the system onto a nearby periodic orbit. Such main
result has been confirmed by numerical integrations of the equations of motion, who
have revealed: (a) the existence of small-amplitude limit-cycle, when the system is
endowed with a proper nonlinear damping, and, (b) large-amplitude limit-cycle (not
captured by the first-order asymptotic analysis), when nonlinear damping is removed
from the system.

The analysis has shown that nonlinear damping can have a beneficial effect on the
nonlinear behavior of the system, rendering supercritical the Hopf bifurcation, but
also a detrimental effect, rendering subcritical the same bifurcation, thus revealing a
new aspect of the Ziegler paradox, existing also in the nonlinear field.

Further analysis has to be carried out to (a) investigate the proper form of the
nonlinear damping, able to optimize the performances of the column, (b) its rela-
tionships with the linear damping, and (c) possible interactions among two modes
(multiple Hopf bifurcation).

Acknowledgments This work was granted by the Italian Ministry of University and Research
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Appendix A: Nonlinear Vector Functions

Equations of motion (8) can be written as:

Mq̈ + Cq̇ + (K + μH) q = μf1 (ϑ1,ϑ2) + f2
(
ϑ1,ϑ2, ϑ̇1, ϑ̇2

)
+ f3

(
ϑ1,ϑ2, ϑ̈1, ϑ̈2

) + f4
(
ϑ1,ϑ2, ϑ̇1, ϑ̇2

) (28)

where q, M, C, K and H have been defined in (10) and:
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f1 (ϑ1,ϑ2) :=
[− 1

6 (ϑ1 − ϑ2)
3

0

]

f2
(
ϑ1,ϑ2, ϑ̇1, ϑ̇2

) :=
[− (ϑ1 − ϑ2) ϑ̇2

2

(ϑ1 − ϑ2) ϑ̇2
1

]

f3
(
ϑ1,ϑ2, ϑ̈1, ϑ̈2

) :=
[

1
2 (ϑ1 − ϑ2)

2ϑ̈2

1
2 (ϑ1 − ϑ2)

2ϑ̈1

]

f4
(
ϑ1,ϑ2, ϑ̇1, ϑ̇2

) :=
[−ζ1ϑ

2
1ϑ̇1 + ζ2 (ϑ2 − ϑ1)

2 (
ϑ̇2 − ϑ̇1

)
−ζ2 (ϑ2 − ϑ1)

2 (
ϑ̇2 − ϑ̇1

)
]

(29)

are the nonlinear (cubic) vector functions. These latter can be suitably re-written as
trilinear vector functions with respect to their arguments, namely:

F j (u, v, w) = 1

6
f0juvwuvw, j = 1, · · · , 4 (30)

being u := (u1, u2)
T , v := (v1, v2)

T , w := (w1, w2)
T three dummy vectors and

f0juvwuvw the third variation (evaluated at the origin) of each of f j (·) ( j = 1, · · · , 4)
with respect to its arguments. In particular:

f01uvwuvw :=
[− (u1 − u2) (v1 − v2) (w1 − w2)

0

]

f02uvwuvw := 2

[
(w2 − w1) u̇2v̇2 + (v2 − v1) u̇2ẇ2 + (u2 − u1) v̇2ẇ2
(w1 − w2) u̇1v̇1 + (v1 − v2) u̇1ẇ1 + (u1 − u2) v̇1ẇ1

]

f03uvwuvw :=

⎡
⎢⎢⎢⎢⎣

(v1 − v2) (w1 − w2) ü2 + (u1 − u2) (w1 − w2) v̈2
+ (u1 − u2) (v1 − v2) ẅ2

(v1 − v2) (w1 − w2) ü1 + (u1 − u2) (w1 − w2) v̈1
+ (u1 − u2) (v1 − v2) ẅ1

⎤
⎥⎥⎥⎥⎦ (31)

f04uvwuvw := 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ζ1 (u1v̇1w1 + u̇1v1w1 + u1v1ẇ1)

+ζ2 [(u̇2 − u̇1) (v2 − v1) (w2 − w1)]
+ζ2 [(u2 − u1) (v̇2 − v̇1) (w2 − w1)]
+ζ2 [(u2 − u1) (v2 − v1) (ẇ2 − ẇ1)]

ζ2 [(u1 − u2) (w1 − w2) (v̇1 − v̇2)]
+ζ2 [(v1 − v2) (w1 − w2) (u̇1 − u̇2)]
+ζ2 [(u1 − u2) (v1 − v2) (ẇ1 − ẇ2)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, by substituting (30) and (31) in (28), this latter assumes the form of (9).
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Pseudoelastic Shape Memory Alloys
to Mitigate the Flutter Instability:
A Numerical Study

Arnaud Malher, Olivier Doaré and Cyril Touzé

Abstract A passive control of aeroelastic instabilities on a two-degrees-of-freedom
(dofs) system is considered here using shape memory alloys (SMA) springs in their
pseudo-elastic regime. SMA present a solid-solid phase change that allow them to
face strong deformations (∼10 %); in the pseudo-elastic regime, an hysteresis loop
appears in the stress-strain relationship which in turn gives rise to an important
amount of dissipated energy. This property makes the SMA a natural candidate
for mitigating undesired vibrations in a passive manner. A 2-dofs system is used
here to model the classical flutter instability of a wing section in a uniform flow.
The SMA spring is selected to act on the pitch in order to dissipate energy of the
predominant motion. A simple phenomenological model for the SMA hysteresis
loop is introduced, allowing for a quantitative study of the important parameters to
optimize in view of an experimental design. Thanks to a simple phenomenological
model for the SMA hysteresis loop, a quantitative numerical study is performed in
order to exhibit the best tuning of the material parameters for controlling the flutter
instability.

1 Introduction

Aeroelastic instabilities are an important issue in aeronautics, especially regarding the
wing motions. Indeed, for a coupled system airflow—flexible structure, like aircraft
wing, turbojet or bridge, a limit velocity exists above which the flexible structure
cannot evacuate the energy received from the airflow anymore, then giving rise to
strong or even fatal deformations. These instabilities, usually described under the
generic term flutter instability, result from interaction between aerodynamic, inertia
and elastic forces [3]. In this contribution, we focus on a passive control device for
mitigating the flutter instability by using springs composed of shape memory alloys
(SMA). In their pseudo-elastic regime, SMA are known for showing the ability of
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dissipating an important amount of energy thanks to the hysteresis loop appearing
in their stress-strain relationship [11], and has thus already been used in numerous
applications ranging from civil engineering, aeronautics to medical industry [13, 14].
The goal of this study is, in a first step, not to describe the system as accurately as
possible but to exhibit the interest of using an hysteretic phenomenon in the view
of controlling an aeroelastic instability and studying the influence of different SMA
parameters for the flutter control.

Recent contributions have considered the dynamical responses of SMA springs
from the theoretical viewpoint [1, 7, 11] in order to properly quantify the most
prominent features of the vibrations of simple single dof systems. Experimentally,
a torsion pendulum has recently been used in order to clearly exhibit the softening
effect of SMA oscillators [4].

The aim of this paper is to investigate the effect of a SMA spring on the flutter
instability. More particularly, the most relevant parameters of a pseudo-elastic regime
on the amplitudes of the limit cycle oscillations (LCO) are analyzed, in order to
quantify the effect of the dissipation brought by the hysteresis loop. The airfoil is
modeled using the classical 2-dofs system coupling pitch and heave motions [5].
In order to exchange energy and create the possibility of a Hopf bifurcation in the
system, the minimal model should contain at least a flexural (heave) and a torsional
(pitch) mode. The SMA nonlinear behaviour is described by an heuristic model
where the prominent parameters are left free to vary. The structural nonlinearities
that may appear in the wing motion are here described thanks to the addition of a
cubic nonlinearity in the restoring force [6, 8, 9, 12]. Numerical simulations are then
conducted in order to investigate the effect of the SMA on the LCO. In particular, it
is shown that for certain parameter range, the SMA spring can lead to a significant
decrease of the amplitude of the LCO.

2 2DOFs Airfoil Model

2.1 Linear Model and Flutter Velocity

The system under consideration is shown in Fig. 1. A Lagrangian formulation is used
to express the evolution of the altitude h (heave) and the angle of attack α (pitch) [5].
The kinetic energy reads T = 1

2 mḣ2 + 1
2 Iαα̇2 + Sα ḣα̇, and the potential energy

reads V = 1
2 kαα2 + 1

2 khh2. In these expressions, Iα is the inertia moment and Sα the
static moment which is directly related to the position of the airfoil gravity center
and is the cause of the coupling. The source terms F and M (aerodynamic force and
moment) are classically derived from the lift coefficient CL such as F = 1

2ρU 2SCL

and M = eF , where ρ is the fluid density, U the upstream airspeed and S the airfoil
section. We assume that the angle of attack remains small, so that the lift coefficient
depends linearly on αapp the apparent angle of attack, so that CL = (∂CL/∂α)αapp

(CL |α=0 = 0 because the airfoil is symmetric). A pseudo-static approach is used,
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Fig. 1 Sketch of the airfoil model as a rigid body in uniform flow U with two dof: pitch (α) and
heave (h)

i.e. the airfoil speed ḣ is not neglected as compared to the upstream airspeed U and
αapp = α + ḣ/U [5].
Lagrange equations lead to the following dynamical system:

[
m Sα

Sα Iα

] [
ḧ

α̈

]
+

[
1
2ρU SCL ,α 0

− 1
2 eρU SCL ,α 0

] [
ḣ

α̇

]

+
[

Kh
1
2ρU 2SCL ,α

0 Kα − 1
2 eρU 2SCL ,α

] [
h
α

]
= 0.

(1)

In nondimensional form (1) reads

[
1 xα

xα r2
α

] [
y′′
α′′

]
+

[
μCL ,α� 0

−μγ CL ,α� 0

] [
y′
α′

]

+
[

�2 μCL ,α�2

0 r2
α − μγ CL ,α�2

] [
y
α

]
= 0,

(2)

y = h
b , τ = Kα t

Iα
, ( )′ = d

dτ
,

rα =
√

Iα
mb2 , μ = ρbS

2m , xα = Sα

mb ,

� = U
b

√
Iα
Kα

, � =
√

Kh Iα
mKα

, γ = e
b .

In order to gain insight on the critical parameter values, the flutter speed � f

can be derived analytically. Indeed, assuming that the airfoil motion is harmonic,
y = � (ỹ exp(pt)) and α = � (α̃ exp(pt)) with (p, α̃, ỹ) ∈ C, replacing α and y by
their new expressions in (2) it yields
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Fig. 2 Real (solid lines) and
imaginary (dotted lines)
parts of the solutions of
det(A) = 0, with A defined
in (3). Parameters of the
problem are listed in Table 1
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[
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α̃

]
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A =
[

p2 + μCL ,α�p + �2 xα p2 + μCL ,α�2

xα p2 − μγ CL ,α p r2
α p2 + r2

α − μγ CL ,α�2

]
.

(3)

Equation (3) has non trivial solutions pi when det(A) = 0. Using the parameter
values of Table 1, the solutions pi versus the flow speed � is plotted in Fig. 2. At the
flutter velocity � f , the real part of one of the solutions pi vanishes. Assuming then
p purely imaginary, separating real and imaginary parts in the equation det(A) = 0,
and grouping the terms to eliminate p, the following expression is found for which
� f is solution

(A1�
2 − A2)(A3�

2 + A4) = 0,

with

⎧⎨
⎩

A1 = μCL ,α(r2
α + γ xα)

A2 = r2
αxα

,

thus � f =
√

A2

A1
=

√
r2
αxα

μCL ,α(r2
α + γ xα)

. (4)

Using values of Table 1 we find � f = 0.87.

2.2 SMA Model

The SMA spring is assumed to have pseudo-elastic behaviour, which is briefly
recalled in Fig. 3. This nonlinear behaviour is characterized by a solid-solid phase
change between two different states. The first one called austenite is stable at large
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Fig. 3 Pseudo-elastic
behaviour of SMA and its
microstructure for each
phase

temperatures and is the natural state of the spring at rest. The microstructure of the
austenite phase is also sketched in Fig. 3. When deformed, the microstructure of the
SMA turns into a new phase called martensite, energetically stable at small tempera-
tures and for which the microstructure is now oriented. The points in the stress-strain
space where the transformations start and finish are usually denoted with the sub-
scripts s (start) and f (finish), so that for instance M f refers to the point where the
martensitic transformation has been fully accomplished in the SMA structure.

The path followed in the stress-strain relationship is not the same when the material
is loaded or unloaded, thus an hysteresis loop appears as illustrated in Fig. 3. This
hysteretic phenomena is the most salient feature of the pseudo-elastic behaviour of
SMA. The dissipated energy during a cycle is proportional to the area of the hysteresis
loop so that the more the loop area is large, the more energy is prone to be dissipated
in the device.

The nonlinear behaviour of single dof SMAs can be derived from a general, three-
dimensional model inferred from thermodynamical laws and then reduced by con-
sidering ad-hoc assumptions, see e.g. [2, 7, 10, 11]. In this case the model contains,
in-built within the oscillator equation, additional equations governing the evolution
of the fraction of martensite, the description of heat transfer, and the thermodynamic
force, which expression is derived from a pseudopotential of dissipation that can
include yields functions in order to express the phase transformations [11]. These
modeling features are typical of hysteretic systems [15] and give rise to a complex
formulation which, in turn, induces numerical difficulties for solving the whole sys-
tem. Contrary to this general approach, we use in this contribution a simple heuristic
model instead, as it has the capacity to retrieve the main features of the dynamical
behaviour within a light computational framework. It is built following the sketch in
Fig. 3 by approximating each part of the diagram by a linear relationship, hl mod-
elize the beginning of the martensitic transformation and H the end of the marten-
sitic transformation. An internal auxiliary variable playing the role of the fraction of
martensite is defined so as to keep the memory of the precedent state of the mate-
rial in a dynamical simulation. For simplification, it is assumed that the slopes of
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Table 1 Nondimensional
aeroelastic parameters

rα μ xα � γ CL ,α

0.5 1/10π 0.2 0.5 0.4 2π

the purely austenitic and purely martensitic phases are equal, as well as the slopes
during the reverse or transverse transformations, so that the stiffness of the SMA are
defined by K1 and K2, only as shown in Fig. 3. It is also assumed that the behaviour
of the spring is symmetric in traction and compression. Internal loops are described
following the sketch in Fig. 3 and we call ASM A the area of the maximal internal
loop. The area ASM A is completely defined by the four parameters K1, K2, hl and
H with the following relationship

ASM A = hl H
√

1 + K 2
1

√
1 + K 2

2 cos(tan−1(1/K1) + tan−1(K2)).

For the remainder of the study, the four parameters that will be considered are ASM A,
K1, K2 and hl (ASM A instead of H as it is more physically meaningful).

After the flutter instability, with the physical parameters from Table 1 the wing
experiences large-amplitude motions especially on the pitch mode, whereas the
amplitude of the motion of the heave mode remains fairly small. In order to take
advantage of the dissipative properties of the SMA, it appears logical to include a
SMA spring on the torsional motion, whereas the flexural spring is left unchanged
with a linear behaviour law.

2.3 Final Model

To ensure a LCO after bifurcation occurs (no matter using SMA or not) a cubic
stiffness is added on both modes (ξy for heave and ξα for pitch). The final model
with a SMA torsional spring is then derived by replacing r2

αα from (2) with the
nonlinear behaviour of the SMA spring f SM A

N L depicted in Fig. 3. It reads:

[
1 xα

xα r2
α

] [
y′′
α′′

]
+

[
μCL ,α� 0

−μγ CL ,α� 0

] [
y′
α′

]
+

[
�2 μCL ,α�2

0 −μγ CL ,α�2

] [
y
α

]
=

[ −ξy y3

− f SM A
N L (α) − ξαα3

]
.

(5)
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3 Results and Discussion

The aeroelastic parameters for the two-dofs system have been selected according
to [5], they are listed in Table 1. Equation (5) is integrated in time with a fourth-
order Runge-Kutta scheme. The initial condition is generally prescribed as a small
perturbation on the heave mode. The results shown in Fig. 4 are made for ξy = ξα = 0,
thus the nonlinearity is exclusively due to the SMA.

When � < � f , the airfoil motion decreases and tends to zero, see Fig. 4a. When
� ≥ � f , the flutter instability occurs and the position at rest is not stable anymore.
However, the energy of the LCO can be dissipated by the SMA, so that for a certain
range of reduced velocity, the amplitude of the motion saturates thanks to the nonlin-
ear behaviour of the SMA, as illustrated in Fig. 4b. When the motion amplitudes of
the LCO are beyond the end of the martensitic transformation, the potential of dis-
sipation of the SMA is reached, so that divergent motions are retrieved. The critical
speed above which the motion diverges is denoted �c. The first observed and awaited
effect of adding the SMA is to increase �c thanks to the damping property of the
hysteresis loop, an intermediate stage where LCO with small amplitude is present.
In a first step the energy evolution is investigated to ensure the LCO is entirely due
to the hysteresis loop of the SMA and in a second step, a parametric study of the
SMA is made to understand its influence on the LCO.

Fig. 4 Effect of the SMA on
the linear flutter instability
(ξy = ξα = 0) for three
different reduced velocities:
a Linear stability case,
� = 0.86 b Instability case,
with LCO due to SMA
dissipation, � = 0.91 c
Instability case where SMA
cannot dissipate enough
energy, and an exponential
growth is observed,
� = 0.93 (� f = 0.87 and
�c = 0.926). Blue heave
motion y, green pitch α. The
curves are normalized to
their maximal value
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Fig. 5 Total energy etot
versus time for the
aeroelastic system
(parameters of Table 1), with
and without SMA, and for
� = 0.9
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3.1 Energy Exchange

We investigate the energy evolution with time for the case � f < � < �c. The
energy contained in the airfoil reads

Etot = T + V = 1

2

(
mḣ2 + Iαα̇2 + Kαα2 + Khh2

)
+ Sα ḣα̇.

Then the nondimensional energy is

etot = 1

2

(
ẏ2 + r2

αα̇2 + kαα2 + �2 y2
)

+ xα ẏα̇. (6)

Its evolution is plotted in Fig. 5 for system with and without SMA. For each cycle
the energy increase of the system without SMA corresponds exactly to the energy
dissipated by the SMA in its internal loop (for example right after the system with
SMA enters in its first internal loop this loop dissipates 1.198 10−4 and during this
time the system without SMA grew 1.189 10−4). Hence in this regime, the energy
saturates to a finite value. This clearly shows that the LCO appearing when � f <

� < �c is entirely due to the SMA hysteresis loop. We now explore the influence
of the SMA parameters on the LCO.

3.2 Influence of SMA Parameters

The global effect of the SMA parameters on the behaviour of the flutter instability is
studied through the bifurcation diagram for varying flow velocities �. Fig. 6 shows
such a bifurcation diagram for a given SMA spring (the amplitude of pitch motion
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Fig. 6 Bifurcation diagram
of the 2 dof aeroelastic
system with cubic stiffness
(ξy = ξα = 1). Black
Without SMA spring. Red
With SMA spring (selected
values: hl = 0.05,
K1 = 10 K2 and
ASM A = 2.35 × 10−3)

LCO is represented versus �). The diagram is obtained numerically by direct inte-
gration in time of (5). The flow velocity is increased step by step, one time forward
and one time backward, in order to get all the solution branches. When changing �

to � + δ�, the initial condition for � + δ� is selected as the steady state of the
previous simulation launched for �. The black line in Fig. 6 shows the bifurcation
diagram when only a cubic nonlinear restoring force is considered, no SMA is added
to the system. In this case the classical supercritical bifurcation is retrieved. The
diagram with a given SMA is represented with the red line.

The first striking feature one can observe is that due to the softening effect brought
by the SMA, the bifurcation is now subcritical. The gain in using enhanced damping
properties thanks to the hysteresis loop is illustrated through the appearance of the
points denoted �s (flow velocity for which the oscillations enters the loop and thus the
enhanced damping capacity is present) and �c (the point for which the martensitic
transformation is finished so that the damping capacity has been fully exploited).
Above �c, a jump is observed to a branch parameterized by αJ (amplitude at �c)
where the LCO amplitudes are larger than without SMA. Hence the advantage of
the enhanced damping capacity is here completely lost due to the appearance of this
subcritical branch where large-amplitude motions are observed. Finally, the point
where this subcritical branch disappears when decreasing the flow velocity, denoted
�e, defines a dangerous range of flow velocities where the system could jump to the
higher branch.

The SMA parameters can be optimized in order to fulfill the following targets:

• decrease the amplitude αJ of the secondary branch as much as possible. In the
best case, avoid subcriticality,

• decrease �s so as to bring this point as close as possible to the flutter velocity,
• increase �c as much as possible so as to take full advantage of the enhanced

damping capacity of the SMA,
• increase �e so as to avoid the large range of subcriticality where the two solution

branches coexist.

Numerous simulations have been done to obtain the best parameters hl and
K1/K2, in order to fulfill at best these objectives. Figure 7c sums up some of the
results obtained for illustration. One can conclude that in order to decrease the value
αJ describing the upper branch, one has to select a large value for hl , and in this case
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Fig. 7 a LCO amplitude
versus flow speed for
different SMA parameters
(ξh = ξα = 1 and ASM A
constant). b Corresponding
restoring force for � = �c,
on the left hl = 0.05 and
K1/K2 = 10 and on the
right hl = 0.12 and
K1/K2 = 10
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it appears then more appropriate to take smaller values for the ratio K1/K2. One can
also observe the advantageous effect of using a small value for K1/K2 when hl has
been selected small, as it increases substantially the value of �e. Table 2 summarizes
the effect of the coefficients with respect to the targeted objectives relative to the dif-
ferent remarkable points �s , �e, �c and αJ . A simple plus/minus sign code is used
for a quick understanding of the effect of each coefficients: a plus sign indicates an
advantageous effect whereas a minus sign indicates a detrimental effect with respect
to the target. From this table and Fig. 7c it appears clear that the best choice is a large
hl together with a small ratio K1/K2.

Figure 7a, b show the restoring force at two particular points in order to get physical
insight in the results obtained. In Fig. 7a, a disadvantageous case is selected and
one can observe that the softening effect is the dominating feature of the nonlinear
restoring force of the SMA, explaining the enforced subcriticality observed on the
bifurcation diagram. This adverse case helps also in understanding that increasing
blindly the hysteresis loop area ASM A is not a solution as it may have no effect on
the subcriticality. When K2 is too small, the sudden jump in amplitude observed
for a small variation of force is detrimental as the system jumps to large amplitude
motions and the energy of this vibratory state is too important. Figure 7b illustrates
an advantageous case where the softening effect is not too important and thus leads
to an improved global behaviour in the bifurcation diagram.
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Table 2 Influence of the SMA constants on the identified points in the bifurcation diagram

SMA parameters K1/K2 hl

Bif. pt Small Large Small Large

�s = = +++ −−−
�e +++ −−− −−− +++

�c − + −−− +++

αJ ++ − − −−− +++

A plus sign shows an advantageous effect, whereas a minus sign indicates a detrimental effect on
the targeted behaviour, while an equal sign shows no effect. The number of the sign is proportional
to the magnitude of the effect
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Fig. 8 a Bifurcation diagram with hl = 0.05, K1/K2 = 1.5 and ξα = 3.4. b Restoring force at
� = 0.95

This analysis shows undoubtedly that the best choice would be to have both
the case of the hysteresis loop together with a stronger hardening effect at very
large amplitude. To fulfill these requests, the full martensite branch should have a
hardening behaviour stronger that the one of the reference case (without SMA). Such
a configuration is obtained for example with hl = 0.05, K1/K2 = 1.5 and ξα = 3.4.
Figure 8 shows the bifurcation diagram obtained in this case. One can observe that
supercriticality is enforced. Secondly a large range of small amplitudes of LCOs are
observed between 0.875 and 0.93, where the enhanced damping capacity of the SMA
plays its role. Finally the improved hardening effect at large amplitude gives rise to
a branch where amplitudes of LCOs are smaller, even when the transformation has
been completed.
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4 Conclusion

Whether one wants to harvest energy or avoid devastating intabilities, the control
of aeroelastic flutter is a critical issue. An option is discussed here by using SMA
springs in pseudo-elastic behaviour, in order to use the potential of dissipation of
such materials. A numerical study with a simple heuristic model for the behaviour
of the SMA has shown that the amplitude of the LCO after the flutter velocity can
be significantly reduced by adding a SMA spring on the pitch mode of the two-
dofs aeroelastic system. More precisely, the study of the bifurcation diagram clearly
exhibits an advantageous effect of using the enhanced damping capacity of the SMA
with the appearance of a branch of small amplitudes LCOs. However a detrimental
effect appears because of the softening effect created by the solid-solid phase change.
The optimized case is obtained by hardening the stiffness of the martensite phase. In
this case it has been shown that subcriticality together with small amplitudes LCOs
can be obtained.

The next steps of this research is to confront these preliminary findings with
experiments. Complicating effects such as the dependence of the hysteresis loop on
frequency, asymmetry of the SMA restoring force, aeroelastic nonlinearities due to
stall phenomenon, will be studied and included in the model in order to obtain a
global picture of the passive control of the flutter instability with SMA springs.
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Using Steady-State Response
for Predicting Stability Boundaries
in Switched Systems Under PWM
with Linear and Bilinear Plants

A. El Aroudi, M. Al-Numay, K. Al Hosani and N. Al Sayari

Abstract Switching systems under Pulse Width Modulation (PWM) are commonly
utilized in many industrial applications. Due to their associated nonlinearities, such
systems are prone to exhibit a large variety of complex dynamics and undesired
behaviors. In general, slow dynamics in these systems can be predicted and ana-
lyzed by conventional averaging procedures. However, fast dynamics instabilities
such as period doubling (PD) and saddle-node (SN) bifurcations cannot be detected
by average models and analyzing them requires the use of additional sophisticated
tools. In this chapter, closed-form conditions for predicting the boundary of these
bifurcations in a class of PWM systems with linear and bilinear plants are obtained
using a time-domain asymptotic approach. Previous studies have obtained similar
boundaries by either solving the eigenvalue problem of the monodromy matrix of
the Poincaré map or performing a Fourier series expansion of the feedback signal.
While the former approach is general and can be applied to linear as well as bilinear
plants, the later approach is applicable only to PWM systems with linear plants. The
conditions for fast scale instability boundaries presented in this chapter are obtained
from the steady-state analysis of the Poincaré map using an asymptotic approach
without resorting to frequency-domain Fourier analysis and without using the mon-
odromy matrix of the Poincaré map. The obtained expressions are simpler than the
previously reported ones and allow to understand the effect of different system’s
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parameters on its stability. In PWM systems with linear plants, under certain practical
conditions concerning these parameters, the matrix form expression can be approx-
imated by standard polynomial functions expressed in terms of the operating duty
cycle weighted by the Markov parameters of the linear part of the system.

1 Introduction

Switched systems constitute a special class of nonlinear dynamical systems [1] and
arise often in many practical engineering systems when some switching elements
such as switches or diodes, block with dead-zone, saturated amplifiers, relays and
comparators in electrical systems are present. This is also the case of mechanical sys-
tems where impacts or nonsmooth friction take place. A particular class of switched
systems are those characterized by linear differential equations between switching
events. These systems are called therefore piecewise linear (PWL) or piecewise
affine (PWA) systems [2]. Most of the PWL systems studied in the literature are
characterized by switching among linear subsystems when certain time-varying and
T —periodic boundaries in the state-space are reached. This is the case of Pulse
Width Modulation (PWM) systems like switching DC-DC power converters [3–8],
DC-AC inverters [9], temperature control systems [10], switched capacitor networks
and chaos generators [11] and hydraulic and fluid valve drivers [12, 13]. Nonlin-
earity arises from the feedback which imposes a constraint relating the duty cycle
nonlinearly and in general implicitly to the vector of the system state variables.
Despite their engineering use, one of the main drawbacks of switched systems under
PWM is this nonlinearity making them prone to exhibit a large variety of complex
dynamics and undesired behaviors [6, 10, 11]. Although each subsystem is linear
and its describing differential equations can be solved in closed-form, the dynamics
of the complete switched system is highly nonlinear and its accurate stability analysis
requires sophisticated computational tools [14].

Switched systems under PWM employ switching devices to control a suitable
output variable by using a T —periodic external modulating signal. Therefore, the
only acceptable nominal operation of any switched system under PWM is a T —
periodic oscillation around the desired level. When the stability of this periodic
operation is lost, different slow scale-time or fast scale-time nonlinear phenomena
can take place [15].

The dynamical behavior and the accurate stability analysis of this kind of systems
can either be tackled by long-time integration of the continuous-time switched model,
discrete-time model and its Jacobian matrix or Floquet theory with Fillipov technique
to compute the mondromy matrix [16]. Other methods leading to the same matrix
and based on trajectory sensitivity analysis are also available [17]. After obtaining
the Jacobian or monodromy matrix, critical boundary conditions for some singular-
ities like saddle-node (SN) bifurcation or period-doubling (PD) can be obtained by
imposing that one eigenvalue is equal to +1 or −1, respectively [4]. It is in general
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very cumbersome to compute the stability boundary of a PWM system using the
previous methods.

Another approach, which was called harmonic balance,1 used for the first time in
[18] and recently in [5] for locating these boundaries is by expanding the feedback
signal into a Fourier series to obtain the steady-state trajectory in certain periodic
regimes and imposing critical conditions for the occurrence of the corresponding
singularities like PD and SN bifurcations.

The conditions for fast scale instability boundaries presented in this chapter are
obtained from the steady-state analysis of the Poincaré map using a time domain
asymptotic approach without resorting to frequency-domain Fourier analysis and
without using the monodromy matrix of the Poincaré map. The obtained expressions
are simpler than the previously reported ones and allow to understand the effect of
different system’s parameters on its stability. Examples of PWM systems that can
be studied by the approach of this chapter are DC-DC switching power electronics
converters [3, 5, 6], DC-AC inverters [9], temperature control systems [10] and
switched capacitor chaos generators [11], among others.

The rest of the chapter is organized as follows. Section 2 presents the switched
model of systems with bilinear plants under PWM. A review of Poincaré map mod-
eling approach is explained in Sect. 3 together with its steady-state solution. Sub-
sequently, Sect. 4 deals with the steady-state approach for predicting the boundary
of SN and PD instabilities in this kind of systems by imposing boundary condi-
tions in the time-domain on the steady-state T -periodic and the 2T —periodic orbits
together with their respective switching conditions imposed by the PWM process.
Finally, some concluding remarks are drawn in the last section.

2 Bilinear Modeling of PWM Switched Systems

2.1 Pulse Width Modulation

Pulse-width modulation is a technique used, among others, to control switched sys-
tems. This modulation technique is one of the mostly used methods in switched
mode power supply for different applications. In this kind of systems, the average
value of voltage or current fed to the load is controlled by turning on and off some
switching devices such as MOSFETs and IJBTs. The PWM switching frequency
has to be much higher than the time constants of the plant to be controlled to mini-
mize the ripple of the voltage or current applied to the load. The term duty cycle is
defined as the proportion of on-time duration of the switching element to the com-
plete switching period. In the traditional PWM strategy, the duty cycle of the pulse
driving signal u(t) is varied according to the control signal xc(t) which correspond to

1In [5] this type of analysis was called Harmonic Balance. Here this term was conserved but to
the opinion of the authors only a steady-state analysis of the feedback signal expressed in Fourier
series has been used and no harmonic balance has been performed since the system loop is linear.
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Fig. 1 Waveforms of the T —periodic external signal stri(t) and the control signal a TEM xc =
Cᵀ(Xref − x(t)), b LEM xc = Cᵀ(x(t) − Xref )

a compensated version of the error between the output variable (voltage or current)
and its desired reference xref . This error is processed through an error compensator
to provide the control signal xc(t). In direct duty cycle control, the simplest analog
form of generating a fixed frequency PWM is by comparing the control voltage with
a ramp periodic signal stri(t) in such a way that the pulse signal u(t) goes high/low at
switching instants ts when the control signal xc(t) is higher/lower than the triangular
signal stri(t) (Fig. 1). In other constant frequency modulation schemes, the switch
is turned on (resp. off) periodically while it is turned off (resp. on) whenever the
peak (resp. valley) control signal xc reaches the ramp compensator. The ratio of the
first interval duration ts,k to the complete period T ((ts,k)/T ) during the switching
cycle (kT, (k + 1)T ) is the duty cycle dk in that cycle for Trailing Edge Modulation
(TEM) strategies while it is its complementary dk = 1 − dk for Leading Edge Mod-
ulation (LEM) strategies. The control signal for TEM strategies can be expressed as
xc = Cᵀ(Xref − x) while it is xc = Cᵀ(x − Xref) for LEM schemes, where x ∈ R

n

is the vector of the state variables including the power stage and the controller para-
meters and n is the order of the system after excluding any existing integrator in the
loop. C is an appropriate feedback vector and Xref is a suitable reference vector. In
both strategies, the generation of the PWM driving signal is carried out by comparing
the control signal xc with the T —periodic signal stri.

2.2 The Bilinear Switched Model

Let us focus on TEM strategy. The results corresponding to LEM can be deduced
from those of TEM strategy by just a change of variable dk → 1 − dk . During a
switching period of length T , an orbit of a switched system under PWM starting at
time instant kT (k ∈ Z) is forced, using a clocked latch, to be governed by the vector
field

f1(x, w) = A1x + B1w (1)

This orbit intersects with a switching boundary, at a certain switching instant ts =
dk T decided by the modulation strategy. The switching occurs when the external
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periodic ramp signal stri intersects with the control signal xc. The orbit then goes to
another different linear system described by the vector field

f2(x, w) = A2x + B2w (2)

where Ai ∈ R
n×n and Bi ∈ R

n×m , i = 1, 2 are the system state matrices for phase
i and w ∈ R

m is the vector of the external parameters of the plant and controller, m
being the number of the external inputs to the system which are supposed to be con-
stant within a switching cycle. The system is forced periodically and synchronously
to the first phase (i = 1) characterized by the vector field f1 while it is switched to
the second phase (i = 2) characterized by the vector field f2 whenever the condition
σ(x, t) := Cᵀ(Xref − x) − stri = 0 holds. In compact form, the model of a switched
system under PWM can be written in the following general bilinear form

ẋ = uf1(x, w) + (1 − u)f2(x, w) (3a)

where f1(x, w) = A1x + B1w, f2(x, w) = A2x + B2w and u ∈ {0, 1} is the driving
signal which is generated by the PWM process by which the system is forced to one
phase cyclically while it is switched to the other phase whenever the control signal
xc crosses the periodic signal stri(t). In TEM strategies, the switching condition
Cᵀ(Xref − x) = stri can be written as −Cᵀx = r , where r = −CᵀXref + stri.

3 Review of Poincaré Map Modeling of PWM Systems

3.1 Closed-Form Solution of the State Variables

The trajectory x(t) at time t of the system starting from an initial condition x(t0) at
time instant t0 can be expressed as follows

x(t) = eAi (t−t0)x(t0) + A−1
i (eAi (t−t0) − I)Bi w (4)

It is assumed that the matrix Ai is nonsingular. It should be noted that two kinds of
singularities may arise in this kind of switched systems which are detailed below:

1. A singularity which takes place only theoretically and that can be avoided by just
adding parasitic elements [19].

2. A structural singularity that cannot be avoided by just adding parasitics. In this
case, the previous expression for the solution of the system state variables cannot
be used if the integrator was taken into account despite the fact that this solution
exists and it is well defined even in the case when the matrix Ai is not invertible.
However, the integral action has no meaning without closing the loop by the
feedback and the PWM process. Having said that, the switched model used in
this study and the expression of the trajectories in (4) do not take into account the
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Fig. 2 State-space representation of a switched system under PWM

integral variable. However, while the integral action could have an effect on the
slow scale dynamics, its effect on the fast scale dynamics is negligible [6].

3.2 Local Mappings

Since the vector fields between the switching events are linear we can use the exact
analytical solution to express the value of the state vector at the end of a switching
cycle in terms of its value at the beginning of that cycle, Fig. 2. The local Poincaré
map of the system within switching sub-intervals can be obtained by using (4) during
the corresponding interval [2]. Let us define xk = x(kT ), xd = x((k + dk)T ),
xk+1 = x((k + 1)T ) where dk is the duty cycle during the cycle (kT, (k + 1))T .
Therefore, the local mappings are given by

xd := P1(xk) = �1(dk T )xk + �1(dk T ) (5a)

xk+1 := P2(xd) = �2((1 − dk)T )xd + �2((1 − dk)T ) (5b)

where, according to (5a) and (5b), �k(t) and �k(t) are defined by:

�k(t) = eAk t and �k(t) = A−1
i (eAi t − I)Bi w (6)

Most parts of this chapter require only a very moderate knowledge of mathematics.
What is importantly required is just an understanding of the previous solution and
simple algebraic matrix arrangements as it will be shown later.
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3.3 Linear Poincaré Map for the Open Loop System

The mapping describing the system behavior between the time instants kT and (k +
1)T can be obtained by composing the two previously presented local mappings [2],
i.e., the Poincaré map P = P2 ◦ P1 of the switched PWM system described by the
vector fields given in (1) and (2) can be written in the following form

xk+1 = �(dk)xk + �(dk) (7)

where �(dk) and �(dk) are given by:

�(dk) := �2((1 − dk)T )�1(dk T ) (8a)

�(dk) := �2((1 − dk)T )�1(dk T ) + �2(dk T ) (8b)

3.4 Closing the Loop: The Source of Nonlinearity

For appropriate operation of PWM systems and regulation of some suitable outputs
in the presence of parameter changes, output feedback is used. Often an integrative
action is necessary in order to regulate a certain output variable xo to get a zero
steady-state error between this output variable and the desired reference xref . First,
the error e := xref − xo is computed and then it is processed through a compensator
containing an integrator to increase, in average, the DC gain of the system while
other poles and zeroes of the compensator are selected with the aim to meet some
design specifications like maximum allowed overshoot and system response speed
and settling time due to step changes. As it has been mentioned before, this integral
action has a negligible effect on the fast scale instability [6]. Therefore, we exclude
the integral variable from the analysis. The feedback loop together with the PWM
process imposes the following constraint between the state variables x(dk T ) and the
duty cycle dk at the kth switching cycle

σ(x(dk T ), dk) : = −Cᵀxd − r(dk T )

= −Cᵀ�1(dk T )xk + �1(dk T ) − r(dk T ) = 0 (9)

The expression in (9) is nonlinear in dk and it is responsible for many nonlinear
phenomena that could take place in PWM systems.

3.5 Steady-State Response of the Poincaré Map

In this section, let D be the steady-state duty cycle. Let also �1 = eA1 DT and
�2 = eA2(1−D)T , �1 = A−1

1 (eAi DT − I)B1w and �2 = A−1
2 (eAi ((1−D)T ) − I)B2w.

Let xss(0) be the steady-state value of the periodic orbit of the system at the beginning
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of the switching period and xss(DT ) be the steady-state value of this orbit at time
instant DT . Therefore, in steady-state, according to (4), the vector of state variables
at the beginning of the switching period is given by (Fig. 1)

xss(0) = xss(T ) = �2xss(DT ) + �2 (10)

In turn, the vector of state variables at the switching time DT within the same period
can be expressed as follows

xss(DT ) = �1xss(0) + �1 (11)

Using (10) in (11), one obtains

xss(DT ) = �1�2xss(DT ) + �1�2 + �1 (12)

Therefore, the steady-state value of the state variables xss(DT ) at the time instant
DT is given by

xss(DT ) = (I − �1�2)
−1(�1�2 + �1) (13)

Let � = �1�2 and � = �1�2 + �1. Then, (13) can be simplified as follows

xss(DT ) = (I − �)−1� (14)

where the matrix (I − �) is assumed to be nonsingular. It should be noted that the
previous system is open loop stable if the integral state variable is excluded because
the matrices Ai are supposed to represent dissipative linear system configuration. The
monodromy matrix of the open loop system is the product of the monodromy matrices
corresponding to the two linear configurations. Both monodromy matrices are stable
because they are exponential matrix functions of Hurwitz matrices. Therefore, the
product of both monodromy matrices is a Jury matrix and then the open loop system
is stable. Note also that if the integrator was included in the model, the open loop
system response would be unbounded unless the input to the integrator is zero.

The stability of periodic orbits of a closed loop PWM system can be analyzed by
checking the evolution of a small perturbation in the state variable within one period.
This problem can be tackled by different ways. One of the most used techniques is
to analyze the stability of the fixed points of the Poincaré map of the closed loop
system by using its Jacobian matrix. The periodic orbit will be stable if this matrix
evaluated at the associated fixed point has eigenvalues with modulus less than 1.
Another technique is by using Floquet theory and Filippov method which leads to
the same results [6]. In this chapter a different approach will be used which is based
on the analysis of the steady-state response of the Poincaré map to periodic and
subharmonic excitations [26].
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4 A Steady-State Approach for Predicting Fast Time-Scale
Instabilities

Using the steady-state response for predicting fast-scale instability in the form of
subharmonic oscillation has been first introduced in [17] for a simple case of a
PWM system with linear plant which consists of a DC-DC buck converter under
voltage mode control. Years later, this method has been re-considered in [3, 5].
The method in both works consists of a Fourier series expansion of the feedback
signal and its use for predicting stability boundaries after imposing a certain system
periodic regime by the PWM process. With that approach an effort to transform the
results from the Fourier frequency-domain into the time-domain must be done. In
[5], the transformation from the Fourier frequency-domain to the time-domain is
based on elementary partial fraction decomposition after defining some elementary
cases of the system transfer function in the s−domain and listing them in the form
of tables. However, this transfer function cannot be directly defined for systems with
A2 �= A1 making the approach only applicable for a limited class of PWM systems
like the ones considered in [5]. In particular, those can be formulated in the form
of a linear subsystem and a square-wave signal generated by a comparator like the
PWM process. It should be noted that in [5] the approach is based on the Fourier
series expansion to a system with theoretically A2 �= A1 was applied but by making
an approximation and an order reduction leading finally to the simple linear case
A1 = A2. Another different type of approximation leading to the same consequence
A1 = A2 has been used and justified in [7] for this kind of systems. In [20], the Poisson
sum formulae and some related Fourier series properties have been used to transform
the condition for PD occurrence derived in [5] from the Fourier frequency-domain to
a matrix-form state-space time-domain condition. It was shown in this study that a
steady-state analysis of the trajectory of the system in the time-domain without any
order reduction, except from excluding the integrator, will lead to new equivalent
simple expressions without need to use the Fourier series expansion and without
having to perform any transformation nor needing the calculation of the Jacobian or
the monodromy matrix.

4.1 Predicting SN Bifurcation

SN bifurcation or tangent bifurcation is a type of local bifurcations that can take
place in nonlinear continuous-time dynamical systems. This nonlinear phenomenon
is characterized by the fact that two solutions of a continuous system collide and
annihilate each other at a certain critical value of the system bifurcation parameter.
When the system is represented by a Poincaré mapping obtained by sampling a
continuous-time system as it is the case in PWM systems, these solutions correspond
to periodic orbits of the original system and the phenomenon is also called cyclic
fold bifurcation.
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Fig. 3 SN bifurcation in a nonlinear dynamical system

In steady state the feedback loop together with the PWM process imposes the
following constraint between the state variables xss(DT ) and the steady-state duty
cycle D

σss(D) := σ(xss(DT ), DT ) := −Cᵀxss(DT ) − r(DT ) = 0 (15)

If a SN bifurcation takes place at a certain critical value of the system bifurcation
parameter, there must be a tangency between the feedback signal—Cᵀxss(DT ) and
the ramp signal r(DT ) for the imposed steady-state duty cycle D in such a way
that two solutions of (15) coalesce and disappear (Fig. 3). The number of solutions
of (15) equals to the number of T —periodic orbits that exist for a specific set of
parameters. Therefore, from (15), the following equality holds at this critical point

∂σss(D)

∂ D
= 0 ⇒ −∂Cᵀxss(DT )

∂ D
= ∂r(DT )

∂ D
(16)

Let σe(D) = 1/T × ∂r/∂ D be the slope of the external T —periodic signal r(t) at
time instant DT . Therefore, (16) becomes

− 1

T
Cᵀ∂xss(DT )

∂ D
= σe(D) (17)

The derivative of the left side of (17) can be obtained by using (14) and differentiating
the involved matrix functions. Let us calculate the derivative ∂xss(DT )/∂ D. Using
(14) one obtains

∂xss(DT )

∂ D
= ∂

∂ D
(I − �)−1� + (I − �)−1 ∂�

∂ D
(18)

Using known chain rules for matrix derivative, (18) can be written as follows

∂xss(DT )

∂T
= (I − �)−1 ∂�

∂ D
(I − �)−1� + (I − �)−1 ∂�

∂ D
(19)
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Making the term (I − �)−1 as a common factor results in the following equation

∂xss(DT )

∂ D
= (I − �)−1

(
∂�

∂ D
(I − �)−1� + ∂�

∂ D

)
(20)

then by using (14), the expression (20) becomes

∂xss(DT )

∂ D
= (I − �)−1

(
∂�

∂ D
x(DT ) + ∂�

∂ D

)
(21)

The derivative of the involved matrix function ∂�(D)/∂ D can be calculated as
follows

∂�

∂ D
= ∂

∂ D
(�1�2)

= �1(A1 − A2)�2T (22)

Likewise, the derivative of ∂�(D)/∂ D can be obtained by

∂�

∂ D
= ∂

∂ D
(�1�2 + �1)

= ∂

∂ D
(�1)�2 + �1

∂

∂ D
(�2) + ∂

∂ D
(�1)

= �1((A1 − A2)�2 + B1 − B2)T (23)

Let ΔA = A1 − A2 and ΔB = B1 − B2. Substituting (22) and (23) in (21), the
critical boundary condition for SN bifurcation boundary in (17) becomes

σe,SN(D) = σe(D) (24)

where σe,SN(D), the critical slope of the external function r(t) for SN bifurcation
occurrence, can be expressed by

σe,SN(D) = −Cᵀ(I − �)−1�1(ΔAxss(0) + ΔB) (25)

Taking into account that A1x(t) + B1 = ẋ(t−) = f1(x, w) and that A2x(t) + B2 =
ẋ(t+) = f2(x, w), the critical value of the slope of the external T —periodic function
at the boundary of a SN bifurcation is

σe,SN(D) = −Cᵀ(I − �)−1�1Δf(xss(0)) (26)

where Δf(x) = f1(x, w) − f2(x, w). It has to be mentioned here that in [4, 8] a
slightly differently expressed condition has been obtained for the same boundary
condition which is reported and adapted here for comparison
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σe,SN(D) = −Cᵀ[f1(xss(D−T )) + �1(I − �2�1)
−1])�2Δf(xss(DT )) (27)

Although apparently the condition (27) derived in [4, 8] and that in (26) do
not coincide, they just happen to be the same conditions but expressed differently.
Note however that the expression (26) is simpler than (27). To illustrate the use
of the previous expression, let us consider the following three different cases of
compensating external signals:

• Case of a linear compensating ramp signal

r(t) = r0 + σet (28)

where r0 is the initial value of the external signal at t = 0 and σe is its constant
slope. This is the ideal case of most PWM systems. Since the slope is constant,
the right-hand side of (24) is given by

σe(D) = σe ∀D (29)

• Case of a quadratic modulating signal. For improving the performances of some
switching PWM systems, a quadratic modulating signal can be used [21, 22]. Let
σ0 be the initial slope of the external signal at t = 0 and let σT be its final slope at
t = T . Therefore, this signal can be expressed as follows

r(t) = r0 + σ0t + 1

2T
(σT − σ0)t

2 (30)

In this case, the slope is linearly dependent on the duty cycle D and the right-hand
side of (24) can be expressed as follows

σe(D) = σ0 + (σT − σ0)D (31)

• In a practical implementation, the external modulating signal is implemented by
a first order low pass filter system making its shape more exponential than linear.
In this case, the ramp signal r(t) can be expressed as follows

r(t) = r0 + σ0τ(1 − e− t
τ ) (32)

where τ is a suitable time constant and σ0 is the initial slope at the beginning of
the switching cycle. The slope is exponentially depending on the duty cycle D and
the right-hand side of (24) is given by

σe(D) = σ0e− DT
τ (33)
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4.2 Application Examples for Predicting SN Bifurcation

4.2.1 General Bilinear Plants

Example 1: Consider a boost converter under state feedback control with the
parameter values considered in [23] (Fig. 4). These are: input voltage vg =
5 V, inductance L = 50 µH, capacitance C = 4.4 µF, voltage feedback
gain kv = −0.0435, current feedback gain ki = 0.174 �, voltage reference
Vref = 0.13 V, load resistance R = 28 �. Three different values of switching
frequency are used to illustrate the occurrence of SN bifurcation. The system
matrices and vectors are as follows

A1 =
(

− 1

RC
0

0 0

)
, A2 =

⎛
⎜⎝− 1

RC

1

C

− 1

L
0

⎞
⎟⎠

B1 = B2 =
(

0
1

L

)
, x =

(
vC1

iL1

)
, w = vg, C =

(
kv

ki

)

All the parameters appearing in the matrices can be identified in the circuit
diagram of Fig. 4.

Numerical simulations in [23] confirm that the system is stable for switching fre-
quencies greater than fs = 500 kHz and unstable for lower frequencies. For fs =500
kHz, it was shown in [24] that the system has one stable operating solution with duty
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L

iL
S

−

Vref
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+

D

R

−
u
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−−
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T

Fig. 4 Boost converter under a state feedback control
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Fig. 6 The effect of the type
of the modulator on the SN
bifurcation
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cycles D ≈ 0.58 and one unstable solution with D ≈ 0.70. This instability has been
explained numerically by expanding the system waveforms in the form of a Fourier
series and a Picard iterative process applied to the function f (D) = −Cᵀx(DT ).
The statement in [23] that the system is unstable has been refined using the concept
of the basin of attraction. It has been stated that starting in the (possibly small) basin
of attraction of the behavior corresponding to the stationary duty cycle D ≈ 0.58 the
system converges to a periodic regime characterized by this duty cycle value. Hence,
starting in this domain of attraction the system exhibits a stable behavior. However,
transient solutions outside this basin are unstable and the system do not converge to
the desired periodic regime. Here we confirm the result reported in [24] by using the
new derived expression (26) and we show that the critical value for occurrence of
SN bifurcation is fs ≈ 705 kHz.

Figure 5a shows the boundary of SN in the parameter space (D, σe) by considering
a linear ramp modulator for different values of switching frequency fs . Figure 5b
shows the steady-state switching function σss(D) for the same values of the switching
frequency where it can be observed that for fs ≈ 705 kHz the system is indeed at the
boundary of SN bifurcation. In order to show the effect of the type of the modulator
signal on the system behavior, Fig. 6 shows the switching function σss(D) in term
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of the steady-sate duty cycle D. The switching frequency is fixed at fs = 1 MHz. It
can be observed that while the stability is improved with an exponential modulator,
it is worsened in the case of a quadratic modulator. For a fair comparison, the same
value of ramp amplitude VM = 1 V is used for the three modulators.

4.2.2 Special Linear Plants

Example 2: The second example that will be considered in this study is a
buck converter driving another converter both under current mode control.
The second converter can be approximated by a constant current sink [25]. All
the parameters appearing in the matrices can be identified in the circuit diagram
of Fig. 7. Because A1 = A2, the plant is linear. The used parameter values are
the same ones of [25] and are as follows: input voltage vg = 120 V, inductance
L = 37.5µH, DC parasitic of the inductance rL = 0.01 �, capacitance value
C = 420µF, equivalent series resistance of the capacitor rC = 0.01�, output
current io = 38 A and switching frequency fs = 50 kHz. The system matrices
and vectors are as follows

A1 = A2 =
⎛
⎜⎝ 0

1

C

− 1

L
−rL + rC

L

⎞
⎟⎠ ,

B1 =
⎛
⎜⎝

1

C
0

1

L

rC

L

⎞
⎟⎠ , B2 =

⎛
⎝

1

C
0

0
rC

L

⎞
⎠ ,

x =
(

vC

iL

)
, w =

(
vg
io

)
, C1 =

(
1
0

)

Figure 8 shows σss(D) which gives the possible operating steady-state duty cycles
for different values of iref just below and just above the SN critical point. This
figure also shows the stability map of the system in the parameter space (D, σe). For
D < 0.5, the system has only one solution. For D > 0.5, three different regions
can be identified. The first one is σe < σe,SN where the system presents no solution.
The second one is σe,SN < σe < Vg/(2L) where the system presents one stable
solution and one saddle. The last one where σe > Vg/(2L) and the system presents
one stable solution. For this particular example it turns out that the boundary of the
SN bifurcation in the parameter space (D, σe) is approximately a straight line whose
slope is Vg/L and passing from D = 0.5 and its maximum value is Vg/(2L) for
D = 1. Therefore, by choosing σe = Vg/(2L) will guarantee that the system to have
only one solution independently on the value of the steady-state cycle.
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4.3 A Steady-State Approach for Predicting PD Bifurcation

4.3.1 Steady-State Response of the Second Iterate Poincaré Map

Consider a switched dynamical system under PWM exhibiting a PD bifurcation as
shown in Fig. 9. After this phenomenon takes place, a 2T -periodic solution devel-
ops at the critical point while in contrast to the SN bifurcation case, the T -periodic
solution loses its stability but it continues to exist. During the switching cycle of
duration T , a PWM system has two phases defined by the system matrices (A1, B1)
and (A2, B2), respectively. During the switching cycle of duration 2T , this system
has four phases defined by the system matrices (A1, B1), (A2, B2), (A1, B1) and
(A2, B2), respectively. Let us assume that the system behavior in steady-state is a
2T -periodic orbit. Therefore, during two consecutive switching periods in the inter-
val (kT, (k + 2)T ), let the crossing between the signals −Cᵀx(t) and r(t) occurs at
t = (D − εt + k)T and at t = (1 + D + εt + k)T , k ∈ Z (see Fig. 10). The para-
meter εt is a small quantity that vanishes at the boundary between T —periodic and
2T -periodic behavior. At this point, the T -periodic solution and the 2T -periodic
solution are coincident (Fig. 9). By obtaining the expression of the 2T -periodic
steady-state solutions at the switching instants, imposing the corresponding feed-
back constraints imposed by the PWM process and equating them at the critical
point (εt → 0 ), a condition for predicting PD bifurcation is obtained in terms of the
system matrices containing all the parameters.

From the switching conditions at the two switching instants t = (D + εt )T and
t = (1 + D + εt )T , the following equalities hold

−Cᵀxss((D − εt )T ) = r((D − εt )T ) (34a)

−Cᵀxss((D + εt + 1)T ) = r((D + εt )T ) (34b)
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+

−
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+

−
vtri (t)
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Q R
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iL

u

DT

T

L

iL

rL
S

ioDvg +

+

σ

Fig. 7 Schematic circuit diagram of a buck converter under a current mode control loaded by a
constant current source as a load representing a downstream converter also under current mode
control
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Fig. 9 Sketch of a PD
bifurcation in a switched
dynamical system under
PWM and the corresponding
waveforms before and after
the bifurcation takes place by
sweeping a parameter

PD bifurcation

Bifurcation parameter

2T -periodicT -periodic

x

Fig. 10 Waveforms of the
T —periodic external signal
r(t) and the feedback signal
−Cᵀxss(t) at 2T —periodic
regime in steady-state

While in [5], the previous equations are expressed in the Fourier frequency domain
in the case of an example of PWM systems with linear plant for which A1 = A2, in
this chapter these two equations are treated generally for the bilinear case directly
in the time-domain without any extra effort to go back from the Fourier frequency-
domain into the time-domain. Exhibiting a 2T -periodic regime, the sampled value
of the steady-state variables of the system at the switching instants (D − εt )T and
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(D + εt + 1)T can be obtained by using (4) and forcing 2T —periodicity. By doing
so, it can be expressed as follows

xss((D − εt )T ) = (I − �−(εt ))
−1�−(εt ) (35a)

xss((D + εt + 1)T ) = (I − �+(εt ))
−1�+(εt ) (35b)

where all the matrices and vectors appearing in the previous equations are given by

�−(εt ) =�̄1�̄4�̄3�̄2 (36a)

�+(εt ) =�̄3�̄2�̄1�̄4 (36b)

�−(εt ) =�̄1�̄4�̄3�̄2 + �̄1�̄4�̄3 + �̄1�̄4 + �̄1 (36c)

�+(εt ) =�̄3�̄2�̄1�̄4 + �̄3�̄2�̄1 + �̄3�̄2 + �̄3 (36d)

and

�̄1 = �1e−A1εt T , �̄1 =
∫ (D−εt )T

0
eA1τ dτB1w (37a)

�̄2 = �2eA2εt T , �̄2 =
∫ (1−D+εt )T

0
eA2τ dτB2w (37b)

�̄3 = �1eA1εt T , �̄3 =
∫ (D+εt )T

0
eA1τ dτB1w (37c)

�̄4 = �2e−A2εt T , �̄4 =
∫ (1−D−εt )T

0
eA2τ dτB2w (37d)

Subtracting (34a) from (34b), one obtains

−Cᵀ(xss((D +1+εt )T )−xss((D −εt )T )) = r((D +εt )T )−r((D −εt )T ) (38)

The boundary of PD bifurcation can be located by taking the limit in (38) when the
parameter εt → 0. Therefore, at the onset of this instability the following equality
holds

− lim
εt →0

Cᵀ(xss((D+1+εt )T )−xss((D−εt )T )) = lim
εt →0

r((D+εt )T )−r((D−εt )T )

(39)

While the right-hand side of (39) is generally easy to obtain, the left-hand side of
the previous equation is mathematically more involved. Let us first focus on the
right-hand side of (39) and let us obtain it for three different cases of PWM signals:
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• In the case of a linear ramp compensating signal, the right-hand side of (39) is
given by

lim
εt →0

r((D + εt )T ) − r((D − εt )T ) = 2σeT (40)

• In the case of a quadratic modulating signal, the right-hand side of (39) can be
easily expressed as follows

lim
εt →0

r((D + εt )T ) − r((D − εt )T ) = 2T (σ0 + (σT − σ0)D) (41)

• In a practical implementation, the slope is exponentially depending on the duty
cycle D and the right-hand side of (39) is given by

lim
εt →0

r((D + εt )T ) − r((D − εt )T ) = 2σ0T e− DT
τ (42)

As it was mentioned previously, the left-hand side of the previous equation is mathe-
matically more involved. For simplicity let us consider that the external T —periodic
function is linear during the switching period in such a way that its slope σe is constant
and that (39) can be written as follows

σe,PD(D) = σe (43)

where σe,PD(D), the critical slope for PD bifurcation boundary, is given by

σe,PD(D) = − lim
εt →0

1

2εt T
Cᵀ(xss((D + 1 + εt )T ) − xss((D − εt )T )) (44)

By using (35a)–(35b), the limit expression in (44) becomes

σe,PD(D) = − lim
εt →0

1

2εt T
((I − �+(εt ))

−1�+(εt ) − (I − �−(εt ))
−1�−(εt ))

(45)

By calculating the limit in the previous expression, the following condition is obtained
at the boundary of subharmonic oscillation

σe,PD(D) = −Cᵀ[(I − �)−1�1(f1(xss(0)) + f2(xss(0)))] (46)

More calculation details can be found in [26]. It is worth mentioning here that in
[4], a slightly differently expressed condition has been obtained using a different
approach based on solving the eigenvalue problem of the z-domain characteristic
equation, for the same boundary condition which is reported and adapted here for
comparison
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σe,PD(D) = −Cᵀ[f1(xss(DT −)) − �1(I − �2�1)
−1]�2Δf(xss(DT )) (47)

Although they are expressed differently, the critical ramp slope for PD bifurcation
given in (46) and the one derived in [4] and shown in (47), are coincident. Note
however that (46) is simpler than (47).

4.4 Application Examples for Predicting PD Bifurcation

4.4.1 General Bilinear Plants

Example 3: The system which will be considered in this section is a boost
converter under a current mode peak controller. The state variables are the
capacitor voltage vC and the inductor current iL . The system matrices and
vectors are as follows

A1 =
(

− 1

RC
0

0 − rL
C

)
, A2 =

⎛
⎜⎝

− 1

RC
1
C

1

C
− rL

C

⎞
⎟⎠

B1 = B2 =
(

0
1
L

)
, x =

(
vC

iL

)
, w = vg, C =

(
0
1

)

where R is the load resistance, L is the inductance with equivalent series
resistance rL , C is the output filtering capacitance and vg is the input voltage.
The peak current is iref . The duty cycle D is varied by varying iref . The used
parameter values are as follows: input voltage vg = 5 V, inductance L = 200
µH, DC parasitic of the inductance rL = 0.1 �, capacitance value C = 10µF,
load resistance R = 15 � and switching frequency fs = 10 kHz.

It can be demonstrated that SN bifurcation is not possible in this case because the
switching function σss(D) is monotone with respect to the duty cycle D. However,
PD can take place in this converter if a suitable parameter is varied. One would be
interested on determining the boundary in the parameter space of this instability.
Figure 11 shows such a boundary in the parameter space (D, σe) for the system. It
is worth noting that a traditional approximated approach will predict PD instability
for duty cycle values larger than 0.5 in the case of not using a compensating ramp
(σe = 0). Note that the exact closed-form expression predicts a lower critical value
of the duty cycle (Dc ≈ 0.43). Therefore, the approximated conventional approach
could predict stability for a PWM system while it exhibits subharmonic oscillation
due to PD bifurcation.
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Fig. 11 PD bifurcation
curve in terms of the duty
cycle D and the slope σe of
the compensating ramp for a
boost converter under peak
current mode control. The
curve 	PD(D) represents the
boundary
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4.4.2 Special Linear Plants

The switched model for a PWM system with linear plant can be expressed in compact
form as follows

ẋ = Ax + Bu + B2w, xc = Cᵀ(Xref − x) (48)

where B = (B1 − B2)w. Let the Markov parameters of the system described by the
3-tuple (A, B, C) as follows [27]

μk = CᵀAk−1B, k = 1, 2.... (49)

Hence, performing a Taylor series expansion on (46), the following equality holds
at the onset of subharmonic instability

σe,PD(D) =
∞∑

k=1

μk−1Sk(D)T k−1

≈ μ0(D − 1

2
) + μ1T

(
D2

2
− D

2
+ 1

4

)
(50)

The functions Sk(D) are related to the kth order Clausen polynomials clk(θ)

shown in Table 1 and having the following property [28].

d

dθ
clk(θ) = (−1)kclk−1(θ) for k = 2, 3 . . . (51)

Moreover, the presence of these terms in (50) is largely dependent on the relative
degree of the system (48) where the input is the command driving signal u and the
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Table 1 Polynomial functions clk(θ) and Sk(D)

k clk(θ) Sk(D)

1
1

2
(π − θ) D − 1

2

2
π2

6
− πθ

2
+ θ2

4

D2

2
− D

2
+ 1

4

3
π2θ

6
− πθ2

4
+ θ3

12

D3

6
− D2

4
+ D

12

output is the control signal xc. The relative degree rd of a single-input single-output
system is the smallest integer such that the Markov parameter CᵀArd−1B �= 0, i.e.,

rd = inf{k ≥ 0 : μk �= 0} (52)

The PWM system (plant including the controller) will have therefore a relative degree
rd such that [27]

rd = 1 if μ0 = CᵀB �= 0, (53a)

rd = 2 if μ0 = CᵀB = 0 and μ1 = CᵀAB �= 0 (53b)
...

Example 4: Let us apply the previous theoretical results to a buck converter
with a simple proportional-integral (PI) control. The expressions of the matrix
A and vector B are given by

A =

⎛
⎜⎜⎜⎝

− 1

RC

1

C
0

− 1

L
0 0

−1 0 0

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎝

0
1

L
0

⎞
⎟⎠ , w = vg

The vector of the state variables after excluding the integrator is x(t) =
(vC , iL)ᵀ. Therefore, the vector Cᵀ = (kv 0), where kv is a voltage feed-
back gain. Figure 12 shows a schematic circuit diagram of a DC-DC buck
converter under voltage mode PI control. All the parameters appearing in
the matrices can be identified in the circuit diagram of Fig. 12. Because
A1 = A2, the plant is linear. The parameter values used are inductance
L = 20 mH, capacitance C = 47 µF, lower value of the ramp modulator
signal Vl = 3.8 V, its amplitude VM = 4.4 V, switching period T = 400 µs,
voltage reference, vref = 11.3 V and voltage feedback gain kv = 8.4,
[6, 19, 29].
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Fig. 12 Block circuit diagram of a DC-DC buck converter under PI voltage mode control

Fig. 13 Exact and
approximated stability
surface v∗

g (T/(RC), D) in
terms of the duty cycle D
and T/(RC) showing that
only for high values of
T/(RC) � 1 (not practical),
(50) is not accurate enough
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The control signal can be expressed as xc = Cᵀ(Xref − x) = kv(vref − vc).
The time constant of the integrator is selected to be τ = 0.01 s which is much
larger than the switching period to ensure slow time-scale and to reduce its effects
on the fast scale instability. Traditionally, the dynamic behavior of the system in this
example has been studied in terms of the input voltage vg and the load resistance R
[6, 19, 29]. In Fig. 13, the exact mesh plot of the critical value of the input voltage
v∗
g (T/(RC), D) from (46) is shown together with the approximated plot from (50)

using the first two terms in the expansion. From this figure, it can be observed
that for T/(RC)  1, a good concordance between the exact and the approximated
expressions is obtained, while a discrepancy exists between their corresponding plots
for relatively large values of T/(RC). This discrepancy becomes significant for time
constant RC approaching the switching period T . Only for T/(RC) � 1, (50) will
give inaccurate results. However, this is not a practical case since the time constant
of the converter filter must be much larger than the switching period in all practical
implementations of switching converters in particular and PWM systems in general.
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Finally, it should be noted that this example uses a LEM strategy and a change of
variable D → (1 − D) := D must be done in (46) together with a sign inversion in
the voltage feedback gain.

5 Conclusions

In this chapter closed-form conditions for predicting the fast-scale stability bound-
aries corresponding to both saddle-node (SN) and period-doubling (PD) bifurcations
have been derived for a class of PWM switching systems with bilinear plants. The
results presented in this chapter can also be applied to the special case of switched
systems with linear plants. Hence, for both cases, the effect of the different parameters
of the system upon the stability boundary can be easily unveiled. The general-purpose
derived expressions can be applied to different examples of PWM systems such as
switching power converters, switched capacitor chaos generators, temperature con-
trol systems and hydraulic valve drive control among others. The stability boundaries
have been derived without the need of the Jacobian matrix and without expressing
the system trajectories in the Fourier frequency-domain and without any order reduc-
tion apart from excluding the integrator which has negligible effect on the fast scale
instabilities. The simple asymptotic time-domain approach used in this chapter can
be better understood by practitioners than those based in frequency-domain approach
or on the eigenvalue problem of the Jacobian or the monodromy matrix.
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Reliability Analysis of a Vibro-acoustique
System: Application to a Marine Propeller

B. Radi and A. El Hami

Abstract In this chapter, we focus on the interaction between fluid and structure
and specifically the vibro-acoustic problem which is generally defined as the contact
between bodies interacting according to the principles of continuum mechanic. The
comprehension of the mechanisms of these interaction has a capital importance in
several industrial applications (aerospace, automotive, civil engineering areas as well
as in biomechanics ...). When a structure vibrates in the presence of a fluid, there
is interaction between the natural waves of each media: the fluid flow generates a
structural deformation and/or the movement of a solid causes the displacement of the
fluid. These applications require an effective coupling. For the couplingfluid structure
finite elementsmodels, the importance of the size reduction becomes obvious because
the fluid degrees of freedom will be added to those of the structure. A method of
condensationwill be used to reduce thematrixes size. One of the principal hypotheses
in the use of component mode synthesis method is that the model is deterministic;
it is to say that parameters used in the model have a defined and fixed value. In
fact, all aspects of an analysis model are uncertain. However, the fluctuations in
input parameters generate significant degradation of the quality of the deterministic
solution. So it is neither financially feasible nor physically possible to eliminate
the dispersion of the input parameters. A numerical vibratory study is leaded on
a structure 3D immersed in water taking the acoustic aspect. In this context, we
focused very specifically on a deterministic and stochastic analysis throughnumerical
simulations in 3D dynamic fluid-structure interaction problems. The results of the
reliability based design optimization (RBDO) study of the marine propeller tend to
show the effectiveness of the step followed to condense the system and to take into
account the uncertain parameters.
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1 Introduction

The comprehension of the mechanisms of interactions between a fluid and an elastic
solid has a capital importance in several industrial applications. When a structure
vibrates in the presence of a fluid, there is interaction between the natural waves of
each media: the fluid flow generates a structural deformation and/or the movement of
a solid causes the displacement of the fluid. These applications require an effective
coupling. In [1], manymethods to resolve fluid-structure interaction problems can be
found. Furthermore, the dynamic analysis of the industrial systems is often expen-
sive from the numerical (CPU) point of view. For the coupling fluid structure finite
elements models, the importance of the size reduction becomes obvious because
the fluid degrees of freedom will be added to those of the structure. A method of
condensation will be used to reduce the matrixes size.

One of the main assumptions in the study of mechanical systems is that the model
is deterministic. That means that the parameters used in the model are constant.
However, the experimental works show the limitations of such assumptions. This
is because there are always differences between what we calculate and what we
measure due mainly to the uncertainties in geometry, the material properties, the
boundary conditions or the load, which has a considerable impact on the vibrating
behavior ofmechanical systems. This is why it is important to use numerical methods
in order to take these uncertainties into account. In [2–4], various approaches to treat
mechanical systems with uncertain parameters can be found.

The numerical approach has been to propose a finite elementmodel of the structure
coupled with the fluid and has validated the use of a general computer code for
numerical modeling of coupled fluid/structure problems. The method is illustrated
by an example of a solid 3D immersed in water with properties that bothmaterials are
random. We present in this chapter a stochastic numerical modal analysis of a solid
3D immersed in water to simulate the stochastic response, inmedium frequencies, by
considering the randomparameters. In this case, the presence of several parameters to
random characters, namely theYoung’smodulus of the structure the structure density
which fluid density, and often show a great variability, and inevitably leads to lose
important computational precision. Better control of these parameters is thus based
on the use of stochastic methods whose main objective is to improve the quality and
the reinterpretation of results from simulations. To do so, a good understanding and
formulation of the main phenomena involved in the coupling problem are needed.
The RBDO analysis of the marine propeller shows the efficiency of such approach
coupling optimization and reliability.

This chapter is organized as follows.Theproblemof the interaction between afluid
and an elastic body is presented in Sect. 1. The validation of the adopted approach
is given in Sect. 2 by the study of an immersed plate. Section3 deals with reliability
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analysis and the application to the marine propeller is given. The RBDO analysis
is presented in Sect. 4 and the numerical results relative to the marine propeller are
given.

2 Fluid Structure Interaction

In the context of this study of fluid-structure interaction, we focus on the vibro-
acoustic problemwhere the fluid makes an elastic potential energy in contact with an
elastic structure. The two media have their own degrees of freedom, and the coupled
dynamic system is governed by the vibratory equations of the structure and the fluid
coupled with each other. The numerical results are deduced from a finite element
approach of the coupled problem with a non symmetric pressure/displacement for-
mulation. These numerical techniques are based on a finite element discretization
for solving the equations of fluid/structure interaction problems [5]. These methods
are applicable to general computer codes.

The modelization of the problem is carried out by using a non-symmetric for-
mulation: a displacement and a pressure (u, p) which presents the advantage of
being easily treated by finite elements methods, because it leads to a representation
incorporating only one unknown by knot. This formulation presents in fact the inter-
est of being easily manipulated from a IT (Information Technology) perspective.
Moreover, the finite element codes which allow us to generate stiffness and mass
matrices of coupled systems treat this type of formulation in a particularly efficient
way, especially from a matrices conditioning.

2.1 Problem Statement

We consider here the assumption of small perturbations and it is assumed that the
structure is elastic and it is characterized by the mechanical properties of materials
that are Young’s modulus E, the density ρs and the Poisson’s ratio ν. The structure
is immersed in fluid which is supposed to be perfect, homogeneous, linear and at rest
(stagnant fluid) characterized by its density ρf and its sonic velocity c.

The structure occupies the area Ωs , of Σs boarder, free from any exterior effort
and blocked from one side Γs . The fluid occupies the field Ω f of border Σ f . They
are coupled through the interface noted Σ = Σs ∩ Σ f . ns and n f are respectively,
the exterior normal to a solid area Ωs and the exterior normal to a fluid area Ω f . The
problem of the fluid/structure interaction is thus to resolve two problems simultane-
ously: The first problem concerns the structure which undergoes a pressure imposed
by the fluid in the boarder Σ . The second one concerns the fluid which undergoes a
field displacement u imposed by Σ interface [6].



396 B. Radi and A.E. Hami

With the previous hypotheses, the equations of the vibro-acoustic problem gov-
erning the movement of the coupled system in function of displacement u of the
structure and the pressure p of fluid are:

σi j, j (u) + ω2ρsu = 0 in Ωs . (1)

Δp + ω2

c2
p = 0 in Ω f . (2)

u = 0 on Γs . (3)

σi j (u)ns
j = pn f

i on Σ. (4)

∂p

∂n f
= ω2ρ f un f on Σ. (5)

The angular frequency of vibration is denoted as ω, the linearized strain tensor is
denoted as εi j and the corresponding stress tensor is denoted as σi j .

2.2 Variational Formulation

By introducing the spaces of functions-test “sufficiently” regular and independent
of time C∗

u = {u|u = 0 on Γs} et C∗
p, the variational formulation of the coupled

problem fluid-structure is to find u ∈ C∗
u et p ∈ C∗

p such as ∀v ∈ C∗
u et ∀q ∈ C∗

p:
Taking into account the boundaries conditions (4) the variational formulation of

the structure is obtained by writing for each field of virtual displacement v, c and a.

∫
Ωs

σi j (u) · εi j (v)dV − ω2
∫

Ωs

ρs · ui vi dV =
∫

Σ

p · ni · vi · dΣ ∀v (6)

The variational formulation is obtained for the field of pressure p by using (5) and
whatever the virtual field pressure q statically admissible:

∫
V f

∂p

∂xi
· ∂q

∂xi
dV − ω2

∫
V f

1

c2
· p · qdV = ω2 · ρ f

∫
Σ

ui · ni q · dΣ ∀q (7)

The variational formulation of the system is the sum of the two variational equations
(6) and (7):

F(u, p) = 1

2

∫
Ωs

(
σi j (u)εi j (u) − ρs · ω2 · (u, u)

)
dV −

∫
Σ

p · u · dΣ

− 1

2ρ f · ω2 ·
∫

V f

[(
∂p

∂xi
,

∂p

∂xi

)
+ k2 · p2

]
dV (8)
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2.3 Finite Elements Approximation

The interaction of the fluid and the structure at a mesh interface causes the acoustic
pressure to exert a force applied to the structure and the structural motions produce
an effective “fluid load.” The governing finite element matrix equations become as
follows:

• For the structure

[M]{ü} + [K]{u} = [L]{P} (9)

• For the fluid:

[E]{P̈} + [H]{P} = −ρ[L]t{ü} (10)

where [L] is a “coupling” matrix that represents the effective surface area associated
with each node on the fluid-structure interface (FSI). Both the structural and fluid load
quantities that are produced at the fluid-structure interface are functions of unknown
nodal degrees of freedom. Placing these unknown “load” quantities on the left hand
side of the equations and combining the two equations into a single equation produces
the following:

[
M 0

ρf Lt E

] {
ü
P̈

}
+

[
K −L
0 H

] {
u
P

}
=

{
0
0

}
(11)

we can still write as follows:

(
−ω2

[
M 0

ρf Lt E

]
+

[
K −L
0 H

]){
u(ω)

p(ω)

}
=

{
0
0

}
(12)

The foregoing equation implies that nodes on a fluid-structure interface have both
displacement and pressure degrees of freedom. The numerical techniques based on
a discretization of the type of finite elements allow us to resolve the equations of the
fluid/structure interaction problem (12). This method is applicable with the codes of
generalist calculation. In this work we are interested in the validation of the code
of ANSYS c© calculation by implementing coupled calculation in elementary cases.
We follow here this measure of validation by proposing a comparison of the results
within the framework of a numerical and experimental modal analysis of submerged
structures. To determine the eigenfrequencies of the coupled system, the matrix must
be symmetrical which is not the case. Therefore, a symmetrization procedure such
as Irons method will be used [7].
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3 Study of an Immersed Plate

3.1 Deterministic Case

We begin by the validation of the fluid-structure interaction in the deterministic case.
The numerical study considered in this section consists of a solid 3D coupled with
a compressible fluid which is modeled using ANSYS code. This application aims at
illustrating the methodology proposed in a deterministic analysis. Geometrical and
material properties are:

• For the structure: density = 7860kgm−3; Young’s modulus = 2.1× 1011 Pa; Pois-
son’s ratio = 0.3; Length= 2m; Width = 1m; Height = 0.2m.

• For the fluid: density = 1000kgm−3; Speed of sound = 1500ms−1; Length = 20m;
Width = 10m; Height = 10m.

For the finite elements calculation: SOLID45 is used for the 3D modeling of
solid, the element is defined by eight nodes having three degrees of freedom at each
node: translations in the nodal x, y, and z directions. FLUID30 is used for modeling
the fluid medium and the interface in fluid/structure interaction problems. Typical
applications include soundwave propagation and submerged structure dynamics. The
governing equation for acoustics, namely the 3Dwave equation, has been discretized
taking into account the coupling of acoustic pressure and structural motion at the
interface. The element has eight corner nodes with four degrees of freedom per node:
translations in the nodal x, y and z directions and pressure. The translations, however,
are applicable only at nodes that are on the interface.

This problem demonstrates the use of FLUID30 and SOLID45 to predict the
acoustic standingwavepattern of a solid submerged influid. Figure1 shows adiagram
of the types elements used in this study and the finite elements discretization of this
immersed structure.

Fig. 1 Finite element model
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Table 1 The first 5
frequencies of submerged
structure (modal synthesis)

Deterministic case ANSYS

R1 23.395

R2 67.646

R3 91.626

R4 131.76

R5 210.458

Table 2 Moments of the parameters of the problem and distribution laws

Parameters Means Standard deviation Distribution

Young modulus (Pa) 2.1 × 1011 0.05 × 1011 Gaussian (μ, σ )

Structure’s density
(kg/m3)

7860 250 Uniform (a,b)

Fluid’s density
(kg/m3)

1000 40 Uniform (a,b)

The founding results in the immersed structure and the comparison results between
theANSYS results is given inTable1. The adopted vibro-acousticmodel gives a good
predictions.

There is a substantial drop in natural frequencies of the structure after its immer-
sion in the fluid which changes the vibration behavior of the structure.

3.2 Probabilistic Case

The choice of the random variables is a central point [8]. In the three dimensions
case, the following variables are taking as random one (see Table2).

The stochastic calculation was carried out using probabilistic design system of the
ANSYS and MATLAB code. This tool is based on a calculation with Monte Carlo
simulation (for 100 samples) and the response surface method (for 40 samples). The
Table3 shows means and standard deviations of the natural frequencies as well as
the finding results using the immersed structure.

4 Reliability Analysis

Physical tests or measures show that the mechanical properties, the geometrical
characteristics of structure elements or applied loads could be random and follow
statistical distributions. This leads to define a probabilistic model. In general, random
variables give a good representation of structural stochastic parameters. Let X =
(X1, X2, . . . , Xm)t be the random vector of the probabilistic analysis. To preserve
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Table 3 Means and standard deviations of the natural frequencies for the immersed structure

Modes R1 R2 R3 R4 R5

Deterministic 23.39 67.64 91.62 131.76 210.45

MC 21.21 70.51 90.98 129.23 215.43

RSM 22.14 68.13 91.01 130.87 211.99

FORM 22.78 67.04 91.11 131.52 212.62

SORM 22.78 67.04 91.11 131.52 212.62

St. dev 2.63 3.24 4.15 6.07 10.68

the integrity of the structure, the failure mode must be defined and the corresponding
limit state function G(X) established. The structure is situated in its safe domain Ds

if {G(X) > 0} and it is situated in its failure domain D f if {G(X) ≤ 0}. Then, the
failure probability is:

Pf = Prob(G(X) ≤ 0). (13)

In our situation, the analytical expressions of the limit state function G and its
derivatives are often not available in function of the physical random variables
X1, X2, . . . , Xm . Then, it is only possible to obtain the failure probability under an
implicit numerical form. The response surface methods have been widely developed
in nonlinear reliability analysis. Several authors have proposed solutions to improve
the accuracy of results, to decrease the number of necessary numerical calculations
on FEM codes and to increase the robustness of the algorithms. In this nonlinear
study, we propose an adaptive surface method coupled with the first order reliability
method (FORM) [9, 10]. The sets of design points and the response surfaces are
generated in the space of standard Gaussian variables. The scheme of the adaptive
process is given as follows:

• k = 1, the generated set of points is a central composite design. Its center coordi-
nates are the mean values of random variables. d(1) is a fixed real number and the
distance from the central point to a ‘corner’ in the design is equal to

√
md(1). So

⎧⎨
⎩

u(k,1) = (0, 0, . . . , 0)T

u(k,r) = (0, . . . ,±d(k), . . . , 0)T , r = 2, . . . , 2m + 1
u(k,r) = (±d(k),±d(k), . . . ,±d(k))T , r = 2m + 2, . . . , 2m + 2m + 1

(14)

• The response surface h̃(k)(u) is a second order polynomial with crossed terms:

h̃(k)(u) = a0 +
n∑

i=1

ai ui +
n∑

i=1

n∑
j=1

ai j ui u j (15)

• The polynomial coefficients identification is done by the least square method
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E (k) =
p∑

r=1

wi [h̃(k)(u(k,r)) − h(u(k,r))]2 (16)

∂ E (k)

∂ai
= 0 i = 0, . . . , Nh (17)

where p = 2m +2m +1 and Nh = (m +1)(m +2)/2 is the number of coefficients
of the function h̃(k)(u) · wi = 1.

• The SQP optimization algorithm is used to compute the reliability index β
(k)
H L and

the design point u(k,r), solutions of the following minimization problem:

β
(k)
H L = min

√
ut · u subjected to: h̃(k) = 0 (18)

• k = k +1, generation of a new set of points. Its center is the point u(k−1,r) and the
distance from the central point to a “corner” in the design is equal to

√
mdk with

d(k) = d(k−1)

q
(19)

q > 1 is a real number which plays the role of a zoom factor.

Repeat (13)–(17) until a test of convergence on β
(k)
H L stops the iterative algorithm.

Then the failure probability is evaluated by the first order reliability method

Pf ≈ Φ(−βH L) (20)

where u = (u1, u2, . . . , um)T is a realization of the random vector U and h̃(k)(u) is
the approximated limit state function in the space of standardGaussian variables [11].
U is the image of X by the probabilistic transformation andΦ is the standard normal
distribution function. This iterative scheme is particularly efficient. The adaptive
central composite designs give a very good representation of the random variables
domain. The second order polynomial and the least square method ensures a good
compromise between the computational effort and the approximation accuracy of
the real limit state function h(u). The number of necessary calculations is reasonable
and depends on the number of variables. The SQP algorithm is robust and efficient
for this application in nonlinear finite-element reliability analysis. For more details,
see [3, 12, 13] (Fig. 2).

4.1 Reliability Analysis of the Marine Propeller

Following our deterministic study applied to a boat propeller and a single blade in
air and in water, we have noticed a variation of the numerical results compared to the
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Fig. 2 Reliability approach

Table 4 Material properties
of the structure

Young’s modulus Poisson’s ratio Density

9.6 × 1010 0.3 9200

Table 5 Material properties
of the fluid

Density (kgm−3) Speed of sound (ms−1)

1000 1500

experimental results, and want to extend this study to the stochastic and reliability
study to take account of uncertainties in the entered variables. Figure3 shows the
finite element model of the structure. The fluid and the propeller are defined by their
properties shown in the Tables6 and 7. To check the reliability of this structure, the
first natural frequency R1 is analyzed. The objective of this study is the demonstra-
tion of the interest of the proposed method. The numerical development has been
realized by a code which couples MATLAB c© and ANSYS c©. The learning meth-
ods are validated against different criteria, the value of the failure’s probability and
the calculation of the reliability index. The method of reduction is applied to a given
simplified model of the propeller composed of four substructures [14, 15] and the
acoustic cavity is divided into four subdomains containing each approximately the
same number of elements, see Fig. 3. The deterministic numerical calculations are
performed on the whole structure and on the single blade and they are compared with
experimental results [16] (Tables4 and 5).

The highlighting of the important dispersion of material properties of vibro-
acoustic problems has incited us to turn towards stochasticmethods for their analysis.
Front of the complexity of the problem, we have chosen to consider in this work only
the sources of uncertainties related to the material properties and we will be limited
to the study of a single blade in air and in water. But the uncertainties regarding
the other elements of the structure (geometry, boundary conditions and mechani-
cal behavior) have not been taken into account in a perspective of simplification.
The choice of standard deviations and the means of random variables were chosen
based on deterministic and experimental analyzes. The considered standard devia-
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Table 6 Moments of the parameters of the problem and distribution laws

Parameters Young’s modulus (Pa) Structure’s density
(kgm−3)

Fluid’s density
(kgm−3)

Distribution Gaussian Uniform Uniform

Means 9.6 × 1010 9200 1000

Standard deviation 0.5 × 1010 2669.6 295.72

Fig. 3 Finite elements discretization of this immersed structure

tions were also adjusted to maintain realistic ranges of materials involved. Table6
contains the means of random variables, their standard deviations used in this study
and the distributions laws chosen [17].

In this context the stochastic calculation was carried out using probabilistic design
system of the ANSYS c©. This tool is based on a calculation with Monte Carlo simu-
lation (MC) for 100 samples and the response surface method (RSM) for 40 samples.
Tables7 and 8 show means and standard deviations of the natural frequencies. The
first one gives the finding results using the propeller blade in air and the second one
gives the finding results using the propeller blade in water.

The finite element code ANSYS c© presents the probabilistic modules but it does
not allow access to the source files, which is a major handicap in the perspective of
implementation of the coupled model. To overcome this difficulty, we have chosen
to implement a direct coupling between a reliability code developed in MATLAB
and ANSYS. These two codes in fact answer our needs in terms of calculation
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Table 7 Means and standard deviations of the natural frequencies for the propeller in air

Modes R1 (Hz) R2 (Hz) R3 (Hz)

ANSYS 74.863 119.82 205.58

Experimental 73 117 201

MC 72.46 115.8 199.6

RSM 73.58 118.5 194.7

SD 12.5 23.5 37.1

Table 8 Means and standard deviations of the natural frequencies for the propeller in water

Modes R1 (Hz) R2 (Hz) R3 (Hz)

ANSYS 37.71 67.54 126.32

Experimental 36 65 123

MC 35.671 66.34 124.12

RSM 34.22 67.45 121.93

SD 5.62 11.16 25.871

capacity and the possibility of dialogue. The first step consists of the declaration
in the MATLAB code of the random variables of the model (laws of distribution
and associated parameters), the failure function G and all the necessary parameters
to solve the reliability calculation. From this information, this probabilistic code
can generate achievements of vector {X} of random variables. In the second step we
appeal toANSYS todeduce through thefinite element calculation thefirst frequencies
of the propeller induced in the different elements of the structure for the draw {X}.
MATLAB code shall then have all the information to assess the quantity G({X}).
These different steps are repeated until convergence of the optimization algorithm
for obtaining the reliability index and the probability of failure [18].

In this numerical study, the analysis of the reliability of the propeller in air and
in water was based on an implicit limit state function G based on the first natural
frequency R1:
• For the propeller in air:

G(E, ρs) = R1 − R0, with R0 = 73 Hz (21)

• For the propeller in water:

G(E, ρs, ρ f ) = R1 − R0, with R0 = 36 (22)

The mean values of random variables and their standard deviations as well as distri-
butions chosen for this study are shown in Table6.
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Table 9 Design parameters and their statistical moments considered in the propeller in air

Parameters Young’s modulus Structure’s
density

Reliability index Pf

FORM 8.5 × 1010 9030 3.68 0.083

SORM 8.5 × 1010 9030 3.68 0.012

Table 10 Design parameters and their statistical moments considered in the propeller in water

Parameters Young’s
modulus

Structure’s
density

Fluid’s density β Pf

FORM 8.37 × 1010 8980 890 3.54 0.11

SORM 8.37 × 1010 8980 890 3.54 0.087

Tables9 and 10 summarize the design parameters and their statistical moments
considered in the uncoupled and coupled structure for this example, and they illustrate
a comparison between the results obtained from FORM and SORM approaches.

In the deterministic case the numerical results are little far from those obtained by
experimentation, with an uncertainty compared to that given by other authors [19].
To overcome this problem, we extend our study to a stochastic study (Tables7 and 8)
which consists, firstly, to implement a simulation technique based on theMonteCarlo
method and response surface method, then secondly, to make a reliability analysis.
This technique involves a particular treatment of inputs and outputs random variables
in order to build a trusted domain on the parameters of the studied system. On the
basis of preliminary deterministic study, the reliability analysis based on FORM and
SORM was conducted for the blade in air and in water. Precisely, given the low
values of probability of failure Pf , it is convenient to reasoning in terms of reliability
index β, in order to build a trust domain of the input parameters chosen, as defined
in Table6.

By comparing the probabilities of failure and reliability index calculated and
displayed in Tables9 and 10 with the ranges of values of probability of failure and
reliability index β accepted in various industrial sectors, in particular for the marine
structures (Pf ∈ [10−2, 10−4] and β ∈ [2.33, 3.72]), we find that there is a very
important level of reliability of the blade. A prior study of the sensitivity of material
parameters was performed to identify the dominant parameters at the behavior of
materials. By a more rational treatment of uncertainties, the reliability approach
allows a better appreciation of the safety margins with the aid of the objectives
indicators of confidence, and in this sense is an appropriate tool to help to the decision
in phases of design and maintenance (Tables11 and 12).
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Table 11 Natural frequencies for the propeller in air calculated by FORM and SORM

Modes R1 R2 R3

FORM 70.35 116.44 201.24

SD 3.44 5.78 7.39

SORM 69.87 115.63 201.09

SD 3.18 5.36 7.21

Table 12 Natural frequencies for the propeller in water calculated by FORM and SORM

Modes R1 R2 R3

FORM 36.56 65.73 123.49

SD 1.48 3.65 4.18

SORM 35.67 65.58 123.24

SD 1.56 3.83 4.21

5 Reliability Based Design Optimization

Optimization in mechanical structures aims to determine the best possible design in
terms of cost and quality. In general, the designer considers an optimization crite-
rion, restrictions and numerical variables, either real or integer and uses determinist
procedures. We can, for example, cite the common methods of descent of stochastic
or hybrid algorithms. However, even in these two latter cases, the variables are most
often considered as numbers, i.e. determinist variables. This widely used approach
can be incorrect when there is variation in parameters or random phenomena must
be taken into account. For example, the optimal structure must be highly sensitive to
significant disruptions and present, therefore, a low level of reliability.

Due to errors inmodeling, the uncertainties inherent tomechanical characteristics,
geometric dimensions and manufacturing and assembly procedures, design models
for mechanical structures must be constructed whilst taking into account uncertainty
in the design parameters duringmulti-objective optimization. This raises the question
of optimization robustness with regards to uncertainties in the design parameters and
calls into question the solutions found by determinist optimization methods.

A first approach for accounting for what we call the general form of uncertainties
entails using security coefficients i.e. not considering the result of optimization as
being the design to be proposed but tomodify it in order to ensure greater reliability in
general, using a multiplying coefficient. This approach, however, suffers from a lack
of generality: security coefficients, also known as security factors, are closely linked
to the specific situation being studied and the engineer’s experience can therefore
not be extended to new situations, notably when the accumulated experience is low
and the record of faults is not sufficiently detailed [20].

In response to these difficulties, analysis methods which attempt to account for
the random or, more generally, uncertain nature of parameters have been developed.
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With this in mind, one of the first aspects considered is the control of the level of
reliability or, its equivalent, the solution to the optimization problem’s probability
of failure. As a result, it is common to seek to determine an optimal design which
satisfies a minimum level of reliability: we therefore speak of optimization which
accounts for reliability or reliability optimization.

Optimization relates to minimizing a function F(X) (which could represent a
geometry, cost, etc.) which is subject to a performance constraint (also known as a
limited state function) Gi (X, Y ) composed of the determinist variable vector X and
the random variable vector Y representing the mechanical resistance, the number
of admissible cycles and one or several geometric or physical constraints Hj (X)

(maximum admissible limits).
Determinist optimization can be carried out using several limited state with in

this case, i represents the number of the limited state function considered. There is
another formulation of optimization emphasized more on its immediately evident
performance by its formulation:

⎧⎨
⎩
maxX : G(X, Y )

s. t.

{
F(X) ≥ 0
Hj (X) ≥ 0 j = 1, . . . , n

(23)

This type of formulation is not very well suited to topological optimization with, for
example, lattice type structures for bridges, pylons, etc. Optimization itself, as with
any method, its Achilles heel in the sense that we rapidly see in this form that it does
not provide reliability.

This, however, is not completely true because reliability is underpinned by partial
security coefficients but pure optimization cannot control this in any case, hence the
need to improve the formulation to result in reliability optimization. This is composed
of two problems: the first entailsminimizing an objective function under performance
deterministic constraints. The reliability associated with optimization balances out
the role of each of these two methods and therefore results in the desired objective.
The reliability optimization formulation can be expressed as follows:

⎧⎨
⎩
minX F(X)

s.c.

{
Pr [Gi (X, Y ) ≤ 0] ≤ Pf i = 1, 2, . . . , n
Hj (X) ≥ 0 j = n + 1, . . . , N

(24)

The objective of RBDO is to find an optimal solution which verifies a probability of
failure lower or equal to the target probability, expressed as Pc

f . The basic formulation
of RBDO can be written as:

mind CI (d)

s.c.

{
Pr [Gi (d, X) ≤ 0] ≤ Pc

f i = 1, . . . , m
h j (d) ≥ j = m + 1, . . . , nh

(25)
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with CI being the cost function, Gi the limited state functions, d the determinist
variable vector to be optimized, X the random variable vector and h j the determinist
limitations.

5.1 Optimal Safety Factor

We initially use a single constraint optimization problem with two normal variables
U = (u1, u2) (see Fig. 4). In this case, the design point P∗ is calculated by the
following optimization procedure:

min
u

: d2 = u2
1 + u2

2 s.t. H(u1, u2) ≤ 0. (26)

The Lagrangian L introduces the constraint into the objective function with a penalty
λ. We then need to minimize an unconstrained three variable function:

L(u, λ, s) = d2(u) + λ × [H(u) + s2] (27)

whereλ is the Lagrangemultiplier on the limited state function and s is a real variable.
If we find the stationary points (u∗, λ∗, s∗) in the Lagrangian L(u, λ, s), this

means that we find (u∗, λ∗, s∗) such that ∇L(u∗, λ∗, s∗) = (0, 0, 0). We therefore
deduce the following system:

Fig. 4 Design point for a simple limit state function
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∂L

∂ui
= ∂d2

∂ui
+ λ

∂ H

∂ui
= 0, i = 1, 2 (28)

∂L

∂λ
= H(u) + s2 (29)

∂L

∂s
= 2sλ = 0 (30)

From the third equation sλ = 0, we can state that the Lagrange multiplier λ is non
negative λ ≥ 0 (∂2L/∂s2 ≥ 0). Due to this condition, we can identify the two
following cases:

1st example: If the variable s is different from zero (s �= 0), the Lagrange multi-
plier is equal to zero and the limit state constraint is less than zero
(H(u) < 0). This scenario corresponds to the state of failure.

2nd example: If the variable s is equal to zero (s = 0), the Lagrange multiplier
is positive (λ ≥ 0) and the limited state is defined by the equality
constraint (H(u) = 0). The resulting solution represents the design
point.

The first example is not suitable for a reliability study in direct contrast to the
second example which is the basis of this new approach. By replacing d2 by (u2

1+u2
2)

in the first condition (28), we obtain:

2u1 + λ
∂ H

∂u1
= 0 ↔ u1 = −λ

2

∂ H

∂u1
(31)

2u2 + λ
∂ H

∂u2
= 0 ↔ u2 = −λ

2

∂ H

∂u2
(32)

In Fig. 4, P∗ indicates the design point and α the direct cosine defined by:

tan α = u2

u1
=

∂ H
∂u2
∂ H
∂u1

(33)

β is evaluated following an optimization procedure under the constraint of belong-
ing to the failure problem domain (26), where β represents the minimum distance
between the start of the space and the limited state function. The reliability index
can be lower or greater at the target reliability βt . Our objective is to satisfy the
target level of reliability which we can express in the following form: β2

t = u2
1 + u2

2,

referring to this equation in (33), we obtain:

u2
2

⎛
⎜⎝

(
∂ H
∂u1

)2
(

∂ H
∂u2

)2 + 1

⎞
⎟⎠ = β2

t ⇒ u2 = ±βt

√√√√√√
(

∂ H
∂u2

)2
(

∂ H
∂u1

)2 +
(

∂ H
∂u2

)2 (34)
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For a normal distribution, the normalized variable ui has the following form:

ui = yi − myi

σi
, i = 1, . . . , n (35)

where the average myi and the standard deviation σi are two distribution parameters
of the normal law with xi = myi , i = 1, . . . , n and σi = γi × xi , i = 1, . . . , n.

By introducing the partial safety factor S f i to each component of the design
variable vector xi :

yi = S f i · xi , i = 1, . . . , n (36)

and by referring to the components yi in (35), we have:

ui = S f i − 1

γi
, i = 1, . . . , n (37)

From (37) and (34), we can write the security factor S f 2 in the following form:

S f2 = 1 ± γ2 × βc

√√√√√√
(

∂ H
∂u2

)2
(

∂ H
∂u1

)2 +
(

∂ H
∂u2

)2 . (38)

The calculation of the normal gradient ∂ H
∂u is not accessible because the structures

mechanical analysis is carried out in the physical space rather than the standard space.
By applying the chain rule to the physical gradient ∂G

∂y , the following expression can
be established:

∂ H

∂ui
= ∂G

∂yk

∂T −1
k (x, u)

∂ui
, i = 1, . . . , n; k = 1, . . . , K (39)

⇒ ∂ H

∂ui
=

√∣∣∣∣∂G

∂yi

∣∣∣∣, i = 1, . . . , n (40)

where T −1(x, u) is an iso-probabilistic transformation defined for the movement
between the physical and normed spaces.

By introducing expression (39) into (38), we write:

S f2 = 1 + γ2u2 = 1 ± γ2 × βt

√√√√√√√√√√√

∣∣∣∣∣∣
2∑

j=1

∂G j

∂y2

∣∣∣∣∣∣
2∑

i=1

∣∣∣∣∣∣
2∑

j=1

∂G j

∂y2

∣∣∣∣∣∣

(41)
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For a problem with a single (simple) limited state with n design variables, (42) can
be written in the general form:

S fi = 1 + γi ui = 1 ± γi × βt

√√√√√√√√√√√

∣∣∣∣∣∣
2∑

j=1

∂G j

∂y j

∣∣∣∣∣∣
2∑

i=1

∣∣∣∣∣∣
2∑

j=1

∂G j

∂yi

∣∣∣∣∣∣

(42)

The sign (±) depends on the sign of the derivative ∂G/∂yi i.e.:

∂G

∂yi
> 0 ↔ ui > 0 et S f i > 1, i = 1, . . . , n (43)

∂G

∂yi
< 0 ↔ ui < 0 and S f i < 1, i = 1, . . . , n (44)

By using these safety factors, we can respond to the target reliability whilst avoiding
the problem’s complexity.

The OSF approach is carried out in three steps:

Step 1: Identify the design point (or the most probable point of failure): we con-
sider the limit state function G(x, y) as the most active constraint. The
optimization problem carried out in the physical space entails minimiz-
ing the objective function under the limit state constraint and under the
determinist constraints. The resulting solution is considered as the most
probable point of failure and is termed the design point.

Step 2: Calculate the safety factors: in order to calculate these factors, a sensitivity
analysis of the limit state function in relation to the determinist variables
is required. When the number of determinist variables is equal to that of
the random variables, there is no additional numerical cost because the
gradient is calculated during the optimization process. If the number of
determinist variables is different from that of the random variables, we
can only evaluate the sensitivity of the limit state functionwhich concerns
these random variables not associated with determinist variables (low
computational cost).

Step 3: Calculate the optimal solution: In the last step, we include the safety fac-
tors’ values to evaluate the design variables values and we then determine
the structure’s optimal design.

5.2 RBDO of Marine Propeller

In this application, we have two objectives:
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Fig. 5 Scheme of the
marine propeller

Table 13 Data of the
problem

Parameter Value

Plate W 4.5 m

L 1.5 m

Thickness 0.1 m

Outer radius 0.50 m

Inner radius 0.35 m

Density 7860 kg/m3

Young modulus 2.0e11 Pa

Poisson ratio 0.3

Water Density 1000 kg/m3

1. To show the difference between the deterministic design optimization and the
reliability-based design optimization.

2. To demonstrate the efficiency of the proposed safest point method relative to the
hybrid method.

Scheme and data problem are presented, respectively, in Fig. 5 and Table13.
The objective is to find the eigen-frequency for a given interval [13, 19], that

is located on the safest position of this interval. So f a = 14 Hz, f b = 20 Hz
and f n = ? Hz, where f n must verify the equality of reliability indices: βa = βb.
We can deal with three models: The first structure must be optimized subject to the
first frequency value of the given fa, the second one must be optimized at the end
frequency value of the interval fb, and the third structure must be optimized subject
to a frequency value fn that verifies the equality of reliability indices relative to both
sides of the given interval (see Fig. 6) [21].

Here, we can deal with two reliability-based design optimization methods: hybrid
and safest point methods. The hybrid method (HM) simultaneously optimizes the
three structures but the safest point method consists in optimizing three simple prob-
lems.
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HM procedure: We minimize the weight of one pale of the objective function
subject to the different frequencies constraint and the reliability one as follows:

min
T h1,...,mT h ,...,T h2,...

: Weight n (mT h, mW , mL ) . dβ1

(
T h1, W1, L11 , mT h, mW , mL

)
.

dβ2 (T h2, W2, L2, mT h, mW , mL)

subject to : f 1max(T h1, W1, L1 ) − fa ≤ 0 , f 2max(T h2, W2, L22 ) − fb ≤ 0
: dβ1 (T h1, W1, L1, mT h, mW , mL) − dβ2 (T h2, W2, L2, mT h, mW , mL ) ≤ 0

:ua
i + ub

i = 0,

(45)

SP procedure: We have two simple optimization problems:

• The first is to minimize the objective function of the first model subject to the
frequency fa constraint as follows:

min
T h1,...

: Weighta (T h1, W1, L1) subject to : f 1max(T h1, W1, L1 ) − fa ≤ 0

(46)
• The second is to minimize the objective function of the second model subject to
the frequency fb constraint as follows:

min
T h2,...

: Weightb (T h2, W2, L2) subject to : f 2max(T h2, W2, L2 ) − fb ≤ 0

(47)

Let consider a given interval [ fa, fb] (see Fig. 6). For the first shape mode, to get
the reliability-based optimum solution for a given interval, we consider the equality
of the reliability indices:

βa = βb or β1 = β2 (48)

Fig. 6 Marine propeller optimization models for both cases
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Table 14 Results for the marine propeller

Variables Initial Optimum design Optimum design

with HM with SP

fn T h (m) 0.2 0.175 0.20

L (m) 2.00 2.253 2.55

W (m) 4.00 4.151 4.50

fa T h1 (m) 0.1 0.115 0.120

L1 (m) 1.5 1.65 1.750

W1 (m) 3.5 3.55 3.750

fb T h2 (m) 0.3 0.286 0.278

L2 (m) 3.5 3.485 3.353

W2 (m) 5.5 5.175 5.246

fa (Hz) 13 14.22 14.10

fn (Hz) 21 18.29 18.90

fb (Hz) 22 19.89 19.90

Volume (m3) 2.95 2.836 3.05

Times (s) – 4125 995

with

βa =
√√√√ n∑

i=1

(
ua

i

)2 and βb =
√√√√ n∑

i=1

(
ub

i

)2
i = 1, . . . , n. (49)

To verify the equality (49), we propose the equality of each term. So we have:

ua
i = −ub

i ,i = 1, . . . , n (50)

According to the normal distribution law, the normalized variable ui is given by (50),
we get:

ya
i − mi

σi
= − yb

i − mi

σi
, or

ya
i − xi

σi
= − yb

i − xi

σi
, i = 1, . . . , n (51)

To obtain equality between the reliability indices (see (5)), the mean value of variable
corresponds to the structure at fn . So the mean values of safest solution are located
in the middle of the variable interval [ya

i , yb
i ] as follows:

mi = xi = ya
i + yb

i

2
, i = 1, . . . , n (52)

The coordinates of the third model corresponds to fn according to (52).
Table14 shows the results of the SP method and presents the reliability-based

optimum point for a given interval [14 Hz, 20 Hz]. The value of fn presents
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the equality of reliability indices. The SP method reduces the computing time by
75 % relative to the hybrid method. The advantage of the SP method is simple to be
implemented on themachine and to define the eigen frequency of a given interval and
provides the designer with reliability-based optimum solution with a small tolerance
relative to the hybrid method.

6 Conclusion

This work proposes a probabilistic numerical method of modal synthesis extended to
reliability study based on FORM and SORM approaches for solving large size vibro-
acoustic problem of coupled fluid-structure systems modeled by the finite element
method. To take into account uncertainties related to parameters of the two domains,
a reliability analysis was subsequently conducted. For this purpose, an integrated
approach combining the methods of reliability and finite element modeling has been
proposed to account for the failure of submerged structures. From the point of sight
of designers, this approach provides an adequate framework for the analysis of the
reliability of structures in contact with the fluid which confers a physical significance
to the uncertainties introduced.

The used numerical method takes into account the uncertainties of input parame-
ters such as properties of the two domains fluid and solid. The application of the
proposed method is performed on a propeller boat in air and water. The numerical
study is performed using a code developed which couples MATLAB and ANSYS
to evaluate the reliability of the structure. The comparison of the numerical results
allows us to validate jointly the process of calculation and the method proposed in
the domain of frequency analysis and the reliability of submerged structures in order
to build a reliable and robust model for the problems of fluid-structure interaction.

The obtained results through the study of the marine propeller are very encourag-
ing. The proposedmodel, whose choices have been dictated by the physical phenom-
ena involved, the deterministic results and available experimental data. This model
seems indeed capable to account for the reliability of these submerged structures at
different scales. If the deterministic study has shed light on the effect of coupling
between the fluid and the structure, the stochastic study has demonstrated the rele-
vance of this approach with a view to improve the robustness of the forecast results
in the probabilistic approach. RBDO analysis has given an other conception of the
marine propeller taking into account optimization and reliability.
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Localized Structures in Broad Area VCSELs:
Experiments and Delay-Induced Motion

Mustapha Tlidi, Etienne Averlant, Andrei Vladimirov, Alexander Pimenov,
Svetlana Gurevich and Krassimir Panayotov

Abstract We investigate the space-time dynamics of a Vertical-Cavity
Surface-Emitting Laser (VCSEL) subject to optical injection and to delay feedback
control. Apart from their technological advantages, broad area VCSELs allow creat-
ing localized light structures (LSs). Such LSs, often called Cavity Solitons, have been
proposed to be used in information processing, device characterization, and others.
After a brief description of the experimental setup, we present experimental evidence
of stationary LSs. We then theoretically describe this system using a mean field
model. We perform a real order parameter description close to the nascent bistability
and close to large wavelength pattern forming regime. We theoretically characterize
the LS snaking bifurcation diagram in this framework. The main body of this chapter
is devoted to theoretical investigations on the time-delayed feedback control of LSs
in VCSELs. The feedback induces a spontaneous motion of the LSs, which we char-
acterize by computing the velocity and the threshold associated with such motion.
In the nascent bistability regime, the motion threshold and the velocity of mov-
ing LSs depend only on the feedback parameters. However, when considering the
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previously introduced mean-field model, theoretical predictions indicate that both
motion threshold and velocity are strongly affected by the phase of the delay and by
the carrier relaxation rate.

Keywords VCSEL ·Localized light structures ·Cavity soliton ·Pattern formation ·
Time-delayed feedback

1 Introduction

Spontaneous symmetry breaking and self-organization phenomena have been
observed in various fields of nonlinear science such as nonlinear optics, fibre optics,
fluid mechanics, granular matter or plant ecology. The link between the well known
Turing instability and transverse patterns formation in nonlinear optics was estab-
lished for the first time by Lugiato and Lefever [1]. In their seminal paper, they
considered an optical resonator filled with a passive nonlinear medium and driven
by a coherent radiation beam. Since then, many driven systems have proven to allow
periodic patterns in the transverse section of their output beam. Besides a periodic
distribution of light, LSs may form in the plane perpendicular to the propagation
axis. They are often called localized spots and localized patterns, or cavity soli-
tons which appear either isolated, randomly distributed or self-organized in clusters
forming a well-defined spatial pattern [2, 3]. When LSs are sufficiently separated
from each other, localized peaks are independent and randomly distributed in space.
However, when the distance between peaks decreases they start to interact via their
oscillating, exponentially decaying tails [4–7]. LSs have been reported in nonlinear
resonators such as lasers with saturable absorbers [8–10], in passive nonlinear res-
onators [2, 3, 11], optical parametric oscillators [12, 13], in left-handed materials
[14–17], in exciton-polariton patterns in semiconductor microcavities [18, 19] and in
the framework of the Ginzburg-Landau equation [20–24]. Phase solitons have been
demonstrated far from any pattern forming instability [25–30].

Localized structures are homoclinic solutions (solitary or stationary pulses) of
partial differential equations. The conditions under which LSs and periodic patterns
appear are closely related. Typically, when the Turing instability becomes subcritical,
there exists a pinning domain where LSs are stable. This is a universal phenomenon
and a well-documented issue in various fields of nonlinear science. The experimental
observation of LSs in driven nonlinear optical cavities has further motivated the
interest in this field of research. In particular, LSs could be used as bits for information
storage and processing. Several overviews have been published on this active area
of research [9, 31–48].

Many theoretical and experimental studies on LS formation in VCSELs have been
realized [49, 50]. They have been experimentally observed in broad area VCSELs
both below [49, 51] and above [52] the lasing threshold when injecting a holding
beam with appropriate frequency and power. A spatially LS has also been found in
a medium size VCSEL, but only by using its particular polarization properties [53].
Cavity soliton lasers (CSLs) in a VCSEL system without a holding beam have been
demonstrated both experimentally [54] and theoretically [55] in VCSELs subject to
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frequency selective optical feedback and in face to face coupled VCSELs [56, 57]. In
these systems, the VCSELs are placed in self imaging optical systems with either an
external grating or another VCSEL biased below lasing threshold, so that the system
becomes bistable. Lasing spots spontaneously appear in these systems and can be
switched on and off by another laser beam. As a matter of fact a broad area VCSEL
with saturable absorber has been the first system in which LSs have been predicted
and studied theoretically [58–60]. LSs in a monolithic optically pumped VCSEL with
a saturable absorber have been demonstrated in [61] and their switching dynamics
studied in [62]. Several applications of LSs in VCSELs have been demonstrated:
optical memory [63], optical delay line [64] and optical microscopy [50].

In this chapter, we investigate the formation of LSs in VCSELs subject to both
optical injection and delay feedback control. These lasers are characterized by a large
Fresnel number and a short cavity. VCSELs are the best candidate for localized struc-
tures formation in their transverse section. The first VCSELs were fabricated in 1979
[65] and later on they reached performances comparable to those of edge-emitting
lasers [66, 67]. Nowadays VCSELs are replacing edge-emitting lasers in short and
medium distance optical communication links thanks to their inherent advantages:
much smaller dimensions, circular beam shape that facilitates coupling to optical
fibres, two-dimensional array integration and on wafer testing that brings down the
production cost [67]. As VCSELs emit light perpendicular to the surface and the
active quantum wells, their cavity length is of the order of 1 µm—the wavelength of
the generated light. Thanks to the maturity of the semiconductor technology VCSELs
can be made homogeneous over a size of hundreds of µm while the characteristic
LS size is about 10 µm. The timescales of the semiconductor laser dynamics and LS
formation are in the ns scale, which allows for fast and accurate gathering of data.
Finally, VCSEL physics and dynamics are quite well understood [67–69].

We investigate experimentally and theoretically the formation of stationary LSs
in VCSELs and we describe theoretically the effect of a time delayed feedback on the
stability of LSs. For this purpose, we adopt the Rosanov-Lang-Kobayashi approach
for modelling of delay feedback [70, 71].

This chapter is organized as follows. After an introduction, we provide a descrip-
tion of the VCSELs in Sect. 2, the experimental setup and the observation of localized
structures in a medium size VCSEL are described in Sect. 3. A theoretical description
based on mean field model and the derivation of the generalized Swift-Hohenberg
equation are given in Sect. 4. Stationary LSs and their bifurcation diagram are pre-
sented in Sect. 5. LSs brought into motion under the effect of delay feedback are
discussed in Sect. 6. We conclude and draw some perspectives of the present work
in Sect. 7.

2 Vertical-Cavity Surface-Emitting Lasers

The structure of a VCSEL is by far more complex than the one of an edge-emitting
semiconductor laser. But this complexity, and the inherent fabrication costs, did



420 M. Tlidi et al.

not keep VCSELs from becoming the second most produced laser type [72–74].
The biggest advantages of this structure are the circular emission pattern and low
divergence, which allow to easily couple the light to an optical fibre for optical
interconnects. Moreover, the high reflectivity of the Bragg mirrors provide a low
lasing threshold, which makes VCSELs the choice lasers for low power applications
(such as optical mice for example). For high power applications, VCSELs can easily
be coupled into arrays [75], which provides a high power coherent low divergence
beam.

The emission surface of a VCSEL can be made from a few µm to some 200
µm—the first ones are best suited for low power applications, whereas the second
category is typically used for spectroscopy. Apart of their use in spectroscopy, broad
area VCSELs are best suited for LSs studies. They have several characteristics that
makes them a choice material:

• Their use in information technologies provides a mastering of the fabrication
process, leading to à la carte properties;

• The response time is much faster than the one in liquid crystals or photorefrac-
tive media, which makes them more likely to be used in potential high speed
applications;

• Experiments can be carried out on a single one hundred micrometer chip, in com-
parison with some meter needed for creating LSs in gas cells;

The broad-area bottom emitting VCSEL structure we use in our experiments is
described in Fig. 1. The top and bottom distributed Bragg reflectors consist of 30 and
20.5 Al0.88Ga0.12As–GaAs layer pairs, respectively. The active region consists of
three In0.2Ga0.8As quantum wells embedded in GaAs barriers and AlGaAs cladding
layers [75]. The bottom-emitting configuration allows the stand-alone VCSEL to
have a better (more homogeneous) current distribution in the transverse plane and,
therefore, is more suitable for producing LSs. Moreover a heat sink can be directly
mounted on top of the p-contact and the p-doped DBR, which is the main source of
heat. The temperature distribution is hence more homogeneous as well.

Fig. 1 View of a
bottom-emitting VCSEL.
The blue and green layers
constitute the pairs in the
Bragg mirrors. The red
element is the cavity
containing the quantum
wells. The grey part is the
substrate on which the
structure has been grown and
through which the light is
emitted

Top contact

Substrate

Inner cavity and
active layers

Bottom contact

Light aperture

Bragg mirrors
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3 Experimental Observations

3.1 Description of the Experimental Setup

The experimental setup used for the generation of two-dimensional LSs is shown
in Fig. 2. The injection part consists of a tunable External Cavity Diode Laser (Master)
in a Littrow configuration, optically isolated from the rest of the experiment. The
linear polarization of the injected light is tuned to match the one of the VCSEL. In
order to produce LSs, both the optical injection power and the detuning between the
injection frequency and the VCSEL resonance frequency are adjusted.

The VCSEL we use is a 80µm diameter, bottom emitting InGaAs multiple quan-
tum well VCSEL, as described in Sect. 2 which has a threshold current of 42.5 mA
at 25.0 ◦C.

We analyse the optical spectrum, near field and output power of the VCSEL.
A photography of the actual setup is shown in Fig. 3.

Fig. 2 Experimental setup schematic. The full line is the path of the light from the master laser,
whereas the dashed line is the path followed by the light from the VCSEL. (i) injection preparation
and monitoring; Master master laser, OI optical isolator, λ/2: half wave plate, M mirror, VODF vari-
able optical density filter; (ii) VCSEL; (iii) analysis branch; PD photodiode, OSA optical spectrum
analyser. Reprinted from [76]
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Fig. 3 Photography of the experimental setup. Left down side of the picture: injection preparation
with external cavity laser diode, optical isolator, half-wave plate and variable optical density filter.
Top right injection monitoring and VCSEL. Down right analysis branch; optical spectrum analyser,
CCD camera and photodiode

3.2 Experimental Observations

Tuning the width of the injection beam to 100µm, the detuning to −174 GHz,
the VCSEL driving current to 45.013 mA and its substrate temperature to 25.01 ◦C,
we obtain the bistability curve depicted in Fig. 4. We continuously varied the optical
injection power by increasing it, before decreasing it. The hysteresis phenomenon
associated with this experiment is evidenced in Fig. 4a. The insets represent near field
profiles on the higher and lower branch of the hysteresis curve. One dimensional
profiles along the horizontal lines drawn on the insets are shown in Fig. 4b(up),
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Fig. 4 Bistability between one and two-peaked LSs inside the near field of the VCSEL as a function
of the optical injection power. a Power emitted by the VCSEL as a function of the optical injection
power for θ = −174 GHz and a beam waist of 100µm. The insets (i) and (ii) respectively represent
near field profiles on the higher and lower branch of the hysteresis curve. b and c One dimensional
profiles along the horizontal line drawn on the aforementioned insets. Redrawn from [76]
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Fig. 5 Cross sections along
the solid lines indicated in
Fig. 4a, (i) and (ii). The
dashed line is the state (ii)
(lower branch of the
hysteresis), whereas the full
line is the system with a LS
(upper branch of the
hysteresis). Redrawn from
[76]

c(down). The lower branch corresponds to the “homogeneous” steady state. In Fig. 5,
the difference between these two states is evidenced. On the higher branch, there is
not only a peak, but a clearly noticeable oscillating tail around this peak, which is
characteristic of a LS.

4 Mean Field Model

In this section, we describe the dynamics of a VCSEL submitted to optical injection
and delayed feedback. To do so, we assume an external cavity (i) in which the
diffraction is compensated (ii) much longer than the characteristic diffraction length
of the field. We further apply (i) a paraxial approximation (ii) a slowly varying
envelope approximation. The mean field model describing the space-time evolution
of the electric field envelope E and the carrier density N in a VCSEL subjected to
optical injection and time-delayed feedback is then given by the following set of
dimensionless partial differential equations

∂ E

∂t
= − (μ + iθ) E + 2C(1 − iα)(N − 1)E (1)

+ Ei − ηeiϕ E(t − τ) + i∇2 E ,

∂ N

∂t
= −γ

[
N − I + (N − 1) |E |2 − d∇2 N

]
. (2)

The parameter α describes the linewidth enhancement factor, μ and θ are the cavity
decay rate and the cavity detuning parameter, respectively. The parameter Ei is the
amplitude of the injected field which we assume to be positive in order to fix the
origin of the phase. C is the bistability parameter, γ is the carrier decay rate, I is
the injection current, and d is the carrier diffusion coefficient. The light diffraction
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and the carrier diffusion are described by the terms i∇2 E and d∇2 N , respectively,
where ∇2 is the Laplace operator acting in the transverse plane (x, y). Below we
consider the case when the laser is subjected to coherent delayed feedback from an
external mirror. To minimize the effect of diffraction on the feedback field we assume
that the external cavity is self-imaging [77]. The feedback is characterized by the
delay time τ = 2Lext/c, the feedback rate η ≥ 0, and phase ϕ, where Lext is the
external cavity length, and c is the speed of light. The link between dimensionless
and physical parameters is provided in [78]. Using the expression for the feedback
rate η = r1/2(1 − R)/R1/2τin given in [79], where r (R) is the power reflectivity
of the feedback (VCSEL top) mirror and τin is the VCSEL cavity round trip time,
we see that the necessary condition for the appearance of the soliton drift instability

ητ > 1 [77] can be rewritten in the form r >
Rτ 2

in
(1−R)2τ 2 . In particular, for R = 0.3

and τ = 20τin the latter inequality becomes r > 1.5 · 10−3.
To reduce the number of parameters, we introduce the following change of vari-

ables: n = [2C(N −1)−1]/2 and e = E∗/
√

2. The model (1, 2) of a VCSEL driven
by an injected field Y = Ei/(2

√
2) take the following form:

∂t e = iθ ′e + (1 + iα)ne + Y + η′e−iψe(t − τ) − i∇2e, (3)

∂t n = γ [P − n − (1 + 2n)|e|2 + D∇2n]. (4)

The pump parameter P is P = C(I − 1) − 1/2, γ = γ ′/2, D = 2d, η′ = ξ/2, and
θ ′ = (θ +α)/2. The new time and space scales are (t, τ ) = 2(t ′, τ ′) and ∇2⊥ = 2∇′2⊥ .
Let us assume for simplicity that the detuning is θ ′ = 0 and the feedback phases are
ψ = 0 or ψ = π .

The homogeneous steady states of (3, 4) are Y = −es(1 + iα)(P − |es |2)/(1 +
2|es |2) and ns = (P − |es |2)/(1 + 2|es |2). We explore the vicinity of the nascent
optical bistability regime where there exists a second order critical point marking the
onset of a hysteresis loop. The critical point associated with bistabilty is obtained
when the output intensity as a function of the injection parameter Y has an infinite
slope, i.e., ∂Y/∂|es | = ∂2Y/∂|es |2 = 0. The coordinates of the critical point are
ec = (1 − iα)

√
3/2(1 + α2), nc = −3/2, Pc = −9/2, Dc = 8α/[3(1 + α2)] and

Yc = (3/2)(3/2)(1+α2)1/2. Our objective is to determine a slow time and slow space
amplitude equation which is valid under the following approximations: (i) close to
the onset of bistabilty (ii) close to large wavelength symmetry breaking instability.
Starting from (3, 4), the deviation u of the electric field from its value at the onset of
bistablity is shown to obey [80]

∂t u = y − u(p + u2) + ηu(t − τ) (5)

+(d − 5u

2
)∇2u − a∇4u − 2(∇u)2,

where a = (1−α2)/(4α2). The parameter y denotes the deviation of the injected field
amplitude from YC . The real variable u, the parameters p and d are the deviations of
the electric field, the pump parameter and the carrier diffusion coefficient from their
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values at the onset of the critical point, respectively. In the absence of delay; i.e.,
η = 0, (5) is the generalized Swift-Hohenberg equation that has been derived for
many far from equilibrium systems [81–83]. Even in absence of the delay feedback
term, the terms u∇2u and (∇u)2 render (5) nonvariational.

5 Stationary Localized Structures

LSs are nonlinear bright or dark peaks in spatially extended systems. Such
structures have been observed in the transverse section of coherently driven optical
cavities, and are often called cavity solitons. Currently they attract growing interest
in optics due to potential applications for all-optical control of light, optical storage,
and information processing [2, 3]. When they are sufficiently separated from each
other, localized peaks are independent and randomly distributed in space. However,
when the distance between peaks decreases they start to interact via their oscillating,
exponentially decaying tails. This interaction then leads to the formation of clusters
[4–7]. Mathematically speaking, LSs are homoclinic solutions (solitary or stationary
pulses) of partial differential equations. The conditions under which LSs and periodic
patterns appear are closely related. Typically, when the Turing instability becomes
sub-critical, there exists a pinning domain where localized structures are stable. This
is a universal phenomenon and a well documented issue in various fields of nonlinear
science, such as chemistry, plant ecology, or optics (see some recent overviews on
this multidisciplinary issue [41, 42, 48]).

In this section we describe some basic properties of stationary LS and their bifur-
cation diagrams in a one dimensional setting. In the absence of delay feedback, (5)
admits a variety of LSs. The generalized Swift-Hohenberg equation (5) is numerically
integrated using a classical spatial finite-difference method with forward temporal
Euler integration. The boundary conditions are periodic in both transverse directions
and the initial condition consists of a large amplitude peaks added to the unstable
homogeneous steady state. We fix all the parameters except the amplitude of the
injected field y. Examples of localized clusters having an odd or an even number of
peaks are shown in Fig. 1b, c. They are obtained for the same parameter values and
differ only by the initial condition.

We examine the case of one-dimensional monostable system in the subcritical
regime where the homogeneous steady state coexists with a spatially periodic struc-
ture. In addition, the system exhibits a high degree of multistability in a finite range
of y values often called the pinning region [84]. More precisely, (5) then admits an
infinite set of odd and even cavity solitons as shown in Fig. 6a, i.e., a set of stationary
solutions that exhibit n = 2p −1 or n = 2p peaks, where p is a positive integer. The
limit p → ∞, corresponds to the infinitely extended periodic pattern distribution.
In the pinning region, the width of LS is close to the half of the periodic wavelength
structure. Since the amplitudes of localized patterns having different number of peaks
are close to one another, in order to visualize the clusters properties, it is convenient
to plot the “L2-norm”
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Fig. 6 One dimensional LSs. a Multiple peaks localized structures with odd or even number of
peaks obtained for y = −0.35. b Snaking bifurcation diagram showing two inter-weaved snaking
curves: the branches (a), (b), (c), (d) and (e) correspond to states having 1, 2, 3, 4 and 5 peaks in
Fig. 6a. Redrawn from [80]. The full and the broken lines correspond, respectively, to stable and
unstable localized branches of LSs. The parameters are p = −0.7, d = −1.2, a = 0.75, and
τ = η = 0

N =
∫

dxdy|u − us |2 (6)

as a function of the injected field y. This yields the two snaking curves with odd or
even number of peaks as shown in bifurcation diagram of Fig. 6b. As N increases,
at each turning point where the slope becomes infinite, a pair of additional peaks
appears in the cluster. One sees that this behavior, referred to as homoclinic snaking
phenomenon [85–91], and recently observed experimentally [92, 93], corresponds to
back and forth oscillations inside the pinning region. In two spatial dimensions, the
variety of stable localized patterns is much larger than in one dimensional system.

6 Moving Localized Structures

In this section we investigate the effect of a time-delayed feedback control on the
stability of LSs in VCSELs. This delayed feedback loop compares the electric field
at the current moment of time and its values at some time in the past. Recent stud-
ies that combined analytical and numerical analysis of the two-dimensional Swift–
Hohenberg equation suggested that steady LSs can become mobile when ητ < 1
[77, 80, 94].
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Fig. 7 Velocity by unit of
the factor Q of moving
localized structures as a
function of the time delay τ

for different values of the
delayed feedback strength η

v = Q

τ

√−(1 − ητ), (7)

with

Q =
√√√√6

∫ +∞
−∞ u2

1dxdy∫ +∞
−∞ u2

2dxdy

Due to the rotational symmetry of the generalized Swift-Hohenberg equation (5),
there is no preferred direction for the motion of a circularly symmetric localized
structure. The instability leading to the spontaneous motion of a LS solution is a circle
pitchfork type of bifurcation. Therefore, the x axis can be chosen for the estimation
of the velocity v. In this case we obtain u1 = ∂u0(r)/∂x and u2 = ∂2u0(r)/∂x2

where u0(r) is the stationary localized structure solution. We recover the expression
for the soliton velocity (7) that was obtained first in the case of the Swift-Hohenberg
equation [77]. The speed formula (7) is valid for any localized pattern, regardless
of the number of peaks it contains. The factor Q describes the spatial form of the
localized pattern. This factor can be be calculated only numerically. In particular,
for the parameter values y = −0.35, p = −0.7, d = −1.2, a = 0.75, we obtain
Q = 1.44. The velocity (7) divided by the factor Q is plotted as a function the delay
time for a fixed value of the feedback strength as shown in Fig. 7. The curve of the
velocity has a maximum at τ = 2/η, which corresponds to the maximal velocity
vmax = Qη/2. Note that the threshold ητ = 1 and the expression for the formula
(7) have been found later on for the chemical reaction-diffusion type of equations
[95–97].

Numerical simulations of (5) show indeed that single and many peaked LSs exhibit
a spontaneous motion as predicted by the above theoretical analysis, as shown in
Fig. 8.
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Fig. 8 Space time map of a
single-peaked localized
structure solution to (5).
Parameters are p = −0.9,
d = −1.5, y = −0.5,
η = 0.15 and τ = 15.
Redrawn from [100]
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The velocity and the threshold ητ = 1 associated with the LS motion depend
only on the delay parameters η and τ . This statement is valid only in nascent optical
bistability regime, where the dynamics of the system are described by the real order
parameter (5), and for a fixed feedback phase of ψ = 0 or ψ = π . In what follows
we will examine the combined role of the phase of the delay feedback ψ and the
carrier relaxation rate γ in the framework of the full mean field model.

Since our system is isotropic, the motion of localized structures occurs in an
arbitrary direction. At the pitchfork bifurcation the stationary LS loses stability and
a branch of moving LSs with the velocity v = |v| bifurcates from the stationary
LS branch of solutions. The bifurcation point can be obtained from the first order
expansion of the uniformly moving LS in power series of the small velocity v. Close
to the bifurcation point, the uniformly moving LS can be expanded in power series
in the small velocity v and through the solvability condition, we obtain the drift
instability threshold [98, 99]

ητ = 1 + γ −1(b/c)√
1 + (a/c)2 cos[ϕ + arctan (a/c)] (8)

with

a = 〈ψ†
1 , ψ2〉 − 〈ψ†

2 , ψ1〉, (9)

b = 〈ψ†
3 , ψ3〉,

c = 〈ψ†
1 , ψ1〉 + 〈ψ†

2 , ψ2〉,

and
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Fig. 9 Threshold associated with the drift bifurcation as a function of the feedback phase ϕ is
plotted for different values of the carrier relaxation rate γ . Parameters are μ = 1.0, θ = −2.0,
C = 0.45, α = 5.0, τ = 100, d = 0.052, Ei = 0.8, I = 2. The values of the parameter γ are
shown in the figure. Redrawn from [99]

ψ = (ψ1, ψ2, ψ3)
T = ∂x (X0, Y0, N0)

T (10)

a translational neutral mode of the linear operator L , Lψ = 0, while ψ† =(
ψ

†
1 , ψ

†
2 , ψ

†
3

)T
is the corresponding solution of the homogeneous adjoint prob-

lem L†ψ† = 0. The real X0(x, y) and the imaginary Y0(x, y) parts of the electric
field E0 and the carrier density N0(x, y) are the stationary axially symmetric LS pro-
files. They correspond to the time-independent solutions of (1) and (2) with τ = 0.
The coefficients a and b are calculated numerically using the relaxation method in
two transverse dimensions.

From the expression of the threshold associated with the drift instability (8), we
see that the product ητ is not unity as in the case of the generalized Swift-Hohenberg
equation, but depends strongly on the feedback phase ϕ and carrier relaxation rate γ .
We plot in Fig. 9, the threshold η associated with the drift instability as a function of
the phase of the delay feedback. The numbers on top of the different curves are the
different values of the carrier decay rate γ . The carrier relaxation rate strongly affects
the threshold associated with the drift instability as shown in Fig. 9. When we increase
the carrier relaxation rate, the threshold associated with the moving LS gets higher. In
addition, we see from Fig. 9 that, whatever the value of the carrier relaxation rate, the
drift instability occurs only within the subinterval (ϕmin − π/2, ϕmin + π/2) of the
interval (ϕmin −π, ϕmin +π), where ϕmin = − arctan a is the delay feedback phase,
corresponding to the lowest critical feedback rate ηmin

0 = (1 + γ −1b)/(τ
√

1 + a2).
Note that η0 increases very rapidly when approaching the boundaries of these subin-
tervals. In the limit of fast carrier response, γ  1, and for zero feedback phase,
ϕ = 0, we recover the expression (8), the threshold formula ητ = 1 that has been
obtained in both variational Swift-Hohenberg equation [77], and in a modified non-
variational one [80]. Note that at γ → ∞, a �= 0, and ϕ = − arctan a the critical
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Fig. 10 Q factor as a function of the feedback phase ϕ , for different values of the carrier relaxation
rate γ . The Q factor describes the growth rate of the LS velocity with the square root of the deviation
from the critical feedback rate. Parameters are μ = 1.0, θ = −2.0, C = 0.45, α = 5.0, τ = 100,
d = 0.052, Ei = 0.8, I = 2. The values of the parameter γ are shown in the figure. Redrawn from
[99]

feedback rate appears to be smaller than that obtained for the real Swift-Hohenberg
equation, ητ = (1 + a2)

−1/2
< 1.

To estimate the velocity of moving localized structure, we expand the slowly
moving localized solution in the limit of a small velocity v. The detailed calculations
can be found in [99]. The velocity v of LSs then obeys

v = √
δηQ with Q = (1/τ)

√
q/(rη). (11)

The factor Q is important since it determines how fast the LS speed increases with
the square root of the distance from the critical feedback rate. The Q factor depends
on the delay feedback phase as shown Fig. 10. The δη denotes the deviation of the
feedback strength from the bifurcation point associated with the moving LS. The
coefficients r and q are q = a sin ϕ + c cos ϕ, and r = f sin ϕ + g cos ϕ + O(τ−1)

with f = 〈ψ†
1 , ∂xxx Y0〉 − 〈ψ†

2 , ∂xxx X0〉, h = 〈ψ†
3 , ∂xxx N0〉, g = 〈ψ†

1 , ∂xxx X0〉 +
〈ψ†

2 , ∂xxx Y0〉. The coefficients a and c are defined in (10).
Numerical simulations of the full model (1, 2) and the generalized Swift-

Hohenberg equation (5) agree with the above theoretical predictions. Indeed, when
we choose parameter values such as the system operates above the threshold asso-
ciated with the motion of LS, a single-peaked LS exhibits a regular motion in the
transverse plane of the cavity as shown in Fig. 8 (1-dimensional setting, (5)) and 11
(2-dimensional setting, (1) and (2)).

Note, however, that the motion of LS under the effects of delay feedback is not
always regular. It has been shown recently that LSs can exhibit a temporal chaos:
numerical simulations of a broad area VCSEL with saturable absorber subjected to
time-delayed optical feedback have shown evidence of complex temporal dynamics
of LSs [101]. This spatio-temporal chaos is localized in space. More recently, in the
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Fig. 11 Field intensity |E |2(top) and carrier density N (bottom) of a single peaked two-dimensional
moving cavity soliton at different times. Parameters are C = 0.45, θ = −2, α = 5, γ = 0.05,
d = 0.052, μ = 2, Ei = 0.8, τ = 200, η = 0.07, ϕ = 3.5. Results obtained using (1) and (2).
Redrawn from [98]

absence of delay feedback, it has been shown that the VCSEL with saturable absorber
without optical injection may exhibit LSs that drift and oscillate simultaneously, and
a chaotic behavior [102, 103].

7 Conclusions and Perspectives

In this chapter we have investigated the formation of localized structures in a Vertical-
Cavity Surface-Emitting Laser subject to optical injection. This device consists of
a medium size bottom-emitting InGaAs multiple quantum well VCSEL to remove,
as stated later. In this regime, we have described experimentally the formation of
stationary localized structures of light in the transverse section of this device. The
experimental part has been performed in an injection locked regime and in the absence
of delay feedback control. We have characterized LSs by drawing their bifurcation
diagram and performed a numerical simulation for the full model and the generalized
Swift-Hohenberg equation.

Then we have described the space-time dynamics of a VCSEL by adding the
delay feedback control in the modelling by adopting a mean-field approach. The
time-delayed feedback is modelled following a Rosanov-Lang-Kobayashi approach
[70, 71]. We have then analysed theoretically the effect of time delayed feedback from
an external mirror on the stability of transverse localized structures in a broad area
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VCSEL. We have derived a real order parameter equation of the Swift-Hohenberg
type with delay feedback. This analysis is only valid close the nascent optical bista-
bility and close to large wavelength pattern forming regime. In this double limit, we
have estimated the threshold associated with the drift-instability leading to the spon-
taneous motion of LS. Explicitly, the threshold is given by a simple formula ητ = 1.
We conclude that the condition under which transition from motionless LS to a mov-
ing one, depends only on the delay feedback η and the delay time τ and not on the
other dynamical parameters of the VCSEL system. This conclusion is valid for the
variational and nonvariational Swift-Hohenberg equations, and in reaction-diffusion
systems. However, in optics, the role of the phase is important because the intensity
and the phase of the light operate on the same time scale. We have investigated in
the last part of this chapter the role of the phase of the feedback on the mobility of
LS. We have shown that, depending on the phase of the feedback, it can have either
stabilizing or destabilizing effect on the LSs. In particular, when the interference
between the LS field and the feedback field is destructive, the LS can be destabi-
lized via a pitchfork bifurcation, where a branch of uniformly moving LS bifurcates
from the stationary one. We have calculated analytically the threshold value of the
feedback rate corresponding to this bifurcation and demonstrated that the faster the
carrier relaxation rate in the semiconductor medium, the lower the threshold of the
spontaneous drift instability induced by the feedback. This is a generic and robust
destabilization mechanism in one and two spatial dimensions settings and could be
applied to a large class of optical systems under time-delay control.

We have described spatially localized structures, and recent investigations have
shown that temporal localized structures have been found in fibre resonators [90,
104–108] and in VCSELS with a saturable absorber [109]. On the other hand, it has
been shown that the combinated influence of diffraction and chromatic dispersion
leads to the formation of three dimensional localized structures often called light
bullet [110–113]. We plan in the future to investigate the effect of delayed feedback
on the spontaneous motion of three dimensional light bullets.

In order to check our theoretical predictions, we also plan to investigate experi-
mentally the formation of moving LS in VCSELs. In addition, we will analyse the
role of local polarization dynamics in the formation of LSs in the transverse plane
of the VCSEL. This would allow us to study the spontaneous motion of vector LSs
with different polarizations under the effect of delayed feedback.
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Mathematical Study of Two-Patches
of Predator-Prey System with Unidirectional
Migration of Prey

Radouane Yafia and M.A. Aziz Alaoui

Abstract In this chapter we consider a model describing the dynamics of
predator-prey populations living in two patches. The two patches follow the Lotka-
Volterra type and are coupled through prey migration. Our purpose is to study the
effect of migration rate on the behavior of the coupled systems. We prove the posi-
tivity of solutions and find the upper and lower bounds with respect to the migration
rate of prey. Also, we show the stability/instability of the possible steady states and
we establish the global stability of the positive steady state by giving a candidate lya-
punov function. Some numerical simulations are provided to graphically demonstrate
the population dynamics of the system.

1 Introduction

Oneof the oldest andwell knownmathematicalmodelwhich describes the interaction
between two species predator and prey was introduced by Lotka [1] and Volterra [2],
known as Lotka-Volterra mathematical model. The model was given by a system of
two differential equations as follows:
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⎧⎨
⎩

dx
dt = ax − byx

dy
dt = −cy + dxy

(1)

where x(t) and y(t) are the total numbers of prey and predator at time t , respectively,
the constants a, b, c and d are nonnegative and the rate c

d is related to the conversion
of prey biomass into predator biomass. One weakness of the above model is the
exponential growth of the prey in the absence of predator. This is not the case as
while the prey continues to grow, space and resources will run out eventually, thereby
limiting the growth of the prey population. To handle this case, the predator-prey
system (1) can be modified to:

⎧⎨
⎩

dx
dt = ax − f x2 − byx

dy
dt = −cy + dxy

(2)

In the last years, this model have been studied in various forms by many authors (see,
[3–5]) by changing the functional response, by taking into account the effect of diffu-
sion terms or including the time delay in order to better understanding the dynamics
of population interaction or studying the model with different form of functional
response (see, [6–10]. Other authors consider some models which describe the inter-
action between two patches or more by taking into account the effect of the migration
of one or two species from one patch to another (see, [11–16] and references therein).
The analysis of these models focuses on the existence of possible steady states and
their qualitative behavior: local and global stability/instability, bifurcation and when
the dynamics of the two interacting patches are synchronous and asynchronous.

In [17], Kuang et al. introduce a model in which a single specie disperses between
two patches of a heterogenous environment with barriers between patches and a
predator for which the dispersal between patches involve a barrier. The model is
given by a system of three ordinary differential equations, and the authors studied
the existence of steady states with local and global stability. Also, the uniform per-
sistence is proved and an example of Lotka-Volterra is given in order to prove that
the dispersion stabilizes the system when the dispersal rate is small and destabilizes
the system when this rate is increased.

In [18], the author introduced a two diffusively coupled predator prey populations.
The coupled system is composed of four differential equations that is modelling the
interaction of two identical patches inwhich dynamics are coupled through themigra-
tion of individuals of predator population only. This interaction between the predator
and prey populations takes the form given by Rosenzweig and MacArthur [19] in
which the prey population grows logistically and the predator has a Holling type II
functional response. It was shown by numerical simulations that oscillations syn-
chronize for very small migration rate and instability of synchronous oscillations for
intermediate migration rate and periodicity, quasi-periodicity, and chaotic attractors
with asynchronous dynamics. The existence of attractors in the form of equilibria or
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limit cycles in which one of the patches contains no prey for large predator migra-
tion rates was also proved. The qualitative behavior (stability/instability, numerical
simulations) of the possible steady state of this model are studied by Feng et al. [20].
In [21], Feng et al. consider the same model by taking into account the migration of
both prey and predator population and studied the stability/instability of the possible
steady states.

Recently, Quaglia et al. [22] considered a model of two patches coupled by the
migration of both species. The model given by two identical patch with the same
reproduction rate and different carrying capacities in each patch. The authors studied
the existence and stability of the possible equilibrium points.

At nowall the presented coupled patches of predator preymodels take into account
the migration of one species in one direction (from one patch to another patch only)
or in the two directions (mutual migration) and the migration of both species in one
direction or in two directions without considering the effect of themigrated (refuged)
population on the refuge patch.

In the current chapterwe consider two symmetric (identical) patch given byLotka-
Volterra system as follows (before migration):

⎧⎪⎪⎨
⎪⎪⎩

dxi
dt = axi (1 − xi ) − bxi yi

dyi
dt = cxi yi − dyi

i ∈ {1, 2}
(3)

In the next, we take into account the migration of the prey population from the first
patch to the second patch only (in one direction only) with a migration rate k and we
consider the contribution of the migrated (refuged) prey population in the growth of
the predator population of the refuge patch (second patch). The model is given by a
system of four ordinary differential equations as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt = ax1(1 − x1) − bx1y1 − kx1

dy1
dt = cx1y1 − dy1

dx2
dt = ax2(1 − x2) − bx2y2 + kx1

dy2
dt = c(x2 + kx1)y2 − dy2

(4)

The chapter is organized as follows. In Sects. 2 and 3 we prove the positivity and
boundedness of solutions. In Sects. 4 and 5 we show the existence of possible steady
states and their local and global stability, while in Sect. 6, we present some numerical
simulations to illustrate the theoretical results.



442 R. Yafia and M.A. Aziz Alaoui

2 Positivity

Consider now the uncoupled systems (3) which correspond to the case when k = 0.
By integrating from 0 to t , from the (3)1 and for any initial data xi0 > 0, i = 1, 2
and yi0 > 0, i = 1, 2, we have

xi (t) = xi0e
∫ t
0 (a(1−xi (s))−byi (s))ds > 0, i = 1, 2 (5)

From the (3)2, we have

yi (t) = yi0e
∫ t
0 (cxi (s)−d)ds > 0, i = 1, 2 (6)

Then we deduce that for k = 0 the uncoupled systems has a positive solution for any
positive initial data.

Let us now consider the case when the migration rate is positive (k > 0) which
corresponds to the coupled system (4). From (4)1 and (4)2, we have

x1(t) = x10e
∫ t
0 (a(1−x1(s))−by1(s)−k)ds > 0 (7)

and

y1(t) = y10e
∫ t
0 (cx1(s)−d)ds > 0

From (4)3,

x2(t) = x20e
∫ t
0 (a(1−x2(s))−by2(s))ds + k

∫ t

0
e
∫ t

s (a(1−x2(u))−by2(u))du x1(s)ds (8)

and from (7), we have x1(t) > 0, ∀t > 0. Then, we deduce that x2(t) > 0, ∀t > 0.

3 Boundedness

In this section we focus on the finding of the upper and lower bounds of the predator
and prey populations, These bounds will give us information about the extinction,
co-existence and exponential behavior of both species. The following comparison
argument will be employed in the proofs associated to the upper and lower bounds
of species.
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Consider the following differential equations

{ dxi
dt (t) = fi (t, xi (t)), i = 1, 2

xi (0) = xi0, i = 1, 2
(9)

where fi , i = 1, 2 are continuous functions on [0, T ] × R.

Proposition 1 Let x1 and x2 the solution of equations (9) with initial conditions
x1(0) = x10 and x2(0) = x20, respectively. Assume that ∂ f1

dx and ∂ f2
dx are continuous

on [0, T ] × R.
If f1(t, x) ≤ f2(t, x) on [0, T ] × R and the initial conditions verify x10 ≤ x20,

then the solutions x1 and x2 satisfy x1(t) ≤ x2(t) on [0, T ].
Theorem 1 Let X (t) = x1(t)+ x2(t) the total number of the prey population of the
two patches and X0 = x10 + x20, X (t) satisfies the following inequality

0 ≤ X (t) ≤
((

1

X0
− 1

2

)
e−at + 1

2

)−1

and

lim sup
t−→+∞

X (t) ≤ 2,∀t ∈]0,+∞[

for X0 < 2.

Proof Let X (t) = x1(t) + x2(t) the total number of the prey population of the two
patches. From (4)1 and (4)3 we have,

d X

dt
≤ a(x1 + x2) − a(x21 + x22 )

≤ a(x1 + x2) − a

2
(x1 + x2)

2

≤ aX (1 − X

2
)

As the following logistic equation

{
du
dt = au(1 − u

2 )

u(0) = u0
(10)

with solution

u(t) =
((

1

u0
− 1

2

)
e−at + 1

2

)−1
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From Proposition 1 and from the positivity of x1(t) and x2(t), we have

0 ≤ X (t) ≤
((

1

X0
− 1

2

)
e−at + 1

2

)−1

Then, for any initial conditions x10 and x20 satisfy X (0) = X0 = x10 + x20 < 2, we
get

lim sup
t−→+∞

X (t) ≤ 2,∀t ∈]0,+∞[

The following result gives us the boundedness of the predator population.

Theorem 2 Let Y (t) = y1(t) + y2(t) the total population of the predator specie of
the two patches. Then, we have

Y0e−dt ≤ Y (t) ≤
(

Y0 − 2ck

2c − d

)
e−(2c−d)t + 2ck

2c − d

and for 2c > d and for Y0 ≥ 2ck
2c−d we obtain

lim sup
t−→+∞

Y (t) ≤ 2ck

2c − d

where Y0 = y10 + y20.

Proof From the (4)2 and (4)4, we have

dY

dt
(t) = y1

dt
(t) + y2

dt
(t)

= c(x1y1 + x2y2) − d(y1 + y2) + ckx1
≥ −dY (t)

leading to
Y (t) ≥ Y0e−dt

As x1 ≤ X ≤ 2 and x2 ≤ X ≤ 2, we have

dY

dt
(t) ≤ (2c − d) Y (t) + 2ck

Let us consider the following equation

{
du
dt (t) = (2c − d) u(t) + 2ck

u(0) = u0
(11)
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By applying the variation of constant formula, we obtain

u(t) =
(

u0 − 2ck

2c − d

)
e−(2c−d)t + 2ck

2c − d

From Proposition 1, we have

Y (t) ≤
(

Y0 − 2ck

2c − d

)
e−(2c−d)t + 2ck

2c − d

As 2c > d and for Y0 ≥ 2ck
2c−d , we deduce that

lim sup
t−→+∞

Y (t) ≤ 2ck

2c − d

If k = 0, we have

lim sup
t−→+∞

Y (t) = 0

4 Steady States and Stability

4.1 Steady States

In this section we will determine the possible equilibrium points and we will study
their stability/instability with respect to the migration rate k (Table1).

The possible steady states are given by resolving the following equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx1
dt = ax1(1 − x1) − bx1y1 − kx1 = 0

dy1
dt = cx1y1 − dy1 = 0
dx2
dt = ax2(1 − x2) − bx2y2 + kx1 = 0

dy2
dt = c(x2 + kx1)y2 − dy2 = 0

(12)

Proposition 2 Under some conditions, system (4) has seven equilibrium points.
The following table summarize the existence of the steady states:
where D = a2 + am, D1 = a2 + 4ak d

c and m = k(1 − k
a ).

Proof The first steady state is trivial E0 = (x10, y10, x20, y20) = (0, 0, 0, 0).
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Table 1 Existence of possible steady states of system (4)

Equilibrium point Conditions of existence

E0 = (x10, y10, x20, y20) = (0, 0, 0, 0) No conditions

E1 = (x11, y11, x21, y21) = (0, 0, 1, 0) No conditions

E2 = (x12, y12, x22, y22) =
(
0, 0, d

c ,
a
(
1− d

c

)
b

)
c > d

E3 = (x13, y13, x23, y23) =
(
1 − k

a , 0, a+√
a2+am
2a , 0

)
a > k

E4 = (x14, y14, x24, y24) =
(
1 − k

a , 0, d−cm
c ,

ax24(1−x24)+m
bx24

)
cm < d <

cm + c
2a

(
a + √

D
)
and

a > k where
m = k(1 − k

a ) > 0 and
D = a2 + am > 0

E5 = (x15, y15, x25, y25) =
(

d
c , a

b

(
1 − k

a − d
c

)
,

a+√
D1

2a , 0
)

1 > k
a − d

c

E6 = (x16, y16, x26, y26) =(
d
c , a

b

(
1 − k

a − d
c

)
, d

c (1 − k),
ax26(1−x26)+k d

c
bx26

) k < 1 < c
d

(
a +

√
D1
2a

)
+ k

and 1 > k
a − d

c where

D1 = a2 + 4ak d
c > 0

If c > d, from (4)2 we obtain

y1 = 0 =⇒
⎧⎨
⎩

x1 = 0
or

x1 = 1 − k
a

In the case when x1 = 0, system (4) have two steady states

E1 = (x11, y11, x21, y21) = (0, 0, 1, 0)

and

E2 = (x12, y12, x22, y22) =
(
0, 0,

d

c
,

a
(
1 − d

c

)
b

)
.

In the case when x1 = 1 − k
a and if c > d and a > k, we have

{
ax2(1 − x2) − bx2y2 + m = 0

c(x2 + m)y2 − dy2 = 0
(13)

where m = k(1 − k
a ) > 0.
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From (13)2, if y2 = 0 the forth component of the equilibrium point is given by
resolving the second order equation in x2

ax2 − ax22 + m = 0

If D = a2 + am > 0 then x2 = −a+√
D

−2a < 0 or x2 = a+√
D

2a > 0.
Therefore, the third equilibrium point is as follows

E3 = (x13, y13, x23, y23) =
(
1 − k

a
, 0,

a + √
D

2a
, 0

)
.

From (13)2, if x24 = d−cm
c and d > cm, from the (13)1 the forth component of the

equilibrium point is given by

y24 = ax24(1 − x24) + m

bx24

To determine the region of nonnegativity of y24, let us consider the following second
order polynomial for x > 0:

− ax2 + ax + m = 0 (14)

which is nonnegative if 0 < x < a+√
D

2a . Then, if 0 < x24 < a+√
D

2a which is
satisfied if

cm < d < cm + c

2a

(
a + √

D
)

.

Then the steady state is given by

E4 = (x14, y14, x24, y24) =
(
1 − k

a
, 0,

d − cm

c
,

ax24(1 − x24) + m

bx24

)

From (3)2, we have x15 = d
c and from (3)1 we have y15 = a

b

(
1 − k

a − d
c

)
which is

positive if 1 > k
a − d

c .
From (3)3 and (3)4, we get

{
ax2(1 − x2) − bx2y2 + k d

c = 0
c(x2 + k d

c )y2 − dy2 = 0
(15)

from (15)2, we have y25 = 0 and from (15)1 and solving the following polynomial
for x > 0

− ax2 + ax + k
d

c
= 0 (16)
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we find

x25 = a + √
D1

2A

where D1 = a2 + 4ak d
c > 0.

Then, the sixth steady state is given as follows

E5 = (x15, y15, x25, y25) =
(

d

c
,

a

b

(
1 − k

a
− d

c

)
,

a + √
D1

2a
, 0

)

From (15)2, we have:

x26 = d

c
(1 − k)

which is positive if 1 > k and from (15)1 we have

y26 = ax26(1 − x26) + k d
c

bx26

As the last equilibrium point y26 is nonnegative if 0 < x26 < x25 which is equivalent
to

k < 1 <
c

d

(
a +

√
D1

2a

)
+ k

then the sixth steady state is:

E6 = (x16, y16, x26, y26) =
(

d

c
,

a

b

(
1 − k

a
− d

c

)
,

d

c
(1 − k),

ax26(1 − x26) + k d
c

bx26

)

Remark 1 E0 = (0, 0, 0, 0): Extinction of both the predator and prey in each of the
two patches (i.e. if there is no prey there is no predator, in this case there is no
migration k = 0).

E1 = (0, 0, 1, 0): Extinction of both the predator and the prey in the first patch and
persistence of the prey and extinction of the predator in the second patch (i.e. if there
is no predation there is a persistence in prey and the prey will grow in the absence
of the predator population. As there is extinction of the prey in the first patch there
is no migration of prey population from the first patch to the second patch k = 0).

E2 =
(
0, 0, d

c ,
a
(
1− d

c

)
b

)
: Extinction of both the predator and prey in the first

patch and there is no migration to the second patch and persistence of both the
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predator and prey in the second patch for the value rate of numerical response bigger
than the mortality rate of the predator in the second patch.

E3 =
(
1 − k

a , 0, a+√
a2+am
2a , 0

)
: Extinction of the predator and persistence of the

prey of both the patches. In this case there is a migration of the prey population
from the first patch to the second patch when the migration rate is smaller than the
production rate of the prey a.

E4 =
(
1 − k

a , 0, d−cm
c ,

ax24(1−x24)+m
bx24

)
: Persistence of the prey and extinction of

the predator in the first patch and persistence of both the predator and prey in the
second patch and there is a migration of the prey population from the first patch to
the second patch.

E5 =
(

d
c , a

b

(
1 − k

a − d
c

)
,

a+√
D1

2a , 0
)
: Persistence of both the predator and prey

in the first patch and persistence of the prey and extinction of the predator in the
second patch and there is a migration of the prey population from the first patch to
the second patch.

E6 =
(

d
c , a

b

(
1 − k

a − d
c

)
, d

c (1 − k),
ax26(1−x26)+k d

c
bx26

)
: Persistence of both the

predator and prey in each of the two patches and there is a migration of the prey
population from the first patch to the second patch.

4.2 Local Stability

Definition 1 Let Pr1(x1, y1, x2, y2) = (x1, y1) the projection of the point (x1, y1,
x2, y2) on the (4)1-(4)2 describing the first patch (x1, y1) and Pr2(x1, y1, x2, y2) =
(x2, y2) the projection of the point (x1, y1, x2, y2) on the (4)3-(4)4 describing the
second patch (x2, y2).

To study the local stability of the possible equilibriumpoints, one needs to linearize
system (3) around the concerned steady state.

Theorem 3 Consider that E∗ = (
x∗
1 , y∗

1 , x∗
2 , y∗

2

)
is a steady state of system (4). The

stability of E∗ is deduced from the stability of Pr1E∗ = (
x∗
1 , y∗

1

)
and Pr2E∗ =(

x∗
2 , y∗

2

)
.

(1) If Pr1E∗ and Pr2E∗ are asymptotically stable, then E∗ is also asymptotically
stable.

(2) If Pr1E∗ or Pr2E∗ is unstable, then E∗ is also unstable

Proof By linearizing around the steady state E∗ = (
x∗
1 , y∗

1 , x∗
2 , y∗

2

)
we obtain the

following linearized system:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx1
dt = (

a(1 − x∗
1 ) − by∗

1 − ax∗
1 − k

)
x1 − bx∗

1 y1
dy1
dt = cy∗

1 x1 + (
cx∗

1 − d
)

y1
dx2
dt = (

a(1 − x∗
2 ) − by∗

2 − ax∗
2

)
x2 − bx∗

2 y2 + kx1
dy2
dt = cky∗

2 x1 + cky∗
2 x2 + (

c(kx∗
1 + x∗

2 ) − d
)

y2

(17)

and the jacobian matrix is given by

J (E∗) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 − k −bx∗
1 0 0

cy∗
1 cx∗

1 − d 0 0

k 0 A2 −bx∗
2

cky∗
2 0 cy∗

2 c(kx∗
1 + x∗

2 ) − d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

Ai = a(1 − x∗
i ) − by∗

i − ax∗
i = a(1 − 2x∗

i ) − by∗
i , i = 1, 2

Then

det(λI4 − J (E∗)) = det

⎛
⎝λI2 − M1 02

M λI2 − M2

⎞
⎠

where

M1 =
⎛
⎝ A1 − k −bx∗

1

cy∗
1 cx∗

1 − d

⎞
⎠ , M2 =

⎛
⎝ A2 −bx∗

2

cy∗
2 c(kx∗

1 + x∗
2 ) − d

⎞
⎠ , M =

⎛
⎝ k 0

cky∗
2 0

⎞
⎠

and I2 is the 2 × 2 unit matrix and 02 is the 2 × 2 vanishing matrix.
From the determinant property, we have

det(λI4 − J (E∗)) = det (λI2 − M1) × (λI2 − M2) (18)

Then, det (λI2 − M1) = 0 is the characteristic equation associated to Pr1E∗ and
det (λI2 − M2) = 0 is the characteristic equation associated to Pr2E∗.

Therefore, we deduce the result.

Theorem 4 (Stability of E0)
The equilibrium point E0 = (0, 0, 0, 0) is unstable.

Proof The value of A2 at E0 is A2 = 0 and Pr2(E0) = (0, 0). From Theorem 3,
the stability of Pr2(E0) is determined from the following associated characteristic
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equations

det (λI2 − M2) =
∣∣∣∣∣∣
λ − a 0

0 λ + d

∣∣∣∣∣∣
= (λ − a)(λ + d)

= 0

As λ1 = a > 0 and λ2 = −d < 0, then Pr1(E0) is unstable. Therefore, from
Theorem 3 E0 is unstable.

Remark 2 If we consider system (4) with vanishing migration (i.e. there is no migra-
tion of the prey population from the first patch to the second patch: k = 0), we obtain
system (3). Then Pr1(E0) = Pr2(E0) = (0, 0) is a equilibrium point of system (3)
and the stability of E0 can be deduced from the stability of the trivial equilibrium
solution (0, 0) of (3). Therefore, the migration rate does not have any effect on the
stability of the equilibrium solution E0.

Theorem 5 (Stability of E1)
The equilibrium point E1 = (0, 0, 1, 0) is asymptotically stable if a < k and

unstable if a > k.

Proof From the expression of A1 and A2 at E1, we have A1 = 0 and A2 = −a.
As det (λI2 − M1) = (λ − a + k)(λ + d) = 0. Therefore, λ1 = a − k and

λ2 = −d < 0 and we deduce that Pr1(E1) = (0, 0) is asymptotically stable if
a < k and unstable if a > k.

From det (λI2 − M2) = (λ + a)(λ + d) = 0, we get that Pr2(E1) = (1, 0) is
asymptotically stable.

FromTheorem 3, we deduce that E1 is asymptotically stable if a < k and unstable
if a > k.

Remark 3 Pr1(E1) = (0, 0) is a trivial equilibrium solution of the first patch when
k = 0 and Pr2(E1) = (1, 0) is an equilibrium solution of the second patch and the
stability of E1 depends on the migration rate k

Theorem 6 (Stability of E2)

Suppose c > d, the equilibrium point E2 =
(
0, 0, d

c ,
a
(
1− d

c

)
b

)
is asymptotically

stable if a < k and unstable if a > k.

Proof As Pr1(E2) = Pr1(E1) = (0, 0), A1 = 0 and from the proof of Theorem 5,
we have Pr1(E1) = (0, 0) is asymptotically stable if a < k and unstable if a > k.

From the expression of A2 at E2, we have A2 = − ad
c < 0 and the characteristic

equation associated to Pr1(E2) =
(

d
c ,

a
(
1− d

c

)
b

)
is given by
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det (λI2 − M1) = λ2 + λ
ad

c
+ ad

(
1 − d

c

)
= 0

As Δ = ( ad
c

)2 − 4ad
(
1 − d

c

)
, if Δ > 0 we get:

λ1 = − ad
c + √

Δ

2
and λ2 = − ad

c − √
Δ

2
< 0

From the expression of λ1 and as c > d (condition of the existence of E2), we have
λ1 < 0. Then, Pr2(E2) is stable asymptotically.

If Δ ≤ 0 we get:

λ1 = − ad
c + i

√−Δ

2
and λ2 = − ad

c − i
√−Δ

2
< 0

and Re(λ1) = Re(λ2) = − ad
c < 0. Then, Pr2(E2) is stable asymptotically.

From Theorem 3, we deduce that E2 =
(
0, 0, d

c ,
a
(
1− d

c

)
b

)
is asymptotically

stable if a < k and unstable if a > k.

Remark 4 Pr1(E2) = (0, 0) is a trivial equilibrium solution of the first patch when

k = 0 and Pr2(E2) =
(

d
c ,

a
(
1− d

c

)
b

)
is not an equilibrium solution of system (3).

Then, the stability of E2 depends on the migration rate k and can be deduced from
the stability of Pr1(E2).

Let
(H1): a( d

c − 1) < k

(H2): c(m + x23) < d, where m = k
(
1 − k

a

)
> 0

Theorem 7 (Stability of E3)
Suppose a > k.
If (H1) and (H2) are satisfied, then the equilibrium solution E3 =(

1 − k
a , 0, a+√

a2+am
2a , 0

)
is asymptotically stable.

If (H1) or (H2) are not satisfied, then the equilibrium solution E3 =(
1 − k

a , 0, a+√
a2+am
2a , 0

)
is unstable.

Proof From the expression of A1 at E3, the characteristic equation associated to
Pr1E3 = (

1 − k
a , 0

)
is as follows:

det (λI2 − M1) = (λ − k + a)

(
λ − c

(
1 − k

a

)
+ d

)
= 0
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and the corresponding eigenvalues are given by λ1 = k − a and λ2 = c
(
1 − k

a

)− d.
As a > k, we have λ1 < 0 and if (H1) is satisfied, then Pr1E3 is asymptotically
stable and if not satisfied, Pr1E3 is unstable.

From the expression of x23 and by computation at E3, we have

A2 = − k

x23

(
1 − k

a

)
− ax23 < 0

and the associated characteristic equation to Pr2E3 =
(

a+√
a2+am
2a , 0

)
is:

det (λI2 − M2) = (λ − A2)(λ − c(m + x23) + d) = 0

The corresponding eigenvalues are

λ1 = A2 < 0 and λ2 = c(m + x23) − d

If (H2) is satisfied, we obtain that λ2 < 0. Then, Pr2E3 is asymptotically stable and
if (H2) is not satisfied, Pr2E3 is unstable.

From Theorem 3, we deduce that, the equilibrium solution E3 is asymptotically
stable if (H1) and (H2) are satisfied and unstable if (H1) or (H2) is not satisfied.

Theorem 8 (Stability of E4)

Suppose a > k and cm < d < cm + c
2a

(
a + √

D
)

, where D = a2 + am > 0.

If (H1) is satisfied, then the equilibrium solution E4 =
(
1 − k

a , 0, d−cm
c ,

ax24(1−x24)+m
bx24

)
is asymptotically stable.

If (H1) is not satisfied, then the equilibrium solution E4 =
(
1 − k

a , 0, d−cm
c ,

ax24(1−x24)+m
bx24

)
is unstable.

Proof As Pr1(E4) = Pr1(E3) = (
1 − k

a , 0
)
and from the proof of Theorem 7, we

have, if (H1) is satisfied. Then Pr1E4 is asymptotically stable and if not satisfied,
Pr1E4 is unstable.

As Pr2(E4) =
(

d−cm
c ,

ax24(1−x24)+m
bx24

)
, then the associated characteristic equa-

tion is given by:

det (λI2 − M2) = λ2 − λA2 + cbx24y24 = 0

By calculations, we obtain the value of A2 at E4, that is

A2 = −m − ax224
x24

< 0

If Δ1 = A2
2 − 4cbx24y24 > 0, the corresponding eigenvalues are

λ1 = A2 + √
Δ1

2
< 0 and λ2 = A2 − √

Δ1

2
< 0.
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Then, Pr2(E4) is asymptotically stable.
If Δ ≤ 0, the corresponding eigenvalues are

λ1 = A2 + i
√−Δ1

2
< 0 and λ2 = A2 − i

√−Δ1

2
< 0.

and Re(λ1) = Re(λ2) = A2
2 < 0.

Then, Pr2(E4) is asymptotically stable.
From Theorem 3, we deduce that the equilibrium solution E4 is asymptotically

stable if (H1) is satisfied and unstable if (H1) is not satisfied.

Let:
(H3): k < c

2a (a + √
D1) + d, where D1 = a2 + 4ak d

c > 0.

Theorem 9 (Stability of E5)
Suppose that 1 > k

a − d
c .

E5 =
(

d
c , a

b

(
1 − k

a − d
c

)
,

a+√
D1

2a , 0
)

is asymptotically stable if (H3) is satisfied

and unstable if (H3) is not satisfied.

Proof From the expression of E5, we have Pr1(E5) = ( d
c , a

b

(
1 − k

a − d
c

))
and the

value of A1 at E5 is A1 = k − ax15 and the associated characteristic equation is
given by:

det (λI2 − M1) = λ2 + λax15 + cbx15y15

By the same method as in the proof of Theorem 8, we find that the real part of the
corresponding eigenvalues is negative and Pr1(E5) is asymptotically stable.

From the expressions of E5 and A2 at E5, we have Pr2(E5) =
(

a+√
D1

2a , 0
)
and

A2 = − kd
cx26

− ax26 < 0.
The associated characteristic equation is

det (λI2 − M2) = (λ − A2)

(
λ − c

(
kd

c
− x25

)
+ d

)
= 0

and the corresponding eigenvalues are:

λ1 = A2 < 0 and λ2 = c

(
kd

c
− x25

)
− d.

Then, λ2 < 0 if (H3) is satisfied and Pr2(E5) is asymptotically stable and unstable
if (H3) is not satisfied.

Therefore, from Theorem 3 we deduce the result.

Theorem 10 (Stability of E6)

Suppose k < 1 < c
d

(
a +

√
D1
2a

)
+ k and 1 > k

a − d
c .
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Then, the equilibrium solution E6 =
(

d
c , a

b

(
1 − k

a − d
c

)
, d

c (1 − k),
ax26(1−x26)+k d

c
bx26

)
is

asymptotically stable.

Proof As Pr1E6 = Pr1E5 = ( d
c , a

b

(
1 − k

a − d
c

))
, from the proof of Theorem 9,

we get Pr1E6 is asymptotically stable.

From the expression of E6, we have Pr2E6 =
(

d
c (1 − k),

ax26(1−x26)+k d
c

bx26

)
and

A2 at E6 is

A2 = kd

cx26
− ax26 < 0

det (λI2 − M2) = λ2 − λA2 + cbx26y26

By the same method as in the proof of Theorem 8, we find that the real part of the
corresponding eigenvalues is negative and Pr2(E6) is asymptotically stable.

From Theorem 3, we find that E6 is asymptotically stable.

5 Global Stability

In this section we try to study the global stability of the a possible steady state
E∗ = (

x∗
1 , y∗

1 , x∗
2 , y∗

2

)
of system (4).

Let Vi the Lyapunov function associated to the patch i with i = 1, 2 defined by:

Vi (xi , yi ) = (
xi − x∗

i

) − d

c
ln

(
xi

x∗
i

)
+ b

c

{(
yi − y∗

i

) − y∗
i ln

(
yi

y∗
i

)}
, i = 1, 2

This functions are defined and continuous on I nt (R2+).
We are interested in constructing Lyapunov function for the coupled system (4).

Theorem 11 Let

V (x1, y1, x2, y2) =
2∑

i=1

Vi (xi , yi )

For a > 0 and k sufficientlly small, the steady state E∗ = (
x∗
1 , y∗

1 , x∗
2 , y∗

2

)
is globally

asymptotically stable.

Proof The proof is based on a positive definite Lyapunov function. It can be easily
verified that the function is zero at the equilibrium point E∗ = (

x∗
1 , y∗

1 , x∗
2 , y∗

2

)
and is

positive for all other positive values x1, y1, x2 and y2 and thus, E∗ = (
x∗
1 , y∗

1 , x∗
2 , y∗

2

)
is the global minimum of V .
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Differentiating Vi , i = 1, 2 along (4) gives:

V̇1(x1, y1) = ẋ1
x∗
1
(x1 − x∗

1 ) + b

c

ẏ1
y∗
1
(y1 − y∗

1 )

= −a(x1 − x∗
1 )

2

and

V̇2(x2, y2) = ẋ2
x∗
2

(x2 − x∗
2 ) + b

c

ẏ2
y∗
2

(y2 − y∗
2 )

= −a(x2 − x∗
2 )2 + k

(
x1
x2

− x∗
1

x∗
2

)
(x2 − x∗

2 ) + bk(x1 − x∗
1 )(y2 − y∗

2 )

= −a(x2 − x∗
2 )2 + kx∗

1

(
x1
x∗
1

− x2
x∗
2

+ 1 − x1x∗
2

x∗
1 x2

)
+ bk(x1 − x∗

1 )(y2 − y∗
2 )

Let G(xi ) = − xi
x∗

i
+ ln

(
xi
x∗

i

)
, i = 1, 2. By using 1 − x + ln(x) ≤ 0 for x > 0 and

equality holding if x = 1 we have

G(x2) − G(x1) + 1 − x1x∗
2

x∗
1 x2

+ ln

(
x1x∗

2

x∗
1 x2

)
≤ G(x2) − G(x1)

and

V̇ (x1, y1, x2, y2) = −a(x1 − x∗
1 )2 − a(x2 − x∗

2 )2 + kx∗
1

(
x1
x∗
1

− x2
x∗
2

+ 1 − x1x∗
2

x∗
1 x2

)

+bk(x1 − x∗
1 )(y2 − y∗

2 )

= −a(x1 − x∗
1 )2 − a(x2 − x∗

2 )2 + kx∗
1

(
G(x2) − G(x1) + 1 − x1x∗

2

x∗
1 x2

+ ln

(
x1x∗

2

x∗
1 x2

))

+bk(x1 − x∗
1 )(y2 − y∗

2 )

≤ −a(x1 − x∗
1 )2 − a(x2 − x∗

2 )2 + kx∗
1 (G(x2) − G(x1)) + bk(x1 − x∗

1 )(y2 − y∗
2 )

As the solutions of system (4) are bounded and a > 0 and k > 0 is sufficiently small,
we deduce that V̇ ≤ 0 and V̇ = 0 if and only if xi = x∗

i and yi = y∗
i , i = 1, 2. By

the classical Lyapunov theory, E∗ is globally asymptotically stable.
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6 Numerical Simulations

In this section, via Matlab software and by using ode45 discretization we give some
numerical simulations in order to illustrate the theoretical results presented in the
previous sections (Figs. 1, 2, 3, 4, 5, 6, 7, 8).
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Fig. 1 Identification of solutions of the two patches with a vanishing migration rate k = 0
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Fig. 2 Stability of E1 with the following parameters values a = 2, b = 3, c = 2, d = 0.5 and
k = 0.5
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Fig. 3 Stability of E2 with the following parameters values a = 2, b = 3, c = 2, d = 0.5 and
k = 4
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Fig. 4 Stability of E3 with the following parameters values a = 2, b = 3, c = 2, d = 4 and
k = 1.5
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Hysteretic Nonlinearity in Inverted
Pendulum Problem
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M. Semenov

Abstract This work is dedicated to the problem of inverted pendulum under
hysteretic nonlinearity in the form of backlash in the suspension point. We present the
results for various motion of the suspension point, namely, the vertical and horizontal
motions. We consider the mathematical model of inverted pendulum with vertically
oscillating suspension and in the frame of presented model the explicit stability cri-
teria for the linearized equations of motion are found. Dependencies between initial
conditions and driven parameters, that provide periodic oscillations of the pendulum,
are obtained. In the next step we consider the mathematical model of inverted pendu-
lum under state feedback control (horizontal motion of suspension). Analytic results
for the stability criteria as well as for the solution of linearized equation are observed
and analyzed. The theorems that determine stabilization of the considered system
are formulated and discussed together with the question on the optimal control. We
also investigate the elastic inverted pendulum with backlash in the suspension point
(horizontal motion). The problem of stabilization together with an optimization prob-
lem for such a system is considered. Algorithm (based on the bionic model) which
provides the effective procedure for finding of optimal parameters is presented and
applied to considered system. Phase portraits and dynamics of the Lyapunov function
are also presented and discussed.
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1 Introduction

The problem of inverted pendulum has a long history [17, 18, 45] and remains
relevant even in the present days (see, e.g., [2, 6–8, 15, 24, 28, 30, 34, 38, 40–42,
47, 49, 51] and related references). As is well known the model of inverted pendulum
plays a central role in the control theory [1, 5, 6, 11, 16, 19, 27, 36, 47, 49]. It is
well established benchmark problem that provides many challenging problems to
control design. Because of their nonlinear nature pendulums have maintained their
usefulness and they are now used to illustrate many of the ideas emerging in the
field of nonlinear control [3]. Typical examples are feedback stabilization, variable
structure control, passivity based control, back-stepping and forwarding, nonlinear
observers, friction compensation, and nonlinear model reduction. The challenges of
control made the inverted pendulum systems a classic tools in control laboratories.
Namely, it should be noted that although a lot of control algorithm are researched in
the systems control design, Proportional-Integral-Derivative (PID) controller is the
most widely used controller structure in the realization of a control system [47]. The
advantages of PID controller, which have greatly contributed to its wide acceptance,
are its simplicity and sufficient ability to solve many practical control problems.

According to control purposes of the inverted pendulum, the control of inverted
pendulum can be divided into three aspects. The first aspect which is widely
researched is the swing-up control of inverted pendulum [11, 27, 36].1 Interest-
ing and important results on the time optimal control of inverted pendulum were
obtained in [11, 36]. In particular, in [36] the optimal transients (taking into account
the cylindrical character of the states space of the system under control) were built for
different values of the parameters and constraints on the control torque. The second
aspect is the stabilization of the inverted pendulum [4, 10]. The third aspect is the
tracking control of the inverted pendulum [9]. In practice, stabilization and tracking
control are more useful for application.

Such a mechanical system can be found in various field of technical sciences,
from robotics to cosmic technologies. E.g., the stabilization of inverted pendulum is
considered in the problem of missile pointing because the engine of missile is placed
lower than the center of mass and such a fact leads to aerodynamical unstability.
Similar problem is solved in the self-balancing transport device (the so-called seg-
way). Also the model of the inverted pendulum (especially, under various kinds of
control of the motion of the suspension point) is widely used in the various fields of
physics [43], applied mathematics [49], engineer sciences [23, 40–42, 44], neuro-
science [50], economics [39] and others.

The model of inverted pendulum with oscillating suspension point (see panel a
in Fig. 1) was studied in detail by Kapitza [17, 18]. Let us recall that the equation of

1The one-dimensional swinging inverted pendulum with two degrees of freedom is a popular demon-
stration of using feedback control to stabilize an open-loop unstable system. Since the system is
inherently nonlinear, it has been using extensively by the control engineers to verify a modern
control theory. In this system, an inverted pendulum is attached to a cart equipped with a motor that
drives it along a horizontal track [14].
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motion of pendulum has the form:

φ̈ − 1

l
[g + f̈ (t)] sin φ = 0 (1)

where φ is the angle of vertical deviation of the pendulum, l is the pendulum’s length,
g is the gravitational acceleration and f (t) is the law of motion of the suspension
point (of course, this equation should be considered together with the corresponding
initial conditions). In the following consideration we will use this equation as primal.

As is known, if the motion of suspension point is of harmonic character then the
(1) reduces to the Mathieu equation, studied in detail, e.g., in [26].

In order to make an adequately description of the dynamics of real physical and
mechanical systems, it is necessary to take into account the effects of hysteretic nature
such as “backlash”, “stops” etc. [32]. The mathematical models of such nonlinearities
according to the classical patterns of Krasnosel’skii and Pokrovskii [21], reduce
to operators that are treated as converters in an appropriate function spaces. The
dynamics of such converters are described by the relation of “input-state” and “state-
output”.

Backlash in the suspension point is a kind of a hysteretic nonlinearity. The hys-
teretic phenomenons (especially in the form of control parameters) play an impor-
tant role in such a fields as physics, chemistry, biology, economics etc. It should
also be pointed out that the hysteretic phenomenons are insufficiently known in our
days. This fact leads to an interesting problem on the presence of a backlash in the
suspension point of a pendulum.

As is known, most of the real physical and technical systems contain a various
kind of parts that can be represented as a cylinder with a piston [32]. Inevitably, the
backlashes appear in such systems during its long operation due to “aging” of the
materials. As was mentioned above, such backlashes are of hysteretic nature and the
analysis of such nonlinearities is quiet important and actual problem. In this work, we
investigate various aspects of hysteretic control in the problem of inverted pendulum
(for various forms of motion of the suspension point). More specific, we investigate
the dynamical features of such a system depending on the control parameters. Let
us note also that the system under consideration can be considered as a successful
model for a real mechanical system with a hysteretic type of nonlinearity.

This work is organized in the following way. In Sect. 2 we consider the verti-
cal motion of the suspension point of inverted pendulum. Namely, in Sect. 2.1 we
construct the mathematical model of the inverted pendulum under hysteretic con-
trol. Section 2.2 is dedicated to the problem of stability of the linearized equation
of motion. In particular, in this section the monodromy matrix and the stability
condition for inverted pendulum under hysteretic control are found in the explicit
form. In Sect. 2.3 the stability zones of the presented system are analyzed in detail.
Section 2.4 is dedicated to the analysis of the periodic solutions for the system under
consideration taking into account that the hysteretic control takes place. In Sect. 3
we consider the horizontal motion of the suspension point of inverted pendulum. In
Sect. 3.1 we consider a mathematical model of this system. In Sect. 3.2 we consider
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the backlash as a hysteretic nonlinearity using operator technique of Krasnosel’skii
and Pokrovskii.2 In Sect. 3.3 the dynamical characteristics of the system under con-
sideration are presented in the explicit form. Namely, the expression for stability
zones of the system under consideration is obtained and analyzed. In this section we
also consider the dissipative motion of the inverted pendulum. Corresponding theo-
rem is formulated and proved. Section 3.4 is dedicated to the problem of non-ideal
relay in feedback. Here we formulate and prove the theorem on Lyapunov stability
of the system with non-ideal relay in feedback. In Sect. 3.5 we consider the question
on optimal control for the system under consideration. In this section we discuss the
theorem on the optimal control of pendulum. In Sect. 4 we consider the problem of
elastic inverted pendulum with hysteretic nonlinearity in the form of a backlash in
suspension point. In Sect. 4.1 we consider the general view of elastic inverted pen-
dulum together with the operator technique for hysteretic nonlinearities. Also in this
section we obtain the equation of motion of the elastic pendulum with a hysteretic
nonlinearity in the suspension point. Section 4.2 is dedicated to numerical solution
of the obtained equations (we use the difference scheme). In Sect. 4.3 we analyze
the problem of optimization for the system under consideration. The numerical real-
ization of optimization procedure is made using the so-called bionic algorithm. In
Sect. 4.4 the results of numerical simulations are discussed and analyzed. In the last
section the main results of the presented work are summarized.

2 Inverted Pendulum Under Hysteretic Nonlinearity:
Vertical Oscillation of Suspension

In this section we describe the inverted pendulum under hysteretic nonlinearity in
the form of backlash in vertically oscillating suspension point [42].

2.1 Mathematical Model

Let us consider a system where the base of the pendulum is a physical system (P, S)

formed by a cylinder of length H and the piston P .3 Both the cylinder and piston
can move in the direction of the vertical axis as it is shown in panel b of the Fig. 1.

We determine the piston’s position by the coordinate f (t) and the cylinder’s
position by coordinate υ(t). Let us assume also that the “leading” element in the

2Here we would like to note that in three considered cases we introduce the mathematical descrip-
tion of backlash in the ways that are comfortable to use in the concrete case. However all these
descriptions are based on the operator technique with small variations that are presented in the
corresponding sections.
3Here we would like to note that both of the cylinder and piston are ideal, absolutely rigid and can
move along the y-axis in the infinite ranges.
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Fig. 1 Geometry of the
problem. Panel a General
view of the inverted
pendulum. Panel b The
suspension point (cylinder
and piston)

(a) (b)

system (P, S) is a cylinder P . In this assumption the system (P, S) can be considered
as a converter Γ with the input signal f (t) (piston’s position) and the output signal
υ(t) (cylinder’s position). Such a converter is called backlash. The set of its possible
states is f (t) ≤ υ(t) ≤ f (t) + H (−∞ < f (t) < ∞). The cylinder’s position υ(t)
at t > t0 is defined by υ(t) = Γ [t0, υ(t0)] f (t), where Γ [t0, υ(t0)] is the operator
defined for each υ0 = υ(t0) on the set of continuous inputs f (t) (t > t0) for which
υ0 − H < f (t) < υ0 [21].

We assume that the piston’s acceleration periodically changes from −aω2 to aω2

with the frequency ω. This assumption consists in the fact that the linearized equation
of motion of such a pendulum can be written in the form4:

φ̈ − 1

l
[g + aω2G(t, H)w(t)]φ = 0,

w(t) = −sign[sin (ωt)],

φ(0) = φ10, φ̇(0) = φ20,

(2)

where sign(z) is the usual signum function, aω2G(t, H)w(t) is the acceleration of
the suspension point and

G(t, H) =
{

0, t ∈ (t∗, t∗ + Δt),
1, t out of (t∗, t∗ + Δt),

where t∗ are the moments after which the acceleration’s sign change takes place,

Δt =
√

2H
aω2 is the time for which the piston passes through the cylinder.

4It should be pointed out that such a periodic behavior of the piston’s acceleration (i.e., the fact that
the acceleration of the piston changes from −aω2 to aω2) is an assumption of the model presented
in this paper. Such a model allows us to obtain some analytical results (the explicit conditions for
the stability zones). Also, the numerical simulations are most effectively in the frame of this model.
Moreover, such a model of the piston’s behavior most effectively and adequately describes the
dynamics of the parts of real technical devices.
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2.2 Stability of Linearized Equation

Let we pass to dimensionless units in (2) using the following change:

x ≡ φ, τ = ωt, k = g

lω2 , s = a

l
, Δτ =

√
2H

sl
.

As a result, we obtain an equation similar to Meissner equation [26], but with the
negative coefficients and hysteretic nonlinearity:

ẍ − [k − sG(τ, H)sign(sin τ)]x = 0,

G(τ, H) =
{

0, τ ∈ (τ ∗, τ ∗ + Δτ),

1, τ out of (τ ∗, τ ∗ + Δτ),

x(0) = x10, ẋ(0) = x20,

(3)

We can write the (3) in the form of an equivalent system:

{
ẋ1 = x2,

ẋ2 = p(τ )x1,

x1(0) = x10, x2(0) = x20.

(4)

The matrix of this system has the form:

P(τ ) =
(

0 1
p(τ ) 0

)
,

where p(τ ) = k − sG(τ, H)sign(sin τ). In the frame of our assumptions the matrix
P(τ ) is a periodic function of time with the period 2π , namely: P(τ + 2π) ≡ P(τ ).

Let we say that the (3) is stable (or unstable) according to Lagrange if the system (4)
is stable (or unstable, respectively). It means, that all solutions x(τ ) of the stable (3)
are bounded in [τ0,∞) together with the derivatives ẋ(τ ).

Following the results of Floquet [35], the investigation of the stability of such
systems reduces to the problem of finding the fundamental matrix of the solutions at
the moment 2π (the so-called monodromy matrix) and evaluation of its eigenvalues
(the so-called multipliers). For the stability of the periodic system it is necessary and
sufficient that the following condition takes place |ρ| < 1 (all the multipliers are
placed inside the unit circle).

Due to the fact that the matrix P(τ ) is a piecewise-constant, the fundamental
system of solutions and the monodromy matrix can be constructed in the closed
form. In order to do this, let us consider behavior of a piecewise-constant function
r(τ ) = −G(τ, H)sign(sin τ) with the period 2π , and a function p(τ ), respectively
(see Fig. 2).
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Fig. 2 Functions r(τ ) and
p(τ )

As we see from Fig. 2, in the interval (0, 2π) the system (4) can be described by
the following linear systems with the constant coefficients:

{
ẋ1

1 = x1
2 ,

ẋ1
2 = kx1

1 ,
τ ∈ [0,Δτ ], (5)

{
ẋ2

1 = x2
2 ,

ẋ2
2 = −(s − k)x2

1 ,
τ ∈ [Δτ, π ], (6)

{
ẋ3

1 = x3
2 ,

ẋ3
2 = kx3

1 ,
τ ∈ [π, π + Δτ ], (7)

{
ẋ4

1 = x4
2 ,

ẋ4
2 = (k + s)x4

1 ,
τ ∈ [π + Δτ, 2π ]. (8)
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Since the fundamental matrix should be continuous, the solutions of (5)–(8) should
match at the corresponding points, namely:

X1(0) = E, X j (τ ∗
j ) = X j+1(τ ∗

j ),

where i = 1, 2, 3, τ ∗
i are the moments at which the control changes during the period,

E is the unity matrix.
Consistent integration of the systems (5)–(8) leads to the following fundamental

matrices:

X1(τ ) =
(

cosh (
√

kτ) 1√
k

sinh (
√

kτ)√
k sinh (

√
kτ) cosh (

√
kτ)

)
,

X2(τ ) = X1(Δτ) ×
(

cos [k2(τ − Δτ)] 1
k2

sin [k2(τ − Δτ)]
−k2 sin [k2(τ − Δτ)] cos [k2(τ − Δτ)]

)
,

X3(τ ) = X2(π) ×
(

cosh [√k(τ − π)] 1√
k

sinh [√k(τ − π)]√
k sinh [√k(τ − π)] cosh [√k(τ − π)]

)
,

X4(τ ) = X3(π + Δτ) ×
(

cosh [k1(τ − π − Δτ)] 1
k1

sinh [k1(τ − π − Δτ)]
k1 sinh [k1(τ − π − Δτ)] cosh [k1(τ − π − Δτ)]

)
.

Putting τ = 2π in X4(τ ), we obtain the following form of the monodromy matrix
of the system (4):

A = X(2π)

=
(

cosh (
√

kΔτ) 1√
k

sinh (
√

kΔτ)√
k sinh (

√
kΔτ) cosh (

√
kΔτ)

)
×
(

cos (k2γ ) 1
k2

sin (k2γ )

−k2 sin (k2γ ) cos (k2γ )

)

×
(

cosh (
√

kΔτ) 1√
k

sinh (
√

kΔτ)√
k sinh (

√
kΔτ) cosh (

√
kΔτ)

)
×
(

cosh (k1γ ) 1
k1

sinh (k1γ )

k1 sinh (k1γ ) cosh (k1γ )

)
,

(9)
where (k1)

2 = k + s, (k2)
2 = s − k (s > k), γ = π − Δτ . Let we write also the

characteristic equation for the matrix A:

‖A − ρE‖ =
∣∣∣∣a11 − ρ a12

a21 a22 − ρ

∣∣∣∣ = ρ2 + αρ + β = 0, (10)
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where β = (−1)2 exp

⎛
⎝

T∫

0

Sp[P(τ )]dτ

⎞
⎠ = 1 [29] and α = −(a11 + a22).

The product of the roots ρ1 and ρ2 of (10) is equal to unity, so the motion will
be stable at |α| < 2 only, i.e., when the modules of multipliers are equal to unity,
but these multipliers are different. Thus, we obtain the following condition for the
stability of solutions of (3):

|a11 + a22| < 2. (11)

Using (9) the condition (11) can be written in the explicit form:

∣∣∣ cos (k2γ )
[
2 cosh (2

√
kΔτ) cosh (k1γ ) + sinh (2

√
kΔτ) sinh (k1γ )

(√
k

k1
+ k1√

k

)]

+ sin (k2γ )
[
sinh (2

√
kΔτ) cosh (k1γ )

(√
k

k2
− k2√

k

)

+ cosh2 (
√

kΔτ) sinh (k1γ )
(

k1
k2

− k2
k1

)
+ sinh2 (

√
kΔτ) sinh (k1γ )

(
k

k1k2
− k1k2

k

)] ∣∣∣ < 2.

(12)
Thus, the stability zone of the system (4) in the space of parameters is defined by

the inequality (12).

2.3 Stability Zones

Let us consider the (3) at H = 0, i.e., in the absence of the hysteretic nonlinearity:

ẍ − [k − s · sign(sin τ)]x = 0, (13)

then Δτ = 0 and the inequality (12) takes the form:

∣∣∣ cosh (πk1) cos (πk2) + 1

2

(
k1

k2
− k2

k1

)
sinh (πk1) sin (πk2)

∣∣∣ < 1. (14)

Now we construct numerically a solution of (14) with relation to the parameters
k and s (see the panel a in Fig. 3). In panel b of the Fig. 3 we show also the stability
zone for the Meissner equation obtained by Sato [37].

As we can see, these diagrams are the mirror images of each other because of
opposite signs at x in the corresponding equations.

Let us construct the stability zone for the system (9). Such a system has a three-
dimensional parameter space because of dependence on the three parameters takes
place (the dimensionless variables k, s and the piston’s length H ). We set the length
of the pendulum as l = 1 m.

Figure 4 shows that the stability zones do not qualitatively change, but only slightly
deformed with growth of H . Note that in the presented problem the parameters k and s
can take the positive values only. The change of the stability zone in the positive half-
plane is shown in Fig. 5. Also in this figure we see that the growth of the parameter
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Fig. 3 Stability zones in the absence of the hysteretic control (H = 0): panel a corresponds to
(refeq1.13); panel b corresponds to the Meissner equation
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Fig. 4 Stability zones in the presence of the hysteretic control. Panel a is H = 0 m, panel b is
H = 0.2 m, panel c is H = 0.4 m, panel d is H = 0.6 m, panel e is H = 0.8 m, panel f is
H = 1 m

H leads to the increasing of the lower boundary of the stability zone. Moreover,
we see in this figure that with increasing of the hysteretic parameter (see the panel
f ) the boundaries of the stability zones become multi-valued functions (namely, the
function s(k)). Such a behavior of the boundaries is connected with the fact that the
main equation of the model contains the hysteretic nonlinearity (hysteretic behavior
of the control parameter H ).

Stability zones in the space of parameters of the system (see (2)) are shown in
Fig. 6. This figure shows that the area of stability zone essentially unchanged with
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Fig. 5 Stability zones in the positive half-plane (k > 0, s > 0) in the presence of the hysteretic
control. Panel a is H = 0 m, panel b is H = 0.2 m, panel c is H = 0.4 m, panel d is H = 0.6 m,
panel e is H = 0.8 m, panel f is H = 1 m
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Fig. 6 Stability zones in the coordinates a and ω for different values of the parameter H . Panel
a is H = 0 m, panel b is H = 0.05 m, panel c is H = 0.1 m, panel d is H = 0.2 m, panel e is
H = 0.5 m, panel f is H = 1 m
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Fig. 7 The dependence of
the frequency ω on the
hysteretic parameter H (on
the border of the stability
zone, i.e., the condition
|a11 + a22| = 2 takes place)
for various a: thin curve is
a = 0.1 m, thick curve is
a = 0.2 m, dashed curve is
a = 0.3 m
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increasing of the length of piston H , just only shifted (for the values of H in the
interval H ∈ [0, 0.5]). This means that for any H in the presented interval there
exists a pair of values ω and a to ensure the stability of the vertical position of
the inverted pendulum with oscillating suspension and the hysteretic nonlinearity.
However, as we can see in panel f, at H = 1, there are two domains of values ω and
a that ensure the stability of the vertical position. It should also be pointed out that
in full analogy with the Fig. 5 the boundaries of the stability zones become multi-
valued functions (in this case, the function ω(a)) when the hysteretic parameter H
increases. Such a behavior of the boundaries follows from the fact that in the presence
of the hysteretic control the main (2) (together with the corresponding monodromy
matrix (9)) becomes essentially nonlinear.

In Fig. 7 we plot the dependencies of the oscillation frequency (the frequency
which lies on the border of the stability zone, in other words, the frequency which
ensuring the stability of solutions of (2)), on the length of the piston H at different
values of a (oscillation amplitude for the piston).

Let us note, that the parameters which satisfy the inequality (12) correspond to
the almost periodic oscillations [20] relative to the top of the pendulum. In order to
confirm these results we present the plots of characteristics of oscillations (in the
linearized model described by (2)) of the inverted pendulum with length l = 1 m
and hysteretic nonlinearity H = 0.05 m (Fig. 8). The amplitude and frequency of
oscillation of the piston are a = 0.15 m and ω = 30 s−1, respectively. The initial
conditions are φ(0) = 0.2 and φ̇(0) = 1 s−1.

2.4 Periodic Solutions

Now, let us consider behavior of pendulum on the edges of stability zone. In the
characteristic equation for the monodromy matrix (10) such a situation corresponds
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(a) (b)

(c)

(d)

Fig. 8 Panels a and b characteristics of the inverted pendulum described by (2) (modeling parame-
ters are presented in the main text); panel c the control function (solid line corresponds to hysteretic
control, dashed line corresponds to the absence of the hysteretic control); panel d phase portrait

to two cases: α = −2 (left edge) and α = 2 (right edge). The multipliers in this case
have took the values ρ1 = ρ2 = 1 and ρ1 = ρ2 = −1, respectively.

If ρ1 = ρ2 = 1 then the corresponding normal solution will satisfy the equality
X(t + 2π) = X(t). Therefore the (2) has a periodic solution and the period of such
a solution coincides with the period of the coefficients T1 = 2π

ω
.

In the second case (ρ1 = ρ2 = −1) the corresponding normal solution will
satisfy the equality X(t + 2π) = −X(t) (through the one more period X(t + 4π) =
−X(t + 2π) = X(t)). This fact means that in the case when the multipliers equal to
−1 the (2) has a periodic solution with the period T2 = 4π

ω
.

The solutions are periodic (and, hence, limited) in both of the presented cases. We
will say that they are stable by Lagrange. We assume also that all of the pendulum’s
parameters (in periodic regime of oscillations) should satisfy the following condition:

a11 + a22 = 2, for the period T1, (15)

a11 + a22 = −2, for the period T2. (16)

However, these conditions are necessary only, but not sufficient due to the fact that
not for all of the non-zero initial values (for a given control with the parameters which
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satisfy to one of these equations) the periodic solutions will exist. Note also that for
the presented control described by the function υ(t) = −aω2G(t, H)sign[sin (ωt)]
the initial conditions lie in the first and third quadrants.

Put the following initial condition (φ10, φ20), and consider the case of periodic
oscillations with the period T1. In this case the equality X(0 + T1) = AX(0) = X(0)

takes place and, also: (
a11 a12
a21 a22

)(
φ10
φ20

)
=
(

φ10
φ20

)
. (17)

This implies that the initial conditions satisfy the following expressions:

φ10 = a12

a11 − 1
φ20, φ20 = a21

a22 − 1
φ10, (18)

i.e., lie on a straight line z1 : φ̇ = K1φ, where the coefficient K1 is:

K1 = a11 − 1

a12
= a21

a22 − 1
. (19)

This equality ensures that the condition (15) is valid. If for the initial conditions
(φ10, φ20) can be found a pair of the parameters a and ω which lies on the border
of the stability zone (at fixed H ) and satisfies the (18) then this pair is unique. The
opposite statement is also true.

In similar manner, we find that the periodic solutions with period T2 exist for
initial conditions that satisfy the equations:

φ10 = a12

1 + a11
φ20, φ20 = a21

1 + a22
φ10. (20)

In analogous manner, these initial conditions lie on a straight line z2 : φ̇ = K2φ with
the coefficient

K2 = a11 + 1

a12
= a21

a22 + 1
. (21)

Corresponding parameters a and ω have been obtained from the numerical solu-
tion of (19) and (21). For the solutions of (2) with the initial conditions that satisfy
(19) the parameters a and ω are a = 0.2 m and ω = 18.73 s−1 (hysteretic nonlin-
earity H = 0.05 m). For the solutions with the initial conditions that satisfy (21) the
corresponding parameters are a = 0.43 m and ω = 15.02 s−1 (at the same value
of the hysteretic nonlinearity). However, the obtained periodic solutions (using the
corresponding parameters a and ω) are not stable (in the strict sense). Therefore, the
numerical simulation of these solution is can not be made without special regular-
ization procedure.
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Fig. 9 Surfaces in the space
of parameters ω, a and H
that satisfy the (19) (top
panel) and (21) (bottom
panel)

However, let we plot (see the Fig. 9) the surfaces in the space of parameters ω, a and
H that satisfy the existence conditions for the periodic solutions (19) and (21). The
complicated shape of the obtained surfaces is connected with the fact that the values
of the parameters that determine the periodic solutions are placed on the boundary
of the stability zone (see, e.g., the (10) and (11)) where the corresponding solutions
are not stable. Moreover, the obtained surfaces (more specific, the dependencies that
determine such surfaces) are the solutions of the essentially nonlinear (19) and (21)
(the parameters ai j in these equations are the elements of the monodromy matrix (9)).
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3 Inverted Pendulum Under Hysteretic Nonlinearity:
Horizontal Oscillation of Suspension

In this section we briefly describe the mathematical model of the inverted pendu-
lum with the horizontal moving suspension point [40]. Also, in terms of the in-out
converter we mathematically describe such a nonlinearity as backlash.

3.1 Mathematical Model

The equations of motion of the inverted pendulum with the horizontal moving sus-
pension point together with the initial conditions (see the Fig. 10) can be written in
the following form:

Aϕ̈ = mgl sin ϕ − mül cos ϕ,

ϕ(0) = ϕ0, ϕ̇(0) = ω(0) = ω0,

(22)

u(t) = Γ [u0, h]x(t), (23)

where A is a general moment of inertia of the pendulum, ϕ(t) is the angle of vertical
deviation of the pendulum, u(t) is a law of motion for the cylinder of the length h,
x(t) is a law of motion for the piston which can be interpreted as a control parameter,
Γ [u0, h] is defined below. The (22) describes the so-called in-out relations of the
hysteretic converter in the form of backlash.

In the following we will consider the case, when the acceleration of the piston is
constant, namely

|ẍ | = k = const.

Fig. 10 General view of the
inverted pendulum with the
suspension point in the form
of a cylinder C with a
piston P
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Let us assume also that the deviations of the pendulum are small so we can rewrite
the (22) in the linearized form:

Aϕ̈ = mglϕ − mül,

ϕ(0) = ϕ0, ϕ̇(0) = ω(0) = ω0.

(24)

3.2 Backlash as Hysteretic Nonlinearity

The mathematical models of hysteretic nonlinearities according to classical patterns
of Krasnosel’skii and Pokrovskii [21], reduce to operators that are treated as convert-
ers in an appropriate function spaces. The dynamics of such converters are described
by the relation of “input-state” and “state-output”.

The out state of the converter in the form of backlash (such an out state is consid-
ered on the monotonic inputs) can be described by the following relation

u(t) = Γ [u0, h]x(t) =
⎧⎨
⎩

u0, for u0 � x(t) � u0 + h,

x(t), for x(t) < u0,

x(t) − h, for u0 + h < x(t).
(25)

This relation can be illustrated by the Fig. 11.
With a special limit construction and using the semigroup identity in the form

Γ [u(t1), h]x(t) = Γ [Γ [u0, h]x(t1), h] x(t), (26)

the Γ -operator can be applied to all continuous inputs. It should also be noted that
the presence of hysteretic-type operator in the (24) complicates the stabilization of
the pendulum as a whole. In general, the control impact for such a system will be
retarded (we should “predict” the future position of the pendulum).

Fig. 11 Schematic view of
the backlash (25) action
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3.3 Stabilization of Inverted Pendulum with Hysteretic
Nonlinearity

In this section we consider the state feedback control of the inverted pendulum with
hysteretic nonlinearity in the form of backlash. We obtain the analytic expression
for the stability zones of such a system as well as we formulate the theorems that
determine the stabilization of the considered system.

3.3.1 Dynamical Characteristics: Analytic Results

Let us consider the state feedback control of the inverted pendulum, i.e., we assume
that the input state of the hysteretic converter obeys the following relation:

ẍ = k sign(αϕ + ω), (27)

where α > 0 and sign(z) is the usual signum function.
The linearized (24) can be rewritten in the equivalent matrix form (we determine

the general moment of inertia as A = ml2 and use the notation B =
√

g
l ) as follows:

(
ϕ̇

ω̇

)
= V

(
ϕ

ω

)
+ W, (28)

where

V =
(

0 1
B2 0

)
, W =

(
0

− ü
l

)
,

u(t) = Γ [u0, h]x(t), ẍ = ksign(αϕ + ω),

ϕ(0) = ϕ0, ϕ̇(0) = ω(0) = ω0.

The eigenvalues of the matrix V are B and −B so that the corresponding eigen-

vectors are

(
1
B

)
and

(−1
B

)
, respectively. Here, it should be noted that if the phase

coordinates of the system under consideration at some time moment will be placed
on the line Bϕ +ω = 0, then in the future (in the next time moments), in the absence
of control, the phase coordinates will asymptotically tend to zero. Therefore, the con-
trol should be arranged (on the conceptual level) in such a manner as to “preserve”
the phase coordinates in the vicinity of this line.

On each of the interval where the function ü is constant the system (28) can be
solved and the result is:

(
ϕ(t)
ω(t)

)
= Λ(t)

(
ϕ0
ω0

)
+ ü0υ(t). (29)
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Here

Λ(t) =
(

cosh Bt 1
B sinh Bt

B sinh Bt cosh Bt

)

υ(t) =
(

− 1
g (cosh Bt − 1)

− B
g sinh Bt

)
,

(30)

ϕ0 and ω0 are initial deviation and frequency of the pendulum respectively, ü0 is an
acceleration of the cylinder on the interval where the function ü is constant.

The behavior of the system (29) on the whole time interval can be represented by
the following recurrent relation:

(
ϕk(t)
ωk(t)

)
= Λ(t − tk−1)

(
ϕtk−1

ωtk−1

)
+ ütk−1υ(t − tk−1). (31)

Here tk are the moments at which the control changes, ϕtk−1 and ωtk−1 are the values of
angle and angle velocity at the moment tk−1, respectively, and ütk−1 is an acceleration
of the cylinder on the interval [tk−1, tk].

3.3.2 Dissipative Motion

The (24) is called dissipative if there exists a limited domain Ω on the product of the
phase space of the system (28) and the state space of the hysteretic converter (25)
that for any initial values (ϕ0, ω0, u) ∈ Ω , the solutions of the (24) remain uniformly
limited. In other words, this system is called dissipative if there exists a region in the
phase space and matching region in the state space of the hysteretic converter that
the solution which began in this region do not go to infinity.

Let us formulate the following theorem:

Theorem 1 The sufficient condition for existence of the dissipative regime of the
pendulum’s motion in a vicinity of the upper position is:

eBτ |Bϕ0 + ω0| �
∣∣∣∣k B

g

∣∣∣∣ , (32)

where τ =
√

2h
k is the time for which the piston passes through the cylinder.

Proof As is followed from the (31), the movement of the phase parameters on the
line Bϕ + ω = 0 (such a line corresponds to stabilization of the system) occurs
during the time t :

t = 1

B
ln

( − Bk
g

Bϕ0 + ω0 − Bk
g

)
. (33)
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Let the piston passes through the cylinder during the time τ . Then, the phase para-
meters of a pendulum are:

Bϕτ + ωτ = eBτ (Bϕ0 + ω0). (34)

After substitution of (34) into (33) one gets:

t = 1

B
ln

( − Bk
g

eBτ (Bϕ0 + ω0) − Bk
g

)
.

This equation has a real value if

− Bk
g

eBτ (Bϕ0 + ω0) − Bk
g

> 0,

or

eBτ |Bϕ0 + ω0| <

∣∣∣∣ Bk

g

∣∣∣∣ .

Let us note that the inequality (32) determines the stability zones of the system under
consideration.

3.4 Non-ideal Relay in Feedback

As is known, the measuring devices of any mechanical systems do not always work
perfectly. So, let us consider the problem stabilization of the inverted pendulum
in the case when the uncertainty in the control takes place. Let us assume that this
uncertainty is fixed, then the acceleration of the suspension point (control parameter)
corresponds to the output state of the non-ideal relay converter:

y(t) = Bϕ(t) + ω(t),

ü = k R
[−ε, ε, sign (ü(t0)), y0

]
y(t),

(35)

where ε > 0. Detailed description of this converter is given in [21].
The parameter ε can be considered as an uncertainty in the measurement of the

value Bϕ + ω. Let us assume also that the following inequality takes place:

ε <
k B

g
.

Otherwise the stabilization of the pendulum can not be observed.
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Dynamics of the system with non-ideal relay in the feedback described by the
equations: (

ϕ̇

ω̇

)
= V

(
ϕ

ω

)
+ W,

ü = k R
[−ε, ε, sign (ẍ(t0)) , y0

]
y(t),

ϕ(0) = ϕ0, ω(0) = ω0

(36)

Let us assume that at initial time y(t0) = ε. The time for which the phase coor-
dinates of the system (30) under influence of the control will move to the position
y(tc) = −ε can be found using the following expressions:

−ε = y(tc);

−ε = ( B 1
)
Λ(tc)

(
ϕ0
ω0

)
+ ( B 1

)
kυ(tc);

−ε = eBtcε − k B
g

(
eBtc − 1

) ;

(37)

tc = 1

B
ln

( k B
g + ε

k B
g − ε

)
. (38)

A similar result takes place if y(t0) = −ε. Thus, the total period of the control (35)
is T = 2tc and y(2tc) = y(t0) = ε. If y(t0) 	= ε and y(t0) 	= −ε, then for a finite
time the phase coordinates of the system (under the control (35)) will move to the
position y(t) = ε or y(t) = −ε.

Using the results presented above we can consider the question on the asymptotical
(Lyapunov) stability of solutions of the system (36). We can formulate the following
theorem:

Theorem 2 The system (36) has an asymptotically (Lyapunov) stable solution in
the form of closed loop:

(
ϕ(θ)

ω(θ)

)
=
(

cosh Bθ 1
B sinh Bθ

B sinh Bθ cosh Bθ

)(
0
ε

)
+
(

− k
g (cosh Bθ − 1)

− Bk
g sinh Bθ

)
, (39)

at 0 � θ < tc,

(
ϕ(θ)

ω(θ)

)
=
(

cosh Bθ 1
B sinh Bθ

B sinh Bθ cosh Bθ

)(
0

−ε

)
+
(

k
g (cosh Bθ − 1)

Bk
g sinh Bθ

)
, (40)

at tc � θ � 2tc with the attraction domain for solution |Bϕ0 + ω0| �
∣∣∣ k B

g

∣∣∣.
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Proof In order to prove this theorem it is needed to validate that for any initial
conditions from the attraction region the following relations will take place:

lim
n→∞ |y(ntc)| = ε, (41)

lim
n→∞ ϕ(ntc) = 0. (42)

It is evident that the condition (41) is executed for any n (this fact can be proved
by a direct substitution). The condition (42) for ϕ(ntc) determines by the following
equality (this equality can be obtained by a simple but cumbersome calculations):

ϕ(ntc) =
(

1

1 + k
g

)n

ϕ0 .

Of course,

lim
n→∞

(
1

1 + k
g

)n

= 0.

As an illustration of this result, in the Fig. 12 we present the phase portrait of
the system (36). The simulation parameters are: m = 1 kg, k = 0.2 m · s−2, g =
9.8 m · s−2, l = 0.3 m, ε = 0.02 s−1, ϕ0 = −0.01, ω0 = 0.0771 s−1.

The case when measuring devices have the random uncertainty in the measure-
ments (desynchronization in the control) is of particular interest. Our numerical
experiments show that increasing of the simulation time leads to the fact that the

Fig. 12 Phase portrait of the system (36). Blue straight lines limit the zone of dissipative motion;
pink lines are Bϕ + ω = ε and Bϕ + ω = −ε; red line is −Bϕ + ω = 0. Simulation parameters
are k = 0.2 m · s−2, g = 9.8 m · s−2, l = 0.3 m, ε = 0.02 s−1, ϕ0 = −0.01, ω0 = 0.0771 s−1
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probability of the stabilization of the system decreases and tends to zero. This means
that the pendulum can not save upright position under desynchronization.

3.5 Optimal Control

In many technical problems the question on stabilization has a general interest. How-
ever, together with the stabilization of the system there is the problem of optimal
control (this problem corresponds to asymptotically optimal characteristics of the
system). In the considered problem of stabilization of the inverted pendulum the
problem of optimal control corresponds to minimizing of the functional which deter-
mines the deviation of the pendulum from the vertical position. Let us consider a
functional (the so-called objective functional) as follows:

J = 1

2T

T∫
t0

(
ϕ2 + γω2

)
dt. (43)

When the equations describing the dynamics of the system (23) are executed it is
necessary to achieve the minimization of the functional (43). Let us note also that
the law of stabilization should be sought only in the set of functions that stabilize the
system (28), i.e., when the following phase restrictions take place:

|Bϕ(t) + ω(t)| �
∣∣∣∣ Bk

g

∣∣∣∣ . (44)

Solution of the posed problem can be expressed in the form of the following
theorem on the optimal control of the pendulum:

Theorem 3 Let a system of (28) is given together with the initial conditions that
correspond to a dissipative regime of motion of the pendulum. Then, under the con-
trol (25), the functional (43) will be minimized, and the trajectory of the pendulum(

ϕ

ω

)
will lie entirely in the dissipativeness region in a vicinity of the upper posi-

tion (44).

The proof of this theorem is based on the Pontryagin’s maximum principle as well
as on the analysis of a zero-dynamics set [31].

Here we would like to note that the law of optimal control (following the presented
theorem), moves the phase coordinates of the system (28) to the position y(t) = 0,
and then stops. Such a control stabilizes the pendulum in the upper position. But, it
is absolutely clear that in real systems it is difficult to get such a position, so it is
necessary to consider the problem of finding the optimal control in another way.
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One way of finding the optimal control is based on the assumption that the mea-
suring instruments (in most cases) laid “errors” (or, uncertainties) and, thus, the
switching of control is based on the principle of non-ideal relay.

4 Elastic Inverted Pendulum Under Hysteretic Nonlinearity:
Stabilization and Optimal Control

4.1 Elastic Inverted Pendulum

4.1.1 Problem

Let us consider the model of stabilization of inverted pendulum in the vicinity of
vertical position. The pendulum is considered as an elastic rod which is hingedly
fixed on the cylinder. Motion of cylinder is excited by the horizontal motion of a
piston (see Fig. 13).

Mathematical model of a similar mechanical system was considered in [48]. Inves-
tigation of dynamics of an elastic inverted pendulum was carried out in [12, 13, 25,
46].

Here (x, y) is an inertial base of an elastic rod with mass m and density ρ; the Ox
axis coincides with a tangent to rod’s profile in the suspension point; θ is an angle
of slope for the co-ordinates of a rod, I is a centroidal moment of inertia of the rod’s
section; (X, x̄) is a co-ordinates of a considered mechanical system, M is a mass of
a cylinder with length L , F is a force joined to a piston with mass m p (such a force
is treated as control).

The purpose of this section is the investigation of the possible stabilization (in a
vicinity of vertical position) of elastic inverted pendulum in the presence of backlash
in a suspension point together with investigation of various aspect of such a dynamical
system.

Fig. 13 Model of elastic
inverted pendulum:
geometry of the problem
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4.1.2 Hysteretic Nonlinearity

As previously (see the Sect. 3.2), we consider the hysteretic nonlinearity using opera-
tor technique of Krasnosel’skii and Pokrovskii [21]. Namely, output of the backlash-
inverter on the monotonic inputs can be described by the following expression:

X (t) = Γ [X0, L]Y (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, |Y (t) − X0| � L
2 ;

Y (t) − L
2 , Y (t) − X0 > L

2 ;

Y (t) + L
2 , Y (t) − X0 < − L

2 ;

As is noted above, using special limit construction and semigroup identity the Γ -
operator can be applied to all continuous inputs.

4.1.3 Physical Model

Let us assume that the deviation y and angle θ are small, i.e., x ≈ x̄ and the boundary
conditions that determine the curvature of the pendulum are5:

{
y(0, t) = yxx (0, t) = 0,

yxx (l, t) = yxxx (l, t) = 0.
(45)

The function X (x̄, t) describes behavior of the pendulum’s profile in time and shows
deviation of the pendulum’s points relative to vertical axis, (X, x̄) are coordinates of
the pendulum’s profile, X (0, t) = s(t) is a displacement of the suspension point in
horizontal plane.

Coordinate system transformation in the matrix form is given by

(
X
x̄

)
=
(

cos θ sin θ

− sin θ cos θ

)(
y
x

)
+
(

X (0, t)
0

)
. (46)

Let us construct the physical model of the considered mechanical system taking
into account the backlash in the suspension point of an elastic rod. In order to do this
we use the Lagrange formalism, i.e., we analyze relation between the kinetic and
potential energies in this system.

Taking into account that y and θ are small the Lagrange function can be written
as:

5Here we use the following notations: ax = ∂a
∂x , at = ∂a

∂t .
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L(t) = Ms2
t

2

+ 1

2

l∫

0

[
ρs2

t + ρy2
t + ρ(xθt )

2 + ρ(2st xθt + 2xθt yt + 2st yt ) + 2ρgyθ − E I y2
xx

]
dx .

(47)

We can integrate the (47) in the interval (t0, t f ) and obtain the action function:

W = 1

2

t f∫
t0

Ms2
t dt

+ 1

2

t f∫
t0

l∫

0

[
ρ
(
s2

t + y2
t + x2θ2

t + 2st xθt + 2xθt yt + 2st yt + 2gyθ
)− E I

ρ
y2

xx

]
dxdt.

(48)

Using the variational principle and using Taylor’s expansion we obtain the following
equation:

ytt + E I

ρ
yxxxx = −stt − xθt t + gθ. (49)

Taking θ as the generalized coordinate in the Lagrange function we obtain:

d

dt

∂L

∂θt
− ∂L

∂θ
= 0. (50)

Substitution of (47) in (50) gives:

l∫

0

x (xθt t + ytt + stt ) dx = g

l∫

0

ydx . (51)

Taking into account (49) we have

l∫

0

x

(
gθ − E I

ρ
yxxxx

)
dx = g

l∫

0

ydx . (52)

or

gl2θ

2
− E I

ρ

l∫

0

xyxxxx dx = g

l∫

0

ydx . (53)
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Using the initial conditions (45) we can show that the integral in the left part
of (53) is equal to zero. Then, multiplying both parts of this equality by ρ

g we obtain

mlθ

2
= ρ

l∫

0

ydx . (54)

Integrating (49) and multiplying by ρ we have

ρ

l∫

0

(
ytt + E I

ρ
yxxxx

)
dx = ρ

l∫

0

(−stt − xθt t + gθ) dx,

E I [yxxx (l, t) − yxxx (0, t)] + ρ

l∫

0

ytt dx = −sttρl − ρl2θt t

2
+ ρglθ.

(55)

Taking into account the relations ρl = m, yxxx (l, t) = 0 (from initial conditions),
and using

ρ

l∫

0

ytt dx = mlθt t

2
,

which follows from (54), we have the following equation:

mlθt t + mstt = mgθ + E I yxxx (0, t). (56)

In the next step, taking s as the generalized coordinate in the Lagrange function
we obtain:

d

dt

∂L

∂st
− ∂L

∂s
= f (t). (57)

Here f (t) is a force joined to the suspension point of a rod.
General peculiarity of the system under consideration is the presence of back-

lash in the suspension point. Due to the fact that the backlash can be considered as a
hysteretic nonlinearity we can use the technique of hysteretic converters. As was men-
tioned above, according to classical patterns of Krasnosel’skii and Pokrovskii [21],
the hysteretic operators are treated as converters in an appropriate function spaces.
The dynamics of such converters are described by the relation of “input-state” and
“state-output”.

Thus, the force joined to suspension point can be found from the relation:

f (t) = Γ [X (0, t), Y (t), L , F0] F =
{

0, |X (0, t) − Y (t)| � L;
F, |X (0, t) − Y (t)| > L ,

(58)
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where L is the length of a cylinder, F is a force (this force affects the piston) which
can be treated as a control.

The equation of motion of piston is:

m pYtt (t) = F. (59)

Here Y is a displacement of the piston in a horizontal plane.
Substitution of (47) in (57) gives the following:

Mstt + ρ

l∫

0

(stt + xθt t + ytt ) dx = f (t). (60)

Using (49) we obtain

Mstt + ρ

l∫

0

(
gθ − E I

ρ
yxxxx

)
dx = f (t). (61)

Making the same transformations as in (55), we obtain the following equality:

Mstt = f (t) − mgθ − E I yxxx (0, t). (62)

Thus, we have the following system of equations:

{
mlθt t + mstt = mgθ + E I yxxx (0, t),
Mstt = f (t) − mgθ − E I yxxx (0, t).

(63)

Passing to coordinate system (X, x̄), the system of equation which describes the
physical model of the considered mechanical system will have the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xtt + E I

ρ
Xxxxx = gXx (0, t),

M Xtt (0, t) = f (t) − mgXx (0, t) − E I Xxxx (0, t),

ml(Xtt )x (0, t) + m Xtt (0, t) = mgXx (0, t) + E I Xxxx (0, t),

f (t) = Γ [X (0, t), Y (t), L , F0] F,

m pYtt (t) = F,

(64)

where X = X (x, t), due to x̄ ≈ x .
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Let us express Xtt (0, t) from the first equation of the system and substitute it into
the second equation:

g(M + m)Xx (0, t) − MEI

ρ
Xxxxx + E I Xxxx = f (t). (65)

Let us integrate the (65) over x , the result is

g(M + m)X (0, t) − MEI

ρ
Xxxx + E I Xxx =

l∫

0

f (t)dx = l f (t). (66)

Taking into account (45) we have:

g(M + m)X (0, t) − MEI

ρ
Xxxx = l f (t). (67)

Finally, the system of equations that describes the dynamics of the system under
consideration has the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xtt + E I

ρ
Xxxxx = gXx (0, t),

M Xtt (0, t) + mgXx (0, t) + E I Xxxx (0, t) = f (t),

(M + m)Xtt (0, t) + ml(Xtt )x (0, t) = f (t),

g(M + m)X (0, t) − MEI

ρ
Xxxx = l f (t),

f (t) = Γ [X (0, t), Y (t), L , F0] F,

m pYtt (t) = F.

(68)

4.1.4 Stabilization

Let us consider the problem of control of the pendulum using the feedback principles,
i.e., the force which affects the piston can be presented by the following equality:

F = k sign(αe1 + e2), (69)
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where α > 0, k > 0 and

e1 =
l∫

0

Xx dl, (70)

e2 =
l∫

0

(Xt )x dl. (71)

Here e1 is an average angle of rod’s deviation, e2 is an average angular velocity of
the rod.

Thus, in order to solve the stabilization problem for the elastic inverted pendulum
we should use the system of (68) together with the equalities (69)–(71):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xtt + E I

ρ
Xxxxx = gXx (0, t),

M Xtt (0, t) + mgXx (0, t) + E I Xxxx (0, t) = f (t),

(M + m)Xtt (0, t) + ml(Xtt )x (0, t) = f (t),

g(M + m)X (0, t) − MEI

ρ
Xxxx = l f (t),

f (t) = Γ [X (0, t), Y (t), L , F0] F,

m pYtt (t) = F,

F = k sign(αe1 + e2),

e1 =
l∫

0

Xx dl,

e2 =
l∫

0

(Xt )x dl.

(72)
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The solution of the posed problem on stabilization of elastic inverted pendulum
in the vicinity of the upper position is consisted in search of the optimal values for
coefficients α and k.

4.2 Numerical Realization

4.2.1 Difference Scheme

Let us introduce the rectangular lattice. To do so, let we cross the domain of function
X = X (x, t) by the net of straight lines that are parallel to coordinate axis (see
Fig. 14).

It is evident that the value of X (x, t) in the knots of presented lattice is:

Xi, j = X (ihx, jht), (73)

where hx is the step of a lattice by the x axis, ht is the step of a lattice by the t axis,
i = 0, n, j = 0, m, hx = L

n , ht = T
m , T is the time interval for calculation of the

single iteration by time.
For the calculation of derivatives we can use the right finite difference:

Xx (x, t) ≈ Xi+1, j − Xi, j

hx
, (74)

Xt (x, t) ≈ Xi, j+1 − Xi, j

ht
. (75)

Fig. 14 Rectangular lattice
which corresponds to
domain of function X (x, t)
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Then the system (72) in the finite differences will have the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi, j+2 − 2Xi, j+1 + Xi, j

h2
t

+ E I

ρ

6Xi+2, j − 4Xi+1, j − 4Xi+3, j + Xi+4, j + Xi, j

h4
x

= g
X1, j − X0, j

hx
,

M
X0, j+2 − 2X0, j+1 + X0, j

h2
t

+ mg
X1, j − X0, j

hx

+E I
3X1, j − 3X2, j + X3, j − X0, j

h3
x

= f j ,

(M + m)
X0, j+2 − 2X0, j+1 + X0, j

h2
t

+ml
2X0, j+1 − X0, j+2 − 2X1, j+1 + X1, j+2 − X0, j + X1, j

h2
t hx

= f j ,

g(M + m)X0, j − MEI

ρ

3X1, j − 3X2, j + X3, j − X0, j

h3
x

= f j hx,

f j = Γ
[
X0, j , Y j , L , F0

]
Fj ,

m p
Y j+2 − 2Y j+1 + Y j

h2
t

= Fj ,

Fj = k sign(αe1 j + e2 j ),

e1 j =
n∑

i=0

(
Xi+1, j − Xi, j

)
,

e2 j =
n∑

i=0

Xi, j − Xi, j+1 − Xi+1, j + Xi+1, j+1

ht
,

(76)

together with the initial conditions, i.e., the angle, linear and angular velocities:
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Fig. 15 Calculation scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1,0 − X0,0

hx
= ϕ,

X0,1 − X0,0

ht
= V,

X0,0 − X0,1 − X1,0 + X1,1

hthx
= Vϕ,

X2, j − 2X1, j + X0, j

h2
x

= 0.

(77)

On the basis of (76) and (77) we can obtain the explicit difference scheme. In
Fig. 15 we show all the knots of a net that are took part in the solution of system (72)
on the each consequent iteration together with the direction of calculation. In brackets
we show the number of equation in the system (76).

In the next step we would like to construct the algorithm for solution of (72)
taking into account the explicit difference scheme (76) together with the initial con-
ditions (77).

4.2.2 Algorithm

The algorithm contains two stage of calculations: the forward and inverse stages.
In the forward stage we compute the lower four layers by i , i.e., the values of Xi, j ,
where i = 0, 3, j = 0, m. In the inverse stage we compute the residuary layers,
i.e., Xi, j , where i = 4, n, j = 0, m. At the same time, in order to find the position
of the rod’s profile at the present time moment it is enough to find the values of Xi, j

in the region bordered by a triangle (see Fig. 16). In other words, we need to organize
the net with n = 2m for the comfortable simulations.
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Fig. 16 Domain of
calculations

The algorithm:

1. Let us assign the parameters of system m, M, l, I, E, ρ;
2. Let us assign the initial conditions X0,0, Y0, ϕ, V, Vϕ ;
3. Let us assign the parameters of difference schema n, m, hx, ht;
4. Let us assign the parameters of control F0, α, k.
5. Forward stage: From the initial conditions (77) and fourth equation of the sys-

tem (76) we find:
f j = Γ

[
X0, j , Y j , L , F0

]
F;

j = 0,

X1,0 = ϕhx + X0,0,

X2, j = 2X1, j − X0, j ,

X3, j = [(M + m)gX0, j − f j hx
] ρh3

x

MEI
+ 3X2, j + X0, j − 3X1, j ;

j = 1,

X0,1 = V ht + X0,0,

X1,1 = Vϕhthx − X0,0 + X0,1 + X1,0,

X2, j = 2X1, j − X0, j ,

X3, j = [(M + m)gX0, j − f j hx
] ρh3

x

MEI
+ 3X2, j + X0, j − 3X1, j ;

6. Let us calculate the residuary points at i = 0, 3, j = 0, m:
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j = 0 . . . (m − 2),

Y j+2 = Fh2
t

m p
+ 2Y j+1 − Y j ,

f j = Γ
[
X0, j , Y j , L , F0

]
F,

X0, j+2 = h2
t

M

(
f j − mg

X1, j − X0, j

hx
− E I

3X1, j − 3X2, j + X3, j − X0, j

h3
x

)

+ 2X0, j+1 − X0, j ,

X1, j+2 = h2
t hx

ml

[
f j − (M + m)

X0, j+2 − 2X0, j+1 + X0, j

h2
t

]

+ 2X0, j+1 + X0, j+2 + 2X1, j+1 + X0, j − X1, j ,

X2, j+2 = 2X1, j+2 − X0, j+2,

X3, j+2 = [(M + m)gX0, j+2 − f j hx
] ρh3

x

MEI
+ 3X2, j+2 + X0, j+2 − 3X1, j+2;

7. Inverse stage: Let we find Xi, j at i = 4, n, j = 0, m:

Xi+4, j =
(

g
X1, j − X0, j

hx
− Xi, j+2 − 2Xi, j+1 + Xi, j

h2
t

)
ρh4

x

E I
− 6Xi+2, j + 4Xi+1, j + 4Xi+3, j − Xi, j ;

8. Let we redefine the initial parameters X0,0, ϕ, V, Vϕ ;
9. Let we redefine the control parameters

e1 =
n∑

i=0

(
Xi+1,0 − Xi,0

)
,

e2 =
n∑

i=0

Xi,0 − Xi,1 − Xi+1,0 + Xi+1,1

ht
,

F = k sign(αe1 + e2);

10. Let we turn to step 5.

As we can see from this algorithm, the numerical value of force F should be
recalculated on each new time interval T .
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4.3 Optimization

As was mentioned above, the solution of the problem on stabilization of elastic
inverted pendulum in the vicinity of the upper position is consisted in search of
the optimal values for coefficients α and k from the equality (69). In the system
under consideration the problem of optimization corresponds to minimizing of the
functional which determines the deviation of the pendulum from the vertical position.
Let us consider an objective functional:

J = 1

T

T∫

0

⎧⎨
⎩

l∫

0

(Xx )
2dl +

l∫

0

[(Xt )x ]2dl

⎫⎬
⎭ dt. (78)

Here T is the time interval in which we find an optimal control.
Solution of the (72) that describe the dynamics of the system under considera-

tion should be obtained under conditions that provides the minimization of func-
tional (78). Physically this means that the problem is equivalent to minimization of
mean-square deviation of the pendulum relative to vertical position.

In order to solve the optimization problem in the system under consideration,
we use the bionic algorithms of adaptation because the hysteretic peculiarities in
the considered pendulum’s model lead to some difficulties in use of the classical
optimization algorithms due to non-differentiability of the functions in the system
of equations.

Such algorithms are a part of the line of investigation which can be called as
“adaptive behavior”. Main method of this line consists in the investigation of artificial
organisms (in the form of computer program or a robot) that are called as animats
(these animats can be adapted to environment). The behavior of animats emulates
the behavior of animals.

One of the actual line of investigation in the frame of animat-approach is an
emulation of searching behavior of animals [22, 33]. Let us consider the bionic model
of adaptive searching behavior on the example of caddis flies larvae or Chaetopteryx
villosa. Main schema of searching behavior can be characterized by two stages:

• Motion in a chosen direction (conservative tactics);
• Random change of the motion direction (stochastic searching tactics).

We consider this model for the simple case of maximum search for the function of
two variables. Let we describe main stage of the considered model:

1. We consider an animat which is moved in the two-dimensional space x, y. Main
purpose of animat is maximum search for the function f (x, y).

2. Animat is functioned in discrete time t = 0, 1, 2, . . .. Animat estimates the
change of current value of f (x, y) in comparison with the previous time Δ f (t) =
f (t) − f (t − 1).

3. Every time animat moves so its coordinates x and y change by Δx(t) and Δy(t)
respectively.
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4. Animat has two tactics of behavior: (a) conservative tactics; (b) stochastic search-
ing tactics.

Displacement of animat in the next time Δx(t + 1), Δy(t + 1) for these tactics
determines in a different ways. Switching between the cycles drives by M(t). Time
dependence of M(t) can be determined using the equation:

M(t) = k1 M(t − 1) + ξ(t) + I (t), (79)

where k1 is a parameter which determines the switching persistence of tactics (0 <

k1 < 1), ξ(t) is a normal distributed variate with an average value equal to zero and
mean-square deviation equal to σ , I (t) is an intensity of irritant. For the value of
I (t) there are two possibilities:

I (t) = k2Δ f (t) (80)

and

I (t) = k2
Δ f (t)

f (t − 1)
, (81)

where k2 > 0. As follows from (80) to (81) the intensity is positive when the step
leads to increasing of function, otherwise the intensity is negative. It should be noted
also that the (81) can be applied in the case f (t) > 0.

We assume that at M(t) > 0 animat follows the tactics (a) and at M(t) < 0
it follows tactics (b). So, the value of M(t) can be considered as a motivation to
selection of tactics (a).

Thus, the algorithm of maximum search can be considered as follows:
Tactics (a): Animat moves in the chosen direction. The displacement of animat

is determined by R0

Δx(t + 1) = R0 cos ϕ0, (82)

Δy(t + 1) = R0 sin ϕ0, (83)

where the angle ϕ0 defines the constant direction of motion of animat:

cos ϕ0 = Δx(t)√
Δx2 + Δy2

, (84)

sin ϕ0 = Δy(t)√
Δx2 + Δy2

. (85)

Tactics (b): Animat makes an accidental turn. The displacement of animat is
determined by r0 but the direction of motion is accidentally varied

Δx(t + 1) = r0 cos ϕ, (86)

Δy(t + 1) = r0 sin ϕ, (87)
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where ϕ = ϕ0 + w, ϕ0 is an angle which characterizes the direction of motion at
current time t , w is a normal distributed variate (average value of w equal to zero and
mean-square deviation equal to w0), ϕ is an angle which characterizes the direction
of motion at time t + 1.

In that way we can use the proposed algorithm for searching the optimal control
in the problem of stabilization of elastic inverted pendulum. Taking into account the
reasoning presented above we can apply the presented algorithm to functionalJ(α, k)

where the coefficients α and k determine the character of control of the mechanical
system under consideration following the (69). Due to the fact that the presented
bionic algorithm is used to maximum search of the function of two variables we will
consider minimization of functional (78) as a procedure for finding the coefficients
α and k that lead to realization of the condition

− J(α, k) → max. (88)

4.4 Numerical Results

4.4.1 Elastic Inverted Pendulum

Now we can make a simulation of the behavior of elastic inverted pendulum using
the corresponding difference scheme in the absence of backlash (L = 0). Using the
bionic algorithm we can find the optimal values of coefficients α and k.

The characteristics and initial conditions for the mechanical system under con-
sideration are:

m = 1 kg, M = 10 kg, l = 1 m, ρ = 0.5, E = 10, I = 4, θ0 = 0.06◦.

In the searching process for optimization using the bionic algorithm we have
obtained the following values of the coefficients: α = 22.04 and k = 1.15.

In order to estimate the stability of the system under consideration we use the
Lyapunov criterion. Namely, we use the following Lyapunov function:

V = e2
1 + e2

2.

Phase trajectory of such a system together with the dynamics of Lyapunov function
in time (in discrete time which corresponds to difference scheme) are presented in the
Fig. 17. In this figure the integral angle e1 and integral angular velocity e2 correspond
to (70) and (71), respectively.

In the Fig. 18 we present the phase trajectory and Lyapunov function for another
values of α and k: α = 50 and k = 0.4.

As we can see from presented figures the Lyapunov function satisfies the following
condition (during all the considered time interval):
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(a) (b)

Fig. 17 Phase trajectory (left panel) and dynamics of Lyapunov function (right panel) in the
absence of backlash (L = 0). The parameters are α = 22.04 and k = 1.15

(a) (b)

Fig. 18 The same as in Fig. 17 but for another values of parameters α and k, i.e., α = 50 and
k = 0.4

V (t) < const.

This means that the considered inverted pendulum eventually tends to stable vertical
position.

4.5 Elastic Inverted Pendulum with Backlash in Suspension

Now, let we add the backlash in the suspension point of a considered mechanical
system and let we investigate the behavior of such a system with the same parameters
as in previous subsection. Using the bionic algorithm we have obtained the following
optimal values of coefficients: α = 9 and k = 2.
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(a)

(b)

(c)

Fig. 19 Phase trajectories (left panels) and dynamics of Lyapunov function (right panels) in the
presence of a backlash in suspension point. Parameters of a backlash and control coefficients are:
(a) L = 0.01 m, α = 9, k = 2; (b) L = 0.02 m, α = 9, k = 2; (c) L = 0.02 m, α = 10.5, k = 1.5

The mass of a piston is m p = 1 kg. Main parameters of the system are the same
as in previous section. The phase trajectories of such a system (as previously we use
(e1, e2) coordinates) and dynamics of Lyapunov function for different values of a
control coefficients are presented in Fig. 19.
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As we can see from the presented figure (both from the phase trajectories and
Lyapunov function) the considered system (at the same main parameters and different
values of L and control coefficients α and k) also eventually tends to stable state.

5 Conclusions

In this work we have considered the problem of inverted pendulum under hysteretic
control in the form of a backlash in suspension. In the first part of this work the explicit
condition for the stability of such a system has been obtained using the monodromy
matrix technique (for the monodromy matrix is also obtained the explicit expression).
The periodic solutions in such a system is also analyzed and the corresponding
equations for the parameters a and ω are obtained. Here it should be pointed out that
the dynamics of the inverted pendulum with hysteretic control qualitatively differs
from the dynamics of the pendulum with conventional control. The presence of the
hysteresis element complicates the study of the dynamics of mechanical systems. As
a result, the main results were obtained using the numerical simulations only.

In the second part of this work we have considered the mathematical model of
the inverted pendulum with hysteretic nonlinearity under state feedback control. The
obtained results not only accurately predict the behavior of a pendulum under hys-
teretic control, but also allow to determine the possibility of the dissipative motion
in the vicinity of the top position. The existence of dissipative motion depends on
the initial deviation of the pendulum’s position as well as on the physical parame-
ters of the system under consideration. Introduction of non-ideal relay in the state
feedback control allows us to describe the periodic modes of the system (28). How-
ever, it should also be noted that the results obtained for the presence of non-ideal
relay in the state feedback control can be used for description of real physical (and,
in particular, mechanical) systems because the parameters of such systems can be
measured with the inevitable uncertainties only. Also, our numerical experiments
show that the presence of the backlash with nonzero step in the feedback control
of inverted pendulum leads to dissipative motion only and asymptotic convergence
to an upright position is fundamentally unattainable. We have also considered the
question on the optimal control of the system under consideration. The theorem on
the optimal control of pendulum has been formulated and discussed.

In the last part we investigate the stabilization problem of elastic inverted pendu-
lum with a backlash in suspension point. Also the problem of optimization for the
system under consideration is analyzed. Main coefficients that provide the solution
of optimization problem for the considered system are obtained using the so-called
bionic algorithm. All the numerical results on stabilization of the system under con-
sideration have been obtained using the numerical method based on the difference
scheme. The results of numerical simulations shown that the considered system even-
tually tends to stable state both in the case of the absence of backlash and in the case
of its presence. These facts have been presented in the form of corresponding phase
portraits for the considered system. Moreover, in order to estimate the stability of
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elastic pendulum with hysteretic nonlinearity in the suspension point we have used
the Lyapunov criterion and the dynamics of corresponding Lyapunov function has
also been presented.
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