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Abstract. Security measures, such as proving data integrity, became
more important with the increase in popularity of cloud data storage ser-
vices. Dynamic Provable Data Possession (DPDP) was proposed in the
literature to enable the cloud server to prove to the client that her data
is kept intact, even in a dynamic setting where the client may update her
files. Realizing that variable-sized updates are very inefficient in DPDP
(in the worst case leading to uploading the whole file again), Flexible
DPDP (FlexDPDP) was proposed.

In this paper, we analyze FlexDPDP scheme and propose optimized
algorithms. We show that the initial pre-processing phase at the client
and server sides during the file upload (generally the most time-consuming
operation) can be efficiently performed by parallelization techniques that
result in a speed up of 6 with 8 cores. We propose a way of handling mul-
tiple updates at once both at the server and the client side, achieving an
efficiency gain of 60% at the server side and 90 % in terms of the client’s
update verification time.

We deployed the optimized FlexDPDP on the large-scale network
testbed PlanetLab and demonstrate the efficiency of our proposed opti-
mizations on multi-client scenarios according to real workloads based on
version control system traces.

1 Introduction

Data outsourcing to the cloud has become popular with the availability of afford-
able and more satisfying services (e.g. Dropbox, box.net, Google Drive, Amazon
S3, iCloud, Skydrive) as well as with several studies in academia
[2–4,11,15,16,18,25,30,31]. The most important impediment in public adop-
tion of cloud systems is the lack of some security guarantees in data storage
services [19,24,33]. The schemes providing security guarantees should incur min-
imal overhead on top of the already available systems in order to promote wide
adoption by the service providers.

In this work, we address the integrity of the client’s data stored on the cloud
storage servers. In a cloud storage system, there are two main parties, namely
a server and a client, where the client transmits her files to the cloud storage
server and the server stores the files on behalf of the client. For the client to be
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able to trust the service provider, she should be able to verify the integrity of the
data. A trustworthy brand is not sufficient for the client, since hardware/software
failures or malicious third parties may also cause data loss or corruption [9].

Solutions for the static cases (i.e., logging or archival storage) such as Prov-
able Data Possession (PDP) [2] were proposed [2,3,15,25,30]. For the dynamic
cases where the client keeps interacting (updating, manipulating) with her data,
Scalable PDP was proposed by Ateniese et al. [4], which allows a limited num-
ber of operations before a full re-calculation of the redundant data is required to
continue providing provable data possession. Extensions of the PDP, using some
data structures for dynamic cases, were first studied in Dynamic Provable Data
Possession (DPDP) [16] that allows data updates while still providing integrity
guarantees. Implementation of DPDP needs rank-based authenticated skip list
as the underlying data structure. It is shown that DPDP is not applicable to
variable block sized settings (due to the data structure used), hence resulting in
unacceptable performance in the dynamic secure cloud storage systems [17]. To
solve this issue, a flexible length-based authenticated skip list, called FlexList,
and its application to a DPDP scheme allowing variable block-sized updates,
called FlexDPDP, were proposed [17]. In this study, we ameliorate the efficiency
of the FlexDPDP system by proposing optimized algorithms on FlexList.

Our Contributions are as follows:

• We optimize the first pre-processing phase of the FlexDPDP provable cloud
storage protocol by showing that the algorithm to build a FlexList in O(n)
time is well parallelizable even though FlexList is an authenticated data
structure that generates dependencies over the file blocks. We propose a
parallelization algorithm and our experimental results show a speed up of 6
and 7.7, with 8 and 12 cores respectively.

• We provide a multi-block update algorithm for FlexDPDP. Our experiments
show 60% efficiency gain at the server side compared to updating blocks
independently, when the updates are on consecutive data blocks.

• We provide an algorithm to verify update operations for FlexDPDP. Our new
algorithm is applicable to not only modify, insert, and remove operations
but also a mixed series of multiple update operations. The experimental
results show an efficiency gain of nearly 90% in terms of verification time of
consecutive updates.

• We deployed the FlexDPDP implementation on the network testbed Planet-
Lab and also tested its applicability on a real SVN deployment. The results
show that our improved scheme is practically usable in real life scenarios
after optimization, namely 4 times faster proof generation for consecutive
updates.

2 Related Work

Ateniese et al. proposed the first provable storage service named PDP [2] that
can only be applied to the static cases. To overcome this problem, Scalable PDP
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was proposed which allows limited updates [4]. When it consumes its precom-
puted tokens, Scalable PDP requires a setup phase from scratch. Wang et al.
[32] proposed using Merkle tree and Zheng and Zu [34] proposed 2-3 trees as
the data structure on top of PDP. Yet, these are also applicable to the static
scenarios since there is no efficient algorithm, which keeps the authentication
information maintained, is shown for re-balancing neither of these data struc-
tures. The authenticated skip lists that are probabilistically balanced in case of
any updates were first proposed by [29].

For improving data integrity on the cloud, protocols [10,12,21,22,26,27] pro-
vide Byzantium fault-tolerant storage services based on some server labor. There
also exist protocols using quorum techniques, which do not consider the server-
client scenarios but works on local systems such as hard disk drives or local
storage [1,13,20,23]. A recent protocol using quorum techniques [5] replicates
the data on several storage providers to improve integrity of the data stored on
the cloud; yet it also considers static data.

Within provable data possession techniques, Erway et al. proposed a skip-
list-like data structure called rank based skip list [16] that allows dynamic oper-
ations. Yet Esiner et al. [17] showed that updates in DPDP needs to be of
fixed block size, and proposed the FlexList data structure that allows vari-
able length dynamic operations with DPDP scheme. Detailed comparison and
extended descriptions of these two data structures are provided in [16,17]. Some
distributed versions of the idea have been studied as well [14,18]. There are also
studies showing that a client’s file is kept intact in the sense that client can
retrieve (recover) it fully whenever she wishes [7,11,15,25,30].

FlexDPDP, using FlexList, can perform modify, insert, and remove opera-
tions one block at a time on the cloud, without any limit on the number of
updates and block sizes, while maintaining data possession guarantees. It also
provides verification algorithms for update queries on single blocks. In this work,
we show that the functions in FlexDPDP are open to optimization, and propose
optimized efficient algorithms by evaluating them on the PlanetLab network
testbed and with real data update scenarios.

3 Preliminaries

FlexDPDP approach provides variable block sized dynamic provable data pos-
session and uses FlexList as the underlying data structure. We first introduce
the intuition behind FlexList and definitions of FlexDPDP to form the basis for
describing the proposed optimizations.

FlexList is a skip-list-like authenticated data structure (Fig. 1). Each node
keeps a hash value calculated according to its rank, level, the hash value of below
neighbor, and the hash value of the after neighbor, where rank indicates the
number of bytes that can be reached from the node, and level is the height of a
node in the FlexList. Note that the hash of the root node is dependent on all leaf
level nodes’ hashes. Each leaf level node keeps a link to the data (the associated
block of the file stored) to which it refers, the length of the data, and a tag value
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Fig. 1. A FlexList example.

calculated for the data. Rank values are calculated by adding the below and
after neighbors’ ranks. If a node is at the leaf level, we use the length of its data
as below neighbor’s rank. FlexList has sentinel nodes as the first and the last
nodes, which have no data and hence their length value is 0, as shown in Fig. 1.
These nodes generate no new dependencies but are useful to make algorithms
easier and more understandable.

A node’s below neighbor’s rank shows how many bytes can be reached fol-
lowing the below link. The search operation uses this information to find a
searched index. We check if the searched index is less than the rank of the below
neighbor, if so we follow the below link, otherwise we follow the after link. When
we follow an after link, the index we look for is diminished by the amount of
bytes passed (rank of the below node). We repeat this procedure to reach the
node that includes the search index. A search path is the ordered set of nodes
visited on the way to reach a searched index by following the above rule starting
from the root.

Insert/Remove operations perform addition/removal of a leaf node by keeping
the necessary non-leaf nodes and removing the unnecessary ones, thus preserving
the optimality of the structure (definitions and details are provided in [17]).
Figure 2 illustrates an example of both insert and remove operations. First
we insert a data of length 50 to index 110 at level 2. Dashed lines show the nodes
and links which are removed, and bold lines show the newly added ones. Node
c5 is removed to keep the FlexList optimal [17]. The old rank values are marked
and new values written below them. For the removal of the node at index 110,
read the figure in the reverse order, where dashed nodes and lines are newly
added ones and strong nodes and lines are to be removed, and the initial rank
values are valid again.

Besides search, modify, insert, and remove algorithms, a build skip list
algorithm was introduced in [17] that generates a FlexList on top of an ordered
data using O(n) time. The algorithm takes all data blocks, their corresponding
tag values, and levels of prospective nodes as input, and generates the FlexList
attaching nodes from right to left, instead of a series of insert method calls
(which would cost O(n log n) in total). In Fig. 1, the order of node generation is:
c16, c15, c14, c13, c12, c11, c10, c9, and so on.
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Fig. 2. Insert and remove examples on FlexList.

FlexDPDP [17] is a FlexList-based secure cloud storage scheme built on
DPDP [16]. The scheme starts with the client pre-processing and uploading her
data to the server. While pre-processing, both the client and the server build a
FlexList over the data blocks. The client keeps the root of the FlexList as her
meta data and the server keeps the FlexList as a whole. The server later uses
the FlexList to generate proofs of data possession.

For proof of possession, Esiner et al. proposed an algorithm named gen-
MultiProof [17], which collects all necessary values through search paths of
the challenged nodes without any repetition. A multi proof is a response to a
challenge of multiple nodes. For instance, a challenge to indices 50, 180, 230 in
Fig. 1 is replied by a proof vector as in Fig. 4, together with a vector of tags of
the challenged nodes and the block sum of the corresponding blocks. This proof
vector is used to verify the integrity of these specific blocks. We use, in Sect. 4.3,
this proof vector to verify the multiple updates on the server as well.

The client verifies the proof by calling verifyMultiProof which calculates
the hash values from the proof vector one by one until the root’s hash value. If
the hash value of the root is equal to the meta data that the client keeps, and
hashes and tags are verified, the client is satisfied. If the client is not satisfied
with the proof received, she can use the it to prove that her data is not kept
intact. We use the verifyMultiProof method to verify the proof of the nodes on
which we perform updates. Update information consists of the index of the
update, the new data and the corresponding tag.

4 Optimizations on FlexDPDP

In this section, we describe our optimizations on FlexDPDP and FlexList for
achieving an efficient and secure cloud storage system. We then demonstrate the
efficiency of our optimizations in the next section.

First, we observe that a major time consuming operation in the FlexDPDP
scheme is the pre-process operation, where a build FlexList function is employed.
Previous O(n) time algorithm [17] is an asymptotic improvement, but in terms
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of actual running times, it is still noticeably slow to build a large FlexList (e.g.,
half a minute for a 1GB file with 500000 blocks). A parallel algorithm can run as
fast as its longest chain of dependent calculations, and in the FlexList structure
each node depends on its children for the hash value; yet we show that building
a FlexList is surprisingly well parallelizable.

Second, we observe that performing and verifying FlexDPDP updates in
batches yield great performance improvements, and also match the real world
usage of such a system. The hash calculations of a FlexList take most of the
time spent for an update, and performing them in batches may save many hash
unnecessary calculations.

Therefore, in this section, we provide a parallel algorithm for building
FlexList, a multi-block update algorithm for the server to perform updates
faster, and a multi-block verification algorithm for the client to verify the
update proofs sent by the server. Notation used in our algorithms is presented
in Table 1.

4.1 Parallel Build FlexList

We propose a parallel algorithm to generate a FlexList over the file blocks,
resulting in the same FlexList as a sequentially generated one. The algorithm
has three steps. Figure 3 shows the parallel construction of the same FlexList
as in Fig. 1 on three cores. We first distribute tasks to threads and generate
small FlexLists. Second, to unify them, we connect all roots together with links
(c1 to r1 and r1 to r2, thus eliminate l1 and l2) and calculate new rank values
of the roots (r1 and c1). Third, we use basic remove function to remove the
left sentinels, which remain in between each part (to indices 360 and 180: 360
= c1.rank - r2.rank and 180 = c1.rank - r1.rank). In the example, the remove
operation generates c5 and c10 of Fig. 1 and connects the remaining nodes to
them, and rank values on the search paths of c2, c6, c7, c11 are recalculated after
the removal of sentinel nodes. As a result, all the nodes of the small FlexLists
are connected to their level on the FlexList. After the unify operation, we obtain
the same FlexList of Fig. 1 generated efficiently in a parallel manner.

Fig. 3. A build skip list distributed to 3 cores.
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Table 1. Symbols and helper methods used in our algorithms.

Symbol Description

cn / nn current node / new node

after / below node reached by following the after link / by following the below
link

C contains the indices that are challenged (ascending order)

i / first / last index / C’s current index / C’s end index

rs The amount of bytes passed with each follow of an after link

state state contains a node, rank state, and last index. These values are
used to set the current node cn to the point where the algorithm
will continue

P / T / M proof vector / tag vector / block sum

�s intersection stack, stores states at intersections

�l stores nodes for which a hash calculation is to be done

Method Description

canGoBelow [17] returns true if the searched index can be reached by following the
below link

isIntersection [17] returns true when the first index can be found following the below
link and the second index is found by following the after link.
If there are more than one intersection, decrements last for each
until finds the closest one

generateIndices generates an array of indices of the nodes that have been affected.
Say the update index is i, the algorithm adds i for an insert or
modify, adds i and i-1 for a remove

4.2 Handling Multiple Updates at Once

We investigated the verifiable updates and inferred that the majority of the time
spent is for the hash calculations in each update. We discuss this in detail in
Sect. 5. The client first downloads the part of the data she is interested in, then
when she alters the data and sends it to the server, she generates a vector of
updates (U) out of a diff algorithm, which is used to show the changes between
the last and the former versions of a file.

Algorithm 4.1. multiUpdate Algorithm
Input: FlexList, U
Output: P , T , M , newRootHash

Let U = (u0, . . . , uk) where uj is the jth update information

C = generateIndices(U) //According to the nature of the update for each u ∈ U , we1
add an index to the vector (uj .i for insert and modify, uj .i and uj .i − 1 for remove
as it is for a single update proof)
P , T , M= genMultiProof(C) //Generates the multiProof using the FlexList2
for i = 0 to k do3

apply ui to FlexList without any hash calculations4
update C to all affected nodes using U5
calculateMultiHash(C) // Calculates hash values of the changed nodes6
newRootHash = FlexList.root.hash7
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An update information u ∈ U , includes an index i, and (if insert or modify)
a block and a tag value. Furthermore, the updates on a FlexList consist of a
series of modify operations followed by either insert or remove operations, all
to adjacent nodes. This nature of the update operations makes single updates
inefficient since they keep calculating the hash values of the same nodes over and
over again. To overcome this problem, we propose dividing the task into two:
doing a series of updates without the hash calculations, and then calcu-
lating all affected nodes’ hash values at once, where affected means that
at least an input of the hash calculation of that node has changed. The multi-
Update (Algorithm 4.1) gets a FlexList and vector of updates U , and produces
proof vector P , tag vector T , block sum M , and new hash value newRootHash
of the root after the updates.

hashMulti (Algorithm 4.2), employed in calculateMultiHash algorithm, col-
lects nodes on a search path of a searched node. In the meantime, it is collecting
the intersection points (which is the lowest common ancestor (lca) of the node the
collecting is done for and the next node of which the hash calculation is needed).
The repetitive calls from calculateMultiHash algorithm for each searched node
collects all nodes which may need a hash recalculation. Note that each time, a
new call starts from the last intersecting (lca) node.

Algorithm 4.2. hashMulti Algorithm
Input: cn, C, first, last, rs, �l, �s
Output: cn, �l, �s

// Index of the challenged block (key) is calculated according to the current sub
skip list root
i = Cfirst−rs1
while Until challenged node is included do2

cn is added to �l3
//When an intersection is found with another branch of the proof path, it is
saved to be continued again, this is crucial for the outer loop of ‘‘multi’’
algorithms
if isIntersection(cn, C, i, lastk, rs) then4

//note that lastk becomes lastk+1 in isIntersection method
state(cn.after, lastk+1, rs+cn.below.r) is added to �s5

if (CanGoBelow(cn, i)) then6
cn = cn.below //unless at the leaf level7

else8
// Set index and rank state values according to how many bytes at leaf nodes
are passed while following the after link
i -= cn.below.r; rs += cn.below.r; cn = cn.after9

calculateMultiHash (Algorithm 4.3) first goes through all changed nodes
and collects their pointers, then calculates all their hash values from the largest
index value to the smallest, until the root. This order of hash calculation respects
all hash dependencies.

We illustrate handling multiple updates with an example. Consider a multi-
Update called on the FlexList of Fig. 1 and a consecutive modify and insert
happen to indices 50 and 110 respectively (insert level is 2). When the updates
are done without hash calculations, the resulting FlexList looks like in Fig. 2.
Since the tag value of c6 has changed and a new node added between c6 and
c7, all the nodes getting affected should have a hash recalculation. If we first
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perform the insert, we need to calculate hashes of n3, n2, c6, n1, c2 and c1.
Later, when we do the modification to c6 we need to recalculate hashes of nodes
c6, n1, c2 and c1. There are 6 nodes to recalculate hashes but we do 10 hash
calculations. Instead, we propose performing the insert and modify operations
and call calculateMultiHash to indices 50 and 110. The first call of hashMulti
goes through c1, c2, n1, and c6. On its way, it pushes n2 to a stack since the
next iteration of hashMulti starts from n2. Then, with the second iteration of
calculateMultiHash, n2 and n3 are added to the stack. At the end, we call the
nodes from the stack one by one and calculate their hash values. Note that the
order preserves the hash dependencies.

Algorithm 4.3. calculateMultiHash Algorithm
Input: C
Output:

Let C= (i0, . . . , ik) where ij is the (j + 1)th altered index;

statem = (nodem, lastIndexm, rsm)
cn = root; rs = 0; �s, �l are empty; state= (root, k, rs)1
// Call hashMulti method for each index to fill the changed nodes stack �l

for x = 0 to k do2
hashMulti(state.node,C, x,state.end,state.rs,�l,�s)3
if �s not empty then4

state = �s.pop(); cn = state.node ; state.rs += cn.below.r5
for k =�l.size to 0 do6

calculate hash of kth node in �l7

4.3 Verifying Multiple Updates at Once

When the multiUpdate algorithm is used at the server side of the FlexDPDP
protocol, it produces a proof vector, in which all affected nodes are included,
and a hash value, which corresponds to the root of the FlexList after all of the
update operations are performed.

The solution we present to verify such an update is constructed in four parts.
First, we verify the multi proof both by FlexList verification and tag verifi-
cation.

Fig. 4. An output of a multiProof algo-
rithm.

Fig. 5. The temporary FlexList gener-
ated out of the proof vector in Fig. 4.
Note that node names are the same
with Fig. 1.
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Second, we construct a temporary FlexList, which is constituted of the
parts necessary for the updates. Third, we do the updates as they are, at
the client side. The resulting temporary FlexList has the root of the original
FlexList at the server side after performing all updates correctly. Fourth and
last, we check if the new root we calculated is the same as the one sent by the
server. If they are the same return accept and update the meta data that is kept
by the client.

Constructing a Temporary FlexList out of a Multi Proof: Building
a temporary FlexList is giving the client the opportunity to use the regular
FlexList methods to do the necessary changes to calculate the new root. Dummy
nodes that we use below are the nodes that have some values set and are never
subject to recalculation.

We explain the Algorithm7.1 (see Appendix) using the proof vector presented
in Fig. 4. The output of the algorithm given the proof vector is the temporary
FlexList in Fig. 5. First, the algorithm takes the proof node for c1, generates
the root using its values and adds the dummy after, with the hash value (of
c16) stored in it. And the nodes are connected to each other depending on their
attributes. The proof node for c2 is used to add node c2 to the below of c1 and
the c2’s dummy node is connected to its below with rank value of 50, calculated
as rank of c2 minus rank of c5. Note that the rank values of below nodes are used
in regular algorithms so we calculate and set them. The next iteration sets c5 as
c2’s after and c5’s dummy node c10 is added to c5’s after. The next step is to add
c6 to the below of c5. c6 is both an end node and an intersection node, therefore
we set its tag (from the tag vector) and its length values. Then we attach c7

and calculate its length value since it is not in the proof vector generated by
genMultiProof (but we have the necessary information: the rank of c7 and the
rank of c8). Next, we add the node for c8, and set its length value from the proof
node and its tag value from the tag vector. Last, we do the same to c9 as c8.
The algorithm outputs the root of the new temporary FlexList.

Verification: Recall that U is the list of updates generated by the client. An
update information u ∈ U , includes an index i, and if the update is an inser-
tion or modification, a block and a tag value. The client calls verifyMultiUpdate
(Algorithm 7.2) with its meta data and the outputs P , T , M of multiUpdate
from the server. If verifyMultiProof returns accept, we call buildDummyFlexList
with the proof vector P . The resulting temporary FlexList is ready to handle
updates. Again we perform the updates without the hash calculations and then
call the calculateMultiHash algorithm. But, we do not need to track changes to
call a calculateMultiHash at the end, but instead calculate the hash of all the
nodes present in the list. Last, we check if the resulting hash of the root of our
temporary FlexList is equal to the one sent by the server. If they are the same,
we accept and update the client’s meta data.
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5 Experimental Evaluation

We used our implementations of the FlexList data structure and the FlexDPDP
protocol, that are in C++ with the aid of the Cashlib library [8,28] for cryp-
tography and the Boost Asio library [6] for network programming. Our local
experiments are run on a 64-bit computer possessing 4 Intel(R) Xeon(R) CPU
E5-2640 @ 2.50 GHz CPU, 16 GB of memory and 16 MB of L2 level cache, run-
ning Ubuntu 12.04 LTS. The security parameters are as follows: 1024 bit RSA
modulus, 80 bit random numbers, SHA1 as hash function resulting with an
expected security of 80 bits. Mostly, FlexList operations run on RAM, but we
keep each block of a file separately on the hard disk drive and include the I/O
times in our experimental analysis.

Fig. 6. Time spent while building a
FlexList from scratch.

Fig. 7. Speedup values of buildFlexList
function with multiple cores.

5.1 Parallel Build FlexList Performance

Figure 6 shows the build FlexList function’s time as a function of the number
of cores used in parallel. The case of one core corresponds to the buildFlexList
function proposed in [17]. From 2 cores to 24 cores, we measure the time spent
by our parallel build FlexList function. Notice the speed up where parallel build
reduces the time to build a FlexList of 4 million blocks from 240 s to 30 s on
12 cores The speedup values are reported in Fig. 7 where T stands for time for
a single core used and Tp stands for time with p number of cores used. The
more sub-tasks created, the more time is required to divide the big task into
parts and to combine them. We see that a FlexList of 100000 blocks does not
get improved as much, since the sub tasks are getting smaller and the overhead
of thread generation starts to surpass the gain of parallel operations. Start-
ing from 12 cores, we observe this side effect for all sizes. For 500000 blocks



76 E. Esiner et al.

(i.e., 1 GB file) and larger FlexLists, speed ups of 6 and 7.7 are observed on
8 and 12 cores respectively.

5.2 Server-Side Multi Update Operations

Results for the core FlexList methods (insert, remove, modify) with and without
the hash calculations for various sizes of FlexList are shown in Fig. 8. Even with
the I/O time, the operations with the hash calculations take 10 times more
time than the simple operations in a 4 GB file (i.e., 2000000 nodes). The hash
calculations in an update take 90% of the time spent for an update operation.
Therefore, this finding indicates the benefit of doing hash calculations only once
for multiple updates in the performMultiUpdate algorithm.
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Fig. 8. Time spent for an update oper-
ation in FlexList with and without
hash calculations.
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Fig. 9. Time spent on performing
multi updates against series of single
updates.

performMultiUpdate allows using multi proofs as discussed in Sect. 4. This
provides ∼25 % time and space efficiency on the verifiable update operations
when the update is ∼20KB, and this gain increases up to ∼35 % with 200 KB
updates. The time spent for an update at the server side for various size of
updates is shown in Fig. 9 with each data point reflecting the average of 10
experiments. Each update is an even mix of modify, insert, and remove oper-
ations. If the update locality is high, meaning the updates are on consecutive
blocks (a diff operation generates several modifies to consecutive blocks followed
by a series of remove if the added data is shorter than the deleted data, or a
series of inserts otherwise [17]), using our calculateMultiHash algorithm after the
updates without hash calculation on a FlexList for a 1 GB file, the server time
for 300 consecutive update operations (a 600 KB update) decreased from
53 ms to 13 ms.
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data. Two lines present: first, server
throughput in count per second and
second, whole time for a challenge
query of FlexDPDP, in ms.

5.3 Client-Side Multi Update Operations

For the server to be able to use multiUpdate algorithm, the client could be able to
verify multiple updates at once. Otherwise, as each single verify update requires
a root hash value after that specific update, all hash values on the search path
of the update should be calculated each time. Also, each update proof should
include a FlexList proof alongside them. Verifying multiple updates at once not
only diminishes the proof size but also provides time improvements at the client
side. Figure 10 shows that a multi verify operation is faster at the client side when
compared to verifying all the proofs one by one. We tested two scenarios: One
is for the updates randomly distributed along the FlexList, and the other is for
the updates with high locality. The client verification time is highly improved.
For instance, with a 1 GB file and a 300 KB update, verification at the client
side was reduced from 45 ms to less than 5 ms. With random updates, the multi
verification is still 2 times faster.

5.4 Real Usage Performance Analysis via PlanetLab

We deployed the FlexDPDP model on the world-wide network testbed Planet-
Lab. We chose a node in Wuerzburg, Germany1 on PlanetLab as the server which
has two Intel(R) Core(TM)2 CPU 6600 @ 2.40 GHz (IC2) and 48 MBit upload
and 80 MBit download speed. Our protocol runs on a 1 GB file, which is divided
into blocks of 2 KB, having 500000 nodes (for each client). The throughput is
defined as the maximum number of queries the server can reply in a second.
1 planetlab1.informatik.uni-wuerzburg.de.
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Our results are the average of 50 runs on the PlanetLab with randomly chosen
50 clients from all over the Europe.

Challenge Queries: We measured two metrics, the whole time spent for a
challenge proof interaction at the client side and the throughput of the server
(both illustrated in Fig. 11). As shown in the Figure, the throughput of the server
is around 21. When the server limit is reached, we observe a slowdown on the
client side where the response time increases from around 500 ms to 1250 ms.
Given that preparing a proof of size 460 using the IC2 processor takes 40ms
using genMultiProof on a single core, we conclude that the bottleneck is not
the processing power. The challenge queries are solely a seed, thus the download
speed is not the bottleneck neither. A proof of a multi challenge has an aver-
age size of 280 KB (∼215 KB FlexList proof, ∼58 KB tags, ∼2 KB blocksum),
therefore to serve 21 clients in a second a server needs 47 MBit upload speed
which seems to be the bottleneck in this experiment. The more we increase the
upload speed, the more clients we can serve with such a low end server.
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Fig. 12. Server throughput versus the
frequency of the client queries.
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Fig. 13. A client’s total time spent for
an update query (sending the update,
receiving a proof and verifying the
proof).

Update Queries:
Real Life Usage Analysis Over Real Version Control System Traces:
We have conducted analysis on the SVN server where we have 350 MB of data
that we have been using for the past 2 years. We examined a sequence of 627
commit calls and provide results for an average usage of a commit function by
means of the update locality, the update size being sent through the network,
and the updated number of blocks.
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We consider the directory hierarchy proposed in [16]. The idea presented is
to set root of each file’s FlexList (of the single file scheme presented) in the leaf
nodes of a dictionary used to organize files. The update locality of the commits
is very high. More than 99 % of the updates in a single commit occur in the same
folder, thus do not affect most parts of the directory, thus FlexList but a small
portion of them. Moreover, 27 % of the updates are consecutive block updates
on a single field of a single file.

With each commit an average of size 77 KB is sent, where we have 2.7 %
commits of size greater than 200 KB and 85 % commits has size less than 20KB.
These sizes are the amounts sent through the network. Erway et al. show analysis
on 3 public SVN repositories. They indicate that the average update size is
28 KB [16]. Therefore in our experiments on PlanetLab we choose 20KB (to
show general usage) and 200KB (to show big commits) as the size sent for a
commit call. The average number of blocks affected per commit provided by
Erway et al. is 13 [16] and is 57.7 in our SVN repository. They both show the
necessity of efficient multiple update operations.

We observe the size variation of the commits and see that the greatest com-
mon divisor of the size of all commits is 1, as expected. Thus we conclude that
fixed block sized rank-based authenticated skip lists is not applicable to the
cloud storage scenario.

Table 2. Proof time and size table for various type of updates.

Update size and type Server proof Corresponding

generation time proof size

200KB (100 blocks) randomly dist 30 ms 70KB

20KB (10 blocks) randomly dist 10 ms 11KB

200KB (100 blocks) consecutive 7 ms 17KB

20KB (10 blocks) consecutive 6 ms 4KB

Update Queries on the PlanetLab: We perform analysis using the same
metrics as a challenge query. The first one is the whole time spent at the client
side (Fig. 13) and the second one is the throughput of the server (Fig. 12), for
updates of size ∼20 KB and ∼200 KB. We test the behavior of the system by
varying the query frequency, the update size, and the update type (updates to
consecutive blocks or randomly selected blocks). Table 2 shows the measurements
for each update type.

Figure 12 shows that a server can reply to ∼45 many updates of size 20 KB
and ∼8 many updates of size 200 KB per second. Figure 13 also approves, that
the server is loaded, by the increase in time of a client getting served. Compar-
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ing update proofs with the proof size of only challenges (shown in Fig. 11), we
conclude that the bottleneck for replying update queries is not the upload speed
of the server, since a randomly distributed update of size 200 KB needs 70 KB
proof and 8 proof per second is using just 4.5 Mbit of the upload bandwidth or
a randomly distributed updates of size 20 KB needs a proof of size 11 KB and
45 proof per second uses only 4MBit of upload bandwidth. Table 2 shows the
proof generation times at the server side. 30 ms per 200 KB random operation
is required so a server may answer up to 110-120 queries per second with IC2
processor and 10 ms per 20 KB random operation is required, thus a server can
reply up to 300 queries per second. Therefore, the bottleneck is not the process-
ing power either. Eventually the amount of queries of a size a server can accept
per second is limited, even though the download bandwidth does not seem to
be loaded up. But, note that the download speed is checked with a single source
and a continuous connection. When a server keeps accepting new connections,
the end result is different. This was not a limiting issue in answering challenge
queries since a challenge is barely a seed to show the server which blocks are
challenged. In our setting, there is one thread at the server side which accepts
a query and creates a thread to reply it. We conclude that the bottleneck is
the server query acceptance rate of our implementation. These results indicate
that with a distributed and replicated server system, a server using FlexDPDP
scheme may reply to more queries.

6 Conclusion and Future Work

In this study, we have extended the FlexDPDP scheme with optimized and
efficient algorithms, and tested their performance on real workloads in network
realistic settings. We obtained a speed up of 6 using 8 cores on the pre-processing
step, 60 % improvement on the server-side updates, and 90 % improvement while
verifying them at the client side.

We deployed the scheme on the PlanetLab testbed and provided detailed
analysis using real version control system workload traces. We measured the
throughput of the server and the time spent at the client side after our opti-
mizations and show that even with a low-end server, the bottleneck is the upload
speed of the server. And we show that at the client side, the latencies are not
perceptible.

After the optimizations, with the experiments, we show that the implemented
FlexDPDP scheme is practically usable in real life scenarios. As future work, we
plan to extend FlexDPDP to distributed and replicated servers.
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7 Appendix: Optimization Algorithms

Algorithm 7.1. constructTemporaryFlexList Algorithm
Input: P , T
Output: root (temporary FlexList)

Let P = (A0, . . . , Ak), where Aj = ( levelj , rj , hashj , rgtOrDwnj , isInterj , isEndj ,
lengthj) for j = 0, . . . , k; T = (tag0, . . . , tagt), where tagt is tag for challenged
blockt and dummy nodes are nodes including only hash and rank values set on them and
they are final once they are created; //
root = new Node(r0, length0) // This node is the root and we keep this as a pointer1
to return at the end//
�s = new empty stack2
cn = root3
dumN = new dummy node is created with hashj4
cn.after = dumN5
for i = 0 to k do6

nn = new node is created with Leveli+1 and ri+17
if isEndi and isInteri then8

cn.tag = next tag in T ; cn.length = lengthi ; cn.after = nn; cn = cn.after9
else if isEndi then10

cn.tag = next tag in T ; cn.length = lengthi ; if ri != lengthi then11
dumN = new dummy node is created with hashi as hash and ri - lengthi as12
rank
cn.after = dumN13

if �s is not empty then14
cn = �s.pop() ; cn.after = nn; cn = cn.after15

else if leveli = 0 then16
cn.tag = hashi ; cn.length = ri - ri+1 ; cn.after = nn ; cn = cn.after17

else if isInteri then18
cn is added to �s ; cn.below = nn; cn = cn.below19

else if rgtOrDwni = rgt then20
cn.after = nn21
dumN = new dummy node is created with hashi as hash and ri - ri+1 as rank22
cn.below = dumN ; cn = cn.after23

else24
cn.below = nn25
dumN = new dummy node is created with hashi as hash and ri - ri+1 as rank26
cn.after = dumN ; cn = cn.below27

return root28

Algorithm 7.2. verifyMultiUpdate Algorithm
Input: P , T ,MetaData, U, MetaDatabyServer

Output: accept or reject

Let U= (u0, . . . , uk) where uj is the jth update information

if !verifyMultiProof(P, T, MetaData) then1
return reject2

FlexList = buildTemporaryFlexList(P )3
for i = 0 to k do4

apply ui to FlexList without any hash calculations5
calculate hash values of all nodes in the temporary FlexList. //A recursive call from the6
root
if root.hash != MetaDatabyServer then7

return reject8
return accept9
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