
Asma Al-Saidi
Rudolf Fleischer
Zakaria Maamar
Omer F. Rana (Eds.)

 123

LN
CS

 8
99

3

First International Conference, ICC 2014
Muscat, Oman, February 24–26, 2014
Revised Selected Papers

Intelligent
Cloud Computing

Lecture Notes in Computer Science 8993

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Asma Al-Saidi • Rudolf Fleischer
Zakaria Maamar • Omer F. Rana (Eds.)

Intelligent
Cloud Computing
First International Conference, ICC 2014
Muscat, Oman, February 24–26, 2014
Revised Selected Papers

123

Editors
Asma Al-Saidi
Sultan Qaboos University
Muscat
Oman

Rudolf Fleischer
GUtech
Muscat
Oman

Zakaria Maamar
Zayed University
Dubai
Utd.Arab.Emir.

Omer F. Rana
Cardiff University
Cardiff
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-19847-7 ISBN 978-3-319-19848-4 (eBook)
DOI 10.1007/978-3-319-19848-4

Library of Congress Control Number: 2015941112

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web and HCI

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

Recent advances in information and communication technologies (ICT) such as
computing, storage, and networking have led to the development of a new generation
of electronic services and systems that are ubiquitous, available at the touch of a button,
and affect all aspects of life and economy. Cloud computing, one of the ICT advances,
provides an important integration of many of these aspects — combining both the
ability to offer services over distributed, remotely accessed infrastructure, along with
the ability to combine off-site, remote infrastructure with local infrastructure available
within an institution. It is therefore expected that cloud-based services will revolu-
tionize the way we do business, maintain our health, conduct education, and how we
secure, protect, inform, and entertain ourselves.

Increasing integration across multiple types of computing infrastructure and the
deployment of services across such infrastructure lead to significant design, development,
and management challenges. For instance, how should such remote resources be
managed, accessed, and paid for? Or how can cloud computing platforms be used to host
and manage large and complex data sets (aka big data)— arising from social media data
feeds (e.g., Twitter), open government data, to large-scale scientific simulations? Owing
to the significant development effort invested into cloud systems, there is a pressing need
to re-visit existing design, development, and management strategies so that dynamic
adaptability, rapid delivery, and efficient access to cloud-based services can take place in a
seamless manner.

A variety of intelligent mechanisms and techniques may be used to develop
advanced cloud systems, solutions, and services that offer new functionalities and more
advanced user-centric services. Implementing intelligence in cloud computing systems
will make them more adaptive, exible, and autonomic in resource management, in
service provisioning, and in running large-scale applications. In addition, it will help
organizations build an intelligent network capable of providing security, visibility, and
optimization for a better user experience.

The objective of the First International Conference on Intelligent Cloud Computing:
Theory and Applications (ICC 2014) was to bring together researchers, practitioners,
and developers working with cloud systems and intelligent systems, intending to
address some of the challenges identified above. The conference featured invited talks
from leading organizations working in cloud computing in Oman (such as Omantel and
the Information Technology Authority) and in the region (such as the Qatar Computing
Research Institute and Huawei Technologies Middle East). The conference had 131
registered participants, many hailing from ministries and leading research universities
in Oman, which demonstrates a significant interest in cloud computing in the region.

The current volume contains all papers presented at the conference, which were
subsequently updated based on discussions and comments from the audience, in the
areas of “Resource Management and Energy Efficiency” and “Security” — both key
research challenges at present. We thank all reviewers for their timely contributions,
and the authors and keynote speakers for presenting their work at the conference.

April 2015 Asma Al-Saidi
Rudolf Fleischer
Zakaria Maamar
Omer F. Rana

VI Preface

Organization

ICC 2014 was organized by the Department of Computer Science of the German
University of Technology in Oman (GUtech) under the patronage of H.E. Dr. Ali bin
Masoud bin Ali Al Sunaidi, Minister of Commerce and Industry, Sultanate of Oman.

Conference Chairs

Asma Al-Saidi Sultan Qaboos University, Oman
Rudolf Fleischer GUtech, Oman

Organizing Committee

Huda al-Amri Sultan Qaboos University, Oman
Ali Al-Badi Sultan Qaboos University, Oman
Wasila al-Busaidi Sultan Qaboos University, Oman
Asma Al-Saidi (Co-chair) Sultan Qaboos University, Oman
Rudolf Fleischer (Co-chair) GUtech, Oman
Nabil Sahli GUtech, Oman

Publicity Chair

Manuela Gutberlet GUtech, Oman

Program Committee Chairs

Zakaria Maamar Zayed University, UAE
Omer F. Rana Cardiff University, UK

Program Committee

Imad M. Abbadi University of Oxford, UK
Sherif Abdelwahed Mississippi State University, USA
Bader Al-Manthari Information Technology Authority, Oman
Saqib Ali Sultan Qaboos University, Oman
Ashiq Anjum University of Derby, UK
Boualem Benatallah University of New South Wales, Australia
Kenneth P. Birman Cornell University, USA
Luiz Fernando Bittencourt Institute of Computing University of Campinas, Brazil
Raouf Boutaba University of Waterloo, Canada
Simon Caton Karlsruhe Institute of Technology, Germany
Kyle Chard Argonne National Lab/University of Chicago, USA
Jerome Darmont University of Pierre Lumiere Lyon, France
Karim Djemame Leeds University, UK

Said Elnaffar UAE University, UAE
Rudolf Fleischer GUtech, Oman
Song Fu University of North Texas, USA
Youssef Iraqi University of Khalifa, UAE
Omer Khalid SAP Research, Ireland
Laurent Lefevre ENS Lyon, France
Bogdan Nicolae IBM Research, Ireland
Talal H. Noor University of Adelaide, Australia
Mohammed Odeh UWE Bristol, UK
Arto Ojala University of Jyvaskyla, Finland
Claus Pahl Dublin City University, Ireland
Ivan Rodero Rutgers University, USA
Bruno Schulze National Laboratory for Scientific Computing, Brazil
Quan Z. Sheng University of Adelaide, Australia
Carlos Varela Rensselaer Polytechnic Institute, New York, USA
Jon Weissman University of Minnesota, USA
Xiangyang Xue Fudan University, Shanghai, China
Fan Zhang Carnegie Mellon University, Qatar
Albert Zomaya University of Sydney, Australia

Conference Sponsors

VIII Organization

Contents

Invited Papers

Cloud Computing: Towards Making Computing a Utility. 3
Mohamed Hefeeda

Semantic Engine and Cloud Agency for Vendor Agnostic Retrieval,
Discovery, and Brokering of Cloud Services. 8

Alba Amato, Giuseppina Cretella, Beniamino Di Martino,
Luca Tasquier, and Salvatore Venticinque

A Concurrency Mitigation Proposal for Sharing Environments: An Affinity
Approach Based on Applications Classes . 26

Antonio R. Mury, Bruno Schulze, Fabio L. Licht, Luis C.E. de Bona,
and Mariza Ferro

On Cloud Spot Market: An Overview of the Research. 46
Zheng Li, Liam O’Brien, Rajiv Ranjan, Shayne Flint,
and Albert Y. Zomaya

Resource Management & Energy

Analysis and Optimization on FlexDPDP: A Practical Solution for Dynamic
Provable Data Possession . 65

Ertem Esiner, Alptekin Küpçü, and Öznur Özkasap

Leveraging Ad-hoc Networking and Mobile Cloud Computing to Exploit
Short-Lived Relationships Among Users on the Move 84

Jack Fernando Bravo-Torres, Martín López-Nores,
Yolanda Blanco-Fernández, José Juan Pazos-Arias,
and Esteban Fernando Ordióñez-Morales

Energy Consumption Analysis of HPC Applications Using NoSQL
Database Feature of EnergyAnalyzer . 103

Shajulin Benedict, R.S. Rejitha, and C. Bright

Security

A Low-Overhead Secure Communication Framework for an Inter-cloud
Environment. 121

Ali Sajjad, Muttukrishnan Rajarajan, and Theo Dimitrakos

http://dx.doi.org/10.1007/978-3-319-19848-4_1
http://dx.doi.org/10.1007/978-3-319-19848-4_2
http://dx.doi.org/10.1007/978-3-319-19848-4_2
http://dx.doi.org/10.1007/978-3-319-19848-4_3
http://dx.doi.org/10.1007/978-3-319-19848-4_3
http://dx.doi.org/10.1007/978-3-319-19848-4_4
http://dx.doi.org/10.1007/978-3-319-19848-4_5
http://dx.doi.org/10.1007/978-3-319-19848-4_5
http://dx.doi.org/10.1007/978-3-319-19848-4_6
http://dx.doi.org/10.1007/978-3-319-19848-4_6
http://dx.doi.org/10.1007/978-3-319-19848-4_7
http://dx.doi.org/10.1007/978-3-319-19848-4_7
http://dx.doi.org/10.1007/978-3-319-19848-4_8
http://dx.doi.org/10.1007/978-3-319-19848-4_8

Analysing Virtual Machine Security in Cloud Systems 137
Taimur Al Said and Omer F. Rana

Cloud Computing: Security Issues Overview and Solving Techniques
Investigation. 152

Yu Yang, Chenggui Zhao, and Tilei Gao

Author Index . 169

X Contents

http://dx.doi.org/10.1007/978-3-319-19848-4_9
http://dx.doi.org/10.1007/978-3-319-19848-4_10
http://dx.doi.org/10.1007/978-3-319-19848-4_10

Invited Papers

Cloud Computing: Towards Making
Computing a Utility

Mohamed Hefeeda(B)

Qatar Computing Research Institute, Doha, Qatar
mhefeeda@qf.org.qa

Abstract. Cloud computing strives to achieve the long-standing vision
of making computing a utility, similar to electricity, telephone, and water
services. This article discusses several research challenges that need to
be addressed in order to realize the full potential of cloud computing and
get computing closer to being a utility.

Keywords: Cloud computing · Utility computing

1 Cloud Computing Challenges

The cloud computing paradigm has attracted significant attention from acad-
emia, industry, governments, and even individual users. This paradigm promises
to achieve the long-standing vision of making computing a utility, similar to elec-
tricity, telephone, and water services. This means that computer users receive
computing services without worrying about the details of creating, managing,
and maintaining the infrastructures providing these services. Just as we receive
electricity, for example, without paying too much attention to the complex
process of power generation and its associated costs.

Cloud computing offers several advantages, such as reduced cost for setting up
and managing IT infrastructures, rapid deployment with elastic scaling up and
down of services to meet dynamic user demands, and improved reliability and
availability of services. While many algorithms and technologies used in building
cloud infrastructures existed before, several new research challenges need to be
addressed to realize the full potential of the cloud computing paradigm. These
research challenges are summarized in the following subsections.

1.1 Cloud Security

Many users perceive more security threats if they were to move their applications
and data to a public cloud because of the shared nature of the cloud. While in
fact this may not always be the case, since cloud providers typically follow best
practices in industry and hire top security experts, way beyond what individual
users and organizations can afford. Thus, one of the first tasks in the cloud secu-
rity area is to clearly identify and document potential security threats resulting
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 3–7, 2015.
DOI: 10.1007/978-3-319-19848-4 1

4 M. Hefeeda

from hosting applications and data on shared cloud infrastructures. To do so, we
need to develop a cloud security model that defines standard security metrics,
which can be quantified and measured.

A data-centric security model seems to be more appropriate for cloud plat-
forms. In this model, methods for controlling information flow (provenance)
within a cloud and across clouds should be developed. Also, end-to-end methods
for enforcing security policies should be designed.

In addition, tools to detect and respond to attacks on clouds are needed.
These tools should offer multi-level behavior profiling and monitoring, methods
for feature selection, data aggregation and correlation, and risk analysis and
quantification of various attacks.

Finally, cloud programming models should offer security and privacy-aware
APIs, in which users and developers can specify security/privacy requirements
of cloud applications.

1.2 Cloud Applications

Cloud applications can range from hosting simple desktop applications in a cloud
platform to processing web-scale data for creating web indexes for search engines
such as Google and Microsoft, and mining social interactions among users for
social networking web sites such as Facebook and Twitter. To accelerate wider
adoption of cloud platforms for current and future computing applications, we
need to identify and characterize “cloudifiable” applications, i.e., applications
that can be moved to cloud platforms. This can be done by developing methods
and tools to characterize the requirements of cloud applications and to map these
requirements to service level agreements (SLAs) offered by cloud platforms.

Also, aggregating and documenting best-practices and case studies for suc-
cessful (and failed) cloud applications can provide answers to questions such as
how and when to cloudify applications. In addition, we should promote “cloud
thinking” among users and application developers. Cloud thinking encourages
users and developers to think of the cloud as a computing abstraction, not as a
number of machines.

Finally, we need to develop management tools and algorithms to:

1. enable automatic scale-out of applications as resources become available,
2. automatically co-schedule applications with complementary resource require-

ments on the cloud (“compatible multitenancy”, e.g., cache-heavy and fre-
quent blocking),

3. support developers to mitigate frequent failures in the cloud (“design for
failure”), and

4. provide provable/auditable security requirements.

1.3 Cloud Programming

Programming models and tools are essential to design, implement, test, and
debug cloud applications. For wide cloud adoption, we need to develop tools

Cloud Computing: Towards Making Computing a Utility 5

to assist regular users, e.g., scientists and business analysts, to utilize cloud
platforms. For example, tools that enable widely-used software packages such
as Excel, Matlab, and R to seamlessly utilize cloud infrastructures are needed.
These tools should require minimum or zero programming efforts from users. In
addition, we should develop multi-level APIs, which can support various granu-
larities for accessing cloud resources.

For example, high-level APIs should be developed to allow cloud users to
describe the requirements of their cloud applications without worrying much
about the actual programming models used to develop such applications or the
hardware resources that will run these applications.

Medium-level APIs should be designed to assist application developers to
rapidly develop cloud applications without getting into details such as data repli-
cation, caching, fault tolerance, and process scheduling.

Low-level APIs can be used to control cloud resources, e.g., processors, VMs,
network, and disk blocks, in fine-grain manner. These APIs should have primi-
tives for specifying and trading off: elasticity, privacy, security, availability, per-
formance, and energy cost for cloud applications.

Finally, we need to identify a small set of programming models for develop-
ing cloud applications with diverse requirements, e.g., batch processing, online
stream processing, dependency of computation parts on each other, and distrib-
ution of input data sets. These programming models should be mathematically
formalized in order to provide assurance on cloud applications correctness and
performance.

1.4 QoS in Clouds

In order to accelerate the adoption of cloud infrastructures by diverse users, cloud
providers should consider offering different levels of quality of service (QoS).
Clearly specified SLAs for cloud services should be defined. These SLAs should
be easy to understand by administrators of IT infrastructures of business with
different sizes, which will facilitate moving more applications and data to clouds.
SLAs should consider environmental issues, e.g., energy consumption and carbon
footprint of applications, as well as application performance metrics such as com-
pletion time, availability, and response time. Ideally, SLAs should be transferable
from one cloud provider to another. Allocation and management algorithms of
cloud resources should be enhanced to enforce SLAs.

1.5 Energy-Efficient Clouds

The energy consumption bill makes a sizable portion of the cost of running data
centers, and this is portion is increasing relative to other costs including the
cost of servers, storage, and networking equipment. We do need to improve the
energy efficiency of cloud data centers, not only for reducing costs but also for
minimizing the carbon footprint of data centers especially as more of them are
being deployed worldwide.

6 M. Hefeeda

To improve energy efficiency, we first need to define energy consumption
metrics for data centers. Current metrics such as PUE (power usage efficiency)
are not sufficient as they only give coarse-grain measure for the whole data center.
We need more elaborate metrics for the data center as well as for individual
applications. Then, we need to design cloud applications that are energy aware,
which means that they can adapt their computations based on a given energy
budget and they can trade off some performance metrics for energy saving.

In addition, we should consider designing data centers that employ renew-
able energy sources, such as solar and wind powers. UPS (Uninterruptable Power
Supply) units can be utilized to absorb variations and sporadic outages in renew-
able energy sources. Different organization of UPS units in data centers need to
be explored and analyzed. UPS units can be used per server, per rack of servers,
per row of racks, or combinations thereof.

Furthermore, research efforts should be targeted to designing servers that
approach energy proportionality, as well as data centers that employ low-power
processing units such as Graphics Processing Units (GPUs) and asymmetric
processors that could have few fast cores and many slower cores.

Finally, we need to develop regulation, taxation, and energy pricing schemes
to encourage energy conservation in data centers.

1.6 Cloud + X Architectures

We should encourage developers and users to think of cloud as a part of a
bigger computing platform in which all components can efficiently be utilized to
contribute to the accomplishment of a computational task. For example, parts
of a cloud application could run on local desktops or mobile devices while others
could run on the cloud. We need to develop resource management tools for clouds
composed of heterogeneous elements. We need to design programming models for
“Cloud + X” platforms, where X could be a client device, specialized computing
resource, or anything else. The programming models should offer services to
partition and manage cloud applications.

1.7 Cloud Storage Systems

Variability in the performance of cloud storage systems is a major concern for
cloud applications. The variability comes from the shared nature of the cloud
platform. We first should define the appropriate performance metrics and con-
sistency models for various cloud applications.

Then, we need to improve the cloud middleware layer to reduce perfor-
mance variability of storage systems. Better schedulers need to be designed to
route requests within the cloud storage system in order to meet the perfor-
mance requirements of cloud applications. In addition, new storage media such
as FLASH and tapes should be integrated into cloud storage systems, and tools
to efficiently utilize them for different cloud applications need to be designed.

Finally, we need to define guidelines for choosing the appropriate logical
storage structure(s) based on the requirements of different cloud applications.

Cloud Computing: Towards Making Computing a Utility 7

1.8 Cloud Legal Frameworks and Standards

Many organizations deal with sensitive data. A clear and legally-binding frame-
work for hosting data and applications is needed. The framework should allow
fine access control on data and applications. We also need legal processes to
handle hosting data and applications on international clouds. Which laws are
enforced on cloud providers? Local or international laws? Currently, many orga-
nizations prefer local clouds, which are not always available or efficient.

In addition, organizations would like to have the option to move from one
cloud provider to another with minimal effort and disruption of services. We
need to design well-defined standards for interoperability across different cloud
providers.

Semantic Engine and Cloud Agency for Vendor
Agnostic Retrieval, Discovery, and Brokering

of Cloud Services

Alba Amato, Giuseppina Cretella, Beniamino Di Martino(B), Luca Tasquier,
and Salvatore Venticinque

Department of Industrial and Information Engineering, Second University of Naples,
Aversa, Italy

bemiamino.dimartino@unina.it,

{alba.amato,giuseppina.cretella,luca.tasquier,
salvatore.venticinque}@unina2.it

Abstract. Cloud computing is moving from being a testing ground for
isolated projects to being a strategic approach of the entire business orga-
nization. So the choice among the possible cloud offers, with a strong
focus on the choice of services that enable better processes and projects
of the business lines, is gaining importance. Nevertheless the heterogene-
ity of the Cloud services, resources, technology and service levels offered
by the several providers make difficult to decide. Besides the inconve-
niences caused by the “lock-in”, give rise to the need for developers to
be able to develop an application regardless of where it is released, struc-
turing and building it in a vendor agnostic way so that it is possible to
deploy on the provider that best fits them at the moment. The mOSAIC
project aims at designing and developing an innovative open-source API
and platform that enables applications to be Cloud providers’ neutral
and to negotiate Cloud services as requested by their users, allowing
automatic discovery, matchmaking, and thus supporting selection, bro-
kering, interoperability end even composition of Cloud Services among
multiple Clouds. In this paper, we illustrate the interoperation of the
two components, the Semantic Engine and the Cloud Agency for the
agnostic retrieval, discovery and brokering of cloud services. The focus
will be put on the way to support the Cloud Application Developer to
express the requirements and services/resources in vendor agnostic way
and to translate automatically these requirements into a neutral format
in order to compare it with the different offers of providers and to broker
the best one according to defined policies.

Keywords: Cloud brokering · Multi-agents systems · Cloud ontology ·
Semantic discovery · Cloud interoperability

1 Introduction

Cloud computing is moving from being a testing ground for isolated projects
to being a strategic approach of the entire business organization. So the choice
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 8–25, 2015.
DOI: 10.1007/978-3-319-19848-4 2

Semantic Engine and Cloud Agency 9

among the possible cloud offers, with a strong focus on the choice of services that
enable better processes and projects of the business lines, is gaining importance.
Nevertheless the heterogeneity of the Cloud services, resources, technology and
service levels offered by the several providers make it difficult to decide [1,2]. In
fact different vendors have introduced different paradigms and services so leading
to clouds that are diverse and vendor-locked, as happened during the early days
of the computer hardware industry, when each vendor made and marketed its
own version of incompatible computer equipment. Besides the inconveniences
caused by the “lock-in”, give rise to the need for developers, to be able to develop
an application regardless of where it is released structuring and building it in a
vendor agnostic way so that it is possible to deploy on the provider that best
fits them at the moment. Even if several efforts have been made to standardize
clouds’ important technical aspects, for example from the US National Institute
of Standards and Technology (NIST), standardization is still far from reality.

In this scenario, it would be useful to have a way to express the user’s require-
ments closer to the user logic, translate automatically these requirements into a
neutral format in order to compare it with offers of providers and for choosing
the best one according to defined policies. A common ontology can help to bridge
the gap between application requirements and technical requirements declared
by resource providers. In fact semantic can help address clouds key interoperabil-
ity and portability issues. For example semantic technologies are useful to define
an agnostic, machine readable, description of resources to be compared with
the vendor offers using a brokering system, that acquire autonomically resources
from providers on the basis of SLA evaluation rules.

The mOSAIC project [3] aims at designing and developing an innovative
open-source API and platform that enables applications to be Cloud providers’
neutral and to negotiate Cloud services as requested by their users, allowing
automatic discovery, matchmaking [4], and thus supporting selection, brokering,
interoperability end even composition of Cloud Services among multiple Clouds.

In order to support this selection and requirements specification has been
developed:

– a Knowledge Base, representing resources and domain concepts and rules by
means of Semantic Web Ontologies and inference rules;

– a support tool, the Semantic Engine, that helps the user to abstract the
requirements in vendor independent way starting from application require-
ments or from specific vendor resources;

– a Cloud Agency, that compares the different offers of providers with the user
proposal and retrieves the best offer. The user can also delegate to the Agency
the monitoring of resource utilization, the necessary checks of the agreement
fulfillment and eventually re-negotiations.

In this paper, we illustrate the interoperation of the two components, the Seman-
tic Engine and the Cloud Agency for the agnostic retrieval, discovery and bro-
kering of cloud services. The focus will be put on the way to support the Cloud
Application Developer to express the requirements and services/resources in

10 A. Amato et al.

vendor agnostic way and to translate automatically these requirements into a
neutral format in order to compare it with the different offers of providers and
to broker the best one according to defined policies.

The user can choose the known concepts that describe his application or the
required resources, utilizing a knowledge base and inference rules managed by the
Semantic Engine, which supports him/her to produce a vendor agnostic template
of a Service Level Agreement, to be used for negotiating a concrete offer from
the available Cloud vendors. The Cloud Agency interacts with the supported
providers for retrieving the available offers and brokers the best one(s). The
Semantic Engine can further be useful for filtering many proposals, which are
optimal according to different criteria, when the user’s knowledge is not helpful.

The paper is organized as follows. In Sect. 2 we present the design architec-
ture, in Sects. 3 and 4 we present an ontology supporting the semantic repre-
sentation of resources and the engine based on it. In Sect. 5 a description of the
Cloud Agency and of the utilization of Broker Agents is provided; In Sect. 6 an
example is shown. In Sect. 7 we present an overview of works related to semantic
representation of cloud resources and multi-cloud resource brokering and nego-
tiation. Conclusions are drawn in Sect. 8.

2 Approach and Architecture

A Cloud Application Developer, who intends to develop a cloud based applica-
tion, would like to express his or her requirements according to the application
logic, to make a choice based on what he or she knows and based on high level
requirements. In order to support this selection and requirements specification,
we have developed:

– a Knowledge Base, representing resources and domain concepts and rules by
means of Semantic Web Ontologies and inference rules;

– a support tool, the Semantic Engine, that helps the user to abstract the
requirements in vendor independent way starting from application require-
ments or from specific vendor resources;

– a Cloud Agency, that compares the different offers of providers with the user
proposal and retrieves the best offer.

In Fig. 1 the integration and interaction of such components is shown.
The Semantic Engine, based on the ontologies and inference rules represent-

ing the Knowledge Base, enables the user in defining his or her requirements in
a format suitable for comparison among offers and produces an SLA template
that is passed to the Cloud Agency. The Cloud Agency adds the brokering rules
so composing the Call for Proposal (CFP) [5] that describes the list of resources,
which are necessary to run cloud applications. It includes also the negotiation
rules to select the best offer among those proposed by providers. After that the
Cloud Agency compares each proposal with the user’s template and retrieves
the best offer.

Semantic Engine and Cloud Agency 11

Fig. 1. Integrated view of knowledge base, Semantic Engine and Cloud Agency

3 An Ontology for the Development of Cloud
Based Application

The knowledge base developed in order to support the search and discovery of
suitable Cloud resources and component is structured into four sub-ontologies
and is developed using OWL language [6].

The sub-ontologies have the following purpose.

– The ApplicationDomain ontology represents the application and its patterns
expressed in the domain terminology of the end user. This level of abstrac-
tion contains concepts related to the application domain of applications, as
instance data mining, big data application related concepts.

– The FunctionalDomain ontology represents functional concepts of both cloud
and non cloud domain, such as Cloud functionalities and services but also tra-
ditional design and execution patterns for distributed and concurrent appli-
cation.

– The InfrastructureResourceDomain ontology provides concepts and relation
useful to describe information related to the resource such as Virtual Machines,
storage and network and their composite configurations.

– The ImplementationDomain ontology models information related to the con-
crete APIs of Cloud platforms. In particular this level contains the grounding
elements of effective cloud services, that means the elements useful to invoke
the implemented functionalities.

The four ontologies are linked together with relationships, for example, the
ApplicationDomain ontology imports the FunctionalDomain in order to relate

12 A. Amato et al.

application-domain concepts to functional patterns. The FunctionalDomain
ontology imports the ImplementationDomain and the InfrastructureResource-
Domain ontologies in order to establish semantic relationships for each function
needed by the Cloud application with grounding elements as specified above. In
such a way, the necessary grounding elements for the Cloud application can be
retrieved through selection of domain specific and functional concepts at higher
level of abstraction.

It’s worthwhile to have a look inside the ontology of the lowest level, which
represents the concepts that are actually returned as outputs of the semantic
module and are passed to the Cloud Agency. This “Infrastructure Resource
Domain ontology” contains the semantic structure to describe the basic resources
described by OCCI (Compute, Storage, Network) and an additional concept
that is the configuration, that means a composition of single resources. For the
representation of this ontology we started from OCCI description of resource
interface and we provide a uniform way to represent these information through
an ontology. For this reason our ontology is compliant with the OCCI resource
description [7].

The class hierarchy of this sub-ontology is shown in Fig. 2. This ontology
classifies the resources of type compute, storage and network in vendor resources
and agnostic resources. In the vendor resources we collect a series of offers by
cloud provider like IBM and Amazon, while in agnostic resources we collect
resources and their characteristic not linked with the offers of cloud provider.
The link between a configuration element and the resources that compose it are
represented through owl object property, while the characteristic of the single
resource are defined through owl data property according to the attribute defined
in OCCI [8] (Fig. 4). To the standard OCCI attributes we added two parameters
for the description, gpu and price. The vendors’ offers of several IAAS cloud
provider are represented in this ontology through individuals and their charac-
teristics. Figure 3 reports the list of individuals representing resources from the
IBM and Amazon Cloud provider offers already represented in the ontology. Of
course this list can be easily enriched. A cloud user accustomed to a particular
cloud provider may start from the specific customized solution (for instance the
IBM Silver Compute) and translate this solution in vendor independent’ terms
through the Semantic Engine, then pass this neutral representation to the Cloud
Agency to find an equivalent solution that fulfill additional requirements.

If instead the user don’t know which are the technical requirement of his/her
application, he/she can start specifying high level requirements as the complexity
of the algorithms used or functional/design requirements. These requirements
may be expressed using concepts contained in the knowledge base and then can
be translated in infrastructural requirements by the application of heuristic rules.
By following the generic structure of an ApplicationPattern that is based on a
design pattern or a composition of design pattern, it is possible to semantically
describe a whole range of engineering applications. This engineering application
can be semantically described by instantiating an ApplicationPattern class and
all the composing concepts including the AlgorithmicConcept and the Patterns
concepts with specific instances. All these concepts are semantically represented
in the Application and Functional Domain Ontologies.

Semantic Engine and Cloud Agency 13

Fig. 2. Infrastructure resource ontology class hierarchy

An important feature of the Semantic Engine is its capability to deduce an
appropriate parameterized configuration of the Cloud application and a generic
description of needed IaaS resources based on high level requirements. This fea-
ture is made possible by the execution of inference rules that extensively use the
semantic description of the application, particularly its design pattern and the
description of the critical aspects of the application that need elasticity, such
as the computational or data complexity of the algorithm. Listing 1.1 shows an
example of a rule that provides information on the needed properties of a Virtual
Machine that hosts a Web server in a Cloud application. This rule, based on the
design logic of the application, in this case a three-tier architectural pattern, and
on information about the expected visitors peak, aims to provide information
to the developer about the properties of the Virtual Machine that has to be
acquired from an IaaS provider.

Listing 1.1. Inference Rules

@prefix AP:ApplicationPattern.owl#

@prefix IRD:ResourceDomain.owl#

@prefix FP:FunctionalDomain .owl#

[WebAppRule:

(?x rdf:type AP:WebApplication),

(?x AP:hasDesignLogic ?dl),

(?dl rdf:type FP:Three -tier),

(?x AP:hasPeakVisitors ?y),

swrlb:divide (?k, 100, ?y),

swrlb:add (?k4, 4, ?k)

(?z rdf:type IRD:Compute),

(?z IRD:cores ?k),

greaterThan (?r, ?k),lessThan (?r, ?k4),

-> (?x AD:PatternUseInfrastructure ?z)]

14 A. Amato et al.

Fig. 3. Amazon and IBM resources list

The execution of inference rules on the knowledge base results in a list of
the needed IaaS resources for the application. Listing 1.2 presents a part of such
description.

Listing 1.2. Description of a resource necessary for the Cloud application

<ws:ServiceDescriptionTerm ws:Name ="Compute" >

<Compute >

<cpuSpeed >1.25</cpuSpeed >

<cpuCores >16</cpuCores >

<architecture >x86</architecture >

<memory >16</memory >

</ Compute >

</ws:ServiceDescriptionTerm >

The list of needed resources provided by the Semantic Engine can be used
by the Cloud Agency to automatically negotiate resources with a variety of IaaS
providers. Once the needed resources are negotiated with the Cloud provider,
the application can be deployed by using the list of needed software components
and the mOSAIC’s deployment tool.

4 Semantic Engine

The Semantic Engine [9] is a prototype tool that supports the user in Cloud
Applications’ development by discovering cloud APIs functionalities and
resources based on semantic technologies. It handles, maintains and exposes
to the user in a graphical way the semantic descriptions of application domain

Semantic Engine and Cloud Agency 15

Fig. 4. List of object property to define resources compliant with OCCI

concepts, application related concepts, general design patterns and program-
ming functionalities, specific API implementations and Cloud resources. In other
words it exposes graphically the knowledge base presented in Sect. 3. In order to
achieve its mission, the Semantic Engine (based on the ontology levels already
described) introduces a high level of abstraction over a range of domain concepts
from the engineering discipline [10], generic application patterns as well as details
on existing Cloud APIs and IaaS providers. By implementing an additional layer
of abstraction, this tool overcomes syntactical differences of existing Cloud APIs,
so that it is possible to explore application design patterns independently from
the target API. The Semantic Engine fully exploits the expressivity of the OWL
DL language specie to relate entities with properties and constraints.

It allows for reuse of the semantic description of the application to be devel-
oped, performed by the user during the query phase, by allowing for the defini-
tion of application patterns, stored in the knowledge base, and reused in future
searches.

In this section we describe how the user can create an agnostic description of
resources guided by the Semantic Engine. To produce the CFP part related to
resource list the user can use three different options. The first one (the simplest)
is to fill the fields suggested by the tool for the particular resource selected.
The second one is to select a cloud vendor customized resource configuration
and from this obtain an agnostic description. The third one is to specify the
user requirements referring to the application he or she intends to develop like
information related to the workload or design and functional pattern.

In particular for this third usage mode, the developer, who is a domain spe-
cialist may use the Semantic Engine to:

16 A. Amato et al.

– search for domain concepts related to the application domain, for example the
information retrieval, e.g. KWIC (Key Word In Context) index and find the
concept of an application for KWIC system based on a specific model;

– investigate the key requirements of the application, e.g. find out that a critical
computationally intensive part of the application;

– analyse the Cloud application pattern and eventually associate algorithms or
functional patterns to the ApplicationPattern;

– identify key software components, such as message queues and storage com-
ponents, necessary for the Cloud application, as represented in terminology
of the appropriate programming model and the associated software platform;

– identify the workflow between the components;
– draw a detailed design of the necessary software components of the application

and the information and data flow among them;
– query the Semantic Engine to retrieve the number of needed software compo-

nents for the task at hand;
– use the Semantic Engine to prepare a list of required resources (i.e. Virtual

Machines) for the application, which can be used by the mOSAIC’s Cloud
Agency for negotiation of optimal offers;

– analyse a list of proposed IaaS providers suitable for the application;
– finally, provide a descriptor of the Cloud application, which can be used by

the software platform to start the execution of all the necessary software
components i.e. to launch the Cloud application.

In addition to the list of resources and their characteristic, the Semantic engine
provides also a way to support the definition of some constraints. The definition
of these constraints can be driven by heuristic rules that define the parameters
to take into account while developing a certain kind of application and by user
constrains. For example the user can express constraints like the maximum price,
or the need to have at least a certain value for a resource’s parameter.

5 Cloud Agency

Cloud Agency (CA) [11] is a Multi Agent System conceived for provisioning
by negotiation, monitoring and reconfiguration of acquired resources (Fig. 5).
Using Cloud Agency, the user can negotiate the needed resources in order to
run his applications. The user can also delegate to the Agency the monitoring
of resource utilization, the necessary checks of the agreement fulfillment and
eventually re-negotiations. Cloud Agency will supplement the common manage-
ment functionalities which are currently provided by IaaS Private and Public
infrastructure with new advanced services, by implementing transparent layer
to IaaS Private and Public Cloud services. Cloud Agency will support the Cloud
user in two different scenarios. In the Deployment scenario Cloud Agency sup-
ports the discovering and provisioning of the available resources needed to run
Cloud applications. In this case the user is negotiating, by the Cloud Agency,
the resources it needs to run his/her applications. In order to propose to the user

Semantic Engine and Cloud Agency 17

Fig. 5. Cloud Agency architecture

the best offer of resources, that fits his requirements at best, the Cloud Agency
will use a Brokering Module that chooses among the available offers the best
one. Furthermore for configuration and start of resources it will provide man-
agement facilities. In the Execution scenario it allows to monitor and eventually
to reconfigure Cloud resources according the changed requirements of the Cloud
Application. More specifically, during the execution Cloud Agency allows the
user for the Monitoring of the infrastructure in terms of resource utilization and
for the definition of some strategy of autonomic reconfiguration. Reconfigura-
tion can use management facilities by stopping, starting, moving instances, but
it could ask for provisioning of additional resources. By going more in details,
Cloud Agency exposes four main services:

– The Provisioning Service allows the user to discover, acquire and set up
resources for deployment of his/her applications. The result of provisioning is
a set of Cloud resources that are described, together with the offered service
levels, in a Service Level Agreement (SLA).

– The Management Service is used both for deployment and for execution. In
fact it is needed to configure and start resources before starting the applica-
tion, and it is necessary to start/stop/migrate and reconfigure in general the
resource dynamically during its utilization.

– The Monitoring Service is used to take under control Cloud resources in terms
of performance indexes and QoS parameters. This service is implemented by
the using of dedicated agents that act as probes on the selected resources.

– The Reconfiguration Service is in charge of reconfiguring the Cloud infrastruc-
ture when some critical events occur, such as saturation or under-utilization
of a resource, SLA violation and so on.

Cloud Agency provides asynchronous APIs in order to access the Cloud Agency
services. To address this issue Use Cases are designed in terms of Service

18 A. Amato et al.

Requests, Events and Callbacks. Access to Cloud Agency services will be enabled
by HTTP RESTful interface. Asynchronous requests are used to ask the Cloud
Agency for something to be executed. For example to start a Negotiation, to
accept or to refuse an SLA, to change a Policy, etc. They are not-blocking invo-
cations. Execution is started remotely, but the client can continue to run. Com-
pletion or failures of requests are notified at client side. Clients are in charge to
handle incoming events. Synchronous requests are available to get information.
For example clients can ask for reading an SLA, the status of a negotiation, to get
the list of vendors, or the list of resources. Queries are synchronous, they return
immediately the response if it is available, an exception otherwise. An OCCI
compliant Message Transfer Protocol (OCCI-MTP) allows the communication
between the client and the Cloud Agency [12,13]. By using this interface, clients
can start new provisioning transactions in order to broker the Cloud resources.

The configuration of the resources that are necessary to execute the user’s
application produced by Semantic Engine and expressed in terms of SLA tem-
plate may be complemented by the user with other information. In particular
the SLA template can include desired service levels and other terms of ser-
vice like contract duration, data location and billing frequency. In listing 1.3 an
example of SLA template is shown. It contains service description terms and
guarantee terms in WS-Agreement. The requested resource is a Virtual Machine
configuration with an architecture x86, 2 Cores, 2 Gb of available memory and
a price not greater than 0.8 $.

Listing 1.3. Service Description Term and Guarantee Term

<ws:ServiceDescriptionTerm ws:Name=’’Compute ’’ >

<Compute >

<cpuCores >2</cpuCores >

<architecture >x86</architecture >

<memory > 2GB </memory >

</Compute >

</ws:ServiceDescriptionTerm >

[..]

<wsag:GuaranteeTerm wsag:Name=‘‘Availability ’’>

<wsag:Variables >

<wsag:Variable wsag:Name="Price"

wsag:Metric="price/hour" />

<wsag:ServiceLevelObjective > 0.8 </

wsag:ServiceLevelObjective >

</wasg:Variables >

[..]

</wsag:GuaranteeTerm >

The SLA template is part of the Call for Proposal (CfP). The last part of the
CfP is a set of brokering rules. Examples of brokering rules are the best price, the
greatest number of cores, the best accredited provider or the minimum accepted
availability. The provisioning service provided by Cloud Agency implements an
extension of the Contract Net Interaction Protocol [14]. The CfP is submitted

Semantic Engine and Cloud Agency 19

to Cloud Agency that returns one or a number of different solutions, which can
be optimal according to different criteria. The sequence diagram that describes
the interaction among agents for resource provisioning is shown in Fig. 6.

Fig. 6. Interaction among agents for resource provisioning

For each received CFP Cloud Agency creates a broker that searches for
vendors that can offer resources with the required QoS (Quality of services).
Cloud Vendors neither implement negotiation services, nor provide descriptions
of their SLA in machine-readable language. We address these issues by Vendor
Agents, which wrap the services of each Cloud provider and return, for each SLA
template received from the broker, the available proposal that accomplishes at
the best the claimed requirements. The broker collects a number of proposals
described in a uniform way and chooses the best one(s) according to the broker-
ing rules. If the user accepts one among the received proposals an SLA is agreed
and the offered resources are allocated.

6 A Concrete Use Case

In order to show how the brokering process takes place and the two compo-
nents (Semantic Engine and Cloud Agency) interact, we present in this section
a simple example involving real cloud providers. Please consider that, even if the
proposals reported in this example are real, the final result of evaluation may
have completely different results with little changes in offerings, that continu-
ously happen in the cloud environment. Let us assume a user (Cloud Applica-
tion Developer) looking for a Virtual Machine with (i) specific CPU architecture
and a fixed amount of memory, (ii) the maximum number of cores, (iii) bro-
kering the best price among the proposals which satisfy (i) and (ii). The user
can identify and express in agnostic way her/his requirements with the help of
Semantic Engine, by means of the graphical facility shown in Fig. 7, to express
the resources’ requirements and then to automatically translate them into the
SLA template.

20 A. Amato et al.

Table 1. Available Instance Types And Prices

Offer Amazon EC2 Windows Azure

xsmall N/A CPU Cores: Shared, Memory: 768
MB, Disk Space Web: 20 GB,
Disk Space VM Role: 20 GB,
Bandwidth: 5, Cost/Hour: $ 0.04

small CPU: 1 EC2 Compute Unit (1
virtual core with 1 EC2 Compute
Unit), Memory: 1.7 GB, Disk: 160
GB, Platform:32-bit or 64-bit,
I/O Performance: Moderate,
Cost/Hour Linux/UNIX Usage:
$ 0.09, Cost/Hour Windows
Usage $ 0.115

CPU Cores: 1, Memory: 1.75 GB,
Disk Space Web: 230 GB, Disk
Space VM Role: 165 GB,
Bandwidth: 100, Cost/Hour:
$ 0.12

medium CPU: 2 EC2 Compute Unit (1
virtual core with 2 EC2 Compute
Unit), Memory: 3.75 GB, Disk:
410 GB, Platform:32-bit or 64-bit,
I/O Performance: Moderate
Cost/Hour Linux/UNIX Usage:
$ 0.180, Cost/Hour Windows
Usage $ 0.230

CPU Cores: 2, Memory: 3.5 GB,
Disk Space Web: 500 GB, Disk
Space VM Role: 340 GB,
Bandwidth: 200, Cost/Hour:
$ 0.24

large CPU: 4 EC2 Compute Unit (2
virtual core with 2 EC2 Compute
Unit), Memory: 7.5 GB, Disk: 850
GB, Platform: 64-bit, I/O
Performance: High Cost/Hour
Linux/UNIX Usage: $ 0.360,
Cost/Hour Windows Usage
$ 0.460

CPU Cores: 4, Memory: 7 GB, Disk
Space Web: 1 TB, Disk Space
VM Role: 850 GB, Bandwidth:
400, Cost/Hour: $ 0.48

xlarge CPU: 8 EC2 Compute Unit (4
virtual core with 2 EC2 Compute
Unit), Memory: 15 GB, Disk:
1690 GB, Platform: 64-bit, I/O
Performance: High Cost/Hour
Linux/UNIX Usage: $ 0.720,
Cost/Hour Windows Usage
$ 0.920

CPU Cores: 8, Memory: 14 GB, Disk
Space Web: 2 TB, Disk Space
VM Role: 1890 GB, Bandwidth:
800, Cost/Hour: $ 0.96

In the example we assume that the user requests a VM with at least 2 GB
memory, CPU Intel architecture, the maximum number of cores and that she/he
wants to broker a best offer that does not exceed 0.8 $ per hour. The Cloud
Agency adds the brokering rules to the SLA template produced by Semantic
Engine, asks to vendors for available offers, brokers the best one and allows
to close the transaction. Table 1 summarizes some of the available offers of the
Amazon EC2 and Microsoft Azure cloud providers. Each cloud provider has an

Semantic Engine and Cloud Agency 21

Fig. 7. SLA template graphical composition

offer consisting of several Virtual Machine configurations, which are different in
cpu cores, available memory and price.

Vendor Agents of Amazon and Azure have to answer to the broker with
their proposal that best fits the user’s requirements. In this case Amazon VA
will exclude the small offer because of its memory. Three offers remain, but
the most powerful machine, compliant with the fixed price is the xlarge. Azure
VA will exclude xsmall and small offers because of the memory requirement.
Furthermore its xlarge offer is too much expensive. The selected offer eventually
is the large one. Finally the broker will select the best price, i.e. Azure’s offer.
The presented example represents a basic application of a methodology, which
is currently been developed, and in which we are considering not only price
constraints but also factors like the capacity for each provider, the service levels
that providers ensure and the trustworthiness of the provided measured using
user’s feedback and benchmarking report.

7 Related Works

Semantic and agent technology are being applied to the task of automated
resource brokering in many areas, including cloud computing. In this field, the
solutions provided are commonly oriented towards standardization.

The cloud service landscape is growing up very rapidly and there are dif-
ferent aspects of this evolution that need to be systematized in a formal way.
A good means that can allow overcoming the limits related to heterogeneity of
terms used by Cloud vendors are surely ontologies. Indeed for this reason a lot
of ontologies related to cloud computing emerged. Darko et al. in [15] try to
provide an overview of Cloud Computing ontologies, their types, applications

22 A. Amato et al.

and focuses. They identified four main categories of cloud computing ontologies
according to their scopes: Cloud resources and services description, Cloud secu-
rity, Cloud interoperability and Cloud services discovery and selection. Among
the classified ontologies, relevant to our work are ontologies used to discover and
select the best Cloud service alternative. In [16] is presented a notable example
of Cloud service discovery system based on matchmaking. In the presented sys-
tem the users can identify the Cloud services required by means of three kinds
of requirements: functional requirement (like programming language for PaaS
service type), technical requirement (like CPU clock or RAM for IaaS service
type) and cost requirement (like max price) as input parameters. In addition to
this work, our ontology takes into account additional kind of requirements, such
as the application category which is not considered in any other works present
in the literature. In particular our approach promotes the Cloud agnostic prin-
ciples of application development and covers both the design and application
deployment part.

SLA@SOI [17] is the main project which aims at offering an open source based
SLA management framework that will provide benefits of predictability, trans-
parency and automation in an arbitrary service-oriented infrastructure, being
compliant with the OCCI standard. SLA@SOI results are extremely interesting
and offer a clear starting basis for the SLA provisioning and management in
complex architectures.

In [18] an architecture is presented for a federated Cloud computing environ-
ment named InterCloud to support the scaling of applications across multiple
vendor Clouds using a Cloud Broker for mediating between service consumers
and Cloud coordinators for an allocation of resources that meets QoS needs of
users.

Sim [19] proposes an extension of the alternate offers protocol that sup-
ports multiple complex negotiation activities in interrelated markets between
user agents and broker agents, and between broker agents and provider agents.

In [20] is presented an architectural design of a framework capable of power-
ing the brokerage based cloud services that is currently being developed in the
scope of OPTIMIS, an EU FP7 project. In this model a broker is used to serve
the needs of several different models. In particular it is used to ensure data confi-
dentiality and integrity to service customers, to match the requirements of cloud
consumer with the service provided by the provider, to negotiate with service
consumers over SLAs, to maintain performance check on these SLA’s and take
actions against SLA violation, to effectively deploy services provided by the cloud
provider to the customer, to manage the API so that provider does not learn any-
thing about the identity of the service consumer, to securely transfer customer’s
data to the cloud, to enforce access control decisions uniformly across multiple
clouds, to scale resources during load and provide effective staging and pooling
services, to securely map identity and access management systems of the cloud
provider and consumer, to analyze and take appropriate actions against risks, to
handle cloud burst situations effectively. OPTIMIS introduces the problem and
the architectural design, but we have not knowledge about an implementation
or algorithms to achieve the brokering.

Semantic Engine and Cloud Agency 23

Tordsson [21] explores the heterogeneity of cloud providers, each one with a
different infrastructure offer and pricing policy, in a cloud brokering approach
that optimizes placement of virtual infrastructures across multiple clouds and
also abstracts the deployment and management of infrastructure components in
these clouds. Besides he presents a scheduling algorithm for cross-site deploy-
ment of applications. However he presents a fine grained interoperability of cloud
services by way of a cloud API that do not takes into account the different imple-
mentation models for the virtual machine manager (VMM) that are at the base
of each of the cloud providers infrastructure.

8 Conclusion

The support for brokering of service level agreement is a weakness in cloud
market nowadays. The increasing number of Cloud providers, the lack of inter-
operability and the heterogeneity in current public Cloud platforms, leads to
the need of innovative mechanisms to find the most appropriate Cloud resource
configuration as easy and automated as possible. In this paper, which includes
results of the mOSAIC project, we have shown how it is possible to build a
complex brokering system, that is independent from the cloud provider tech-
nologies and allows the user to broker the best cloud service, that is compliant
with his requirements. The proposed solution adopts two collaborative modules.
The Semantic Engine, whose aim is to create an agnostic description of resource
based on users’ service requirements and a brokering system, the Cloud Agency,
whose aim is to acquire autonomically resources from providers on the basis
of SLA evaluation rules finding the most suitable Cloud provider that satisfy
users’ requirements. Recently we have investigated the chance of using a scal-
able broker as a service solution. We presented a prototype implementation and
provided preliminary performance figures [22]. In future work we aim at improv-
ing the proposed solution, investigating mechanisms for dynamic filtering of the
proposals.

Acknowledgments. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007–2013) under
grant agreement n 256910 (mOSAIC Project).

References

1. Amato, A., Venticinque, S.: Multi-objective decision support for brokering of cloud
SLA. In: 27th International Conference on Advanced Information Networking and
Applications Workshops, WAINA 2013, pp. 1241–1246 (2013)

2. Amato, A., Di Martino, B., Venticinque, S.: Evaluation and brokering of service
level agreements for negotiation of cloud infrastructures. In: 7th International Con-
ference for Internet Technology and Secured Transactions, ICITST 2012, London,
United Kingdom, pp. 144–149 (2012)

3. mOSAIC. The mOSAIC Project. http://www.mosaic-cloud.eu/

http://www.mosaic-cloud.eu/

24 A. Amato et al.

4. Cretella, G., Di Martino, B.: Semantic and matchmaking technologies for discov-
ering, mapping and aligning cloud providerss services. In: Proceedings of the 15th
International Conference on Information Integration and Web-based Applications
and Services (iiWAS 2013), pp. 380–384 (2013)

5. Venticinque, S.: European research activities in cloud computing. In: Agent Based
Services for Negotiation, Monitoring and Reconfiguration of Cloud Resources, pp.
178–202. Cambridge Scholars, January 2012

6. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview (2004).
http://www.w3.org/TR/2004/REC-owl-features-20040210/

7. Open Grid Forum: Open Cloud Computing Interface (OCCI). http://forge.ogf.
org/sf/projects/occi-wg

8. Metsch, T., Edmonds, A.: Open Cloud Computing Interface - Infrastructure, GFD-
P-R.184, April 2011. http://ogf.org/documents/GFD.184.pdf

9. Di Martino, B., Cretella, G.: Towards a semantic engine for cloud applications
development support. In: Proceedings of CISIS-2012: The Sixth International Con-
ference on Complex, Intelligent, and Software Intensive Systems, July 4–6th 2012,
Palermo, Italy. IEEE CS Press (2012)

10. Cretella, G., Di Martino, B., Stankovski, V.: Using the mosaics semantic engine
to design and develop civil engineering cloud applications. In: Proceedings of 14th
International Conference on Information Integration and Web-based Applications
and Services (iiWAS 2012), p. 9. ACM (2012)

11. Venticinque, S., Tasquier, L., Di Martino, B.: Agents based cloud computing inter-
face for resource provisioning and management. In: 2012 Sixth International Con-
ference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 249–
256, 4–6 July 2012

12. Amato, A., Tasquier, L., Copie, A.: Vendor agents for iaas cloud interoperability.
In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) IDC 2012. SCI, vol. 446,
pp. 271–280. Springer, Heidelberg (2012)

13. Venticinque, S., Amato, A., Di Martino, B.: An OCCI compliant interface for
IAAS provisioning and monitoring. In: CLOSER 2012 - Proceedings of the 2nd
International Conference on Cloud Computing and Services Science, pp. 163–166
(2012)

14. Fipa, TC Communication. Fipa contract net interaction protocol (2002). http://
www.fipa.org

15. Androcec, D., Vrcek, N., Seva, J.: Cloud computing ontologies: a systematic review.
In: MOPAS 2012, The Third International Conference on Models and Ontology-
based Design of Protocols, Architectures and Services, pp. 9–14 (2012)

16. Han, T., Sim, K.M.: An ontology-enhanced cloud service discovery system. In:
Proceedings of the International MultiConference of Engineers and Computer Sci-
entists, vol. 1, pp. 17–19 (2010)

17. SLA@SOI, sla-at-soi.eu
18. Buyya, Rajkumar, Ranjan, Rajiv, Calheiros, Rodrigo N.: InterCloud: utility-

oriented federation of cloud computing environments for scaling of application
services. In: Hsu, Ching-Hsien, Yang, Laurence T., Park, Jong Hyuk, Yeo, Sang-
Soo (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13–31. Springer, Heidelberg
(2010)

19. Sim, K.M.: Towards complex negotiation for cloud economy. In: Bellavista, P.,
Chang, R.-S., Chao, H.-C., Lin, S.-F., Sloot, P.M.A. (eds.) GPC 2010. LNCS, vol.
6104, pp. 395–406. Springer, Heidelberg (2010)

http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://forge.ogf.org/sf/projects/occi-wg
http://forge.ogf.org/sf/projects/occi-wg
http://ogf.org/documents/GFD.184.pdf
http://www.fipa.org
http://www.fipa.org

Semantic Engine and Cloud Agency 25

20. Nair, S.K., Porwal, S., Dimitrakos, T., Ferrer, A.J., Tordsson, J., Sharif, T., Sheri-
dan, C., Rajarajan, M., Khan, A.U.: Towards secure cloud bursting, brokerage
and aggregation. In: Proceedings of the 2010 Eighth IEEE European Conference
on Web Services, pp. 189–196 (2010)

21. Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud bro-
kering mechanisms for optimized placement of virtual machines across multiple
providers. Future Gener. Comput. Syst. 28(2), 358–367 (2012). ISSN: 0167–739X

22. Amato, A., Di Martino, B., Venticinque, S.: Cloud Brokering as a Service. In:
3PGCIC 2013, pp. 9–16 (2013)

A Concurrency Mitigation Proposal for Sharing
Environments: An Affinity Approach Based

on Applications Classes

Antonio R. Mury1, Bruno Schulze1, Fabio L. Licht2, Luis C.E. de Bona2,
and Mariza Ferro1(B)

1 National Laboratory of Scientific Computing, Petrópolis, Brazil
{aroberto,schulze,mariza}@lncc.br

2 Federal University of Paraná, Curitiba, Brazil
licht@lncc.br,bona@inf.ufpr.br

Abstract. The increased use of virtualized environments has led to
numerous research efforts about the possibilities and restrictions of the
use of these virtualized environments in cloud computing or for resource
consolidation. However, most of these studies are limited to a level of
performance analysis, that does not address the effects of concurrency
among the various virtual environments, and how to mitigate these effects.
The study presented below proposes the concept of affinity, based on the
correct combination of certain applications classes, that are able to share
the same environment, at the same time, causing less loss of performance.
The results show that there are combinations of applications that could
share the same environment with minimum loss, but there are combina-
tions that must be avoided. This study also shows the influence of the
type of parallel library used for the implementation of these applications.

1 Introduction

The use of virtual environments has increased driven by the adoption of cloud
computing solutions, data centers consolidation and legacy systems maintenance.
The appeal of cloud computing arises from its use as an additional resource
for High-Performance Parallel and Distributed Computing (HPDC), especially
concerning its use in support of scientific applications, with many studies devoted
to determining the effect of the virtualization layer on the performance.

Those studies were motivated because clouds appear as extra computational
resources available on demand, able to satisfy the computational resource need,
at any given time, for HPDC applications. However, most of the studies con-
ducted so far, have focused on the performance evaluation comparing one virtu-
alization layer to another or one particular provider or architecture. Little work
has been devoted to checking in depth on the effects that the concurrency in
these sharing environments has in terms of application’ class perspective that
would be useful for the development of new cloud schedulers, able to identify
the applications that could benefit from the use of cloud computing resources
and the applications where the loss in performance would be prohibitive.
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 26–45, 2015.
DOI: 10.1007/978-3-319-19848-4 3

A Concurrency Mitigation Proposal for Sharing Environments 27

Regarding the applications, studies have sought to categorize sets of appli-
cations into classes, grouping them based on their characteristics in terms of
consumption of computational resources. This type of approach has the advan-
tage of allowing the development of new applications and their association with
one of these classes, allowing prediction of its behavior.

What has previously been presented leads immediately to a question about
the effects of the concurrency of these classes of applications when running con-
currently in virtual environments hosted at the same real resource. Because each
application has different system requirements (e.g., memory bound, I/O bound
and CPU bound), how would it be possible to predict what would happens when
there are many virtual environments with those different classes of applications
running on the same real server? What will happen to the performance? A super-
ficial analysis might lead us to think that with the same class of applications
competing for the same resources, there will be a performance loss, but is this
loss the same for all types of application classes? Which classes of applications
can share the same environment to minimize the concurrency and, consequently,
the loss of performance? How can the virtualization layer contribute to minimize
contention?

Trying to answer these questions and mitigate these problems, this work
introduces the concept of affinity, defined as the degree of influence that an
application has on another applications when running in virtual environments
hosted in the same real environment. The study presented here provides a series
of tests conducted on three broad classes of applications, whit characteristics
present in applications that span the activities related to massively parallel and
distributed computing, gaming, business and multimedia. The objective was to
analyze the effects in performance for those classes of applications when running
in virtualized environments, while competing for the same real resources; and,
based on their affinity, a proposal of which classes running in virtual environ-
ments could be hosted in the same real resource, minimizing the performance
loss, and which ones must be avoided in executing the combination at the same
resource.

2 Virtual Environment Concurrency and Affinity

In this section, some limitations related to the use of virtualized environments
will be presented, especially for HPDC environments and also introduced the
concept of affinity among virtual environments (in this case clouds, consolidated
data centers or any type of computational environment using virtualization as
a tool to encapsulate a particular application or group of applications) will also
be introduced.

Regarding the virtualization layer, many studies have been devoted to the
examination of the effects of the virtualization layer in the performance of
running applications, especially concering the use of cloud computing in sup-
port of HPCD. These studies are important for HPDC as the cloud paradigm

28 A.R. Mury et al.

emerges as an alternative solution for scientific computing, capable of supplying
massive on demand computer power, just-in-time, and somehow changing the
usage pattern of HPDC environments and the structure, even with some loss of
performance [1–4].

The work of Bientinesi, Iakymchuck and Napper [5] deepens the knowledge
and points to the diverse demands on the cloud environment facing scientific and
commercial applications. Using the cloud to support HPDC, review of the met-
rics used as a way to evaluate the performance of the environment is necessary.
The existing contention problems affect the overall performance, particularly
communication. In addition to communication, the results of a series of tests
point to aspects that must be considered, such as the variability of the environ-
ment, the context exchanges of the cores, the type of processor architecture, the
virtual machine and, particularly, the type of application being executed. The
same conclusion about the influence of communication, contention and type of
application is observed in [6–8]. In [9], there is a detailed analysis of the loss
resulting from the contention effects in a virtualized environment and the influ-
ence of message-type traffic.

With respect to the concurrency and the contention problem, this is impor-
tant even for real environments. From the point of view of the HPDC environ-
ment, the influence exerted by the system architecture and the contention is well
presented in the work of Skinner and Krammer [10], analyzing data obtained over
a period of two years and listing the following factors as causes of variability:
Symmetric Multiprocessing (SMP) resource contention, communication among
and within nodes, kernel process scheduling, cross application contention and
system activities. These factors become more critical when looking at an environ-
ment, hosting multiple virtualized environments, or running HPCD applications
at the same time.

Those effects of the concurrency and the degradation caused by processing
in a virtualized environment that consumes all the processor of the real server
are presented in [11], which shows the effects over another process in a different
virtualized environment, when the other process was allocated on the same real
server and had to compete for CPU usage, undermining its processing capacity
and performance.

The previous examples show us what can happen with virtual environments
when hosted on the same real server. So what would be the best approach to be
adopted to minimize this loss when allocating virtualized environments, whether
in a cloud, data centers or even on a small scale to optimize the use of real
resources?

One of the possible approaches that could be adopted as an example is to
analyze the past behavior of combinations of virtualized servers and the actual
loss levels recorded in this environment. This analysis would be performed and
validated through the use of continuous monitoring of resources and processes,
checking the load of network usage, memory and processing. This task, how-
ever, is complex and requires a high degree of abstraction, given the amount of
totally heterogeneous resources available in a cloud. Goscinski [12] warns that

A Concurrency Mitigation Proposal for Sharing Environments 29

the creation of a mechanism able to control and monitor the impact of an appli-
cation, finding out if a resource supports such a task execution, is not easy to
implement. [13] also consider the effective resource management of a virtual-
ized environments to be a challenging task. They consider that the management
systems must rely on analytic models, based on the allocation of resources by
running real experiments. However, both approaches incur significant overhead.

Another approach is to use the evaluation of a class of applications as pro-
posed in the work of Colella [14]. The work proposes the use of the Dwarfs,
where the applications are divided into classes, and each one of these classes is
able to capture all the main characteristics of these applications. The concept of
the Dwarfs is presented in more detail in the following section.

So, based on what has been possible to research so far, there is still a gap in
evaluating the effects of the concurrency in a virtualized environment and how
to minimize these effects. This work proposes an approach based on the Dwarfs
classification, evaluating the effects of the concurrency among the classes of
Dwarfs, identifying those classes hosted in virtualized environments, that could
share the same real environment, with the minimum loss of performance.

This work proposes the use of the term affinity, characterized by the degree
of compatibility between classes of applications, whose concurrent execution in
the same computing environment would result in a minimum loss for these appli-
cations and the environment itself. Although the virtual environments are the
focus of the analysis and the mitigation of the performance loss, this concept
could also be used for real environments.

The work presented here is ongoing research about the thirteen proposed
Dwarf classes. At the current stage of the study, three classes have been eval-
uated. Of the fourteen areas identified in the study of the Dwarfs, eleven of
these areas are covered with a high degree of adherence. The Dwarf approach is
presented in more depth in the next section.

3 Applications and Dwarfs

With the aim of categorizing the styles of computation seen in scientific comput-
ing, the work of Colella [14] identified seven numerical methods that he believed
to be important for science and engineering and introduced the “Seven Dwarfs”
of scientific computing. These Dwarfs are defined at a high level of abstraction
to explain their behavior across different HPDC applications, and each class of
Dwarfs shows similarities in computation and communication. According to his
definition, applications of a particular class can be implemented differently with
the change in numerical methods over time, but the underlying patterns have
remained the same over generations of change and will remain the same in future
implementations.

The Berkeley team in parallel computation extended these classifications to
thirteen Dwarfs after they examined important applications domains. They were
interested in applying Dwarfs to a broader number of computational methods
and investigating how well the Dwarfs could capture computation and commu-
nication patterns for a large range of applications. Ideally, the Berkeley team

30 A.R. Mury et al.

would like good performance across the set of Dwarfs to indicate that new
manycore architectures and programming models will perform well for a broad
range of future applications. Traditionally, applications target existing hardware
and programming models but instead, they wanted to design hardware keeping
future applications in mind [15]. They compared the Dwarf classes against collec-
tions of benchmarks for embedded computing (42 benchmarks EEMBC1) and for
desktop and server computing (28 benchmarks SPEC20062). Additionally, they
examined important application domains: artificial intelligence/machine learn-
ing, database software and computer graphics/games. The goal was to delineate
applications requirements to draw broader conclusions about hardware require-
ments. A diverse set of important scientific applications is supported by the
current 13 Dwarfs. A more complete discussion about the thirteen Dwarfs can
be found in [15–17].

The Dwarf classes that are under investigation at in this present work are
Dense Linear Algebra (DLA), Structured Grid (SG) and Graph Traversal (GT).
We focus on these classes because there are many scientific applications in many
scientific areas classified in these classes, as seen in Fig. 1. Additionally, we focus
on these classes because these three classes together offer a diverse set of pat-
terns that comprises a more complete set of experiments. Scientific applications
classified in the DLA class are computationally limited while in the GT class,
scientific applications are memory latency limited and in SG class are more mem-
ory bandwidth limited. However, to investigate whether one single application
completely captures the breadth of a Dwarf, our longer term investigations will
include more than one application for each class, which could present different
aspects of a given Dwarf. Next, Dwarf classes are described with the applications
that are being used in this work.

1. Dense Linear Algebra Dwarf class computations involve a set of mathemat-
ical operators performed on scalars, vectors or matrices when most of the
matrix or vector elements are non-zeros. Dense in this Dwarf refers to the
data structure accessed during the computation. The arithmetic intensity
of the computation operating upon the data may be low intensity operators
(scalar-vector, vector-vector, matrix-vector, matrix-matrix, vector reduction,
vector scan and dot product) that carry a constant number of arithmetic
operations per data element. This Dwarf has a high ratio of math-to-load
operations and a high degree of data interdependency between threads.
These set of mathematical operators are the basis of more sophisticated
solvers such as LU Decomposition (LUD) or Cholesky and exhibit high
arithmetic intensity [16]. Generally, such applications use unit-stride memory
accesses to read data from rows and strided access to read data from columns.
Applications classified as DLA are relevant across a variety of domains such
as in material science to molecular physics and nanoscale science; in energy
assurance for combustion, fusion and nuclear energy; in fundamental science

1 http://www.eembc.org/.
2 http://www.spec.org/cpu2006.

http://www.eembc.org/
http://www.spec.org/cpu2006

A Concurrency Mitigation Proposal for Sharing Environments 31

Fig. 1. Some examples of scientific areas that have applications characterized by Dwarf
classes (http://stamp.stanford.edu). The colors represent the relevance of the class to
domain applications (more relevant - red to blue - less relevant). Emphasis is on classes
used in this work (Color figure online).

such as astrophysics and nuclear physics; in engineering design for aero-
dynamics. Representative algorithms of this class are LUD, matrix trans-
pose, triangular solver, symmetric eigensolver, clustering algorithms such as
Kmeans and Stream Cluster, and many others. We performed experiments
with the LUD and Kmeans algorithms.
(a) LUD is an algorithm to calculate the solutions of a set of linear equations

that decomposes a matrix as the product of a lower triangular matrix
and an upper triangular matrix to achieve a triangular form that can be
used to solve a system of linear equations easily. A matrix A ∈ R

n×n has
a LU factorization iff all of its leading principal minors are non-zeros,
i.e., det(A[1 : k, 1 : k]) �= 0 for k = 1 : n − 1.

(b) The Kmeans is a well-known clustering algorithm used extensively in data
mining that is a method that partitions n points that lie in d−dimen-
sional space into k clusters in this way: seeded with k initial cluster centers,
Kmeans assigns every data point to its closest center, and then recom-
putes the new centers as the means of their assigned points. This process
of assigning data points and readjusting centers is repeated until it stabi-
lizes.

2. The Graph Traversal Dwarf class applications must traverse a number of
objects in a graph and examine characteristics of those objects such as would
be used for search. A graph or a network is an intuitive and useful abstrac-
tion for analyzing relational data where unique entities are represented as
vertices, and the interactions between them are depicted as edges. The ver-
tices and edges can further be assigned attributes based on the information
they encapsulate. Such algorithms typically involve a significant amount of
random memory access for indirect lookups and little computation [16].

http://stamp.stanford.edu

32 A.R. Mury et al.

Scientific domains that include important applications in this class and
examples of application are bioinformatics (MUMmer), graphs and search
(Breadth-First Search and B+Tree).
(a) B+Tree is an n-ary tree often with a large number of children per node.

A B+Tree consists of a root, internal nodes and leaves. The root may
be either a leaf or a node with two or more children. The primary value
of a B+Tree is in storing data for efficient retrieval in a block-oriented
storage context because B+Trees have very high fan-out (number of
pointers to child nodes in a node, typically on the order of 100 or more),
which reduces the number of I/O operations required to find an element
in the tree. The order, or branching factor, b of a B+ tree measures the
capacity of nodes (i.e., the number of children nodes) for internal nodes
in the tree. The actual number of children for a node, referred to here
as m, is constrained for internal nodes so that [b/2] ≤ m ≤ b. Leaf nodes
have no children, but are constrained so that the number of keys must
be at least [b/2] and at most b − 1. In the situation where a B+Tree is
nearly empty, it contains only one node, which is a leaf node. The root
is also the single leaf in this case. This node is permitted to have as little
as one key if necessary and at most b.

3. Structured Grid algorithms organize data in a regular multidimensional grid
where computation proceeds as a series of grid updates. For each grid update,
all points are updated using values from a small neighborhood around each
point. The neighborhood is normally implicit in the data and determined
by the algorithm. Due to their inherent parallelism and computation intense
nature, structured grid applications are typically a good fit for the manycore
architectures such as the GPU. Structured grid algorithms appear in many
scientific domain, which are cited in the following list with an example of an
application for each algorith: medical imaging (Leukocyte, Heart Wall and
Particle Filter), physics simulations (HotSpot), image processing (Speckle
Reducing Anisotropic Diffusion) and biological simulations (Myocyte) [17].
(a) Speckle Reducing Anisotropic Diffusion (SRAD) is an image processing

application for ultrasonic and radar images. SRAD reduces the noise of
a given image while maintaining its important features. Each element of
the structured grid represents a pixel of the image.

Some evidence for the existence of the equivalence classes proposed by the
Dwarfs can also be found in some numerical libraries such as The Fastest Fourier
Transform in the West (FFTW) [18], a software library for computing dis-
crete Fourier transforms (equivalent to the Spectral Methods Dwarf class), the
LAPACK/ScaLapack [19] software library for numerical linear algebra (equiv-
alent of the DLA Dwarf class) and OSKI [20], a collection of primitives that
provide automatically tuned computational kernels on sparse matrices (Sparse
Linear Algebra class - SLA). The thirteen Dwarfs are also related to the Intel
classification of computation in three categories: Recognition, Mining and Syn-
thesis (RMS). The RMS applications are considered important to guide new
architectural research and development that comprises applications in Artificial

A Concurrency Mitigation Proposal for Sharing Environments 33

Intelligence and Machine Learning, databases, games and computer graphics.
These applications are represented by diverse Dwarf classes, such as DLA, SLA,
Spectral Methods, Backtrack and Branch Bound, and others [15]. Rodinia [21],
Parboil [22], Torch [16] and Parallel Dwarfs Project3 are open-source benchmark
suites that implement applications based on a subset of the 13 Dwarfs. The
Rodinia applications are designed for heterogeneous computing infrastructures,
and the applications use OpenMP and CUDA to allow comparisons between
manycore GPUs vs. multi-core CPUs. The Parboil implementations are on GPU
and some basic CPU implementations. The Torch project identified several ker-
nels for benchmarking purposes classified accordingly to the 13 Dwarfs and the
authors discuss possible code optimization strategies that can be applied to these
kernels. The Parallel Dwarfs project teams also adopt the 13 Dwarfs classifica-
tion to describe the underlying computation in each of their benchmarks. The
classification corresponds to a suite of 13 kernels parallelized using various tech-
nologies such as OpenMP, TPL and MPI code.

These examples motivate the Dwarf use as a way of categorizing scientific
applications, both for the importance of libraries and application areas men-
tioned as well as for these recent benchmark suite developments, which cover
new architectures and could indicate the relevance and contemporariness of these
classes for scientific community.

The experiments conducted in this work using Dwarf classes are presented
in next section.

4 Methodology

Two different experiments with different sets of tests were carried out to assess
the influence of the concurrency. The first experiment, the most common exper-
iment, aimed to create a baseline for comparison, and consisted of verifying the
performance of the Dwarfs in the real and in the virtual environment without
the effect of concurrency. The second experiment aimed to verify the effects of
concurrency by the two-by-two combination of the three chosen Dwarfs, mixing
real and virtual environments.

Both experiments also sought to determine the effect of the type of libraries
used in the implementation of the Dwarfs. For testing OpenMP [23] and OpenCL
[24] libraries were used because both libraries allow parallel execution on a CPU,
and the results obtained showed that the implementation using OpenCL libraries
was more stable the implementation using OpenMP.

The first experiment consisted of the following tests for the baseline:

1. Real Environment without concurrency, and
2. Virtual Environment without concurrency.

3 http://paralleldwarfs.codeplex.com/.

http://paralleldwarfs.codeplex.com/.

34 A.R. Mury et al.

The second experiment consisted of the following tests for the concurrency
effects:

1. Real Environment versus Virtual Environment,
2. Virtual Environment versus Real Environment
3. Real Environment versus Real Environment, and
4. Virtual Environment versus Virtual Environment.

The values used in the graph represent the percentage increase in the runtime
of the algorithms when implemented in a real or virtual environment, using
a baseline to calculate this increase in the runtime of the algorithm without
concurrency in the real or virtualized environment respectively.

In the graphs the result is closest to the center, and the lowest loss was caused
by the concurrency. The graphs also differentially present the performances of
the libraries used in the implementation (OpenMP and OpenCL). Although the
focus of this work is the analysis of concurrency or virtualized environments
sharing the same resources, the analysis of concurrency in real environments is
also presented.

4.1 Experimental Infrastructure

The experimental infrastructure used three real servers, each with two Xeon 5520
(2.26 GHz) processor with hyper-threading (HT) technology and virtualization
instructions, 24 GB of DDR3 RAM (1333) and Gigabit Ethernet connection.
In each server, two virtual machines were implemented, and the set of tests
performed in each experiment were made, both in the real environment and in the
virtual environment, by the two-by-two combination of the servers and virtual
machines. Twenty samples were generated for each test, and the comparison
among them was made based on the average, considering the 95 % confidence
interval.

4.2 Results Analysis

In this section we will present the results of the tests considering the concurrency
among the four chosen algorithms. Although the focus of this work was to assess
the effects of the concurrency when consolidating virtualized environments on
a real server, we also present the results considering the concurrency in real
environments. The term baseline means the loss of performance of the running
application when the environment in which it is being executed is shared by
another application.

Evaluation of the Concurrency with the LUD Algorithm as the
Baseline. Figure 2 shows the results with the LUD algorithm, as baseline, run-
ning in a real environment under concurrency from other virtual or real envi-
ronments hosting the LUD or Kmeans or B+Tree or SRAD algorithm. In the
figure, with the exception of the concurrency of the real or virtual B+Tree, when

A Concurrency Mitigation Proposal for Sharing Environments 35

running all other algorithms implemented with OpenCL libraries, the results are
better (less loss) than when run with OpenMP, but the best results were obtained
with the B+Tree algorithm running concurrently in a virtual environment (20 %
loss) and the B+Tree algorithm running concurrently in a real environment (40 %
loss). The worst combination was the Real LUD with the virtual SRAD envi-
ronment (143 % loss), the virtual LUD environment (140 % loss) and the virtual
Kmeans (138 % loss) running with an algorithm implemented with OpenMP
libraries. With respect to the implementations using OpenCL, the loss varied
from 64 % with virtual B+Tree to 97 % with virtual Kmeans.

Fig. 2. Performance loss value of the LUD application algorithm executed in a real
environment, caused by the concurrency of LUD or B+Tree or Kmeans or SRAD
running in a real or virtual environment.

Figure 3 shows the results with the LUD algorithm, as baseline, running in a
virtual environment under concurrency from other virtual or real environments
hosting the LUD or Kmeans or B+Tree or SRAD algorithm. In the figure, with
the exception of the concurrency of the real or virtual B+Tree, running all others
algorithms implemented with OpenCL libraries, the results are better than with
OpenMP, and the best results were obtained with SRAD running concurrently
in a real environment (11 % loss) and SRAD running concurrently in a virtual
environment (21 % loss).

The worst combination was the virtual LUD with the virtual Kmeans envi-
ronment (211 % loss), the virtual LUD environment (176 % loss) and the real
LUD (147 % loss) implemented with OpenMP libraries. With respect to the

36 A.R. Mury et al.

Fig. 3. Performance loss value of LUD application algorithm executed in a virtual
environment, caused by the concurrency of LUD or B+Tree or Kmeans or SRAD
running in a real or virtual environment.

implementations using OpenCL, they are worse than using OpenMP libraries
only for virtual B+Tree and Real B+Tree.

The results above show that if a real server runs a LUD algorithm, and there
is the need to share this server with another application, the best choice is to
allocate an application running the B+Tree algorithm (preferably encapsulated
in a virtual environment), with both the LUD and the B+Tree implemented
with OpenMP.

For LUD running in a virtual environment, the best choice is to share with
another application running the SRAD algorithm (preferably in the same real
environment), with both LUD and SRAD implemented with OpenCL libraries.

The final conclusion is that for applications with the LUD algorithm, the
best choice is to have this application encapsulated in a virtual environment
and sharing the real environment with an SRAD application in a real or virtual
environment respectively, implementing both with OpenCL libraries.

Evaluation of the Concurrency with the B+Tree Algorithm as the
Baseline. Figure 4 shows the results with the B+Tree algorithm, as baseline,
running in a real environment under concurrency with other virtual or real
environments hosting the LUD or the Kmeans or the B+Tree or the SRAD
algorithm. In the figure, for a B+Tree algorithm running in a real environ-
ment, with respect to all possible combinations of algorithms and environments,

A Concurrency Mitigation Proposal for Sharing Environments 37

the best results were obtained with the implementation using OpenMP libraries
(just for real B+Tree concurrent with another real B+tree or with SRAD; the
loss of performance was similar). The best result was obtained sharing the same
environment with a real or virtual environment, running a Kmeans algorithm
application.

Fig. 4. Performance loss value of the B+Tree application algorithm executed in a real
environment, caused by the concurrency of LUD or B+Tree or Kmeans or SRAD
running in a real or virtual environment.

Figure 5(a) shows the results with the B+Tree algorithm, as baseline, running
in a virtual environment under concurrency with other virtual or real environ-
ment hosting the LUD or the Kmeans or the B+Tree or the SRAD algorithm.
The figure shows that for all types of algorithms implemented with OpenCL
libraries, the results were worse than for the OpenMP, except for the SRAD
algorithm. Figure 5(b) shows a details of a loss between 0 % to 20 %. The best
result for the implementation with OpenCL was obtained sharing the processing
with the real SRAD (5 % loss) and after the virtual SRAD (15 % loss).

For all the algorithms implemented with the OpenMP libraries, the loss
ranges from 4 % for the concurrency with a virtual environment hosting the
Kmeans algorithm to 16 % for a virtual environment with the B+Tree and the
SRAD algorithms. So the best choice to share a server running a real or vir-
tual environment running a B+Tree algorithm application is to share it with
the LUD or the Kmeans or the B+Tree or the SRAD with the implementation

38 A.R. Mury et al.

(a) Performance loss value of B+Tree ap-
plication algorithm executed in a virtual
environment, caused by the concurrency of
the LUD or the B+Tree or the Kmeans or
the SRAD running in a real or virtual en-
vironment.

(b) Graph detail performance loss value
of B+Tree application algorithm executed
in a virtual environment, caused by the
concurrency of the LUD or the B+Tree
or the Kmeans or the SRAD running in a
real or virtual environment.

Fig. 5. Results with the B+Tree algorithm, as baseline, running in a virtual environ-
ment under concurrency with other virtual or real environment.

using OpenMP libraries implementations with OpenCL should be used only for
the SRAD algorithm.

Evaluation of the Concurrency with the Kmeans Algorithm as the
Baseline. Figure 6 shows the results with the Kmeans algorithm, as baseline,
running in a real environment with concurrency from other virtual or real envi-
ronments hosting the LUD or the Kmeans or the B+Tree or the SRAD algorithm.
In the figure, for a Kmeans algorithm running in a real environment, with respect
to all possible combinations of algorithms and environments, the best results were
obtained with the implementation using OpenMP libraries, except for the SRAD
running concurrently in real or virtual environments or for LUD running in a vir-
tual environment. For these three cases, the best results were obtained with the
algorithms implemented using OpenCL. The best result was obtained with a 4 %
loss for the sharing with the B+Tree virtual environment and 8 % loss for the shar-
ing with the B+Tree running in the real environment (both with OpenMP imple-
mentation).

Figure 7 shows the results with the Kmeans algorithm, as baseline, running in
a virtual environment with concurrency from other virtual or real environments
hosting the LUD or the Kmeans or the B+Tree or the SRAD algorithm. In the
figure, for a Kmeans algorithm running in a virtual environment, with respect to
all possible combinations of algorithms and environments, the best results were
obtained with the implementation using OpenMP libraries, except for the SRAD

A Concurrency Mitigation Proposal for Sharing Environments 39

Fig. 6. Performance loss value of Kmeans application algorithm executed in a real
environment, caused by the concurrency of LUD or B+Tree or Kmeans or SRAD
running in a real or virtual environment.

running concurrently in real or virtual environments or for Kmeans running in
a real environment. For these three cases, the best results were obtained with
the algorithms implemented using OpenCL. Comparing the real Kmeans as a
baseline with the virtual Kmeans as a baseline, the difference in performance
between the two approaches concurring with itself (virtual Kmeans and real
Kmeans, respectively), the reason was the load of the data already completed
before the execution of the concurrent algorithm.

The best result was obtained with a 4 % loss for the sharing with the B+Tree
virtual environment and 8 % loss for the sharing with the B+Tree running in
the real environment (both with OpenMP implementation). The conclusion is
that for the real or virtual Kmeans as baseline the best combination is to run
Kmeans concurrently with the B+Tree using OpenMP libraries.

Evaluation of the Concurrency with the SRAD Algorithm as the
Baseline. Figure 8(a) shows the results with the SRAD algorithm, as baseline,
running in a real environment under concurrency with other virtual or real envi-
ronment hosting the LUD or the kmeans or the B+Tree or the SRAD algorithm.
In the figure, for an SRAD algorithm running in a real environment, with respect
to all possible combinations of algorithms and environments, the best results were
obtained with the implementation using OpenMP libraries, except for the SRAD

40 A.R. Mury et al.

Fig. 7. Performance loss value of the Kmeans application algorithm executed in a
virtual environment, caused by the concurrency of LUD or B+Tree or Kmeans or
SRAD running in a real or virtual environment.

running concurrently in a real or virtual environment or for LUD running in a real
environment. For these three cases, the best results were obtained with the algo-
rithms implemented using OpenCL. The best result was obtained with 61 % loss
for the sharing with the B+Tree virtual environment implemented with OpenMP
libraries, as detailed in Fig. 8(b). In this test, the worst combination: real SRAD
with virtual LUD with a loss of 758 %.

Figure 9 shows the results with the SRAD algorithm, as baseline, running in
a virtual environment with concurrency from other virtual or real environments
hosting the LUD or the Kmeans or the B+Tree or the SRAD algorithm.

In the figure, for an SRAD algorithm running in a virtual environment, with
respect to all possible combinations of algorithms and environments, the best
results were obtained with the implementation using OpenCL libraries, except
for the LUD running concurrently in a virtual environment or the Kmeans run-
ning concurrently in a virtual environment or the B+Tree running concurrently
in a virtual environment. For these three cases, the best results were obtained
with the algorithms implemented using OpenCL.

The best result was obtained with 14 % loss for the sharing with the SRAD
running in a real environment implemented with OpenCL libraries. The conclu-
sion is that for the real or virtual SRAD as the baseline, the best combination is
to run SRAD concurrently with SRAD (virtual or real) using OpenCL libraries.

A Concurrency Mitigation Proposal for Sharing Environments 41

(a) Performance loss value of SRAD appli-
cation algorithm executed in a real environ-
ment, caused by the concurrency of the LUD
or the B+Tree or the Kmeans or the SRAD
running in a real or virtual environment.

(b) Graph detailing the performance loss
value of the SRAD application algorithm
executed in a real environment, caused by
the concurrency of the LUD or the B+Tree
or the Kmeans or the SRAD running in a
real or virtual environment.

Fig. 8. Results with the SRAD algorithm, as baseline, running in a real environment
under concurrency with other virtual or real environment.

4.3 Results and Conclusions

Table 1 shows the best combinations among the four chosen algorithms and the
implementation libraries. The analysis of the concurrency shown in this work just
presents the results of the pairwise comparison between the four types of algo-
rithms based on Dwarf classifications running concurrently, but ongoing research
shows that the performance loss when adding more than one of these four types

Table 1. Comparison table showing the best combination in concurrent environments.
R and V indicate that algorithms were executed in a real or virtual environment,
respectively.

R Kmeans V Kmeans R SRAD V SRAD R B+Tree V B+Tree

R LUD OpenMP

V LUD OpenCL OpenCL

R Kmeans OpenCL OpenMP

V Kmeans OpenCL OpenMP OpenMP

R SRAD OpenCL OpenMP

V SRAD OpenCL

R B+Tree OpenMP OpenMP

V B+Tree OpenMP OpenMP OpenCL OpenMP

42 A.R. Mury et al.

Fig. 9. Performance loss value of the SRAD application algorithm executed in a virtual
environment, caused by the concurrency of the LUD or the B+Tree or the Kmeans or
the SRAD running in a real or virtual environment.

of algorithms has a constant pattern. Table 1 shows the baseline algorithms in
the columns.

5 Final Considerations

The presented study sought to evaluate the effects of application concurrency.
The importance of this study increases as the use of virtual environments has
become increasingly common as a means of optimizing the use of real resources
(consolidation) or the extent that cloud computing is presented as a solution to
obtain additional resources on demand. The results obtained so far tend to pro-
vide subsidies for the best combinations among the various applications sharing
these resources. The results of the experiments showed that if there is a real
need for resource sharing and there is, consequently, a concurrency in usage,
i.e., some types of applications can coexist without significant degradation of
the environment, enabling this sharing, while other combinations of applications
should be avoided.

As an extension of this work, the results and conclusions presented here can
be used to develop application schedulers for these environments to minimize the
loss resulting from concurrency, as well as the estimated value of the performance
loss. To evaluate the applications, the approach adopted here was the concept of
classes of Dwarfs. The four classes of applications used for the tests in this study
were chosen because these four cover most of the types of existing applications.

A Concurrency Mitigation Proposal for Sharing Environments 43

The results presented, in addition to measuring the amount of performance
loss during the sharing of resources, also allowed us to verify that the order
in which the scheduling of execution of the applications directly influences the
performance. For example, in the case of the LUD application implemented in
OpenMP, when running in a real environment, with the concurrent instantiation
of a virtual environment with the same algorithm, the average loss was 136 % for
the application in the real environment and 144 % for the virtual environment,
but in the case of a running virtual environment with the same application, when
another application was instantiated in the real environment, the loss was 147 %
(144 %, case before) and 139 % (136 %, case before), respectively.

Another important aspect was the influence of the type of the parallel library
used to implement the algorithms. This study evaluated OpenMP and OpenCL
libraries. This study proved important, as in the case of the tests that assessed
the SRAD algorithm in a real environment, running concurrently with the LUD
algorithm encapsulated in a virtualized environment using OpenCL libraries,
where the performance loss was 758 % for the SRAD algorithm, whereas the
same test, now with the use of OpenMP libraries caused a loss of 153 % for
SRAD.

Table 1 presents a synthesis of the results showing the types of applications
that could be running concurrently with less performance loss and the best
type of parallel library. The results obtained allow us to propose the concept
of affinity, which is characterized by the degree of compatibility between classes
of applications, where concurrent execution in the same computing environment
would result in a minimum loss for these applications and the environment itself,
and its use in support of virtual or real resource sharing.

References

1. Lee, C.A.: A perspective on scientific cloud computing. In: Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing,
HPDC 2010, pp. 451–459. ACM, New York (2010)

2. Tudoran, R., Costan, A., Antoniu, G., Bougé, L.: A performance evaluation of
azure and nimbus clouds for scientific applications. In: Proceedings of the 2nd
International Workshop on Cloud Computing Platforms, CloudCP 2012, pp. 4:1–
4:6. ACM, New York (2012)

3. U.S., E.D.: The magellan report on cloud computing for science (2011). http://
magellan.alcf.anl.gov/

4. CERN: Helix nebula the science cloud: A catalyst for change in europe (2013).
http://cds.cern.ch/record/1537032/files/HelixNebula-2013-002.pdf

5. Bientinesi, P., Iakymchuk, R., Napper, J.: HPC on competitive cloud resources.
In: Furht, B., Escalante, A. (eds.) Handbook of Cloud Computing, pp. 493–516.
Springer, US (2010)

6. Cholia, S., Shalf, J., Wasserman, H.J., Wright, N.J.: Performance analysis of high
performance computing applications on the amazon web services cloud. In: Pro-
ceedings of the 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, CLOUDCOM 2010, pp. 159–168. IEEE Computer Society,
Washington, DC (2010)

http://magellan.alcf.anl.gov/
http://magellan.alcf.anl.gov/
http://cds.cern.ch/record/1537032/files/HelixNebula-2013-002.pdf

44 A.R. Mury et al.

7. He, Q., Zhou, S., Kobler, B., Duffy, D., McGlynn, T.: Case study for running
HPC applications in public clouds. In: Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, HPDC 2010, pp. 395–
401. ACM, New York (2010)

8. El-Khamra, Y., Kim, H., Jha, S., Parashar, M.: Exploring the performance fluc-
tuations of HPC workloads on clouds. In: Proceedings of the 2010 IEEE Second
International Conference on Cloud Computing Technology and Science, CLOUD-
COM 2010, pp. 383–387. IEEE Computer Society, Washington, DC (2010)

9. Ekanayake, J., Fox, G.: High performance parallel computing with clouds and cloud
technologies. In: Avresky, D.R., Diaz, M., Bode, A., Ciciani, B., Dekel, E. (eds.)
CloudComp 2009. LNICST, vol. 34, pp. 20–38. Springer, Heidelberg (2009)

10. Skinner, D., Kramer, W.: Understanding the causes of performance variability in
HPC workloads. In: 2013 IEEE International Symposium on Workload Character-
ization (IISWC), pp. 137–149 (2005)

11. Technologies, C.: The complete guide to monitoring virtualized envi-
ronments (2013). http://cai.com/co/media/Files/eBooks/the-complete-guide-to-
monitoring-virtualized-environments.PDF

12. Goscinski, W., Abramson, D.: Motor: A virtual machine for high performance com-
puting. In: International Symposium on High-Performance Distributed Computing,
pp. 171–182 (2006)

13. Vasić, N., Novaković, D., Miučin, S., Kostić, D., Bianchini, R.: Dejavu: accelerating
resource allocation in virtualized environments. SIGARCH Comput. Archit. News
40(1), 423–436 (2012)

14. Colella, P.: Defining software requirements for scientific computing. DARPA HPCS
Presentation (2004)

15. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.:
The landscape of parallel computing research: a view from berkeley. Techni-
cal report UCB/EECS-2006-183, EECS Department, University of California,
Berkeley, December 2006

16. Kaiser, A., Williams, S., Madduri, K., Ibrahim, K., Bailey, D., Demmel, J.,
Strohmaier, E.: TORCH computational reference kernels: a testbed for computer
science research. Technical report UCB/EECS-2010-144, EECS Department, Uni-
versity of California, Berkeley, December 2010

17. Springer, P.: Berkeley’s Dwarfs on CUDA. Technical report, RWTH Aachen Uni-
versity, Seminar Project (2011)

18. Frigo, M., Johnson, G.S.: The design and implementation of FFTW3. In: Proceed-
ings of the IEEE, pp. 216–231 (2005)

19. Blackford, L.S., Choi, J., Cleary, A.J., Demmel, J., Dhillon, I.S., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.W., Whaley, R.C.:
ScaLAPACK: a portable linear algebra library for distributed memory computers -
design issues and performance. In: Proceedings of the 1996 ACM/IEEE conference
on Supercomputing, p. 5. IEEE (1996)

20. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimiza-
tion of sparse matrix-vector multiplication on emerging multicore platforms. In:
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC 2007, pp.
38:1–38:12. ACM, New York (2007)

21. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: IISWC, pp. 44–54.
IEEE (2009)

http://cai.com/co/media/Files/eBooks/the-complete-guide-to-monitoring-virtualized-environments.PDF
http://cai.com/co/media/Files/eBooks/the-complete-guide-to-monitoring-virtualized-environments.PDF

A Concurrency Mitigation Proposal for Sharing Environments 45

22. Stratton, J.A., Rodrigrues, C., Sung, I.J., Obeid, N., Chang, L., Liu, G., Hwu,
W.M.W.: Parboil: a revised benchmark suite for scientific and commercial through-
put computing. Technical report IMPACT-12-01, University of Illinois at Urbana-
Champaign, Urbana, March 2012

23. Chapman, B., Jost, G.: Pas, Rvd: Using OpenMP: Portable Shared Memory Par-
allel Programming (Scientific and Engineering Computation). The MIT Press,
Cambridge (2007)

24. Stone, J.E., Gohara, D., Shi, G.: Opencl: a parallel programming standard for
heterogeneous computing systems. IEEE Des. Test 12(3), 66–73 (2010)

On Cloud Spot Market:
An Overview of the Research

Zheng Li1,2(B), Liam O’Brien3, Rajiv Ranjan2,4, Shayne Flint2,
and Albert Y. Zomaya5

1 CRL Lab, National Information and Communications Technology Australia
(NICTA), 7 London Circuit, Canberra, ACT 2601, Australia

zheng.li@nicta.com.au
2 School of Computer Science, Australian National University (ANU), Canberra,

ACT 0200, Australia
shayne.flint@anu.edu.au

3 ICT Innovation and Services, Geoscience Australia, Cnr Jerrabomberra Avenue
and Hindmarsh Drive, Symonston, ACT 2609, Australia

liamob99@hotmail.com
4 CSIRO Computational Informatics, CS & IT Building, Building 108, North Rd,

ANU Campus, Acton, ACT 2601, Australia
raj.ranjan@csiro.au

5 School of Information Technologies, The University of Sydney,
Sydney, NSW 2006, Australia
albert.zomaya@sydney.edu.au

Abstract. In Cloud computing, Infrastructure-as-a-Service (IaaS) can
be purchased with three pricing schemes, namely reserved pricing, on-
demand pricing and spot pricing. Within the spot pricing model, the
spot Cloud resources usually refer to the spare compute capacity that
can be auctioned in a spot market. A commercial spot market has been
established since Amazon launched its spot instance service. Unlike the
straightforward fixed-price schemes, the market-driven mechanism
behind spot pricing is inevitably sophisticated for both Cloud consumers
and providers. In addition, the de facto vendor Amazon does not disclose
any backend detail except for its recent spot price history. To help prac-
titioners better understand the spot market and help researchers identify
research opportunities, we focused on Amazon’s spot service and inves-
tigated the relevant studies of the Cloud spot market. The result of our
investigation has been organized and summarized into an overview of the
current research, as described in this chapter.

Keywords: Amazon EC2 · Cloud computing · Market-driven mecha-
nism · Spot market · Spot pricing

1 Introduction

With the boom in Cloud computing, compute capacity as a utility has been
widely recognized and accepted. To help fully utilize compute resources, pro-
viding spot resources in the Cloud market is supposed to be a promising way
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 46–61, 2015.
DOI: 10.1007/978-3-319-19848-4 4

On Cloud Spot Market: An Overview of the Research 47

from the perspective of market economy [22,23]. In fact, a commercial spot mar-
ket has been established when Amazon’s spot instance service was launched in
December 2009. Amazon uses a continuous market-driven mechanism to sell
spare EC2 instance resources [2]. Through varying prices in real-time based on
supply and demand, the pricing model of spot instances is supposed to com-
plement Amazon’s On-Demand and Reserved Instance pricing models. On the
one hand, the spot prices are generally far below the on-demand prices. On the
other hand, although the spot instances could be slightly more expensive than
the same type of reserved instances, the spot service consumers do not need to
pay any reservation fee in advance. As such, by potentially incurring less cost, the
spot instances could be the most cost-effective service among the three options
for obtaining compute capacity.

Nevertheless, unlike the static and straightforward pricing models of on-
demand and reserved instances, the market-driven mechanism for pricing spot
instance service is dynamic and sophisticated. Furthermore, as the only provider
offering spot instance service in the market, Amazon does not disclose any back-
end detail of the market-driven mechanism. Consequently, since the overall sup-
ply and demand of spot resources are both uncertain during runtime, spot service
consumers would have to suffer from the irregular fluctuations in service price
and availability. In fact, the prices of a particular Amazon instance type could
fluctuate significantly and variously across different zones even within a day, as
shown in Fig. 1. Note that us-east-1a, us-east-1b, and us-east-1c indicate three
available zones where the spot instances are located.

Fig. 1. An example of 24-h price history of a spot instance.

Given the significantly distinctive characteristics of spot resources, the spot
market for Cloud computing has attracted increasing interests from various
research directions in academia. To help practitioners better understand the spot
market and help researchers identify opportunities for future work, we deliver an
overview of the current investigations into the Cloud spot market. In particular,
since Amazon is currently the only provider in the Cloud spot market, most of
the reviewed studies have taken Amazon’s spot instance service as an industrial
case.

48 Z. Li et al.

This chapter aims to build a straightforward tutorial to briefly introduce the
results of our work. Section 2 outlines a consumption chain of the spot instance
service, and categorizes the current research works according to four roles located
in the chain. Section 3 distinguishes between five implications of spot prices,
and accordingly summarizes and indexes sample technical investigations respec-
tively. Conclusions are drawn in Sect. 4. In particular, four open questions are
highlighted for future attention by the research community.

2 Consumption Chain of the Spot Instance Service: A
Role-Based Categorization of the Current Research

Given different research objectives, the existing studies have taken perspectives
of four roles respectively around Amazon’s spot instance service, such as service
provider, service consumer, typical applications and service broker (or secondary
provider). Considering their relationships, these four roles can compose a con-
sumption chain of the spot instance service, as shown in Fig. 2. Note that this
consumption chain is drawn according to the reviewed research works only. Here
we briefly describe and categorize the reviewed research works into the following
subsections, while leaving the technical discussions to Sect. 3.

Spot Instance Service

Applications

Provider
Service Broker /

Secondary Provider

Consumer

Fig. 2. The consumption chain of the spot instance service.

2.1 Studies Related to Service Provider

It has been claimed that providers would gain various benefits from offering spot
instance services. Firstly, the spot prices may attract more consumers to utilize
the spare compute capacity, and generate more revenue for the service provider.
Secondly, economic theory suggests that auctions (dynamic pricing) could be
more efficient over the fixed-price mechanisms [28]. Thirdly, when needing to
reclaim the compute capacity, providers have the privilege to terminate service
by automatically/intentionally raising the price and decreasing the demands [25].
Thus, this class of research would naturally be beneficial for service providers.

On Cloud Spot Market: An Overview of the Research 49

We further distinguish the relevant studies between two research directions. The
first direction is taking Amazon as a real case to reveal the current pricing
mechanism, while the second is to propose new mechanisms to optimize pricing
and provisioning of spot resources.

Revealing the Current Spot Mechanism. The investigations into the cur-
rent spot mechanism mainly emphasize service pricing. As mentioned previously,
the de facto provider Amazon is not open about the underlying pricing policies of
its spot instance service. By profiling and statistically analyzing Amazon’s spot
price history, Wee [24] summarize a set of regular patterns of the observations.
For example, the price of spot instances is likely to change hourly; spot instances
are averaging 52.3 % cheaper than their equivalent instance types at standard
price; and the price intervals are too narrow for further shifting workloads.
A reverse engineering study [4] was conducted to reveal how the spot prices are
set by Amazon, which raises doubts about the officially claimed market-driven
pricing mechanism. Such a viewpoint is supported by several later studies [21,25]
with independent analysis.

Proposing New Spot Mechanisms. The proposed spot mechanisms focus
not only on service pricing but also on resource provisioning. For example, opti-
mal strategies have been presented with consideration of both pricing and pro-
visioning for Cloud systems based on game theoretical approaches [9]. However,
in most cases, one individual study may incline toward paying attention to one
side only, i.e. either service pricing or resource provisioning.

• Mechanisms toward service pricing. These types of mechanisms are proposed
usually from the perspective of adjusting service prices. For example, several
works investigate how a provider can set spot prices to maximize its revenue,
while formulating the revenue maximization problem into different models
[23,25]; Sharma et al. [17] try to handle pricing spot resources at a required
QoS through portraying the lower and upper price bounds; and the profit-
reliability trade-off is supposed to be effectively tuned online by adapting
spot price and inter-price time [18]. In particular, a proposed mechanism is
to scale down the Quality of Service (QoS) instead of terminating out-of-bid
spot instances by increasing prices [8].

• Mechanisms toward resource provisioning. These types of mechanisms are
proposed usually from the perspective of allocating spot resources. Most
studies here are also aimed at maximizing the service providers’ revenue,
although they have considered different provisioning scenarios. For example,
a frequent scenario is that the available compute resources are viewed as a
“liquid” resource pool and configured into different numbers and types of
spot instances depending on the requests of consumers [28,29]; and a partic-
ular study investigates the runtime management of spot compute capacity
for multiple competing secondary service providers [3].

50 Z. Li et al.

2.2 Studies Related to Service Consumer

The spot instance service provides an economic alternative to consumers to
utilize Cloud resources, and this alternative option would be particularly cost-
effective for suitable computing tasks. Given the unknown demand statistics and
the dynamic adjustment in prices [25], however, spot service consumers may have
to suffer from uncertain service interruptions. As such, the trade-off between
availability and cost of consuming the spot service has become an intensive
research topic, and two typical research directions can be further distinguished:
one is to optimize bidding strategies (e.g., [20]), and the other is to investigate
fault tolerance strategies (e.g., [26]). More sophisticatedly, some studies try to
model consumers’ behavior to help them make bidding decisions [12,15], while
some other studies consider balancing service cost with goal achievement under
a mixed pricing scheme [5,15].

2.3 Studies Related to Typical Applications

Essentially, the Cloud applications are concrete consumers of the Spot instance
service. As suggested by Amazon, spot instances would be suitable for some
distributed fault-tolerant tasks like web-crawling or Monte Carlo applications
[2]. A few other examples of divisible workloads well-suited to spot instances
are: Data analytics, Financial modeling and analysis, Scientific research data
processing, and Image/Video processing, conversion and rendering [19,20,26,
27]. In particular, an empirical study shows that spot instances can be used as
accelerators and well fitted into the MapReduce paradigm [7]; Jangjaimon and
Tzeng aim to employ the spot instance service for multithreaded applications to
reduce the cost as well as boosting the overall execution performance through
an incremental checkpointing technique [10].

2.4 Studies Related to Service Broker (or Secondary Provider)

As the name suggests, there could exist a service broker or a secondary ser-
vice provider acting as the middle layer between the spot service and its end
consumer/application. Given the aforementioned complexity in employing spot
instance service, a service broker is supposed to relieve the management burdens
on end consumers [19] and facilitate running suitable applications [22]. The sec-
ondary providers discussed in the literature usually refer to Software-as-a-Service
(SaaS) providers who use spot instances to deliver their business services within
a three-tier business model [6]. The research in both service broker and sec-
ondary provider would face more complex challenges. On the one hand, service
broker and secondary provider are essentially consumers of spot instance ser-
vice, and therefore they have to deal with the same issues as the normal service
consumers, such as bidding strategies [9,19] and fault tolerance [16,22]. On the
other hand, service broker and secondary provider also act as service providers
to the end consumers, and thus they have to consider their profits and customer
satisfaction [6,19] while avoiding the “Cloud ripple effect” [13].

On Cloud Spot Market: An Overview of the Research 51

3 Underlying Meaning of Spot Prices: An Exploration
of the Technical Investigations

Since the only open information about the spot instance service is its tempo-
ral prices [4], various technical investigations have been unfolded to reveal the
underlying meaning of spot prices. The intensive research efforts are mainly on
five fields, such as the service pricing, resource supplying, consumer requesting,
service availability, and service fault tolerance. Their relationships with the spot
instance price can be illustrated as shown in Fig. 3, and the investigated technical
details are summarized in the following subsections respectively.

Spot Instance Price

Service Pricing

Service
Fault Tolerance

Resource
Supplying

Consumer
Requesting

Service
Availability

Fig. 3. The technical investigations behind the spot instance prices.

3.1 Service Pricing

Naturally, the spot prices are delivered by the backend pricing mechanism. To
understand the backend mechanism, different researchers have developed numer-
ous models and algorithms based on statistics and economics, as specified below.

Statistics-Based Frontend Models are generally concerned with spot price
variations. Thus the modeling work is normally based on the observations on,
and the statistical analysis of the spot price history.

• Markovian model. This is essentially a particular type of random model. By
viewing the price change as state transition, a simple Markov model is used
to mathematically represent the spot price evolution over time [27]; while a
more complicated case is to use a semi-Markovian process to model the spot
price variation [19]. Moreover, the spot market has been viewed as a faulty
machine with up and down states regulated by the semi-Markovian process
model.

52 Z. Li et al.

• Mixture of Gaussians (MoG) distribution model. Through a set of statisti-
cal analyses of the spot price trace and the inter-price time, Javadi, Thu-
lasiram, and Buyya have developed a model with MoG distribution with 3
or 4 components to reveal the price patterns and characterization of spot
instances [11]. Compared to other distributions like Weibull, Normal, Log-
normal and Gamma distributions, the MoG distribution is claimed to be a
better match with the trace simulation.

• Normal distribution model. Given the proposition that the price variation
in Amazon’s spot service does not follow any particular law, Mazzucco and
Dumas assume that the spot prices are normally distributed with the same
mean and variance [16].

• Price Transition Probability Matrix (PTPM) model. The PTPM for a par-
ticular spot instance type can be directly learnt from the open spot price
history [20]. In particular, the transition probability between two spot prices
is estimated by calculating the relative transition frequency.

• Random model. With doubt about the market-driven pricing claimed by
Amazon, Ben-Yehuda et al. suggest that spot prices are usually drawn from
a tight and fixed price interval, reflecting a random and hidden reserve price
[4]. Similarly, Ma and Huang consider that the fluctuation of spot price has
a random mean that is known by all consumers [15]. In the extreme case,
the spot price is even treated as a completely uncertain parameter [5].

Statistics-Based Backend Algorithms can be designed according to the
previous frontend models. Due to space limitation, here we only specify the key
techniques instead of elaborating the detailed algorithms.

• Auto-Regressive (AR(1)) reserve price algorithm. By matching Amazon’s
spot price traces with an auto-regressive process, this algorithm dynamically
adjusts the reserve price within a particular floor-ceiling range to keep a
linear relation between availability and prices [4].

• Order-Statistic-Based Online Pricing (OSOP) algorithm. OSOP calculates
the current spot price by adapting and learning from bids received in a
certain number of previous time slots [18]. Although the authors treat the
spot market as an economics-inspired model (modified repeated single-price
auction), this algorithm essentially relies on statistics without considering
any consumer behavior.

Economics-Inspired Frontend Models employ concepts and ideas of eco-
nomic processes to represent the variables involved in the pricing-related activ-
ities and the logical/quantitative relationships between them. Recall Amazon’s
market-driven spot mechanism [2], in this case, the relationships between activ-
ities of service pricing, resource supplying and consumer requesting are usually
modeled all at once. As such, for the convenience and conciseness of reporting,

On Cloud Spot Market: An Overview of the Research 53

we also put the supplying-oriented (e.g., [3]) and requesting-oriented (e.g., [12])
economics-inspired models all together here.

• Black-Scholes-Merton (BSM) model. By treating Cloud resources as assets,
the study [17] formulates the spot service pricing function as an option pric-
ing problem.

• Combinational auction model. Considering the nature of diverse demands of
different numbers and types of Cloud resource, the combinational auction is
claimed to be best suited for representing resource allocation in Clouds [28].

• Continuous sealed-bid uniform price auction model. According to Amazon’s
description about how spot instances work [2], the spot mechanism has been
directly translated into a continuous sealed-bid uniform price action model
[21,29]. “Sealed bid” refers to that the bidders’ bids are unknown to each
other. “Uniform price” indicates that the identical goods are sold at an
identical price.

• Demand curve model. In Economics, a demand curve represents the rela-
tionship between price and quantity demanded. The study [23] considers the
number of supplied spot instances as a function of the current spot price,
and utilizes a demand curve to model such a function. A similar function
is described in [29], while a simple auto-regression (AR) method is further
used to model demand quantity independently of the price.

• Generalized Nash Equilibrium (GNE) game model. This model is proposed
with particular respect to the resource provisioning between an IaaS provider
and its consumers (SaaS providers in this case) [3]. The GNE is an extension
of the classic Nash Equilibrium. In GNE problems, the objective functions
of each player not only depend upon all the other players’ strategies, but
may also depend on the rival players? strategies.

• Modified repeated single-price auction model. Since only losers may submit
new bids repetitively (winners have to remain with their bids until an out-
of-bid event occurs), the spot service market can be modeled as a modified
version of the repeated single-price auction [18].

• Prisoner Dilemma game model. This can be viewed as a secondary model
based on the auction mechanism model. By treating the spot market as a
uniform price auction of multiple units of a homogeneous good, the interac-
tions of spot service bidders are modeled as a Prisoner Dilemma game [12].

• Stackelberg game model. The situation that a set of SaaS providers bid and
compete for an IaaS provider’s compute capacity can be modeled as a Stack-
elberg game [9]. Stackelberg game is a particular type of non-cooperative
game whereby the leader player takes its decision before the follower play-
ers, which is commonly in the attacker-defender scenarios.

54 Z. Li et al.

Economics-Inspired Backend Algorithms usually do not need to be
designed from scratch. Given the economics-inspired models, suitable economic
solutions can be employed and adapted to pricing algorithms by mapping neces-
sary parameters between these two fields. Similarly, we only index the relevant
algorithms without explaining their details.

• BSM model-based algorithm. Sharma et al. have identified five parameters
related to pricing Cloud services. After mapping these parameters to the
BSM model, the BSM equation can be used to price the Cloud resources [17].

• Lyapunov optimization algorithm. Based on the aforementioned demand
curve model, optimal pricing for (single-type) spot instances has been for-
mulated as a Lyapunov optimization problem towards maximizing the time-
average revenue for providers [23]. The basic idea of Lyapunov optimization
is to minimize a bound on the drift-plus-penalty term.

• Market clearing algorithm. Given the AR-based demand curve and the
non-linear objective function, the problem of dynamic revenue maximiza-
tion with variable price is suggested being solved by adapting the similar
work on market clearing algorithms for piecewise linear objective revenue
function [29].

• Mathematical ProgramswithEquilibriumConstraint (MPEC) based algorithm.
The Stackelberg-game-modeled pricing/provisioning tasks can be solved by
dealing with suitable MPEC problems [9]. An MPEC is an optimization prob-
lem with constrants including variational inequalities.

3.2 Resource Supplying

Different spot prices may attract/constrain different amounts of consumption
and then influence the amount of spare resources that can be supplied, while
the supply of spot resources is one of the weights of pricing from the provider’s
perspective [2]. We remark that the resource supplying is not independent of
service pricing. The identification of resource supplying solutions here are only
according to the orientations of the original research works.

• CA-PROVISION. Based on the combinational auction model, a dynamic
resource provisioning and allocation mechanism CA-PROVISION is pro-
posed in [28]. CA-PROVISION is supposed to be truthful and works in three
phases: (1) all the consumers’ bids are collected; (2) the winning bidders and
the VM configurations to be provisioned by the provider are determined; and
(3) all the consumers’ payments are calculated.

• GNE identification algorithms. By proving the existence of at least one social
equilibrium in the spot resource provisioning problem targeting revenue max-
imization, two different algorithms are developed for finding a GNE [17]: one
is based on the best-reply dynamics, which has to be executed at the IaaS
provider side; and the other is based on optimal Karush-Kuhn-Tucker mul-
tipliers, which can be implemented fully distributed.

On Cloud Spot Market: An Overview of the Research 55

3.3 Consumer Requesting

Consumers may adjust their demand and bidding strategies according to the
current and/or historical spot prices, while the demand of spot resources is also
one of the weights of pricing from the provider’s perspective [2]. The technical
investigations into consumer requesting mainly focus on the strategies for bidding
spot resources.

• Autocorrelation Function (ACF) based algorithm. ACF measures the corre-
lation of a random variable with itself at different points in time, and this
algorithm assumes a normal distribution model of prices to realize spot price
prediction for bidding [16].

• Constrained Markov Decision Process (CMDP) based algorithm. Benefitting
from a price transition probability matrix (PTPM) that accomodates the
historical price transition frequents, the bid decision making has been for-
mulated as a CMDP problem that can be solved by the corresponding Linear
Programming [20].

• Discrete-time stochastic Dynamic Programming. Based on the Markov model
for spot price evolution, Zafer, Song, and Lee define the cost minimization
problem in the field of discrete-time stochastic Dynamic Programming, and
utilize the relevant mathematical tools to achive optimal bids from the con-
sumer’s perspective [27].

• Naive strategies. Five simple bidding strategies are proposed and compared
with each other in [22], such as (1) Current: using the current spot price plus
the minimum bid granularity 0.001; (2) High: using a value much higher than
any price observed in the history; (3) Mean: using the mean of all values in
the price history; (4) Minimum: using the minimum price observed in the
history plus the minimum bid granularity 0.001; (5) On-demand: using the
price of the equivalent on-demand instance type.

• Portfolio algorithms. With consideration of the trade-off between customer
satisfaction and expected profit, two portfolio strategy-based bidding algo-
rithms are developed from the secondary provider’s perspective [6]: the
FirstFit-profit algorithm is to maximize profit while maintaining a certain
level of customer satisfaction, and the FirstFit-satisfaction algorithm is to
maximize customer satisfaction while keeping a particular target of profit.
The basic idea of portfolio strategies (borrowed from the financial investment
domain) is allowing different types of spot instances to satisfy the consumers’
requests at different bidding sessions.

• Prisoner Dilemma game-based solution. By determining the band of control
limits and establishing propositions to make bids meet the Prisoner Dilemma
condition, bidders can estimate the ratio of co-operators vs. defectors to
make decisions [12]. Essentially, rational and self-interested consumers would
converge on the Nash Equilibrium solution for spot resource bidding.

56 Z. Li et al.

• Profit-AwareDynamic Bidding (PADB) algorithm.Given the semi-Markovian
process price model, this algorithm is designed to make sequential bidding
decisions for a job queue, and each decision only requires the current job
size and the current spot price [19]. PADB is supposed to achieve a near-
optimal bidding solution to the profit maximization problem from the service
broker’s perspective.

3.4 Service Availability

According to the characteristics of Amazon spot instances [26], the service stops
immediately without any notice if the current price is out of the previous bid.
Such service interruptions can be comprehended from the angle of either Reliabil-
ity (failure number) or Availability (time lost) [14]. In this chapter, we interpret
that the relevant descriptions in the reviewed studies are all with regard to ser-
vice availability. To the best of our knowledge, there are three different ways of
defining the availability of spot instance service.

• Up time/ratio at a declared price. Being compatible with the clarified defini-
tion [14], the availability of spot instance service at a declared price during a
period of time can be directly reflected through counting the hours in which
the spot price was equal to or lower than the declared price [4,24]. In par-
ticular, the up-time fraction of the total time interval is used to measure
service availability in [4].

• Spot instance revocation (unavailability) model. The service unavailability
is investigated for estimating the expected turnaround time of a running
application in [10]. In detail, the revocation of spot instances is modeled
as a modified exponential distribution for the purpose of low complexity
of O(1) in time and space, which comprises three main parameters: the
revocation rate, an adjusting factor, and the average time duration between
two revocations.

• Markov chain based spot instance lifetime. The spot instance lifetimes have
been formulated by building a Markov chain, and the edges of the Markov
chain refer to the probabilities of hourly price transitions [7]. Given such a
Markov chain, the probability of a spot instance running for n hours (i.e.
a particular n-step probability) can be calculated using a variant of the
Chapman-Kolmogorov equation.

3.5 Service Fault Tolerance

Given the uncertain availability of individual spot instances over time, suitable
fault-tolerance mechanisms would be clearly crucial for consumers when pursuing
the cost effectiveness of spot instance service. Interestingly, different mechanisms
have been proposed from the perspectives of not only consumer side but also
provider side.

On Cloud Spot Market: An Overview of the Research 57

• Checkpointing. According to the literature, checkpointing seems to be the
most promising fault-tolerance mechanism for spot resources in order to
boost overall computing performance and productivity. Four checkpointing
schemes (i.e. Hourly, Rising edge-driven, Basic adaptive, and Current-price
based adaptive checkpointing) are developed and compared with two base-
line policies in [26], and the Hourly checkpointing technique is particularly
highlighted in [22]. Based on an adjusted Markov model (AMM) that takes
into account both revocation events and hardware failures of spot instances,
Jangjaimon and Tzeng have designed and implemented an enhanced adap-
tive incremental checkpointing (EAIC) mechanism that enables fast predic-
tion with high accuracy on when a checkpoint should be taken [10].

• Duplication of long jobs. A relatively simple fault-tolerance technique, namely
duplication, is proposed to increase the chance of satisfying longer jobs’ dead-
line constraints [22]. This technique creates one replica of each job that could
run for more than one hour, and the replicas are supposed to be deployed with
different instance type/datacenter combinations.

• Dynamic Scalability. Differing from the other fault-tolerance mechanisms,
Dawoud, Takouna, and Meinel suggest using dynamic scalability to improve
spot instances’ availability from the provider’s perspective [8]. In other words,
when necessary to free some compute capacity, the provider may sacrifice
some QoS of its service instead of terminating the relevant spot instances.

• Migration. Unlike waiting until re-acquiring the same spot resources in the
checkpointing mechanism, the migration-based mechanism suggests rebid-
ding at a comparable per-core price for different types of instances even
from a different datacenter [22,26]. Although it is impossible to determine
an optimal spot instance for migration, three different heuristics (i.e. Lowest
price, Lowest failure rate, and Highest failure rate) can be used to facilitate
selecting the next instance type [26].

4 Conclusions

As a significant step towards fitting Cloud computing into a full-fledged market
economy [22], Amazon launched a spot market to sell its spare compute capacity.
Given such an emerging market with distinctive characteristics, various acad-
emic studies have taken Amazon’s spot service as an example to investigate the
Cloud’s spot market from diverse angles. By reviewing the relevant publications,
we portray a landscape of the current research into the spot market for Cloud
computing in this chapter. On the one hand, the relevant works are classified
according to different roles in the spot market, and these roles are essentially
joined together by a consumption chain of the spot service. On the other hand,
different directions of revealing the underlying meaning of spot prices are distin-
guished, and typical samples of technical investigations are demonstrated along
those directions.

58 Z. Li et al.

When collecting and sorting the research outcomes about Cloud spot market,
we find that there is still a lack of consensuses on several topics. Some investiga-
tion results and conclusions even conflict with each other. Here we particularly
summarize the identified gaps into four open questions that may indicate poten-
tial research opportunities in the future, as listed below.

(1) Is Amazon’s spot mechanism truthful?
A truthful mechanism requires incentive-compatible players [18,28]. It is

known that a single round of sealed-bid uniform price auction is truthful if the
provider can adjust its supply. By arguing that under this auction style there
is an incentive for consumers to submit true value-based bids, Amazon’s spot
mechanism is claimed to be truthful [22,29]. On the contrary, by formulating the
losers-rebid-while-winners-remain situation as a modified version of the repeated
single-price auction, Amazon’s spot mechanism is considered as being untruthful
[18]. Thus, the truthfulness of the de facto spot mechanism should be further
investigated before working on Amazon’s spot market.

(2) Are consumer biddings rational?
As a continuation of the previous question, the research based on a truthful

market assumes rational biddings with consumers’ true valuation of the spot
service. It is sensible that, according to the studies of applying game theory to
investigating the spot market [3,9,12], the self-interested consumers have to be
rational to reach equilibria for spot resource bidding. However, given the observa-
tions that spot prices frequently surpassed on-demand prices in the price history
across different instance types and datacenters, the consumers may have issued
irrational biddings unless they tried to bid as high as possible to decrease the
chance of service interruptions [12,22]. Therefore, the rationality of consumers’
bidding activities and the corresponding impacts on the Cloud spot market would
be a potential research opportunity.

(3) Is Amazon’s market-driven mechanism real?
In fact, most of the reviewed studies have been conducted based on a real

market-driven mechanism as claimed by Amazon. Recall that the economics-
inspired studies have employed various economic concepts and processes to for-
mulate Amazon’s spot market (cf. Sect. 3.1). Nevertheless, from some statistical
perspectives, Amazon’s spot prices are unlikely to be set with regard to market
supply and demand. Instead, it is believed that some artificial algorithm with
predetermined reserve price must have been adopted by Amazon behind its so-
called spot market [4,21,25]. In other words, there may exist a gap between
industrial practice (Amazon) and academic research. It would be necessary to
develop practical mechanisms for the Cloud spot market rather than directly
borrowing economic models.

(4) Is spot pricing more profitable than fixed pricing for Cloud
providers?

It is clear that unsold compute resources are wasted capacity from the per-
spective of Cloud providers [4]. As mentioned previously, offering spot resources
has been viewed as an effective approach to attracting more consumers so as to

On Cloud Spot Market: An Overview of the Research 59

fully utilize the Cloud resources and generate more revenue [23]. Furthermore,
from the economic point of view, the auction-based spot pricing would be more
efficient over the fixed-pricing scheme by targeting the consumers who have high
valuations [28]. According to theoretical analyses and simulations, in an opposite
opinion, using fixed prices can generate higher expected revenues for providers
than using a hybrid (fixed + spot) pricing mechanism [1]. Such a fierce debate
indicates that an evidence-based comparison study is needed through rigorously
and systematically reviewing the relevant publications.

Acknowledgments. NICTA is funded by the Australian Government through the
Department of Communications and the Australian Research Council through the ICT
Centre of Excellence Program. NICTA is also funded and supported by the Australian
Capital Territory, the New South Wales, Queensland and Victorian Governments, the
Australian National University, the University of New South Wales, the University of
Melbourne, the University of Queensland, the University of Sydney, Griffith University,
Queensland University of Technology, Monash University and other university partners.

References

1. Abhishek, V., Kash, I.A., Key, P.: Fixed and market pricing for Cloud services.
In: Proceedings of the 7th Workshop Economics of Networks System Computer
(NetEcon 2012), pp. 157–162. IEEE Computer Society, Orlando, 20 March 2012

2. Amazon: Amazon EC2 spot instances, March 2014. https://aws.amazon.com/ec2/
purchasing-options/spot-instances/

3. Ardagna, D., Panicucci, B., Passacantando, M.: Generalized Nash Equilibria for
the service provisioning problem in Cloud systems. IEEE Trans. Serv. Comput.
6(4), 429–442 (2013)

4. Ben-Yehuda, O.A., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing
Amazon EC2 spot instance pricing. In: Proceedings of the 3rd IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2011), pp.
304–311. IEEE Computer Society, Athens, 29 November–1 December 2011

5. Chaisiri, S., Kaewpuang, R., Lee, B.S., Niyato, D.: Cost minimization for provi-
sioning virtual servers in Amazon elastic compute Cloud. In: Proceedings of the
19th Annual IEEE International Symposium Modeling Analysis and Simulation of
Computer Telecommunication System (MASCOTS 2011), pp. 85–95. IEEE Com-
puter Society, Singapore, 25–27 July 2011

6. Chen, J., Wang, C., Zhou, B.B., Sun, L., Lee, Y.C., Zomaya, A.Y.: Tradeoffs
between profit and customer satisfaction for service provisioning in the Cloud. In:
Proceedings of the 20th International Symposium High Performance Distributed
Computing (HPDC 2011), pp. 229–238. ACM Press, San Jose, 8–11 June 2011

7. Chohan, N., Castillo, C., Spreitzer, M., Steinder, M., Tantawi, A., Krintz, C.: See
spot run: using spot instances for MapReduce workflows. In: Proceedings of the
2nd USENIX Conference on Hot Topics Cloud Computing (HotCloud 2010), pp.
1–7. USENIX Association, Boston, 22 June 2010

8. Dawoud, W., Takouna, I., Meinel, C.: Increasing spot instances reliability using
dynamic scalability. In: Proceedings of the 5th IEEE International Conference on
Cloud Computing (CLOUD 2012), pp. 91–98. IEEE Computer Society, Honolulu,
24–29 June 2012

https://aws.amazon.com/ec2/purchasing-options/spot-instances/
https://aws.amazon.com/ec2/purchasing-options/spot-instances/

60 Z. Li et al.

9. Di Valerio, V., Cardellini, V., Lo Presti, F.: Optimal pricing and service provision-
ing strategies in Cloud systems: A Stackelberg game approach. In: Proceedings of
the 6th IEEE International Conference on Cloud Computing (CLOUD 2013), pp.
115–122. IEEE Computer Society, Santa Clara, 28 June - 3 July 2013

10. Jangjaimon, I., Tzeng, N.F.: Effective cost reduction for elastic Clouds under spot
instance pricing through adaptive checkpointing. IEEE Trans. Comput. (2013) (in
press)

11. Javadi, B., Thulasiram, R.K., Buyya, R.: Statistical modeling of spot instance
prices in public Cloud environments. In: Proceedings of the 4th IEEE/ACM Inter-
national Conference on Utility Cloud Computing (UCC 2011), pp. 219–228. IEEE
Computer Society, Melbourne, 5–7 December 2011

12. Karunakaran, S., Sundarraj, R.P.: On using prisoner dilemma model to explain
bidding decision for computing resources on the Cloud. In: Proceedings of the 13th
International Conference Group Decision Negotiation (GDN 2013), Stockholm,
Sweden, pp. 206–215, 17–20 June 2013

13. Li, Z., Liang, M., O’Brien, L., Zhang, H.: The cloud’s cloudy moment: a systematic
survey of public cloud service outage. Int. J. Cloud Comput. Serv. Sci. 2(5), 321–
330 (2013)

14. Li, Z., O’Brien, L., Cai, R., Zhang, H.: Towards a taxonomy of performance evalu-
ation of commercial Cloud services. In: Proceedings od the 5th IEEE International
Conference on Cloud Computing (CLOUD 2012), pp. 344–351. IEEE Computer
Society, Honolulu, 24–29 June 2012

15. Ma, D., Huang, J.: The pricing model of Cloud computing services. In: Proceedings
of the 14th Annual International Conference on Electronic Commerce (ICEC 2012),
pp. 263–269. ACM Press, Singapore, 6 August 2012

16. Mazzucco, M., Dumas, M.: Achieving performance and availability guarantees with
spot instances. In: Proceedings of the 13th IEEE International Conference on High
Performance Computing and Communications (HPCC 2011), pp. 296–303. IEEE
Computer Society, Banff, 2–4 September 2011

17. Sharma, B., Thulasiram, R.K., Thulasiraman, P., Garg, S.K., Buyya, R.: Pricing
Cloud compute commodities: A novel financial economic model. In: Proceedings
of the 12th IEEE/ACM International Symposium Cluster Cloud Grid Computing
(CCGrid 2012), pp. 451–457. IEEE Computer Society, Ottawa, 13–16 May 2012

18. Song, K., Yao, Y., Golubchik, L.: Exploring the profit-reliability trade-off in Ama-
zons spot instance market: A better pricing mechanism. In: Proceedings of the 21st
International Symposium on Quality of Service (IWQoS 2013), pp. 1–10. IEEE
Press, Montreal, 3–4 June 2013

19. Song, Y., Zafer, M., Lee, K.W.: Optimal bidding in spot instance market. In: Pro-
ceedings of the 31st Annual IEEE International Conference on Computer Com-
munications (INFOCOM 2012), pp. 190–198. IEEE Press, Orlando, 25–30 March
2012

20. Tang, S., Yuan, J., Li, X.Y.: Decision model for provisioning virtual resources in
Amazon EC2. In: Proceedings of the 5th IEEE International Conference on Cloud
Computing (CLOUD 2012), pp. 91–98. IEEE Computer Society, Honolulu, 24–29
June 2012

21. Tian, C., Wang, Y., Qi, F., Yin, B.: Decision model for provisioning virtual
resources in Amazon EC2. In: Proceedings of the 8th International Conference
on Network Service Management (CNSM 2012), pp. 159–163. International Feder-
ation for Information Processing, Las Vegas, 2–26 October 2012

On Cloud Spot Market: An Overview of the Research 61

22. Voorsluys, W., Buyya, R.: Reliable provisioning of spot instances for compute-
intensive applications. In: Proceedings of the 26th IEEE International Conference
on Advanced Information Networking (AINA 2012), pp. 542–549. IEEE Computer
Society, Fukuoka, 26–29 March 2012

23. Wang, P., Qi, Y., Hui, D., Rao, L., Lin, X.: Present or future: Optimal pricing
for spot instances. In: Proceedings 33rd IEEE nternational Conference on Distrib-
uted Computing Systems (ICDCS 2013), pp. 410–419. IEEE Computer Society,
Philadelphia, 8–11 July 2013

24. Wee, S.: Debunking real-time pricing in Cloud computing. In: Proceedings of the
11th IEEE/ACM International Symposium on Cluster Cloud Grid Computing
(CCGrid 2011), pp. 585–590. IEEE Computer Society, Newport Beach, 23–26 May
2011

25. Xu, H., Li, B.: Dynamic Cloud pricing for revenue maximization. IEEE Trans.
Cloud Comput. 1(2), 158–171 (2013)

26. Yi, S., Andrzejak, A., Kondo, D.: Monetary cost-aware checkpointing and migra-
tion on Amazon Cloud spot instances. IEEE Trans. Serv. Comput. 5(4), 512–524
(2012)

27. Zafer, M., Song, Y., Lee, K.W.: Optimal bids for spot vms in a cloud for deadline
constrained jobs. In: Proceedings of the 5th IEEE International Conference on
Cloud Computing (CLOUD 2012), pp. 75–82. IEEE Computer Society, Honolulu,
24–29 June 2012

28. Zaman, S., Grosu, D.: A combinatorial auction-based mechanism for dynamic VM
provisioning and allocation in Clouds. IEEE Trans. Cloud Comput. 1(2), 129–141
(2013)

29. Zhang, Q., Gürses, E., Boutaba, R., Xiao, J.: Dynamic resource allocation for spot
markets in Clouds. In: Proceedings of the 11th USENIX Conference Hot Topics
Management Internet Cloud Enterprise Networks Service (Hot-ICE 2011), pp. 1–6.
USENIX Association, Boston, 29 March 2011

Resource Management & Energy

Analysis and Optimization on FlexDPDP:
A Practical Solution for Dynamic Provable

Data Possession

Ertem Esiner(B), Alptekin Küpçü, and Öznur Özkasap

Department of Computer Engineering, Koç University, İstanbul, Turkey
{eesiner,akupcu,oozkasap}@ku.edu.tr

Abstract. Security measures, such as proving data integrity, became
more important with the increase in popularity of cloud data storage ser-
vices. Dynamic Provable Data Possession (DPDP) was proposed in the
literature to enable the cloud server to prove to the client that her data
is kept intact, even in a dynamic setting where the client may update her
files. Realizing that variable-sized updates are very inefficient in DPDP
(in the worst case leading to uploading the whole file again), Flexible
DPDP (FlexDPDP) was proposed.

In this paper, we analyze FlexDPDP scheme and propose optimized
algorithms. We show that the initial pre-processing phase at the client
and server sides during the file upload (generally the most time-consuming
operation) can be efficiently performed by parallelization techniques that
result in a speed up of 6 with 8 cores. We propose a way of handling mul-
tiple updates at once both at the server and the client side, achieving an
efficiency gain of 60 % at the server side and 90 % in terms of the client’s
update verification time.

We deployed the optimized FlexDPDP on the large-scale network
testbed PlanetLab and demonstrate the efficiency of our proposed opti-
mizations on multi-client scenarios according to real workloads based on
version control system traces.

1 Introduction

Data outsourcing to the cloud has become popular with the availability of afford-
able and more satisfying services (e.g. Dropbox, box.net, Google Drive, Amazon
S3, iCloud, Skydrive) as well as with several studies in academia
[2–4,11,15,16,18,25,30,31]. The most important impediment in public adop-
tion of cloud systems is the lack of some security guarantees in data storage
services [19,24,33]. The schemes providing security guarantees should incur min-
imal overhead on top of the already available systems in order to promote wide
adoption by the service providers.

In this work, we address the integrity of the client’s data stored on the cloud
storage servers. In a cloud storage system, there are two main parties, namely
a server and a client, where the client transmits her files to the cloud storage
server and the server stores the files on behalf of the client. For the client to be
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 65–83, 2015.
DOI: 10.1007/978-3-319-19848-4 5

66 E. Esiner et al.

able to trust the service provider, she should be able to verify the integrity of the
data. A trustworthy brand is not sufficient for the client, since hardware/software
failures or malicious third parties may also cause data loss or corruption [9].

Solutions for the static cases (i.e., logging or archival storage) such as Prov-
able Data Possession (PDP) [2] were proposed [2,3,15,25,30]. For the dynamic
cases where the client keeps interacting (updating, manipulating) with her data,
Scalable PDP was proposed by Ateniese et al. [4], which allows a limited num-
ber of operations before a full re-calculation of the redundant data is required to
continue providing provable data possession. Extensions of the PDP, using some
data structures for dynamic cases, were first studied in Dynamic Provable Data
Possession (DPDP) [16] that allows data updates while still providing integrity
guarantees. Implementation of DPDP needs rank-based authenticated skip list
as the underlying data structure. It is shown that DPDP is not applicable to
variable block sized settings (due to the data structure used), hence resulting in
unacceptable performance in the dynamic secure cloud storage systems [17]. To
solve this issue, a flexible length-based authenticated skip list, called FlexList,
and its application to a DPDP scheme allowing variable block-sized updates,
called FlexDPDP, were proposed [17]. In this study, we ameliorate the efficiency
of the FlexDPDP system by proposing optimized algorithms on FlexList.

Our Contributions are as follows:

• We optimize the first pre-processing phase of the FlexDPDP provable cloud
storage protocol by showing that the algorithm to build a FlexList in O(n)
time is well parallelizable even though FlexList is an authenticated data
structure that generates dependencies over the file blocks. We propose a
parallelization algorithm and our experimental results show a speed up of 6
and 7.7, with 8 and 12 cores respectively.

• We provide a multi-block update algorithm for FlexDPDP. Our experiments
show 60% efficiency gain at the server side compared to updating blocks
independently, when the updates are on consecutive data blocks.

• We provide an algorithm to verify update operations for FlexDPDP. Our new
algorithm is applicable to not only modify, insert, and remove operations
but also a mixed series of multiple update operations. The experimental
results show an efficiency gain of nearly 90% in terms of verification time of
consecutive updates.

• We deployed the FlexDPDP implementation on the network testbed Planet-
Lab and also tested its applicability on a real SVN deployment. The results
show that our improved scheme is practically usable in real life scenarios
after optimization, namely 4 times faster proof generation for consecutive
updates.

2 Related Work

Ateniese et al. proposed the first provable storage service named PDP [2] that
can only be applied to the static cases. To overcome this problem, Scalable PDP

Analysis and Optimization on FlexDPDP: A Practical Solution 67

was proposed which allows limited updates [4]. When it consumes its precom-
puted tokens, Scalable PDP requires a setup phase from scratch. Wang et al.
[32] proposed using Merkle tree and Zheng and Zu [34] proposed 2-3 trees as
the data structure on top of PDP. Yet, these are also applicable to the static
scenarios since there is no efficient algorithm, which keeps the authentication
information maintained, is shown for re-balancing neither of these data struc-
tures. The authenticated skip lists that are probabilistically balanced in case of
any updates were first proposed by [29].

For improving data integrity on the cloud, protocols [10,12,21,22,26,27] pro-
vide Byzantium fault-tolerant storage services based on some server labor. There
also exist protocols using quorum techniques, which do not consider the server-
client scenarios but works on local systems such as hard disk drives or local
storage [1,13,20,23]. A recent protocol using quorum techniques [5] replicates
the data on several storage providers to improve integrity of the data stored on
the cloud; yet it also considers static data.

Within provable data possession techniques, Erway et al. proposed a skip-
list-like data structure called rank based skip list [16] that allows dynamic oper-
ations. Yet Esiner et al. [17] showed that updates in DPDP needs to be of
fixed block size, and proposed the FlexList data structure that allows vari-
able length dynamic operations with DPDP scheme. Detailed comparison and
extended descriptions of these two data structures are provided in [16,17]. Some
distributed versions of the idea have been studied as well [14,18]. There are also
studies showing that a client’s file is kept intact in the sense that client can
retrieve (recover) it fully whenever she wishes [7,11,15,25,30].

FlexDPDP, using FlexList, can perform modify, insert, and remove opera-
tions one block at a time on the cloud, without any limit on the number of
updates and block sizes, while maintaining data possession guarantees. It also
provides verification algorithms for update queries on single blocks. In this work,
we show that the functions in FlexDPDP are open to optimization, and propose
optimized efficient algorithms by evaluating them on the PlanetLab network
testbed and with real data update scenarios.

3 Preliminaries

FlexDPDP approach provides variable block sized dynamic provable data pos-
session and uses FlexList as the underlying data structure. We first introduce
the intuition behind FlexList and definitions of FlexDPDP to form the basis for
describing the proposed optimizations.

FlexList is a skip-list-like authenticated data structure (Fig. 1). Each node
keeps a hash value calculated according to its rank, level, the hash value of below
neighbor, and the hash value of the after neighbor, where rank indicates the
number of bytes that can be reached from the node, and level is the height of a
node in the FlexList. Note that the hash of the root node is dependent on all leaf
level nodes’ hashes. Each leaf level node keeps a link to the data (the associated
block of the file stored) to which it refers, the length of the data, and a tag value

68 E. Esiner et al.

Fig. 1. A FlexList example.

calculated for the data. Rank values are calculated by adding the below and
after neighbors’ ranks. If a node is at the leaf level, we use the length of its data
as below neighbor’s rank. FlexList has sentinel nodes as the first and the last
nodes, which have no data and hence their length value is 0, as shown in Fig. 1.
These nodes generate no new dependencies but are useful to make algorithms
easier and more understandable.

A node’s below neighbor’s rank shows how many bytes can be reached fol-
lowing the below link. The search operation uses this information to find a
searched index. We check if the searched index is less than the rank of the below
neighbor, if so we follow the below link, otherwise we follow the after link. When
we follow an after link, the index we look for is diminished by the amount of
bytes passed (rank of the below node). We repeat this procedure to reach the
node that includes the search index. A search path is the ordered set of nodes
visited on the way to reach a searched index by following the above rule starting
from the root.

Insert/Remove operations perform addition/removal of a leaf node by keeping
the necessary non-leaf nodes and removing the unnecessary ones, thus preserving
the optimality of the structure (definitions and details are provided in [17]).
Figure 2 illustrates an example of both insert and remove operations. First
we insert a data of length 50 to index 110 at level 2. Dashed lines show the nodes
and links which are removed, and bold lines show the newly added ones. Node
c5 is removed to keep the FlexList optimal [17]. The old rank values are marked
and new values written below them. For the removal of the node at index 110,
read the figure in the reverse order, where dashed nodes and lines are newly
added ones and strong nodes and lines are to be removed, and the initial rank
values are valid again.

Besides search, modify, insert, and remove algorithms, a build skip list
algorithm was introduced in [17] that generates a FlexList on top of an ordered
data using O(n) time. The algorithm takes all data blocks, their corresponding
tag values, and levels of prospective nodes as input, and generates the FlexList
attaching nodes from right to left, instead of a series of insert method calls
(which would cost O(n log n) in total). In Fig. 1, the order of node generation is:
c16, c15, c14, c13, c12, c11, c10, c9, and so on.

Analysis and Optimization on FlexDPDP: A Practical Solution 69

Fig. 2. Insert and remove examples on FlexList.

FlexDPDP [17] is a FlexList-based secure cloud storage scheme built on
DPDP [16]. The scheme starts with the client pre-processing and uploading her
data to the server. While pre-processing, both the client and the server build a
FlexList over the data blocks. The client keeps the root of the FlexList as her
meta data and the server keeps the FlexList as a whole. The server later uses
the FlexList to generate proofs of data possession.

For proof of possession, Esiner et al. proposed an algorithm named gen-
MultiProof [17], which collects all necessary values through search paths of
the challenged nodes without any repetition. A multi proof is a response to a
challenge of multiple nodes. For instance, a challenge to indices 50, 180, 230 in
Fig. 1 is replied by a proof vector as in Fig. 4, together with a vector of tags of
the challenged nodes and the block sum of the corresponding blocks. This proof
vector is used to verify the integrity of these specific blocks. We use, in Sect. 4.3,
this proof vector to verify the multiple updates on the server as well.

The client verifies the proof by calling verifyMultiProof which calculates
the hash values from the proof vector one by one until the root’s hash value. If
the hash value of the root is equal to the meta data that the client keeps, and
hashes and tags are verified, the client is satisfied. If the client is not satisfied
with the proof received, she can use the it to prove that her data is not kept
intact. We use the verifyMultiProof method to verify the proof of the nodes on
which we perform updates. Update information consists of the index of the
update, the new data and the corresponding tag.

4 Optimizations on FlexDPDP

In this section, we describe our optimizations on FlexDPDP and FlexList for
achieving an efficient and secure cloud storage system. We then demonstrate the
efficiency of our optimizations in the next section.

First, we observe that a major time consuming operation in the FlexDPDP
scheme is the pre-process operation, where a build FlexList function is employed.
Previous O(n) time algorithm [17] is an asymptotic improvement, but in terms

70 E. Esiner et al.

of actual running times, it is still noticeably slow to build a large FlexList (e.g.,
half a minute for a 1GB file with 500000 blocks). A parallel algorithm can run as
fast as its longest chain of dependent calculations, and in the FlexList structure
each node depends on its children for the hash value; yet we show that building
a FlexList is surprisingly well parallelizable.

Second, we observe that performing and verifying FlexDPDP updates in
batches yield great performance improvements, and also match the real world
usage of such a system. The hash calculations of a FlexList take most of the
time spent for an update, and performing them in batches may save many hash
unnecessary calculations.

Therefore, in this section, we provide a parallel algorithm for building
FlexList, a multi-block update algorithm for the server to perform updates
faster, and a multi-block verification algorithm for the client to verify the
update proofs sent by the server. Notation used in our algorithms is presented
in Table 1.

4.1 Parallel Build FlexList

We propose a parallel algorithm to generate a FlexList over the file blocks,
resulting in the same FlexList as a sequentially generated one. The algorithm
has three steps. Figure 3 shows the parallel construction of the same FlexList
as in Fig. 1 on three cores. We first distribute tasks to threads and generate
small FlexLists. Second, to unify them, we connect all roots together with links
(c1 to r1 and r1 to r2, thus eliminate l1 and l2) and calculate new rank values
of the roots (r1 and c1). Third, we use basic remove function to remove the
left sentinels, which remain in between each part (to indices 360 and 180: 360
= c1.rank - r2.rank and 180 = c1.rank - r1.rank). In the example, the remove
operation generates c5 and c10 of Fig. 1 and connects the remaining nodes to
them, and rank values on the search paths of c2, c6, c7, c11 are recalculated after
the removal of sentinel nodes. As a result, all the nodes of the small FlexLists
are connected to their level on the FlexList. After the unify operation, we obtain
the same FlexList of Fig. 1 generated efficiently in a parallel manner.

Fig. 3. A build skip list distributed to 3 cores.

Analysis and Optimization on FlexDPDP: A Practical Solution 71

Table 1. Symbols and helper methods used in our algorithms.

Symbol Description

cn / nn current node / new node

after / below node reached by following the after link / by following the below
link

C contains the indices that are challenged (ascending order)

i / first / last index / C’s current index / C’s end index

rs The amount of bytes passed with each follow of an after link

state state contains a node, rank state, and last index. These values are
used to set the current node cn to the point where the algorithm
will continue

P / T / M proof vector / tag vector / block sum

�s intersection stack, stores states at intersections

�l stores nodes for which a hash calculation is to be done

Method Description

canGoBelow [17] returns true if the searched index can be reached by following the
below link

isIntersection [17] returns true when the first index can be found following the below
link and the second index is found by following the after link.
If there are more than one intersection, decrements last for each
until finds the closest one

generateIndices generates an array of indices of the nodes that have been affected.
Say the update index is i, the algorithm adds i for an insert or
modify, adds i and i-1 for a remove

4.2 Handling Multiple Updates at Once

We investigated the verifiable updates and inferred that the majority of the time
spent is for the hash calculations in each update. We discuss this in detail in
Sect. 5. The client first downloads the part of the data she is interested in, then
when she alters the data and sends it to the server, she generates a vector of
updates (U) out of a diff algorithm, which is used to show the changes between
the last and the former versions of a file.

Algorithm 4.1. multiUpdate Algorithm
Input: FlexList, U
Output: P , T , M , newRootHash

Let U = (u0, . . . , uk) where uj is the jth update information

C = generateIndices(U) //According to the nature of the update for each u ∈ U , we1
add an index to the vector (uj .i for insert and modify, uj .i and uj .i − 1 for remove
as it is for a single update proof)
P , T , M= genMultiProof(C) //Generates the multiProof using the FlexList2
for i = 0 to k do3

apply ui to FlexList without any hash calculations4
update C to all affected nodes using U5
calculateMultiHash(C) // Calculates hash values of the changed nodes6
newRootHash = FlexList.root.hash7

72 E. Esiner et al.

An update information u ∈ U , includes an index i, and (if insert or modify)
a block and a tag value. Furthermore, the updates on a FlexList consist of a
series of modify operations followed by either insert or remove operations, all
to adjacent nodes. This nature of the update operations makes single updates
inefficient since they keep calculating the hash values of the same nodes over and
over again. To overcome this problem, we propose dividing the task into two:
doing a series of updates without the hash calculations, and then calcu-
lating all affected nodes’ hash values at once, where affected means that
at least an input of the hash calculation of that node has changed. The multi-
Update (Algorithm 4.1) gets a FlexList and vector of updates U , and produces
proof vector P , tag vector T , block sum M , and new hash value newRootHash
of the root after the updates.

hashMulti (Algorithm 4.2), employed in calculateMultiHash algorithm, col-
lects nodes on a search path of a searched node. In the meantime, it is collecting
the intersection points (which is the lowest common ancestor (lca) of the node the
collecting is done for and the next node of which the hash calculation is needed).
The repetitive calls from calculateMultiHash algorithm for each searched node
collects all nodes which may need a hash recalculation. Note that each time, a
new call starts from the last intersecting (lca) node.

Algorithm 4.2. hashMulti Algorithm
Input: cn, C, first, last, rs, �l, �s
Output: cn, �l, �s

// Index of the challenged block (key) is calculated according to the current sub
skip list root
i = Cfirst−rs1
while Until challenged node is included do2

cn is added to �l3
//When an intersection is found with another branch of the proof path, it is
saved to be continued again, this is crucial for the outer loop of ‘‘multi’’
algorithms
if isIntersection(cn, C, i, lastk, rs) then4

//note that lastk becomes lastk+1 in isIntersection method
state(cn.after, lastk+1, rs+cn.below.r) is added to �s5

if (CanGoBelow(cn, i)) then6
cn = cn.below //unless at the leaf level7

else8
// Set index and rank state values according to how many bytes at leaf nodes
are passed while following the after link
i -= cn.below.r; rs += cn.below.r; cn = cn.after9

calculateMultiHash (Algorithm 4.3) first goes through all changed nodes
and collects their pointers, then calculates all their hash values from the largest
index value to the smallest, until the root. This order of hash calculation respects
all hash dependencies.

We illustrate handling multiple updates with an example. Consider a multi-
Update called on the FlexList of Fig. 1 and a consecutive modify and insert
happen to indices 50 and 110 respectively (insert level is 2). When the updates
are done without hash calculations, the resulting FlexList looks like in Fig. 2.
Since the tag value of c6 has changed and a new node added between c6 and
c7, all the nodes getting affected should have a hash recalculation. If we first

Analysis and Optimization on FlexDPDP: A Practical Solution 73

perform the insert, we need to calculate hashes of n3, n2, c6, n1, c2 and c1.
Later, when we do the modification to c6 we need to recalculate hashes of nodes
c6, n1, c2 and c1. There are 6 nodes to recalculate hashes but we do 10 hash
calculations. Instead, we propose performing the insert and modify operations
and call calculateMultiHash to indices 50 and 110. The first call of hashMulti
goes through c1, c2, n1, and c6. On its way, it pushes n2 to a stack since the
next iteration of hashMulti starts from n2. Then, with the second iteration of
calculateMultiHash, n2 and n3 are added to the stack. At the end, we call the
nodes from the stack one by one and calculate their hash values. Note that the
order preserves the hash dependencies.

Algorithm 4.3. calculateMultiHash Algorithm
Input: C
Output:

Let C= (i0, . . . , ik) where ij is the (j + 1)th altered index;

statem = (nodem, lastIndexm, rsm)
cn = root; rs = 0; �s, �l are empty; state= (root, k, rs)1
// Call hashMulti method for each index to fill the changed nodes stack �l

for x = 0 to k do2
hashMulti(state.node,C, x,state.end,state.rs,�l,�s)3
if �s not empty then4

state = �s.pop(); cn = state.node ; state.rs += cn.below.r5
for k =�l.size to 0 do6

calculate hash of kth node in �l7

4.3 Verifying Multiple Updates at Once

When the multiUpdate algorithm is used at the server side of the FlexDPDP
protocol, it produces a proof vector, in which all affected nodes are included,
and a hash value, which corresponds to the root of the FlexList after all of the
update operations are performed.

The solution we present to verify such an update is constructed in four parts.
First, we verify the multi proof both by FlexList verification and tag verifi-
cation.

Fig. 4. An output of a multiProof algo-
rithm.

Fig. 5. The temporary FlexList gener-
ated out of the proof vector in Fig. 4.
Note that node names are the same
with Fig. 1.

74 E. Esiner et al.

Second, we construct a temporary FlexList, which is constituted of the
parts necessary for the updates. Third, we do the updates as they are, at
the client side. The resulting temporary FlexList has the root of the original
FlexList at the server side after performing all updates correctly. Fourth and
last, we check if the new root we calculated is the same as the one sent by the
server. If they are the same return accept and update the meta data that is kept
by the client.

Constructing a Temporary FlexList out of a Multi Proof: Building
a temporary FlexList is giving the client the opportunity to use the regular
FlexList methods to do the necessary changes to calculate the new root. Dummy
nodes that we use below are the nodes that have some values set and are never
subject to recalculation.

We explain the Algorithm7.1 (see Appendix) using the proof vector presented
in Fig. 4. The output of the algorithm given the proof vector is the temporary
FlexList in Fig. 5. First, the algorithm takes the proof node for c1, generates
the root using its values and adds the dummy after, with the hash value (of
c16) stored in it. And the nodes are connected to each other depending on their
attributes. The proof node for c2 is used to add node c2 to the below of c1 and
the c2’s dummy node is connected to its below with rank value of 50, calculated
as rank of c2 minus rank of c5. Note that the rank values of below nodes are used
in regular algorithms so we calculate and set them. The next iteration sets c5 as
c2’s after and c5’s dummy node c10 is added to c5’s after. The next step is to add
c6 to the below of c5. c6 is both an end node and an intersection node, therefore
we set its tag (from the tag vector) and its length values. Then we attach c7

and calculate its length value since it is not in the proof vector generated by
genMultiProof (but we have the necessary information: the rank of c7 and the
rank of c8). Next, we add the node for c8, and set its length value from the proof
node and its tag value from the tag vector. Last, we do the same to c9 as c8.
The algorithm outputs the root of the new temporary FlexList.

Verification: Recall that U is the list of updates generated by the client. An
update information u ∈ U , includes an index i, and if the update is an inser-
tion or modification, a block and a tag value. The client calls verifyMultiUpdate
(Algorithm 7.2) with its meta data and the outputs P , T , M of multiUpdate
from the server. If verifyMultiProof returns accept, we call buildDummyFlexList
with the proof vector P . The resulting temporary FlexList is ready to handle
updates. Again we perform the updates without the hash calculations and then
call the calculateMultiHash algorithm. But, we do not need to track changes to
call a calculateMultiHash at the end, but instead calculate the hash of all the
nodes present in the list. Last, we check if the resulting hash of the root of our
temporary FlexList is equal to the one sent by the server. If they are the same,
we accept and update the client’s meta data.

Analysis and Optimization on FlexDPDP: A Practical Solution 75

5 Experimental Evaluation

We used our implementations of the FlexList data structure and the FlexDPDP
protocol, that are in C++ with the aid of the Cashlib library [8,28] for cryp-
tography and the Boost Asio library [6] for network programming. Our local
experiments are run on a 64-bit computer possessing 4 Intel(R) Xeon(R) CPU
E5-2640 @ 2.50 GHz CPU, 16 GB of memory and 16 MB of L2 level cache, run-
ning Ubuntu 12.04 LTS. The security parameters are as follows: 1024 bit RSA
modulus, 80 bit random numbers, SHA1 as hash function resulting with an
expected security of 80 bits. Mostly, FlexList operations run on RAM, but we
keep each block of a file separately on the hard disk drive and include the I/O
times in our experimental analysis.

Fig. 6. Time spent while building a
FlexList from scratch.

Fig. 7. Speedup values of buildFlexList
function with multiple cores.

5.1 Parallel Build FlexList Performance

Figure 6 shows the build FlexList function’s time as a function of the number
of cores used in parallel. The case of one core corresponds to the buildFlexList
function proposed in [17]. From 2 cores to 24 cores, we measure the time spent
by our parallel build FlexList function. Notice the speed up where parallel build
reduces the time to build a FlexList of 4 million blocks from 240 s to 30 s on
12 cores The speedup values are reported in Fig. 7 where T stands for time for
a single core used and Tp stands for time with p number of cores used. The
more sub-tasks created, the more time is required to divide the big task into
parts and to combine them. We see that a FlexList of 100000 blocks does not
get improved as much, since the sub tasks are getting smaller and the overhead
of thread generation starts to surpass the gain of parallel operations. Start-
ing from 12 cores, we observe this side effect for all sizes. For 500000 blocks

76 E. Esiner et al.

(i.e., 1 GB file) and larger FlexLists, speed ups of 6 and 7.7 are observed on
8 and 12 cores respectively.

5.2 Server-Side Multi Update Operations

Results for the core FlexList methods (insert, remove, modify) with and without
the hash calculations for various sizes of FlexList are shown in Fig. 8. Even with
the I/O time, the operations with the hash calculations take 10 times more
time than the simple operations in a 4 GB file (i.e., 2000000 nodes). The hash
calculations in an update take 90% of the time spent for an update operation.
Therefore, this finding indicates the benefit of doing hash calculations only once
for multiple updates in the performMultiUpdate algorithm.

2*10^3 2*10^4 2*10^5 2*10^6
0

0.025
0.05

0.075
0.1

0.125
0.15

0.175
0.2

0.225
0.25

0.275
0.3

0.325
0.35

Number of blocks

T
im

e
pe

r
op

er
at

io
n

(m
s)

Modify
Insert
Remove
Authenticated Modify
Authenticated Insert
Authenticated Remove

Fig. 8. Time spent for an update oper-
ation in FlexList with and without
hash calculations.

120 240 360 480 600
0

20

40

60

Size of the update (KB)

T
im

e
sp

en
t

fo
r

an
 u

p
d

at
e

(m
s)

Multi update time
(consequtive updates)
Single update time
(consequtive updates)
Multi update time
(random index updates)
Single update time
(random index updates)

Fig. 9. Time spent on performing
multi updates against series of single
updates.

performMultiUpdate allows using multi proofs as discussed in Sect. 4. This
provides ∼25 % time and space efficiency on the verifiable update operations
when the update is ∼20KB, and this gain increases up to ∼35 % with 200 KB
updates. The time spent for an update at the server side for various size of
updates is shown in Fig. 9 with each data point reflecting the average of 10
experiments. Each update is an even mix of modify, insert, and remove oper-
ations. If the update locality is high, meaning the updates are on consecutive
blocks (a diff operation generates several modifies to consecutive blocks followed
by a series of remove if the added data is shorter than the deleted data, or a
series of inserts otherwise [17]), using our calculateMultiHash algorithm after the
updates without hash calculation on a FlexList for a 1 GB file, the server time
for 300 consecutive update operations (a 600 KB update) decreased from
53 ms to 13 ms.

Analysis and Optimization on FlexDPDP: A Practical Solution 77

120 240 360 480 600
0

20

40

60

80

100

Size of the update (KB)

T
im

e
sp

en
t

fo
r

ve
ri

fi
ca

ti
o

n
 (

m
s)

Multi verify time
(consequtive updates)
Single verify time
(consequtive updates)
Multi verify time
(random index updates)
Single verify time
(random index updates)

Fig. 10. MultiVerify of an update
against standard verify operations.

5 10 15 20 25 30 35
0

500

1000

1500

C
lie

nt
 u

pd
at

e
tim

e

Number of queries (per second)

0

10

20

30

S
er

ve
r

th
ro

ug
hp

ut

Total time spent by the client

Server throughput

Fig. 11. Clients challenging their
data. Two lines present: first, server
throughput in count per second and
second, whole time for a challenge
query of FlexDPDP, in ms.

5.3 Client-Side Multi Update Operations

For the server to be able to use multiUpdate algorithm, the client could be able to
verify multiple updates at once. Otherwise, as each single verify update requires
a root hash value after that specific update, all hash values on the search path
of the update should be calculated each time. Also, each update proof should
include a FlexList proof alongside them. Verifying multiple updates at once not
only diminishes the proof size but also provides time improvements at the client
side. Figure 10 shows that a multi verify operation is faster at the client side when
compared to verifying all the proofs one by one. We tested two scenarios: One
is for the updates randomly distributed along the FlexList, and the other is for
the updates with high locality. The client verification time is highly improved.
For instance, with a 1 GB file and a 300 KB update, verification at the client
side was reduced from 45 ms to less than 5 ms. With random updates, the multi
verification is still 2 times faster.

5.4 Real Usage Performance Analysis via PlanetLab

We deployed the FlexDPDP model on the world-wide network testbed Planet-
Lab. We chose a node in Wuerzburg, Germany1 on PlanetLab as the server which
has two Intel(R) Core(TM)2 CPU 6600 @ 2.40 GHz (IC2) and 48 MBit upload
and 80 MBit download speed. Our protocol runs on a 1 GB file, which is divided
into blocks of 2 KB, having 500000 nodes (for each client). The throughput is
defined as the maximum number of queries the server can reply in a second.
1 planetlab1.informatik.uni-wuerzburg.de.

78 E. Esiner et al.

Our results are the average of 50 runs on the PlanetLab with randomly chosen
50 clients from all over the Europe.

Challenge Queries: We measured two metrics, the whole time spent for a
challenge proof interaction at the client side and the throughput of the server
(both illustrated in Fig. 11). As shown in the Figure, the throughput of the server
is around 21. When the server limit is reached, we observe a slowdown on the
client side where the response time increases from around 500 ms to 1250 ms.
Given that preparing a proof of size 460 using the IC2 processor takes 40ms
using genMultiProof on a single core, we conclude that the bottleneck is not
the processing power. The challenge queries are solely a seed, thus the download
speed is not the bottleneck neither. A proof of a multi challenge has an aver-
age size of 280 KB (∼215 KB FlexList proof, ∼58 KB tags, ∼2 KB blocksum),
therefore to serve 21 clients in a second a server needs 47 MBit upload speed
which seems to be the bottleneck in this experiment. The more we increase the
upload speed, the more clients we can serve with such a low end server.

20 30 40 50 60
0

10

20

30

40

50

Number of queries (per second)

S
er

ve
r

T
ho

ug
hp

ut
 (

pe
r

se
co

nd
)

20KB Random
200KB Random
20KB Consecutive
200KB Consecutive

Fig. 12. Server throughput versus the
frequency of the client queries.

20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

Number of queries (per second)

C
lie

nt
 u

pd
at

e
tim

e
(m

s)

20KB Random
200KB Random
20KB Consecutive
200KB Consecutive

Fig. 13. A client’s total time spent for
an update query (sending the update,
receiving a proof and verifying the
proof).

Update Queries:
Real Life Usage Analysis Over Real Version Control System Traces:
We have conducted analysis on the SVN server where we have 350 MB of data
that we have been using for the past 2 years. We examined a sequence of 627
commit calls and provide results for an average usage of a commit function by
means of the update locality, the update size being sent through the network,
and the updated number of blocks.

Analysis and Optimization on FlexDPDP: A Practical Solution 79

We consider the directory hierarchy proposed in [16]. The idea presented is
to set root of each file’s FlexList (of the single file scheme presented) in the leaf
nodes of a dictionary used to organize files. The update locality of the commits
is very high. More than 99 % of the updates in a single commit occur in the same
folder, thus do not affect most parts of the directory, thus FlexList but a small
portion of them. Moreover, 27 % of the updates are consecutive block updates
on a single field of a single file.

With each commit an average of size 77 KB is sent, where we have 2.7 %
commits of size greater than 200 KB and 85 % commits has size less than 20KB.
These sizes are the amounts sent through the network. Erway et al. show analysis
on 3 public SVN repositories. They indicate that the average update size is
28 KB [16]. Therefore in our experiments on PlanetLab we choose 20KB (to
show general usage) and 200KB (to show big commits) as the size sent for a
commit call. The average number of blocks affected per commit provided by
Erway et al. is 13 [16] and is 57.7 in our SVN repository. They both show the
necessity of efficient multiple update operations.

We observe the size variation of the commits and see that the greatest com-
mon divisor of the size of all commits is 1, as expected. Thus we conclude that
fixed block sized rank-based authenticated skip lists is not applicable to the
cloud storage scenario.

Table 2. Proof time and size table for various type of updates.

Update size and type Server proof Corresponding

generation time proof size

200 KB (100 blocks) randomly dist 30 ms 70 KB

20 KB (10 blocks) randomly dist 10 ms 11 KB

200 KB (100 blocks) consecutive 7 ms 17 KB

20 KB (10 blocks) consecutive 6 ms 4 KB

Update Queries on the PlanetLab: We perform analysis using the same
metrics as a challenge query. The first one is the whole time spent at the client
side (Fig. 13) and the second one is the throughput of the server (Fig. 12), for
updates of size ∼20 KB and ∼200 KB. We test the behavior of the system by
varying the query frequency, the update size, and the update type (updates to
consecutive blocks or randomly selected blocks). Table 2 shows the measurements
for each update type.

Figure 12 shows that a server can reply to ∼45 many updates of size 20 KB
and ∼8 many updates of size 200 KB per second. Figure 13 also approves, that
the server is loaded, by the increase in time of a client getting served. Compar-

80 E. Esiner et al.

ing update proofs with the proof size of only challenges (shown in Fig. 11), we
conclude that the bottleneck for replying update queries is not the upload speed
of the server, since a randomly distributed update of size 200 KB needs 70 KB
proof and 8 proof per second is using just 4.5 Mbit of the upload bandwidth or
a randomly distributed updates of size 20 KB needs a proof of size 11 KB and
45 proof per second uses only 4MBit of upload bandwidth. Table 2 shows the
proof generation times at the server side. 30 ms per 200 KB random operation
is required so a server may answer up to 110-120 queries per second with IC2
processor and 10 ms per 20 KB random operation is required, thus a server can
reply up to 300 queries per second. Therefore, the bottleneck is not the process-
ing power either. Eventually the amount of queries of a size a server can accept
per second is limited, even though the download bandwidth does not seem to
be loaded up. But, note that the download speed is checked with a single source
and a continuous connection. When a server keeps accepting new connections,
the end result is different. This was not a limiting issue in answering challenge
queries since a challenge is barely a seed to show the server which blocks are
challenged. In our setting, there is one thread at the server side which accepts
a query and creates a thread to reply it. We conclude that the bottleneck is
the server query acceptance rate of our implementation. These results indicate
that with a distributed and replicated server system, a server using FlexDPDP
scheme may reply to more queries.

6 Conclusion and Future Work

In this study, we have extended the FlexDPDP scheme with optimized and
efficient algorithms, and tested their performance on real workloads in network
realistic settings. We obtained a speed up of 6 using 8 cores on the pre-processing
step, 60 % improvement on the server-side updates, and 90 % improvement while
verifying them at the client side.

We deployed the scheme on the PlanetLab testbed and provided detailed
analysis using real version control system workload traces. We measured the
throughput of the server and the time spent at the client side after our opti-
mizations and show that even with a low-end server, the bottleneck is the upload
speed of the server. And we show that at the client side, the latencies are not
perceptible.

After the optimizations, with the experiments, we show that the implemented
FlexDPDP scheme is practically usable in real life scenarios. As future work, we
plan to extend FlexDPDP to distributed and replicated servers.

Acknowledgement. We would like to thank Ozan Okumuşoğlu at Koç University,
Istanbul, Turkey for his contribution on testing and debugging, working on implemen-
tation of server-client side of the project and verification algorithms. We also acknowl-
edge the support of TÜBİTAK (the Scientific and Technological Research Council of
Turkey) under project numbers 111E019 and 112E115, Türk Telekom, Inc. under grant
11315-06, the European Union COST Actions IC1206 and IC1306, and Koç Sistem,
Inc.

Analysis and Optimization on FlexDPDP: A Practical Solution 81

7 Appendix: Optimization Algorithms

Algorithm 7.1. constructTemporaryFlexList Algorithm
Input: P , T
Output: root (temporary FlexList)

Let P = (A0, . . . , Ak), where Aj = (levelj , rj , hashj , rgtOrDwnj , isInterj , isEndj ,
lengthj) for j = 0, . . . , k; T = (tag0, . . . , tagt), where tagt is tag for challenged
blockt and dummy nodes are nodes including only hash and rank values set on them and
they are final once they are created; //
root = new Node(r0, length0) // This node is the root and we keep this as a pointer1
to return at the end//
�s = new empty stack2
cn = root3
dumN = new dummy node is created with hashj4
cn.after = dumN5
for i = 0 to k do6

nn = new node is created with Leveli+1 and ri+17
if isEndi and isInteri then8

cn.tag = next tag in T ; cn.length = lengthi ; cn.after = nn; cn = cn.after9
else if isEndi then10

cn.tag = next tag in T ; cn.length = lengthi ; if ri != lengthi then11
dumN = new dummy node is created with hashi as hash and ri - lengthi as12
rank
cn.after = dumN13

if �s is not empty then14
cn = �s.pop() ; cn.after = nn; cn = cn.after15

else if leveli = 0 then16
cn.tag = hashi ; cn.length = ri - ri+1 ; cn.after = nn ; cn = cn.after17

else if isInteri then18
cn is added to �s ; cn.below = nn; cn = cn.below19

else if rgtOrDwni = rgt then20
cn.after = nn21
dumN = new dummy node is created with hashi as hash and ri - ri+1 as rank22
cn.below = dumN ; cn = cn.after23

else24
cn.below = nn25
dumN = new dummy node is created with hashi as hash and ri - ri+1 as rank26
cn.after = dumN ; cn = cn.below27

return root28

Algorithm 7.2. verifyMultiUpdate Algorithm
Input: P , T ,MetaData, U, MetaDatabyServer

Output: accept or reject

Let U= (u0, . . . , uk) where uj is the jth update information

if !verifyMultiProof(P, T, MetaData) then1
return reject2

FlexList = buildTemporaryFlexList(P)3
for i = 0 to k do4

apply ui to FlexList without any hash calculations5
calculate hash values of all nodes in the temporary FlexList. //A recursive call from the6
root
if root.hash != MetaDatabyServer then7

return reject8
return accept9

References

1. Abraham, I., Chockler, G., Keidar, I., Malkhi, D.: Byzantine disk paxos: optimal
resilience with byzantine shared memory. Distrib. Comput. 18(5), 387–408 (2006)

2. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: ACM CCS (2007)

82 E. Esiner et al.

3. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic iden-
tification protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 319–333. Springer, Heidelberg (2009)

4. Ateniese, G., Di Pietro, R., Mancini, L.V., Tsudik, G.: Scalable and efficient prov-
able data possession. In: SecureComm (2008)

5. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: Depsky: dependable
and secure storage in a cloud-of-clouds. In: EuroSys 2011. ACM (2011)

6. Boost asio library. http://www.boost.org/doc/libs
7. Bowers, K.D., Juels, A., Oprea, A.: Hail: a high-availability and integrity layer for

cloud storage. In: ACM CCS (2009)
8. Brownie cashlib cryptographic library. http://github.com/brownie/cashlib
9. Cachin, C., Keidar, I., Shraer, A.: Trusting the Cloud. SIGACT News, New York

(2009)
10. Cachin, C.,Tessaro, S.: Optimal resilience for erasure-coded byzantine distributed

storage. In: DSN 2006. IEEE Computer Society, Washington (2006)
11. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious ram.

In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
279–295. Springer, Heidelberg (2013)

12. Chockler, G., Guerraoui, R., Keidar, I., Vukolic, M.: Reliable distributed storage.
IEEE Comput. 42(4), 60–67 (2009)

13. Chockler, G., Malkhi, D.: Active disk paxos with infinitely many processes. In:
Proceedings of PODC 2002. ACM Press (2002)

14. Curtmola, R.: Khan, O., Burns, R., Ateniese, G.: Multiple-replica provable data
possession. In: ICDCS (2008)

15. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009)

16. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: ACM CCS (2009)

17. Esiner, E., Kachkeev, A., Braunfeld, S., Küpçü, A., Özkasap, Ö.: Flexdpdp:
Flexlist-based optimized dynamic provable data possession. Cryptology ePrint
Archive, Report 2013/645 (2013)

18. Etemad, M., Küpçü, A.: Transparent, distributed, and replicated dynamic provable
data possession. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 1–18. Springer, Heidelberg (2013)

19. Furht, B., Escalante, A.: Handbook of Cloud Computing. Computer Science.
Springer, Heidelberg (2010)

20. Gafni, E., Lamport, L.: Disk paxos. Distrib. Comput. 16(1), 1–20 (2003)
21. Goodson, G., Wylie, J., Ganger, G., Reiter, M.: Efficient byzantine-tolerant

erasure-coded storage. In: DSN 2004 (2004)
22. Hendricks, J., Ganger, G.R., Reiter, M.k.: Low-overhead byzantine fault-tolerant

storage. In: SOSP 2007. ACM (2007)
23. Jayanti, P., Chandra, T.D., Toueg, S.: Fault-tolerant wait-free shared objects. J.

ACM. 45(3), 451–500 (1998)
24. Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.: On technical security issues

in cloud computing. In: Cloud Computing CLOUD 2009. IEEE (2009)
25. Juels, A., Kaliski, B.S.: PORs: Proofs of retrievability for large files. In: ACM CCS

(2007)
26. Liskov, B., Rodrigues, R.: Tolerating byzantine faulty clients in a quorum system.

In: IEEE 32nd International Conference on Distributed Computing Systems (2006)

http://www.boost.org/doc/libs
http://github.com/brownie/cashlib

Analysis and Optimization on FlexDPDP: A Practical Solution 83

27. Malkhi, D., Reiter, M.: Byzantine quorum systems. Distrib. Comput. 11(4),
203–213 (1998)

28. Meiklejohn, S., Erway, C., Küpçü, A., Hinkle, T., Lysyanskaya, A.: Zkpdl: Enabling
efficient implementation of zero-knowledge proofs and e-cash. In: USENIX Security
(2010)

29. Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-party
authenticated data structures. In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007.
LNCS, vol. 4861, pp. 1–15. Springer, Heidelberg (2007)

30. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

31. Stanton, P.T., McKeown, B., Burns, R.C., Ateniese, G.: Fastad: an authenticated
directory for billions of objects. SIGOPS Oper. Syst. Rev. 44(1), 45–49 (2010)

32. Wang, Q., Wang, C., Li, J., Ren, K., Lou, W.: Enabling public verifiability and
data dynamics for storage security in cloud computing. In: Backes, M., Ning, P.
(eds.) ESORICS 2009. LNCS, vol. 5789, pp. 355–370. Springer, Heidelberg (2009)

33. Wooley, P.S.: Identifying cloud computing security risks. Technical report, 7 Uni-
versity of Oregon Eugene (2011)

34. Zheng, Q., Xu, S.: Fair and dynamic proofs of retrievability. In: CODASPY (2011)

Leveraging Ad-hoc Networking and Mobile
Cloud Computing to Exploit Short-Lived
Relationships Among Users on the Move

Jack Fernando Bravo-Torres1, Mart́ın López-Nores2(B),
Yolanda Blanco-Fernández2, José Juan Pazos-Arias2,

and Esteban Fernando Ordióñez-Morales1

1 Área de Ciencias Exactas, Universidad Politécnica Salesiana,
Calle Vieja 12-30 y Elia Liut, Cuenca, Ecuador

{jbravo,eordonez}@ups.edu.ec
2 AtlantTIC Research Center for Information

and Communication Technologies, Departamento de Ingenieŕıa
Telemática, Universidade de Vigo, EE Telecomunicación,

Campus Universitario s/n, 36310 Vigo, Spain
{mlnores,yolanda,jose}@det.uvigo.es

Abstract. The interactions enabled by the popular sites of the Web
2.0 are largely confined to the virtual world of the Internet, thus fail-
ing to engage people in relevant interactions with people, contents or
resources in their physical environment. In this paper, we motivate the
potential of automatically establishing sporadic social networks among
people (acquaintances or strangers) who happen to be physically close to
one another at a certain moment. We present the design of one platform
intended to provide solutions from the lowest level of establishing ad-hoc
connections among nearby mobile devices, up to the highest level of auto-
matically identifying the most relevant pieces of information to deliver
at any time. A number of application scenarios are presented, along with
technical details of a solution to empower ad-hoc communications by
means of a virtualization layer.

Keywords: Sporadic social networks · Ad-hoc networking · Mobile
cloud computing · Knowledge management

1 Introduction

In recent years, research in the field of information services has made signifi-
cant progress in exploiting the knowledge contained (explicitly or implicitly) on
social networks like Facebook, Twitter, Instagram, Foursquare and LinkedIn.
Despite having radically different approaches and objectives, these Web 2.0 sites
are always based on semi-permanent relationships among people. These rela-
tions (bidirectional, as friends, or unidirectional, as followers/followees) serve to
gradually build knowledge bases in the form of graphs, with elements represent-
ing the pieces of information shared by the individuals: comments, documents,
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 84–102, 2015.
DOI: 10.1007/978-3-319-19848-4 6

Leveraging Ad-hoc Networking and Mobile Cloud Computing 85

images etc. The analysis of such meshes of contents enables additional features
like recommending potentially interesting contents for each individual, launching
of advertising campaigns aimed at specific groups or segments of the population,
identifying affinities among people or synergies between different areas of activ-
ity, etc.

Despite the penetration of many of the aforementioned social networks, it is
noticeable that the interactions they enable are largely confined to the virtual
world of the Internet. These are not accompanied by actual interactions (i.e.
face-to-face) except in cases in which people communicate to arrange physical
meetings for entertainment or work. Moreover, it is noticeable that the individ-
uals’ interactions are increasingly focused on the set of people included in their
social graphs, which are now accessible at any time. This causes a side effect
of de-socialization, in which the individual is isolated from his/her environment
and voluntarily (though perhaps not quite consciously) gets trapped in a bub-
ble of communication with his/her contacts. This social phenomenon is being
widely studied [14], but its effects in the medium-to-long term are still unknown.
Notwithstanding, the current state of technology, together with the ever-growing
popularity of smartphones, has led many authors to envisage a new era of infor-
mation services tailored to the people’s physical and social context [7,33]: the
era of pervasive social computing.

This paper is about applying technology to enable new forms of social interac-
tion outside the aforementioned bubble. Specifically, we are building a platform
called SPORANGIUM (“SPORAdic social networks in the Next-Generation
Information services for Users on the Move”) that aims at facilitating the cre-
ation and exploitation of sporadic (short-lived) social networks, communicat-
ing each individual with the people that surround him/her at a given moment
(both acquaintances and strangers) and considering the information that may
be relevant to them in different contexts and at different levels (room, building,
street, city, province, etc.). The goal is to allow each individual to make the
most of the people and the resources present in the environment at all times.
The proposal is applicable in various areas, from the formation of groups and
the orchestration of activities around events or venues that attract people with
potentially-related interests (e.g. museums, concert halls or campsites) to oppor-
tunities for enhanced communications and access to relevant information on
the road (advanced information services to vehicular networks) or advances in
the vision of the smart cities (related to the planning of personal mobility or the
celebration of location-based urban games) [23].

The paper is organized as follows. We present the architecture of the SPO-
RANGIUM platform in Sect. 2, followed by a description of some of the func-
tionalities we aim to support in different areas in Sect. 3. Some technical details
about the platform are included in Sect. 4. Conclusions are finally given in Sect. 5.

2 The SPORANGIUM Platform

We are developing the SPORANGIUM platform as an extension of the tech-
nology that is already available to people, aiming to incorporate sporadic social

86 J.F. Bravo-Torres et al.

networks (henceforth, SSNs) and the mechanisms that make them possible into
the technological landscape of the well-known Web 2.0. Conceptually, its archi-
tecture has four levels, as shown in Fig. 1.

· Mobility management
· Routing
· Virtualization
· ...

Ad-hoc Communications

· (Semi-)permanent storage in cloud spaces
· Synchronisation of information flows
· Live games orchestration
· Sensor fusion
· Allocation of tasks over computing resources
· Service differentiation
· ...

Mobile Cloud Computing

· User profiles
· Data mining
· Content-based and collaborative filtering
· Context identification and management
· Fitness, convenience and affinity metrics
· SSN formation
· SSN monitoring
· ...

Knowledge Management

· Text interactions
· Voice interactions
· Gestural interactions
· Augmented reality
· 360 degree panoramics
· Audio/video feeds
· ...

Application Building Blocks

Fig. 1. The conceptual layers of the SPORANGIUM platform.

The sporadic social networks rely firstly on ad-hoc networks laid dynamically
among the mobile devices of the people who happen to be close to one another
at a given moment. With proper foundations, ad-hoc networks are arguably
the most natural and efficient way to exchange information among people who
are very close to each other, instead of proceeding “the Whatsapp way”, i.e.
sending data packets out to servers that may be very far away, only to have the
server echo the same packets downlink [6,27]. In this regard, SPORANGIUM

Leveraging Ad-hoc Networking and Mobile Cloud Computing 87

provides mechanisms to establish connections proactively and transparently to
the users whenever deemed appropriate by the information from higher levels of
the architecture. It incorporates virtualization constructs introduced in [31] and
refined in [3] to use the ad-hoc networks as reliable channels and repositories
of the information available to the members of an SSN. Virtualization provides
scalable mechanisms by which the mobile devices can collaborate to support
communications from, to and through them, directly or in a multihop fashion,
even with the ability to differentiate a range of QoS demands [18].

Whenever the ad-hoc networks are not stable or reliable enough, the “Mobile
Cloud Computing” (MCC) layer can use the infrastructure accessible through
2G/3G/4G connections or Wi-Fi access points to maintain connectivity as far as
possible and to store information temporarily during periods of disconnection.
Unlike the classical vision of mobile cloud computing, focused on individuals
that would do practically nothing without access to the Internet (see [8]), the
goal of MCC in SPORANGIUM is to enable value-added services for groups of
people already in the level of ad-hoc communications, harnessing the resources
available to each one of them through their mobile devices. There are plenty
of things to be done without access to the Internet, which can nonetheless be
exploited (and shared) whenever possible to offer more advanced functionalities
and more abundant contents. Following this philosophy (which is explicit in
the diagram of Fig. 2) the MCC layer in SPORANGIUM provides the following
services, with only the last and the last-but-one depending on connectivity out
of the ad-hoc networks:

– Storing information in spaces in the cloud, linked to source/target devices,
creating/consuming users, location, etc.

– Accessing and serving information of high-level user profiles during the for-
mation of ad-hoc networks.

– Synchronizing multiple flows of information coming from the connected
devices.

– Supervising and enforcing interaction patterns to support live games.
– Pooling data from various sensors on multiple devices to achieve greater pre-

cision in geolocation.
– Delegating complex tasks on remote machines, to overcome the limitations of

the mobile devices in terms of battery, memory and/or computing power.
– Providing access to cloud services on the Internet: maps, databases, semantic

repositories, etc.

Upper in the architecture, the “Knowledge Management” layer is the place to put
solutions from the areas of data mining, recommender systems and the Semantic
Web to automatically drive the selection of pieces of information for the greatest
benefit of the members of an SSN, while personalizing the contents delivered by
each device either to a single person (as typically happens with mobile phones)
or several people using the same device (as might be the occupants of a vehicle).
In this regard, we are doing our early experiments by reusing semantic reasoning
and personalisation mechanisms from previous works of our own, out of the realm
of mobile devices and social networking [15,16].

88 J.F. Bravo-Torres et al.

Fig. 2. The combined vision of ad-hoc networks and mobile cloud computing.

The top level of the architecture, “Application Building Blocks”, conceptually
contains the software components that provide value-added services to the mem-
bers of an SSN, plus the interfaces that help make the most of those new features:
augmented reality, 360 degree panoramic pictures, gestural interactions, etc.

3 Sample Application Scenarios

In the following subsections, we describe some of the features that may be
enabled by the vision of the sporadic social networks in different areas of appli-
cation.

3.1 SPORANGIUM Features for Venues

The use of the SPORANGIUM platform in venues has to do with the formation
of groups, the orchestration of activities, the synchronization of multiple flows
of information and the collective use of the devices in the hands of the different
individuals. Museums, concert halls, campsites, kindergartens, stadiums, ... they
are all places where many people get close together and, even though they may
not know each other, it is likely that they have common interests (e.g. in History

Leveraging Ad-hoc Networking and Mobile Cloud Computing 89

or Science, in a certain kind of music, in nature, in children stuff, in sports, etc.).
Hereafter, we will focus on features enabled by SSNs in museums, which put
forward ideas that could be easily extrapolated to other venues.

People go to museums during their spare time purposefully to learn about a
specific subject, which makes them propitious places to go beyond the individ-
ual use of mobile devices promoted by the many previous pieces of work that
provided personalized itineraries within the buildings, continuity of experiences
from one visit to another, etc [9,12,26,29]. With the corresponding SSN appli-
cation, a museum visitor would be ready to start interacting with people out of
the everyday contacts upon entering the building. To begin with, the user could
browse a virtual bulletin board containing a selection of messages posted on
Twitter by other current visitors with similar profiles. Short reviews and photos
of areas to visit, ratings of activities and exhibitions, ... could be a very good
starting point for newcomers to get to know the place and to meet new people,
with no need to ever have browsed their Twitter profiles and, of course, with no
need to have previously established follower-followee relationships.

The platform could also take the lead in gathering groups of visitors to engage
in guided tours inside the museum, considering such parameters as language,
country/province of origin, gender and age. Having identified a number of visitors
for the task, their mobile devices could be used to agree on the hour, the duration
and the topic of the tour in close interaction with the museum staff. Then, when
the tour is running, the mobiles devices of the visitors and the guide would be
contributing contents (textual comments, pictures, recorded audio, etc.) to one
space in the cloud, to be shared accessed by others to the criteria decided by the
owner of each device: “this comment is open for all the others to read”, “this
annotation is only for me”, “this picture can be only seen by the people who
appear on it”.

Contents coming from multiple devices in an SSN are automatically aggre-
gated, annotated and synchronized at the MCC layer to allow accessing them
in different ways. For example, they can be displayed on a virtual timeline that
the user could scroll to remember what the guide had said minutes before, to
compare a picture in display with another one in the preceding room, etc. They
can also be displayed on a scrollable map or as augmented-reality items overlaid
on the live output of a camera.

3.2 SPORANGIUM Features for Vehicular Social Networking

The application of the SPORANGIUM platform to vehicular environments was
motivated by some of the visions put forward in [13] about the future of the
mobile Internet, which are largely shared by researchers, car manufacturers and
transport authorities. It was proved in [32] that, due to the length and the regu-
larity of people’s trips on private cars and/or public transport, vehicle encounters
exhibit inherent social structure and behavior. These facts can be exploited at the
communications level to improve the performance of protocols like 802.11j [21],
but we are more interested in the concept —first introduced in [25]— of vehicular

90 J.F. Bravo-Torres et al.

social networks as groups of individuals who may have common interests, prefer-
ences or needs in a context of temporal and spatial proximity on the roads. Our
first goal in the development of SPORANGIUM is to provide a common frame-
work to support features already tested in previous works [10,28]. To this aim,
we want to provide reliable mechanisms to establish direct voice communications
among nearby vehicles, with the ability to filter incoming calls based on distance,
caller profile, etc. Such communications will flow primarily on wireless ad-hoc
networks, typically hop-by-hop, but using mobile telephony networks only in
cases where the ad-hoc mechanisms cannot guarantee the required quality. We
can envisage various motivations for calls, from unicast messages/questions (e.g.
“it looks like you are driving on a low air wheel”) to multicast ones (“can any-
one tell me the way to the bullfighting arena?”) or comments that can lead to
conversations and new relationships in a classical social network (e.g. “that’s a
JRS spoiler, isn’t it?”).

Additionally, the features provided by the “Mobile Cloud Computing” and
“Knowledge Management” layers of SPORANGIUM are aimed at enabling new
features related with a smarter management of information in a collaborative
fashion. For example, by managing profiles that include a characterization of
the users and their mobility patterns, the platform can assist in the detection
of ride-sharing opportunities, as promoted by web sites like carpooling.com.uk
as a way to reduce costs, decongest roads and parking lots, reduce pollution,
etc. Especially in the vicinity of large cities, many people commute over routes
that often overlap significantly, except for a few kilometers to the beginning and
the end. It is particularly interesting to exploit situations of traffic congestion
during rush hours to automatically detect matches on journeys planned for the
next few days, notifying drivers properly and letting them agree on the details
through the aforementioned direct communication mechanisms.

An ad-hoc network set up among a number of vehicles can support the down-
loading and sharing or dissemination of pieces of content relevant to the drivers’
location, ranging from notices of accidents and consequent diversion suggestions
to advertising material about nearby shops or attractions. The latter point opens
up multiple possibilities for customization according to the profiles of each driver
and the passengers accompanying him/her, taking into account that the material
may cease to be relevant (because the place in question is no longer reachable)
after any crossroads or junction.

In line with the previous point, monitoring traffic flows and driver profiles
can help create dynamic advertising systems, capable of adapting the content
displayed on billboards, signs or other channels to improve the efficiency of the
campaigns. The SSN mechanisms make it possible to deploy strategies aimed at
bringing together groups of customers, e.g. by offering discounts provided that
a minimum number of people show up at a service station for lunch with the
same coupon code. There can be previous input from the potential customers,
like when the underlying networks are used to transmit on-board diagnostics
information (e.g. fuel/oil levels or wheels pressure) to establishments that could
perform the appropriate maintenance tasks.

Leveraging Ad-hoc Networking and Mobile Cloud Computing 91

3.3 SPORANGIUM Features for the Smart City

Many institutions are promoting the concept of the smart city as a strategic
move to improve the efficiency of the public services, to boost the activity of the
local businesses and to improve the quality of life of the citizens. In this line,
the sporadic social networks enabled by the SPORANGIUM platform could
enable new forms of communication and collaboration among acquaintances or
strangers for several purposes.

To begin with, SSNs could support time banking initiatives as a means to
forge stronger inter-community connections. Time banking is a pattern of recip-
rocal service exchange that uses units of time as currency: basically, the time
one spends providing these types of community services earns time that one can
spend to receive services. This has been primarily used to provide incentives and
rewards for work such as mentoring children or caring for the elderly, which a
pure market system devalues. However, it also works with otherwise paid jobs
like doing haircuts or gardening. Despite their growing interest in the context of
global economic crisis [22], time banks usually fail to involve more than a few
dozens of people, often from relatively close circles. This is where SSNs may bring
benefits, inasmuch as the ability to trigger communications among strangers in
close vicinity can greatly facilitate the discovery of potentially interesting offer-
ings and people who might be interesting in what each one can contribute.

Just like it happened with vehicular networks, SSNs can provide means to
deliver publicity of local shops and stores more effectively. For example, one
user’s positive valuation of a restaurant could be made visible not only to his/her
contacts in some of the Web 2.0 sites, but also to other people with similar profiles
in the surroundings. The valuation could become a coupon that, when redeemed
by a new client, would yield free coffee/dessert to the former. Likewise, SSNs
could be used to dynamically identify opportunities to trade batches of products
in advantageous conditions (e.g. to offer 20 % discount for one smartphone if at
least 20 people come within the next 20 min to buy one unit each). Businesses
could join the SSNs to tailor their offerings, and even collaborate to offer packs,
e.g. dinner + disco tickets + private taxi for the break of dawn.

The SSNs could also become a basic element to improve the classical navi-
gation/guidance systems based on GPS. Most of those systems work only with
street names, which forces the user who receives instructions to look for signposts
that may be hard to locate or even missing. One would certainly expect more use-
ful and natural indications from the smart city, for example, to advance “towards
the red building at the bottom”, “to the roundabout with a Botero statue” or
“straight ahead towards the sea until finding a newsstand on the left”. These
indications —that should be tailored to each individual (not everyone can recog-
nize a Botero statue)— could be derived from the activity of the citizens in Web
2.0 sites enhanced with the mechanisms of the SSNs, geolocation features, the
possibility of making and sharing pictures, etc. For instance, it usually happens
that one person (A) asks another (B, probably a stranger) for indications to go
to a given place. Beyond a certain distance, the explanations become longer and
more complicated, to the point that it is often necessary to ask a third person.

92 J.F. Bravo-Torres et al.

The SPORANGIUM mechanisms could simplify the process by establishing a
short-lived connection between the mobile phones of A and B. Thereby, A could
follow the first indications given by B up to a certain point, and then send a
360◦ panorama to B asking where to go on... and thus proceed in three or four
rounds, already in the distance.

Finally, the SSNs could provide suitable foundations for running urban games
(aka location-based games) that involve groups of people —again, acquaintances
or strangers— in entertainment or educational activities in the context of the
smart city. Participants in flashmobs could be recruited on the fly, too. The expe-
riences run up to now in several cities worldwide [11,24] reveal great possibili-
ties for community building in the exploitation of new tools for communication,
interaction and personalization of contents.

4 The Key to It All: Virtualization

As noticed in Sect. 2, the concept of virtualization is of utmost importance in
the SPORANGIUM platform, as long as it provides scalable mechanisms by
which the mobile devices can collaborate to support communications from, to
and through them, either directly, in a multihop fashion or through 2G/3G/4G
connections shared by nodes on the move within ad-hoc networks. The SPO-
RANGIUM solution in this regard is based on an evolution of the virtualization
layer presented in [5] (called the Virtual Node Layer, VNLayer) which put for-
ward procedures for mobile devices to collaboratively emulate an infrastructure
of stationary virtual nodes, that could be addressed as static server devices.

The VNLayer divided the geographical area of an ad-hoc network into square
regions, whose size was chosen so that every physical node (PN) in a region could
send and receive data, at least, from every other physical node in that region and
in the neighbouring ones. The virtual nodes (VNs) can be thought of as lying in
the center of the corresponding regions (one VN per region), being able to send
messages directly to the 8 neighbouring VNs (see Fig. 3). Each VN is emulated by
PNs in the corresponding region, who determine their positions by GPS. One PN
in each region is chosen as leader and takes charge of packet reception, buffering
and forwarding in the communication with other VNs. Meanwhile, a subset of
non-leaders work as backups to maintain replicas of the state information from
the upper layers. Thus, the VNs can maintain persistent state and be fault-
tolerant even when individual PNs fail or leave the region, as long as there
remains at least one PN.

Brown et al. [5] discussed the advantages of the programming abstraction
enabled by the VNLayer, noting that it makes it easier for application developers
to work at the mobile nodes’ upper layers. In turn, Wu et al. [31] and Patil and
Shah [19] proved (separately) that a virtualised version of the AODV routing
algorithm [20] (called VNAODV) can outperform AODV itself in terms of route
stability and packet delivery ratios. Later on, Wu proved the advantages of
virtualization for another routing algorithm (RIP [17]) and ancillary protocols
like DHCP [30].

Leveraging Ad-hoc Networking and Mobile Cloud Computing 93

Fig. 3. Static virtual nodes (white squares) overlaying the mobile physical nodes (black
circles) in a MANET.

Our goal is to make the virtual node infrastructure flexible enough to embrace
communications in/between indoor, pedestrian and vehicular contexts, defining
different profiles and configurations for the virtualization layer to choose from.
To this aim, we have modified some of the VNLayer procedures and introduced
new ones in order to deal with the following shortcomings (revealed by simulation
experiments):

– The static layout of equally-shaped, equally-sized VNs neglected the pres-
ence of obstacles and adverse propagation conditions for the communications
within one region and between neighbouring ones.

– The leader election procedure reacted very slowly to leader withdrawals, so
the VNs were down during a non-negligible portion of the time that the PNs
would remain in the respective regions.

– Duplicate leaderships (resulting from packet losses during leader elections)
were dealt with in a simplistic way, allowing for a newly-arrived node with no
state information from the upper layers to drive out a long-standing leader.

– The backup designation process was a probabilistic one, implying that there
might be no backup nodes in a region. To make matters worse, there were
no mechanisms to replace outgoing backups by other non-leader nodes in the
region; only newcomers could take up their place.

– The leader election procedure could designate as new leader either a node
that was not acting as a backup node, or a backup node containing data
inconsistent with the leader’s state (i.e. a non-synchronised backup).

– Finally, we found it critical that the VNLayer does not make any attempts to
preserve the state of the VNs when their regions become void of supporting
PNs, no matter how long the situation lasts.

94 J.F. Bravo-Torres et al.

These features might not cause significant trouble in open-space MANET sce-
narios in which the PN movements were relatively slow compared to the size
of the regions, and the mobility models yielded more or less uniform counts of
PNs over the different regions. In most of the simulation scenarios we have con-
sidered for SSNs, however, we noticed a significant impact on the resilience of
the VNs, resulting in losses of state information from the upper layers, inconsis-
tent routing tables, routing loops, amplified data traffic, incorrect packet drops
and increased overhead. In response to these problems, we have implemented
a refined version of the virtualization layer, called VNLayer+, that includes
(i) a modified upwards interface that allows the positions, sizes and neighbours
of each region to be defined at the applications layer; (ii) a simpler procedure to
speed up the leader elections, prioritising backups nodes with up-to-date copies
of the leader’s state over any other nodes; (iii) a new backup designation process
to ensure that the number of backup nodes in a region remains within certain
minimum and maximum values; and (iv) a new mechanism to allow handling
snapshots of the state information of neighbouring regions to maintain their state
during periods of emptiness. The details can be found in [4]; next, we include
the results of simulation experiments to show the advantages of VNLayer+ in
comparison with the VNLayer.

4.1 Simulation Results

The simulation experiments reported here aimed to compare the performance
achieved by the reference implementation of the VNLayer (described in [30])
and our VNLayer+ in supporting the same implementation of the VNAODV
routing algorithm (also following the description of [30]) in a scenario of vehic-
ular communications, which is most demanding due to the comparatively faster
movements of the nodes, the more abundant losses due to reflection and noise,
the presence of obstacles, etc. As indicated by the protocol stacks drawn in Fig. 4,
the communications involved constant bitrate (CBR) sessions between pairs of
cars chosen at random for each scenario, while the transport protocol chosen
was UDP (User Datagram Protocol), which implies no acknowledgements and
no retries at the transport layer. Each CBR session was set to transmit 500 KB
per second and to last throughout the simulation time. Each simulation lasted
450 s, but the traces for the first 50 s in each simulation were skipped to allow the
VNAODV routing to stabilize before measurements were started. We repeated
each simulation 10 times for each data point collected.

The simulation environment (previously presented in [3]) combines the well-
known network simulator ns-2 [1] and the SUMO simulator of urban mobility [2].
On the one hand, SUMO provided realistic mobility traces for every single vehicle
on the streets of an urban area of 476 × 476 m from downtown Cuenca (Ecuador),
previously captured in OpenStreetMap (freely available). On the other hand,
ns-2 (version 2.34) was used to simulate communications based on the IEEE
802.11b standard, with wireless signals propagating according to the shadowing
radio propagation model and a maximum transmission range of 250 m.

Leveraging Ad-hoc Networking and Mobile Cloud Computing 95

CBR traffic generator

UDP

VNAODV

VNLayer

IEEE 802.11

CBR traffic generator

UDP

VNAODV

VNLayer+

IEEE 802.11

Fig. 4. The protocol stacks of our simulations.

Within these settings, we looked at the following metrics:

– Average duration of VN downtimes, directly related to the time spent
in recovering from leader withdrawals.

– Virtualization overhead, related to the number of VNLayer/VNLayer+
messages exchanged among the vehicles.

– Packet delivery fraction, that is, the ratio between the number of packets
delivered to the destinations and the number of packets sent by the sources.

– Number of duplicate leaderships, i.e. situations in which two vehicles
wrongly act simultaneously as leaders of the same virtual node.

– Overall capacity, meaning the amount of traffic that can be handled by the
ad hoc networks.

The average duration of VN downtimes with the VNLayer and the VNLayer+ is
represented in Fig. 5 against varying numbers of physical nodes (60 to 160 vehi-
cles) and varying numbers of virtual nodes (resulting from dividing the square
region of downtown Cuenca into 2 × 2, 4 × 4, 6 × 6 and 8 × 8 grids).1 The num-
ber of CBR communication sessions was initially set to 10. It can be seen that
the VNLayer+ consistently reduced the duration of the downtimes by more than
30 % in comparison with the VNLayer, thus ensuring much greater availability
of the virtual nodes.

Figure 6 represents the variation of the virtualization overhead caused by the
VNLayer and the VNLayer+, again with 10 communication sessions. It can be
seen in Fig. 6 that the VNLayer+ achieves substantial savings and accommodates
greater numbers of PNs in a more scalable manner.

Probably the best news for the VNLayer+ come from measuring packet deliv-
ery fractions, which (as shown in Fig. 7) got very close to 100 % except when
there were only 4 VNs (2 × 2 regions). In that case, the ratio was around 80 %,
due to the fact that the big size of the regions (238 × 238 m) in comparison with
the transmission range of the nodes (250 m) made the links between neighboring
VNs rather unstable —it was possible to have leader nodes almost out of the
reach of their counterparts in neighboring regions. The packet delivery fractions
achieved by the VNLayer were always 10 % to 30 % lower, entailing that many

1 The greater the number of VNs, the smaller their corresponding regions.

96 J.F. Bravo-Torres et al.

Fig. 5. Average duration of VN downtimes.

Fig. 6. Virtualization overhead.

packets did not make it to their intended destinations. The losses were due to
the fact that UDP protocol does not manage acknowledgements and retries,
so that any failure of the virtualization layer to preserve the state information
of the VNs (in this case, containing the routing tables handled by VNAODV)
leads the PNs to forward packets into dead-ends. These results prove the effec-
tiveness of the backup management policies of the VNLayer+ in combination
with the new leader election procedure.2 The VNLayer might get close to 100 %

2 Note that the numbers of vehicles in the simulations were chosen to ensure sufficiently
high densities and, therefore, a certain level of connectedness among the VNs. Oth-
erwise, additional losses would occur for both the VNLayer and the VNLayer+, but
there would be nothing to do about them with ad-hoc communications only.

Leveraging Ad-hoc Networking and Mobile Cloud Computing 97

Fig. 7. Variation of packet delivery fraction.

Fig. 8. Duplicate leaderships.

delivery using TCP (Transmission Control Protocol) instead of UDP, but the
acknowledgements and the retransmitted packets would bring about a significant
extra load of traffic and the average delivery delay would increase considerably.

We also found that duplicate leaderships did not occur at all in the VNLayer+
simulations, whereas the VNLayer had to deal with them from time to time.
Intuitively, the graph of Fig. 8 suggests that the likelihood of having conflicting
leaders increased with the number of PNs around. The faster reactions of the
VNLayer+ seemed to consistently avoid the problem of duplicate leaderships
until we ran simulations with abnormally-high levels of noise (e.g. with packet
loss ratios of 1 % and greater). In such conditions, the VNLayer would deal with

98 J.F. Bravo-Torres et al.

Fig. 9. Average VN downtimes with the VNLayer and the VNLayer+ against a varying
number of simultaneous CBR sessions, with 120 PNs and 36 VNs.

Fig. 10. Virtualization overhead with the VNLayer and the VNLayer+ against a
varying number of simultaneous CBR sessions, with 120 PNs and 36 VNs.

fewer duplicates, but that would hardly be considered an advantage given that
the global packet delivery fractions would be just too low.

Finally, we made simulations with varying number of communication ses-
sions between pairs of vehicles but fixed numbers of PNs and VNs (120 and 36,
respectively, mimicking the experiments reported in [30]). The graphs of Figs. 9,
10, 11 and 12 show that the VNLayer+ can accommodate greater traffic loads
than the VNLayer. The VNLayer+ figures are consistently better than those of
the VNLayer in terms of VN availability, virtualization overhead, packet deliv-
ery fractions and duplicate leaderships (still absent with the VNLayer+). It is
particularly interesting to note that the packet delivery fraction achieved by the

Leveraging Ad-hoc Networking and Mobile Cloud Computing 99

Fig. 11. Packet delivery fraction with the VNLayer and the VNLayer+ against a vary-
ing number of simultaneous CBR sessions, with 120 PNs and 36 VNs.

Fig. 12. Duplicate leaderships with the VNLayer and the VNLayer+ against a varying
number of simultaneous CBR sessions, with 120 PNs and 36 VNs.

VNLayer+ is not affected by the increase in traffic load until a certain threshold
(nearing 15 CBR sessions in the specific scenario of Figs. 9, 10, 11 and 12) has
been surpassed, whereas the performance of the VNLayer degrades steadily from
the beginning.

4.2 Discussion

Judging from the simulation results, we can confirm that the changes we have
made to the VNLayer do serve to increase the benefits of a virtualization layer to
support communications in a vehicular ad-hoc network. The new procedures we

100 J.F. Bravo-Torres et al.

have put in the VNLayer+ turn the network into more responsive and reliable
communication environments than possible with the VNLayer, which ultimately
results in greater packet delivery ratios and lower latencies —at this point, it
is worth reminding that the VNLayer had been previously proved to improve
significantly the performance of plain AODV in MANET settings (see [19,31]).
With such performance figures, it is possible to efficiently support TCP sessions
on top of the VNLayer+, which should make it even easier for developers to
write SSN applications.

5 Conclusions

The SPORANGIUM platform aims at providing mechanisms to exploit the
potential of the short-lived social networks that may be built around an individ-
ual to make the most of the people and the resources around him/her. Ad-hoc
networking provides natural foundations for communications among people who
happen to be close to each other, and the concept of virtualization makes it
possible to make the most of it. Mobile cloud computing concepts serve to lever-
age the resources contributed by multiple mobile devices, including Internet
access to provide richer services than those available with ad-hoc communica-
tions only. Finally, modern knowledge management techniques are the key to
bringing together the right groups of people to make the most of the resources
present in their environment. There are plenty of scenarios in which SSNs ideas
may enable new service opportunities, e.g. for communication, resource sharing
or advertising.

Acknowledgment. Research funded by the European Union 7th Framework
Programme (FP7/2007–2013) under grant agreement no. 287966 (EXPERIMEDIA
project), as well as by the European Regional Development Fund (ERDF) and the
Galician Regional Government under project CN 2012/260 “Consolidation of Research
Units: AtlantTIC”. The authors are thankful to the students Juan Pablo Hurtado and
Edgar Patricio Siguenza for their invaluable work in the implementation of the refer-
ence VNLayer and VNAODV following the algorithmic details and the results found
in the literature.

References

1. Network Simulator (ns-2). http://isi.edu/nsnam/ns/
2. Simulation of Urban MObility (SUMO). http://sumo.sourceforge.net/
3. Bravo-Torres, J., López-Nores, M., Blanco-Fernández, Y.: Virtualization support

for complex communications in vehicular ad hoc networks. MTA Rev. 23(2),
121–140 (2013)

4. Bravo-Torres, J., López-Nores, M., Blanco-Fernández, Y.: VNlayer+: evolution of
the virtual node layer to support ad-hoc communications in indoor, pedestrian
and vehicular contexts. Department of Telematics Engineering, University of Vigo,
Technical report (2013)

http://isi.edu/nsnam/ns/
http://sumo.sourceforge.net/

Leveraging Ad-hoc Networking and Mobile Cloud Computing 101

5. Brown, M., Gilbert, S., Lynch, N., Newport, C., Nolte, T., Spindel, M.: The virtual
node layer: a programming abstraction for wireless sensor networks. ACM SIGBED
Rev. 4(3), 121–140 (2007)

6. Conti, M., Giordano, S. (eds.): Mobile Ad Hoc Networking: The Cutting Edge
Directions. Wiley, Hoboken (2013)

7. Drego, V., Temkin, B., McInnes, A.: Social computing goes mobile - a social com-
puting report. Forrester Research (2007)

8. Fernando, N., Loke, S., Rahayu, W.: Mobile cloud computing: a survey. Future
Gener. Comput. Sys. 29(1), 84–106 (2013)

9. Fleck, M., Frid, M., Kindberg, T., O’Brien-Strain, E., Rajani, R., Spasojevic, M.:
From informing to remembering: ubiquitous systems in interactive museums. IEEE
Pervasive Comput. 1(2), 13–21 (2002)

10. Gentes, A., Guyot-Mbodji, A., Demeure, I.: Drive and share: efficient provision-
ing of social networks in vehicular scenarios. IEEE Commun. Mag. 48(11), 90–97
(2010)

11. Gentes, A., Guyot-Mbodji, A., Demeure, I.: Gaming on the move: urban experience
as a new paradigm for mobile pervasive game design. Multimedia Sys. 16(1), 43–55
(2010)

12. Gerber, S., Fry, M., Kay, J., Kummerfeld, B., Pink, G., Wasinger, R.: PersonisJ:
mobile, client-side user modelling. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP
2010. LNCS, vol. 6075, pp. 111–122. Springer, Heidelberg (2010)

13. Gerla, M., Kleinrock, L.: Vehicular networks and the future of the mobile Internet.
Comput. Netw. 55(2), 457–469 (2011)

14. Kuss, D., Griffiths, M.: Online social networking and addiction: a review of the
psychological literature. Int. J. Environ. Res. Pub. Health 8, 3528–3552 (2011)

15. López-Nores, M., Blanco-Fernández, Y., Pazos-Arias, J.: Cloud-based personaliza-
tion of new advertising and e-commerce models for video consumption. Computer
56(5), 573–592 (2013)

16. López-Nores, M., Blanco-Fernández, Y., Pazos-Arias, J., Gil-Solla, A.: Property-
based collaborative filtering for health-aware recommender systems. Expert Syst.
Appl. 39(8), 7451–7457 (2012)

17. Malkin, G.S.: RIP: An Intra-Domain Routing Protocol. Addison-Wesley Longman,
Boston (2000)

18. Natkaniec, M., Kosek-Szott, K., Szott, S., Gozdecki, J., Glowacz, A., Sargento, S.:
Supporting QoS in integrated ad-hoc networks. Wireless Pers. Commun. 56(2),
183–206 (2011)

19. Patil, R., Shah, S.R.: Cross layer based virtual node layer for reactive MANET
routing. Int. J. Eng. Res. Technol. 1(6) (2012)

20. Perkins, C.E., Royer, E.M., Das, S.: Ad hoc on-demand distance vector (AODV)
routing (2003). http://www.ietf.org/rfc/rfc3561.txt

21. Ridong, F., Kun, Y., Xueqi, C.: A cooperative social and vehicular network and
its dynamic bandwidth allocation algorithms. In: Proceedings of IEEE INFOCOM
Workshop on Cognitive and Cooperative Networks, April 2011

22. Ryan-Collins, J., Stephens, L., Coote, A.: The new wealth of time: how timebank-
ing helps people build better public services. http://www.timebankingwales.org/
userfiles/NEW

23. Schuster, D., Rosi, A., Mamei, M., Springer, T., Endler, M., Zambonelli, F.: Perva-
sive social context: taxonomy and survey. ACM Trans. Intell. Syst. Technol. 4(3),
46:1–46:22 (2013)

http://www.ietf.org/rfc/rfc3561.txt
http://www.timebankingwales.org/userfiles/NEW
http://www.timebankingwales.org/userfiles/NEW

102 J.F. Bravo-Torres et al.

24. Sintoris, C., Yiannoutsou, N., Demetriou, S., Avouris, N.: Discovering the invisible
city: location-based games for learning in smart cities. Interact. Des. Archit. 16,
47–64 (2013)

25. Smaldone, S., Lu, H., Shankar, P., Iftode, L.: Roadspeak: enabling voice chat on
roadways using vehicular social networks. In: Proceedings of Socialnets Workshop,
in Conjunction with the IEEE 19th International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC), September 2008

26. Stock, O., Zancanaro, M., Busetta, P., Callaway, C., Krüger, A., Kruppa, M.,
Kuflik, T., Not, E., Rocchi, C.: Adaptive, intelligent presentation of information
for the museum visitor in peach. User Model. User-Adap. Inter. 17(3), 257–304
(2007)

27. Sun, J.Z.: Mobile ad hoc networking: an essential technology for pervasive comput-
ing. In: Proceedings of International Conference on Info-tech and Info-net (ICII),
Beijing, China, vol. 3, October 2001

28. Tse, R.T.S, Dawei, L., Hou, F., Pau, G.: Bridging vehicle sensor networks with
social networks: applications and challenges. In: Proceedings of International Con-
ference on Communication Technology and Application (ICCTA), October 2011

29. Wang, Y., Stash, N., Sambeek, R., Schuurmans, Y., Aroyo, L., Schreiber, G.,
Gorgels, P.: Cultivating personalized museum tours online and on-site. Interdisc.
Sci. Rev. 34(2–3), 139–153 (2009)

30. Wu, J.: A simulation study on using the virtual node layer to implement efficient
and reliable MANET protocols. Ph.D. Thesis (2011). http://groups.csail.mit.edu/
tds/papers/Wu/JiangWuThesisFinal.pdf

31. Wu, J., Griffeth, N., Newport, C., Lynch, N.: Engineering the virtual node layer
for reactive MANET routing. In: Proceedings of 10th IEEE International Sympo-
sium on Network Computing and Applications (NCA), Cambridge, MA, USA, pp.
131–138, August 2011

32. Xin, L., Zhuo, L., Wenzhong, L., Sanglu, L., Xiaoliang, W., Daoxu, C.: Exploring
social properties in vehicular ad-hoc networks. In: Proceedings of 4th Asia-Pacific
Symposium on Internetware, October 2012

33. Zhou, J., Sun, J., Athukorala, K., Wijekoon, D., Ylianttila, M.: Pervasive social
computing: augmenting five facets of human intelligence. J. Ambient Intell.
Humanized Comput. 3(2), 153–166 (2012)

http://groups.csail.mit.edu/tds/papers/Wu/JiangWuThesisFinal.pdf
http://groups.csail.mit.edu/tds/papers/Wu/JiangWuThesisFinal.pdf

Energy Consumption Analysis of HPC
Applications Using NoSQL Database

Feature of EnergyAnalyzer

Shajulin Benedict(B), R.S. Rejitha, and C. Bright

SXCCE, Nagercoil, India
{shajulin,rejitha,bency}@sxcce.edu.in

http://www.sxcce.edu.in/hpccloud

Abstract. A notion of increasing the energy efficiency of HPC machines
or applications has reached the global HPC community forum in recent
years. This has opened up several interesting possibilities that reduces
the energy consumption of applications, including an energy consump-
tion analysis mechanism which delves into the reason behind the energy
consumption bottlenecks of applications. In order to easily analyze
the energy consumption of applications (from machine to machine), a
need for a dedicated energy consumption analysis tool has undoubtedly
enthused application developers or users. In general, when applications
were analyzed for performance bottlenecks in modern HPC architectures,
such as, exascale machines which have more than tens of thousands of
cores, a performance analysis tool might deliver a huge performance
dataset. Querying such data in a short span of time can efficiently be
done using document based NoSQL database systems. This paper pro-
poses an online-based energy consumption analysis mechanism of HPC
applications using EnergyAnalyzer Performance Database (EAPerfDB),
a NoSQL-based performance database feature, of EnergyAnalyzer tool.
The EnergyAnalyzer tool uses semantic agents in a distributed fashion to
undergo the energy consumption analysis of HPC applications. In addi-
tion, the paper explores the findings of the energy consumption analysis
of High Performance Computing Challenge (HPCC) benchmarks when
NoSQL-based EnergyAnalyzer tool was used at the HPCCLoud Research
Laboratory of our premise.

Keywords: Cloud storage · Energy analysis · HPC · NoSQL · Tools

1 Introduction

Solving energy consumption issue has been a crucial challenge in mobile com-
puting domain since a long time. It is gaining importance in HPC architectures

This work is partially funded by the Department of Science and Technology of
India under FAST Young Scientist Scheme - Engineering Sciences division (Grant
No: SR/FTP/ETA-93/2011) and it is motivated by CIM-GIZ, Germany. For more
details, visit www.sxcce.edu.in/hpccloud.

c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 103–118, 2015.
DOI: 10.1007/978-3-319-19848-4 7

www.sxcce.edu.in/hpccloud

104 S. Benedict et al.

as well since the electricity bill is increasing and there is a scarcity of electrical
power to energize such machines especially in power scarce countries, such as,
India. In fact, most of the current HPC architectures [18] or cloud data centres
are operated in the range of megawatts. In addition, it is expected that the power
bill for powering HPC supercomputer machines almost equals the costs of the
machine over its entire life time [17]. This challenge has driven traditional HPC
researchers to provide possible solutions which improve the energy efficiency of
HPC applications.

In recent years, scientific application developers have started to use cloud
technology for solving their applications [15]. The cloud based scientific applica-
tions are, in general, executed on HPC-as-a-service cloud infrastructures, such as,
Amazon Supercomputing Service [1], enCore of UK, Appro’s Xtreme-X Super-
computers, Penguin Computing on Demand (POD) [29], R-Cloud solutions [31]
and so forth. To elegantly and energy efficiently run HPC applications, the cloud
application developers, who work in diverse fields, including scientific domains,
have also started characterizing [6,41], analyzing [35], and addressing the energy
inefficiency problem of clouds [40].

In succinct, energy reduction techniques, in the capacity of an application
developer, are conceivably accomplished using various approaches as follows:

1. Gaining enough knowledge about the energy consumption details of the
individual code regions of applications when executed on an underlying archi-
tecture. The knowledge is gained by adopting techniques, such as, energy
modeling techniques [37,39], energy estimation techniques [30], or energy
monitoring techniques [36].

2. Adopting control mechanisms, such as, controlling idle resources [3], control-
ling compiler optimization switches [5], controlling CPU clock frequencies,
and so forth.

3. Effectively utilizing programming languages, including parallelism constructs
- for instance, reducing MPI wait times in MPI programming language [16],
reducing double precision in programs, or considering various performance
metrics such as Eflops, multitasking scalability, core availability, security
index, SLA measures, temperature concerns, operational costs, and so forth.

In order to effectively adopt such available energy reduction mechanisms on
applications, a dedicated energy consumption analysis tool is mandatory. The
tool remains as an indispensable software component for application developers
as the search for the energy inefficient codes of an application is a complicated
process. The analysis process gets even worse when energy efficiency metrics,
such as, number of threads, number of cores, or thermal index, showed varying
results in different machines for the same application. The tool should, therefore,
vividly assist user or application developer to figure out the energy inefficient
code regions of an application. To do so, the tool, in principle, could generate
hefty performance data, either via modeling or real measurements.

Recently, performance analysis tool developers’ community has triggered the
need for an intelligent scalable performance prediction/analysis system as they
have gotten more interested in developing autotuning tools. An autotuning tool

Energy Consumption Analysis of HPC Applications 105

automatically [8] analyzes and tunes the energy consumption problems of applica-
tions. It requires a wide set of performance data relating to the runtime, compile
time, and the behavioral aspects of an application in order to tune the applica-
tion - i.e., these performance data would be useful for finding a proper match (an
optimized code version) between code options and the executional configurations
(number of threads, processors, and so forth) at the earliest time. At present, there-
fore, one of the most emerging challenge among these tool developers is to handle
a large set of performance data which is possible when executed in future gener-
ation computer systems, such as, Many Integrated Core (MIC) architectures or
exa-scale supercomputers which consists of 10000 to 100000 number of cores.

It is a proven research, notably, that the NoSQL-based database management
systems are particularly useful [26] when a software uses statistical data or huge
data, which probably could iteratively grow or shrink, in real time. This is due
to the utility of key-value store mechanism which is often adopted in NoSQL
databases. In addition, in recent years, HPC researchers have started to utilize
NoSQL databases into their system for querying large datasets [19].

This paper has the following contributions:

1. It proposes an online based scalable energy consumption analysis mechanism
using EAPerfDB, a NoSQL-based database management system, of Energy-
Analyzer tool. An EnergyAnalyzer tool is an energy consumption analysis
tool which is under development at the HPCCLoud Research Laboratory,
India. The tool undergoes both the energy modeling approach and the real
energy measurements (using Intel RAPL hardware counters [14,21]) for an
application while executing it using semantic agents in a distributed fashion.

2. A few experiments were conducted and the results were explored when HPC
Challenge (HPCC) benchmark was executed in the HPCCLoud Research Lab-
oratory using the EnergyAnalyzer tool.

The rest of the paper is organized as follows: Sect. 2 describes the previous
research works. Section 3 explains the design of EnergyAnalyzer tool and Sect. 4
explains how EAPerfDB is used in the EnergyAnalyzer tool. After the experi-
mental results were discussed in Sect. 5, a few conclusions were given in Sect. 6.

2 Related Work

In fact, the performance analysis of applications is not a new concept - it is a
mandatory step while developing HPC applications. In a few research works,
the researchers have modeled performance constraints on parallel machines [32].
Additionally, there were notably a few leading HPC performance analysis tools
in the market, such as, TAU [38], PAPI [20], Periscope [33], SCALASCA [27],
HPCToolkit [13], IPM [28], and so forth.

The energy consumption issue of HPC applications and the corresponding
analysis have magnified research notions in recent years among HPC researchers
by developing energy-conscious applications, tools, or greener IT machines [2].
Even as traditionally available performance analysis tools are more robust in

106 S. Benedict et al.

pointing out performance problems related to memory, MPI communication,
timeline, and hardware counters, the tool developers are still working on to find
out the energy consumption details of applications. For instance, TAU is working
on energy analysis strategy using hardware counters via PAPI on SandyBridge
processor machines; Periscope is implementing energy analysis with the help
of power-aware hardware sensors supported by IBM on SuperMIG machines.
Current performance analysis tools are in different flavors, such as, online vs.
offline, distributed vs centralized, trace-based, profile-based, and so forth, due
to the framework of those tools. A detailed survey of the current energy con-
sumption analysis tools and their analysis methodologies for HPC architectures
is discussed in [36].

Recently, most of the tool developers have strengthened the necessity of an
automatic approach of tuning applications, as HPC architectures are varying
atleast once in every couple of years. In addition, the available traditional tun-
ing solutions are almost obsolete - i.e., traditionally, auto tuning approaches
were held on specific applications [4] or were mostly blackbox [7]. Research
growth in the autotuning research domain could be manifested - for instance,
compiler researchers have designed auto tuning compiler optimizers considering
multiple objectives [11], machine learning approaches, or compiler flag selection
approaches.

Very rarely, tool developers have opted to utilize the relational database sys-
tems, such as, mySql or oracle in performance analysis tools. However, with the
recent advances in NoSQL database systems, this paper suggests users/readers
to using MongoDB for doing the energy consumption analysis of applications,
as the performance data are, in general, very large when exa-scale and future
computer machines were considered.

3 EnergyAnalyzer Design

EnergyAnalyzer tool is designed such that it uses semantic-based analysis
agents in a distributed fashion to undergo analysis [34]. The analysis is online
- while the application is running the analysis is done - so that the application
developers can modify their code during next iterations or stop executing it
considering energy inefficiency aspects of the code.

The EnergyAnalyzer consists of three major entities as listed below:

1. SSTranslator
2. Semantic-based Analysis Agents, and
3. Monitoring Manager

These entities are required to do energy consumption analysis of HPC appli-
cations. Figure 1 provides a pictorial representation of the EnergyAnalyzer tool
architecture. The responsibilities of the entities are described in the following
subsections.

Energy Consumption Analysis of HPC Applications 107

Fig. 1. EnergyAnalyzer tool architecture

3.1 SSTranslator

SSTranslator is a source-to-source translator which inserts some pre-defined func-
tions of EnergyAnalyzer on HPC applications. The pre-defined functions include
information about the code region, file name, and line number of an application.
These functions are inserted before and after the code regions of the application.

3.2 Semantic-Based Analysis Agents

Semantic-based analysis agents entity of EnergyAnalyzer include Semantic Boot
Agent and a team of analysis agents. The Semantic Boot Agent is a voluntary
agent. This agent, at first, decides on the pre-defined parameters of the tool, such
as, number of additional agents, tool overhead level, required measurements, and
so forth, for the analysis. Later, the analysis agents of EnergyAnalyzer spawn
applications on the available number of cores/machines. On execution, the appli-
cation, which is linked to the Monitoring Manager entity of EnergyAnalyzer,
invoke the required energy/hardware measurements to do the analysis in a dis-
tributed fashion.

3.3 Monitoring Manager

Monitoring Manager, the entity of EnergyAnalyzer, is kernel specific and it
deals with hardware components for obtaining required measurements of agents.

108 S. Benedict et al.

For instance, memory stall instances and cache misses are obtained by the Mon-
itoring Manager using hardware counters of the processors.

The measurement values are finally uploaded to a MongoDB based perfor-
mance database named EAPerfDB. A detailed description about EAPerfDB is
explained in Sect. 4.

4 EAPerfDB of EnergyAnalyzer

In general, on analyzing the performance of applications, each core of a HPC
machine would produce a huge set of performance data. The performance data
could include pipeline stalls, cache misses, native hardware events, energy con-
sumption in Joules, or CPU frequency/voltage values. This means that the Ener-
gyAnalyzer or the similar energy consumption analysis tools should be capable
enough to handle the tens of thousands of performance data.

Investigating a large set of performance data of various code regions of an
application that are obtained from the massively parallel HPC machines is not
an easy task. The literature points out that a few performance analysis tools use
file system approach for storing the performance data of applications. However,
storing and retrieving such a huge volume of performance data via sequential file
sharing mechanisms are not advisable, especially in the future HPC machines,
including exa-scale machines; a few researchers have endeavored hash functions
and keys to store performance data; and, recently, a few other researchers have
adopted key-value pair implementation in order to store the possible large per-
formance data of applications.

With the recent advances in NoSQL technologies and the growing number of
processor cores in recent HPC machines, many researchers, who are working in
the HPC Cloud research community domain, have tried to use NoSQL database
technology. For instances, Google has announced the usage of NoSQL databases
for servicing their infrastructures in Google Compute Engine [9]; the NoSQL
databases were introduced with different insights to the global cloud market [25].

The EnergyAnalyzer Performance Database (EAPerfDB) of EnergyAnalyzer
is the performance database of EnergyAnalyzer tool which is implemented using
MongoDB. MongoDB is a NoSQL-based database system which is considered
to be a more powerful database system, as it has the possibility of extending
simultaneous connections to multiple servers. In addition, it has the capability of
processing huge performance dataset which will be available via the Monitoring
Manager entity of EnergyAnalyzer. Therefore, the earlier implementation of the
Monitoring Manager of EnergyAnalyzer with a key-value pair implementation
is upgraded with EAPerfDB. The following subsections explain how EAPerfDB
is initialized and how the mongo clients communicate with server instances.

4.1 EAPerfDB Initialization

The EnergyAnalyzer uses C API of MongoDB where connection initialization,
connection establishment check, and connection destruction processes are carried

Energy Consumption Analysis of HPC Applications 109

out. Before an application was executed, the semantic booter of EnergyAnalyzer
initiates MongoDB database server connection using a specific system command
as follows:

mongod --port \textit{portno} --bind_ip \textit{DB-ipaddress}
--dbpath \textit{path-to-db file}

where –port represents the port address, –bind ip represents the ip address
for binding purpose, and –dbpath is used to specify where the database should
be stored.

4.2 EAPerfDB Clients

While executing a code region of an application, the semantic agents of Energy-
Analyzer start Monitoring Manager entity for measuring the energy consump-
tion value using energy modeling and real energy measurement approaches. The
Monitoring Manager invokes the energy modeling approach to predict the energy
consumption of an application for the underlying architecture immediately after
the execution of a code region of an application was started. The estimated
energy consumption value could even be gotten from some historical results that
are available for the same application if executed earlier on the same architecture.
The estimated value is uploaded to EAPerfDB.

The EAPerfDB clients are embedded in two entities of EnergyAnalyzer -
Monitoring Manager and Semantic Agents. The mongo clients in the Monitoring
Manager entity of EnergyAnalyzer are active at the start and end of the code
regions of an application. The code region of an application can be an user-
defined code region, main region, subroutine, or the other part of an application.

At the start of a code region, mongo clients initialize EAPerfDB with an
unique id,

{ "_id" : { "$oid" : "53568760ba8c2f15365ff7a0" },

runtime specifications, and the corresponding values.

"0::0::1::656::Real::Energy" :0
"0::0::1::656::Real::ExecTime" :0

The values that are processed as a string and that are stored in the EAPerfDB
include (i) process number, (ii) thread number, (iii) unique file number of appli-
cations, (iv) code region line number of the application, (v) real or model based
measurement data, (vi) measurements (energy or execution time), (vii) measured
value. Initially, the values are zero.

Later, at the end of the code region, the MonitoringManager entity updates
the same unique id of EAPerfDB with the corresponding measured values. When
the code region of the application was completely executed, the real measurement
values that are obtained via RAPL hardware counter events are stored in the
same database.

110 S. Benedict et al.

Subsequently, the embedded mongo clients of the Semantic Agents of Ener-
gyAnalyzer could obtain those measurement values, as and when needed, to do
further energy consumption analysis.

Fig. 2. Parallel Mongo clients adopted in the Monitoring Manager of EnergyAnalyzer

4.3 Parallel Mongo Clients

Mongo client processes, which are embedded in the Monitoring Manager of Ener-
gyAnalyzer, are executed in parallel. In order to use EAPerfDB database sys-
tem in parallel, EnergyAnalyzer initializes several mongod server instances with
the required number of connections. Otherwise, when a new client connection
was requested, the mongod server process shuts down its currently active client
connection immediately and starts processing the new connection. Once the
processing is complete, the server process terminates the current connection and
resumes the previously preempted client process, which slows down the system.

The mongod server instances and a few application processes acting as a
client are depicted in Fig. 2. However, there are possibilities for an overlap in
such parallel implementations of EAPerfDB. For instance, consider mongo client
2 and mongo client n, which are embedded in the Monitoring Manager entity of
EnergyAnalyzer, are updating EAPerfDB at the same time.

Hence, in order to ensure correctness, the MongoDB database, by default,
has adopted reader-writer locks [22]. On ensuring the status of locks (see Fig. 3),
Monitoring Manager shifts the overlapping zone and then enters the measured
values, i.e., the value of the energy consumption of a code region, to EAPerfDB.

Energy Consumption Analysis of HPC Applications 111

Fig. 3. Lock option - for protecting the performance data in EAPerfDB

4.4 Performance Data and Data Access Pattern

HPC applications run on more number of processors, mostly tens of thousands
of processors. These processors need not be homogenous as the recent heteroge-
neous architectures have combined the advantage of both the GPU and the CPU
technologies - GPU is focused on increasing throughput and power efficiency
whereas CPU is focused on improving the memory access time. Interestingly
enough, the top 10 systems of Green500 list had heterogeneous systems [10]. The
heterogeneity results from combining standard multicore processors, Graphical
Processing Units (GPUs), and co-processors within a node. Current heteroge-
neous systems deploy different version of General Purpose Graphics Processing
Units (GPGPU)s, most frequently from Nvidia. Some HPC systems use, instead
of GPGPUs, Intel’s Xeon Phi processor [24]. While the GPGPUs deploy thou-
sands of very specialized graphics cores and require programming in special-
ized programming interfaces, Intel’s Xeon Phi has over 60 Intel standard cores
enhanced with wide SIMD units that can be programmed in standard OpenMP.
In addition, recently, researchers have endeavored ARM-based heterogeneous
HPC system via the Mont-Blanc project [23].

In such scenarios, the application processes, running on numerous processors,
upload various performance data including energy consumption values on the fly
- i.e., when the application was executed the performance data would be loaded
and queried.

The data access pattern model used in EAPerfDB is an embedded data
model. This means that the related data are ordered in a single document
style format in order to process the query related to the performance data of

112 S. Benedict et al.

applications in real time. This representation of performance data is done in a
document style so that the performance data could be increased or decreased
during the experimental runs.

5 Experimentation - Results and Discussions

Experiments were conducted in the HPCCLoud Research Laboratory of our
premise. The HPCCLoud Research Laboratory comprises of a HPProLiant 48
core AMD processor based compute machine and a HPEliteBook 8560w machine
having 8 Intel core (i7 Sandybridge series) with RAPL hardware counter support.
As EnergyAnalyzer requires both energy modeling and energy measurement app-
roach for measuring the energy consumption of applications, the experiments -
reported on in this paper - were conducted in the HP EliteBook 8560w.

In the experiments, High Performance Computing Challenge (HPCC or hpcc)
benchmarks were used for evaluating the proposed mechanism. In short, HPCC
benchmarks [12] are leading benchmark suites that are used for evaluating the
architectures. The experiments were conducted using the hpcc 1.4.2 source code
version which consists of matrix kernels.

The main C-based file of hpcc benchmark consists of 17 source code
regions which could broadly be classified as 7 test domains, namely, hpl,
latency/bandwidth, fft (single, star, mpi), stream (single, star), DGEMM (single,
star), pTrans, and random access (single, star, mpi).

The hpcc test domains are explained as follows:

1. hpl is a Linpack benchmark. This benchmark measures the floating point rate
of a set of linear equation code.

2. latency/bandwidth is another code region of hpcc. This code region of hpcc
measures network latency and bandwidth of the code region. This code region
represents different communication patterns in a machine.

3. DGEMM benchmark relates to the strength of the double precision values of
codes. It measures the floating point rate of execution in a single and a star
implementation styles of hpcc.

4. the stream code region of hpcc, as similar to DGEMM, has single and star
implementation styles. This part of the hpcc benchmark measures the sus-
tainable memory bandwidth and the relevant computation rate.

5. pTrans benchmark of hpcc uses parallel matrix transpose code in order to
measure the total communication capacity of the network. This benchmark
represents the strength of the underlying HPC networks.

6. random access benchmark measures the rate of integer random updates of
memory system of HPC architectures. This code region of hpcc is imple-
mented in three different implementation styles, namely, single, star, and
mpi styles.

7. and, the fft benchmark of hpcc does fast fourier transform computations. This
benchmark measures the floating point rate of the double precision values.

Energy Consumption Analysis of HPC Applications 113

Fig. 4. HPCC - instrumented version of HPCC

The following subsections explain how the energy consumption of hpcc bench-
marks was measured and analyzed using the EAPerfDB of EnergyAnalyzer
- application was instrumented; EnergyAnalyzer uploaded the real energy
measurement data of applications to EAPerfDB, a MongoDB based performance
database of EnergyAnalyzer; finally, the Semantic Agents analyzed the available
results and exposed the values to the user.

5.1 SSTranslator - HPCC Instrumentation

As mentioned earlier that the EnergyAnalyzer instruments applications with
some pre-defined functions using the SSTranslator entity, the code regions of
hpcc were instrumented using SSTranslator. The SSTranslator follows TAU [38]
for instrumenting the code regions of applications. The instrumented code region
of hpcc benchmark is depicted in Fig. 4.

Later, the executable of hpcc benchmarks was created with required compiler
flags and it was kept ready for the Semantic Agents to do energy consumption
analysis. The Semantic Agents, finally, started the application in four cores after
the required number of agents were decided on the underlying machine.

5.2 Monitoring Manager and EAPerfDB

Once when the startRegionMeasurements() function (see Fig. 4), an instru-
mented statement from SSTranslator, was executed, the Semantic agents invoked
energy modeling and real energy measurements of the code region. The energy
modeling was done using Semantic agents itself. However, the real energy mea-
surements were invoked via the Monitoring Manager entity which consequently
invoked RAPL hardware counters.

114 S. Benedict et al.

Fig. 5. HPCC - execution time results

The RAPL hardware counters are available in machine specific registers (msr)
of the machine. These counters were accessed using the following function of the
EnergyAnalyzer:

CreateAddRaplEvent();

When the endRegionMeasurements() function was executed, the Moni-
toring Manager stopped the measurements and uploaded the values to the
EAPerfDB as C-based strings.

5.3 Energy Consumption and Execution Time - HPCC Results

The embedded mongo clients of semantic agents retrieved the results available
in EAPerfDB and started to analyzing them for the code regions of hpcc bench-
marks. As shown in Figs. 5 and 6, the EnergyAnalyzer identified the energy
consumption and execution time for the code regions of hpcc.

A few findings from the obtained results are listed as follows:

1. The energy consumption values of MPI Random Access, Star Random Access,
and Star Random Access (LCG) benchmarks were high (2795.85, 2292.048,
and 1969.427 J respectively). The Random Access benchmarks check the inte-
ger update rate of the memory system for a HPC machine - the benchmarks
do giga updates per second.
The MPI Random Access benchmark does table initialization, table allo-
cation, global table updation, and so forth using MPI while checking the

Energy Consumption Analysis of HPC Applications 115

integer update rate of the memory system - MPI allreduce and MPI barrier
constructs were used.
The Star Random Access and the Star Random Access (LCG) benchmarks
observe the same integer update rate of the HPC memory system. However,
the table initialization and updation approach of these benchmarks use single
CPU process.

2. The single DGEMM benchmark of hpcc showed a considerably varying energy
consumption values over the processes.

3. The execution time had a direct impact on the energy consumption of hpcc
benchmarks. Clearly, this could be compared from Figs. 5 and 6. This assess-
ment implies the necessity for improving performance on applications so that
the energy consumption of an application is minimized. However, it equally
significantly reveals the necessity for adopting energy reduction mechanisms
on energy inefficient code regions such as Random Access with a compromise
towards the other regions.

5.4 Online Analysis - EAPerfDB Capability

The analysis carried out while experimenting hpcc benchmarks was online - i.e.,
the analysis was done during the execution of hpcc. EAPerfDB, with the help
of its on demand real time processing capability, supported semantic agents to
independently query for results whenever the Monitoring Manager had uploaded
the performance results to the database.

Fig. 6. HPCC - energy consumption values

116 S. Benedict et al.

6 Conclusion

The issue related to the energy consumption of HPC applications have reached
the minds of energy conscious HPC programmers in recent years. Finding the
energy consumption issues of HPC applications and thereby rectifying them by
application programmers are not easy tasks due to to the complicated issues
which inter-relate with one another.

To this end, many HPC application developers have started to rely on the
energy consumption based performance analysis tools. HPC-based performance
analysis tools could provide huge volume of performance data set which are
cumbersome to deal with, in most of the cases.

This paper had expressed the design of the EnergyAnalyzer tool, a tool which
analyzes the energy consumption of code regions of HPC applications using
energy modeling and energy measurement approaches. The tool used NoSQL
based MongoDB performance data management system named EAPerfDB. The
EnergyAnalyzer tool development project, funded by the Department of Science
and Technology of India, is under development at the HPCCLoud Research
Laboratory of our premise.

After the design approach of EnergyAnalyzer was discussed, the paper
showed the energy consumption analysis results of hpcc benchmarks which were
experimented using a HP 8570w SandyBridge machine available at the HPC-
CLoud Research Laboratory. In addition, the paper has listed a few research
findings of hpcc benchmarks.

Acknowledgment. Shajulin Benedict thanks Prof. Michael Gerndt (TUM, Germany)
for providing a research motivation. He thanks DST, India and Ms. Pragya Taneja
(CIM-GIZ, Germany) for providing the financial and moral support to carry out this
research work. In addition, he thanks the reviewers and organizers of ICC2014.

References

1. Amazon HPC, Amazon HPC services (2014). https://aws.amazon.com/hpc/
2. Anand Sivasubramaniam Make IT Green: The TCS way, Tech report, pp. 1–12

(2008). www.tcs.com/tcs innovation whitepaper Make-IT-Green.pdf
3. Cheng, Y., Zeng, Y.: Automatic energy status controlling with dynamic voltage

scaling in power-aware high performance computing cluster. In: Proceedings of 12th
International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), pp. 412–416 (2011)

4. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing (SC 1998).
IEEE Computer Society, Washington, D.C., pp. 1–27 (1998)

5. Compiler, Compiler Optimization Switches (2014). http://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

6. Conejero, J., Rana, O., Burnap, P., Morgan, J., Carrin, C., Caminero, B.: Char-
acterising the power consumption of hadoop clouds - a social media analysis case
study. In: Proceedings of CLOSER, pp. 233–243 (2013)

https://aws.amazon.com/hpc/
www.tcs.com/tcs_innovation_whitepaper_Make-IT-Green.pdf
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Energy Consumption Analysis of HPC Applications 117

7. Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for reduced code space
using genetic algorithms. In: Proceedings of the Conference on Languages, Com-
pilers, and Tools for Embedded Systems (LCTES), p. 19 (1999)

8. Dagstuhl participants (2013). http://www.dagstuhl.de/program/calendar/partlist/
?semnr=13401&SUOG

9. Google Compute Engine and NoSQL. http://www.infoq.com/news/2013/05/
google-compute-engine

10. GreenLists, Top 500 List of Green Supercomputers (2014). http://www.green500.
org/news/green500-list-november-2013

11. Herbert, J., Peter, T., Durillo, J.J., Simone, P., Philipp, G., Thomas, F., Moritsch,
H.: A multi-objective auto-tuning framework for parallel codes. In: SC 2012 (2012)

12. hpcc. http://icl.cs.utk.edu/hpcc/
13. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Crummey, J.M.,

Tallent, N.R.: HPCToolkit: tools for performance analysis of optimized parallel
programs. Concurrency Comput. Pract. Exp. 22(2), 685–701 (2010)

14. Intel In-built Sensors, Running Average Power Limit for Xeon Processors, July
2012. http://www.intel.com/xeon

15. Layton, J.: The Cloud’s Role in HPC (2014). http://www.admin-magazine.com/
HPC/Articles/The-Cloud-s-Role-in-HPC

16. Knobloch, M., Mohr, B., Minartz, T.: Determine energy-saving potential in wait-
states of large-scale parallel programs. Comput. Sci. Res. Dev. 27(4), 255–263
(2011)

17. Le, K., Ricardo, B., Zhang, J., Yogesh, J., Meng, J., Nguyen, T.D.: Reducing
electricity cost through virtual machine placement in high performance computing
clouds. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2011, pp. 1–22 (2011). doi:10.
1145/2063384.2063413

18. LRZ Supercomputer Information. http://www.lrz.de/services/compute/supermuc/
systemdescription/

19. LucidWorks, LucidWorks Integrates with MongoDB (2013). http://archive.
hpcwire.com/hpccloud/2013-03-18/lucidworks integrates with mongodb.html

20. Malony, A., Biersdorff, S., Shende, S., Jagode, H., Tomov, S., Juckeland, G.,
Dietrich, R., Poole, D., Lamb, C.: Parallel performance measurement of hetero-
geneous parallel systems with GPUs. In: International Conference on Parallel
Processing ICPP 2011, Taipei, Taiwan, pp. 13–16 (2011)

21. Hahnel, M., Dobel, B., Volp, M., Hartig, H.: Measuring Energy Consumption
for Short Code Paths Using RAPL, July 2012. www.sigmetrics.org/greenmetrics/
Hahnel.pdf

22. MongoDB. http://docs.mongodb.org/manual/faq/concurrency/
23. MontBlanc Project (2014). http://www.montblanc-project.eu
24. Niels, B.: New Intel Xeon Phi Coprocessors to have Xeon CPUs On Board (2013).

http://insidehpc.com/2013/05/24/new-intel-xeon-phi-coprocessors-to-have-xeons-
on-board/

25. NoSQL. http://nosql-database.org/
26. NoSQL is useful. http://www.infoq.com/news/2013/04/gartner-technology-trends/
27. Geimer, M., Saviankou, P., Strube, A., Szebenyi, Z., Wolf, F., Wylie, B.J.N.: Fur-

ther improving the scalability of the scalasca toolset. In: Jónasson, K. (ed.) PARA
2010, Part II. LNCS, vol. 7134, pp. 463–473. Springer, Heidelberg (2012)

28. Wright, N.J., Pfeiffer, W., Snavely, A.: Characterizing parallel scaling of scien-
tific applications using IPM. In: The 10th LCI International Conference on High-
Performance Clustered Computing, Boulder, pp. 1–21 (2009)

http://www.dagstuhl.de/program/calendar/partlist/?semnr=13401&SUOG
http://www.dagstuhl.de/program/calendar/partlist/?semnr=13401&SUOG
http://www.infoq.com/news/2013/05/google-compute-engine
http://www.infoq.com/news/2013/05/google-compute-engine
http://www.green500.org/news/green500-list-november-2013
http://www.green500.org/news/green500-list-november-2013
http://icl.cs.utk.edu/hpcc/
http://www.intel.com/xeon
http://www.admin-magazine.com/HPC/Articles/The-Cloud-s-Role-in-HPC
http://www.admin-magazine.com/HPC/Articles/The-Cloud-s-Role-in-HPC
http://dx.doi.org/10.1145/2063384.2063413
http://dx.doi.org/10.1145/2063384.2063413
http://www.lrz.de/services/compute/supermuc/systemdescription/
http://www.lrz.de/services/compute/supermuc/systemdescription/
http://archive.hpcwire.com/hpccloud/2013-03-18/lucidworks_integrates_with_mongodb.html
http://archive.hpcwire.com/hpccloud/2013-03-18/lucidworks_integrates_with_mongodb.html
www.sigmetrics.org/greenmetrics/Hahnel.pdf
www.sigmetrics.org/greenmetrics/Hahnel.pdf
http://docs.mongodb.org/manual/faq/concurrency/
http://www.montblanc-project.eu
http://insidehpc.com/2013/05/24/new-intel-xeon-phi-coprocessors-to-have-xeons-on-board/
http://insidehpc.com/2013/05/24/new-intel-xeon-phi-coprocessors-to-have-xeons-on-board/
http://nosql-database.org/
http://www.infoq.com/news/2013/04/gartner-technology-trends/

118 S. Benedict et al.

29. Penguin Computing, Penguin Computing on Demand (2014). http://www.
penguincomputing.com/services/hpc-cloud/pod

30. PowerAdvisor, HP Power Advisor utility: a tool for estimating power requirements
for HP ProLiant server systems, July 2012. http://h20000.www2.hp.com/bc/docs/
support/SupportManual/c01861599/c01861599.pdf

31. RCloud, Rcloud from R-HPC (2014). http://www.r-hpc.com/
32. Sachs, K., Kounev, S., Buchmann, A.: Performance modeling and analysis of

message-oriented event-driven systems. Softw. Syst. Model. 12(4), 705–729 (2012).
doi:10.1007/s10270-012-0228-1

33. Benedict, S., Gerndt, M.: Automatic performance analysis of OpenMP codes on
a scalable shared memory system using periscope. In: Jónasson, K. (ed.) PARA
2010, Part II. LNCS, vol. 7134, pp. 452–462. Springer, Heidelberg (2012)

34. Benedict, S., Rejitha, R.S., Bright, C.B.: Energy consumption-based performance
tuning of software and applications using particle swarm optimization. In: 6th
IEEE CSI International Conference on Software Engineering (CONSEG) 2012,
pp. 1–6 (2012)

35. Benedict, S.: Performance issues and performance analysis tools for HPC
cloud applications: a survey. Computing 95(2), 89–108 (2013). doi:10.1007/
s00607-012-0213-0

36. Benedict, S.: Energy-aware performance analysis methodologies for HPC
architectures - an exploratory study. J. Netw. Comput. Appl. 35(6), 1709–1719
(2012)

37. Song, S., Grove, M., Cameron, K.W.: An iso-energy-efficient approach to scalable
system power-performance optimization. In: Proceedings of the IEEE International
Conference on Cluster Computing (Cluster 2011), Austin, Texas, pp. 262–271,
September 2011

38. Shende, S., Malony, A.D.: The TAU parallel performance system. Int. J. High
Perform. Comput. 20(2), 287–311 (2006)

39. Do, T., Rowshdeh, S., Shi, W.: pTop: A Process-level Power Profiling Tool, July
2012. www.sigops.org/sosp/sosp09/papers/hotpower 13 do.pdf

40. Viswanathan, H., Lee, E.K., Rodero I., Pompili D., Parashar M., Gamell M.:
Energy-aware application-centric VM allocation for HPC workloads. In: 2011 IEEE
International Symposium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), pp. 890–897 (2011). doi:10.1109/IPDPS.2011.234

41. Simmhan, Y., Noor, M.U.: Scalable prediction of energy consumption using incre-
mental time series clustering. In: BigData Conference, pp. 29–36 (2013)

http://www.penguincomputing.com/services/hpc-cloud/pod
http://www.penguincomputing.com/services/hpc-cloud/pod
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c01861599/c01861599.pdf
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c01861599/c01861599.pdf
http://www.r-hpc.com/
http://dx.doi.org/10.1007/s10270-012-0228-1
http://dx.doi.org/10.1007/s00607-012-0213-0
http://dx.doi.org/10.1007/s00607-012-0213-0
www.sigops.org/sosp/sosp09/papers/hotpower_13_do.pdf
http://dx.doi.org/10.1109/IPDPS.2011.234

Security

A Low-Overhead Secure Communication
Framework for an Inter-cloud Environment

Ali Sajjad1(B), Muttukrishnan Rajarajan1, and Theo Dimitrakos2

1 City University London, London, UK
2 British Telecom Ltd, Adastral Park, Ipswich, UK

ali.sajjad@bt.com

Abstract. Most of the current cloud computing platforms offer
Infrastructure as a Service (IaaS) model, which aims to provision basic
virtualized computing resources as on-demand and dynamic services.
Nevertheless, a single cloud provider may not have limitless resources
to offer to its users, hence the notion of an Inter-Cloud environment
where a cloud can use the infrastructure resources of other clouds. How-
ever, there is no common framework in existence that allows the service
owners to seamlessly provision even some basic services across multiple
cloud service providers, albeit not due to any inherent incompatibility or
proprietary nature of the foundation technologies on which these cloud
platforms are built. In this paper we present a novel solution which aims
to cover a gap in a subsection of this problem domain. Our solution
offers a security architecture that enables service owners to provision a
dynamic and service-oriented secure virtual private network on top of
multiple cloud IaaS providers. It does this by leveraging the scalability,
robustness and flexibility of peer-to-peer overlay techniques to eliminate
the manual configuration, key management and peer churn problems
encountered in setting up the secure communication channels dynami-
cally, between different components of a typical service that is deployed
on multiple clouds. We present the implementation details of our solu-
tion as well as experimental results detailing the overheads of our solution
carried out on two commercial clouds.

1 Introduction

Most of the currently available Cloud Computing solutions are mainly focused on
providing functionalities and services at the infrastructure level, e.g., improved
performance for virtualization of compute, storage and network resources, as well
as necessary fundamental functionality such as Virtual Machine (VM) migrations
and server consolidation etc. In the cases where higher-level and more abstract
concerns like dynamic configuration and application level security are needed to
be addressed, existing Infrastructure as a Service (IaaS) solutions tend to focus
on functional aspects only. Furthermore, if a cloud’s computational and storage
infrastructure resources are overloaded due to increased workloads, its service
towards it clients will degrade. The idea of an Inter-Cloud [1] has been gaining
much traction to address such a situation, where a cloud can borrow the required
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 121–136, 2015.
DOI: 10.1007/978-3-319-19848-4 8

122 A. Sajjad et al.

infrastructure resources of other clouds. However, in order to progress from a
basic cloud service infrastructure to a more adaptable cloud service ecosystem,
there is a great need for tools and services that support and provide higher-level
concerns and non-functional aspects in a comprehensive manner, e.g., automatic
provisioning of value-added services like application and communication security.

The OPTIMIS project [2] has been a recently completed effort in this
regard, which strived to provide a holistic approach to cloud service provi-
sioning by offering a single abstraction for multiple coexisting cloud architec-
tures. OPTIMIS addressed various high-level concerns in this domain like trust,
risk, eco-efficiency and cost, however a major concern of high importance is the
provisioning of a secure communication framework to the services utilizing the
resources of different cloud IaaS providers. The usage pattern of these services
is usually quite flexible. on one hand they might be directly accessed and man-
aged by end-users, and on the other hand their access and management might
be brokered and orchestrated by Cloud Service Providers (CSP) or third-party
Cloud Brokers [3] for their customers.

There are three fundamental steps in the life cycle of a service in a cloud com-
puting ecosystem; the construction of the service, the deployment of the service to
one or more IaaS clouds and lastly the operational management of the service. In
the resulting scenarios, the presence of multiple IaaS providers in the cloud ecosys-
tem is the key issue that needs to be addressed by any inter-cloud security solu-
tion. A major goal of service owners is to select IaaS providers in an efficient way
in order to host the different components of their services on appropriate clouds.
In this respect, third-party cloud brokers [3] can play a major role in simplifying
the use, performance and delivery of the cloud services. These brokers can also
offer an inter-mediation layer spanning across multiple cloud providers to deliver
a host of optimization and value-added services which take advantage of the myr-
iad individual cloud services e.g., aggregation of different services or arbitration
for a best-match service from multiple similar services. For the numerous inter-
action possibilities among these parties, whatever the usage scenarios maybe, the
security of data and the communication between the consumers of the service and
its multiple providers is of paramount importance.

In the light of the above discussion, it is advocated that an inter-cloud secu-
rity solution is highly desirable that would provide a framework enabling seam-
less and secure communication between the actors of a cloud ecosystem over
multiple cloud platforms. Such a solution, however, has to overcome a number
of challenges because of architectural limitations. This is because most of the
current cloud service platforms, and the multi-tenants environments they offer,
make it difficult to give the consumers of their services flexible and scalable
control over the core security aspects of their services like encryption, communi-
cation isolation and key management. Secure communication is also challenged
by lack of dynamic network configurability in most cloud providers, caused by the
inherent limitations of the fixed network architectures offered by these providers.

In this work we address the security concerns related to flexibility, scala-
bility and overheads that in our view must be overcome in order to provide

A Low-Overhead Secure Communication Framework 123

holistic provisioning of services to consumers from multiple cloud service
providers. We present the design and architecture of an inter-cloud secure com-
munication framework that offers the features of dynamic and scalable virtual
network formation, efficient and scalable key management and minimal man-
ual configuration. This framework enables secure and private communication
between the components of a service utilising resources of multiple cloud plat-
forms. Our peer-to-peer architecture provides a single virtual network to that
service as an overlay of resources from multiple cloud providers and offers the
capability to efficiently and transparently run services on top of this network
while catering for the dynamic growth and shrinkage of the components of the
service.

The rest of the paper is organized as follows: In Sect. 2 we present the back-
ground and related works that address the issues related to this domain. In Sect. 3
we elaborate on the detailed Inter-Cloud Virtual Private Network (ICVPN)
architecture. In Sect. 4 we present our experimental setup and the analysis of
the performance results and overheads of our solution. We conclude in Sect. 5
with the future directions of our work.

2 Related Work

Virtual Private Networks (VPN) have been a mainstay for providing secure
remote access over wide-area networks to resources in private organizational
networks for a long time. Well-known tools and softwares like OpenVPN [4] are
used to create secure point-to-point or site-to-site connections for authenticated
remote access. However, the main problem in client/server based approaches is
that they require centralized servers to manage the life cycle of all the secure
connections for the participating clients, hence suffering from a single point-of-
failure. Another issue is the quite complex and error prone configuration prob-
lems especially if you want to construct and manage a large-scale network not
having a relatively simple topology, as it would require customized configuration
on every client and even more elaborate management and routing configuration
on the server-side. Another major drawback is the complexity of key distribu-
tion among all the participating clients in a VPN, as the software itself does not
provide any key distribution service and all keys have to be manually transferred
to individual hosts. In case of the Public Key Infrastructure (PKI) model, an
additional requirement of a trusted Certificate Authority (CA) exists that has
to issue individual certificates to all the servers and clients constituting a VPN,
which incurs an additional communication overhead when forming a virtual pri-
vate network.

There have been some other VPN solutions for large-scale networks aimed at
grid and cluster computing environments, such as VIOLIN [5] and VNET [6], that
do not follow a strict client/server model based approach. VNET is a layer 2 vir-
tual networking tool that relies on a VNET server running on a Virtual Machine
Monitor (VMM) hosting a virtual machine in a remote network which establishes
an encrypted tunnel connection to a VNET server running on a machine (called

124 A. Sajjad et al.

Proxy) inside the users home network. All of the remote virtual machines com-
munication goes through this tunnel and the goal of the Proxy is to emulate the
remote virtual machine as a local host on the users home network, in effect pre-
senting it as a member of the same LAN. The motivation of this approach is to
tackle the users lack of administrative control at remote grid sites to manipulate
network resources like routing and resource reservations etc. but it suffers from
the previously discussing problem of complex and manual configuration though
going for the simplicity of a private LAN. Also the scalability will be a big issue
for the Proxy as the number of remote virtual machines grows as each will require
a secure tunnel connection and corresponding virtual network interface mapped
to the Proxys network interface by the VNET server software.

VIOLIN is a small-scale virtual network with virtual routers, switches and
end hosts implemented in software and hosted by User-Mode Linux (UML)
enabled machines as virtual appliances. It allows for the dynamic establishment
of a private layer 3 virtual network among virtual machines, however, it doesnt
offer dynamic or automatic network deployment or route management to setup
the virtual network. Virtual links are established between the virtual appliances
using encrypted UDP tunnels that have to be manually setup and are not self-
configuring, making it cumbersome to establish inter-host connections in flexible
and dynamic fashion.

P2P VPN solutions like Hamachi [7] and N2N [8] have come up as peer-to-
peer alternatives to centralized and client/server model based VPNs. Hamachi
is a shareware application that is capable of establishing direct links between
computers that are behind NAT firewalls. A backend cluster of servers are used
to enable NAT traversal and establish direct peer-to-peer connections among its
clients. Each client establishes and maintains a control connection to the server
cluster. It is mainly used for internet gaming and remote administration but
suffers from scalability issues as each peer has to maintain the connection with
the server as well as any other peers it wants to communicate with, ending up
with the overhead of a mesh-topology. It therefore offers limited number of peers
(16 per virtual network) and limited number of concurrent clients (50 per virtual
network). The keys used for connection encryption and authentication are also
controlled by the vendors servers and individual users do not initially control
who has access to their network.

N2N is a layer 2 VPN solution which doesn’t require a centralized back-end
cluster of servers like Hamachi but it uses a peer-to-peer overlay network similar
to Skype, where a number of dedicated super-nodes are used as relay agents for
edge nodes that cannot communicate directly with each other due to firewall or
NAT restrictions. The edge nodes connect to a super-node at start-up and pre-
shared TwoFish [9] keys are used for link encryption. As it operates on layer 2,
the users of the overlay have to configure their IP addresses etc. It also assumes
node membership as relatively static with edge nodes rarely leaving or joining
the network over their life cycle.

More recently, some commercial cloud computing services have been made
available by different vendors that provide a virtual private network inside their

A Low-Overhead Secure Communication Framework 125

public cloud offering and offering the customers some limited degree of control
over this network, which is called a Virtual Private Cloud (VPC). Prime exam-
ples in this domain are Amazon Virtual Private Cloud [10], Google Secure Data
Connector [11] and CohsiveFT VPN-Cubed [12]. These are aimed at enterprise
customers to allow them to access their resource deployed on the vendor’s cloud
over an IPSec [13] based virtual private network. Although these products allow
the possibility of leveraging the cloud providers’ APIs to flexibly grow and shrink
their networks, the management and configuration is as complex as a traditional
network as components of the VPC such as internet gateways, VPN servers, NAT
instances and subnets have to be managed by the customers themselves. Fur-
thermore, the customers are required to setup an IPSec device on their premises
that connects to an IPSec gateway in the VPC running as a virtual appliance
which integrates the enterprises network with the VPC subnet in the cloud. Most
importantly, with the exception of [12], these solutions are locked to single cloud
vendor and [12] provides use of a selective set of cloud providers by placing its
virtual appliances as VPN gateways in these cloud infrastructures and allowing
the customers to join these gateways in a mesh topology manually.

3 Design and Architecture

In this section we present the design and architecture of our inter-cloud secure
communication framework, the Inter-Cloud VPN (ICVPN). The architecture
is inspired by two main techniques, namely Peer-to-Peer (P2P) Overlays [14]
and VPNs [15]. Network virtualization techniques like VPNs and P2P Overlays
have been shown to provide their users legacy communication functionalities
of their native network environments, despite the topology, configuration and
management architecture of the actual underlying physical network. This fits
perfectly with our goal of providing a secure virtual private network as a service
to the consumers operating on top of multiple cloud providers. All complications
and complexities of managing a physical network can be handled by the overlay
network, enabling the services deployed on multiple clouds to benefit from a
customized communication network typically only available in physical local-
area environments.

3.1 Peer-to-Peer Overlay

The core technique employed by the ICVPN is the use of two tiers of P2P over-
lays. A Universal Overlay (UO) forms the higher tier overlay and is used to
provide a scalable and secure service infrastructure to initiate and bind multiple
lower tier VPN overlays (VO) to different cloud services. The universal over-
lay can be initiated either by the service owner, a cloud broker or the cloud
service providers. Its main purpose is to help with the bootstrapping activity
of VPN peers of the VPN overlay. It also provides other functionalities such
as service advertisement, service discovery mechanisms, and service code provi-
sioning, with minimal requirement for manual configuration and administration.

126 A. Sajjad et al.

This approach acts as an aggregation service for the peered overlay resources
(which in this case are virtual machines) span across multiple cloud domains to
help form a virtual private network. The peers of the universal overlay act as
super peers for the nodes of the underlying VPN overlays and let new nodes
enrol, authenticate, bootstrap and join a particular VPN overlay based on the
cloud service requiring a VPN service.

Fig. 1. Two-tiered overlay architecture for the Inter-Cloud VPN solution

As depicted in Fig. 1, the service owner/provider or the cloud broker could
itself be a peer in the universal overlay and a subset of the universal overlay peers
can act as super-peers for the peer nodes of the VPN overlay for a particular
cloud service. This enables the service owner/provider or the cloud broker to
publish and propagate configuration and other data throughout the universal
overlay. This is done by using its super peer as the initial dissemination point
and then taking advantage of the scalable content-sharing capabilities of the
Distributed Hash Table (DHT) feature of the overlay. The universal overlay
peers can join and leave the system dynamically and additional VMs from the
cloud providers can be provisioned to act as the universal overlay peers as well.

To join the universal overlay, each peer needs to acquire a unique identifica-
tion number (PID). This is generated by the peer itself on its first initialization
on a VM as a unique 160-bit random number. It also needs some bootstrap-
ping data to validate itself with a super peer for admission into the overlay. The
bootstrapping data consists of the IP addresses of the super peers, the ID of the
service that this particular VM belongs to and some security-related parameters
described later. This data is embedded in a secure cache on the VM by a VM
contextualization service [16] when it is provisioned for the service deployment

A Low-Overhead Secure Communication Framework 127

and the same contextualization service is used to install the peer-to-peer client
in the VM.

Once the peer has joined its overlay, it needs to discover its neighbours and
gather additional configuration data to establish secure tunnels with them so
that the deployed service can communicate securely with its different compo-
nents deployed on different cloud platforms. In order to achieve this, we use the
following scheme based on the Functional Encryption predicates.

3.2 Secure Service Based Resource Discovery

After joining a peer-to-peer overlay, each peer needs to discover its neighbours
for the resources they provide to achieve the secure communication goals of the
application using the overlay. Most commonly these resources are configuration
and credentials data and the secure communication goals of a typical application
pertain to encryption of traffic associated with specific ports and protocols. In
most structured P2P systems, the peers must maintain lists of neighbours to
achieve this goal efficiently. To populate these lists, peers in a structured over-
lay usually use distributed trackers or IP Multicast [17]. Although IP multicast
offers the feature of scalable group communication needed for efficient resource
delivery, it is not suitable for use in our system architecture, this is mainly due
to its very limited deployment by ISPs and network carriers as well as the com-
plexity of its architectural design [18]. A P2P tracker is a specialised service
that introduces other peers of an overlay to the requesting peer. In order to
perform this function, a tracker keeps track of peers as soon as they make a
request. A tracker may be deployed as a dedicated server or distributed among
the peers of an overlay it self. At first glance the distributed trackers based app-
roach looks very suitable for use in our system architecture as it maps nicely
with the functionality of the peers of the universal overlay i.e. well known boot-
strapping points. However, this approach is vulnerable to malicious attacks like
Denial-of-Service (DoS) and Sybil attacks [19], in which the attacker can subvert
the functioning of a peer-to-peer overlay by creating and using a large number
of false identities. For ICVPN we focus on the Sybil attack where a malicious
attacked can impersonate a number of the Universal Overlay peers to subvert
the process of resource discovery.

A common way of dealing with this issue is to use some trusted authority
to allocate peer IDs to the participating peers and the peers validate each other
by querying the central authority with a validation request. In our model, it can
work by designating a set of super peers as the Certificate Authorities (CA) for
the overlays other peers. The CA can assign peer IDs to the peers and signs a
certificate that binds the serviceID of the cloud service making use of our solution
and peer ID within the public certificate of the peer for a limited time duration.
The peer then can use this signed certificate to authenticate itself with other
peers in the overlay. However, using this Trusted Third Party (TTP) model
to validate peers and allocate them their identities can introduce substantial
communicational and computational overhead, especially as the number of peers
in the overlay increases. We propose a decentralized solution that overcomes the

128 A. Sajjad et al.

above mentioned scalability problems by utilizing a functional encryption based
scheme [20].

In a generic functional encryption scheme, a decryption key describes a func-
tion of the encrypted data to the user. This function F (·, ·) is modelled as a
Turing Machine [21] and an authority possessing a master secret key (msk) can
generate a key skk that can be used to compute the function F (k, ·) on some
encrypted data. Identity-Based Encryption [22–24], Searchable Encryption [25]
and Attribute-Based Encryption [26] are some examples of a Functional Encryp-
tion scheme. To describe it more formally but briefly, A functional encryption
scheme (FE) for a functionality F dened over (K, X) is a sequence of four algo-
rithms (setup, keygen, encryption, decryption) satisfying the following correct-
ness condition for all k ∈ K and x ∈ X is given in Table 1.

Table 1. Four-tuple functional encryption

Sequence Explanation

setup(1) → (pp,msk) Generate a public and master secret key pair

keygen(mk, k) → sk Generate secrekt key for k

enc(pp, x) → c Encrypt message x

dec(sk, c) → y Use sk to decrypt c

For ICVPN, we employ a special case of Functional Encryption which falls
under the category of systems known as the predicate encryption schemes with
public index. For our scheme we make use of the system defined in [26] as
Attribute-Based Encryption (ABE), where the decision that which users can
decrypt a ciphertext is based on the attributes and policies associated with the
plaintext message and the user. In this scheme an authority creates secret keys
for the users of the system based on attributes or policies for each user and any-
one can encrypt a plaintext message by incorporating the appropriate attributes
or policies in the scheme. We describe the simplified step-wise description of our
version of this scheme as follows:-

i. A super peer sets up its own Master Secret ms and Public Parameters pp
ii. The super peer generates a private key for itself using the attributes Ser-

viceID and SuperPeerID as the public key i.e. PubSP = ServiceID ∧
SuperPeerID, for each service the super peer is managing

iii. After bootstrapping, the VPN peer sends a provisioning request to the super
peer encrypted by the super peers public key (PubSP)

iv. The super peer issues a private key to the VPN peer encrypted by its own
private key, against the public key with attributes PubV PN = VMID ∧
PeerID ∧ ServiceID

v. The super peer inserts the VPN peers public key in the universal overlay
DHT to keep a record of issued private keys, against the key(ServiceID) =
value(List of VMID) and for each peer; key(VMIDi

) = value(PubV PNi
)

A Low-Overhead Secure Communication Framework 129

vi. The VPN peer query the universal overlay DHT for lists of other peers and
gets the result of key(ServiceID) encrypted using PubV PNx

= PeerID ∧
ServiceID

In Sect. 5 we show the evaluation results of the performance overhead of using
our secure resource discovery scheme as compared to that using a PKI-based
approach described earlier in this section.

3.3 Secure Virtual Private Connections

The key feature of our ICVPN is establishing a secure communication net-
work between the peers of the overlay formed over a collection of cloud
providers infrastructure. Therefore, after successfully joining the overlay net-
work to become part of a service, a VPN peer starts the process of creating
secure tunnels to the other peers of the service it wants to communicate with,
according to the functional operations of that particular service. To achieve this,
we make use of IPSec [13] to authenticate and encrypt each IP packet of a com-
munication session between the peers, thus creating end-to-end tunnels which
provide protection against eavesdropping, message tempering and message forg-
eries. For establishing mutual authentication between peers at the beginning of
the session and negotiation of cryptographic keys to be used during the session,
we employ the Internet Key Exchange protocol [27], which can make use of stan-
dard cryptographic primitives like public key cryptography [28] and AES [29].
In our approach, we make use of an authenticated Diffie-Hellman based scheme
to derive a secure session key which is used in the AES-CBC mode to ensure the
confidentiality of the traffic exchanges between the peers using the tunnel [30].
The session keys generated for the IPSec communication are valid for a short
period of time and when the keys expire the protocol is run again to come up
with new session keys to maintain the IPSec tunnels.

Another practical advantage of this approach is the reuse of existing frame-
works and tools which have been thoroughly tried and tested in a myriad of
different domains, are widely used and have been adopted in both academic
and commercial domain. The main components of the peer-to-peer client used
to construct a virtual private network in our model are shown in Fig. 2. These
include the standard components required to form a structured peer-to-peer
overlay like the Distributed Hash Table (DHT) service, which basically acts as
the command-and-control channel for the ICVPN solution, key-based routing,
peer discovery, bootstrapping service and overlay maintenance service. All of
these services are provided by a modified Kademlia implementation. In addi-
tion to these peer-to-peer specific components, we have a secure content storage
for the client where sensitive data like keys, passwords, and security tokens etc.
are stored. The configuration component is integrated with the overlays DHT
so that the clients behaviour can be modified dynamically by push new con-
figurations to it from the super peers. The configuration component manages
both the peer-to-peer related configurations as well as the policies used to con-
figure the IPSec tunnels between the peers for the use of the higher-level services
using the client to provide the secure communication framework.

130 A. Sajjad et al.

Fig. 2. Architecture of a P2P client in the VPN overlay

The P2P client software sets up and configures the IPSec security associations
according the service network security policy, which is advertised by the service
owner through the DHT of the Universal Overlay. The peers of the underlying
VPN overlay periodically check for any update in the security policy and apply
and enforce any changes on the kernel of the VM through the P2P client’s IPSec
interface.

4 Implementation

We implement a working prototype of ICVPN using the Java programming lan-
guage on virtual machines running the Linux operating system. Our implemen-
tation is built using open source libraries and APIs. Specifically, we use the
BouncyCastle library [31] for most of the cryptographic operations, the cpabe
library [32] for the Functional Encrytion based secure resource discovery, and
the TomP2P library [33] for its implementation of the Kademlia [34] peer-to-peer
protocol and the overlay DHT. In addition, we use BT Compute Cloud [35] and
Flexiant Cloud [36] as our cloud service providers.

5 Evaluation

In this section we present the results of a series of experiments we conducted
to evaluate the effect of our prototype ICVPN solution upon the network per-
formance of a service deployed on two different cloud IaaS providers. We use a
3-tier web service comprising of database, business logic and presentation compo-
nents deployed on nine virtual machines hosted on the clouds of British Telecom
Ltd. and Flexiant Ltd., our partners in the EU OPTIMIS project. The purpose
of these experiments is to evaluate the architecture being proposed, in terms

A Low-Overhead Secure Communication Framework 131

of service latency and service throughput, in a practical scenario with a ser-
vice deployed over a real wide-area network, with the BT cloud geographically
located in Ipswich, England and Flexiant cloud located in Livingston, Scotland.

5.1 Service Latency

We define service latency as the inter-cloud round-trip time taken by a HTTP
request, issued by a service component on one cloud, to get a response from
the target service component on a different cloud. We compare the latency
between the components of the service deployed on different cloud providers,
as the latency between the components in the same cloud is almost negligible
as they are usually hosted on the same hyper-visor. We measured the latency
by using the round-trip delay of an HTTP HEAD request/response pair, as the
components of the web service communicate with each other using HTTP pro-
tocol and ICMP, the de facto latency measurement protocol, is blocked in the
networks of our cloud providers. We measured the latency readings by running
10 experiments very hour for a period of 24 h, firstly without using the ICVPN
solution and then with it.

Fig. 3. Service latency of 240 round-trip time experiments from BT to Flexiant clouds

Looking at the results shown in Figs. 3 and 4 we can see that using our
solution only has a small impact on the HTTP latency, increasing it just by about
5 %. For ease of analysis, we collect the network traffic dump when running our
experiments, using the tcpdump packet sniffer. We found out from the traffic
dumps that the increased delay we encountered is mostly due to the additional
packets transmitted and received by the peers for the purposes of key exchange
and cryptographic primitives negotiation when establishing an IPSec tunnel.
After this initial handshake phase is over, the latency performance is almost
same in the comparative experiments.

132 A. Sajjad et al.

Fig. 4. Service latency of 240 round-trip time experiments from Flexiant to BT clouds

5.2 Service Throughput

We define service throughput as the inter-cloud network throughput between
service components deployed on different clouds. We measure the throughput
between components of the service deployed on different cloud providers by using
Iperf [37], a commonly used network testing tool. We measured the throughput
in both directions by transferring 30 MB data, a size chosen empirically to sat-
urate the WAN links between the components and get the throughput results
representing realistic conditions. We obtained the throughput measurements by
running 10 experiments every hour for a period of 10 h, firstly without using
the ICVPN solution and then applying the security policy to tunnel the traffic
through IPSec.

Fig. 5. Service throughput of 240 data transmission experiments in both directions
between BT and Flexiant clouds

A Low-Overhead Secure Communication Framework 133

From the throughput results shown in Fig. 5, the first thing that stands out
is the difference in the throughput values depending on the direction of transfer-
ring the data. Although we don’t have the detailed knowledge of the underlying
physical wide-area network connectivity between the two cloud service providers,
such readings are not unheard of in this domain and are usually due to differ-
ences in upstream and downstream traffic conditions, different routes chosen by
the IP packets or network configuration issues. Irrespective of that, by looking
at the comparative results it is clear that we just incur a small overhead in the
throughput, of about 10 %. By analysing the traffic dumps generated from the
throughout test, we can attribute this overhead to the IKE and IPSec hand-
shakes in addition to the extra time taken by the VM kernel in encrypting and
encapsulating 30 MB of data for each throughput test.

5.3 Secure Resource Discovery Overheads

One of the main overheads in peer-to-peer overlays related to the cost of the
resource discovery after the peers have bootstrapped. Securing this process fur-
ther adds to this overhead but in an effort to characterise the effect of our
secure resource discovery mechanism, we compare it with an alternate design of
a PKI-based system where the super peers have the functionality of a Certifi-
cate Authority (CA), each peer is issued a signed certificate upon authenticated
completion of the bootstrapping process and queries the Universal Overlay DHT
for resource discovery and gets the resulting data back which is encrypted by
the owning peer using its private key.

Fig. 6. Secure resource discovery for 100 runtime analysis between PKI and functional
encryption approaches

We remove the cost of the DHT lookups from our measurements as their
theoretical complexity is known to be O log(n) for Kademlia DHT but due to

134 A. Sajjad et al.

the nature of actual runtime measurements they can add unhelpful noise to the
data. We define the runtime cost for both designs as the time duration between
the start and end of the secure resource discovery process.

From the results shown in Fig. 6, the mean runtime of the PKI-based design
is 1313.52 ms whereas that for our Functional Encryption based scheme is
338.81 ms. This shows that our scheme incurs about 74.2 % less overhead than
a PKI based scheme.

6 Conclusion

In this paper, we present a secure communication framework for services
deployed in an inter-cloud environment. We employ the robustness and scalabil-
ity afforded by structure peer-to-peer overlays to join virtual machines running
on different cloud IaaS providers with each other using IPSec tunnels, hence
providing confidentiality, authentication and integrity for all the data exchanged
between different components of a cloud service. Our solution needs minimal
manual configuration as peers are automated to discover the information needed
to perform their operations from the Universal Overlay. We also provide a distrib-
uted and scalable key management solution for the consumption of the virtual
machines to set-up the secure communication channels. Our solution supports
the dynamic addition and removal of nodes from the VPN overlay as we use the
peer-to-peer DHT not just as a command and control channel for managing the
VPN peers but also for the churn management of peers in the VPN overlay. We
have evaluated a prototype implementation based on experiments conducted in
realistic conditions, over multiple cloud infrastructure environments and found
minimal latency, throughput and security overheads of creating and maintaining
the ICVPN connections among the participating VMs of a service.

References

1. Buyya, R., Ranjan, R., Calheiros, R.N.: Intercloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Proceedings
of the 10th International Conference on Algorithmsand Architectures for Parallel
Processing (ICA3PP 2010) (2010)

2. Ferrer, A.J., Hernandez, F., Tordsson, J., Elmroth, E., Zsigri, C., Sirvent, R.,
Guitart, J., Badia, R.M., Djemame, K., Ziegler, W.: OPTIMIS: a holistic approach
to cloud service provisioning. In: First International Conference on Utility and
Cloud Computing, December 2010

3. Gartner: Cloud consumers need brokerages to unlock the potential of cloud services,
July 2009. http://www.gartner.com/it/page.jspid=1064712

4. Yonan, J.: OpenVPN - an open source SSL VPN solution. http://openvpn.net
5. Jiang, X., Xu, D.: VIOLIN: virtual internetworking on overlay infrastructure.

In: Proceedings of the 2nd International Symposium on Parallel and Distributed
Processing and Applications (2003)

6. Sundararaj, A.I., Dinda, P.A.: Towards virtual networks for virtual machine grid
computing. In: Proceedings of the 3rd USENIX Virtual Machine Research and
Technology Symposium (2004)

http://www.gartner.com/it/page.jspid=1064712
http://openvpn.net

A Low-Overhead Secure Communication Framework 135

7. LogMeIn: Hamachi - a zero-configuration virtual private network. https://secure.
logmein.com/products/hamachi2

8. Deri, L., Andrews, R.: N2N: a layer two Peer-to-Peer VPN. In: Hausheer,
D., Schönwälder, J. (eds.) AIMS 2008. LNCS, vol. 5127, pp. 53–64. Springer,
Heidelberg (2008)

9. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N.: The
Twofish Encryption Algorithm: A 128-bit Block Cipher. John Wiley & Sons Inc,
New York (1999)

10. Amazon: Virtual private cloud. http://aws.amazon.com/vpc
11. Google: Secure data connector. http://code.google.com/securedataconnecto
12. CohesiveFT: VPN-Cubed. http://www.cohesiveft.com/vpncubed
13. Doraswamy, N.: IPSec : The New Security Standard for the Internet, Intranets,

and Virtual Private Networks, 2nd edn. Prentice Hall, Englewood Cliffs (2003)
14. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-

works. SIGCOMM Comput. Commun Rev. 32(1), 66 (2002)
15. Tanenbaum, A.S., Wetherall, D.J.: Virtual private networks. In: Computer Net-

works, 5th edn, pp. 821. Prentice Hall, October 2010
16. Armstrong, D., Djemame, K., Nair, S.K., Tordsson, J., Ziegler, W.: Towards a

contextualization solution for cloud platform services. In: CloudCom, pp. 328–331
(2011)

17. Deering, S.E., Cheriton, D.R.: Multicast routing in datagram internetworks and
extended lans. ACM Trans. Comput. Syst. 8(2), 85–110 (1990)

18. Diot, C., Levine, B., Lyles, B., Kassem, H., Balensiefen, D.: Deployment issues for
the ip multicast service and architecture. Netw. IEEE 14(1), 78–88 (2000)

19. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

20. Boneh, D., Sahai, A., Waters, B.: Functional encryption: a new vision for public-key
cryptography. Commun. ACM 55(11), 56–64 (2012)

21. Turing, A.M.: On computable numbers, with an application to the entscheidung-
sproblem. Proc. London Math. Soc. 42, 230–265 (1936)

22. Shamir, A.: Identity-Based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

23. Boneh, D., Franklin, M.: Identity-Based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, p. 213. Springer, Heidelberg
(2001)

24. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

25. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

26. Hohenberger, S., Waters, B.: Attribute-Based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013)

27. Kaufman, C.: Internet key exchange protocol version 2 (ikev2). In: RFC 5996 (2010)
28. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.

22(6), 644–654 (1976)
29. 197, F.I.P.S.P.: Announcing the advanced encryption standard (aes) (2001)
30. Housley, R.: Using advanced encryption standard (aes) ccm mode with ipsec encap-

sulating security payload (esp) (2005)

https://secure.logmein.com/products/hamachi2
https://secure.logmein.com/products/hamachi2
http://aws.amazon.com/vpc
http://code.google.com/securedataconnecto
http://www.cohesiveft.com/vpncubed

136 A. Sajjad et al.

31. Legion of the Bouncy Castle: Bouncy castle java cryptography apis (2013). http://
www.bouncycastle.org/java.html

32. Bethencourt, J., Sahai, A., Waters, B.: Advanced crypto software collection: the
cpabe toolkit (2011). http://acsc.cs.utexas.edu/cpabe

33. Bocek, T.: TomP2P: A P2P-based high performance key-value pair storage library
(2012). http://tomp2p.net

34. Maymounkov, P., Mazières, D.: Kademlia: a Peer-to-Peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

35. BritishTelecom: BT Compute Cloud (2013). https://cloud.btcompute.bt.com
36. Flexiant: Flexiant, your cloud simplified (2013). http://www.flexiant.com
37. Ajay Tirumala, L.C., Dunigan, T.: Measuring end-to-end bandwidth with iperf

using web100. In: Web100, Proceedings of Passive and Active Measurement Work-
shop (2003)

http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html
http://acsc.cs.utexas.edu/cpabe
http://tomp2p.net
https://cloud.btcompute.bt.com
http://www.flexiant.com

Analysing Virtual Machine Security
in Cloud Systems

Taimur Al Said(B) and Omer F. Rana

School of Computer Science and Informatics, Cardiff University, Cardiff, UK
{alsaidts,ranaof}@cardiff.ac.uk

Abstract. The cloud computing concept has significantly influenced
how information is delivered and managed in large scale distributed sys-
tems today. Cloud computing is currently expected to reduce the eco-
nomic cost of using computational and data resources, and is therefore
particularly appealing to small and medium scale companies (who may
not wish to maintain in-house IT departments). To provide economies of
scale, providers of Cloud computing infrastructure make significant use of
virtualisation techniques – in which processes of various tenants sharing
the same physical resources are separated logically using a hypervisor.
In spite of its wide adoption in Cloud computing systems, virtualisation
technology suffers from many security and privacy issues. We outline
security challenges that remain in the use of virtualisation techniques
to support multiple customers on the same shared infrastructure. We
also illustrate, using an experiment, how data leakage occurs when mul-
tiple VMs are executed on the same physical infrastructure, leading to
unauthorised access to (previously) deleted data.

1 Introduction

Although the general ideas behind Cloud computing are not new, their recent
adoption by significant portions of the information systems industry (both users
and providers), have introduced new challenges in scalability, security and eco-
nomic models. Cloud computing is a concept which promotes the economic use
of resources among clients by employing the “pay-per-use” revenue model, such
that clients will pay only for the resources they use (often advertised on a per
hour or per month basis). Cloud computing leverages on the significant invest-
ment being made in internet and communications infrastructure between the
Cloud consumer and the provider. There are many companies offering Cloud
services of different flavours, e.g. Amazon through its AWS suite1. Similarly,
Google has also recently considered providing metered Cloud services. Despite
the various benefits of Cloud computing, many potential consumers in different
sectors have been reluctant about migrating to a public Cloud. Some of them,
instead, have adopted the use of a private Cloud instead of public offerings,
especially in industry sectors such as oil and gas [24]. This is mainly because

1 Amazon Web Services - http://aws.amazon.com.

c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 137–151, 2015.
DOI: 10.1007/978-3-319-19848-4 9

http://aws.amazon.com

138 T. Al Said and O.F. Rana

of the security and privacy concerns associated with the use of public Clouds.
In a Cloud computing environment, the physical infrastructure of the Cloud
provider is shared amongst (potentially) hundreds of consumers (tenants) using
the concept of virtualisation. As tenants use the virtual space given to them by
the Cloud provider, there may be a possibility that several tenants access the
same physical disk space (over which their shared, virtual partition is hosted).
When the virtual machine is turned off or deleted, the same disk space could
be given to a new tenant who can, in principle, use various software tools to
recover data belonging to the previous tenant. This may lead to the disclosure
of a consumers’ private data. This paper focuses on this particular aspect by
first surveying various virtualisation security issues currently prevalent in many
commercial virtualisation systems and by exploring the process of recovering
permanently deleted data from virtual machines. It tries to answer the following
questions: (i) what are the key security issues associated with the use of virtual-
isation in multi-tenancy environments; and (ii) can permanently deleted data be
retrieved successfully out of the virtual machines? The rest of this paper is orga-
nized as follows: Sect. 2 introduces the concept of Cloud Computing, Sect. 3 intro-
duces virtualisation technology and Sect. 4 covers Cloud privacy issues. Section 5
discusses virtualisation security issues and Sect. 6 covers covers various aspects
of the problem introduced by virtualisation and highlights related work, while
Sect. 7 describes the experiments we carry out to demonstrate limitations with
an existing, widely used, virtualisation system. Section 8 provides a discussion
of the results and highlights some future research directions then it concludes
the paper.

2 Cloud Computing

Cloud computing is a concept which has gained considerable attention recently
in a variety of fields, e.g. academia, research and enterprises. Consumers in each
field have different motivations for migrating their systems to the Cloud [28].
According to [2], Cloud computing refers to both the applications delivered as
services over the internet and the hardware and systems software in the data
centers that provide these services. If that data center is accessed as a pay-per-
use service over the internet then it is called “public”. If it is not made available
to the public then it is called “private”. The use of data centre based hosting
of system and data therefore has significant similarities with the Cloud-based
deployment (in some instances, they are in practice synonymous). In [13], the
authors suggest that “the cloud computing concept offers dynamically scalable
resources provisioned as a service over the internet.” According to NIST (the U.S
National Institute of Standards and Technology), Cloud computing has three
service models: SaaS (Software as a Service), PaaS (Platform as A Service) and
IaaS (Infrastructure as A Service) [22]. Examples of SaaS are email services like
Gmail, Hotmail, etc. An example of the PaaS service model is the Google App
Engine which enables users to deploy and scale Python and Java-based web

Analysing Virtual Machine Security in Cloud Systems 139

applications2. An example of IaaS is Amazon Web Services (AWS) which allow
consumers to rent pre-configured virtual machines and pay for these per use only.
While web browsers are used to access SaaS, web services are used to access IaaS.
Both web services and web browsers may be used to access PaaS [13]. Notable
benefits of Cloud computing are: universal data access from anywhere using
the internet, automated storage management, avoiding the capital expenditure
on hardware, software, personnel, etc. According to [24], Cloud computing offers
deployment flexibility and speed to implement for small businesses. Hybrid cloud
is a combination of one or more clouds (private, community or public) that
remain a unique entity but are bound together by standardized or proprietary
access interfaces, enabling data and application portability [4]. A community
Cloud serves a group of consumers who have shared concerns such as mission
objectives, security, and privacy and compliance policy [22].

3 Virtualisation

3.1 Overview

Virtualisation technology lets a single machine simultaneously run multiple oper-
ating systems (OSs) or multiple sessions of a single OS [31]. By freeing devel-
opers and users from traditional interface and resources constraints, Virtual
Machines (VMs) provide software interoperability, system impregnability and
platform versatility [15,29]. VMs are usually classified into two categories: (i)
System virtual machines: provide a complete system platform which supports
the execution of a complete OS. For example, it provides a platform to run pro-
grams where the real hardware is not available, e.g. legacy systems. Another
aspect in the use of VMs is to improve utilisation of computing resources –
the key reason for use in Cloud computing. (ii) Process virtual machines: are
designed to run a single program (supports a single process) and are built with
the main purpose of providing program portability and flexibility. In virtualisa-
tion, the physical server is called the host whereas the virtual servers are called
guests. The VM manager or Hypervisor makes different VMs independent of
each other. There are three types of server virtualisation: Full Virtualisation,
Para-Virtualisation and OS-level virtualisation, as described in Table 1.

3.2 Hypervisor

The hypervisor or virtual machine monitor (VMM) is the basic abstraction layer
that sits directly on the hardware of the physical server (Type 1 hypervisor).
The Hypervisor is responsible for scheduling and partitioning memory of the
various VMs running on the physical device [33]. If the hypervisor is installed
on top of the host operating system, then it is said to be ‘type 2 hypervisor’.

In addition to abstracting the hardware for the virtual machine, the hyper-
visor controls the execution of VMs as they share a common processing environ-
ment, as illustrated in Fig. 1. The hypervisor has no knowledge of networking,
2 Google App Engine - https://console.developers.google.com/start/appengine.

https://console.developers.google.com/start/appengine

140 T. Al Said and O.F. Rana

Table 1. Types of server virtualisation&comparisons

Full virtualisation Para virtualisation OS-level virtualisation

Availability of the

hypervisor?

Yes Yes No

Guests knowledge of

each other?

Unaware Aware Must be of the same

OS type

Independence of

guest servers

Yes Yes Yes

Description The hypervisor

interacts directly

with the physical

server’s CPU and

disk space

As each guest is aware

of the others and

their demands, the

hypervisor does

not need more

processing power

Virtualisation

capability is part

of the host OS

which performs

the operations of a

fully virtualised

hypervisor

Limitations Physical server must

reserve some

processing power

and resources to the

hypervisor; this can

impact server

performance and

slow down

operations

The guest OS must be

tailored

specifically to run

using the

hypervisor

Guest servers must

run the same OS

Fig. 1. Location of the hypervisor (type 1)

external storage, video, or any other common I/O functions. It serves as a plat-
form for the VMs hosted on the physical server. This allows running various types
of operating systems which are not compatible with each other independently.
A list of potential VM management software includes:

– VMware workstation: VMware is the leading product in desktop virtualisa-
tion. It acts as a virtual computer on which any OS can be installed.

– Virtual Box: is an open source application to manage and run VMs. It can
be used to run a virtual (guest) OS on any host machine that runs Windows,
Linux, Mac OS X or Solaris operating system.

– Microsoft Virtual PC: Microsoft Virtual PC allows a complete “virtual com-
puter” to be created – and is free to download and use.

– Citrix XenServer: is an open source virtualisation platform for managing
Cloud deployments, server and desktop virtual infrastructures. It is based
on the Xen hypervisor.

Analysing Virtual Machine Security in Cloud Systems 141

3.3 Virtualisation in Cloud Computing

Virtualisation is the basis of Cloud computing because it simplifies the delivery of
services by providing a platform for optimizing complex IT resources in a scalable
manner [12]. It can be applied to memory, networks, storage, hardware, OS, and
application. In a typical scenario, we can imagine having a powerful physical
machine with large amounts of storage, memory and a fast processor. Using a
VMM, several virtual servers can be hosted on the machine. Storage, memory
and processing will be divided among the virtualised servers. If a certain VM
required additional storage, then it will be easily acquired from the host machine.
Until recently, Graphics Processing Units (GPUs) could not be virtualised.

4 Cloud Privacy

Privacy is one of the most cited concerns in cloud security literature. Sharing
resources within a Cloud computing environment could result in unexpected
side and covert channels being created [5]. An example is the effect of cross user
de-duplication, which happens when Cloud service providers tend to save only
one single copy of a file to avoid redundancy. Harnik et al. [11] have covered de-
duplication privacy implications in detail. Whereas in [26], the authors focus on
techniques hackers may use to ensure co-residence i.e. injecting a VM on the same
physical machine as the targeted VM. Although the process of ensuring physical
co-residence with a given VM is not trivial, they were successfully able to monitor
some activities of the target VM using a covert side channel. Activity patterns
may be visible to users of the same shared resource. Divulging activity patterns
could lead to reverse-engineering a Cloud consumers’ confidential information [5].
Zissis et al. in [35] argue that data privacy could be breached unintentionally
due to data remittance which is the residual representation of data.

The Amazon.com Cloud system allows users to create and share VM images
with other users in addition to the ones provided by Amazon itself. In [3], the
authors developed an automated system to download and analyze instances of
those public images. The authors discovered that some of these VM images
issue unsolicited connections to suspicious sites. Also, they discovered backdoors
and left out credentials. Some of the VM images had malware which monitor the
browsing habits of the user. Recovery of deleted data from public user images was
possible even from Amazon.com images. The researchers used NMap, a network
port scanning tool, to find out the number of running instances. In [32], the
authors mentioned that OpenNebula (an open source Cloud system) had a bug
which leaves user passwords accessible by anyone on the entire network. The
Cloud Security Alliance mentioned in its “2013 Cloud Security Top Threats”
document that if the user encrypts data before uploading it to the cloud but
loses the encryption key, then the data will be lost as well. Amazon Web Services
(AWS) has recently launched ‘CloudTrail’3 which is intended to to give the owner

3 Amazon Cloudtrail - http://aws.amazon.com/cloudtrail.

http://aws.amazon.com/cloudtrail

142 T. Al Said and O.F. Rana

of an AWS account details of how the Amazon API was used, by whom, which
source IP address were used,etc. However, it does not tell the user how the data
inside his VMs were used or (potentially) modified.

5 Virtualisation Security

According to [2], virtualisation is the primary security mechanism in the Cloud
– intended to isolate the system and data of one user from another. However, not
all resources are virtualised and not all resources are bug free. In [31], the authors
argue that organizations are facing the challenge of securing virtualised systems
which are vulnerable to the same threats as physical systems including intru-
sions and malware. Despite being also a security mechanism, there exist many
security issues which are associated with virtualisation. There is significant liter-
ature which covers some of these issues in detail such as [1,7,10,18,20,23,25,31].
According to [9], the threats that work in a physical world could also work in a
virtualised world and could be more devastating. The reason is that those threats
could propagate much more rapidly within a virtualised environment to affect
the other guests of the physical host. In the discussion of virtualisation security,
one has to consider two aspects. The first aspect to be considered is the whole
virtualisation environment which includes the physical host, the Host OS, the
hypervisor, the VM and the guest OS. In [1], the authors suggest that the secu-
rity of any virtualisation solution is heavily dependent on the individual security
of each component, from the hypervisor and host OS to guest OS, applications
and storage. Some researchers argue that the security of the Cloud provider in
general also needs to be considered [16]. The second aspect to be considered is
the important role of the hypervisor in such a virtualised environment. To pro-
vide a focused discussion on virtualisation-specific issues, the following sections
will focus on three components which are: the hypervisor, Virtual Machine (VM)
and Guest OS. Common attacks on these components will be described.

5.1 Hypervisor-Related Attacks

In any virtualisation system, the hypervisor allocates the host machine’s
resources to each virtualised operating system or to each program running on
a virtualised OS. It emulates a hardware device for each VM and handles the
communication between the CPU, the storage medium, and the network via
the OS [31]. In the IaaS model, attacking the hypervisor would mean compro-
mising all the running VMs (managed by the hypervisor). Perhaps the biggest
threat to virtualisation security is that hypervisors have more privileged access
to hardware resources than typical applications [31]. One hypervisor hijacking
technique, “hyperjacking”, involves an attacker running a very small footprint
hypervisor that takes complete control over the host OS [25]. An example of
hyperjacking is the ‘blue-pill’ malware that executes as a hypervisor to gain con-
trol of a computer’s resources [27]. The bluepill starts a thin hypervisor under
the main OS which can still maintain reference to the devices but has no control

Analysing Virtual Machine Security in Cloud Systems 143

over it. The same concept was demonstrated by a group of researchers under the
term ‘Virtual Machine Rootkits (VMBR)’ [17]. According to [1], some virtualisa-
tion products offer multiple ways to manage hypervisors, so if the management
interface is not secured, the hypervisor will be under threat. Also, if the man-
agement console is accessed remotely, communications must be protected. In
December 2013, the openSSL website was breached4. Instead of attacking the
website itself, the attackers targeted the hosting company which stored the web-
site in host machine with insecure management console to access the hypervisor.
In [20], the authors suggest that poor isolation or inappropriate access control
policy will cause an inter-attack between VMs or between VMs and the hyper-
visor. A group of researchers successfully demonstrated that it is possible to
reconstruct private keys of certain VM from another VM in the same host using
side channel attacks [34].

There were bugs which allow virtualised code to break loose to some extent.
The authors in [30] provide an overview of the use of virtualisation and demon-
strate that the widely used VMM or the hypervisor cannot be considered fully
secure. They argue that bad configuration or design flaws in the VMM could lead
to a denial of service, system halt or VM escape. In a denial of service attack,
the VM uses all the computing capacities of the host preventing other VMs from
running correctly. System halt may cause a VM to crash. VM escape is an exploit
in which the attacker runs code on a VM that allows an operating system run-
ning within it to break out and interact directly with the hypervisor [20]. Hence,
in the VM escape threat, an attacker may gain access to the memory located
outside the region allocated to the corrupted VM in an environment which has
access to the host OS. Many bugs which allow escaping from a VM have been
found in famous virtualisation software such as: Microsoft Virtual PC/Virtual
Server, VMware and Xen [10]. All of these attacks are possible because there is
a possibility to detect whether there is a hypervisor running underneath the OS
and also its type. In [25], the authors demonstrate how an attacker could take
control of the VMware and Xen virtualisation software when moving a virtual
machine from one physical computer to another (referred to a VM migration). A
security assessment done on Rackspace - a famous cloud provider- indicated that
some virtual servers contained data processed earlier on other virtual servers.
This was due to the improper wiping of disks and to the way the hypervisor was
configured to read/write from the disk [14].

5.2 VM-Related Attacks

In virtualisation, if the host is not secure, then the virtual machine is not neces-
sarily secure [5], even if the latter was patched effectively. In addition, managing
VM migration could add another level of complexity to the security process
especially when the VM is migrated to an unsecure host. It is suggested in [9]
that virtualisation is very dynamic, with systems constantly creating and shut-
ting down VMs or moving them to different hosts – so the entire security process

4 OpenSSL website defacement - http://tinyurl.com/luugk25.

http://tinyurl.com/luugk25

144 T. Al Said and O.F. Rana

must be dynamic. VM sprawl is considered another issue in a virtualisation envi-
ronment. It happens when the number of VMs is continuously growing, while
most of them are idle or never return back from sleep mode [20]. According to
a study by Commvault5, about 30–40 percent of the VMs created end up being
unused and about 10 percent of them have impact on cost as well. This could
lead to the overuse of the infrastructure. Another dimension of complexity is
the security configuration for large numbers of VMs on multiple host computers
within an organization which can be very difficult.

5.3 Guest OS-Related Attacks

It is widely observed that traditional operating systems have vulnerabilities –
hence attacks which exploit these vulnerabilities may also work against virtu-
alised OSs with the same vulnerabilities [31]. However, securing VM operating
systems cannot be performed in the same way as securing a typical OS. For exam-
ple, typically, security for a system of machines is enforced over the network by
placing physical hardware, such as firewalls, between devices [9]. In contrast, in
a virtual environment, hardware cannot be placed between VMs. Securing the
host OS and the guest OSs against malware infections is very important. How-
ever, since antivirus products which run in virtualised environments use agents
to scan each VM instead of the individual instance of the product, this can slow
the performance of a VM by creating antivirus storms [9].

6 Data Recovery in VMs

To demonstrate vulnerability of a VM when used within a multi-tenancy archi-
tecture, we demonstrate how permanently deleted data from a VM may be
recovered. Such vulnerability continues to exist in many real VM deployments in
Cloud systems. In [3], for example, an automated system to download VMs from
Amazon EC2 was implemented. However, no detailed description was provided
as to how analysis was carried out or how the virtual disk images were taken. In
[26], the work involved some analysis on the underlying VMs, however, it was not
clear how this was done. In [8], several acquisition tools were evaluated against
the retrieval of volatile and non-volatile data. However, the discussion was at a
higher level and did not go into details of the extracting or imaging processes.
In the following sections we describe how VMs can be imaged and analyzed by
dividing the process, and various software tools that can be used at each stage.

7 Experiment Methodology

On a disk, data is generally stored on the surface of a platter in sectors and tracks.
A sector is a subdivision of track which has a fixed number of bytes. Sectors are
often grouped together into clusters. When files are deleted from any machine,
5 Commvault: VM Sprawl - http://tinyurl.com/nxukpm4.

http://tinyurl.com/nxukpm4

Analysing Virtual Machine Security in Cloud Systems 145

only details like: path on cluster, sector information, creation date, modification
date, etc. will be erased but the actual physical file may still be there if it was
not overwritten. This means that there is a possibility that data which has been
deleted could be retrieved again from the unallocated space but is that also pos-
sible with virtual disks? To provide a clear answer, we divide our experiment
methodology into phases where each phase is independent of the other. In each
phase, the process can be performed in various ways. The phases are:

– Preparation Phase: Setting up of the VMs and preparing the files.
– Deletion phase: the permanent removal of files from the VM.
– VM Imaging Phase: extracting an exact disk image to be analyzed.
– Mounting Phase: mounting the image as a drive for analysis (optional)
– Recovery Phase: using some tools to recover deleted data.

The next section covers the technical experiment and the described phases. It
will also highlight the tools used, briefly, in each phase.

7.1 The Preparation Phase

VMware was used to run a WinXP virtual machine. 12 GB was allocated for the
VM. Five files were chosen from the internet: two Word documents, one PDF
file, one WMV file and one XLS file. The files and their sizes appear in Fig. 2.

Fig. 2. List of chosen files and their sizes

7.2 Deletion Phase

The mentioned files were deleted from their stored locations using (Shift-Del)
which is supposed to delete any file permanently from the machine.

7.3 VM Imaging Phase

The aim of this phase is to create an exact copy of the VM disk containing all the
allocated or unallocated disk space (bit-by-bit copy). There exist many imaging
software tools for Windows and Linux, using a command line or graphical inter-
face. The Linux dd tool is the most widely used and allows imaging of any type

146 T. Al Said and O.F. Rana

of storage medium. It is also used as a disk wiping/erasing tool. The problem
with dd is that it creates an exact replica of the source drive in the destination
including the file system type; meaning that the destination drive will lose other
stored files unless it was reformatted again. In this experiment, Helix bootable
CD was used. Helix provides an easy to use interface (as illustrated in Fig. 3)
which allows acquiring raw images of drives and storing them in small chunks
in the required destination. It also allows verifying the resulting disk image by
calculating a hash value. The purpose of verifying the hash was to ensure that
the image has not been altered during the image creation process. The VM’s
C:Drive was selected as the source and an external hard disk was selected as
the destination after specifying a new folder name in the external hard disk. In
addition, the option of verifying the hash was selected.

Fig. 3. Helix interface

The whole imaging process for the 12 GB VM drive took about 17 min and the
execution time of the verification process was approximately 34 min. Of course,
as the size of the volume increases, the process tends to take considerable amount
of time.

7.4 Mounting Phase

This phase can be optional if the recovery tool in the next phase accepts raw
images as input. In this experiment, the recovery tools require a mounted drive.

Analysing Virtual Machine Security in Cloud Systems 147

Fig. 4. Disk image partitions being loaded to OSFMount

Fig. 5. Demonstrating a successful disk mount

OSFMount6 is a free and easy to use software tool which allows mounting raw
disk images to the Windows operating system (Fig. 4). The mounted disk image
will appear exactly as any normal external drive. Moreover, it allows mounting
as a read-only mode. In this phase, the saved raw disk images were loaded to
the OSFMount software and a drive letter ‘Q’ was chosen. Read-only mode was
chosen because we do not want to alter the disk contents. Hence, a new drive Q
was added to the list of drives in the host computer (Fig. 5).

7.5 Recovery Phase

Again, there exist many software tools which allow the retrieval of deleted files
out of raw disks. The RecoverMyFiles tool was used for its easy to use interface
the support for many file types. The tool takes the drive location as input and
allows choosing between several search modes (Fig. 6). In order to minimize the

6 OSFMount tool- http://www.osforensics.com/tools/mount-disk-images.html.

http://www.osforensics.com/tools/mount-disk-images.html

148 T. Al Said and O.F. Rana

Fig. 6. Selecting drive Q – containing the VM disk image

Fig. 7. Recovered deleted files

search time, specific file types were chosen: doc, PDF, WMV, XLS. All the
recovered files, except the spread sheet XLS file, kept their original file name
and size and were successfully recovered, as illustrated in Fig. 7.

8 Discussion and Conclusion

After describing the key concepts in virtualisation and the associated security
limitations with existing VM management software, we demonstrate how per-
manently deleted files can be recovered from deleted VM disk images. The whole

Analysing Virtual Machine Security in Cloud Systems 149

experiment scenario was to demonstrate what happens in a multi-tenancy Cloud
computing environment, as tenants may extract VM images and issue various
analysis tasks on them. One of the tests is to recover deleted data. The DOS
and Windows file systems use fixed-size clusters so even if the actual data being
stored requires less storage than the cluster size, an entire cluster is reserved
for the file. This unused space is called the slack space. The slack space may
have data which had been deleted in the past. Since the allocated space for any
new VM is not necessarily given in successive disk locations, there could be a
possibility for previous data to be within the allocated space. This data may not
be related to the VM itself. It could be left out of past VMs.

As the retrieval of deleted data from virtual disk images was possible, a ques-
tion can be asked about whether encryption of files or virtual machines may solve
the problem of data privacy. In [21] the authors argue that cryptographic tech-
niques are essential to provide information separation and data confidentiality
in a Cloud environment. Data may be encrypted at rest in the cloud provider’s
storage or in motion while it is being used by the consumer. Consumers are
recommended to encrypt the data before moving them to the Cloud. There are
a variety of commercial products which offer encryption of files before moving
them to the Cloud such as BoxCryptor, Viivo, CloudFogger, etc. In [15], the
authors discuss a novel security scheme for encrypting virtual disk images in
the cloud computing environment. When performing the encryption, a key to
encrypt the data will be generated and the same key can be used for decryption.
Although encryption of cloud files is essential and had many benefits, it has
some drawbacks as well. Data encryption restricts the user’s ability to perform
keyword search and thus makes the traditional plaintext search methods unsuit-
able for cloud computing [19]. Another issue is the effect on performance as
the encryption and decryption processes require complex computation power. In
[6], estimates are provided for the cryptographic costs of some encryption algo-
rithms. The authors find that making use of cloud storage as a simple remote
encrypted file system is extremely unfeasible if considering only core technology
costs. Managing the encryption/decryption keys is a very important issue in the
application of encryption concept that needs to be addressed. In this paper we
also describe Cloud privacy issues and their relevance in the context of virtuali-
sation techniques. We identify the lack of literature regarding VM imaging and
the recovery of deleted data from such images. We have carried out a practical
experiment to demonstrate this.

References

1. Anand, R., Sarswathi, S., Regan, R.: Security issues in virtualization environ-
ment. In: 2012 International Conference on Radar, Communication and Computing
(ICRCC), pp. 254–256. IEEE (2012)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

150 T. Al Said and O.F. Rana

3. Balduzzi, M., Zaddach, J., Balzarotti, D., Kirda, E., Loureiro, S.: A security analy-
sis of amazon’s elastic compute cloud service. In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing, pp. 1427–1434. ACM (2012)

4. Chaves, S., Westphall, C., Westphall, C., Geronimo, G.: Customer security con-
cerns in cloud computing. In: The Tenth International Conference on Networks,
ICN 2011, pp. 7–11 (2011)

5. Chen, Y., Katz, R.H.: Glimpses of the brave new world for cloud secu-
rity (2011), http://www.hpcinthecloud.com/hpccloud/2011-02-22/glimpses of
the brave new world for cloud security.html

6. Chen, Y., Sion, R.: On securing untrusted clouds with cryptography. In: Proceed-
ings of the 9th Annual ACM Workshop on Privacy in the Electronic Society, pp.
109–114. ACM (2010)

7. Christodorescu, M., Sailer, R., Schales, D.L., Sgandurra, D., Zamboni, D.: Cloud
security is not (just) visualization security: a short paper. In: Proceedings of the
2009 ACM Workshop on Cloud Computing Security, pp. 97–102. ACM (2009)

8. Dykstra, J., Sherman, A.T.: Acquiring forensic evidence from infrastructure-as-
a-service cloud computing: exploring and evaluating tools, trust, and techniques.
Digital Invest. 9, S90–S98 (2012)

9. Garber, L.: The challenges of securing the virtualized environment. Computer
45(1), 17–20 (2012)

10. Gurav, U., Shaikh, R.: Virtualization: a key feature of cloud computing. In: Pro-
ceedings of the International Conference and Workshop on Emerging Trends in
Technology, pp. 227–229. ACM (2010)

11. Harnik, D., Pinkas, B., Shulman-Peleg, A.: Side channels in cloud services: dedu-
plication in cloud storage. Secur. Priv. IEEE 8(6), 40–47 (2010)

12. Hurwitz, J., Bloor, R., Kaufman, M., Halper, F.: Cloud Computing for Dummies,
vol. 1. Wiley, Hoboken (2009)

13. Jensen, M., Schwenk, J., Gruschka, N., Iacono, L.L.: On technical security issues
in cloud computing. In: IEEE International Conference on Cloud Computing,
CLOUD 2009, pp. 109–116. IEEE (2009)

14. Jordon, M., Forshaw, J.: Dirty disks raised new questions about
cloud security (2012). http://www.contextis.com/resources/blog/
dirty-disks-raise-new-questions-about-cloud/

15. Kazim, M., Masood, R., Shibli, M.A.: Securing virtual machine images in cloud
computing (2013)

16. Kazim, M., Masood, R., Shibli, M.A., Abbasi, A.G.: Security aspects of virtual-
ization in cloud computing. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S.
(eds.) CISIM 2013. LNCS, vol. 8104, pp. 229–240. Springer, Heidelberg (2013)

17. King, S.T., Chen, P.M.: Subvirt: implementing malware with virtual machines. In:
2006 IEEE Symposium on Security and Privacy, pp. 314–327. IEEE (2006)

18. Li, J., Li, B., Wo, T., Hu, C., Huai, J., Liu, L., Lam, K.: Cyberguarder: a virtu-
alization security assurance architecture for green cloud computing. future Gener.
Comput. Syst. 28(2), 379–390 (2012)

19. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: 2010 Proceedings IEEE INFOCOM, pp.
1–5. IEEE (2010)

20. Luo, S., Lin, Z., Chen, X., Yang, Z., Chen, J.: Virtualization security for cloud com-
puting service. In: 2011 International Conference on Cloud and Service Computing
(CSC), pp. 174–179. IEEE (2011)

http://www.hpcinthecloud.com/hpccloud/2011-02-22/glimpses_of_the_brave_new_world_for_cloud_security.html
http://www.hpcinthecloud.com/hpccloud/2011-02-22/glimpses_of_the_brave_new_world_for_cloud_security.html
http://www.contextis.com/resources/blog/dirty-disks-raise-new-questions-about-cloud/
http://www.contextis.com/resources/blog/dirty-disks-raise-new-questions-about-cloud/

Analysing Virtual Machine Security in Cloud Systems 151

21. Martucci, L.A., Zuccato, A., Smeets, B., Habib, S.M., Johansson, T., Shahmehri,
N.: Privacy, security and trust in cloud computing: the perspective of the telecom-
munication industry. In: 2012 9th International Conference on Ubiquitous Intelli-
gence & Computing and 9th International Conference on Autonomic & Trusted
Computing (UIC/ATC), pp. 627–632. IEEE (2012)

22. Mell, P., Grance, T.: The NIST definition of cloud computing. Natl. Inst. Stand.
Technol. 53(6), 50 (2009)

23. Pearce, M., Zeadally, S., Hunt, R.: Virtualization: issues, security threats, and
solutions. ACM Comput. Surv. (CSUR) 45(2), 17 (2013)

24. Perrons, R.K., Hems, A.: Cloud computing in the upstream oil & gas industry: a
proposed way forward. Energy Policy 56, 732–737 (2013)

25. Ray, E., Schultz, E.: Virtualization security. In: Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence Research: Cyber Secu-
rity and Information Intelligence Challenges and Strategies, p. 42. ACM (2009)

26. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security, pp. 199–212.
ACM (2009)

27. Rutkowska, J.: Subverting vistatm kernel for fun and profit. Black Hat Briefings,
Las Vegas (2006)

28. Sehrawat, A., Bishnoi, N.: Security: a key requirement of cloud. Int. J. Adv. Res.
Comput. Sci. Softw. Eng. (IJARCSSE) 3(6), 1044–1048 (2013)

29. Smith, J.E., Nair, R.: The architecture of virtual machines. Computer 38(5), 32–38
(2005)

30. Studnia, I., Alata, E., Deswarte, Y., Kaâniche, M., Nicomette, V., et al.: Survey of
security problems in cloud computing virtual machines. In: Proceedings of Com-
puter and Electronics Security Applications Rendez-vous (C&ESAR 2012) (2012)

31. Vaughan-Nichols, S.J.: Virtualization sparks security concerns. Comput. 41(8),
13–15 (2008)

32. Wang, L., Tao, J., Kunze, M., Castellanos, A.C., Kramer, D., Karl, W.: Scientific
cloud computing: early definition and experience. In: HPCC, vol. 8, pp. 825–830
(2008)

33. Xen: How does xen work? (2009). http://www-archive.xenproject.org/files/
Marketing/HowDoesXenWork.pdf

34. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM Conference on
Computer and communications security, pp. 305–316. ACM (2012)

35. Zissis, D., Lekkas, D.: Addressing cloud computing security issues. Future Gener.
Comput. Syst. 28(3), 583–592 (2012)

http://www-archive.xenproject.org/files/Marketing/HowDoesXenWork.pdf
http://www-archive.xenproject.org/files/Marketing/HowDoesXenWork.pdf

Cloud Computing: Security Issues Overview
and Solving Techniques Investigation

Yu Yang(B), Chenggui Zhao, and Tilei Gao

Yunnan University of Finance and Economics, Kunming 650211, China
yeongyuk@126.com

Abstract. Cloud computing is a new computing model which uses vir-
tualization technology, distributed computing, parallel computing and
other existing technologies to achieve cloud service virtualization and
economies of scale, whilst increasingly overwhelming cloud security issues
has brought great challenges and concerns to the cloud services providers
and cloud users, especially trust and privacy issues with regard to cloud
computing and cloud shared storage associated security issues. In the
paper, we expound the basic concepts of cloud computing, deployment
models, service models and key features, analyze and outline the cur-
rently highlighted cloud security issues, report the status quo of cloud
computing security, investigate the prevalent and typical cloud comput-
ing security problem key solving techniques, and thus render a com-
prehensive cloud computing security technical reference model, which is
composed of associated cloud security solving techniques that result from
inevitably multi-faceted cloud security issues. The model is expected to
alleviate prominent cloud security issues. This paper generalizes cloud
security technology research directions and further development space of
cloud security technology and standardization.

Keywords: Cloud computing · Security issues · Trusted cloud
computing solving techniques · Shared storage security solving tech-
niques · Cloud security technical reference model

1 Introduction

Cloud computing is a promising novel computing model, for the sake of
economies of scale, which harnesses the existing distributed computing, grid
computing and virtualization technology and so forth to abstract a large number
of hardware and software resources into a shared resources pooling. Cloud com-
puting is defined as a model for enabling convenient, on-demand network access
to a shared resource pooling of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction [23].
It provides the virtualized resources through the network and, computing tasks
are assigned to resource pooling that gather abundant resources so that dif-
ferent computing tasks to obtain the corresponding computing power, storage
c© Springer International Publishing Switzerland 2015
A. Al-Saidi et al. (Eds.): ICC 2014, LNCS 8993, pp. 152–167, 2015.
DOI: 10.1007/978-3-319-19848-4 10

Cloud Computing: Security Issues Overview 153

space and application services, aligning with different Cloud Service User (CSU)
diverse needs. Therefore, cloud computing can solve remarkably time-consuming
and memory-consuming computational problems, such as: calculating large-scale
high-dimensional data, analyzing the petabyte scale web log, etc. Depending on
the application whether it is running in a shared infrastructure or on a pro-
prietary infrastructure, cloud computing usually is classified as four kinds of
deployment models: public cloud, private cloud, community cloud and hybrid
cloud [13,31,34].

Cloud computing is defined three types of service models: Software as a
Service (SaaS), Platform as a Service (PaaS), Infrastructure as a Service (IaaS).

SaaS: The CSUs use on-demand applications and provisioned computing
resource services. They only manage application profile settings, and almost not
merely manage or control the underlying cloud infrastructure (basic network
management, storage, servers and other cloud infrastructure), thus reducing the
maintenance and operation costs of hardware and software development. SaaS
success cases have: Salesforce’s Sales cloud and Service Cloud; Microsoft’s Live,
Hotmail, Office Web App; Google’s Gmail and Google Docs; IBM’s Lotus Live,
Blueworks Live; Apple’s Mobileme; Oracle’s Oracle On Demand; AdventNet the
Zoho, etc.

PaaS: The CSUs leverage the provided on-demand computing platform to
develop and deploy their own applications. They only manage their application
deployment and possible hosting application configuration, without managing
basic cloud infrastructure, thus reducing the hardware and software used for
platform costs of purchase, rental and maintenance. PaaS success cases have:
Salesforce’s Force.com, Heroku and Database.com; Microsoft’s Azure; Google’s
Google App Engine; IBM’s CloudBurst Appliance and Ensembles; Aptana the
Aptana Cloud and others.

IaaS: The CSUs impose on-demand memory, network, and other provisioned
computing infrastructure services to develop and runapplications.Theyneedman-
age operating systems, storage and deployed applications, etc., but needn’t man-
age fundamental cloud infrastructure, thus reducing the hardware and software
costs of purchase, rental and maintenance. IaaS success cases have: Amazon’s EC2
(Elastic Compute Cloud), S3 (Simple Storage Service), Simple Queue Service and
SimpleDB; IBM’s SmartCloud and Drop box of DropBox; NYSE of Rackspace;
GoGrid’s Cloud Servers; Sun’s Cloud Service; Decho’s Mozy and so forth.

Cloud computing services exist six kinds of essential characteristics, they
demonstate the discrimination against the traditional computing model [19]:

Virtualized resource pooling: The CSP leverage virtualization technology to
dynamically assigned computing resources to the CSUs.

On-demand self-service: The CSUs use provision computing capabilities when
required by business demands.

Measurable provision: The CSP control and manage resource use by lever-
aging a metering capability at some level of abstraction of provisioned services,
to ensure the effective management of billing services.

154 Y. Yang et al.

Broad network access: The CSUs access to cloud services through network.

Rapid elasticity and scaling: Allowing cloud services, resources and
infrastructure to be automatically provisioned as the CSUs’ business require-
ments change.

Multi-tenant: According to the CSUs’ business requirements dynamically allo-
cate different physical and virtual resources for multiple the CSU usage.

To summaries, virtualization technology is of importance cloud computing
technology that abstract cloud resources, application services and infrastructure
as available separate virtual resources for the CSUs usage. According to previous
studies, cloud computing model is shown in Fig. 1.

Fig. 1. Cloud computing model

In this paper, we try to systematically investigate the issues of cloud com-
puting security with the following contributions:

• We analyze and elaborate currently highlighted cloud computing security
issues and sum up imperative cloud computing security problem solving tech-
niques.

• We present a comprehensive cloud computing security technical reference
model through studying associated cloud security solving techniques.

• We generalize a few urgency cloud security technology research directions
and indicate the further development space of cloud security technology and
standardization.

Cloud Computing: Security Issues Overview 155

The rest of this paper is organized as follows: Sect. 2 analyzes and elaborates the
currently utmost urgency cloud security issues; Sect. 3 investigates the represen-
tative solving techniques with regard to prevalent and typical cloud computing
security issues, including audit and Service Level Agreement (SLA) management
technique, trusted cloud computing technology, shared storage security technol-
ogy, virtualization security technology, network application security technology,
authentication and access control technology; Sect. 4 renders a comprehensive
cloud computing security technical reference model; Sect. 5 succinctly summa-
rizes the paper and, exhausts and focus on cloud computing security issues solv-
ing techniques directions and standardization techniques.

2 Analysis of Cloud Computing Security Issues

Currently, cloud computing security issues and state-of-the-art solving techni-
cal spark widespread interests in the field of information technology. With the
growing popularity of cloud computing applications, cloud security has become a
vital factor, which restricts the development of cloud computing. The continuing
occurrence cloud computing security incidents exacerbate the CSUs’ concerns on
data security and privacy. For example, in February 2009 and July 2009, Ama-
zon S3 encountered twice interrupts, and caused a single service that depends
on the network to crash [4]; In March 2009, Microsoft Azure service suffered
an outage; In January 2010, Salesforce service paralyzed; In April 2011, Ama-
zon infrastructure configuration error, resulting in Amazon EC2 service is not
available, including Reddit news service, Hootsuite, Quora, Foursquare answer
service and a number of prominent cloud-based websites stay offline [5]; In June
2011, the UK’s National Healthcare System (NHS) was hacked and so on. Cloud
computing security issues stem from inherent security problems and the asso-
ciated with what technologies are used. According to the quantitative analysis
of current cloud computing security concerns of Nelson et al. [18]: multi-tenant
access security of the entire cloud computing security concerns ratio is 7 %, 2 % of
access control, 3 % of authentication, 5 % of network application security, 1 % of
security framework, 2 % of component safety, 4 % of port security, 5 % of virtual
environment safety, 34 % of shared storage security, 6 % of audit and compli-
ance risk, 19 % of legal issues, 2 % of the CSU management, 6 % of authorization
management, 5 % of SLA management and 2 % of redundant and others.

The CSP and the CSUs share responsibility for security risks in cloud com-
puting environment. We focus on SaaS security issues, PaaS service security
issues, IaaS service security issues, along with audit and compliance security
issues in cloud computing environment and, briefly shed light on the more promi-
nent issues.

2.1 Analysis of SaaS Service Security Issues

Multi-Tenant Access Security: Leveraging multi-tenant environment that
achieves the economies of scale in cloud computing. There exist various levels of

156 Y. Yang et al.

trust relationships between different tenants with the CSP, which some certain
tenants perhaps are malicious attacker. Due to shared and multi-tenant environ-
ment, once multi-tenant isolation failure, tenants can access each other’s data
and applications, thereby affecting others access security.

Access Control: Imperfect access control direct impact confidential informa-
tion safety. On one hand, foreign governments have legal right to surveil the
data stored in the cloud, so they can access to confidential information under
some circumstances. On the other hand, internal IT staff have highly privileged
access to the CSU’s sensitive information under some CSP inadequate security
mechanisms and vetting [30].

Authentication and Authorization: The CSP provides the authorized CSU
with a mechanism of authentication and authorization through Application Pro-
gram Interfaces (APIs) in the form of password. There is a risk of username
and password might have been hijacked. In the registration process, the CSP’s
fragile authentication mechanism may bury hidden trouble and caused security
risks: anonymous users, spammers, malicious code developers and cyber crimi-
nals attack.

Network Application Security: In the cloud computing environment, net-
work application security refers the related security issues about network com-
munications and network cloud infrastructure configuration. Virtual network
enhances the Virtual Machines (VMs) interconnectivity and VM Hypervisor
access virtual networks through bridging and routing, resulting in the isolation
between VMs easily failure, causing DDoS (Distributed Denial of Service), DoS,
virtual network sniffer, virtual network spoofing, Address Resolution Protocol
(ARP) spoofing, redirect packets and other network application security issues.

2.2 Analysis of PaaS Service Security Issues

Framework Securitty: Cloud computing based on virtualization technology
and VM Hypervisor multi-tenant framework, virtualization technology enables
infrastructure and resources as available isolated VMs to the CSUs, which secu-
rity tremendous depends hypervisor robustness. The VMs isolation failue trig-
gers an attacker can bypass the hypervisor to manipulate other CSUs’ virtual
machines under framework vulnerability circumstance.

APIs Security: Cloud computing commonly uses APIs on cloud service config-
uration, management, service surveillance, and interaction between the CSP and
CSUs. The APIs are responsible for the CSU authentication and access control,
its vulnerability is likely to cause anonymous access network, clear text authen-
tication and inadequate detection and limited service monitoring, impertinent
authorization.

2.3 Analysis of IaaS Service Security Issues

Virtual Environment Security: VM Hypervisor and VM Monitor are vir-
tualization software components. Virtual environment security issues involve in

Cloud Computing: Security Issues Overview 157

management procedures and monitor vulnerabilities. The VM snapshot likely
restore to enable previously disabled accounts and password, attack among VMs
after virtualization isolation failure.

Shared Storage Security: Cloud computing shared storage security mainly
refers to the cloud data security, including data storage security, data encryp-
tion, data isolation and data destruction. Data security primarily ensure their
confidentiality, integrity and availability. Data storage security focus on data loss
or leakage and data transmission and migration security. Under the strategic of
destruction and outside the jurisdiction, cloud computing may lead to informa-
tive data loss; Storage and management deficiencies may also lead to data loss
and leakage. Data loss or unauthorized disclosure to third parties is the most
serious cloud computing security threats. For instance, Encrypting the data are
being processed may hinder the data retrieval, resulting in non-normal data
access. Data transmission and migration security issues should prioritize trans-
fer data encryption algorithm vulnerabilities, data plagiarism risk in the process
of network transmission, data lockin issues in the process of data migration,
data location, data flow border-crossing of jurisdiction and other issues. Besides,
owing to immature cloud data processing strategy, data destruction technology
cannot thoroughly delete the CSU’s data and even the CSP cannot recover data.

2.4 Analysis of Audit and Compliance Security Issues

Audit: Inspect and verify records in the process of authentication and autho-
rization. Its purpose is to check whether or not comply with the predetermined
safety standards and policies. Auditing ensure data integrity and enable data
owners to believe that their data do not occur without trace operations. Audit
failure will lead to disclosure of sensitive information.

Compliance Risk and Legal Issues: Compliance refers to the effectiveness of
cloud services and related audit policies. Data storage and usage policies require
periodic archiving and auditing in cloud computing environment. Compliance
risk arises from the lack of auditing and assessment of industry-standard, the
CSP not incapably prove to the CSUs that they comply with the necessary
regulations. Furthermore, given different jurisdictions have multifarious laws,
it is burdensome and lengthy to ensure cloud computing compliance with all
legislations.

The CSU Management: Malicious insiders are more destructive and serious
than external accidents because of the insiders’s own access privileges. The CSP’s
access control strategic decides the management efficiency of the CSUs. The CSU
management failure causes the destruction of information resources, information
eavesdropping and different types of fraud issues.

Authorization Management: Once authorizing success, the CSU becomes
legally privileged user. The authorization management failure direct give rise to
the unauthorized access to cloud services and even confidential data. In addition,

158 Y. Yang et al.

insufficient or missing authorization management easily come into being the CSU
privacy risk and information leakage.

SLA Management: Service Level Agreements (SLA) ensures the validity of
the CSU requested service and the implementation of fundamental safety reg-
ulations. Cloud SLA emphasizes service availability, data integrity, privacy and
other aspects. SLA management security vulnerability maybe prohibit vulnera-
bility assessment and intrusion detection.

3 Cloud Computing Security Issues Key Solving
Technology Research

Cloud computing security solving is the current primary and imperative research
missions. Based on the aforementioned overview, we investigate the trusted cloud
computing security solving techniques, shared storage security solving tech-
niques, virtualization security solving techniques, network application security
solving techniques, identity authentication and access control security solving
techniques, audit and SLA management and compliance security solving tech-
niques. We manifest cloud security services technologies and standards in Fig. 2,
enforcing appropriate security techniques to solve the above-mentioned discus-
sion cloud computing security issues. The Fig. 2 illustrates Cloud storage ser-
vices, cloud application services and cloud infrastructure services rely on cloud

Fig. 2. Cloud security services technologies and standards

Cloud Computing: Security Issues Overview 159

computing audit and compliance, and vice versa, audit and compliance promote
cloud services unremittingly improved.

3.1 Trusted Cloud Computing Technology

The trusted cloud computing techniques attract abundant interests in cloud
computing security research fields, which solve the trust relationship between the
CSUs and CSP. Trust Management Model Based on Fuzzy Set Theory (TMFC)
[38], by trust evaluation sets, the CSUs make their decision on whether or not
to use the services. Shantanu et al. [29] propose a new trusted and collabora-
tive agent-based two-tier framework to protect network communications secu-
rity. The end-to-end Service Discovery Method (SDM) in Interoperable Cloud
Computing Environments (ICE) renders trusted computing [21]. Moreover, the
trusted Third Party Auditor (TPA) is one effective way to realize the security
trusted computing.

3.2 Shared Storage Security Technology

Guaranteeing cloud computing shared storage data security is one of the impor-
tant cloud measurement of Quality of Service (QoS). Kawser et al. [16] pro-
posed cloud data storage security model. The Cloud Computing Background
Key Exchange (CCBKE) designed to effectively deal with high-dimensional sci-
entific applications data encryption [3]. Threshold secure data sharing scheme
is aimed at solving data transmission security issues in Federated Clouds [15].
Server management algorithm assure data consistency and secured storage in
the untrusted cloud [2]. P. Syam et al. [24] proposed an effective and flexible
distribution verification protocol to address data storage security in cloud com-
puting. The protocol uses Sobol Sequence to verify the integrity of erasure coded
data and prevent unauthorized data modification attacks, and even cloud server
colluding attacks. A. AlZain et al. [17] rendered Multi-clouds Database Model,
which uses shared key algorithm to ensure data security and privacy between
the CSPs, thus reduce the risk of data loss and leakage and effectively avoid
attack from malicious insiders. Based on an anonymous privilege control scheme
AnonyControl to address not only the data privacy issues in a cloud storage,
but also the CSU identity privacy problems in existing access control schemes
[33]. P. Naga et al. [20] proposed effective fuzzy keyword search over encrypted
cloud data while maintaining keyword privacy. They exploited edit distance to
quantify keywords similarity and then protect key privacy of sensitive informa-
tion wildcard-based and gram-based techniques. Huiqi et al. [11] proposed the
Random Space Perturbation approach to ensure secure and efficient range query
and kNN query services for protected data in the cloud. Under data encryption
condition, there are not access restriction and lose authorization of the TPA
privacy protection architecture [1]. Gansen et al. [7] designed Separation Model,
Availability Model, Migration Model, Tunnel Model and Cryptography Model
respectively to manage the CSU’s applications and data control, service inter-
ruptions, data lock, data confidentiality and integrity problems.

160 Y. Yang et al.

In conclusion, the academia and industry are active in shared storage security
technology research all the time always. Besides, Proofs of Retrievability (PORs)
will become further research and development tendency of data integrity.

3.3 Virtualization Security Technology

Virtualization is the key technology to build cloud computing, which abstracts
infrastructure and resources as separate virtual resources pooling to the CSUs,
meanwhile, the CSP must provide safe and isolation virtual environment. Based
on the Chinese Wall [32] security policy to forbid deploying and running the
competitors VMs on the same physical machines. Hanqian et al. [10] proposed
a novel virtual network framework aimed to control the intercommunication
among virtual machines deployed in physical machines with higher security. The
Virtualization Security Framework [28] contains two parts: virtual system secu-
rity and virtualization security management, which the former is responsible
for virtualization security problems and the latter for virtualization security
management settles the question that various VM managements bring. Online
Penetration Suite [26] performs pre-rollout scans of virtual machines for secu-
rity vulnerabilities using established techniques and prevents execution of flawed
virtual machines.

To summarize, virtualization technology is cloud computing environments
foundation and important aspects that becomes important research direction in
cloud computing security domain.

3.4 Network Application Security Technology

In the process of implementation of cloud computing, virtual machine yields
network application security vulnerabilities. Firewall Gateway is the first line of
defense of cloud computing environment security, it can prevent any port and
unknown IP addresses remote access to private LAN by simply losing packets.
Unfortunately, once the intruder eavesdrop the CSU’s account and passwords,
they can bypass the firewall to intrude entire network. Pardeep et al. [22] pro-
posed Hidden Markov Model and data mining clustering techniques to detect
any kind of intrusion detection in the network. Steganographic encryption can
protect cloud service network communication security [36]. The Integrated Intru-
sion Detection and Prevention System (IDPS) [9] detects and can prevent diverse
types of intrusion.

To sum up, network application security issues are plausibly more prominent.
And, attract more people to study network application security technology.

3.5 Identity and Access Control Technology

Identity and Access Management (IAM) provides authentication, authorization
and auditing for the CSU to access cloud services. The CSP should implement
robust authentication and access control, correctly implement the IAM, ensure

Cloud Computing: Security Issues Overview 161

the CSU’s data security. Jung et al. propose Adaptive Access Control Algorithm
that determines the security level to achieve protected resource access control.
Extend popular Extended Xml Access Control Markup Language model [35]
significantly by integrating flexible access control decisions and data access in a
seamless fashion to resolve authorization technology problem. The eXACML+
[37] achieves the fine-grained cloud data access control. Multidimensional pass-
word generation technology can protect identity authentication [8].

All in all, identity and access control is the imperative technology for cloud
computing implementation. Currently, significant research achievements not
present and merely extend the existing technology. In addition, IDM mecha-
nism is competent at protecting the CSU’s privacy and sensitive information
processing.

3.6 Audit and SLA Management Technology

Examine and verify the CSU authentication and authorization records and check
whether or not meet predefined security standards and policies. Security man-
agement must realize service description and introduce service features in cloud
computing environment. Under not violating the CSP strategy and satisfying
SLA, seeking the best operating configuration and service integration. Utilizing
the public key based homomorphism authenticator and uniquely integrate it with
random mask technique to achieve a privacy-preserving public auditing system
for cloud data storage security [6]. Based on trusted TPA security mechanisms
to resolve data integrity and privacy issues [12]. Chaves et al. [27] summarized
the SLA of the cloud computing security management and proposed SLA safety
monitor architecture Sec-Mon.

In summary, audit and SLA management play an important role in cloud
computing. Currently, a viable research direction is that the CSP how to provide
a trusted TPA for the CSUs.

3.7 Compliance Standards and Risk Technology

At current, many governments and corporations have noticed compliance stan-
dards risk issues, and actively to establish a common standard and to promote
the popularity of cloud computing. The CSP should monitor internal audit
process to ensure compliance. The mature compliance security standards have:
Amazon Web Services IAM standard PCI DSS Level 1, ISO 27001; Salesforce
system status, privacy management commitment standard ISO 27001, SysTrust,
SAS 70 Type II; Microsoft Access Control, CSU data isolation standard PCI
DSS, HIPAA, SOX, ISO 27001, SAS 70 Type I and Type II; IBM compliance
security service standards ISO 27001; Google access control, CSU data isolation
standard SAS 70 Type II, FISMA. Compliance Certification analysis algorithm
(Comcert) effectively detect possible violations compliance events [25].

Summing up, when using cloud computing, we need to consider compliance
standards and risk, legal and jurisdiction issues, the CSP service evolution right
of knowing and so forth.

162 Y. Yang et al.

4 The Proposed Cloud Security Technology Reference
Model

Cloud computing security solving techniques are of vital importance in cloud
computing research field. Such as, RSA encryption algorithm cannot ensure
communication security in cloud data storage; Collaborative agent-based two-
tier framework confirms the CSU privacy information access control, however,
when the CSP information is unknown, it cannot prevent unauthorized access
and malicious behavior; Based on Hidden Markov Model data mining clustering
techniques and multidimensional password generation technology could easily
lead to cloud environment load imbalance; Sec-SLAs encounters security matrix
definition and SLA scalability issues; eXACML+ has only made some innov-
ative research and breakthroughs in theory, but put into practical application
still need some distance. Therefore, it is of emergency to build a comprehensive
cloud computing security technology model. Based on the aforementioned cloud
security issues analysis and cloud computing security issues key solving tech-
nology investigations, the Fig. 3 displays a novel comprehensive cloud security
techniques reference model.

Fig. 3. Comprehensive cloud security techniques reference model

Cloud Computing: Security Issues Overview 163

The reference model is described as following:

Trusted TPA Services: Trusted TPA is on behalf of the CSU to monitor cloud
data storage security risks. We will employ Sobol Sequence to guarantee cloud
data storage integrity and privacy in the model. In addition, TPA also provide
technical assurance for trusted cloud computing and support forensic for solving
SLA conflict.

Data Encryption Services: Data encryption technology is research hotspot
in cloud computing area. We study state-of-the-art encryption technologies and
use CCBKE in the model since it can improve the encryption efficiency, and
avoid the cloud environment load imbalance.

Virtual Environment Security Services: The CSP should ensure virtual
environment safety and isolation. We employ the graph coloring algorithm to
achieve the correct deployment of VMs and physical isolation.

Authentication and IDPS Services: Relatively mature technologies for the
CSU authentication and IDPS services, including authentication system with
multi-dimensional generation technology, IDPS systems, based on clustering
HMM detection technology. We impose single sign-on authentication since it
can reduce the cost of security enforcement, avoid cloud computing overloading.
The IDPS not only detects diverse types of intrusion, but prevents them, not
limited to alert.

Access Control Services: We enforce eXACML+ in the proposed reference
model because its fine-grained access control feature and effective detecting mis-
configurations of access policy.

SLA Management Services: SLA management is committed to ensuring the
availability of cloud services, data integrity and privacy and security protec-
tion and other aspects. Effective and efficient SLA management services can
decrease unnecessary conflicts between the CSUs and CSP. We exploit Sec-Mon
that Chaves et al. proposed SLA monitoring framework in the reference model.
In addition, we summarize several imperative cloud security technology, stan-
dardization and cloud security technology research directions:

(1) The CSUs through APIs for authentication and access the cloud services.
Although the software stack make important contributions to interoperabil-
ity between different cloud platforms, but the provided APIs are still incom-
patible proprietary technologies, which to be solved is standardization of the
APIs. To solve expected data lockin problem and to develop and deploy SaaS
services of federated cloud. Enhance the availability and interoperability of
cloud computing.

(2) When the CSU requested service exceeds the load peak, although hybrid
cloud allow to public cloud for requesting intensive resources, but virtualized
dynamic load balance management and cloud resource allocation methods
still need algorithms and key technical support to improve the QoS of cloud
computing.

164 Y. Yang et al.

(3) Lacking of trust between the CSP and CSUs hamper cloud computing on-
demand services and the globalization process. Trust is not just technical
issues but also social issues. Gratifyingly, the problem can be solved through
technology research and development [14]. How to establish trust between
the CSP and CSUs through SLA and credibility system is a hotpoint in
cloud security research field.

(4) Cloud shared storage security technology is of importance and intractabil-
ity cloud security technology research field, referring research sharing data
from malicious modify, delete, lockin and secure transmission and migra-
tion security, research the integrity and confidentiality of sharing sensitive
and confidential information against intrusion and fine-grained access control
policy and so forth.

(5) Besides the traditional network attacks, the new introduction challenges and
attacks are partly attributed to using virtualization key technologies, much-
needed comparative research insight into virtual environment security tech-
nology.

(6) Cloud computing SLA is imperative to cloud security technology research
domain, including laws liability transfer issues, unpredictable the CSU’s
demand for services, frequent hardware and software failures and signed
SLA conflicts between the CSUs and CSP. In addition, trust negotiation is
usually defined in the process of SLA, thus directly affecting trusted cloud
computing application.

(7) Owing to the cloud platform through virtualization distribute data storage
to different servers in the world. Thus, global cloud computing compliance
standardization being required to resolve many of the CSU’s copyrighted
data and jurisdiction issues.

5 Conclusion and Future Works

Cloud computing has made a significant contribution for the information industry
and information technology in the information field. We review the more promi-
nent issues as well as SLA, compliance and legal issues and, study the trusted cloud
computing technology, shared storage security technology, virtualization security
technology, network application security technology, authentication and access
control technology, audit and SLA management technologies, and compliance risk
technology. We attempt to render a comprehensive cloud computing security tech-
nical reference model. Further research still needs to prove reasonable and practi-
cal of the model. Cloud computing is provided with overwhelming characteristic
and remarkably limitless development space. However, with the cloud computing
research of academia and industry, we face manifold critical issues, particularly,
security issues. Therefore, the increasingly prominent and burdensome cloud com-
puting security issues need to be jointly solved by academia, industry and gov-
ernment. And, exploring and developing comprehensively practical and effective
security solving techniques.

Cloud Computing: Security Issues Overview 165

Acknowledgements. This work is supported by the Natural Science Foundation
of Yunnan Province, China, under Grant No. 2010ZC095, and the Natural Science
Foundation of Education Department of Yunnan Province, China, under Grant No.
2012Z064.

References

1. Mana, A., Munoz, A., Gonzlez, J.: Dynamic security monitoring for virtualized
environments in cloud computing. In: International Workshop on Securing Services
on the Cloud, pp. 1–6. IEEE Press (2011)

2. Dinesh, C.: Secured data consistency and storage way in untrusted cloud using
server management algorithm. Technical report 1111.2412, ArXiv e-prints (2011)

3. Liu, C., Zhang, X., Chen, J., Yang, C.: An authenticated key exchange scheme for
efficient security-aware scheduling of scientific applications in cloud computing. In:
Ninth International Conference on Dependable, Autonomic and Secure Computing,
pp. 372–379. IEEE Press (2011)

4. Feng, D., Zhang, M., Zhang, Y., Xu, Z.: Cloud computing security research. J.
Softw. 22, 71–82 (2011)

5. Doelitzscher, F., Reich, C., Knahl, M., Passfall, A., Clarke, N.: An agent based
business aware incident detection system for cloud environments. J. Cloud Comput.
1(1), 1–19 (2012)

6. Vidhisha, G., Surekha, C., Rayudu, S.S., Seshadri, U.: Preserving privacy for secure
and outsourcing for linear programming in cloud computing. Technical report
1211.1457, ArXiv e-prints (2012)

7. Zhao, G., Rong, C., Jaatun, M.G., Sandnes, F.E.: Deployment models-towards
eliminating security concerns from cloud computing. In: International Conference
on High Performance Computing and Simulation, pp. 189–195. IEEE Press (2010)

8. Dinesha, H.A., Agrawal, D.V.: Multi-dimensional password generation technique
for accessing cloud services. Int. J. Cloud Comput.: Serv. Archit. 2(3), 31–39 (2012)

9. Alsafi, H.M., Abduallah, W.M., Pathan, A.S.K.: IDPS: an integrated intrusion
handling model for cloud computing environment. Int. J. Comput. Inf. Technol.
4(1), 1–16 (2012)

10. Wu, H., Ding, Y., Winer, C., Yao, L.: Network security for virtual machine in cloud
computing. In: International Conference on Computer Sciences and Convergence
Information Technology, pp. 18–21. IEEE Press (2010)

11. Xu, H., Guo, S., Chen, K.: Building confidential and efficient query services in the
cloud with rasp data perturbation. In: IEEE Transactions on Knowledge and Data
Engineering (2013)

12. Gul, I., Islam, M.H.: Cloud computing security auditing. In: The 2nd International
Conference on Next Generation Information Technology, pp. 143–148. IEEE Press
(2011)

13. Yang, J., Chen, Z.: Cloud computing research and security issues. In: Interna-
tional Conference on Computational Intelligence and Software Engineering, pp.
1–3. IEEE Press, 2010

14. Hwang, K., Dongarra, J.J., Fox, G.C.: Distributed and cloud computing. Else-
vier/Morgan Kaufmann, Amsterdam, London (2012)

15. Venkataramana, K., Padmavathamma, M.: A threshold secure data sharing scheme
for federated clouds. Technical report 1209.2614, ArXiv e-prints (2012)

166 Y. Yang et al.

16. Wazed Nafi, K., Shekha Kar, T., Anisul Hoque, S., Hashem, M.M.A.: A newer
user authentication, file encryption and distributed server based cloud computing
security architecture. Technical report 1303.0598, ArXiv e-prints (2013)

17. AlZain, M.A., Soh, B., Pardede, E.: MCDB: using multi-clouds to ensure security
in cloud computing. In: International Conference on Dependable, Autonomic and
Secure Computing, pp. 784–791. IEEE Press (2011)

18. Gonzalez, N., Miers, C., Red́ıgolo, F., Simpĺıcio, M., Carvalho, T., Näslund, M.,
Pourzandi, M.: A quantitative analysis of current security concerns and solutions
for cloud computing. In: Third International Conference on Cloud Computing
Technology and Science, pp. 231–238. IEEE Press (2011)

19. National Institute of Standards & Technology (NIST). http://csrc.nist.gov/
groups/SNS/cloudCcomputing/cloud-def-v15.doc

20. Aswani, P.N., Shekar, K.C.: Fuzzy keyword search over encrypted data using
symbol-based Trie-traverse search scheme in cloud computing. Technical report
1211.3682, ArXiv e-prints (2012)

21. Goyal, P.: Application of a distributed security method to End-2-End services
security in independent heterogeneous cloud computing environments. In: Services,
pp. 379–384. IEEE Press (2011)

22. Kumar, P., Sehgal, V., Shah, K., Shukla, S.S.P., Chauhan, D.S.: A novel approach
for security in cloud computing using Hidden Markov model and clustering. In:
World Congress on Information and Communication Technologies, pp. 810–815.
IEEEPress (2011)

23. Srivastava, P., Singh, S., Pinto, A.A., Verma, S., Chaurasiya, V.K., Gupta, R.: An
architecture based on proactive model for security in cloud computing. In: Recent
Trends in Information Technology, pp. 661–666. IEEE Press, Chennai (2011)

24. Syam Kumar, P., Subramanian, R., Thamizh Selvam, D.: Ensuring data storage
security in cloud computing using Sobol sequence. In: International Conference on
Parallel Distributed and Grid Computing, pp. 217–222. IEEE Press (2010)

25. Accorsi, R., Lowis, D.I.L., Sato, Y.: Automated certification for compliant cloud-
based business processes. Bus. Inf. Syst. Eng. 3(3), 145–154 (2011)

26. Schwarzkopf, R., Schmidt, M., Strack, C., Martin, S., Freisleben, B.: Increasing vir-
tual machine security in cloud environments. J. Cloud Comput. 1(1), 1–12 (2012)

27. de Chaves, S.A., Westphall, C.B., Lamin, F.R.: SLA perspective in security man-
agement for cloud computing. In: International Conference on Networking and
Services, pp. 212–217. IEEE Press (2010)

28. Luo, S., Lin, Z., Chen, X., Yang, Z., Chen, J.: Virtualization security for cloud
computing service. In: International Conference on Cloud and Service Computing,
pp. 174–179. IEEE Press (2011)

29. Pal, S., Khatua, S., Chaki, N., Sanyal, S.: A new trusted and collaborative agent
based approach for ensuring cloud security. Technical report 1108.4100, ArXiv e-
prints (2011)

30. Pearson, S., Benameur, A.: Privacy, security and trust issues arising from cloud
computing. In: Second International Conference on Cloud Computing Technology
and Science, pp. 693–702. IEEE Press (2010)

31. Ramgovind, S., Eloff, M.M., Smith, E.: The management of security in cloud com-
puting. In: Information Security for South Africa, pp. 1–7. IEEE Press (2010)

32. Tsai, T.H., Chen, Y.C., Huang, H.C., Huang, P.M., Chou, K.S.: A practical chinese
wall security model in cloud computing. In: Asia-Pacific Network Operations and
Management Symposium, pp. 1–4. IEEE Press (2011)

http://csrc.nist.gov/groups/SNS/cloudCcomputing/cloud-def-v15.doc
http://csrc.nist.gov/groups/SNS/cloudCcomputing/cloud-def-v15.doc

Cloud Computing: Security Issues Overview 167

33. Jung, T., Li, X.Y., Wan, Z., Wan, M.: AnonyControl: control cloud data
anonymously with multi-authority attribute-based encryption. Technical report
1206.2657, ArXiv e-prints (2012)

34. Bhraguram, T.M., Sumesh, M.S.: Cyber security information exchange based on
data asset de-coupling factor in cloud computing. In: Recent Advances in Intelligent
Computational Systems, pp. 89–95. IEEE Press (2011)

35. Dinh, T.T.A., Wenqiang, W., Datta, A.: City on the sky: extending xacml for
flexible, secure data sharing on the cloud. J. Grid Comput. 10(1), 151–172 (2012)

36. Mazurczyk, W., Szczypiorski, K.: Is cloud computing steganography-proof? In:
International Conference on Multimedia Information Networking and Security, pp.
441–442. IEEE Press (2011)

37. Wang, W.Q., Anh, D.T.T., Lim, H.B., Datta, A.: Cloud and the city: facilitating
flexible access control over data-streams. In: Jonker, W., Petković, M. (eds.) SDM
2012. LNCS, vol. 7482, pp. 58–74. Springer, Heidelberg (2012)

38. Sun, X., Chang, G., Li, F.: A trust management model to enhance security of cloud
computing environments. In: Second International Conference on Networking and
Distributed Computing, pp. 244–248. IEEE Press (2011)

Author Index

Al Said, Taimur 137
Amato, Alba 8

Benedict, Shajulin 103
Blanco-Fernández, Yolanda 84
Bravo-Torres, Jack Fernando 84
Bright, C. 103

Cretella, Giuseppina 8

de Bona, Luis C.E. 26
Di Martino, Beniamino 8
Dimitrakos, Theo 121

Esiner, Ertem 65

Ferro, Mariza 26
Flint, Shayne 46

Gao, Tilei 152

Hefeeda, Mohamed 3

Küpçü, Alptekin 65

Li, Zheng 46
Licht, Fabio L. 26
López-Nores, Martín 84

Mury, Antonio R. 26

O’Brien, Liam 46
Ordióñez-Morales, Esteban Fernando 84
Özkasap, Öznur 65

Pazos-Arias, José Juan 84

Rajarajan, Muttukrishnan 121
Rana, Omer F. 137
Ranjan, Rajiv 46
Rejitha, R.S. 103

Sajjad, Ali 121
Schulze, Bruno 26

Tasquier, Luca 8

Venticinque, Salvatore 8

Yang, Yu 152

Zhao, Chenggui 152
Zomaya, Albert Y. 46

	Preface
	Organization
	Contents
	Invited Papers
	Cloud Computing: Towards Making Computing a Utility
	1 Cloud Computing Challenges
	1.1 Cloud Security
	1.2 Cloud Applications
	1.3 Cloud Programming
	1.4 QoS in Clouds
	1.5 Energy-Efficient Clouds
	1.6 Cloud + X Architectures
	1.7 Cloud Storage Systems
	1.8 Cloud Legal Frameworks and Standards

	Semantic Engine and Cloud Agency for Vendor Agnostic Retrieval, Discovery, and Brokering of Cloud Services
	1 Introduction
	2 Approach and Architecture
	3 An Ontology for the Development of Cloud Based Application
	4 Semantic Engine
	5 Cloud Agency
	6 A Concrete Use Case
	7 Related Works
	8 Conclusion
	References

	A Concurrency Mitigation Proposal for Sharing Environments: An Affinity Approach Based on Applications Classes
	1 Introduction
	2 Virtual Environment Concurrency and Affinity
	3 Applications and Dwarfs
	4 Methodology
	4.1 Experimental Infrastructure
	4.2 Results Analysis
	4.3 Results and Conclusions

	5 Final Considerations
	References

	On Cloud Spot Market: An Overview of the Research
	1 Introduction
	2 Consumption Chain of the Spot Instance Service: A Role-Based Categorization of the Current Research
	2.1 Studies Related to Service Provider
	2.2 Studies Related to Service Consumer
	2.3 Studies Related to Typical Applications
	2.4 Studies Related to Service Broker (or Secondary Provider)

	3 Underlying Meaning of Spot Prices: An Exploration of the Technical Investigations
	3.1 Service Pricing
	3.2 Resource Supplying
	3.3 Consumer Requesting
	3.4 Service Availability
	3.5 Service Fault Tolerance

	4 Conclusions
	References

	Resource Management & Energy
	Analysis and Optimization on FlexDPDP: A Practical Solution for Dynamic Provable Data Possession
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Optimizations on FlexDPDP
	4.1 Parallel Build FlexList
	4.2 Handling Multiple Updates at Once
	4.3 Verifying Multiple Updates at Once

	5 Experimental Evaluation
	5.1 Parallel Build FlexList Performance
	5.2 Server-Side Multi Update Operations
	5.3 Client-Side Multi Update Operations
	5.4 Real Usage Performance Analysis via PlanetLab

	6 Conclusion and Future Work
	7 Appendix: Optimization Algorithms
	References

	Leveraging Ad-hoc Networking and Mobile Cloud Computing to Exploit Short-Lived Relationships Among Users on the Move
	1 Introduction
	2 The SPORANGIUM Platform
	3 Sample Application Scenarios
	3.1 SPORANGIUM Features for Venues
	3.2 SPORANGIUM Features for Vehicular Social Networking
	3.3 SPORANGIUM Features for the Smart City

	4 The Key to It All: Virtualization
	4.1 Simulation Results
	4.2 Discussion

	5 Conclusions
	References

	Energy Consumption Analysis of HPC Applications Using NoSQL Database Feature of EnergyAnalyzer
	1 Introduction
	2 Related Work
	3 EnergyAnalyzer Design
	3.1 SSTranslator
	3.2 Semantic-Based Analysis Agents
	3.3 Monitoring Manager

	4 EAPerfDB of EnergyAnalyzer
	4.1 EAPerfDB Initialization
	4.2 EAPerfDB Clients
	4.3 Parallel Mongo Clients
	4.4 Performance Data and Data Access Pattern

	5 Experimentation - Results and Discussions
	5.1 SSTranslator - HPCC Instrumentation
	5.2 Monitoring Manager and EAPerfDB
	5.3 Energy Consumption and Execution Time - HPCC Results
	5.4 Online Analysis - EAPerfDB Capability

	6 Conclusion
	References

	Security
	A Low-Overhead Secure Communication Framework for an Inter-cloud Environment
	1 Introduction
	2 Related Work
	3 Design and Architecture
	3.1 Peer-to-Peer Overlay
	3.2 Secure Service Based Resource Discovery
	3.3 Secure Virtual Private Connections

	4 Implementation
	5 Evaluation
	5.1 Service Latency
	5.2 Service Throughput
	5.3 Secure Resource Discovery Overheads

	6 Conclusion
	References

	Analysing Virtual Machine Security in Cloud Systems
	1 Introduction
	2 Cloud Computing
	3 Virtualisation
	3.1 Overview
	3.2 Hypervisor
	3.3 Virtualisation in Cloud Computing

	4 Cloud Privacy
	5 Virtualisation Security
	5.1 Hypervisor-Related Attacks
	5.2 VM-Related Attacks
	5.3 Guest OS-Related Attacks

	6 Data Recovery in VMs
	7 Experiment Methodology
	7.1 The Preparation Phase
	7.2 Deletion Phase
	7.3 VM Imaging Phase
	7.4 Mounting Phase
	7.5 Recovery Phase

	8 Discussion and Conclusion
	References

	Cloud Computing: Security Issues Overview and Solving Techniques Investigation
	1 Introduction
	2 Analysis of Cloud Computing Security Issues
	2.1 Analysis of SaaS Service Security Issues
	2.2 Analysis of PaaS Service Security Issues
	2.3 Analysis of IaaS Service Security Issues
	2.4 Analysis of Audit and Compliance Security Issues

	3 Cloud Computing Security Issues Key Solving Technology Research
	3.1 Trusted Cloud Computing Technology
	3.2 Shared Storage Security Technology
	3.3 Virtualization Security Technology
	3.4 Network Application Security Technology
	3.5 Identity and Access Control Technology
	3.6 Audit and SLA Management Technology
	3.7 Compliance Standards and Risk Technology

	4 The Proposed Cloud Security Technology Reference Model
	5 Conclusion and Future Works
	References

	Author Index

