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Abstract It was suggested [1] that having natural frequency of the front

approximately 80 % of that of the rear suspension in a vehicle will result in a flat

ride for the passengers. Flat Ride in this case means that the pitch motion of the ve-

hicle, generated by riding over a bump for instance will fade in to the bounce motion

of the vehicle much faster. Bounce motion of the vehicle in mush easier to tolerate

and feels more comfortable for the passengers. In a previous study the authors, an-

alytically proved that this situation is not practical. In other words, for any vehicle

there will only be one certain velocity, depending on the geometry and suspension

system specifications which the flat ride will happen at. The search continued to find

a practical method for enjoying the flat ride in vehicles. Solving the equation of mo-

tion of the vehicle for different spring rates and road configuration the authors came

up with design chart for smart suspension systems. Using the advantages of the an-

alytical approach to the flat ride problem, the chart was established to be used for

vehicles with smart active suspension systems. In this paper the mathematical meth-

ods used and the resulted criteria for designing a flat ride suspension system which

will perform in different speeds is presented.

Keywords Flat ride ⋅ Maurice olley ⋅ Optimal suspension ⋅ Vehicle vibrations ⋅
Vehicle dynamics ⋅ Suspension design ⋅ Suspension optimization

1 Introduction

The excitation inputs from the road to a straight moving car will affect the front

wheels first and then, with a time lag, the rear wheels. The general recommendation

was that the natural frequency of the front suspension should be lower than that of

the rear. So, the rear part oscillates faster to catch up with the front to eliminate
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pitch and put the car in bounce before the vibrations die out by damping. This is

what Olley called the Flat Ride Tuning [1]. Maurice Olley (1889–1983) established

guidelines, back in the 1930, for designing vehicles with better ride. These were

derived from experiments with a modified car to allow variation of the pitch mass

moment. Although the measures of ride were strictly subjective, those guidelines

were considered as valid rules of thumb even for modern cars. What is known as

Olley’s Flat Ride not considering the other prerequisites can be put forward as:

The front suspension should have around 30% lower rate than the rear.

An important prerequisite for flat ride was the uncoupling condition, which was

introduced by Rowell and Guest for the first time in 1923 [1]. Rowell and Guest as

shown in Fig. 1 used the geometry of a bicycle car model to find the condition which

sets the bounce and pitch centers of the model located on the springs. Having the

condition, the front and rear spring systems of the vehicle can be regarded as two

separate one degree of freedom systems. Passenger comfort, for any seat placement

in the vehicle, should be at an acceptable level, which is a personal experience. All of

this is important for modern sophisticated cars as well, and for the future autonomous

vehicles.

As a result of applying the Olley’s conditions the pitch motion of the vehicle

will turn in to a bounce motion. Pitch motion provides a much more uncomfortable

experience for the passengers compared to bounce motion.

As mentioned earlier ride comfort is a personal experience which is different from

one individual to other, but the effects of motion can be similar. Motion in the car can

cause fatigue for the passengers. Driver fatigue is a significant cause of accidents on

motorways. The fatigue caused by driving extended periods actually impairs driver

alertness and performance and therefore can compromise transportation safety [2].

Whole body vibration has been found to correlate with a range of psychological

reactions of the human body such as lower back pain and heart rate variability [3,

4]. Disturbance of vision and balance have also been reported to occur [5].

So a better suspension design, will affect the ride comfort, which will result in a

safer transportation as well as a more comfortable traveling experience.

Using analytical methods, we investigate the flat ride conditions which have been

respected and followed by the car manufacturers’ designers since they were intro-

duced for the first time. This article provides a more reliable scientific and mathe-

matical approach into the flat ride design criteria in the vehicle dynamic studies.

2 Previous Works

Maurice Olley introduced and studied the concept of flat ride in vehicle dynamics. In

his paper [6] he published the results taken from the experiments conducted using the

test rig for the first time.Olley explained the relation between vertical acceleration

and comfort over a range of frequencies. He generated a curve for passenger comfort,

which is very similar to the current ISO2631 standard.
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Olley as well as other investigators in well-established car companies realized

that the pitch and roll modes of the car body are much more uncomfortable than

the bounce mode. The investigators’ effort focused on the suspension stiffness and

damping rates to be experimentally adjusted to provide acceptable vertical vibra-

tions. However, the strategy about roll and pitch modes were to transform them to

bounce. Due to usual geometric symmetry of cars, as well as the symmetric excita-

tion from the road, the roll mode is excited much less than the pitch mode. Therefore,

lots of investigations were focused on adjustments of the front and rear suspensions

such that pitch mode of vibration transforms to the bounce.

Fig. 1 Bicycle car model

used for vibration analysis

Besides all important facts that Olley discovered during his experiments, the prin-

ciple known as the Flat Ride Tuning or Olley’s Flat Ride proved to be more industry

approved and accepted. After his publications [6, 8, 9] in which he advocated this

design practice, they became rules of practice.

We can summarize all as the following:

1. The front spring should be softer than the rear for Flat Ride Tuning. This will

promote bouncing of the body rather than pitching motions at least for a greater

majority of speeds and bump road situations. The front suspension should have

a 30% lower ride rate than the rear suspension, or the spring center should be at

least 6.5% of the wheelbase behind the center of gravity.

2. The ratio
r2

a1.a2
normally approaches unity. This reduces vibration interactions

between front and rear because the two suspensions can now be considered as

two separate systems.

3. The pitch and bounce frequencies should be close together: the bounce frequency

should be less than 1.2 times the pitch frequency.

4. Neither frequency should be greater than 1.3Hz, which means that the effective

static deflection of the vehicle should exceed roughly 6 inches.

5. The roll frequency should be approximately equal to the pitch and bounce fre-

quencies.

Rowell and Guest [10] in 1923 identified the value of
r2

a1.a2
being associated with

vehicles in which the front and rear responses were uncoupled. Olley was able to
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investigate the issue experimentally and these experiments led him to the belief that

pitching motion was extremely important in the subjective assessment of vehicle ride

comfort.

Deflections are some 30% greater than the rear then the revolutionary flat ride

occurs. Olley’s explanation was that because the two ends of the car did not cross a

given disturbance at the same instant it was important that the front wheels initiated

the slower mode and that the rear wheels initiated the faster mode. This allowed the

body movement at the rear to catch up the front and so produce the flat ride.

The condition of Flat Ride is expressed in various detailed forms; however, the

main idea states that the front suspension should have a 30% lower ride rate then the
rear. The physical explanation for why this is beneficial in reducing pitch motion is

usually argued based on the time history of events following a vehicle hitting a bump.

First, the front of the vehicle responds approximately- in the well-known damped

oscillation manner. At some time later, controlled by the wheelbase and the vehicle

speed, the rear responds in similar fashion. The net motion of the vehicle is then

crudely some summation of these two motions which minimizes the vehicle pitch

response [11].

Confirmation of the effectiveness in pitch reduction of the Olley design was given

by Best [7] over a limited range of circumstances. Random road excitation was ap-

plied to a half-car computer model, with identical front and rear excitations, consid-

ering the time delay generated by the wheelbase and vehicle’s speed [12].

Sharp and Pilbeam [13] attempted a more fundamental investigation of the phe-

nomenon, primarily by calculating frequency response for the half-car over a wide

range of speed and design conditions. At higher speeds, remarkable reductions in

pitch response with only small costs in terms of bounce response were shown. At

low speeds, the situation is reversed.

Later on Sharp [12] discussed the rear to front stiffness tuning of the suspension

system of a car, through reference to a half-car pitch plane mathematical model.

Sharp concluded almost the same facts mentioned by Best and other researchers

before him, saying that at higher vehicle speeds, Olley tuning is shown to bring ad-

vantage in pitch suppression with a very little disadvantage in terms of body accel-

eration. At lower speeds, he continues, not only does the pitch tuning bring large

vertical acceleration penalties but also suspension stiffness implied are impractical

from an attitude control standpoint.

The flat ride problem was revisited by Crolla and King [11]. They generated ve-

hicle vibration response spectra under random road excitations. It was confidently

concluded that the rear/front stiffness ratio has virtually no effect on overall levels

of ride comfort.

In 2004, Odhams and Cebon investigated the tuning of a pitch-plane model of a

passenger car with a coupled suspension system and compared it to that of a conven-

tional suspension system, which followed the Rowell and Guest treatment, [14]. The

concluded that the Olley’s flat ride tuning provides a near optimum stiffness choice

for conventional suspensions for minimizing dynamic tire forces and is very close to

optimal for minimizing horizontal acceleration at the chest (caused by pitching) but

not the vertical acceleration.



Sustainable Flat Ride Suspension Design 255

3 Uncoupling the Car Bicycle Model

Consider the two degree-of-freedom (DOF) system as shown in Fig. 2 . A beam with

mass m and mass moment I about the mass center C is sitting on two springs k1 and

k2. This is used as a car model for the investigation in bounce and pitch motions.

The translational coordinate x of C and the rotational coordinate 𝜃 are the usual

generalized coordinates that we use to measure the kinematics of the beam. The

equations of motion and the mode shapes are functions of the chosen coordinates.

Fig. 2 The bicycle model is

a beam of mass m and mass

moment I, sitting on two

springs k1 and k2

The free vibration equations of motion of the system are:

[
m 0
0 I

] [
ẍ
̈

𝜃

]
+
[

k1 + k2 a2k2 − a1k1
a2k2 − a1k1 a22k2 + a21k1

] [
x
𝜃

]
= 0 (1)

To compare the mode shapes of the system practically, we employ the coordinates

x1 and x2 instead of x and 𝜃. The equations of motion of the system would then be:

⎡⎢⎢⎢⎢⎣

ma22 + I

a1 + a22
ma1a2 − I
a1 + a22

ma1a2 − I
a1 + a22

ma21 + I

a1 + a22

⎤⎥⎥⎥⎥⎦

[
ẍ1
ẍ2

]
+
[
k1 0
0 k2

] [
x1
x2

]
= 0 (2)

Let us define the following parameters:

I = mr2 𝛺

2
1 =

k1
m
𝛽 𝛺

2
2 =

k2
m
𝛽 𝛽 = l2

a1a2
𝛼 = r2

a1a2
𝛾 =

a2
a1

l = a1 + a2 (3)

and rewrite the equations as

[
𝛼 + 𝛾 1 − 𝛼

1 − 𝛼 𝛼 + 1
𝛾

][
ẍ1
ẍ2

]
+
[
𝛺

2
1 0
0 𝛺

2
2

] [
x1
x2

]
= 0 (4)
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Setting

𝛼 = 1 (5)

makes the equations decoupled

[
𝛼 + 𝛾 0
0 𝛼 + 1

𝛾

][
ẍ1
ẍ2

]
+
[
𝛺

2
1 0
0 𝛺

2
2

] [
x1
x2

]
= 0 (6)

The natural frequencies 𝜔i and mode shapes ui of the system are

𝜔

2
1 =

1
𝛾 + 1

𝛺

2
1 = l

a2

k1
m

u1 =
[
1
0

]
(7)

𝜔

2
2 =

𝛾

𝛾 + 1
𝛺

2
2 = l

a1

k2
m

u2 =
[
0
1

]
(8)

They show that the nodes of oscillation in the first and second modes are at the rear

and front suspensions respectively.

The decoupling condition 𝛼 = 1 yields

r2 = a1a2 (9)

which indicates that the pitch radius of gyration, r, must be equal to the multiplication

of the distance of the mass canter C from the front and rear axles. Therefore, by

setting 𝛼 = 1, the nodes of the two modes of vibrations appear to be at the front and

rear axles. As a result, the front wheel excitation will not alter the body at the rear axle

and vice versa. For such a car, the front and rear parts of the car act independently.

Therefore, the decoupling condition 𝛼 = 1 allows us to break the initial two DOF
system into two independent one DOF systems, where:

mr = m
a1
l
= m𝜀 (10)

mf = m
a2
l
= m(1 − 𝜀) (11)

𝜀 =
a1
l

(12)

The equations of motion of the independent systems will be:

m(1 − 𝜀)ẍ1 + c1ẋ1 + k1x1 = k1y1 + c1ẏ1 (13)

m𝜀ẍ2 + c2ẋ2 + k2x2 = k2y2 + c2ẏ2 (14)
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The decoupling condition of undamped free system will not necessarily decouple

the general damped system. However, if there is no anti-pitch spring or anti-pitch

damping between the front and rear suspensions then equations of motion

[
𝛼 + 𝛾 1 − 𝛼

1 − 𝛼 𝛼 + 1
𝛾

][
ẍ1
ẍ2

]
+
[
2𝜉1𝛺1 0

0 2𝜉2𝛺2

] [
ẋ1
ẋ2

]
+
[
𝛺

2
1 0
0 𝛺

2
2

] [
x1
x2

]

=
[
2𝜉1𝛺1 0

0 2𝜉2𝛺2

] [
ẏ1
ẏ2

]
+
[
𝛺

2
1 0
0 𝛺

2
2

] [
y1
y2

]
(15)

2𝜉1𝛺1 =
c1
m
𝛽 (16)

2𝜉2𝛺2 =
c2
m
𝛽 (17)

will be decoupled by 𝛼 = 1.

[
𝛼 + 𝛾 0
0 𝛼 + 1

𝛾

][
ẍ1
ẍ2

]
+
[
c1 0
0 c2

] [
ẋ1
ẋ2

]
+
[
𝛺

2
1 0
0 𝛺

2
2

] [
x1
x2

]

=
[
2𝜉1𝛺1 0

0 2𝜉2𝛺2

] [
ẏ1
ẏ2

]
+
[
𝛺

2
1 0
0 𝛺

2
2

] [
y1
y2

]
(18)

The equations of motion of the independent system may also be written as

m(1 − 𝜀)ẍ1 + c1ẋ1 + k1x1 = c1ẏ1 + k1y1 (19)

m𝜀ẍ2 + c2ẋ2 + k2x2 = c2ẏ2 + k2y2 (20)

which are consistent with the decoupled Eq. 18 because of

𝜀 = 1 + 𝛾

𝛾𝛺

2
2

(21)

4 No Flat Ride Solution for Linear Suspension

The time lag between the front and rear suspension oscillations is a function of the

wheelbase, l, and speed of the vehicle, v. Soon after the rear wheels have passed

over a step, the vehicle is at the worst condition of pitching. Olley experimentally

determined a recommendation for the optimum frequency ratio of the front and rear

ends of cars. His suggestion for American cars and roads of 50s was to have the

natural frequency of the front approximately 80% of that of the rear suspension.
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To examine Olley’s experimental recommendation and possibly make an analyt-

ical base for flat ride, let us rewrite the equation of motion (19) and (20) as:

ẍ1 + 2𝜉1ẋ1 +
k1

m(1 − 𝜀)
x1 = 2𝜉1ẏ1 +

k1
m(1 − 𝜀)

y1 (22)

ẍ2 + 2𝜉𝜉1ẋ2 +
kk1
m𝜀

x2 = 2𝜉𝜉1y2 +
kk1
m𝜀

y2 (23)

where,

𝜉 =
𝜉2
𝜉1

=
c1
c2

𝜀

1 − 𝜀

k =
k2
k1

=
k1
k2

𝜀

1 − 𝜀

𝜉1 =
c1

m(1 − 𝜀)
𝜉2 =

c2
m𝜀

(24)

Parameters k and 𝜉 are the ratio of the rear/front spring rates and damping ratios

respectively.

The necessity to achieve a flat ride provides that the rear system must oscillate

faster to catch up with the front system at a reasonable time. At the time both sys-

tems must be at the same amplitude and oscillate together afterwards. Therefore, an

ideal flat ride happens if the frequency of the rear system be higher than the front to

catch up with the oscillation of the front at a certain time and amplitude. Then, the

frequency of the rear must reduce to the value of the front frequency to oscillate in

phase with the front. Furthermore, the damping ratio of the rear must also change

to keep the same amplitude. Such a dual behavior is not achievable with any lin-

ear suspension. Therefore, theoretically, it is impossible to design linear suspensions

to provide a flat ride, as the linearity of the front and rear suspensions keep their

frequency of oscillation constant.

5 Nonlinear Damper

The force-velocity characteristics of an actual shock absorber can be quite complex.

Although we may express the complex behavior using an approximate function, an-

alytic calculation can be quite complicated with little design information. Further-

more, the representations of the exact shock absorber do not greatly affect the be-

havior of the system. The simplest linear viscous damper model is usually used for

linear analytical calculation

FD = cvD (25)

where c is the damping coefficient of the damper.

The bound and rebound forces of the damper are different, in other words the

force-velocity characteristics diagram is not symmetric. Practically, a shock ab-

sorber compresses much easier than decompression. A reason is that during rebound

in which the damper extends back, it uses up the stored energy in the spring. A

high compression damping, prevents to have enough spring compression to collect
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enough potential energy. That is why in order to get a more reliable and close to

reality response for analysis on dampers, using bilinear dampers is suggested. It is

similar to a linear damper but with different coefficients for the two directions (Dixon

2008).

FD =
{

cDEvD Extension
cDCvD Compression (26)

where cDE is the damping coefficient when damper is extended and cDC is the damp-

ing coefficient when the damper is compressed.

An ideal dual behavior damper is one which does not provide any damping while

being compressed and on the other hand damps the motion while extending.

After using the nonlinear model for the damper, the motion had to be investigated

in 3 steps for the front and same for the rear. Ideally, the unit step moves the ground up

in no time and therefore the motion of the system begins when the input y = 1 and the

suspension is compressed. The first step is right after the wheel hits the step and the

damper starts extending. The second step is when the damper starts the compression

phase, which the damping coefficient would be equal to zero. The third step is when

the damper starts extending again. Each of the equations of motion should be solved

for the 3 steps separately in order to find the time and amplitude of the third peak of

the motion which have been chosen to be optimal time for the flat ride to happen at.

Fig. 3 Response of the both

suspensions of a near flat

ride car with ideal nonlinear

damper to a unit step

Figure 3 illustrates the behavior of the car equipped with a nonlinear damper when

going over a unit step input.

6 Near Flat Ride Solution for Ideal, Nonlinear Damper

The conditions that x1 and x2 meet after one and a half oscillations can be shown by

Eqs. (18) and (27).
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Fig. 4 Spring ratio

k = k2∕k1 versus 𝜏 = l∕v for

near flat ride with ideal

nonlinear damping, for

different 𝜀 = a1∕l

x1 = x2 tp1 = tp2 (27)

The equation resulted from x1 = x2, (Eq. 28) has got 𝜉 and 𝜉1 as its variables and

could be plotted as an explicit function of the variables which interestingly shows

that the value for 𝜉 = 𝜉2∕𝜉1 must equal to 1 for any value for damping coefficient of

the front suspension 𝜉1.

EQ1 = −0.8 × 10−18

(𝜁21 − 1)(𝜁21 𝜁2 − 1)

(
− 0.3172834025 × 1018V𝜁41 𝜁

2

+ 0.3172834025 × 1018V𝜁21 + 0.3172834025 × 1018V𝜁21 𝜁
2 − 0.3172834025 × 1018V

+ 0.130151797 × 1018V
√

1 − 𝜁

2
1 𝜁

3
1 𝜁

2 − 0.3172834025 × 109V
√

1 − 𝜁

2
1 𝜁1

+ 0.3172834025 × 1018V − 0.3172834025 × 1018V𝜁21 𝜁
2 − 0.3172834025 × 1018V𝜁21 + 0.3172834025

× 1018V − 0.130151797 × 109V
√

1 − 𝜁

2
1 𝜁

2
𝜁

3
1 𝜁 + 0.130151797 × 109V

√
1 − 𝜁

2
1 𝜁

2
𝜁1𝜁

)
(28)

where V is equal to e

−𝜋𝜁1√
1−𝜁21 .

Therefore, regardless of the value of 𝜉1 the rear suspension should have an equal

coefficient for the damper. The equation resulted from tP1 = tp2 generates Eq. 29 to

determine k = k2∕k1. Figure 4 illustrates the spring ratio k = k2∕k1 versus 𝜏 = l∕v,

to have near flat ride with ideal nonlinear damping, for different 𝜀 = a1∕l.

EQ2 =
𝜋

√
−k1

m(𝜀−1) (2
√

1 − 𝜁

2
1 + 1 − 𝜁

2
1 )m(𝜀 − 1)

(𝜁21 − 1)k1

− 𝜏 +
𝜋(2

√
1 − 𝜁

2
𝜁

2
1 + 1 − 𝜁

2
𝜁

2
1 )√

kk1
m𝜀 (𝜁

2
𝜁

2
1 − 1)

(29)

EQ1 and EQ2 are resulted after following the conditions mentioned in Eq. (27).



Sustainable Flat Ride Suspension Design 261

Table 1 Specification of a

sample car
Specification Nominal value

m
[
kg
]

420
a1 [m] 1.4
a2 [m] 1.47
l [m] 2.87
k1

[
N∕m

]
10000

k2
[
N∕m

]
13000

c1
[
Ns∕m

]
1000

c2
[
Ns∕m

]
1000

𝛽 4.00238
𝛾 1.05
𝛺1 95.2947
𝛺2 123.8832
𝜉1 0.05
𝜉2 0.0384

The average length of a sedan vehicle has been taken 2.6 m with a normal

weight distribution of a front differential vehicle 56∕44 heavier at the front. Using

the given information some other values can be calculated as: a1 = 1144mm and

a2 = 1456mm which yields to 𝜀 = 0.44. Considering the existing designs for street

vehicles, only the small section of 0.1 < 𝜏 < 0.875 is applied. The mass center of

street cars is also limited to 0.4 < 𝜀 < 0.6.

Figure 5 shows how k varies with 𝜏 for 𝜉1 = 0.5 and different 𝜀 for a near flat

ride with ideal nonlinear damper. For any 𝜀, the required stiffness ratio increases for

higher 𝜏. Therefore, the ratio of rear to front stiffness increases with lower car speed.

Figure 6 also provide the same design graphs for 𝜉1 = 0.4. Same graphs were plotted

for 𝜉1 = 0.3, 0.2, and 0.1.

There will be a possibility of using the 𝜏 vs. 𝜖 diagrams as a design chart, which

has been illustrated using the values in Table 1, by Fig. 7.

Fig. 5 𝜀 versus 𝜏, for

different k for 𝜉1 = 0.5 to

have near flat ride with ideal

nonlinear damping
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Fig. 6 𝜀 versus 𝜏, for

different k for 𝜉1 = 0.4 to

have near flat ride with ideal

nonlinear damping

Fig. 7 Design chart for a

smart suspension with a

non-linear damper [15]

The box in Fig. 7, is indicating the values that the spring rate should be having as

the travelling speed of the vehicle changes to provide the passengers with a flat ride,

in case of having a smart active suspension. The point on the figure is an example

for a passive suspension vehicle. It is showing the required spring rate, for getting a

flat ride in a car with a wheelbase of 2.6 m, traveling at 28 km/h.

7 Conclusion

Olley’s flat ride tuning has been regarded as a rule for designing chassis. The fact

that these rules were based on experimental results, motivated many researchers to

study and validate them. We have introduced a novel approach and investigated flat

ride, analytically for the first time.

As a result of the dual behavior of the suspension which is required to get the

optimal flat ride, more accurate results were researched using a nonlinear suspension

system for this analysis. The results prove that the forward speed of the vehicle affects

the flat ride condition, which agrees with previous researchers’ results. In a passive

suspension system flat ride can be achieved at a certain speed only, so the suspension
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system of a car should be designed in a way which provides the flat ride at a certain

forward speed [16–19].

A design chart based on the nonlinear analysis, for smart active suspension sys-

tems has been provided which enables a car with smart suspension system to provide

flat ride at any forward speed of the vehicle. The design chart can be used for de-

signing chassis with passive suspension for a specified speed as well. Examples of

the above mentioned conditions have been reviewed and discussed, by using some

numerical values from a sample car. The research proves the effectiveness of Olley’s

flat ride for getting a more comfortable ride in cars, and considering the shortcom-

ings of the principles suggests better ways of implementing them to the design of

suspension systems for a better and more effective flat ride tuning. These issues are

even more important for the future autonomous vehicles, where car occupants will

have even more importance for the future autonomous vehicles, where car occupants

will have no influence on driving, and their comfort is one of the extremely important

criteria for the autonomous driving algorithm’s application.
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