
81© Springer International Publishing Switzerland 201
I. Hargittai, B. Hargittai (eds.), Science of Crystal Structures: Highlights in Crystallography, 
DOI 10.1007/978-3-319-19827-9_8

5

Helical Structures: The Geometry of Protein Helices 
and Nanotubesa,b

Eric A. Lordc

Abstract

In nature, helical structures arise when identical structural subunits combine sequentially, 
the orientational and translational relation between each unit and its predecessor remaining 
constant. A helical structure is thus generated by the repeated action of a screw transforma-
tion acting on a subunit. A plane hexagonal lattice wrapped round a cylinder provides a 
useful starting point for describing the helical conformations of protein molecules, for 
investigating the geometrical properties of carbon nanotubes, and for certain types of dense 
packings of equal spheres.
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 Introduction

An infinite strip of a tiling of the Euclidean plane by equilat-
eral triangles, bounded by two parallel lines, can be wrapped 
around a circular cylinder so that the two strip edges meet. 
We shall refer to the resulting structure as a cylindrical hex-
agonal lattice or, briefly, a CHL. Alternatively, instead of 
rolling the strip around a cylinder, corresponding points on 
the edges may be brought into coincidence by folding along 
the fundamental lattice lines, keeping the triangular facets 
flat. We shall refer to the resulting structure as a triangulated 
helical polyhedron or, briefly, a THP. A THP is an “almost
regular” polyhedron, in that its symmetry group, a rod group, 
acts transitively on the vertices and faces, although not on the 
edges.

The geometrical properties of the THPs are of relevance
in structural chemistry for several reasons. As Sadoc and 

Rivier [1] have shown, the helical structures commonly 
occurring in proteins are metrically quite close to polygonal 
helices consisting of edges of THPs. The rodlike sphere
packings investigated by Boerdijk [2] are derived from the 
Coxeter helix [3–5], which is the simplest THP. In a nano-
tube, the atomic positions correspond to a subset of the 
vertices of a THP.

The purpose of this work is twofold: to derive expressions 
for the metrical and topological parameters of the triangu-
lated helical polyhedra and to indicate their importance by 
means of examples from the literature on protein helices, 
sphere packings, and nanotubes.

 Nomenclature

A THP, or a CHL, is determined by the translation vector
separating pairs of points on the strip boundaries that are to 
be identified. Let the components of this vector, referred to
the underlying planar hexagonal coordinate system, be (m, 
n). The 6m symmetry of the plane hexagonal lattice implies 
that the integer pairs (m, n), (−l, m), (−n, −l), (−m, −n), (l, 
−m), and (n, l) all give rise to the same structure and (n, m), 
(l, n), (−m, l), (−n, −m), (−l, n), and (m, −l) refer to its mirror 
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image (where l = n − m.) The redundancy in the notation is 
eliminated by the requirement

 0 ≤ ≤ ≤ = +l m n l m.  (1)

Thus each kind of THP (or CHL) may be denoted by a unique 
symbol (l, m, n). (See, for example, Sadoc and Rivier [1].)

Except for the special cases (0, m, m) and (m, m 2m), the 
CHLs are chiral: (l, m, n)R has, by convention, right-handed 
{l} and {n} type helices and the {m} type is left-handed. 
The mirror image of (l, m, n)R is, of course, denoted by  
(l, m, n)L. Figure 1 illustrates the case (3, 5, 8). The direc-
tion of the strip edges can be arbitrary. Three special 
choices are indicated on the figure: strips with widths  
3, 5, and 8 of the elementary equilateral triangles, along  
the directions [1, 1], [1, 0], and [0, 1], respectively. The  

corresponding lines of lattice points become helices on the 
cylinder: Three helices of type {3}, five of type {5}, and 
eight of type {8}. Figure 2 illustrates a portion of the THP
of type (3, 5, 8)L.

 Metrical Parameters of a CHL

A vertex of a plane hexagonal lattice can be identified by two 
integers (μ, ν)—its coordinates in terms of the hexagonal 
coordinates. In a CHL, the point (μ, ν) acquires a position on 
the cylinder, with three-dimensional (3-D) cylindrical coor-
dinates (ρ, φ, z), which can be found as follows. On the plane 
hexagonal lattice the angle α between the directions (μ, ν) 
and (m, n) is given by
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where λ = √(μ2 + ν2 − μν), k = √(m2 + n2 − mn). Then the coordi-
nates of the point (μ, ν) in 3-D Euclidean space are
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The {l}, {m}, and {n} type helices are, respectively, along 
[−1, −1], [0, 1], and [−1, 0], so that their rotational advances 
per edge are

 
π π π− −( ) +( ) −( )m n k n k m k/ , / , /2 2 21 1

 
(4)

and the translational advances are

 
3 3 3l k m k n k/ , / , /( ) ( ) ( )  (5)

 Metrical Parameters of a THP

Sadoc and Rivier [1] have identified several wellknown heli-
ces occurring in protein structure with type {1} helices of 
THPs of the form (1, m, m + 1):
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Fig. 1 Construction of the CHL (3, 5, 8).

Fig. 2 The triangulated helical polyhedron (3, 5, 8)L.
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See, for example, Lehninger et al. [6] for the structure and 
nomenclature of the corresponding protein configurations. In 
these models, the type {1} polygonal helix represents the 
polypeptide chain. Other edges of the TPH correspond to the
linking hydrogen bonds that are responsible for the helical 
configuration.

The method of Sadoc and Rivier for computing the metri-
cal parameters of TPHs of the special kind (1, m, m + 1) is as 
follows. Let … A−2 A−1 A0 A1 A2 A3 … denote the sequence  
of successive vertices of the type {1} helix of the TPH 
(1, m, m + 1) and observe that A0AmAm+1 is a face—an equi-
lateral triangle. Choose Cartesian coordinates so that Am has 
coordinates ρ (cos mφ, sin mφ, mc) and equate the three edge 
lengths A0Am, A0 Am+1 and AmAm+1 = A0A1. This gives
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Eliminating c2 and expressing cosmφ and cos(m + 1)φ as 
polynomials in χ = cosφ gives a polynomial in χ of degree 
m + 1. It can be shown that this polynomial has a factor 

(χ − 1)2, so we finally arrive at a polynomial in χ of order 
m − 1. Only one root (in fact, the largest root) is relevant; the 
other roots correspond to triangulated surfaces with 
self-intersections.

Consider now more general cases (l, m, n). For large vec-
tors (m, n) it is obvious that the formulas for the parameters 
of a CHL will give reasonable approximations to those for
the corresponding THP. For smaller values we resort to
Fig. 3, which represents the projection of a THP on planes
perpendicular and parallel to its axis, of the edges of a con-
stituent equilateral triangle. To find the radius ρ, we start 
from the formula for the circumradius of a triangle with 
edges l1, l2, and l3
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From Fig. 3, we see that
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so that l2 and l3 can be expressed as functions of l1:
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Thus, we get the radius ρ as a function of l1
2. Now observe

that m steps of an {n} helix followed by n steps of an {m} 
helix brings one back to the starting vertex. The path has 
rotational advance 2π. From the figure, we see that the rota-
tional advance per edge length is 2sin−1 (l2/2ρ) for the type 
{m} helices and 2sin−1 (l3/2ρ) for the type {n} helices. This 
gives

 
m l n lsin / sin /− −( ) + ( ) =1

3
1

22 2ρ ρ π  (11)

leading to a quite formidable transcendental equation in l1
2. 

The relevant root is the smallest root. A suitable starting 
value for finding this root by successive approximation can 
be taken to be the l1

2 for the corresponding CHL,
(m + n)2/4(m2 + n2 − mn). Table 1 gives the metrical parame-
ters obtained in this way, using Mathematica, for a few small
values of (m, n). The final column is the radius ρCHL of the 
corresponding CHL, for comparison:
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Fig. 3 Projection of a triangular facet of a THP, along the axis, and
perpendicular to the axis.
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The corresponding values for the rotational and transla-
tional advance per edge of the polygonal helices of types 
{l}, {m} and {n} are
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Cases (0, m, m) and (m, m, 2m) have not been listed in the 
table because they are given, respectively, by the simple 
formulas

 
ρ π ρ π= ( ) = ( )1 2 3 4 2/ sin / / sin /m mand  (15)

 The Boerdijk–Coxeter Structure

The simplest nontrivial THP is (1, 2, 3) shown in Fig. 4. It is 
the surface of a stack of regular tetrahedra. We shall refer to 
it as the Boerdijk–Coxeter structure, or, simply, the “B-C

structure.” The vertices, labeled … A−2 A−1 A0 A1 A2 A3 … 
consecutively along the type {1} helix are such that any four 
consecutive points are the vertices of a regular tetrahedron 
[3–5]. Buckminster Fuller [7] named this helical structure 
“the tetrahelix.” With unit edge length, five consecutive
points on the type {1} polygonal helix can be taken to be

− − −( ) −( )
−( ) −( )
(

1 1 1 8 1 1 1 8

1 1 1 8 1 1 1 8

5 3 5 3 5 3

, , / , , , / ,

, , / , , , / ,

/ , / , / )) 8.

The action of a screw transformation x → Rx + a generates 
the whole structure, where
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The axis direction n and the rotational advance per edge φ 
(of the type {1} polygonal helix) can be extracted from the 
formula for rotation through an angle φ about an axis along 
a unit vector n:
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The translational advance d is the scalar product of n with a 
tetrahedron edge. The result is
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The radius is got by substituting l l1 = ( )9/ 0 , l l2 = ( )6/ 0 , 
l l3 = ( )1/ 0  into the formula for ρ:

 
ρ = ( )3 3 10/ .  (19)

 Sphere Packings

Boerdijk [2] investigated the Coxeter structure [the THP (1,
2, 3)] in connection with dense packings of equal spheres. 
The configuration of four spheres in a tetrahedral configura-
tion, each touching other three, gives the Rogers upper bound 
for the upper limit of any possible packing fraction for equal 
spheres. The bound can never be achieved because regular 
tetrahedra will not pack together in Euclidean. However, 
sphere packings that fill only a portion of space can come 
much closer to the bound than hexagonal close packing—the 

Table 1 Parameters for THPs for Small Values of (l, m, n)

l m n l1 ρ ρCHL

1 2 3 0.94868 0.51962 0.42108

2 2 4 0.86603 0.61237 0.55133

1 3 4 0.97207 0.64526 0.57384

1 3 5 0.91821 0.74313 0.69374

1 4 5 0.98255 0.78561 0.72934

2 4 6 0.94547 0.88462 0.84217

3 4 7 0.90435 1.00188 0.96810

1 5 6 0.98811 0.93258 0.88614

2 5 7 0.96118 1.03166 0.99392

3 5 8 0.92881 1.14441 1.11408

4 5 9 0.89632 1.26887 1.24304

1 6 7 0.99139 1.08319 1.04365

2 6 8 0.97100 1.18076 1.14768

Fig. 4 The Boerdijk–Coxeter structures (1, 2, 3) R and (1, 2, 3)L.

E.A. Lord
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densest lattice packing. Boerdijk considered the dense 
rod- shaped packing in which the sphere centers lie on the 
vertices of a (1, 2, 3) (Fig. 5).

 Extension of the Helical Sphere Packing

As pointed out by Boerdijk, the packing of spheres centred 
at the vertices of (1, 2, 3) can be extended by adding more 
spheres over the midpoints of edges of type {1} helices. 

Specifically, an extra vertex is placed over the midpoint of 
each edge of the type {1} helix, forming an equilateral tri-
angle with the two vertices of that edge. This determines 
additional, only slightly irregular, tetrahedra, so that every 
edge of the type {1} helix is shared by five tetrahedra 
(Fig. 6)

Further extensions of the Boerdijk–Coxeter structure are
possible. The next stage of adding spheres gives a rodlike 
structure in which every vertex of the original (1, 2, 3) is sur-
rounded by 12 others, configured as a somewhat distorted 
icosahedron, as shown in Fig. 7. Thus each tetrahedron of 
the initial (1, 2, 3) is now shared by four icosahedra. This 
26-sphere cluster is a slightly distorted form of the 26-atom 
γ-brass cluster. Another interesting subset of the tetrahedra in 
this structure is the triplet of distorted B-C helices twisted 
around each other (Fig. 8). One could go on adding more 
spheres, but the deviation of the tetrahedra from regularity 
(corresponding to lower sphere packing fraction) becomes 
severe.

Fig. 5 The dense packing of spheres centered at the vertices  
of a B-C helix.

Fig. 6 Extension of the sphere packing. Sphere centers are at vertices 
of the tetrahedra. The additional tetrahedra are very nearly regular.

Fig. 7 Further extension of Boerdijk’s sphere packing, represented by
tetrahedra whose vertices are the sphere centers. Every sphere of the 

original configuration (Fig. 5) is now the center of a 13-sphere cluster.

Fig. 8 Configuration of three helically coiled B-C structures.

Helical Structures: The Geometry of Protein Helices and Nanotubes
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 Nanotubes

When m + n is divisible by three, the THP of type (l, m, n) can 
be converted to a model for a net of equilateral hexagons 
with all vertices lying on a cylinder, simply by omitting one 
in three of the vertices. Figure 9 illustrates this for the case 
(4, 7, 11). The algorithm described in the fourth section for 
determining the metrical properties of the THPs is thus
applicable to the structure of carbon nanotubes.

Nanotubes [8, 9] can be classified by a pairs of integers 
[M, N], corresponding to the numbers of helices of edge- 
connected hexagons that wind around the nanotube to left 
and right. The relation between the (m, n) of a THP and the
[M, N] describing this subset of its vertices that corresponds 
to the atoms of a nanotube is

 

M m n N n m

m M N n M N

= +( ) = −( )
= − = +
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(20)

For example, starting with a (4, 7, 11), the formulas give
(7, 11) → [6, 5]. This corresponds to the standard triplet [1, 5, 
6]. That is, the THP (4, 7, 11) gives rise to a metrical model
for the nanotube [1, 5, 6]. More specifically, since a reflec-
tion is involved in the coordinate resetting of the final step, 
(4, 7, 11) L → [1, 5, 6] R.

The “chair” and “zigzag” type nanotubes (Fig. 10) are 
given by

0 3 3 2 2 0, , , , , , .µ µ µ µ µ µ µ µ µ µ( )→ [ ] ( )→ [ ]and , ,
 

(21)

The density of a carbon nanotube of a given structural type (l, m, 
n) is readily calculated. The type {n} polygonal helices have a 
rise per edge of 3 n k/( )  (using the approximation given by 
the CHL formula). The number density of vertices per unit
advance along the cylinder axis is, therefore, k n/ 3 . There 
are n type {n} helices. In the carbon nanotube model, one-third 
of them are hexagon centers, so the number of carbon atoms per 
unit length of the nanotube is 2 3 3k / . The C—C bond length 
B is the unit of length. Denoting the mass of a carbon atom by 
M, we get, for the mass per unit length of the nanotube,

 
2 3 3 4 3 32k M B RM B/ /= π

 
(22)

where R is the radius out to an atom center—the average of 
internal and external radius. For example, taking M = 10−3 gm 
and B = 1.42 Å (from graphite), gives 2.52 × 10−14 gm/cm for 
the case (4, 7, 11), corresponding to the [1, 5, 6] nanotube.

 Collagen and the Polytope {3, 3, 5}

The regular four-dimensional polytope {3, 3, 5} has 120 ver-
tices, 1200 edges, 720 equilateral triangle faces, and 600 
regular tetrahedral cells. Five cells surround each edge and

20 surround each vertex—forming a regular icosahedron [4, 
5, 10].

Circuits of 30 face-sharing tetrahedra occur in {3, 3, 5}. 
They are each metrically identical to the Boerdijk–Coxeter 
structure in 3-D Euclidean space. One can select four of 
them forming a configuration, which, when deformed to fit 

Fig. 9 The [1, 5, 6] nanotube derived from the (4, 7, 11) TPH.

Fig. 10 The [0, 10, 10] “zigzag type” nanotube and the [5, 5, 10]
“chair type”.

E.A. Lord
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into 3-D Euclidean space, can give a fairly accurate structure 
of the collagen molecule. Collagen consists of three left- 
handed helical polypeptide chains twisted around each other 
with a right-handed helical twist [6]. In the model of Sadoc 
and Rivier [1], derived from the corresponding structure in 
the polytope {3, 3, 5}, a central B-C structure (1, 2, 3) R is 
surrounded by three somewhat distorted B-C structures (1, 2, 
3) R each sharing a type {3} helix with it. The polypeptide 
chains correspond to the left-handed type {2} helices of the 
three outer structures. Other tetrahedron edges represent 
hydrogen bonds.

We have already noticed the geometrical structure in the 
extension of the Boerdijk’s sphere packing (Fig. 8). The pic-
tures displayed in Fig. 11 was obtained by projecting from 
{3, 3, 5} [11]. Observe that the structures differ in pitch; in 
Fig. 8, the central core B-C structure is undistorted, whereas 
in Fig. 11, a slight untwisting has been applied to conform to 
give the pitch observed in the collagen structure.

 Defects in THPS and Nanotubes

If a net on a curved surfaces is adjusted so that all (straight) 
edge lengths are equal, it is obvious that the curvature prop-
erties of the surface and the connectivity properties of the net 
will be intimately related. Although no general theory exists, 
various fascinating structures have been explored, corre-
sponding to the decoration of curved surfaces by graphite 
sheets containing defects; five-rings among the hexagons 
correspond to regions of positive Gaussian curvature, while 
seven- and eight-rings correspond to regions of negative 
Gaussian curvature [12–15]. Of special interest are the triply 
periodic minimal surfaces, tiled by hexagons and octagons.

A well-known topological relation satisfied by a triangu-
lation of a surface of genus g (Euler characteristic χ) is

 

3 2 2 3

6 2 2 6
3 4 5 7 8 9n n n n n n

g

+ + − − − −…
= −( ) = χ  

(23)

where ni is the number of i-connected vertices. The same 
relation is satisfied by the dual configuration: a tiling of the 
surface, with ni i-gonal tiles. This purely topological relation 
is linked to curvature properties of the surface through the 
Gauss–Bonnet theorem,

 
∮Kd S = 2πχ  

(24)

where K is Gaussian curvature.
Thus, for example, a tiling of the sphere (g = 0) by hexa-

gons and pentagons must contain exactly 12 pentagons—a 
topological fact demonstrated in nature by the structure of 
the fullerenes. An equilateral net of hexagons, heptagons, 
and octagons may be associated with surfaces of negative 
Gaussian curvature. Mackay and Terrones [12] demon-
strated the decoration of the triply periodic minimal surfaces 
P and D surfaces (g = 3, per unit cell) by graphite sheets that 
contain 12 octagons per unit cell. In the present work, we 
have chosen to restrict attention to the Euclidean geometry 
of various structures. Mention must be made at this point,
however, of the geometry of the hyperbolic plane as a valu-
able tool in the study of networks on surfaces of negative 
Gaussian curvature. For recent important results, the inter-
ested reader is referred to the work of Hyde and co-workers 
[16–18].

Observe that in a plane (or cylindrical) hexagonal lat-
tice, a composite “5–7 defect” consisting of a five-coordi-
nated vertex and a seven-coordinated vertex does not affect 
the genus. It gives rise to a dislocation of the lattice. Defects 
of this kind may be classified in terms of a pair of integers 
(p, q), which specify, in a hexagonal coordinate system 
associated with the lattice, the displacement of the five-
vertex from the seven-vertex. The Burger’s vector associ-
ated with a 5–7 defect of type (p, q) is (p − q, p). The dual 
of the above statements concern nanotubes, which can have 
analogous 5–7 defects consisting of a five-ring and a seven-
ring. The Burger’s vectors of a pair of such composite
defects may cancel. This kind of defect has been discussed 
by Stone and Wales [19] in the context of fullerene 
structure.

The incorporation of five-rings and seven-rings (in 
equal numbers) into a nanotube can cause it tube to be 
bent, by producing regions of positive and negative 
Gaussian curvature (helically coiled nanotubes have been 
observed). The exact relationship between the location of 
five-rings and seven-rings, and the resulting bending 
effect, is a difficult problem, which we shall not enter into 
here. The aim of this section will be simply to demonstrate 
how two TPHs of different types can be joined through a
region containing a (p, q) defect. In particular, the radius 
of a nanotube may be varied along the length of the tube, 
by the introduction of five- rings and seven-rings (in equal 
numbers).

Fig. 11 General view of the three outer B-C structures of the collagen 
model proposed by Sadoc and Rivier. The polypeptide chains 

correspond to the type {2} helices of these structures. Other edges and 
edges of the central undeformed B-C structure (omitted for clarity) 

correspond to hydrogen bonds.

Helical Structures: The Geometry of Protein Helices and Nanotubes
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Figure 12 shows a net for constructing a THP with a (2, 2)
defect. The net is to be folded along the grid lines to bring the 
edges marked with the same letter together, as in making 
card models of Platonic or Archimedean polyhedra. The
three points indicated by the black circles becomes a single 
seven-connected vertex. The point indicated by the white 
circle becomes a five-connected vertex. Observe that the 
lower half of the THP will be a (3, 5, 8)L, while the upper 
half is a (1, 5, 6)L. We may write this in the form

 
2 2 3 5 8 15 6, , , , ,( ) ( ) → ( ): L L

 
(25)

Figure 13 demonstrates similarly the case

 
2 4 2 4 6 2 4 6, , , , ,( ) ( ) → ( ): L R

 
(26)

A CHL or a THP of type (m, n) can be joined to one of type 
(m′, n′), through a region containing a (p, q) defect. We find 
that
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for example, (p, q) = (1, 2), (m, n) = (2, 3). Then (m′, n′) = (1, 
3). Therefore

 
12 12 3 12 3, , , , ,( ) ( ) → ( ): L R

 
(28)

The handedness changes because converting (1, 3) to the 
three-index symbol (1, 2, 3) satisfying the inequalities (2.1) 
involves a reflection. This case corresponds simply to two 
mirror-twinned B-C structures; the situation is illustrated in 
Fig. 14.

 Miscellany

Any Euclidean transformation

 x′ = +Rx a  (29)

is uniquely determined if the four image points of four given 
nonplanar points are given. Writing the position vectors, 
referred to a cartesian coordinate system, of four given points 
as the columns of a 3 × 3 matrix A, and their four images as 
the corresponding columns of a matrix B, the transformation 
is given by

 

S
R B A

=








 =




















−
a

j j0 1

0

1

0

1

1

 
(30)

where j denotes the row 111. The Eq. (16), from which the 
metrical parameters of the B-C structure were deduced, are 
obtained from this prescription. The method is, clearly, read-
ily applicable to the generation of more general structures 
from a given subunit once the position and orientation of a 

Fig. 12 Net for the construction of a TPH with a type (2, 2) defect.
Observe that the lower half gives rise to a (3, 5, 8)L; the upper half 

produces a (1, 5, 6)L.

Fig. 13 Net for the construction of a “mirror twin” (2, 4):  
(2, 4, 6)L → (2, 4, 6) R.

Fig. 14 A mirror twin of two B-C structures and the net for construct-
ing a model of it. Observe the 5–7 defect of type (1, 2).

E.A. Lord
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contiguous subunit is chosen. The tiling of three-space by 
face-sharing polyhedra is a concept fundamental to the 
understanding of many complex material structures. 
Structures built from identical face-sharing polyhedral sub-
units are readily deduced from the prescription (30). A trans-
formation S can be computed from two chosen congruent 
faces of a polyhedron. Repeated application of S will then 
produce a structure with helical, zigzag, or ring form accord-
ing to the nature of S (some possibilities lead to steric hin-
drance). The purpose of this final section is simply to 
illustrate this by means of a few curious examples.

Two examples of helical structures built from polyhedral 
subunits are the “octahelix” and the “icosahelix” of Pearce
[20]. Figure 15 indicates that the vertices of the octahelix are 
the midpoints of the edges of a B-C structure and Fig. 16 
indicates that the vertices of the icosahelix are at golden 
mean positions on the edges of an octahelix. Other helical 
towers of octahedra, or of icosahedra, with different pitches, 
can be generated by choosing different orientation relation-
ships for the initial pair of subunits, giving rise to different 
screw transformations S. Figure 17, for example, is another 
“octahelix,” with a steeper pitch than the Pearce octahelix
and Fig. 18 is a ring of 12 octahedra slightly distorted icosa-
hedra generated by a roto-reflection. The helix of interpene-
trating icosahedra in Fig. 19 is generated from a screw 

transformation S that relates two pentagonal sections of the 
icosahedral subunit.

A polygonal subunit for the generation of helical struc-
tures can be chosen to be a portion of the B-C structure. This 
corresponds to the systematic introduction of defects along 
the length of the TPH (1, 2, 3). The remarkable ring structure
(Fig. 20) consisting of 96 tetrahedra was discovered by 
Antoine Walter [21]. The subunit is a portion of the B-C 
structure consisting of six tetrahedra. The easiest way to 
understand the structure is to consider the smaller subunit of 
three tetrahedra (Fig. 21). The mirror symmetry of this sub-
unit implies that the two face medians marked on the figure 
intersect. A simple calculation gives the angle θ between 
them, cos θ = 53/54, θ~11°. A twofold rotation about one of 

Fig. 15 Pearce’s octahelix inscribed in a B-C structure.

Fig. 16 Pearce’s icosahelix inscribed in an octahelix.

Fig. 17 An octahelix with steeper pitch.

Fig. 18 A ring of 12 (slightly distorted) octahedra, generated by a 
roto-reflection; and the 12 “inscribed” icosahedra.

Fig. 19 A helical structure of interpenetrating icosahedra. Observe 
that every pair of consecutive icosahedra is a “mirror twin” with the

mirror perpendicular to the fivefold axis.

Fig. 20 The ring of 96 tetrahedra discovered by Antoine Walter. The 
subunit is a sequence of six of the tetrahedra of a B-C structure.
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them produces a set of six tetrahedra of a B-C structure. The 
product of the two twofold rotations is a rotation through 
about 22°, whose repeated action gives a ring of 32 of the six 
tetrahedron units, which does not quite close. A slight defor-
mation increasing the angle θ to 360°/32 = 11¼° produces 
the 96-tetrahedron ring.

 Conclusions

Nanotubes, protein helices, and the sphere packings investi-
gated by Boerdijk, have this in common: their structures are 
underpinned by the Euclidean geometry of triangulated heli-
cal polyhedra. The geometrical properties of the THPs pro-
vide a simple introduction to these important structures and 
methods of computing their metrical and topological pro-
perties can be employed in the production of graphic 
representations.
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