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Polygrammal Symmetries in Biomacromolecules: 
Heptagonal Poly d (As4T) · poly d (As4T)  

and Heptameric α-Hemolysina,b

A. Jannerc

Abstract

Polygrammal symmetries, which are scale-rotation transformations of star polygons, are 
considered in the heptagonal case. It is shown how one can get a faithful integral six-
dimensional (6-D) representation leading to a crystallographic approach for structural 
properties of single molecules with a sevenfold point symmetry. Two biomacromole-
cules have been selected in order to demonstrate how these general concepts can be 
applied: the left-handed Z-DNA form of the nucleic acid poly d (As4T) · poly d (As4T), 
which has the line group symmetry 7622, and the heptameric transmembrane pore pro-
tein α-hemolysin. Their molecular forms are consistent with the crystallo-graphic 
restrictions imposed on the combination of scaling transformations with sevenfold rota-
tions. This all is presented in a two-dimensional (2-D) description, which is natural 
because of the axial symmetry.
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�Introduction

In a previous paper [1], a unifying general crystallography 
has been defined, characterized by the possibility of point 
groups of infinite order. Crystallography then becomes appli-
cable even to single molecules, allowing a crystallographic 
interpretation of structural relations, which extend those 
commonly denoted as “non-crystallographic” in protein 
crystallography. In the same paper it is pointed out that 
molecular crystallography can be approached in a fairly sim-
ilar way, as for quasicrystals. Alan Mackay, to whom this

paper is dedicated on the occasion of his 75th anniversary, 
has given a pioneering and fundamental contribution to the 
problem of the relations between structure and symmetry in 
quasicrystals. For this occasion it seemed to me a good idea 
to focus attention on systems having a sevenfold point group 
symmetry.
Sevenfold self-similar quasicrystals, where crystallo-

graphic point groups of infinite order arise naturally, have 
been considered by various authors (see for some references 
[2–4]), but this field has not been developed because such 
quasicrystals have not been observed in nature. Observed in 
nature are, however, biomacromolecules with a rotation 
symmetry of order 7 and it is challenging to investigate the 
relevance of these point groups in the molecular case. A first 
attempt in this direction has been made for two hexagonal 
DNA’s in terms of scaling properties of molecular forms 
reflecting an underlying point group of infinite order leaving 
the hexagonal lattice invariant [5]. In this paper, evidence is 
also given of similar behavior in B-DNA and in A-DNA, 
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which correspond to the tenfold and the elevenfold case, 
respectively.

It is essential to verify whether these scaling properties 
occur in nature as a rule rather than as an exception. From the 
point of view of molecular crystallography, this implies 
molecular forms with scaling factors critically related to the 
given point group symmetry. Typically, one should find τ, the 
golden mean, in the fivefold case, but this factor should be 
totally absent in the heptagonal case, because of the underly-
ing number theoretical structure [4, 6].

The interest for the sevenfold case arose from the very 
nice axial view of α-hemolysin appearing in the cover pic-
ture of the book on Macromolecular Structures 1997 [7], 
which shows a nearly perfect sevenfold scalerotation sym-
metry of the heptamer. In order to distinguish between law 
and accident, nucleic acids have been considered as an alter-
native molecular case.

Nucleic acids occur as polynucleotides in different heli-
cal conformations, with a variety of axial symmetries. A full 
list of polynucleotides can be found in a historical survey of 
S. Arnott in the Oxford Handbook of Nucleic Acids edited
by Neidle [8]. There, only one case is reported with seven-
fold axial symmetry: the Z-DNA form of the left-handed 
poly d(As4T) · poly d(As4T) which, therefore, has been 
selected together with α-hemolysin. A third case, the double 
chaperonin (a larger and a smaller one) complexed with 
ADP and denoted as GroEl-GroES-(ADP)7 will be dis-
cussed elsewhere. The analysis of the molecular forms is 
limited here to the prismatic forms of the backbone formed
by the Cα’s in the protein and disregarding hydrogen in the 
nucleic acid. The prismatic forms can be viewed along the 
sevenfold axis, allowing a two-dimensional (2-D) descrip-
tion of their three-dimensional (3-D) scale-rotational 
properties.
Many of the concepts raised so far are certainly non-

familiar to most readers. Before developing the subject, a 
visualization of what one is talking about is, therefore,
important. Polygrams and star polygons are first introduced, 
because these geometrical objects allow a simple approach 
to the symmetry of the various molecular forms. A star poly-
gon denoted by the Schläfli symbol {n/m} is obtained from a 
regular polygon by connecting each of the n vertices with its 
mth-subsequent one [9]. The regular polygon itself repre-
sents the trivial case {n/1}. A polygram consists of star poly-
gons. Known for more than 2,000 years are the pentagram 
{5/2} and the hexagram {6/2}. In the sevenfold case, in addi-
tion to the regular heptagon {7/1}, there are the two star hep-
tagons {7/2} and {7/3} (Fig. 1). The other possible ones 
coincide with one of these.

The morphological role of these star polygons consists in 
relating regular heptagons of various size characterizing a 
molecular form. In particular, the central hole can very often 
be obtained from the external polygonal boundary enclosing 

the biomacromolecule by star polygons, as it has already 
been shown in the hexagonal case [5].

In the case of α-hemolysin, the external boundary is a regu-
lar heptagon with vertices at the positions of the residue 
Glu71 in the cap domain of the seven chains, whereas the ver-
tices of the central hole can be defined by the positions of the 
residue Lys147 of the transmembrane stem, which has the 
structure of a right-handed β-barrel. These boundaries are 
related by a {7/3} star heptagon (Fig. 2). This implies that the 
two heptagons have the same orientation and that the axial dis-
tances of Glu71 and Lys147 are in the ratio 1:μ determined by 
the symmetry of {7/3}, with μ = cos(3π/7)/cos(π/7) = 0.2469….

The structure of poly d(As4T) · poly d(As4T) projected 
along the helical axis is dominated by relations expressible 
in terms of {7/2} star heptagons. The central molecular hole
(due to s4T, where s4T indicates that the oxygen in the 
position 4 of the thymine is replaced by a sulfur atom) is so 
small with respect to the external heptagonal boundary, that 
at this stage no reliable scaling factor can be derived from 
polygrammal relations. Therefore, only the molecular form 
of the A subsystem is presented here (Fig. 3). One sees that, 

Fig. 1 The two regular heptagonal star polygons and their Schläfi
symbol {7/2} and {7/3}.
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in this case, the central hole is scaled with respect to the 
external heptagon by a factor -m1

2  with μ1 = cos(2π/7)/
cos(π/7) = 0.6920…. The minus sign implies that the two
heptagons are in reverse orientation.

Following these preliminary observations, in the next sec-
tion, an outline is given of a crystallographic characterization 
of star heptagons. In the other two sections, the molecular 
forms of α-hemolysin and of poly d(As4T) · poly d(As4T) are 
analyzed further. Additional morphological features (like the
elliptic holes recognizable in Fig.  3) are discussed on the 
basis of crystallographic linear scalings, which are dilations 
(or contractions) in a given direction only.

�Crystallography of Star Heptagons

The symmetry of a regular heptagon is given by the 2-D 
point group K0 = 7 mm generated by a rotation R of order 7 
and a reflection m:

	 K R m R m Rm0
7 2 2

1= = = ( ) =〈 〉, | 	 (1)

The frame of general crystallography adopted here [1] 
requires a faithful integral representation Γ of K0, whose 
minimal dimension, in the present case, is 6.

	
K K GL0 0 6� �Γ ( ) ⊂ ( ),

	
(2)

Where ≃ denotes group isomorphism. This representation 
can be obtained by applying R and m to six of the seven 
radial vectors a1, a2,…, a7 of the heptagon. The orientation 
chosen is with a7 along the positive direction of the x axis, 
and with the other ak as basis a for the representation Γ: 
a={a1, a2,…, a6}. This basis is linearly dependent in the real 
ℝ, but linearly independent in the rational integers ℤ. The
components of these vectors with respect to an orthonormal 
basis e={e1, e2}, with e1 and e2 in the direction of the x and y 
axis, respectively, are given by:
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Fig. 2  Axial view of the heptameric protein α-hemolysin with a prismatic enclosing form. The two delimiting heptagons,  
with vertices at the projected positions of the residues Glu71 and Lys147, define the external boundary and the central hole, respectively.  

They are related by a scaling transformation with factor μ3 = 0.2469…, which obeys the same crystallographic restriction  
as in the star heptagon {7/3}.
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The representation matrices of the generators are then 
given by:
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(4)

By considering R(a) and m(a) as orthogonal transformations 
Rs and ms in a 6-D Euclidean space (the so-called super-
space) one gets a formulation equivalent to a higherdimen-
sional crystallography. Indeed, Rs and ms leave invariant a 

6-D lattice Σ, spanned in the superspace by a basis 
a a a as s s s= …{ }1 2 6, , , , with metric tensor

	 g g i kii
s

ik
s= = - ¹6 1, for 	 (5)

left invariant by Rs and ms . The projection π : a ak
s

k→  maps 
the lattice Σ into the ℤ -module M a a a= …〈 〉1 2 6

6, , , � � , of 
all integral linear combinations of these basis vectors. 
Accordingly, K0 leaves M invariant: K0M = M.

The relation between the two bases a and as can be 
derived from the decomposition of the representation Γ into 
irreducible components. Looking at the character table of
D7 ≃ 7 mm (Table 1) one finds:

	 Γ Γ Γ Γ= ⊕ ⊕( ) ( ) ( )3 4 5 	 (6)

where
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with α and β the two generators of the abstract group D7, 
as in Table  1, and e denoting the 2-D orthonormal basis 
introduced above. This implies the following embedding of 
the basis a in the 6-D basis as:
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(8)

Making use of the 2-D metrical relations between the 
elements of the basis a (with indices taken modulo 7):

	
a a a ki i k+ = ( )0

2 cos j 	 (9)

one verifies that the basis as form, indeed, the Rs-invariant 
metric tensor (a0

2/2)gs. The orthogonal projection π consid-
ered above from the superspace to the heptagonal plane and 
with corresponds to the homomorphism Γ ΓK K0

3
0( )→ ( )( ) , 

is given by:

	 p a a kk
s

k= = ¼, , , , .1 2 6 	 (10)

The idea on which a molecular crystallography approach is 
based is that there are possibly hidden molecular structural 
relations expressible as additional transformations leaving 
the ℤ -module M invariant. In the present case, this is indeed 
the case for the radial scaling symmetries of a self-similar 

Table 1  Character table of the point group D7 (φ = 2π/7)

D7 ε α, α−1 α2, α−2 α3, α−3 βαk

Γ(1) 1 1 1 1 1

Γ(2) 1 1 1 1 −1

Γ(3) 2 2cos φ 2cos 3φ 2cos 3φ 0

Γ(4) 2 2cos 2φ 2cos 3φ 2cos φ 0

Γ(5) 2 2cos 3φ 2cos φ 2cos 2φ 0

Fig. 3  Axial view of the A subsystem of the nucleic acid poly 
d(As4T) · poly d(As4T) in a Z-DNA conformation. As in the previous 
figure, the external heptagon (delimited by the sugar) and the central 

hole (due to the adenine) are in a scaling relation, which obeys a 
crystallographic restriction, as revealed by the star heptagons {7/2}

inserted. The negative value of scaling factor −µ1
2 , with μ1 = 0.692…,

implies that the central hole and the external boundary have  
a reverse orientation.
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star heptagon (obtained from a starting regular heptagon by 
successive direct and inverse star constructions).
In the case {7/2} the radial scaling transformation S−μ1:
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has a negative scaling factor –μ1 with
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In the case {7/3}, there are two radial scaling transformations,
with scaling factors indicated by –μ2 and μ3, respectively
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where:

m j j2 2 4 2 0 35689= + = ¼cos cos . ,

and

	 m j3 1 2 0 24697= - + = ¼cos . 	 (14)

These additional transformations allow the extension of the 
original Euclidean point group K0 to infinite order, in a way 
still leaving the ℤ -module M invariant:
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Note the relations:
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In a heptagram, however, the points at the intersection of 
the two different star polygons {7/2} and {7/3} have also to
be considered for characterizing its self-similar symmetry. 
These points cannot be obtained by radial scaling from the 
heptagon considered but have, nevertheless, also integral 
coordinates (in the a basis). The reason is that they follow 
from integral linear scalings Xλ, Yλ along the x and the y 
axis, respectively, whose product is a radial scaling radial 
scaling Sλ with the same scaling factor λ. This is a property 
that the radial scalings considered, so far, do not have. For 
fixing the ideas, consider a point P with coordinates 
P(e) = (x, y). Then, for these linear scaling transformations 
one has:

	

X x y x y Y x y x y

S x y x y
λ λ

λ
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In particular, there are two sets of linear transformations 
ensuring the equivalence of the additional points with the 
previous ones:
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with scaling factors μ4 and –μ5, where:
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cos cos . ,
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Note that X−λ ≠ −Xλ and so also for Y−λ.
These results allow the expression of all the intersection 

points of a heptagram as integral linear combination of the 
basis vectors and to assign to each point a set of integral 
indices, which are the components of the corresponding 
position vectors expressed in the basis a:
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The following conventions for labeling the heptagrammal 
points have been adopted:
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where μh
′ denotes (±)μh taken with the appropriate sign. 

A relation between scaling factors and indices is visual-
ized in Fig.  4. The missing indices are easily computed  
by applying Rk(a) to those indicated. Table  2 gives the 
result.

The intersection points Qij of a heptagram represent 
one way to arrive at crystallographic linear scalings, but 
this way does not reveal their characteristic structural 
role. In order to find out the typical aspect, consider how 
the vertices of a regular heptagon (chosen in the x orienta-
tion) transform under the combination of linear scalings 
to first order Xλ, Yλ, and the sevenfold rotations of the 
point group K0 as in the double cosets K0 Xλ K0 and K0 Yλ 
K0. The image points of the ak one gets, all are on  
circles with center Ck at the mean distance between ak and 
Sλ ak, for Sλ = Xλ Yλ. While Xλ gives rise to an off-center 
heptagon in the same x orientation, Yλ yields an heptagon 
in the reverse orientation − x. Figure  5 illustrates these 

Fig. 4 Labeling convention of the intersections point in a heptagram consisting of the two star polygons {7/2} and {7/3} with examples of their
mutual scaling relations. Thus, P71, P72, and P73 are obtained from P70 by radial scaling transformations S

iµ
, with scaling factors –μ1, −μ2, −μ3, 

respectively, whereas linear scalings Y
jm  along the y axis and with factors μ4 and –μ5, relate correspondingly Q21 with P23 and Q12 with P32.

A. Janner
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properties for the case λ = = …−m4
1 2 60388.  given above. 

The presence of off-center circles in the structure of a 
given molecular form strongly suggests the possible pres-
ence of linear scaling.

�α-Hemolysin

α-Hemolysin is a heptameric transmembrane pore protein.
The data for the atomic coordinates have been taken from
PDB 7AHL by Song et al. [10]. The structure consists of 
seven chains labeled A to G. Before projecting the structure 
along the axis, the original data have been oriented and cen-
tered using the positions of the residue Glu71 in the chains A, 
D, F. The corresponding prismatic molecular form has 
already been presented in the introduction (Fig. 2).

Fig. 5  Off-center circles obtained by applying linear scalings with given scaling factor to the vertices of a regular heptagon. Indicated is how the 
(x, y) coordinates of these points are transformed by Xλ and Yλ to (λx, y) and (x, λy), respectively. The remaining points follow from the sevenfold 
rotational symmetry (leading to conjugated linear scalings R X Rk k

l
−  and R Y Rk k

l
− ). Here, the scaling factor l m= = …−

4
1 2 60388.  ensures that 

the matrices Xλ(a) and Yλ(a) are integral, so that all these points can be indexed by integers.

Table 2  Indexed intersection points of the heptagram (see Fig. 4)

{7/1} {7/2} {7/3}

P10 100000 P11 202112 P12 101111 P13 201111

P20 010000 P21 202011 P22 121022 P23 111000

P30 001000 P31 111110 P32 210120 P33 011100

P40 000100 P41 011111 P42 021012 P43 001110

P50 000010 P51 110202 P52 220121 P53 000111

P60 000001 P61 211202 P62 111101 P63 111102

P70 111111 P71 201102 P72 120021 P73 211112

{7/2} ∩ {7/3}
Q11 010110 Q21 001011 Q31 111012 Q41 211121

Q51 110001 Q61 120111 Q71 101100

Q12 111021 Q22 100011 Q32 121112 Q42 210111

Q52 110100 Q62 011010 Q72 001101

Polygrammal Symmetries in Biomacromolecules: Heptagonal Poly d (As4T) ⋅ poly d (As4T)…



76

The projection of a single chain shows that the scalerota-
tion symmetry of the star polygon {7/3}, which characterizes
the molecular form of the heptamer, is already predisposed 
in the folding of the monomer (Fig. 6). One sees that, in addi-
tion to the residues 71 and 147 indicated in Fig. 2, several 
more (150, 141, 135, 121, and 115) also fit fairly well with 
the intersection points of the star heptagon. The correspond-
ing scale-rotation transformations, however, do not connect 
atomic positions, but only vertical lines (parallel to the cen-
tral axis) through these positions. This does not exclude the 
possibility of a 3-D point group relating these same posi-
tions. In the spirit of molecular crystallography, one even 
expects the existence of such a group, which would explain 
the molecular form observed, but this investigation has not 
yet been carried out. From the molecular form one finds 
some evidence for additional linear scaling, but not strong 
enough to be presented here.

�Poly d(As4T) · poly d(As4T)

The left-handed double helix formed by the two strands of poly 
d(As4T) · poly d(As4T) is characterized by a dinucleotide repeat 
with line group symmetry 7622 of which the details have been 
reported in Nature [11]. The corresponding data are listed as 
structure No. 16 in a survey by Chandrasekaran and Arnott,
published in a volume of the Landolt-Börstein collection [12].

It is convenient to first consider the molecular form of each 
nucleotide subsystem separately. The form of the A-subsystem 
has already been presented in the introduction (Fig. 3), that of 
the s4T subsystem is shown in Fig. 7. Both share the absolute 
value of scaling factor μ1 = 0.6920… of the star heptagon
{7/2}, but not always the corresponding negative sign. This
implies that the successively scaled heptagons may have the 
same or the reverse orientation. While in the case of adenine 
the central hole is already reached at the second contraction 

Fig. 6  A protomer of α-hemolysin is shown in a view along the central axis of the heptamer and in relation with the star heptagon {7/3} fitted at
the position of the residue 71. The projected positions of a number of other residues (150, 147, 141, 135, 121, and 115) at points of the star 

heptagon are an indication that the protomer folds in a way predisposed not only to the sevenfold rotational symmetry (in the stem domain), but 
also to crystallographic scale rotations, which relate the stem domain with the cap domain, in a way still requiring further investigation.
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level, that of the thymine is not simply scaled by a power of 
μ1. The heptagons scaled by μ1, μ1

2, μ1
3, show, however, the 

expected compatibility with morphological features.
This general behavior is confirmed when combining the 

two subsystems in the molecular form of the dinucleotide 
shown in Fig. 8. As the external boundaries of the two sub-
systems are slightly different in size, the combination 
requires an adaptation. The one of the A subsystem gives the 
best fitting for the whole, despite the fact that two  
of the phosphate oxygens of the s4T nucleotide are no more 
inside the heptagon of the external boundary. The morpho-
logical importance of the star heptagon {7/2} is confirmed.
Looking at Fig. 8, one recognizes elliptically shaped 

holes tangent to the external heptagon at midedge positions. 
As already pointed out in the introduction, this indicates the 
possible presence of linear scalings which, as explained in 
the second, can give rise to off-center circular structures. In 
the present case, the natural candidates are the two linear 
scaling transformations X Ym m1 1

,  whose product gives the 
radial scaling Sm1

. These linear scalings have not been con-
sidered so far because they not integral in the heptagonal 
basis a. However, the appearance of midedge heptagonal

Fig. 8 Molecular form adopted for the (As4T) system of poly 
d(As4T) · poly d(As4T), with the sugar of the A nucleotide delimiting the 
external boundary, leaving outside oxygens of the phosphate of the s4T 

nucleotide. Despite this mismatch, the overall structure is still compatible 
with internal prismatic boundaries base on {7/2} star polygons.

Fig. 9  The elliptical holes visible in the molecular form of the A 
subsystem (as shown in Fig. 3) are obtained as off-center circles from 
linear scalings X Yµ µ1 1

,  (and their R-conjugated ones) applied to the 
midedges of the external heptagon, in the same way as illustrate  
in Fig. 5, but now for μ1 = 0.692… One sees that the central hole  

then follows by a further radial scaling transformation Sµ1
, and this  

is unexpected.

Fig. 7  Prismatic molecular form of the s4T subsystem in poly 
d(As4T) · poly d(As4T) viewed along the helical axis. Shown are

successive internal boundaries scaled from the external heptagon by 
μ1, μ1

2, μ1
3, respectively, where μ1 = 0.6920… is the same factor on

which the star heptagon {7/2} is based and which also plays a role in
the A subsystem (Fig. 3). In the present case, the central hole and the 

external boundary are not related by a scaling factor obeying 
crystallographic restrictions. (See also Fig. 10).
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points with half-integer indices, suggests a corresponding 
centering of the 6-D lattice, leading to half-integers in the 
entries of the linear scaling when expressed in what one 
could denote as the conventional basis a. One finds indeed:

	

X am1

3 2 3 2 1 2 1 2 3 2 5 2

1 2 1 0 0 0 1 2

3 2 1 1 2 1 2 1 3 2( ) =

− − − −
− −
− − −

/ / / / / /

/ /

/ / / /

−− − −
− −
− − − −








 3 2 1 1 2 1 2 1 3 2

1 2 0 0 0 1 1 2

5 2 3 2 1 2 1 2 3 2 3 2

/ / / /

/ /

/ / / / / /

















	 (23)

Y aµ1

1 2 1 2 1 2 1 2 1 2 1 2

1 2 0 1 1 1 1 2

1 2 1 1 2 3 2 1 1 2

1
( ) =

− −
− −

− − −

/ / / / / /

/ /

/ / / /

/ 22 1 3 2 1 2 1 1 2

1 2 1 1 1 0 1 2

1 2 1 2 1 2 1 2 1 2 1 2

− − −
− −

− −















/ / /

/ /

/ / / / / / 









	 (24)

with positive scaling factor μ1=0.6920…. The off-center
holes of the A subsystem are fairly well approximates by 
applying these linear scaling transformations to the mid-
edges of the external heptagon, as shown in Fig. 9. Moreover,

the central hole can also be described by a circle, which is a 
factor μ1

2 smaller than the one inscribed in the heptagon. One 
could also start from the central hole and arrive at the off-
center hole observed by applying the inverse radial scaling 
Sm1

1-  first, and then the corresponding linear dilation X m1
1- , 

Ym1
1-  in combination with the appropriate sevenfold 

rotations.
This last interpretation opens the door to a corresponding 

characterization of the molecular form of the s4T subsystem, 
as represented in Fig. 10. Starting from the heptagon of the
central hole with vertices at a mean O2 position of diadically 
related thymine molecules, one gets by a radial scaling Sm1

4-  
the heptagon formed by the corresponding mean C1 posi-
tions, and by a further Sm1

3-  transformation those correspond-
ing to the C6 ones. From this last heptagon, one obtains the 
circular off-center holes by the linear transformations X m1

2- , 
Ym1

2-  squares of the dilations given above. These off-center 
circles are thus related to the central hole by elements X m1

, 
Ym1

, R, and m of the point group, but no simple relation could 
be found with the heptagon delimiting the molecular form. 
The reason is perhaps that this heptagon does not represent 
the relevant molecular envelop for the s4T subsystem. This 
would explain why in this case there is no crystallographic 
scaling transformation relating the central hole and the 
external heptagon, as it is the case for the A subsystem.

Fig. 10  The same linear scalings as in Fig. 9 allow to find a better envelop for the s4T subsystem than the regular heptagon. Now successive 
radial scalings Sµ1

3  and Sµ1
4  relate this curved boundary to the internal circular ones through the C1 and the O2 positions of the thymine, 

respectively. The latter positions define the central hole.
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