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 Prologue

In the late summer of 1972, half way across the Pacific 
Ocean, I got into conversation with David Harker. We were 
both returning on a flight chartered by the American 
Crystallographic Association, to facilitate attendance at the 
1972 Congress of the International Union of Crystallography 
in Kyoto, Japan. Many of my memories of this first foray 
into involve Alan Mackay—including staying in a ryokan 
with him, and watching him gleefully embarrass several of 
our hosts with “difficult” Japanese characters.

Reconsidered in retrospect, the discussion with Dave 
Harker highlights the progress over 30 years in tackling one 
of the most fascinating aspects—to me—of Generalized 
Crystallography, to which both Alan and myself were 
exposed when working with J. D. Bernal in the Birkbeck 
Crystallography Department in the 1960s. I was just begin-
ning my scientific career in the study of liquids. And liquids, 
of course, cannot be treated by standard structural techniques 
as their molecules do not helpfully line up on a lattice as they 
do in crystals. Hence, the whole standard crystallographic 
technique armory is not available for the structural study of 
liquids. Apparently, the best we could do with diffraction 
techniques was to obtain the radial distribution function—the 
distribution of pair distances in the liquid. Interestingly, this 
function has a strong formal relationship with the Patterson 
function then used extensively by crystallographers in the 
solution of the phase problem. Harker had worked with 
Patterson and was, of course, responsible for the Harker 
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section of the Patterson function that was particularly useful. 
Talking with Harker, I took the opportunity to discuss the 
problems of liquid structure determination in the hope that 
his insight into the development and use of the Patterson 
function would suggest how we might move forward to try to 
obtain data on liquid structures that could be comparable in 
detail to that obtainable on crystals.

In the absence of a lattice, this seemed to me a tall order. 
Although having no clear ideas at the time as to how the 
problem of the absence of a lattice could be overcome, I 
argued with Harker that there must be some way of extract-
ing more information than the rdf and, ultimately, obtain 
really detailed structural information on those relatively 
complex liquids that are of biological and chemical impor-
tance, for example, in obtaining information on the mecha-
nisms of protein association and enzyme-ligand binding in 
solution. I felt that making significant progress in this 
direction would be a scientific career well spent. He very 
patiently listened, although I think he felt I was on a wild 
goose chase.

Thirty years on, things have changed dramatically. The 
major developments we have seen in radiation sources, 
instrumentation, and computational techniques have 
transformed the situation. I believe we have now achieved 
what I then saw as a dream. We really can do liquid state 
crystallography and obtain remarkably detailed structural 
information in relatively complex liquid structures. We 
can see how amphiphilic molecules interact with each 
other as temperature, pressure, and concentration are var-
ied. We can determine the structure of the hydration shell 
of a nonpolar molecule in aqueous solution and see how it 
is perturbed by adding salt. And we are, perhaps, on the 
threshold of understanding the structural basis of cru-
cially important phenomena, such as, the hydrophobic 
interaction.

In this paper, I try to summarize how we obtain this 
detailed structural information in the absence of a lattice. 
In addition to the technical advances mentioned above, 
leaves have also been taken out of the crystallographer’s 
technique book to enable the detailed information to be 
obtained in a way that perhaps parallels standard crystal-
lographic refinement techniques. I take as an example 
aqueous solutions of an amphiphile—tertiary butanol— 
which has a large nonpolar head group and a polar tail and 
is a system whose thermodynamics is classically hydro-
phobic [1]. Not only can we see details of the structures of 
the associations of these molecules in solution, we can see 
also how these differ from those predicted by computer 
simulations and, hence, begin to see how the standard 
potential functions used in such simulations might be sig-
nificantly improved. Finally, we can perhaps glimpse the 
structural origin of the entropic driving force for the hydro-
phobic interaction.

 Introduction

In the absence of a lattice, our description of the structure of 
a liquid has to be a local one. For a single component liquid, 
this structure is described by the radial distribution function 
g(r) (the rdf), which quantifies the ratio between the local 
density of atoms at a distance r from an atom at the origin to 
the average number density of atoms in the system. A two- 
dimensional analogy of the function is shown in Fig. 1 and 
indicates how useful structural information can, in principle, 
be obtained from this function.

A diffraction experiment uses the known wavelength of 
the (usually X-ray or neutron) scattering probe to obtain the 
information on pair-distance distributions contained in the 
radial distribution function. The scattering experiment mea-
sures the intensity scattered as a function of the scattering 
vector Q, defined simply as the difference between the scat-
tered and incident wave vectors, with a magnitude |Q| = 4π 
sin θ/λ, where 2θ is the scattering angle and λ the wavelength 
of the radiation used. From the scattered intensity, the struc-
turally significant structure factor S(Q) can be extracted, 
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Fig. 1 The radial distribution for a liquid in two dimensions.
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which can then be related to the radial distribution function 
through a Fourier transform relationship:
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Single component liquids are, however, of very limited 
interest when trying to understand interactions in solution. 
For any solution, there must be more than one different 
atomic component, so the above functions must be general-
ized. Consider a two-component system, with components α 
and β, with Nα, Nβ (where Nα + Nβ = N) atoms of each, and the 
atomic fractions of each component defined as cα = Nα/N, 
cβ = Nβ/N. The structure factor can be split into three terms—
partial structure factors Sαβ—each relating to different pairs 
of interacting atoms αα, ββ, and αβ. Thus, partial radial dis-
tribution functions gαβ (r) are defined similarly to the radial 
distribution function, but with the added identification of the 
type of atom both at the local origin and at the distance r. We 
can then rewrite Eq. (1) as
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For a two-component system, we require three partial 
radial distribution functions to describe the structure of the 
system. For an n component system, n(n + 1)/2 partials are 
needed. Each of these partials will be related to a partial 
structure factor that is embedded in the measured diffraction 
data and, taken together, comprise the total structure factor
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where bα bβ are the scattering lengths of the components α 
and β.

A single diffraction experiment gives us access to only the 
total radial distribution function g(r), which is a weighted 
sum of the partial rdfs. This is not very useful information 
for a solution: we need to try to get closer to determining the 
partial structure factors. The key to achieving this is given in 
Eq. (3): the fact that the total structure factor is a weighted 
sum gives us a way forward. One of the weighting factors is 
the scattering length of each component. If we could perform 
an experiment on the same system, but somehow change the 
scattering length, we could perform more than one experi-
ment on chemically similar systems and begin to extract the 
kind of more detailed information we really want.

That we can do this is made possible by the fact that the 
neutron is scattered by the nucleus and that many elements 
have different isotopic forms. If these isotopic forms had dif-
ferent neutron scattering lengths, then we could perform an 
additional experiment on a system in which we change only 

the isotope of one of the components. Referring to Eq. (3), 
we could then obtain from a second scattering experiment a 
different structure factor F′(Q) in which, say bα, is replaced 
by bα′. Now performing a third experiment replacing the iso-
tope of the second component, bβ is replaced by bβ′. 
Alternatively, isotope α could be replaced by either a third 
isotope α″ (or what is, in effect, the same, a mixture of iso-
topes α and α′). We now would have three equations with the 
three partial structure factors as the three unknowns. In prin-
ciple, these could be solved for and the corresponding partial 
radial distribution functions obtained.

For relatively simple two-component liquids and glasses, 
such “full” partial structure factors and, hence, “full” partial 
radial distribution functions, have been extracted (see, for 
example, Ref. [2]). For the relatively complex systems in 
which we are here interested, performing the much larger 
number of isotopically distinct scattering experiments that 
would be necessary to extract all the partial rdfs looks a tall 
order. In our example case of t-butanol in water, there are 
seven chemically distinct atoms in the system (methyl car-
bon, methyl hydrogen, central carbon, alcohol oxygen, alco-
hol hydroxyl hydrogen, water oxygen, water hydrogen). We 
would require 7 × 8/2 = 28 isotopically distinct experiments 
to yield the 28 partial radial distribution functions (or “par-
tials” for short). Setting aside whether an appropriate set of 
isotopically distinct solutions could be prepared (not all ele-
ments have isotopes with significantly different scattering 
lengths), the requirements for neutron beam time, which is 
not cheap, would be extremely high. As we shall see below, 
there are other ways round the problem that enable us to 
obtain not only all the partials for a system such as this, but 
even to go beyond the partials to obtain even more detailed 
structural information on relatively complex solutions.

 Experimental

For the t-butanol–water system, performing 28 isotopically 
distinct diffraction experiments is not a realistic possibility. 
The “best” kind of isotopic substitution we can do on this 
system is to deuterate the hydrogens on (a) the methyl groups 
of the alcohol head group and (b) the water. In fact, for each 
substitution, we work with (a) fully deuterated, (b) fully 
hydrogenated, and (c) a 50:50 hydrogen/deuterium mixture. 
This gives three values of the neutron-scattering length of the 
substituted sites and, hence, for each triplet of substitutions, 
enables us to obtain three sets of (partial) radial distribution 
functions. We will call these gHH(r), gHX(r), and gXX(r). Here 
the subscript H refers to a site whose hydrogens are substi-
tuted, while the X subscript refers to all the nonsubstituted 
sites. Thus, for a set of substitutions on the methyl hydrogen 
sites of t-butanol, H refers to all the substituted methyl 
hydrogen sites, while X refers to all other sites.

Crystallography Without a Lattice
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The corresponding set of experiments can now be speci-
fied as follows.

 1. Solvent–solvent distribution functions are probed through 
substitution on the water hydrogen sites to yield the (par-
tial) radial distribution functions gHH(r), gHX(r), and gXX(r) 
for the solvent–solvent correlations. The three experi-
ments are made with (a) (CD3)3COD in D2O, (b) 
(CD3)3COH in H2O, and (c) 50:50 (CD3)3COH/
(CD3)3COD in 50:50 H2O/D2O.

 2. Solute–solvent distribution functions are probed through 
substitution on the alcohol methyl hydrogen and the water 
hydrogen sites. In combination with the solute–solute and 
solvent–solvent distribution functions, this yields the 
(partial) radial distribution functions gHH(r), gHX(r), and 
gXX(r) for the solute–solvent correlations. The three 
experiments are made with (a) (CH3)3COH in H2O, (b) 
(CD3)3COD in D2O, and (c) 50:50 (CD3)3COD/
(CH3)3COD in D2O.

 3. Solute–solute distribution functions are probed through 
substitution on the alcohol methyl hydrogen and the water 
hydrogen sites. In combination with the solute − solute 
and solvent − solvent distribution functions, this yields the 
(partial) radial distribution functions gHH(r), gHX(r), and 
gXX(r) for the solute − solvent corrections. The three 
experiments are made with (a) (CH3)3COH in H2O, (b) 
(CD3)3COD in D2O, and (C) 50:50 (CD3)3COD/
(CH3)3COH in 50:50 H2O/D2O.

Thus we appear to have specified nine isotopically dis-
tinct experiments. However, we note that samples 1(a), 2(a), 
and 3(b) are identical. Therefore, we perform only seven 
experiments to yield the nine (partial) radial distribution 
functions specified above, namely gHH(r), gHX(r), and gXX(r) 
for each of the solvent–solvent, solute–solute, and solute–
solvent cases considered.

 Theory

Despite the fact that we have only performed seven different 
experiments, we can use these data, together with other 
known chemical information, to extract the partial radial dis-
tribution functions we require. This is not a case of getting 
something for nothing—it is doing the same sort of thing as 
a normal crystallographer would do in refining a crystal 
structure in which the number of independent reflections 
is—as is usually the case for large molecules—less than the 
number of structural parameters that need to be refined. That 
refinement is constrained by what we know of the chemistry 
of the system (e.g., standard bond lengths and angles, non-
overlap of atoms). In effect, we do something similar in the 
liquid case.

The procedure used—the Empirical Potential Structure 
Refinement (EPSR) technique developed by Soper [3]—pro-
duces model ensembles of molecules that are consistent with 
the observed scattering. These ensembles can be interrogated 
to see the detailed geometries of the various intermolecular 
interactions in a given solution, just as sets of coordinate data 
from a crystalline refinement can be similarly mined. In 
summary, the procedure starts by setting up a Monte Carlo 
simulation of the system using a set of standard potential 
functions U 0αβ(r). The Monte Carlo simulation is then run to 
equilibrium, from which the various partial radial distribu-
tion function gαβ(r) are estimated. This, in general (in all 
cases we are aware of so far), fails to give adequate agree-
ment with experiment, indicating in passing that the starting 
potentials are inadequate to reproduce the experimental data. 
Thus, the initial potential energy function is then modified by 
adding sets of potentials of mean force between the various 
different sites. These are derived from comparing the experi-
mental g Dαβ(r) and the simulated gαβ (r) radial distribution 
functions. Thus we obtain a modified potential set:

 U r U r kT g r g rN D
ab ab ab ab( ) = ( ) + ( ) ( )0 ln /  (4)

This new potential is fed into the system and a further 
Monte Carlo simulation performed. The above procedure is 
then repeated until U r U rN

ab ab
0 ( ) » ( )  and g r g rD

ab ab( ) » ( )  
for all r and for all pairs of atoms α, β. The resulting experi-
mentally consistent ensembles can then be interrogated to 
obtain site–site partial radial distributions to examine the 
detailed structure of the system. In passing, we can note that 
the way in which the potential function is modified to bring 
the simulation into agreement with the experiment may be 
able to guide us in improving the potential functions origi-
nally used in the system—or at least give us an idea of what 
aspects of the starting potentials need modification. Note that 
what is described above is an earlier implementation of 
EPSR, which operated in real space, i.e., the comparisons 
were made between partial radial distribution functions. The 
normal implementation is now in reciprocal space, i.e., using 
the partial structure factors Sαβ (Q) to modify the potential.

 Results

 Partial Radial Distribution Functions

Now that we have these ensembles of molecules, we can 
extract whatever structural information we want. The 28 par-
tial radial distribution functions for t-butanol water at three 
concentrations (0.06, 0.11, 0.16 mole fractions) [4] are 
shown in Figs. 2 and 3. The various site labels are: CC, cen-
tral carbon; C, methyl carbon; M, methyl hydrogen; O, alco-
hol oxygen; H, alcohol hydrogen; Ow, water oxygen; Hw, 
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Fig. 2 Intermolecular partial rdfs for 0.16 (O, top), 0.11 (+, middle), and 0.06 (−, bottom) mole fraction t-butanol in water.
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water hydrogen. There is clearly a tremendous amount of 
information in these functions. We now proceed to look at 
some of this information.

First, looking at the central carbon–central carbon radial 
distribution function (Fig. 3), we see for all three concentra-
tions a broad peak centered between 5.5 and 6.0 Å. The peak 
position tells us immediately that even at the lowest concen-
tration there is direct contact between neighboring t-butanol 
molecules: the molecules are not—as suggested in earlier 
models of the hydrophobic interaction [5]—separated by an 
intervening solvent layer. The area under this peak tells us 
how many molecules, on average, surround a central solute 
molecule. This and other coordination numbers are given in 
Table 1: it rises from 2.8 ± 0.6 at 0.06 mole fraction, through 
4.4 ± 0.6 at the intermediate concentration, to 5.8 ± 0.6 at 
0.16 mole fraction. The fact that significant solute associa-
tion is found at the lowest concentration was perhaps unex-
pected, suggesting some tendency to microscopic phase 
separation.

The CC-Ow partial in Fig. 3 gives us information on how 
the water molecules are arranged around the solute molecule 
from the point of view of the t-butanol’s central carbon. We 
note two peaks at around 3.7 and 4.8 Å, respectively. The 
shorter distance is consistent with a water oxygen hydrogen 
bonding to the hydroxyl group of the alcohol, while the 
broader peak is at a distance consistent with waters sur-
rounding the nonpolar head group, i.e., those in the hydration 
shell of the nonpolar head. Integration under this latter peak 
tells us (see Table 1) that the number of water molecules in 
this hydration shell falls from about 21 at the lowest concen-
tration to about 13 at the highest—water molecules are, as 
expected, displaced from the hydration shell as the solute–
solute coordination increases with concentration in the man-
ner described above.

Integration under the first, hydrogen-bonding peak gives 
an essentially concentration invariant figure of 2. This tells 
us that each alcohol molecule hydrogen bonds to two water 

molecules through the polar tail. We can compare this with 
the O-Ow, O-Hw, and H-Ow coordination numbers in Table 1: 
not only are the values fully consistent with the alcohol 
hydroxyl group making two hydrogen bonds to water, but 
they also demonstrate that one of these waters donates a 
hydrogen to the alcohol oxygen, while the second water 
accepts a hydrogen from the alcohol.

The bottom three lines of Table 1 give information on the 
solute–solute hydrogen bonding interactions through the 
polar tails. For the lowest concentration, as is shown in the 
appropriate O-O, O-H, and H-H partials in Fig. 2, there is not 
even a peak visible at the appropriate hydrogen-bonding dis-
tance, showing effectively zero intermolecular hydrogen 
bonding. Even at the two higher concentrations, the peak 
areas are very small, suggesting that solute–solute hydrogen 
bonding is extremely limited. These results seem to be telling 
us that the t-butanol alcohol group preferentially bonds to 
water molecules rather than to other t-butanols. Thus, we can 
conclude quite clearly that the experimental data is not con-
sistent with a significant amount of alcohol–alcohol hydrogen 
bonding at these concentrations. As the initial Monte Carlo 
simulations performed as part of the EPSR refinement pro-
cess suggested a larger degree of intermolecular hydrogen 
bonding, there are indications here that the model potentials 
used for this system overemphasize the strength of the inter-
molecular hydrogen bonding interaction at the expense of the 
water–alcohol interaction. As the stability of a protein is a 
delicate balance between protein–protein and protein–water 
hydrogen bonds, this result indicates that work needs to be 
done on these hydrogen bonding potentials if they are to be 
seriously used in modeling biomolecular interactions.

 Spatial Distribution Functions

Although all the information we should need to understand 
structure is, in principle, included in the full set of partial 
radial distribution functions, these functions are still averages 
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Fig. 3 The molecular centers function for 0.16 (O), 0.11 (+), and  
0.06 (−) mole fraction t-butanol in water.

Table 1 Selected coordination numbers for aqueous t-butanol solutions

Correlation Rmin (Å) Rmax (Å)
0.06 Mole 
fraction

0.11 Mole 
fraction

0.16 Mole 
fraction

CC-CC 4.0 7.0 2.8 ± 0.6 4.4 ± 0.6 5.8 ± 0.6

CC-Ow 3.0 4.0 2.1 ± 0.4 2.2 ± 0.3 2.0 ± 0.2

4.0 6.2 21.0 ± 1.2 16.4 ± 0.9 12.8 ± 0.6

O-Ow 2.3 3.3 2.2 ± 0.4 2.3 ± 0.3 2.1 ± 0.3

O-Hw 1.4 2.5 1.2 ± 0.3 1.3 ± 0.2 1.2 ± 0.2

H-Ow 1.4 2.5 0.8 ± 0.2 0.9 ± 0.2 0.9 ± 0.2

O-O 2.4 3.25 − 0.1 ± 0.1 0.2 ± 0.1

O-H 2.5 3.5 − 0.1 ± 0.1 0.1 ± 0.1

H-H 1.6 3.0 − 0.2 ± 0.1 0.3 ± 0.1
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over orientations of both the central molecule at the origin of 
the function, and the neighboring molecule at a distance r. 
As we have complete data on the coordinates of all the sites 
on all the molecules in the model ensembles we are interro-
gating, we can construct further functions that enable us to 
look at the relative orientations of molecules.

First, we imagine ourselves sitting on a molecular site 
and looking at the various neighbors at different distances. 
We begin to note that there is a preference for a certain atom 
not only at a given radial distance corresponding to a peak 
in the partial radial distribution function, but also that peak 
tends to be in a particular direction. We thus can construct a 
further pair-distribution function that tells us the orienta-
tional preference of a particular site as a function of distance 
from the central site. This function, the spatial density func-
tion, gives us orientational information on the nature of the 
interactions between the various molecules in our solution. 
For example, referring again to Fig. 3, we have a peak that 
tells us that there are neighboring t-butanols (specified by 
the positions of their central carbon atoms) at a distance 
centered between 5.5 and 6 Å. We do not know from this 
orientational average the directions relative to the geometry 
of the central t-butanol in which these molecules are to be 
found. Do they cluster around the head groups or are there 
some contacts through the tails? What we really want to do 
is to assign a location on a surrounding sphere—in essence 
a latitude and a longitude—for each of the neighboring mol-
ecules included under the peak shown in Fig. 3. This is what 
the spatial density function gαβ (r, Ω) does [6]. It represents 

a three- dimensional (3-D) map of the density of β sites as a 
function of radial distance, r, and orientation Q about a cen-
tral site α.

The spatial density function of t-butanol molecules 
around a central t-butanol molecule, defined with reference 
to the central carbon sites of each, is shown in Fig. 4 (left 
panel) for the 0.06 mole fraction concentration at 25 °C. The 
continuous density above the central t-butanol molecule and 
the three sections curving down show the angular distribu-
tions around the central molecule of the molecules that are 
under the broad peak in Fig. 3. We thus have more informa-
tion than in that orientationally averaged partial radial distri-
bution function: in addition to the preference for the 
“capping” position, there is greater density of neighboring 
molecules in three orientations separated by about 120°. 
Interestingly, these directions correspond to the positions 
between the three methyl groups on the head group of the 
central molecule, which enables a neighboring molecule to 
approach slightly closer than if it were approaching along a 
direction in which a methyl group was located. In fact, if we 
consider the concentration dependence of the peak position 
in Fig. 3, we see a slight outward move as the concentration 
is reduced. This outward move—which separates out a low-r 
shoulder at the lowest concentration—appears to be related 
to an apparent compressive driving force at the higher con-
centrations, which “pushes in” the neighboring t-butanol 
molecule. To anticipate the following section, the methyl 
groups on neighboring molecules seem to be engaging with 
each other like two cogwheels.

Fig. 4 The spatial density function of 0.06 mole fraction aqueous t-butanol at 25 °C (left) and 65 °C (right).

Crystallography Without a Lattice
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 Orientational Distribution Functions

In the discussion of the previous paragraph, we are able to 
comment only on the positional distributions of the β sites 
around the central α site. We do not know how the neighboring 
molecule is oriented with respect to the central one. This infor-
mation would obviously be useful in understanding the chemi-
cal nature of the interactions between the molecules in the 
various orientations around the central molecule: for example, 
are the nonpolar groups of the neighboring t- butanol in direct 
contact with the nonpolar groups of the central t-butanol, or 
are other orientations involved? Moreover, if we increase the 
temperature to 65 °C, how would an enhancement of the 
hydrophobic interactions driving the t-butanol association 
show up? Does the nature of the solute–solute interactions 
change? The spatial density function for 65 °C in the right-
hand panel of Fig. 4 already shows that there is a shift in sol-
ute–solute interaction away from the head group to the polar 
tail: what is the chemistry of these interactions in the case?

Just as when moving from the partial radial distribution 
function to the spatial density function, we added orienta-
tional information to the molecules under the one- 
dimensional peak of the partial, so here we now need to add 
orientational information to the molecules in the lobes of the 
spatial density functions such as those in Fig. 4. As we have 
the detailed coordinate data in the ensembles generated by 
the EPSR refinement, this information can be accessed. The 
orientational distribution function reduced disorder in the 
head-group to head-group interaction, an interesting conse-
quence of the increased temperature. Second, there is a sig-
nificant feature around 12 o’clock, which is indicative of a 
polar to nonpolar interaction, i.e., the head group of one mol-
ecule is interacting with the polar tail of a neighbor. A further 
point to note is that this lobe is shifted out to a distance of 
about 8 Å, so this appears not to be a direct contact between 
the hydroxyl group and the methyl head groups. Rather there 
is space for an intervening water molecule. We can, there-
fore, perhaps consider this as a neighboring t-butanol hydro-
gen bonding to one of the water molecules in the nonpolar 
hydration shell of the central molecule.

Finally, the bottom panel shows the orientational plot in 
the direction of the hydroxyl group of the central t-butanol 
molecule. The most obvious change to note is the growth of 
intensity around the 6 o’clock position at 65 °C. This lobe 
corresponds to t-butanol to t-butanol contacts through direct 
hydrogen bonding, an occurrence that, we have already 
noted, is much rarer at 25 °C. A second point to note is a 
splitting of the lobe around 12 o’clock that denotes polar to 
nonpolar contacts; at 65 °C, the inner lobe comes in closer, 
the rise in temperature appearing to make easier a close, 
apparently chemically unfavorable, contact.

Raising the temperature in this system thus seems to do 
several interesting things. First, the straight nonpolar con-
tacts seem to become more ordered. Second, there is an 

increase in the degree of direct hydrogen bonding between 
t-butanol molecules. Third, the temperature increase seems 
to make classically unfavorable interactions between polar 
and nonpolar groups easier. The “strengthening” of the non-
polar contacts might be expected from classical ideas of the 
temperature dependence of the hydrophobic effect. The other 
two effects seem less easy to relate directly to consequences 
of a hydrophobic driving force. g(r, ω1, ω2) relates the rela-
tive position vector r of two molecules 1 and 2, with their 
orientations ω1, ω2 in the laboratory reference frame. As this 
is strictly a function of nine variables (three positional, six 
angular), there are major computer memory limitations to 
storing this function, even when the variables are reduced by 
symmetry. An efficient way of dealing with this problem is 
to expand the orientational correlation function as a spherical 
harmonic expansion. The correlation function can then be 
stored as a series of spherical harmonic coefficients [7] 
h(l1l2l; n1 n2; r), where l1, l2, n1, n2 relate to the orientational 
coordinates ω1 and ω2, while l relates to the spatial distribu-
tion of molecule 2 about molecule 1.

Figure 5 shows the definition of the coordinate system 
used for both the orientational position of the neighbor with 
respect to the geometry of the central molecule and for the 
orientation of the neighboring molecule with respect to the 
first. The two angles θ1 and φ1 describe the direction of the 
neighbor (the central molecule being rotationally averaged 
about the Z-axis shown) and the three Euler angles φm, θm, 
and χm define the orientation of the neighboring molecule. As 
a first example of its use, we show in Fig. 6 correlation maps 
of θm for the 0.06 mole fraction concentration at 25 °C for 
three values of θ1. The θ1 = 0° plot shows high density for θm 
around 180°, i.e., the dominant interaction in this direction is 
with the two t-butanol molecules making contact through 
their nonpolar head groups. This is classically what we 
would expect for a system subject to a hydrophobic driving 

Fig. 5 Schematic diagram of the coordinate system used to define the 
orientational correlations between two t-butanol molecules.
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force. Moving to the θ1 = 75° plot, we see the highest inten-
sity between the 6 o’clock and 9 o’clock positions, again 
consistent with a dominant nonpolar to nonpolar contact as 
shown in the figure. Here, however, there is some—though 
small—intensity around the 1–2 o’clock position, indicating 
some contribution from the polar to nonpolar contact, 
again indicated by the molecules in the figure. Finally, 
moving to the θ1 = 135° plot, we note bright lobes in the two 
molecular orientations shown—clearly these correspond to 
intermolecular hydrogen bonding. We have already noted, 
however, that these contacts occur only rarely in this solu-
tion. What the orientational correlation functions tell us is 
that, even if the intermolecular contacts in this region of the 
central molecule are rare, when they do occur, they are of a 
typically hydrogen bonding nature.

A second example of the information in the orientational 
correlation function refers back to the spatial density func-
tions shown for the 0.06 mole fraction concentration at the 
two temperatures of 25 and 65 °C (Fig. 4). What can we learn 
about the change in the nature of these intermolecular inter-
actions as the temperature is raised in such a way as to (we 
expect) enhance the hydrophobic driving force [8]? We have 
already seen that at 25 °C the lobes in the spatial density 
function relate to nonpolar to nonpolar contacts through the 
head groups of neighboring molecules; at the higher tem-
perature (Fig. 4, right-hand panel), these lobes shrink, and 
there is significant growth in contacts at the polar end of the 
molecule. What is the chemical nature of these new contacts?

We can answer all these questions by referring to the plots 
in Fig. 7. The left-hand panels relate to the 25 °C solution, 

Fig. 6 Sections through the orientational correlation function (correlation maps) of two t-butanol molecules in 0.06 mole fraction aqueous 
solution at room temperature. The molecular arrangements shown are the dominant ones corresponding to the highest contour levels in the plots. 

For each plot shown, the angular variable plotted is θm.
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while the right-hand column relates to 65 °C. The top two pan-
els are plots through the two spatial density functions of Fig. 4 
and show that the dominant head-to-head contact indicated by 
the bright lobe around 12 o’clock for 25 °C is reduced in favor 
of increasing intensity around 5 and 7 o’clock in the 65 °C 
solution. The second panel shows orientational correlation 
function plots of θm. The dominant intensity around 180° again 
indicates a dominance of nonpolar contacts through the head 
groups of contacting molecules. Moving right to the 65 °C 
panel, we find two interesting points. First, the 6 o’clock fea-
ture is a little “tighter” indicating.

 Structural Basis of the Hydrophobic 
Interaction

The above examples show that we can now obtain detailed 
geometrical information on intermolecular interactions in 
solution. We can see how solute molecules interact and how 
these interactions might change under changed external con-
ditions. We conclude by addressing some structural issues 
relating to the perturbation of the water structure in our 
t-butanol solution. These impinge directly on the nature of 
the solvent ordering that is thought to be the driving force for 
the hydrophobic interaction.

First, we note the classical view of the nature of the hydra-
tion shell of a nonpolar group and how this is thought to 
relate to the entropic driving force of the hydrophobic inter-
action. The conventional wisdom on this comes from the 
classic paper of Frank and Evans in 1945 [9]. In brief, this 
paper argues that the water in the hydration shell is somehow 
“more ordered” than that in the bulk. Bringing together two 
nonpolar surfaces in solution will then displace some of this 
“ordered” water into the bulk, with a consequent gain in 
entropy to the system. Hence, the source of the entropic driv-
ing force to hydrophobic association.

The detailed structural nature of this solvent ordering has 
been the subject of much discussion. The prevailing view 
seeming to prefer a picture something like the clathrate cage 
structure found in gas hydrate crystals [10]. Earlier work using 
the kind of techniques discussed here has partly verified this 
picture, although it also demonstrates that the simple cage 
model specifies too much order. Rather, we should think of the 
hydration shell as a disordered structure that has some rela-
tionship to the clathrate cage; we are, after all, dealing with a 

liquid in which such long-lived ordered structures are unlikely 
to exist. A more surprising conclusion of that work [10] con-
cerned the structure of the water in the hydration shell. Figure 8 
compares the hydrogen–hydrogen partial rdf for bulk water 
with that of the water in a 1:9 aqueous methanol solution [11]. 
The conclusion we can draw from the figure is both obvious 
and unexpected: there is no detectable difference between the 
two functions. As far as the water is concerned, when its struc-
ture is measured through the hydrogen–hydrogen radial distri-
bution function, a sensitive structural measure that includes 
all-important  orientational information, there is no observable 
perturbation of the structure in the direction of increased—or 
decreased—order. Similar conclusions have been drawn since 
in studies of a number of different systems containing nonpo-
lar head groups [4, 8, 12]. Thus, these structural results do not 
support the traditional view that the water in the first hydration 
shell of a nonpolar group is structurally more ordered than in 
the bulk.

The clue to the actual source of the entropic driving force 
may be in Fig. 9, which shows the spatial density functions of 
the first (top panels) and second (bottom panels) neighbor 
shells of water in (from left to right) bulk water at 25 °C, 0.06 
mole fraction t-butanol at 25 °C, and 0.06 mole fraction t-buta-
nol at 65 °C. We emphasize that we are looking here at the 
neighbourhood of the water, not of the nonpolar group itself.
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Fig. 8 The hydrogen–hydrogen partial rdf for a 1:9 mole fraction 
solution of methanol in water (line) compared to the same function  

for pure water.

Fig. 7 The intermolecular orientation correlation maps corresponding to the solute–solute interactions as a function of molecular centers 
separation in 0.06 mole fraction t-butanol–water solution. The left-hand column represents the correlations prevalent at 25 °C, while the right 
hand column those at 65 °C. The top panels represent the probability of finding a neighboring alcohol molecule about an arbitrarily chosen 

central alcohol molecule as a function of the angle θ1, i.e., the result is averaged over all orientations of the neighboring alcohol molecule. The 
middle panels illustrate the dominant orientation as a function of θm of a neighboring alcohol molecule in the direction above the methyl groups 
of the central molecule, i.e., where θ1 = ϕ1 = ϕm = χm = 0°. The lower panels show the relative orientations of alcohol molecules θm, in the direction 

of the hydroxyl group interactions where θ1 = 135°, φ1 = 60°, and φm = χm = 0°.
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Fig. 9 The spatial density functions of water molecules around a central water molecule for (top row) first neighbor shell water molecules and 
(bottom row) first and second shell waters. In turn, the panels show the distributions for (left) pure water at 25 °C, (center) 0.06 mole fraction 

t-butanol–water solution at 25 °C and (right) 0.06 mole fraction t-butanol–water solution at 65 °C. The first shell of neighbors (top row) 
illustrates the invariance between the three systems of the short-range correlations that are of a predominantly tetrahedral local water  

coordination. The appearance of the third neighbor shell in the direction of the central molecule O-H bonds for the alcohol–water mixtures 
(bottom center and bottom right) visibly illustrates the solute-induced compression of the solvent molecular density, which appears to be 

enhanced by increasing temperature.

Focusing first on the first shells in the top panels, we see the 
standard spatial density function for the first neighbor shell in 
water. The two lobes above the central water relate to neigh-
boring waters that accept hydrogens from the central water, 
while the broad lobe beneath indicates waters donating hydro-
gens to the lone pair region of the central water. This first 
neighbor shell appears unchanged in both t-butanol solutions.

When we look at the bottom panels, where the contour 
levels have been lowered to show up the second neighbor 
shell, we see some clear differences. Although the basic 
geometry of the second shell is similar in all four cases, there 
are very significant differences: the second shell is progres-
sively “pulled in” toward the central molecule as we move to 
the 25 °C solution, and then to the 65 °C case. Consequently, 
lobes of spatial density corresponding to the third shell begin 
to appear in the two solution plots.

This “drawing in” of the second shell is accompanied by 
a significant ordering of the second shell. This is, indeed, 
visible in the progressive narrowing of the band in the center 

of the bottom panels of Fig. 9 as we move from left (bulk 
water) to right (65 °C 0.06 t-butanol). It is perhaps more 
obvious, however, in the 2-D spatial density maps of Fig. 10, 
which are obtained by rotationally averaging goo (r, Ω) about 
the z axis (shown in Fig. 9). The second shell structural tight-
ening induced by the presence of the alcohol molecule can 
be seen in the breaks of continuity in the 10 and 2 o’clock 
directions as we move from bulk water to the two solutions. 
Also visible is the small, but significant, inward shift of the 
lobes, which is particularly obvious in the 12 o’clock direc-
tion. Taking sections through the appropriate lobes allows us 
to quantify both these inward shifts and the narrowing of the 
shell widths. In terms of the water molecule’s second neigh-
bor shell, we have clear evidence that the presence of t- 
butanol increases structural order in the system, an ordering 
that is enhanced with the rise in temperature to 65 °C. Perhaps 
it is here—in the water’s second shell rather than the alco-
hol’s first hydration shell—that the entropic driving force for 
the hydrophobic interaction is to be found.
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 Conclusions

“Normal” crystallography exploits the existence of the lat-
tice to maintain phase relationships between scattered beams 
of X-ray, neutrons, or electrons, which enable us to deter-
mine detailed structures of even highly complex molecules 
within a crystal. Without the crystal lattice, these phase rela-
tionships are lost, and we are left with being able to deter-
mine only distributions of pair distances. When we try to 
generalize crystallography to disordered systems, in general, 
we have to develop ways of obtaining high-quality structural 
information in the absence of this lattice “crutch.” If we do 
want to under-stand process in solution—which are central 
to much of chemistry and biology—we need to do structure 

determination without a lattice being present. We need to 
develop “no-lattice crystallography.”

Taking advantage of the past 30 years’ developments in 
neutron sources and instrumentation, allied to advances in 
both computer hardware and software, we have been able to 
make major progress in structure determination in the absence 
of the lattice. We can perhaps make a comparison with the 
advances in crystallography since the 1920s, when Kathleen 
Lonsdale’s solution of the structure of hexamethylbenzene 
and hexachlorobenzene caused Christopher Ingold to com-
ment that “the calculations must have been terrible … but one 
structure like this brings more certainty into organic chemis-
try than generations of activity by us professionals.” From 
those early molecular structures, we have advanced—taking 
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Fig. 10 The upper panels are 2-D maps of the second water shell spatial density functions of Fig. 9. These are obtained by rotationally 
averaging goo(r, Ω) about the z axis, i.e., about the ϕ coordinate. The map in (a) corresponds to pure water at 25 °C, in (b) to 0.06 mole fraction 

t-butanol–water solution at 25 °C, and in (c) to the alcohol solution at 65 °C. The disruption of the second shell water in the presence of the 
alcohol molecule can be seen in the 2 o’clock direction: this disruption is also marked by the inward migration of the shell, in particular, along 

the 12 o’clock direction.

Crystallography Without a Lattice



68

advantage of developments in radiation sources, instrumenta-
tion, and computing resources—to determining structures of 
macromolecular assemblies, such as the ribosome.

In the liquid case, we have similarly made major steps for-
ward. Christopher Ingold’s comment on molecular structure is 
paralleled in a way by the chemist David Feakins’ 1993 (per-
sonal communication) comment on liquids: “(our understand-
ing of solutions is) in the state that our knowledge of molecules 
would be if we only had, say, the thermodynamics and kinetics 
of reaction to guide us.” Thirty years ago it was unimaginable 
to either me or to David Harker on that Air China charter flight 
that we could determine the structural details of the interaction 
between two amphiphiles in solution, let alone how that inter-
action might change with temperature or concentration. Or 
that we would be able to measure either the hydration shell of 
a nonpolar group, or how the solvent in an aqueous solution of 
molecules containing large nonpolar groups. We can now do 
these things, and more. At the turn of the century, liquid state 
crystallography—crystallography without a lattice—has per-
haps come of age.
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