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Mackay, Anti-Mackay, Double-Mackay, Pseudo-Mackay, 
and Related Icosahedral Shell Clustersa,b

K.H. Kuoc

Abstract

Mackay introduced two important crystallographic concepts in a short paper published 
40 years ago. One is the icosahedral shell structure (iss) consisting of concentric icosahedra 
displaying fivefold rotational symmetry. The number of atoms contained within these ico-
sahedral shells and subshells agrees well with the magic numbers in rare gas clusters, (C60)N 
molecules, and some metal clusters determined by mass spectroscopy or simulated on 
energy considerations. The cluster of 55 atoms within the second icosahedral shell occurs 
frequently and has been called Mackay icosahedron, or simply MI, which occurs not only 
in various clusters, but also in intermetallic compounds and quasicrystals. The second con-
cept is the hierarchic icosahedral structures caused by the presence of a stacking fault in the 
fcc packing of the successive triangular faces in the iss. For instance, a fault occurs after the 
ABC layers resulting an ABCB packing. This is, in fact, a hierarchic icosahedral structure of 
a core icosahedron connected to 12 outer icosahedra by vertex sharing, or an icosahedron of 
icosahedra (double MI). Contrary to Mackay’s iss, a faulted hierarchic icosahedral shell is, 
in fact, a twinlike face capping of the underlying triangles; it is, therefore, called an anti-
Mackay cluster. The hierarchic icosahedral structure in an Al-Mn-Pd icosahedral quasicrys-
tal has a core of body-centered cube rather than an icosahedron and, therefore, is called a 
pseudo-Mackay cluster. The hierarchic icosahedral structures have been studied separately 
in the past in the fields of clusters, nanoparticles, intermetallic compounds, and quasicrys-
tals, but the underlying geometry should be the same. In the following a unified geometrical 
analysis is presented.
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�Introduction

From the point of view of generalized crystallography, Alan 
L. Mackay in 1962 published a short paper entitled “A Dense 
Noncrystallographic Packing of Equal Spheres” [1], which had 
made tremendous impact on particle, cluster, intermetallics, 
and quasicrystal researches in the past 40 years. With the advent 
of nanoscience and nanotechnology, the importance of this 
paper will become even more profound in the coming years.

a Structural Chemistry 2002, 13(3/4):221–230.
b This contribution is part of a collection titled Generalized 
Crystallography and dedicated to the 75th anniversary of Professor 
Alan L. Mackay, FRS.
c Institute of Physics, Beijing Laboratory of Electron Microscopy, 
Chinese Academy of Sciences, P.O. Box 2724,  
100080 Beijing, China (deceased)
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The main part of Mackay’s paper is the icosahedral shell 
structure (iss) consisting of a set of concentric icosahedra of 
increasing sizes. Icosahedron is a regular polyhedron with 
the 235  rotational symmetry, whose fivefold rotation is 
incompatible with the periodic translation of a crystal lattice 
and, therefore, noncrystallographic. Figure  1a–c shows, 
respectively, the sphere model of the first three icosahedral 
shells. From the packing of spheres in a triangle of these 
shells (one A sphere at the center), it is clear that they are the 
(111) planes of the face centered cubic (fcc) closely packed 
sequence ABCA…. The spheres along the fivefold axes are 
shown in solid circles, except for Fig. 1a in which only three 
spheres are drawn in solid circles. The A′ spheres in Fig. 1 
are the equivalent ones of the A sphere and both of them are 
written A in the present paper; so are the B′ and C′ spheres. 
In addition to the 12 spheres (solid circles) at the vertices in 
the second shell (Fig. 1b), there is enough room at the mid-
point of the 30 edges to accommodate further 30 spheres 
(open circles), adding to a total of 42 spheres. The third shell 
again has 12 spheres at the vertices, 60 spheres on the edges, 
and 20 more spheres at the centers of the 20 triangular faces, 
adding to 92 spheres (Fig. 1c). Using the cage notation @ 
introduced in the C60 literature, the first three icosahedral 
shells can be written as 1A@12B@42C@92A. Mackay 

showed that the number of spheres on the nth icosahedral 
shell is 10n2 + 2(n ≥ 1) and the total number of spheres within 
the nth shell N = {10(n + 1)3 − 15(n + 1)2 + 11(n + 1) − 3}/3 for 
(n ≥ 1) is, in fact, the magic numbers of 13, 55, 147, 309, 561, 
923, 1415, 2057, 2869, etc. In this context, it should be 
pointed out that earlier Pauling [2] has considered the icosa-
hedral coordination with a coordination number CN12  in 
metal crystals and Frank [3] in liquid metals. Both of them 
emphasized the higher packing density and also the higher 
stability of the icosahedral coordination in comparison with 
the fcc and hcp (hexagonal close-packed) structures, also 
with CN12.

The second and minor part of this paper, and nevertheless 
of equal importance, is the concept of the hierarchic icosahe-
dral structure reported in the last paragraph. According to 
Mackay [1], Bernal had communicated to him in 1960 the 
hierarchic icosahedral structure: “The unit of packing is the 
arrangement of 13 spheres as an icosahedron making a quasi-
sphere unit, 13 of which packed together to make a quasi-
sphere of next order.” In other words, this is an icosahedron 
of icosahedra and this can extend hierarchically in space. 
Mackay made it clear that “However, there is a clear relation-
ship between the early stages of such a hierarchic and the 
packing described above” and explained further that the 
hierarchic structure could be obtained from the iss by the 
introduction of a stacking fault in the fcc packing sequence 
of the latter, as shown in Fig. 1d, e. In other words, hierarchy 
could be an alternative of growth process to periodic transla-
tion. This brief hierarchic concept has inspired many research 
workers to probe it in greater depth as well as in broader 
scope.

The icosahedral multishell and hierarchic structures have 
been studied separately in the fields of particle science, clus-
ter science, intermetallic compounds, and quasicrystals with 
different emphases and different terminology, although the 
underlying geometry should be the same. The present paper 
is trying to fill this gap by giving a unified geometrical pre-
sentation, especially the hierarchic icosahedral structures, 
and will begin with a brief description of some regular and 
semiregular polyhedra of icosahedral symmetry, followed by 
Mackay’s icosahedral shell structures, and Bernal–Mackay’s 
hierarchic icosahedral structures. For a recent review on the 
structure of atomic clusters, see the contribution of Dr. Echt 
in this volume.

�Icosahedron and Related Polyhedra

Both of icosahedron (ICO) (Fig. 2a), and pentagonal dodeca-
hedron (PD) (Fig. 2b), is platonic regular polyhedra consist-
ing of regular faces and regular vertices. Their characteristics 
can best be represented by the Schläfli symbols of their 
vertices, 35 and 53, respectively. The superscript shows the 
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Fig. 1  Mackay icosahedral shell (a–c) and faulted (d, e) structures 
(the origin is an A sphere). Solid circles are the spheres at the 

icosahedral vertices, except for the core icosahedron in (a) in which 
only three spheres are drawn in solid circles. The A′ spheres are 

equivalent ones of the A sphere and both of them are written A in the 
present paper; so are the B′ and C′ spheres. (a) First shell, 12 B 

spheres, the core icosahedron; (b) second shell, 42C spheres, the 
Mackay icosahedron (MI); (c) third shell, 92 A spheres; (d) a fault 

occurs in the interior of the triangular faces in the second shell, an A 
sphere atop three B spheres in (a); (e) B sphere in the third shell atop 

three C spheres in (b).

K.H. Kuo



45

number of faces, triangle (3) or pentagon (5), surrounding a 
vertex. The symbols 35 and 53 imply an exchange of face and 
vertex between an ICO and a PD. In other words, they are 
dual to each other. Such a dual relationship is important in 
constructing the iss. If atoms are added to cap the pentagons 
of a PD to form pentagonal pyramids (one of which is out-
lined in dotted lines in Fig. 2b), their apices may form an 
ICO and vice versa.

Figure 2c is a polyhedron consisting of 20 triangles and 12 
pentagons, i.e., a composite of ICO and PD. Hence, it is
called icosi-dodecahedron (ID). Their faces are regular, but 
the 30 3.5.3.5 or (3.5)2 vertices are not. This is one of the 
Archimedian semiregular polyhedra with regular faces 
described by Kepler through the truncation of a regular 

polyhedron. Truncating the vertices of either an ICO or a PD 
at the midpoint of edges, an ID will result. Through dual 
operation, the 20 triangles and 12 pentagons of an ID are 
transformed into 20 regular threefold and 12 regular fivefold 
vertices, and a rhombic triacontahedron (RT) consisting of 30 
rhombi will result (Fig. 2d). This can also be seen in Fig. 1d, 
where a pair of A spheres and the two C spheres on their two 
sides form a rhombus. In contrast to the semiregular polyhe-
dra with regular polygons such as ID, RT belongs to the fam-
ily of semiregular polyhedra with regular vertices formed by 
either three or five rhombi. This can also be obtained by cap-
ping the pentagons of a PD (Fig. 2b), so that the neighboring 
triangles sharing an edge are coplanar forming a rhombus. 
Needless to say, truncating and capping are dual operations.

If an ICO is truncated at one-third of the edges (see the 
dotted lines in Fig. 2a), 12 regular pentagons will appear nor-
mal to the fivefold axes, while the 20 triangles become 
smaller hexagons (Fig. 2e). This truncated icosahedron (TI) 
has 60 5.62 vertices and can accommodate 60 atoms, such as 
the Buckminsterfullerene C60 molecule. If an ID is further 
truncated at the midpoint of edges, the 30 (3.5)2 vertices 
become 30 rectangles or, after some readjustment, 30 
squares. In the mean time, the 20 triangles and 12 pentagons 
are reduced to smaller ones. Such a 62-face polyhedron is 
called rhombic icosi-dodecahedron (RID) (see Fig.  2f and 
the 60 B spheres in Fig. 1e). Obviously, both TI and RID are 
semiregular polyhedra, consisting of 12 isolated regular pen-
tagons with 60 equivalent vertices, but the polygons between 
the pentagons and thus the vertex types are different, one 
being 5.62 and the other 3.4.5.4.

All the polyhedra in Fig. 2 have icosahedral symmetry, 
because neither truncating the vertices of an icosahedron nor 
capping the faces of a pentagonal dodecahedron will change 
the inner symmetry of them, although their outer forms are 
different. Moreover, the number of faces (F), edges (E), and 
vertices (V) obeys the Euler rule of convex polyhedron, 
namely, F + V = E + 2.

�Icosahedral Shell Structures

An icosahedron consists of 20 equilateral triangles and, 
therefore, can be visualized as 20 slightly distorted tetrahe-
dra sharing a common vertex at its center. The edge of an 
icosahedron is about 1.05 times longer than its radius (the 
distance between its center and a vertex) and, hence, the 
vertex-center-vertex angle is 63.43°, rather than 60° of an 
equilateral triangle in a regular tetrahedron. In Fig. 1a–c, the 
spheres in the successive three shells are in B, C, and A posi-
tions, respectively. Mackay iss beautifully explained the ico-
sahedral growth morphology [4–6] of the nanometer-sized 
icosa-twins (or, more generally, the multiple twin particles) 
of fcc metals as well as Si, diamond, TiC, etc. (for a recent 

Fig. 2  Polyhedra of icosahedral symmetry: (a) icosahedron (ICO), 35; 
(b) pentagonal dodecahedron (PD), 53; (c) icosi-dodecahedron (ID), 

3.5.3.5. or (3.5)2; (d) rhombic triacontahedron (RT); (e) truncated 
icosahedron (TI), 5.62; (f) rhombic icosidodecahedron (RID), 3.4.5.4.
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review, see [7]). Recently, Volkov et al. [6] have observed by 
high-resolution electron microscopy a Pd particle consisting 
of five icosahedral shells with N = 561 atoms, exactly as 
Mackay predicted. In cubic crystals, successive twinning on 
{111} planes around a common [110] axis will yield fivefold 
twins. The dihedral angle between two {111} planes is about 
71.5°, so that there is a gap of about 2.5° after five successive 
twinning operations around one <110 > axis. This will pro-
duce a noticeable strain in the icosahedral particle during 
growth and eventually it will change into a cuboctahedral 
particle. In other words, these cubic icosatwins are metasta-
ble and can only exist in nanometer scale. On the other hand, 
icosa-twins of rhombohedral crystals with = 63.43° would 
fill the three-dimensional space without leaving any gap and, 
therefore, could grow infinitely, or at least to a size of micron 
scale. Indeed, this was confirmed recently in the 30 m icosa-
twin aggregates of the rhombohedral B6O with = 63.1° [8, 9], 
very close to the theoretical value of 63.43°. However, this
came almost 40 years after Mackay’s prediction [1].

Cluster scientists became interested in Mackay’s icosahe-
dral shells because they found icosahedral clusters of rare 
gases, especially the n = 2 and N = 55 cluster, showed minima 
of Lennard-Jones and Morse potentials [10, 11]. Moreover, 
this theoretical simulation was also supported by gas elec-
tron diffraction experiments made on argon clusters [12]. 
Hoare and Pal [10] called the N = 55 cluster “Mackay icosa-
hedron” or simply MI. Hoare [11] concluded that the Mackay 
iss “far from being merely a crystallographic curiosity, have 
now been shown beyond doubt to be the dominant motif in 
the growth process of rare-gas microclusters in the important 
size range of N = 50 to N = 1000.” Several icosahedral shells 
with the number of atoms agreeing with Mackay’s 13, 55, 
and 147 have been identified in the mass spectroscopy of 
xenon and these numbers are called magic numbers in the 
cluster literature [13]. Such a study was later also extended 
to metal clusters, such as Na, Mg, Ca, and Sr clusters (for a 
recent review, see [14]). In Mg clusters, mass peaks occurred 
between the third shell of 147 atoms and the ninth shell of 
2869 atoms have been observed [14, 15]. However, this does
not guarantee an icosahedral structure because the cubocta-
hedral shells also have these magic numbers. Therefore, 
Martin et al. [14, 16], following Northby’s subshell growth 
concept [17], looked at the moderate mass peaks of the sub-
shells between the fifth shell of 561 atoms and the sixth shell 
of 923 atoms in Ca clusters. They found that the number of 
atoms in the subshells agrees with the successive covering of 
the triangular faces of an icosahedron.

Smalley was interested in the studying of heavy metal 
(Mo) and semiconductor (Si, GaAs) clusters and had con-
structed a powerful laser-vaporization time-of-flight mass 
spectrometer. Kroto, Curl, Smalley, and their coworkers [18] 
used the strong laser beam to bombard a graphite target and 
surprisingly obtained a strong mass peak corresponding to 

60 carbon atoms. They ingeniously suggested a spherical 
cage model of 60 carbon atoms located on the 60 vertices of 
a TI (see Fig. 2e) consisting of 12 pentagons and 20 hexa-
gons, the molecular cluster of Buckminsterfullerene C60. 
Later, Martin et  al. [14, 19] succeeded in producing even 
larger molecular clusters of (C60)N with N = 13, 55, and 147. 
Once more, they encountered the problem of differentiating 
between the icosahedral and the cuboctahedral shell packing 
and again used the mass peaks of subshells to prove the face 
capping of the icosahedral subshells.

Continuing his study of generalized crystallography, 
Mackay [20] independently developed a two-dimensional 
hierarchic pattern of pentagons similar to the celebrated 
Penrose pattern at about the same time as Penrose did [21] 
(see [22]). Mackay [23] called it “quasilattice” and produced 
its optical transform displaying clearly fivefold rotational 
symmetry. Following Ammann’s suggestion, Mackay con-
structed the three-dimensional (3-D) quasilattice built of 
rhombohedra of = 63.43° and 117.57°, respectively.  
Hargittai [22] considered this “predicting quasicrystal,” 
which was discovered independently by Shechtman et  al. 
[24] without knowing Mackay’s work. Elser and Henley [25] 
as well as Guyot and Audier [26] suggested the MI in the 
cubic -(Al-Mn-Si) [27] with a composition of (Al,Si)42 Mn12  
(Mn atoms occupy the vertices of the outer icosahedron, 
solid circles in Fig. 1b), while the center of the core icosahe-
dron is vacant, as the structural motif of the Al-Mn-Si icosa-
hedral quasicrystal. Since then MI was universally accepted 
as the fundamental structural motif for the family of Al-TM 
(transitional metal) icosahedral quasicrystals, which were 
called later the Mackay-type of quasicrystals [28].

Figure 3 is taken from Sung et al. [29] and modified to 
include the hierarchic icosahedral shells. Figure  3a shows 
one of the triangular faces of the first two icosahedral shells 
(MI) formed by adding spheres (solid circles) along the 
extended fivefold axes so that the successive shells are icosa-
hedra of increasing sizes.

The origin is an A sphere at the center and the first shell is 
the core ICO composed of B spheres. In the second icosahe-
dral shell, however, the C spheres are not of the same dis-
tance from the origin, the spheres (solid circles) on the 
fivefold axes being slightly further away from the center than 
those at the midpoints of the edges (open circles). Thus, the 
second icosahedral shell can be divided into two subshells. 
One is the second ICO composed of 12 C spheres at the ver-
tices (solid circles) and the other is an ID consisting of 20 
triangles (open circles) and 12 pentagons [five spheres sur-
rounding a fivefold axis (see Fig.  1b), although only two 
spheres are shown in Fig. 3a]. The pentagons in the first and 
second shells have the same orientation (along the 5a  axis, 
the triangle of the B spheres in the first shell and that of the C 
spheres in the second shell are parallel). This can be seen 
more clearly in Fig. 1a, b in which the B and C pentagons are 
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parallel oriented. Two neighboring pentagons of the same 
orientation form a pentagonal prism (PP) with a relative 
large volume. Surrounding this MI/ID there is another ID 
about times larger, consisting of 156 atoms in the cubic 
-(Al-Mn-Si) [30, 31]. Yang [30] called it “double-Mackay 
icosahedron” or simply DMI. In the pseudo-body-centered 
cubic structure of -(Al-Mn-Si), a DMI is located at the origin 
and a MI at the body center so that they share a triangular 
face along the <111> directions [30, 31]. One set of the three 
orthogonal twofold axes of both the MI and DMI clusters is 
parallel to the cubic axes of -(Al-Mn-Si).

In fact, this DMI is nothing but the hierarchic icosahedral 
structure, suggested by Bernal to Mackay in a private com-
munication reported in [1], an icosahedron of icosahedra. 

Mackay [1] mentioned the possibility of the occurrence of 
stacking faults in the fcc packing ABCA … of the triangular 
planes, for instance, the packing sequence of ABCB consist-
ing of a fault plane of B spheres or a twin/hexagonal packing 
sequence of BCB. This is shown in Fig. 1a → Fig. 1b → Fig. 1e.

�Hierarchic Icosahedral Structures

In Fig. 3b, the ID and ICO subshells of the second icosahe-
dral shell in Fig.  3a become the second and third shells, 
respectively. In the Mackay iss, the next layer will be an A 
layer (see Fig. 1c). However, if a stacking fault is introduced
in the ABC sequence so that the interior of a triangle in the 
fourth shell is made of B spheres (open circles), then a hex-
agonal BCB sequence instead of the fcc BCA sequence will 
be created. This is shown clearly in Fig.  1e in contrast to 
Fig.  1c. Twenty such B triangles (open circles in Fig.  3b) 
form 12 vertex-sharing pentagons around the fivefold axes, 
as well as 30 squares across the edges (Fig. 1e). This is the 
RID shown in Fig.  2f. The pentagon in the fourth shell is 
quite open and a sphere can be put above its center, namely, 
in the A position along an extended fivefold axis (solid cir-
cle), as in the Mackay iss. Thus, these 12 A spheres form the 
third ICO of the fifth shell. It is of interest to note that the five 
C spheres (open circles) surrounding the 5b  axis in the sec-
ond shell and the five B spheres in the fourth shell have oppo-
site orientations. This can also be seen in the orientation of 
the five C spheres (solid circles) in Fig. 1b and that of the five 
B spheres surrounding an A sphere in Fig. 1e. These two pen-
tagons form a pentagonal antiprism (PAP) between them and 
this PAP, together with spheres on the 5b  axis in the first, 
third, and fifth shells, namely, B, C, and A spheres, form an 
ICO. This ICO is centered at the C sphere (solid circle) of the 
third shell and shares a B sphere in the first shell with the 
core ICO. In other words, they are a pair of ICOs sharing a 
common vertex along the 5b  axis. Thus, there are 12 outer 
icosahedra connected to the core ICO by sharing vertices, or 
a larger icosahedron consisting of 13 smaller ICOs. The hier-
archic icosahedral shell sequence of 13 vertex-sharing ICOs 
in Fig. 3b, called I13(V), is:

Fig. 3  Schematic diagram of successive triangles of the icosahedral 
shells. (a) The first two shells of the MI cluster with an ABC sequence 
(see Fig. 1a, b); (b) stacking fault occurs after the ABC layers resulting 

in an ABCB sequence in the interior of the triangular faces (see 
Fig. 1e). An outer ICO centered at a C sphere along the fivefold axis 

5b  shares a vertex B with the core ICO, thus producing an I13(V) 
cluster; (c) stacking fault occurs in the second shell resulting in an 

ABA sequence in the interior of triangles (see Fig. 1d). An outer ICO 
centered at a B sphere forms and penetrates into the core ICO, thus 
producing an I13(P) cluster. Spheres at the icosahedral vertices are 
drawn in solid circles (Taken from Sung et al. [29] and modified).

I A ICO B ID C ICO C RID B ICO A13 1 12 30 12 60 12 127(V) Total spheres: @ @ @ @ @

MMI55

Obviously, a stacking fault occurs after the MI55. If the 
stacking fault of the twin/hexagonal sequence occurs in the 
second layer, as suggested by Northby [17], then an ABA 
sequence will occur, i.e., Fig. 1a → Fig. 1d. In Fig. 1d, an A 
sphere (open circle) is atop the center of three B spheres of 
the first shell in Fig. 1a, forming a tetrahedron. This is also 

shown in Fig.  3c in which there is an A sphere along the 
threefold axis capping the triangular face of three B spheres. 
This sphere A, together with other four equivalent ones, form 
a pentagon around the 5c  axis and 12 such pentagons form a 
PD of the second shell (see Fig. 1d). Moreover, this penta-
gon has an opposite orientation with respect to that in the 
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core ICO, thus forming a PAP. Adding a C sphere along the 
5c  axis atop of this pentagon forms a small ICO centered at 
the B sphere of the core ICO and, at the same time, a large 
ICO of the third shell. The ICOs centered at the origin and at 
the vertex B ICO are fused together forming an interpene-
trated pair. The icosahedral shell sequence in Fig. 3c, called 
I13(P), is:

I A ICO B PD A ICO C13 1 12 20 12

45

( ) : @ @ @P

Total spheres

It is clear from Fig. 3 that a stacking fault in Mackay iss is 
necessary, either in the second or the third shell, to form hier-
archic icosahedral structures. Such a fault is also called 
“twinning” [32, 33], “face capping” [17], or anti-Mackay 
packing [34] in cluster science. Hoare [32] obtained the 
multiple-twinning structure by a simulation based on 
Lennard-Jones potential and considered this “an indication 
of the nature of the free-energy barrier to crystallography.” 
Northby [17] gave this, besides a theoretical calculation, also 
a naive explanation. A sphere on the edge of an ICO, as in 
Fig. 1b, makes contact with only two spheres underneath it, 
whereas in the interior of a triangular face, as in Fig. 1d, it 
falls in the cavity of three spheres forming a tetrahedron, 
which is more stable. After completing an icosahedral shell, 
face capping of triangular faces will be preferred when atoms 
are added to form new subshells in the next shell. Based on 
these two kinds of stacking faults, two kinds of hierarchic 

icosahedral structures, vertex sharing and interpenetrating, 
respectively, of the core ICO and the 12 outer ICOs result. 
These two, as well as the 13 isolated ICOs, will be discussed 
below.

�I13(I) Cluster

This term is coined to represent the icosahedrally connected 
13 “isolated” ICOs. Earlier, Kreiner and Franzen [35] have 
used I13 to denote icosahedrally connected 13 ICOs. Here
one letter in parentheses is added to indicate the type of link-
age between the core ICO and the 12 outer ICOs. 
“Icosahedrally” means the centeres of these ICOs themselves 
form a hierarchic large ICO. “Isolated” or (I) means the core 
ICO forms bonds with the outer ICOs, but without any shar-
ing of spheres between them. Figure 4a shows the connec-
tion of the core ICO and an outer ICO, all centeres being 
vacant. The order of the icosahedral shells is marked and the 
number N of spheres within the nth shell is given in paren-
theses. The first shell is the core ICO, and the second shell is 
a large ICO, consisting of one sphere from each of the 12 
outer ICOs. The third shell consists of 12 pentagons forming 
a TI with 60 spheres (see Fig. 2e). This icosahedral cluster 
has 84 spheres, such as the B84 cluster in the structure of -B 
[36] and YB55 [37]. The pentagon in the third shell and the 
apex sphere in the second shell form an inverted pentagonal 
pyramid. The centeres and the outer pentagons of the outer 

Fig. 4  The core and outer ICOs of three types of hierarchic icosahedral clusters. (a) I13(I), 13 isolated ICOs; (b) I13(V), 13 vertex-sharing 
ICOs; (c) I13(P), the similarly oriented core and outer ICOs form an intermediate ICO (dotted lines) between them, thus producing a chain of 

three mutually interpenetrated ICOs along a fivefold axis. The number in parentheses is the total number of spheres N within the nth shell.
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ICOs in the next two shells are far away from each other and 
do not form any meaningful icosahedrally connected shell. 
The first three icosahedral shells for the B84 cluster with a 
vacant center (□) are:

B Total84 12 12 60 84: @ @ @� ICO ICFO TI atoms

The hierarchical I13(I) cluster of -B can be written as 
B12(B12)12 and a schematic drawing of it has been given in 
Fig. 4b in [9].

�I13(V) Cluster

In this hierarchic cluster, the 12 ICOs are linked to the core 
ICO through vertex sharing, as shown schematically in 
Fig. 4b. It has the same shell sequence as in Fig. 3b, but it 
shows more clearly the vertex sharing of two ICOs along a 
fivefold axis. In this case the core and outer ICOs are differ-
ently oriented, otherwise they will form a chain of three 
interpenetrated ICOs, as in Fig.  4c. Consequently, a PP 
exists between them. As shown in Fig. 3c, the spheres of the 
upper pentagon are C spheres. The first icosahedral shell is 
the core ICO and the second shell is an ID of 30 C spheres 
formed by sharing a vertex between two neighboring, lower 
pentagons of the outer ICOs (see the open circles in Fig. 1b). 
Obviously, all these 13 ICOs are linked by vertex sharing 
between the neighboring ICOs. The third shell is the second, 
large ICO composed of the central C spheres of the 12 outer 
ICOs. This is, in fact, the MI cluster of 55 atoms. The fourth 
shell consists of the 12 upper pentagons of the outer ICOs. 
Since these pentagons are further away from the center, com-

pared with the lower pentagons, they are separated from each 
other and interlaced with squares and triangles forming a 
RID of 60 spheres (see Fig. 2f). A stacking fault occurs in 
this shell so that a RID composed of B spheres is formed and 
the packing sequence of the four shells becomes ABCB. 
Finally, the fifth shell is the third, even larger ICO of 12 A 
spheres.

Cenzual et al. [38] have considered the vertex sharing of 
neighboring ICOs in the I13(V) cluster in the structure of the 
cubic Sc57 Rh13 Pm a3 1 4405, .=( )nm  and the orthorhom-
bic Hf54 Os17 (Immm, a = 1.3856, b = 1.4104, c = 1.450 nm). 
They used the general formula I114 C13 to represent this fam-
ily of phases (I denotes the atoms in the icosahedral shell and 
C those at the center). It gives also 127 atoms in this I13(V) 
cluster. A schematic drawing of the 13 vertex-sharing ICOs 
in these compounds has been given in Fig. 1 in [38].

Yang [30] showed that in -(Al-Mn-Si) 30 more atoms are 
added above the squares of the RID, forming a second, larger 
ID in the sixth shell, so that the total number of atoms within 
the sixth shell is 156 (center vacant). This is his DMI. Tamura 
[39] has extended the icosahedral shell in -(Al-Mn-Si) from 
DMI (he called it large MI or LMI) to the seventh and eighth 
shells and calculated the deviation of the experimental atom 
positions in various shells from the theoretical positions in a 
hierarchic icosahedral model. The deviations in the center-
vertex positions in the first three shells, i.e., the MI, are 
0.0015 − 0.0087 nm, but increase to 0.021–0.0334 nm in the 
fourth and fifth shells of the DMI. Kreiner and Franzen [35] 
have also considered the giant (MI55)13 cluster, i.e., an icosa-
hedron of MI. The hierarchic icosahedral shells in Sc57 Rh13 
and -(AlMnSi) are:

MI55

1 12 30 12 60 12 12757 13Sc Total atoms

Al

hR ICO ID ICO RID ICO: @ @ @ @ @

MMnSi Total atoms( ) : @ @ @ @ @ @Ο ICO ID ICO RID ICO ID12 30 12 60 12 30 156

MI554 156DM

�I13(P) Cluster

In the hierarchic icosahedral cluster I13(P) shown in Fig. 4c, 
the core and outer ICOs not only share a vertex but also have 
the same orientation so that the two neighboring pentagons 
of the first and second shells are differently oriented. Thus, a 
PAP or a new ICO (drawn in dotted lines) centered at the 
common vertex B is formed between these two ICOs. The 
core, intermediate, and outer ICOs interpenetrate into the 
neighboring one, forming a chain of three ICOs or of three 

centered PAPs capped at both ends. The first two shells are 
the same as shown in Fig. 3c. The PAP layer block here is 
more compact than the PP layer block in Fig. 4b; thus, the 
second shell in I13(P) must be smaller than the ID in I13(V), 
but also consisting of 12 pentagons. The only possible pen-
tagonal shell is the PD of 12 edge-sharing pentagons. The 
third shell is the second ICO, whereas the fourth shell is 
again composed of pentagons. Comparing with the pentagon 
shell of RID of 60 B spheres in I13(V), the pentagon shell in 
I13(P) should be somewhat smaller. The only possible case 
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is the TI with 12 pentagons and 20 hexagons. Finally, there 
are 12 A spheres capping the pentagons forming the third 
ICO of the fifth shell. The hierarchic icosahedral shell structures 

of I13(P) together with those of the cubic Al5 Mg2Cu6 [40] 
(also the isostructural Mg2Z11 [41]) and (Al,Zn)49 Mg32 
[42–46] (also the structural Al5 Li3 Cu [47, 48]) are:

Fig. 5  Samson’s schematic diagram of the cubic structure of 
Al5Mg2Cu6 [40] and its 45-atom, three-shell icosahedral cluster 

analyzed by Pauling [44, 45]; 1Al(b)@ICO12[12Cu(k)]
@PD20[12 Mg(f),8Al(i)]@ICO12[12Al(g)], with the 12Al(g) and 

12 Mg(f) atoms on {100} planes (Taken from Samson [40]).

Al Mg Cu Total atoms

I P
5 62 1 12 20 12 45

13 1 12 2

: @ @ @

: @ @

ICO PD ICO

ICO PD( ) 00 12 60 12 117

12
49 32

@ @ @

: @ @

ICO TI ICO

UCI PD

Total spheres

Al,Zn Mg( ) Ο 220 12 60 12 20 136

44 104 136

@ @ @ @ICO TI ICO PD Total atoms

RT LRT

In 1949, Samson first determined the crystal structure of the 
cubic Al5 Mg2 Cu6 (Pm3, a = 0.8311 nm, atoms) [40] and its 
isostructural Mg2Z11 [41]. Figure 5 shows the [001] projected 
view of the structure of Al5 Mg2Cu6: 6 Cu at (e), 12 Cu at (k), 
1 Al at (b), 6 Al at (g), 8 Al at (i), and 6 Mg at (f). After the 
discovery of the Al-ZnMg quasicrystal, Pauling recalled [44] 
how he found the icosahedral shell structure of the cubic 
(Al,Zn)49 Mg32. “In 1950, I recognized that the 39-atom cubic 
structure of Al5Mg2Cu6 and Mg2Z11 (Samson19,20) could be 
obtained from a central icosahedron surrounded by a shell of 
32 atoms.” From Fig. 5, it can be seen that around the central 

Al(b) atom there are 12 Cu(k) atoms of the core ICO (the 
three orthogonal golden rectangles are shaded). Adding 
12 Mg(f) and 8 Al(i) atoms to cap the triangular faces of the 
core ICO will result in a PD [for the sake of clarity, only one 
of the 8 Al(i) atoms is shown at the bottom-left corner and 
8  Mg(f) atoms are shown on the {100} planes in Fig.  5]. 
Thus, only tetrahedral interstices result by adding the second 
shell of a PD. A third shell of 12 Al(g) atoms (only 8 are 
shown in Fig. 5) are added above the pentagons of the PD. 
They lie on the extended lines (fivefold axes) connecting the 
central Al(b) atom to the 12 Cu(k) atoms of the core ICO, 
thus forming the outer ICO [see Fig. 4c]. This will produce a 
pentagonal bipyramid with an apex at Al(b) and another one 
at Al(g). Each pentagonal bipyramid can be visualized as 5 
deformed tetrahedra sharing a common edge, namely, the 
fivefold rotational axis. Thus the 45-atom shell structure is a 
tetrahedrally close-packed (tcp) structure. According to 
Frank [3] and Boerdijk [49], tcp clusters are stable and occur 
frequently in metallic compounds, such as the Frank–Kasper 
phases [50], the tcp phases of the Shoemakers [51, 52], and 
the giant cubic phases of Samson [53, 54].

The outer shell of the 45-atom cluster is, in fact, a RT of 
30 rhombi (Fig. 2d) or a capped PD of 60 triangles (Fig. 2b). 
Continuing the tetrahedral packing to obtain the structural 
model of (Al,Zn)49 Mg32, Pauling [45] added 60 more atoms 
atop the 60 triangles and finally obtained the fourth shell of 
a TI. Adding 12 more atoms above the pentagons to form the 
fifth shell and completes the I13(P) cluster. This 105-atom 
soccer ball-shaped icosahedral cluster as well as the 127-
atom structural model of (Al,Zn)49 Mg32 obtained first by the 
stochastic method [45] are included in Pauling’s famous 
book “The Nature of the Chemical Bond and Structure of 
Molecules and Crystals: An Introduction to Modern 
Structural Chemistry” [55]. Following Pauling’s suggestion, 
Bergman et  al. solved the complicate crystal structure of 
(Al,Zn)49 Mg32 first by X-ray powder method in 1952 [42] 
and later by single crystal diffraction in 1957 [43]. It turned 
out that the center of the core is 80 % occupied. Recently, 
Sun et  al. [46] found the center is empty in an accurate 
redetermination of this structure. Therefore, this four-shell 

K.H. Kuo



51

icosahedral cluster in fact has only 104 atoms. Cenzual et al. 
[38] denoted it by I104C13, where C13 means the 13 atoms at 
the centers of 13 ICOs and also gave a schematic drawing of 
the I13(P) cluster in their Fig. 2, in which the 12 outer ICOs 
are themselves edge-sharing between neighboring ones. 
Immediately after the first discovery of the Al-Mn icosahe-
dral quasicrystal [24], Mackay [56] suggested that an alloy 
of the composition of (Al,Zn)49 Mg32 might be a suitable can-
didate for finding new quasicrystals. Indeed, such a quasi-
crystal was found independently at about the same time by 
Ramanchandrarao and Sastry [57], based on the icosahedral 
shell structure of the cubic (Al,Zn)49 Mg32. Since then the 
104-atom hierarchic shell is often called the Bergman cluster 
and the icosahedral quasicrystals of this family the Bergman 
type quasicrystals [58, 59]. Considering the pioneer work of 
Samson on Al5Mg2Cu6 [40] and Pauling’s [45] stochastic 
model of (Al,Zn)49 Mg32, perhaps this family of quasicrystals 
might better be called Samson–Pauling–Bergman or SPB 
type of quasicrystals.

Instead of icosahedron, Samson [53, 54] likes to use trun-
cated tetrahedron (TT) with four triangular faces opposite to 
four hexagonal faces to describe complicated metallic struc-
tures. As the icosahedron, this polyhedron can also be used 
to describe the structures of MgCu2, MgZn2, and MgNi2. 
Capping the four hexagonal faces of a TT with four more 
atoms yields a CN16 Kasper polyhedron with only tetrahe-
dral interstices. Twenty such TTs can condense into a TI if 
each TT is sharing a hexagon with each of its three TT neigh-
bors. The remaining hexagons of these TTs will form an 
outer shell of 20 hexagons with 12 pentagonal cavities or 12 
inverted pentagonal pyramids. The remaining 20 triangles, 
one from each TT, form the core ICO with an empty center. 
Samson [53, 54] used the 104-atom TI unit to discuss not 
only the structure of (Al,Zn)49 Mg32 but also the giant cubic 
NaCd2 (a = 3.056 nm) and -Mg2Al3 (a = 2.8239 nm). Tillard–
Charbonnel, Belin, and their co-workers [60–62] later used 
the 104-atom shell unit, called Samson polyhedron by them, 
to describe the structures of a number of ternary Ga com-
pounds found by them. For instance, in the body-centered 
cubic Li13Cu6Ga21 [60], structurally similar to Al5Li3 Cu and 
(Al,Zn)49 Mg32, the Samson polyhedron at the center is con-
nected to the other eight Samson polyhedra by sharing a 
hexagon with each of them along the <111> directions. Such 
a chain of hexagonsharing Samson polyhedra can produce a 
hexagonal structure, such as the Li68 Zn16 Ga133, with 
a = 1.3657  nm and c = 23435  nm [61]. In the cubic 
Na35Cd24Ga56 of a = 2.1286 nm, however, two Samson poly-
hedra are connected by sharing a pentagonal face [62]. Thus, 
it is suggested to call this 104-atom cluster the Samson–
Pauling– Bergman cluster or SPB cluster.

Since the first discovery of the icosahedral quasicrystal 
in rapidly solidified Al-Mn alloys, both the MI54 of the 
cubic -(Al-Mn-Si) structure [25, 26] and the 104-atom 

Samson–Pauling–Bergman TI of the cubic (Al,Zn)49 Mg32/
Al5Li3 Cu structure [58, 59] have been considered to be the 
main building blocks of icosahedral quasicrystals [28]. 
Moreover, Elser and Henley [25, 58] have further shown that 
substituting rational ratios of two successive Fibonacci num-
bers for the irrational golden number of a quasicrystal will 
yield an approximate crystalline structure, called approxi-
mant. A similar idea has also been put forward by Mackay 
[56] using 5/3, 8/5, and 21/13 of the ratios of Fibonacci num-
bers to substitute for the irrational in the aperiodic structure 
of quasicrystals to obtain the Hume–Rothery compounds.
This is the fundamental crystallographic connection between 
a quasicrystal and its crystalline approximant.

Using X-ray and neutron diffraction made on a single 
grain of Al-Mn-Pd icosahedral quasicrystal, Janot and his 
co-workers [63, 64] obtained an incomplete MI with only 9 
atoms in the core icosahedron in the form of a body-centered 
cube. They called this 51-atom cluster “pseudo-MI” or sim-
ply PMI because it is almost, but not exactly, icosahedral. 
Recently, this has found support in the structures of many 
crystalline approximants of icosahedral quasicrystals, in 
which a 9-atom body-centered cubic or a 15-atom centered 
rhombic dodecahedron core has been found [65–67]. 
Recently, Tsai et  al. [68, 69] found binary Cd5.7Yb and 
Cd5.7Ca icosahedral quasicrystals close to the composition of 
the body-centered cubic Cd6Yb [70] and Cd6Ca [71], respec-
tively. The 66-atom cluster in the structure of these cubic 
phases is a tetrahedral core surrounded successively by PD, 
ICO, and ID. This is another cluster of predominately, but 
not exactly, icosahedral symmetry. There will be more such 
new findings in the coming years which will enrich the struc-
tures of icosahedral quasicrystal and its approximants, but 
the icosahedral shell and hierarchic icosahedral structures 
first suggested by Mackay 40 years ago will remain the guid-
ing concepts in the future.

References

	 1.	Mackay, A. L. Acta Crystallogr. 1962, 15, 916.
	 2.	Pauling, L. J. Amer. Chem. Soc. 1947, 69, 542.
	 3.	Frank, F. C. Proc. Roy. Soc. London 1952, A215, 43.
	 4.	 Ino, S. J. Phys. Soc. Jpn. 1966, 21, 346.
	 5.	Allpress, J. G.; Sanders, J. V. Surf. Sci. 1967, 7, 1.
	 6.	Volkov, V. V.; Van Tendeloo, G.; Tsirkov, G. A.; Cherkashina, N. V.; 

Vargaftik, M. N.; Moiseev, I.  I.; Novotortsev, V. M.; Kvit, A. V.; 
Chuvilin, A. L. J. Cryst. Growth 1996, 163, 377.

7. Hofmeister, H. Cryst. Res. Technol. 1998, 33, 3.
	 8.	Mackay, A. Nature (London) 1998, 391, 324.
9. Hubert, H.; Devouard, B.; Garvie, L. A. J.; O’Keeffe, M.; Buseck,

P.  R.; Petuskey, W. T.; McMillan, P.  F. Nature (London) 1998, 
391, 376.

10. Hoare, M. R.; Pal, P. J. Cryst. Growth 1972, 17, 77.
11. Hoare, M. R. Advan. Chem. Phys. 1979, 40, 49.
	12.	Farges, J.; Raoult, B.; Torcet, G. J. Chem. Phys. 1973, 59, 3454.
	13.	Echt, O.; Sattler, K.; Recknagel, E. Phys. Rev. Lett. 1981, 47, 1121.

Mackay, Anti-Mackay, Double-Mackay, Pseudo-Mackay, and Related Icosahedral Shell Clusters



52

	14.	Martin, T. P. Phys. Rep. 1996, 273, 199.
15. Martin, T. P.; Bergmann, T.; Göhlich, H.; Lange, T. Chem. Phys. 

Lett. 1991, 176, 343.
16. Martin, T. P.; Näher, U.; Bergmann, T.; Göhlich, H.; Lange, T.

Chem. Phys. Lett. 1991, 183, 119.
	17.	Northby, J. A. J. Chem. Phys. 1987, 87, 6166.
18. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley,

R. E. Nature (London) 1985, 318, 162.
19. Martin, T. P.; Näher, U.; Schaber, H.; Zimmermann, U. Phys. Rev. 

Lett. 1993, 71, 3079.
	20.	Mackay, A. L. Izv. Jugosl. Centr. Krist. (Zagreb) 1975, 10, 15.
	21.	Penrose, R. Bull. Inst. Math. Appl. 1974, 10, 266.
22. Hargittai, I. Chem. Intell. 1997, 3, 25; Hargittai, I.; Hargittai, M. In 

Our Own Image, Personal Symmetry in Discovery; Kluwer/
Academic: New York, 2000; p. 152.

	23.	Mackay, A. L. Physica 1982, 114A, 609.
	24.	Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Phys. Rev. Lett. 

1984, 53, 1951.
25. Elser, V.; Henley, C. L. Phys. Rev. Lett. 1985, 55, 2883.
	26.	Guyot, P.; Audier, M. Phil. Mag. B 1985, 52, L15.
	27.	Cooper, M.; Robinson, K. Acta Crystallogr. 1966, 20, 614.
28. Henley, C. L. Comments Condens. Matter Phys. 1987, 13, 59.
29. Sung, M.-W.; Kawai, R.; Weare, J. H. Phys. Rev. Lett. 1994,  

73, 3552.
	30.	Yang, Q. B. Phil. Mag. B 1988, 58, 47.
31. Sugiyama, K.; Kaji, N.; Hiraga, K. Acta Crystallogr. 1998, 

C54, 445.
32. Hoare, M. Ann. N.Y. Acad. Sci. 1976, 279, 186.
	33.	Farges, J.; de Feraudy, M. F.; Raoult, B.; Torchet, G. J. Chem. Phys. 

1986, 84, 3491.
	34.	Doye, J.  P. K.; Wales, D.  J.; Berry, R.  S. J.  Chem. Phys. 1995,  

103, 4234.
35. Kreiner, G.; Franzen, H. F. J. Alloys Comp. 1995, 221, 15.
36. Hoard, I. L.; Sullenger, D. B.; Kennard, C. H. L.; Hughes, R. E.

J. Solid State Chem. 1970, 1, 268.
37. Higashi, I.; Kobayashi, K.; Tanaka, T.; Ishizawa, W. J. Solid State 

Chem. 1997, 133, 16.
	38.	Cenzual, K.; Chabot, B.; Parthé, E. Acta Crystallogr. 1985, 41, 313.
	39.	Tamura, N. Phil. Mag. A 1997, 76, 337.
	40.	Samson, S. Acta Chem. Scand. 1949, 3, 809.
	41.	Samson, S. Acta Chem. Scand. 1949, 3, 835.
	42.	Bergman, G.; Waugh, J. L. T.; Pauling, L. Nature (London) 1952, 

169, 1057.

	43.	Bergman, G.; Waugh, J. L. T.; Pauling, L. Acta Crystallogr. 1957, 
10, 254.

	44.	Pauling, L. Phys. Rev. Lett. 1987, 58, 365.
	45.	Pauling, L. Amer. Scientist 1955, 43, 285.
46. Sun, W.; Lincoln, F. J.; Sugiyama, K.; Hiraga, K. Mater. Sci. Eng. 

2000, 294–296, 327.
	47.	Cherkashin, E.  E.; Kripyakevich, P.  I.; Oleksiv, G.  I. Sov. Phys. 

Crystallogr. 1964, 8, 681.
	48.	Audier, M.; Pannetier, J.; LeBlanc, M.; Janot, C.; Lang, J.-M.; 

Dubost, B. Physica B 1988, 153, 136.
49. Boerdijk, A. H. Philips Res. Rept. 1952, 7, 303.
	50.	Frank, F. C.; Kasper, J. S. Acta Crystallogr. 1958, 11, 184; Acta 

Crystallogr. 1959, 12, 483.
	51.	Shoemaker, P. D.; Shoemaker, C. B. Acta Crystallogr. B, 1986, 42, 3.
	52.	Shoemaker, P.  D.; Shoemaker, C.  B. Mater. Sci. Forum 1987,  

22–24, 67.
	53.	Samson, S. In Structural Chemistry and Molecular Biology; Rich, 

A.; Davidson, N., eds.; Freeman: San Francisco, CA, 1968; p. 687.
	54.	Samson, S. Mater. Sci. Forum 1987, 22–24, 83.
	55.	Pauling, L. The Nature of the Chemical Bond and Structure of 

Molecules and Crystals: An Introduction to Modern Structural 
Chemistry, 3rd edn.; Cornell University Press: Ithaca, 
New York, 1963.

	56.	Mackay, A. L. Nature (London) 1985, 315, 636.
	57.	Ramanchandrarao, P.; Sastry, G. V. S. Pramana 1985, 25, L225.
58. Henley, C. L.; Elser, V. Phil. Mag. B 1986, 53, L59.
	59.	Audier, M.; Sainfort, P.; Dubost, B. Phil. Mag. B 1986, 54, L105.
	60.	Tillard-Chabonnel; Belin, C. J. Solid State Chem. 1991, 90, 270.
	61.	Tillard-Chabonnel; Chahine, A. Belin, C. Mater. Res. Bull. 1993, 

28, 1285.
	62.	Tillard-Chabonnel; Belin, C. Mater. Res. Bull. 1992, 27, 1277.
63. Boudard, M.; Boissieu, M. D., Janot, C.; Heger, G.; Beeli, C.;

Nissen, H.-U.; Vincent, H.; Ibberson, R.; Audier, M.; Dubois, J. M.
J. Phys. Condens. Matter 1992, 4, 10149.

	64.	Janot, C.; de Boissieu, M. Phys. Rev. Lett. 1994, 72, 1674.
	65.	Mahne, S.; Steurer, W. Z. Kristallogr. 1996, 211, 17.
	66.	Edler, F. J.; Gramlich, V.; Steurer, W. J. Alloys Comp. 1998, 269, 7.
67. Hiraga, K.; Suiyama, K.; Ohsuna, T. Phil. Mag. A 1998, 78, 1051.
68. Tsai, A. P.; Guo, J. Q.; Abe, E., Takakura, H.; Sato, T. J. Nature 

(London) 2000, 408, 537.
69. Takakura, H.; Guo, J.; Tsai, A. P. Phil. Mag. Lett. 2001, 81, 411.
	70.	Palenzona, A. J. Less-Common Met. 1971, 25, 367.
	71.	Bruzzone, G. Gazz. Chim. Italy 1972, 102, 234.

K.H. Kuo


	Mackay, Anti-Mackay, Double-Mackay, Pseudo-Mackay, and Related Icosahedral Shell Clustersa,b
	Introduction
	 Icosahedron and Related Polyhedra
	 Icosahedral Shell Structures
	 Hierarchic Icosahedral Structures
	 I13(I) Cluster
	 I13(V) Cluster
	 I13(P) Cluster
	References


