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Abstract

By means of the concept of universal optimum and general principles of inorganic gene, 
structures of paulingite-related zeolites and minerals have been constructed. The structures 
of zeolite Rho and paulingite are considered as members of zeolite family generated by the 
work of 4-colored cellular automaton (CA). The ideal symmetry of the members of the fam-
ily is cubic, space group Im m3 , a = 15 + 10n [Å], where n is a number of the CA cycle (n = 0 
for zeolite Rho and 2 for paulingite). A new hypothetical zeolite of the family with n = 1 is 
predicted and named ISC-1 (Institute of Silicate Chemistry-1); atomic coordinates and the-
oretical X-ray powder diffraction pattern have been calculated. It appears to be very prob-
able that universal optimum contains all necessary information for its material realization 
(sharp configurations) and construction of materials with certain type of interaction poten-
tial (even with restrictions existing in theory for this potential).
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Nobody enters here, if he is not a geometrician.
Platon
Le chimiste est le seul scientifique, qui cree l, objet de ses etudes.
Marcelline Berthelot

 Introduction

Over the last 20–30 years, we have been witnessing (and 
participating in) the development of new approaches to the 
problem of the structure of matter and considerable expan-
sion of the borders of classic crystallography.

First of all, this expansion was induced by the advances in 
experimental techniques (in particular, high-resolution 
microscopy) applied to small natural objects: biological, 
organic, inorganic, and their combinations. To explain the 
experimental data obtained, there is a need to understand the 
very basic principles of construction of matter as a part of the 
material world around us. Indeed, how many atoms are 
needed to form a substance of macro-world as we know it? 
For instance, metallic iron. We know the series of atomic Fe 
clusters consisting of N atoms forming a “magic” sequence 
of numbers. What are the properties of these clusters? Do 
their structure correspond to the structure of macro-iron? 
These problems are under active debate and investigation at 
the moment. Perhaps, at the most advanced degree, develop-
ment of these ideas has been determined by Mackay who 
first published on this issue in 1967 [1]. The most important 
parts of this idea are atomistics (i.e., everything starts from 
atoms) and hierarchy (i.e., matter is organized on the levels 
of increasing complexity). At the core of this idea is the con-
cept of information that determines an inorganic structure in 
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the same way as genetic code determines biological struc-
tures. The ideas of Mackay were in correspondence with the 
works of W. Pearson who in 1972 suggested describing 
structures of intermetallics by means of codes that character-
ize stacking sequences of atomic layers (for the sake of jus-
tice, we note that analogous approaches were developed by 
the Soviet scientist G. S. Zhdanov back in 1946). Mackay 
further developed the idea of description of structures of 
inorganic materials on the basis of another important concept 
of ‘curvature’ in the sense of ‘grammar’ of inorganic and bio-
logical structures. In this grammar, letters are atoms, and 
words are clusters of connected atoms (building blocks, 
structural complexes, etc.). What determines the structures 
of these clusters and the structure of matter comprising these 
clusters? Today we are able to provide some partial answers 
to this question using mathematics (geometry) and informa-
tion theory. It happens that mutual arrangement of N points 
(atoms) interacting with each other in n-dimensional space is 
uniquely determined and, in turn, determines so-called 
spherical code that can be used to save and to transmit infor-
mation. Authors of Ref. [2] named these configurations “uni-
versal optima”. A special condition is the requirement that 
interaction potential has to be continuous and differentiable. 
All known universal optima are listed in Table 1. It is worthy 
to note that the sharp configurations—independently from 
the type of interaction potential—are the most closely packed 

arrangements. Thus, the principle of dense filling of space 
suggested by Laves in 1967 for metallic alloys has now been 
proved mathematically, rigorously.

Experimental proof of the results of [2] had been per-
formed in [3] using advanced computer modeling. Two more 
universal optima have been found (for 40 points in 
10- dimensional space and for 64 points in 14-dimensional 
space). First five configurations in Table 1 are vertices of cer-
tain regular polytopes (these are polytypes with all faces 
being simplices). Next seven cases were obtained from the 
root lattices E8 in R8 and Leech lattice in R24. 240-point con-
figurations and 196550 points have minimal vectors in these 
lattices. In terms of sphere packings, these are contact con-
figurations with kissing points in corresponding packings. 
Each configuration has a spherical cap in each point with its 
radius being as maximal as possible but without overlaps. 
Kissing points of this cap provide spherical code in the space 
of corresponding dimensionality.

Mathematical problem of contact numbers of spheres is a 
partial case of the problem of a spherical code. For each 
sphere, there is a corresponding spherical cap on the central 
sphere and a kissing point. These points are called an alpha-
bet. The problem is to transfer kissing points from certain 
caps to the other sphere. The set of caps from which signals 
are transmitted form a word. If transmission is somehow dis-
torted, the caps should be relatively large. In that case, the 
point should first appear in the cap where it has previously 
been, so it can be reconstructed since the caps do not inter-
sect. The word can be reconstructed accordingly. The more 
spherical caps there are on the certain sphere, the more dif-
ferent information can be encoded.

In the framework of information theory, instead of con-
tinuous wave in 1-dimensional space, one can speak about 
vector set in n-dimensional space.

If connection channel has no memory and with the 
increase of the word length n, the number of decoding steps 
do not increase exponentially (2n) but as n2. Using hierarchi-
cal principles of coding-decoding, one may decrease compu-
tational complexity till ~n. Coding as well as decoding are 
done step-by-step toward higher levels of hierarchy. On the 
lower level, simple symbols (alphabet) form blocks (words). 
On the second level, each block (word) is considered as a 
new symbol, and blocks group into higher-level blocks (sen-
tences). By placement of certain points in n-dimensional 
space and looking at their arrangements, we determined fur-
ther directions of self-assembly using purely geometrical 
operations.

Thus, the information theory and structure can be merged 
in an unified theory. All sharp configurations are m-designs, 
i.e. they are not simply spherical codes, but also the set of 
roots of some polynom (Hermit polynom) of the degree m.

The science of structure of matter is based upon self- 
assembly of atoms first into sharp configurations, and then, 

Table 1 Known universal optima. Energy-minimizing point 
configurations

n N t Description

2 N cos(2π/N) N-gon

n N ≤ n + 1 −1/(N − 1) Simplex

n 2n 0 Cross-polytope

3 12 1 5/ Icosahedron

4 120 1 5 4+( ) / Regular 600-cell

5 16 1/5 Klebsch graph

6 27 1/4 Schlaefli graph

7 56 1/3 Equilateral lines

8 240 1/2 Root lattice E8

21 112 1/9 Isotropic subspaces

21 162 1/7 Sharply regular graph

22 100 1/11 Higman-Simps graph

22 275 1/6 McLaughlin graph

22 891 1/4 Isotropic subspaces

23 552 1/5 Equilateral lines

23 4600 1/3 Kissing configurations

24 196560 1/2 Leech lattice

q q
q

3 1
1
+
+

(q + 1)(q3 + 1) 1/q2 Isotropic subspaces

n space dimension, N number of points, t scalar product
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according to the principle of a cellular automaton, into more 
hierarchically complex structures, into nanoparticles and 
then into macromolecules and macroobjects.

The structural diversity of the nanoworld is determined by 
the fact that finite packings may represent fragments of some 
“parent” structures that do not necessarily exist in 
3- dimensional Euclidean space. We shall call these struc-
tures fundamental. The reciprocal transition into space with 
dimension n ≤ 3 is by the ‘cut-and-project’ procedure.

The chemical or physical nature of the subunits is of sec-
ondary importance (whether these are atoms or protein mol-
ecules). Geometry determines and forms a structural model 
(universal optimum) before the atoms or other subunits and 
their interaction potentials are chosen. Thus, in this philoso-
phy, geometry is more than a description principle. It is a 
reflection of the properties of space where nanoobjects exist.

In order to understand mystical appearance of regular 
polytopes in the problems of applied mathematics, one has to 
replace direct calculations of differential geometry by more 
simple and general approach of symplectic and contact 
geometry. General principle here is as follows: one has to 
embed geometrical objects from ‘configurational’ space V 
into ‘phase’ space V × F, where peculiarities either disappear 
or become simpler (in theory of differential equations and 
quantum theory, this approach is called ‘microlocal’). This 
concept transforms simple facts of differential geometry into 
general theorems of symplectic and contact geometry with 
more wide field of application. In this way, perspectives arise 
for very wide exploration of differential-geometric intuition 
(V.I. Arnold).

In the past few years, a large number of nanoparticles had 
been found that have structures not describable in terms of 
classical crystallography. To express their admiration, scien-
tists use such terms as “unprecedented”, “unique”, “mysteri-
ous”. To explain their structure, we have used local 
(microlocal) approach. General principle is the same: atom 
configurations should be considered as geometrical objects 
and embedded from 3-dimensional Euclidean space into 
another space—of higher dimensionality and (probably) dif-
ferent topology. However, in local terms, this space shall still 
be represented as a direct product V × F. In terms of modern 
geometry, this procedure corresponds to the construction of 
a fiber space, where V is the basis of fibering and F is the 
structural group of the fiber.

In general case, fibering is a manifold. Any manifold can 
be isometrically embedded into Euclidean space of corre-
sponding (or even higher) dimensionality, where we have a 
possibility to choose a fundamental structure.

These principal results allow us, instead of search of con-
crete structure responsible in E3 for the minimum of some 
potential, to consider a whole class of derivative structures 
by the prior knowledge that they all have been obtained from 
some universally optimal non-Euclidean structures and thus 

close to the local minimum for the whole class of interaction 
potentials.

The real type of atoms (or any other subunits) involved 
will influence preferential formation of derivative structures 
by the atoms of particular type.

Accordingly, we may consider a complex inorganic struc-
ture, e.g. paulingite,1 a crystalline zeolite with several hun-
dreds of atoms in its unit cell. Where are genes for this 
structure? Which information does it contain? How may we 
describe it? Can we describe complex inorganic structure 
(periodic or aperiodic) as a 1-dimensional chain with its 
“gene” being the basis of construction and mutation and suit-
able for the formation of a whole range of structures? In this 
case, the particular structure can be chosen by the free energy 
minimum but different minima should not coincide.

We shall try to use these “inorgenes” in genetic algorithm 
of search of structures that fulfill the requirements of the 
lowest energy level. This will be required to calculate the 
gene that corresponds to the corresponding structure. As in 
biology, there could be genes that may not generate a ‘living’ 
structure.

 Paulingite: Structural Architecture

Paulingite (K6Ca16[Al38Si130O336](H2O)113) is one of the most 
structurally complex minerals. Its crystal chemistry was the 
subject of a large number of studies in mineralogical crystal-
lography [4, 5]. At the present time, there are several mineral 
species of the paulingite group that have the same root name 
and different suffices according to the dominating extra- 
framework cation: paulingite-K, paulingite-Na, and pauling-
ite- Ca. A synthetic analogue of paulingite is known under the 
name ‘zeolite ECR-17’ that had been used in chemical tech-
nology [6]. However, the fundamental interest in paulingite 
is not in chemical diversity of extra-framework cations but in 
structural complexity of its tetrahedral framework. Unit cell 
of paulingite contains 768 tetrahedral anions TO4 (T = Al3+, 
Si4+) linked into complex 3-dimensional architecture 
(Fig. 1a).

Minerals of the paulingite group have a cubic symmetry 
and crystallize in the space group Im m3 , with the a param-
eter in the range of 35.00–35.43 Å. Topology of zeolite 
framework in paulingite is usually described in terms of 
polyhedral building units [7]. Symbolic (or nodal) descrip-
tion is usually used, when tetrahedra are symbolized by ver-
tices and vertices corresponding to the linked tetrahedra are 
linked by an edge. Graphs obtained along this procedure are 

1 We have chosen paulingite because the question ‘Where are genes in 
paulingite?’ had been asked first in the paper of A.L. Mackay 
“Generalised crystallography” Journal of Molecular Structure 
(Teochem) 336 (1995) 293–303.
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4-connected nets that are subject of a separate area of mathe-
matical crystallography [8]. Figure 1b shows graph of the 
paulingite framework. In contrast to previous works [4–7], 
we prefer to describe this framework not in terms of polyhe-
dral units but as a result of linkage of bipyramidal (octahe-
dral) complexes outlined in Fig. 1b by striated line. These 
complexes are centered in the middle points of edges and in 
the centers of the cubic cell (e.g. in points (0; 0; 0.5) and 
(0.5; 0.5; 0)). In total, they form space partition into flattened 
octahedra with dimensions of 3.7 × 3.7 × 2.5 nm3 (Fig. 1c, d).

Let us consider the structure of complexes in more detail. 
In Fig. 2, each 4-membered ring (4-MR) is replaced by a flat 
square. The complex can be split into five levels, each formed 
by a closed contour of vertically standing squares (Fig. 2b). 
The highest level consists of a double octagonal ring (D8- 
MR), the second is formed by 24 squares, the third and cen-
tral level contains 40-square contour and internal D8-MR. The 
fourth and fifth levels repeat the first and the second, respec-
tively. The levels are linked by inclined squares so that the 
whole construction reminds of hierarchical construction of 
Middle-Age castles that also had many-level architecture.

It is noteworthy that, in general, construction of the com-
plexes corresponds to the principles of sharp configurations. 
At the first level, atoms form tetrahedra—3-dimensional 
simplices (see second row in Table 1), then tetrahedra are 
linked into 4-MRs and 8-MRs (first row in Table 1). General 

architecture corresponds to an octahedron that is a cross- 
polytope of 3-dimensional space (third row in Table 1).

 Paulingite: Cellular Automata Modeling

Projection of the nanocomplex along its axis is shown in 
Fig. 3. Obviously, the 2nd and 3rd levels are similar to the 1st 
level and can be obtained from the latter by some simple 
geometrical operations. As an instrument, we may use a cel-
lular automaton (CA), a discrete deterministic system that 
develops in time and space according to simple set of transi-
tion rules [9]. The use of CAs in structural crystallography 
was first proposed by Mackay [10] and recently was further 
developed in [11].

Figure 3a shows schematical construction of paulingite 
nanocomplex in terms of vertical squares. The CA lattice is a 
dihedral partition of plane into squares and octagons. Initial 
condition (zero-cycle of the CA) is a regular octagon. In 
order to simplify the model further without the loss of gener-
ality, we may transform the initial CA lattice into a square 
lattice by a series of simple substitutions (Fig. 3b). The 
closed 8-MR will correspond to a black cell, 8-MR with one 
or less bold edges to a white cell, 8-MRs with three and five 
bold edges to blue and red cells, respectively. As a result, we 
shall obtain 4-colored CA shown in Fig. 3c.

Fig. 1 Tetrahedral framework 
in paulingite (a) and its 
3-dimensional graph (b 
striation denotes bipyramidal 
nanocomplex). Arrangement  
of the bipyramidal 
nanocomplexes (c) corresponds 
to the space partition into 
tetragonal bipyramids  
(= flattened octahedra) (d).

Fig. 2 Bipyramidal 
nanocomplex as construction 
of 4-MRs (shown as squares): 
side view (a), stratified 
structure (b), top view (c).
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Fig. 3 Levels of paulingite 
bipyramidal nanocomplex as a 
result of work of the CA: 
schematic structure of contours 
in different layers (a), 
transition to the square lattice 
(b), 4 cycles of work of 
4-colored CA (c).

Fig. 4 Graphs of zeolite 
frameworks consisting of 
nanocomplexes formed as a 
result of work of paulingite 
CA: zeolite Rho RHO (a), 
hypothetical zeolite ISC-1 (b) 
and paulingite (c).

Fig. 5 Tetrahedral framework of the hypothetical material ISC-1 (a) and its calculated X-ray powder diffraction pattern (for λ = 1.54178 Å) (b).

Where Are Genes in Paulingite? Mathematical Principles of Formation of Inorganic Materials on the Atomic Level
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It is of interest that infinite work of this CA will result in 
formation of a periodic 3-dimensional framework with an 
axial structure. Along its axis, with the period of 1 nm, will 
appear 8-MRs. We do not see any principal reasons why this 
structure cannot be formed under natural or experimental 
conditions. However, if they really form, their identifications 
would be a complex and separate task.

It is quite probable that paulingite is the by-product of the 
work of the CA described above that has been stopped on the 
2nd cycle. In order to check this hypothesis, it is of interest 
to consider related structures

The zero-cycle of the CA shown in Fig. 3 corresponds to 
the structure of zeolite Rho [12–14] that is depicted in Fig. 4a. 
As paulingite, zeolite Rho crystallizes in cubic symmetry, 

space group Im m3  with a ~ 15 Å. In this zeolite, D8-MRs 
are linked directly by 4-MRs. Thus, whereas  paulingite cor-
responds to the 2nd cycle of the CA (Fig. 4c), zeolite Rho 
corresponds to the zero cycle of the CA.

Table 2 Atom coordinates and geometrical parameters of tetrahedral 
framework in hypothetical zeolite ISC-1 (a = 25 Å, sp. gr. Im m3 )

Atom coordinates

Atom x y z

Si1 0.2400 0.0632 0.1520

Si2 0.3640 0.0632 0.1520

Si3 0.4368 0.0632 0.25

O1 0.2291 0 0.1317

O2 0.2256 0.1000 0.1000

O3 0.3014 0.0698 0.1710

O4 0.2015 0.0765 0.2015

O5 0.3756 0 0.1370

O6 0.3755 0.0980 0.0980

O7 0.4260 0 0.2661

O8 0.4020 0.0820 0.1999

Geometry of tetrahedra

Bond Bond length (Å) Angle Angle value (°)

Si1–O1 1.682 O1–Si1–O2 104.64

Si1–O2 1.633 O1–Si1–O3 109.81

Si1–O3 1.615 O1–Si1–O4 109.29

Si1–O4 1.603 O2–Si1–O3 112.74

O2–Si1–O4 111.42

O3–Si1–O4 108.81

Si2–O3 1.644 O3–Si2–O5 109.25

Si2–O5 1.650 O3–Si2–O6 110.67

Si2–O6 1.631 O3–Si2–O8 108.66

Si2–O8 1.599 O5–Si2–O6 106.95

O5–Si2–O8 110.26

O6–Si2–O8 111.01

Si3–O7 1.652 2x O7–Si3–O7 111.74

Si3–O8 1.596 2x O7–Si3–O8 112.53 2x

O7–Si3–O8 106.40 2x

O8–Si3–O8 107.21

Intertetrahedral angles

Angle Angle value (°) Angle Angle value (°)

Si1–O1–Si1 139.89 Si2–O5–Si2 146.55

Si1–O2–Si1 148.00 Si2–O6–Si2 148.38

Si1–O3–Si2 144.04 Si3–O7–Si3 145.95

Si1–O4–Si1 152.21 Si2–O8–Si3 145.65

Table 3 Theoretical X-ray diffraction pattern of hypothetical zeolite 
ISC-1 calculated from the data given in Table 2 (λ = 1.54178 Å, 
2θmax = 30°; 0-intensity lines are listed as well)

h k l d (Å) 2θ (°) I/Io

0 1 1 17.6777 5.00 16

0 0 2 12.5000 7.07 2

1 1 2 10.2062 8.66 9

0 2 2 8.8388 10.01 100

0 1 3 7.9057 11.19 3

2 2 2 7.2169 12.26 0

1 2 3 6.6815 13.25 66

0 0 4 6.2500 14.17 16

1 1 4 5.8926 15.03 0

0 3 3 5.8926 15.03 24

0 2 4 5.5902 15.85 2

2 3 3 5.3300 16.63 0

2 2 4 5.1031 17.38 18

0 1 5 4.9029 18.09 13

1 3 4 4.9029 18.09 5

1 2 5 4.5644 19.45 0

0 4 4 4.4194 20.09 0

0 3 5 4.2875 20.72 1

3 3 4 4.2875 20.72 1

0 0 6 4.1667 21.32 10

2 4 4 4.1667 21.32 0

1 1 6 4.0555 21.92 0

2 3 5 4.0555 21.92 5

0 2 6 3.9528 22.49 2

1 4 5 3.8576 23.05 0

2 2 6 3.7689 23.61 3

1 3 6 3.6860 24.14 0

4 4 4 3.6084 24.67 0

0 1 7 3.5355 25.19 1

0 5 5 3.5355 25.19 3

3 4 5 3.5355 25.19 0

0 4 6 3.4669 25.70 1

1 2 7 3.4021 26.19 12

2 5 5 3.4021 26.19 0

3 3 6 3.4021 26.19 5

2 4 6 3.3408 26.68 1

0 3 7 3.2827 27.16 16

1 5 6 3.1750 28.10 0

2 3 7 3.1750 28.10 0

0 0 8 3.1250 28.56 0

1 1 8 3.0773 29.02 2

1 4 7 3.0773 29.02 3

4 5 5 3.0773 29.02 0

0 2 8 3.0317 29.46 11

4 4 6 3.0317 29.46 0

3 5 6 2.9881 29.90 0
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 ISC-1: A New Theoretical Zeolite Framework

We could not find in literature any data concerning zeolite 
intermediate between paulingite and zeolite Rho. However, 
the model developed above allows to predict its hypothetical 
structure (Fig. 4b). It has a cubic unit cell, Im m3  with 
a ~ 25 Å. We were able to construct model of its tetrahedral 
framework (Fig. 5a). Atom coordinates and basic geometri-
cal parameters are given in Table 2. We denote this zeolite as 
ISC-1 (Institute of Silicate Chemistry-1). Theoretical X-ray 
diffraction pattern of ISC-1 is shown in Fig. 5b (diffraction 
lines till 2θmax = 30° are listed in Table 3).

Thus, zeolite Rho, hypothetical material ISC-1, and paul-
ingite form a family of zeolites that result from the CA 
shown in Fig. 3. It can be proposed that more complex zeo-
lites of the family can be synthesized that correspond to 
higher cycles of the CA work. Ideal symmetry of these zeo-
lites will be cubic, space group Im m3 , a = 15 + 10n [Å], 
where n is a number of the CA cycle.

 Conclusions

 1. By means of the concept of universal optimum and gen-
eral principles of inorganic gene, structures of paulingite- 
related zeolites and minerals have been constructed.

 2. A new hypothetical zeolite of the paulingite family has 
been predicted and named ISC-1 (Institute of Silicate 
Chemistry-1).

 3. It appears to be very probable that universal optimum 
contains all necessary information for its material realiza-
tion (sharp configurations) and construction of materials 
with certain type of interaction potential (even with 
restrictions existing in theory for this potential).
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