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   Abstract  

  The story of the progress thus far made on the phase problem of X-ray crystallography is 
briefl y reviewed.  
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        Introduction 

 In 1912–1913 there occurred (Laue in Munich, W.L. Bragg 
in Cambridge) one of the key ideas of twentieth-century 
experimental science: that of placing a small crystal as speci-
men in an appropriately short-wavelength (∼1 A) X-ray 
beam, recording the pattern and intensities of the diffraction 
spots produced, and using those data to accept or reject pro-
posed atomic arrangements inside the specimen. By 1929 
(again due largely to Bragg), it was recognized that if the 
diffraction spot phases could also be supplied, the phased 
magnitudes of the spots could be regarded as Fourier coeffi -
cients, whose Fourier sum would directly image the internal 
structure of the specimen; this would immediately give the 
atomic arrangement as well as other important information. 
From that time to the present, the problem of how to supply 
the phases has been the principal theoretical problem of 
X-ray crystallography. Progress has been such that today 
reasonably accurate phases and, therefore, images can usu-
ally be arrived at, even for extremely complex structures, 
provided that crystals are available and provided that desire 
is strong enough to produce continued trying of the methods 
which now exist for handling the problem. 

 In this paper, I give a brief and I hope illuminating account 
of the post-1929 history. For this purpose, I have divided the 
history into two parts: the original and still vigorous approach 
based upon crystals and Bragg spots, and a newer approach, 
based—in its major form—on noncrystalline specimens. 
These call for substantially higher exposure than crystals but 
give a continuous diffraction pattern, from which intensities 
can be measured on a fi ner sampling lattice 1  than that given 
by Bragg spots, permitting more data to be collected. (The 
specimen in the noncrystalline case may be as small as an 
individual protein molecule or as large as an individual bio-
logical cell, making possible an enormous increase in the 
range of specimens available to the crystallographic method-
ology. Also, in theory, it is possible to obtain a continuous 
pattern from a suffi ciently small crystal.) This increase in 
data is proving in current testing to be often—perhaps 
always—suffi cient to permit a rapid and easy technique of 
phasing and imaging. Thus the problems of crystallization 
and phasing promise to disappear in the newer technique, 
while the problem of damage, due to the increased exposure, 
will become more important. 

 It will be pointed out, as the paper progresses, that two 
general types of phasing methods exist: methods that are 
physical in nature and succeed in making actual phase 

a     Structural Chemistry  2002, 13(1):81–96.  
b    Department of Physics and Astronomy, SUNY (State University 
of New York), Stony Brook, NY 11794, USA (deceased)  

1    Specifi cally, sampling at intervals somewhat fi ner (for more detail see 
Part II) than the Nyquist sampling interval. The Bragg sampling interval 
in diffraction space applies to crystals and is the inverse of the unit cell 
diameter. The Nyquist sampling interval applies to any specimen and is 
the inverse of the specimen diameter.  
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 measurements; and methods that fundamentally operate by 
specifying constraints that may justifi ably be imposed 
 (usually in image space), and through mathematics applying 
the corresponding constraints which must exist on the phases 
in diffraction space. Both methods fundamentally aim at 
fi nding ways to repair an initial information defi cit. The lat-
ter methods, in this day of high-speed computation, tend to 
be fast and convenient, but can also be subject to problems of 
nonuniqueness and possible unwanted biasing of solutions. 
The former are often more costly in time and trouble, but 
when an answer is found it is, within the limits of precision 
of the measurements, correct.  

    Part I: Crystals and Bragg Spots 

    Fourier Refi nement (Early 1930s) 

 The major accomplishment of these fi rst years was to bring 
out a valuable characteristic of the Fourier-coeffi cient 
approach to structure solving: its ability to fi nd the correct 
phases and electron-density map when provided with merely 
an initial approximation to those quantities. The technique, 
called Fourier refi nement, is an iterative one, in which cur-
rent phases are used with experimental magnitudes to give a 
current image or map; the map suggests revisions in the 
atomic arrangement; the new atomic arrangement, through 
inverse Fourier transformation, generates new phases; and 
the process repeats. This back-and-forth ability immediately 
lent added strength to the 1913–1929 technique, in which 
possible atomic arrangements were tested for consistency 
with the observed magnitudes without, however, a method of 
corrective feedback. Now, with the feedback described 
above, if one got reasonably close to the structure, refi ne-
ment would complete the job. In addition, well-refi ned 
electron- density maps, available now for the fi rst time, pro-
vided genuine images of structure, giving important new 
information about bond shapes, presence and location of 
hydrogen atoms, etc. The technique, of course, is in use to 
this day. 

 It will be seen that this technique does not, in itself, con-
tribute information. How then does it help to overcome the 
underlying information defi cit present in the phase problem? 
The answer is that in each cycle the technique presents the 
known and guessed information in a form (the guessed map) 
which allows the investigator to add information to the situ-
ation. In practice, what the investigator does is to try to col-
lect the electron density into about the right number of 
distinct atoms in a reasonable spatial confi guration; the 
method is thus of the constraint-based, rather than phase- 
measuring, type mentioned above. One may legitimately 
argue that this may have the fault of biasing the technique 
toward an atomic theory of matter, or toward an incorrect 

atomic arrangement, but I will disregard that here. What can 
be stated is that degree of information insertion usually 
 suffi ces to reach a satisfactory phasing and structure. An 
important conclusion thus appears: that there is at least a 
rough equivalency between the information carried in atomi-
city and the defi cit of information represented by the missing 
phases.  

    The Patterson Map (1934), Heavy Atoms 
(Mid- and Later 1930s) 

 In 1934 the next step was taken by Arthur Lindo Patterson, a 
young crystallographer then at M.I.T., who saw a way to 
obtain benefi t from the Fourier-coeffi cient approach  ab ini-
tio , i.e., even before an initial approximation to phases and 
image is available. If the symbol F (F complex) designates 
the correctly phased Fourier coeffi cients, then even without 
the phases the quantities |F| 2  (i.e., the intensities) are known. 
It was Patterson’s idea to begin by using the |F| 2  as Fourier 
coeffi cients. This, it is easy to show through the convolution 
theorem, yields a map which, if the true F-map shows a 
structure containing N atomic peaks, will show a related but 
more complex map (the Patterson map) consisting of N 
shifted and superposed copies of the true N-peak structure; 
equivalently, the Patterson map displays the N 2  interatomic 
vectors of the true map. 

 Disentangling the N copies is a formidable task if N is 
large, although some crystallographers (e.g., Dorothy 
Hodgkin at Oxford), gifted with great chemical insight and 
remarkable spatial perception, became adept at doing just 
that; some complex structures in the next two decades were, 
in fact, solved by a heroic process of guessing fragments of 
structure by partial Patterson disentanglement, and submit-
ting those to Fourier refi nement, until at last the true details 
of the structure began to emerge. 

 A much more convenient Patterson-based method, how-
ever, was discovered quite early. At about this time, the spe-
cial case of structures in which a small number (say M) of 
the atoms were markedly heavier (higher atomic number Z) 
than the rest was beginning to attract attention (J. M. 
Robertson at the Royal Institution in London); if just the 
M-atom structure could be found or guessed, submitting it to 
Fourier refi nement would often reveal the remainder of the 
structure. Now the Patterson method and this “heavy-atom” 
method could combine beautifully to make, for the fi rst time, 
a systematic and fairly reliable  ab initio  structure-solving 
method. Looked at from the interatomic vector point of view 
of the Patterson map, the weight of a Patterson peak is pro-
portional to the product of the weights of the two atoms giv-
ing rise to it; hence, it will usually be possible to recognize in 
the complicated Patterson map of the full structure the 
 simpler Patterson map of the M heavier atoms, allowing the 
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M-atom structure to be solved fi rst. Submitting the M-atom 
structure to Fourier refi nement will then often allow the 
remainder of the structure to be solved. This use of the so- 
called heavy-atom Patterson method (Huse & Powell) 
became, for organic structures, the workhorse method of the 
1940s and early 1950s. Given an organic molecule which it 
was desired to study, one employed chemical methods to 
attach, for example, a bromine atom to it, crystallized it, and 
then solved it by the heavy-atom Patterson method. 

 At this time, the era of solving protein structures was still 
years in the future. Yet in 1935, and directly related to the 
above developments, there was already recognition of what 
the future might bring. In 1934–1935, J. D. Bernal and 
Dorothy Hodgkin (then Dorothy Crowfoot), working in 
Cambridge, obtained the fi rst good diffraction photographs 
of a crystalline protein (pepsin); in February, 1935, Crowfoot, 
now in Oxford, repeated the success using zinc insulin. 
When she informed Bernal of this, he replied with a brief 
note:

   Dear Dorothy:  

 Zn  0.52 wt. per cent. 

 Cd  0.77 wt. per cent. 

 Co  0.44 wt. per cent. 

     This gives slightly less than 3 in all cases.   

What Bernal was saying was that he had looked up the 
work of the Canadian chemist D. A. Scott, who had prepared 
zinc insulin crystals and measured their zinc content, and 
that for zinc, as well as for cadmium and cobalt, the data 
indicated the presence of three heavy atoms per insulin 
molecule. Bernal, in other words, was making the sugges-
tion that despite their low concentrations, the heavy atoms 
might offer, through the methods outlined above, at some 
future date, a solution to the phase problem, even for pro-
teins. That insight was ultimately to turn out to be 100 % 
correct. 

 It will be seen that, in a manner reminiscent of Fourier 
refi nement, the Patterson method, while not in itself adding 
information, does assist the investigator in doing so. The 
adding of the heavy atoms, however, is at least a step toward 
a true phase-measuring method. For once the arrangement of 
the heavy atoms is known, they become (in the language of 
holography) the source of a known reference signal, which 
mixes coherently with the signal from the remainder of the 
structure and assists in phasing it. As stated, the early tech-
nique relied simply on Fourier refi nement to carry out the 
phasing and imaging. Since then, under the driving force of 
protein crystallography, that technique has given way to bet-
ter ones (see sections below on macromolecules), but the 
idea that this might someday be done was already present 
at the time being discussed. It may also be noted how very 

 neat an arrangement it is to have the reference signal source 
 (i.e., the M special atoms) repeated in every unit cell of the 
crystal. Because of the strength of the Bragg spots, a strong 
reference signal is needed; the repeated arrangement pro-
duces that strong coherent signal exactly at the points where 
it is needed, i.e., at the diffraction spots.  

     Three Brief Digressions 

    The State of Affairs at the Start of the Postwar 
Period (1946) 
 It may be useful to summarize the overall situation in crystal-
lography as the world prepared to return to more normal con-
ditions after World War II. The fi eld was small but healthy, 
with a considerable record already of elucidating the atomic 
structure of matter in inorganic compounds, minerals, metals 
and alloys, and organic compounds, in the latter area reach-
ing to sterols and (within the next several years) to penicillin. 
For its time, the fi eld had an adequate X-ray source (the 
metal target X-ray tube) and an adequate X-ray detector 
(X-ray fi lm); in the Patterson map with and without heavy 
atoms, and Fourier refi nement, it had a workable system of 
solving structures; and it had a seemingly inexhaustible sup-
ply of interesting crystalline materials to study. It even had 
(although only a handful were as yet thinking about it) the 
key to the future imaging of the highly complex structures 
which make up the living cell. 

 Crystallography did have a problem, however, and it lay 
in the area of computation. For the carrying out of Fourier 
sums (from |F| 2 ’s to Patterson maps and from F’s to Fourier 
maps), the slowness of the prevailing method— the use of 
hand-operated offi ce-type mechanical adding machines plus 
Beevers–Lipson or Patterson–Tunell strips (sine–cosine 
tables formatted for the Fourier operation)—was such that 
only two-dimensional (2D) maps were normally done, and 
even those would take a day or two each. As long as crystal-
lography could not freely enter three-dimensional (3D) 
work, its potential for the future would be severely limited. 
Fortunately, the wartime advances in electronics would quite 
soon change this situation.  

    A Bit of Personal History 
 In 1943 I emerged from Yale University with an undergradu-
ate degree in physics, and in 1943–1946 I did wartime elec-
tronics research in radar at the Radiation Laboratory of 
M.I.T. In 1946, guessing that biology might become the 
exciting fi eld of the next half-century, I became a graduate 
student in biology at Pennsylvania and then Harvard, but did 
not fi nd myself responding with interest to what I was 
 learning. However, in June 1947, I happened upon J. M. 
Robertson’s review article on X-ray crystallography [ 1 ], 
written shortly before the war began, which changed my life. 
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I joined the crystallography laboratory of Raymond Pepinsky 
at Alabama Polytechnic Institute, where I participated in the 
design of X-RAC (X-Ray Automatic Computer), an elec-
tronic analog computer which, once it had been given the 
|F| 2 ’s or F’s, could compute 2D Patterson and Fourier maps in 
1 s. (That machine remained in productive operation for 
some years, until it was supplanted by digital computation). 
When in 1949 the machine was successfully operating, my 
wife Anne and I went to Oxford, so that I could be a Ph. D. 
student with Dorothy Hodgkin.  

    The Beginnings of Digital Computation 
(Late 1940s, Early 1950s) 
 Digital computation, of course, was now just around the cor-
ner. In 1949 England was a little in the lead in that fi eld, and 
so, not long after arriving in Oxford, I went to Manchester to 
visit Prof. Fred Williams (with whom I had become 
acquainted through radar work during the war) and to see his 
computer, MADAM, which had just recently started to work, 
with the idea that I might perhaps do crystallographic com-
puting on that machine as my thesis work at Oxford. That did 
not happen and it was in fact Durward Cruickshank in Leeds 
who beautifully carried out such a program on the Manchester 
computer a little later (as did Bennett and Kendrew on 
EDSAC in Cambridge). In one of the major moments of my 
life, however, Williams handed me over to Alan Turing, who 
was then part of the Manchester effort, to discuss the idea. 
Instead, as it turned out, we talked for the better part of 
2 days about the phase problem, which clearly intrigued him. 
What he gave me, in return, was an early look at the Shannon 
sampling theorem, which led me to some early thoughts on 
oversampling in crystallography [ 2 ] and undoubtedly helped 
prepare my mind for the Nyquist-basis concept many years 
later. As for crystallographic programming of a digital 
machine, I did do some later, but not until 5 years had gone 
by, when I did it on the IBM 701 machine, by which time the 
ability of the digital computer to handle crystallography’s 
computing needs was quite well established.   

      Direct Methods (Late 1940s–Present) 

 In 1948, 14 years after Patterson, a major new advance in the 
phase problem occurred when David Harker and John Kasper 
of the General Electric Research Laboratory applied Schwarz 
and Cauchy inequalities to the expressions for the F’s and 
derived inequality relationships which must exist between 
the magnitudes of some F’s and the phases of others; 2 years 
later they used these inequalities to determine the values of 
enough phases to allow a quite diffi cult structure, dekabo-
rane, to be solved. These papers [ 3 ] caused a major stir in 
crystallography; for 20 years it had been considered that the 
phases are lost, but now it appeared that they are not entirely 

lost, but are in some degree capable of being deduced from 
the magnitudes. 

 For several years, it was not really known how best to 
understand the Harker–Kasper work. Then in January 1950, 
in an important paper [ 4 ], Jerome Karle and Herbert 
Hauptman at the Naval Research Laboratory in Washington 
gave a general form of inequality (the Karle–Hauptman 
inequality) which provides all the inequalities of the Harker–
Kasper type that can exist; in addition they showed that what 
those inequalities actually express is the nonnegativity of the 
electron density map. To me, now a student at Oxford, this 
was important news. It said that whereas the positivity condi-
tion had been captured in the Harker–Kasper and Karle–
Hauptman inequalities, the atomicity condition (remember 
that the information in atomicity roughly balances the infor-
mation in the missing phases) had not as yet been caught. To 
fi nd a way to express mathematically, in terms of the F’s, the 
concept of atomicity, became my goal. 

 We now know that this mathematization of atomicity has 
been done essentially twice, in two different ways, I did it 
fi rst, by adopting an idealization of the problem in which the 
atoms are equal and resolved; this permits a complete math-
ematization, in the form of a set of equations to be satisfi ed 
by the F’s. Solving the phase problem then reduces to insert-
ing the measured |F|-values in the equations (called the 
squaring-method equations) and solving for the phases. The 
latter is not a trivial problem, but based on the structure of 
the equations, I developed a solution process consisting of 
three main steps. 2  I gave these results orally at the Third 
International Congress of Crystallography in Stockholm in 
June 1951 and in a paper [ 5 ], which appeared in  Acta 
Crystallographica  in January 1952. Then, in 1972, for the 
fi eld of protein crystallography, I developed a second solu-
tion process, in the form of fi nding (by least squares) an 
extremum of a functional based on the equation system, and 
applied it successfully to the structure of rubredoxin in 1974 
[ 6 ]. Finally, in 2000, Richard Rothbauer, still within the 
framework of exact mathematization, showed [ 7 ] that the 
extremum method can be extended in such a way as to allow 
the initial idealization to be dropped. 

 Returning now to the early 1950s, Karle and Hauptman 
sought to dispense with the idealization which I had used, so 
as to bring the study closer to real life. Their work extended 
over numerous papers, beginning [ 8 ] with Monograph #3 of 
the American Crystallographic Association, which appeared 
in September 1953, and over many years. The mathematics 

2    The steps are: (1) identifi cation and tentative phasings of strong terms 
of the equations (these terms, which involve three F’s whose Fourier 
indexes sum to zero, are known as “triplets”); (2) extension of these 
phasings to many or most of the weaker F’s through further use of the 
equations; (3) use of an equation-based fi gure of merit and choice of a 
fi nal phasing.  
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which they chose for this purpose is the mathematics of prob-
ability, giving their work a very different character from mine. 
Nevertheless, when it came to the application of the results in 
the form of a computational procedure, the Karle–Hauptman 
approach gradually came to a closely similar three-step pro-
cess, their version of the second step (which is really the criti-
cal one of the three) appearing under the name “tangent 
formula” in a paper which they published in 1956. Much 
later, in the 1980s, the introduction of a newer probabilistic 
machinery (maximum likelihood) to replace the original 
machinery used by Karle and Hauptman has been carried out 
by Bricogne and others. 3  Also Hauptman and his co- workers, 
starting in 1990, have developed an extremum methodology 
for protein crystallography (“Shake’n Bake”), which resem-
bles the 1972–1974 work which I did, but with the very useful 
insertion of automated Fourier refi nement into the process as 
a means of securing good fi nal atomicity [ 10 ]. 

 Comparing the two lines of work, there is no doubt that the 
equal-atom idealization disqualifi es the Sayre approach in 
some cases (especially in the fi eld of inorganic structures) 
where the Karle–Hauptman approach may succeed. With 
organic structures, however, idealization does not severely 
penalize the Sayre approach, while its equational form adds 
signifi cant general strength, so that, in this area, the differ-
ence, although there is a shortage of serious testing, is prob-
ably not great. In any event, the true choice today, I think, lies 
between the maximum likelihood approach on the probabilis-
tic side and the methodology of Rothbauer on the exact side. 

 In protein studies, the subject of structural genomics is 
now producing an urgent desire to see a large productivity 
increase come into being, similar to the one produced by the 
atomicity-based direct methods in small-structure crystal-
lography. Atomicity-based methods are thus starting to play 
a small role in protein crystallography, but their role may be 
fundamentally limited by the fact that protein data sets in 
which the |F|’s extend to atomic resolution are as yet rather 
rare. 4  In anticipation of the Nyquist-based technique, one of 
its most important potential advantages is that it can use, but 
does not require, atomic resolution data. 

 Finally, as between phase-measuring and constraint- 
based methods, the direct methods are, of course, in the latter 
group.  

    Macromolecules: DNA (1953), Isomorphous 
Replacement (1953–Present) 

 In 1953, only a little more than a year after the introduction 
of the atomicity-based direct method into small-structure 
crystallography, came the fi rst two decisive events for mac-
romolecules. Both took place in Cambridge, England. 

 The fi rst, the working-out of the double-helical structure 
of DNA, did not really mark an advance in the treatment of 
the phase problem; however it is so important that it cannot 
be overlooked. It was in fact an outstanding example of the 
1913–1929 method of structure solving, in which Crick and 
Watson utilized several lines of work—the classical chemis-
try on DNA, the 1950 work on DNA base ratios (Chargaff), 
and the 1952 theoretical work on the diffraction patterns of 
helical arrangements of atoms (Cochran, Crick, and Vand)—
to propose a structure (the double-helical based-paired DNA 
structure) which beautifully accounted for the critical 1951 
diffraction data obtained at Kings College London on the 
B-form of DNA (Franklin). Phase-fi nding, in other words, 
was not the solution method here (although Wilkins and his 
colleagues at Kings did subsequently move on to Fourier 
refi nement of the DNA structure). 

 The second event was the 1953 discovery by Perutz and 
his co-workers of the phenomenon of isomorphous replace-
ment in protein crystals, i.e., the ability of proteins to attach 
heavy atoms or heavy-atom complexes to specifi c protein 
sites, and to do so with little or no alteration of the crystal 
structure as a whole. The ability largely rests on the fact that 
protein crystals contain considerable regions of solvent, 
meaning that minor rearrangement of solvent can often suc-
ceed in maintaining crystal structure, even after the heavy 
atom addition. An important consequence of this mechanism 
is that  several  attachment patterns, often involving different 
types of heavy atoms, can often be prepared; this is the phe-
nomenon of  multiple  isomorphous replacement (MIR). 

 The important effect of all this is that in the protein setting, 
the Patterson heavy-atom method is strengthened to the point 
where it can operate successfully even with the very low heavy-
atom concentrations fi rst noticed in insulin by Bernal in 1935. 

 This strengthening arises in two ways. There is, fi rst, the 
fact that, by studying the  difference  map between the 
Pattersons of a native protein structure and of an isomorphous 
heavy-atom structure, most of the background material disap-
pears, allowing the heavy-atom peaks belonging to the iso-
morphous structure to show up suffi ciently well to permit the 
heavy-atom portion of that structure to be solved. Then, sec-
ond, the existence of multiple isomorphous derivatives means 

3    The original machinery suffered from probability distributions (e.g., of 
phases of strong triplets) being computed too locally (e.g., from the three 
|F|’s only), and not being recomputed as phasing proceeded. Hauptman 
introduced strengthenings of the machinery in the late 1970s through his 
“Neighborhood Principle,” but subsequently seems to have ceased from 
that work. (See Bricogne [ 9c ] for details of the newer techniques.)  
4    In the extremum methodology work which I did in 1974 on rubre-
doxin, the data set had 1.5 Å resolution, whereas both maximum likeli-
hood and Shake’n Bake today are reported to require somewhat higher 
resolution data. A Shake’n Bake, but with the direct method phasing 
being done by a Rothbauer process, might thus prove to be of interest. 
Another possible direction (Bricogne [ 9b ]), but probably a very diffi cult 
one, would be to develop direct methods in which larger entities such as 
the amino acid residue, rather than the single atom, play the central role.  
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that, in the different diffraction patterns, different reference 
signals have been mixed holographically with the signal from 
the native protein; in 1956 it was shown (Harker) that with as 
few as two isomorphous derivatives, this is suffi cient, in prin-
ciple, to determine uniquely the phases of the native protein. 
With further derivatives present, the accuracy of the phases 
can usually be further improved, a subject on which much 
work has been done (Blow and Crick; Hendrickson and 
Lattman). There has also been much work on obtaining the 
coordinates of the heavy atoms in the various derivatives as 
exactly as possible (Blow and Matthews; Bricogne). Progress 
in these topics has by no means stopped today. 

 Perutz and his co-workers were working on hemoglobin, 
but in fact it was Kendrew (again in Cambridge) and his co- 
workers, working with MIR on myoglobin, who, in 1957 fi rst 
succeeded in fully carrying out the technique; this success 
was then soon repeated with other proteins, including hemo-
globin. Thus it was through MIR phasing that a collection of 
solved protein structures fi rst began to be accumulated.  

    Macromolecules: Anomalous Dispersion 
(1949–Present) 

 Valuable as MIR phasing is, it has the disadvantage that, 
even when starting with good crystals of the native protein, 
months or years can be spent in fi nding good isomorphous 
heavy-atom derivative crystals. Fortunately, at about the 
same time as MIR was being developed, an alternative was 
also coming into view. Isomorphous replacement operates 
by changing the chemical identity of a few of the scattering 
atoms; anomalous dispersion accomplishes essentially the 
same thing (and with perfect isomorphism), using just a sin-
gle crystal form, by wavelength rather than chemical change. 
The day would come when, through synchrotron X-ray 
sources, accurately choosable wavelengths for this purpose 
would be quite readily available. 

 The observation (Nishikawa; Knol and Prins) that the 
diffraction patterns of crystals present additional data 
through development of Friedel nonsymmetry at wave-
lengths near X-ray absorption edges goes back to the same 
period in the late 1920s as the emerging of the phase prob-
lem. As nearly as I can tell, the fi rst utilization of this effect 
in connection with the phase problem occurred 20 years 
later (Bijvoet) with the settling of the choice of the two pos-
sible enantiomorphic phasings for a rubidium salt of tartaric 
acid. (This established, for the fi rst time, the absolute hand-
edness of an optically active molecule). Then, in the same 
year that Harker gave the underlying analysis establishing 
the MIR technique, a sort of parallel analysis (Okaya and 
Pepinsky) gave some of the underlying ideas of what would 
later become the multiple- wavelength anomalous dispersion 
technique (MAD). 

 Despite that paper, the lack of an appropriate X-ray source 
delayed the application of the ideas for a quarter-century; 
interest, however, revived again with the promise of the syn-
chrotron as a suitable source (Karle; papers from the Dutch 
school following Bijvoet, etc.). Finally the MAD method 
appeared essentially in its present form (Hendrickson), and 
is now the leading phasing method in macromolecular crys-
tallography. The method calls for a specimen crystal contain-
ing a substructure of a moderate number of atoms of a species 
having an X-ray absorption edge in the general 1 A wave-
length region; such a specimen can often be made by the 
usual heavy-atom addition methods, but a favorite method 
for protein studies is to substitute selenium methionine for 
normal methionine in an organism’s diet, causing the organ-
ism to produce protein which differs from the normal protein 
only in the fact that the methionine sulfur atoms have been 
replaced by selenium. The MAD method is rapid and pro-
duces maps of excellent quality, and (as stated above) is now 
the dominant method in protein crystallography. 

 Both anomalous dispersion and isomorphous replace-
ment, by providing for the coherent mixing of the diffraction 
signal from the major structure with known signals from one 
or several reference structures, fall in the favorable category 
of actual phase-measuring techniques.  

    Macromolecules: Additional Methods 

 In isomorphous replacement and anomalous dispersion we 
have now treated the key methods in macromolecular crys-
tallography, but large numbers of structures have been 
worked out by other methods as well. In this section, I will 
briefl y touch on some of these methods.

    1.    Once a protein structure has been solved, the structure of 
the same protein after addition e.g. of an inhibitor or sub-
strate molecule becomes of interest. That structure can 
usually be found quite easily by adding to the original map 
a further (so-called difference-Fourier) map, which can be 
calculated with fair accuracy from the diffraction intensity 
differences between the native and modifi ed proteins. The 
technique, fi rst used by Stryer, Kendrew, and Watson at 
Cambridge, is in a sense an inverted version of MIR, and 
its theory resembles the Harker theory for MIR.   

   2.    Similarly, given that the structure of a particular protein is 
known, there are usually numerous other proteins with 
closely related amino acid sequences that are of interest 
as well. Operating on the assumption that similarity of 
sequence may imply similarity of structure, it is  reasonable 
to determine whether the known structure can serve as a 
starting point in solving the new structure. In the com-
puter, the known structure is tried in varying orientations 
and positions in the unit cell of the new crystal; if, at some 

D. Sayre



9

orientation and position, the computed diffraction pattern 
or its Patterson resembles the new observed pattern or its 
Patterson, a starting point that will successfully refi ne to 
the new structure may have been found. This method, 
sometimes known as molecular replacement, also origi-
nated in Cambridge (Rossmann and Blow).   

   3.    Protein crystallography presents a few special situations in 
which, even within the constraint of observing at Bragg 
spots only, a limited degree of extra sampling of a diffrac-
tion pattern can occur. Crystals may contain considerable 
solvent, separating the molecules by more than their natu-
ral diameters, and causing the Bragg spots to sample at 
higher fi neness than would otherwise be the case; in addi-
tion, there may be swelling and shrinking of a crystal form 
with changing amounts of solvent, causing the Bragg 
spots to shift their positions along the pattern, and in that 
way providing further sampling; or a protein may crystal-
lize in several different crystal forms, thus providing sev-
eral different Bragg-spot samplings of its pattern; or a 
protein, and especially a virus, may be large, with corre-
spondingly fi ne-spaced Bragg spots, and yet really consist 
of N identical subunits, meaning that the  subunit  pattern is 
being sampled N times more frequently than would other-
wise occur. Methods by which the increased information 
obtained in these situations can be used to assist in han-
dling the phase problem are the subject of a considerable 
literature, once again due largely to Cambridge, or for-
merly Cambridge, personnel, including such names as 
Main, Rossmann, Blow, Bricogne, and Crowther. (Terms 
applied to these methods include solvent methods, change 
of space group methods, and noncrystallographic symme-
try methods; a unifi ed maximum-entropy treatment of 
many of these methods has been given by Bricogne [ 9 a].) 
The methods bear a relationship to that which will be dis-
cussed in Part II, but are limited and made more compli-
cated by the Bragg- spot constraint. Somewhat similarly, 
Szoke [ 11 a] has developed a number of additional struc-
ture-solving techniques based on the viewpoint that a dif-
fraction pattern can always be regarded as a hologram, 
with the signal from one part of the structure serving as 
reference signal for the remainder of the structure.   

   4.    In addition to the above, there are still other worthwhile 
concepts which are attracting effort (see summary of a 
conference [ 12 ] on new phasing approaches held May 
17–19 2001 at the Lawrence Berkeley Laboratory).      

    One More Method: Three-Beam Diffraction 
(1977–Present) 

 A very attractive conceptual approach to the phase problem 
in crystals is to excite two different refl ection wavefi elds 

which will propagate in the same direction, allowing them 
to interfere coherently; then, from the resultant observable 
intensity, it may be possible to infer phase information 
about the crystal. As was pointed out by Lipscomb in 1949, 
the excitation can be realized by having two refl ections h 
and g simultaneously on the Ewald sphere; these will gen-
erate refl ected wavefi elds in directions K(h) and K(g); 
examination will show that through geometrical identities 
the refl ections g–h and h–g will be on the Ewald spheres for 
the K(h) and K(g) wavefi elds; these will produce two addi-
tional, doubly refl ected, wavefi elds in the original direc-
tions K(h) and K(g), bringing about the desired situation in 
both of those directions. Experimental evidence for this 
was then provided by Hart and Lang in 1961. It remained 
for Post and Colella, working independently in 1977, to 
suggest the details of extracting the phase information. 
They suggested fi xing h while slowly causing g to move 
through the Ewald sphere; as this occurs the doubly 
refl ected (g, h–g) wavefi eld passes through a resonance, 
which, in turn, produces an intensity trace for the combined 
K(h) signal; from the shape of this trace the sum of the 
phases of the −h, g and h–g refl ections can be read off. 
But −h + g + h − g = 0, so the three refl ections constitute a 
“triplet” in the sense described in the section on  Direct 
Methods  (this paper). Thus three-beam diffraction allows, 
in principle, the experimental measurement of the same 
quantities (triplet phases) as can be estimated from direct-
method arguments in cases where atomicity is present. 
From that point on, the details merge with those of direct 
methods. The method falls, however, in the true phase- 
measurement category. 

 Practical experience with the method is fairly encourag-
ing in that triplet phases have been successfully measured 
for a number of small molecules and proteins. Proteins, 
however, pose several problems: their large unit cell means 
that care must be taken to avoid having several g’s contribut-
ing overlapping interference traces; mosaicity is desired to 
be low for the three-beam method, but tends to be high in 
proteins; and cryoprotection, which is needed because of the 
long exposures involved, tends to be ruled out because of its 
effect in increasing mosaicity still further. Nevertheless, 
groups in Karlsruhe (Weckert et al.) and Cornell (Shen 
et al.) have, in several cases, succeeded in overcoming these 
diffi culties.  

    The Sparse or “Dream” Crystal 

 Should it ever become possible to stabilize a crystal by forces 
other than contact forces, it might be possible to create 
the ideal for X-ray crystallography; this would be a crystal 
in which the structure is regularly repeated at distances 
somewhat (perhaps 30–40 %) greater than contact distances. 

X-Ray Crystallography: The Past and Present of the Phase Problem
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This would provide oversampling for phasing (see Part II), 
while retaining the large amplifi cation enjoyed by Bragg 
spots (permitting high resolution at moderate exposure 
levels). 

 An apparatus for virtually instantaneous formation and 
stabilization of 2D crystals in a standing-wave fi eld has been 
described by Golovchenko and his colleagues [ 13 ]; in addi-
tion, orientational alignment of molecules by the use of ellip-
tically polarized laser fi elds has recently been demonstrated 
by Larsen and his colleagues [ 14 ]. If such apparatus could be 
developed to generate accurate 3D crystals, then in situations 
like protein crystallography, where large numbers of exact 
copies of a structure are available, a high-throughput (i.e., 
free of slow crystallization, free of phasing problems) and 
high-resolution crystallography would immediately become 
possible.   

    Part II: Finer Sampling (1980–Present) 

 However, although the apparatus just noted would thus be 
extremely desirable, it may never come about. More serious 
still, many of the most important structures do not exist in 
multiple exact copies (e.g., major cellular constituents and 
whole cells in biology, amorphous structures and structures 
with imperfections in materials science). Fortunately, how-
ever, it is beginning to appear that there exists an adaptation 
of present-day crystallography which can operate success-
fully even in those situations. This is the subject of the 
remainder of this article. 

    Overview and Brief History 

 In Part I, the attitude taken was that the diffraction pattern 
consists solely of spatially discrete Bragg spots. In Part II we 
drop this attitude and consider instead that diffraction inten-
sity may exist at every point of diffraction space. This view 
is mathematically correct whenever the diffracting specimen 
is of fi nite size (and when “point” in the sentence above is 
replaced by “elementary volume”). It is nearest to being 
incorrect (i.e., Bragg spots are most dominant) when the 
fi nite specimen is a sizable and well-formed crystal such as 
is assumed in Part I; it becomes more correct as we move to 
imperfect or very small crystals; and it is most correct (to the 
point where Bragg spots may give way entirely to continuous 
pattern) when the specimen is noncrystalline. Thus, in Part 
II, we are specifi cally considering specimens which are  not  
excellently crystalline. Three major things result:

    1.    Our base of usable specimens expands enormously and 
we are relieved of the necessity of crystallization;   

   2.    The diffraction features we now seek to record include 
many which are much weaker than those in Part I, making 
necessary a much higher level of X-ray exposure, with 
consequent specimen damage and danger of lowered 
image quality; and   

   3.    The patterns, being continuous and capable of being 
fi nely sampled, yield more information than the Bragg-
spot- only patterns of Part I; current evidence is that the 
added information allows the phase problem to largely, if 
not fully, disappear.    

Points (1) and (3) are major gains for X-ray crystallogra-
phy, point (2) is a major, but probably not disabling, 
problem. 

 These perceptions, although they seem obvious now, 
came slowly and with diffi culty. I have mentioned (see sec-
tion on  Three Brief Digressions ) a paper [ 2 ] which grew out 
of my conversation with Turing; it pointed out that if sam-
pling could be carried out at twice the Bragg fi neness, the 
phase problem (at least for centrosymmetric crystals) would 
effectively go away. The paper did not, however, suggest an 
effective way of obtaining such sampling; the situation was 
still conceived of as referring to crystalline matter and sam-
pling at Bragg positions only. The suggestion that crystal-
lographers might put a specimen like a single biological cell 
in an X-ray beam and nevertheless treat it essentially as if it 
were a crystal—collecting, phasing and Fourier inverting its 
 continuous  diffraction pattern—was not made 5  until a paper 
[ 15 ] written in 1980. 

 Starting, therefore, in 1980, the question became whether 
that process could actually be carried out. Here the principal 
issues were whether the diffraction patterns, which would 
be very weak, could be successfully observed, and whether 
they could be phased. At that time the answer to both ques-
tions was probably no; X-ray sources and detectors, and, 
similarly, the computers of the time, were not adequate to 
the tasks. Fortunately, however, the Brookhaven National 
Laboratory, only 20 miles distant from Stony Brook, decided 
shortly before 1980 to build a major synchrotron X-ray 
facility, with the result that it has been possible for us to 
enjoy the full advantage of the subsequent advances in 

5    From 1955 to 1970, I did not do much work in crystallography, work-
ing instead on early computer projects at IBM. In 1970, however, still at 
IBM, I returned to crystallography, and did the work on the extremum 
formulation of direct methods mentioned earlier [see section on  Direct 
Methods ]. Following that, and feeling that an extension to noncrystal-
line objects would be an important future need in crystallography, I 
began to work in that direction, soon forming a close collaboration with 
Janos Kirz at SUNY Stony Brook. Our initial approach, which has been 
excellently realized by Janos and his students, was for an X-ray micro-
scope, based on a Fresnel zone plate as an image-forming device. It was 
not until about 1979 that it occurred to me to turn to crystallography 
itself for a methodology.  
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needed technologies. Stages along the way have included: 
the demonstration, using early bending-magnet radiation, 
that the diffraction pattern from a large and contrasty single 
cell (diatom) could be recorded [ 16 ]; demonstration, using 
undulator radiation, that the pattern from a small typical 
single cell could be recorded [ 17 ] and proposal 6  of oversam-
pling of the continuous pattern as a possible phasing method 
[ 17 ]; mathematical treatment of the exposure levels required 
for pattern observation and fi rst tests of oversampling as a 
phasing method [ 18 ]; general article expressing the proba-
bility that this extended version of crystallography could 
exist [ 19 ]; and improved theory of oversampling [ 20 ]. A 
decisive point was achieved with the successful demonstra-
tion of the complete process in a 2D nonbiological situation 
[ 21 ]. Following that, there have been three pieces of work 
emphasizing potential applications: demonstration, with 
simulated data, of oversampling phasing for amorphous 
specimens, very small crystals, and imperfect crystals [ 22 ]; 
preparation of a detailed grant proposal for a full 3D project 
on a cryoprotected yeast cell; and [ 23 ] successful acquisi-
tion (simulated) of a 3D high- resolution large-protein data 
set without need for crystallization by the method of femto-
second-scale FEL laser pulses [ 24 ], followed by phasing 
and imaging by oversampling. 

 With that as background, there follows a brief discussion 
of some of the issues involved in collecting the diffraction 
pattern (next Section), and in phasing it (see section on 
 Phasing the Pattern ).  

     The Two Probable Experimental Regimes 

 The radiation dosage needed to obtain a statistically accu-
rate diffraction pattern rises steeply (roughly 8th-power 
law) with the desired imaging resolution, rough numbers for 
organic materials being 10 8 , 10 16 , and 10 24  rads for 20, 2, and 
0.2 nm resolution, respectively [ 18 ]. Especially at the higher 
resolutions, these dosages can vastly exceed the specimen’s 
ability to tolerate dosage. Our major defenses today against 
this problem are crystallinity, replaceability (ability to 
replace the specimen with an identical fresh one), cryo, and 
fl ash. Crystallinity, in conjunction with Part I phasing tech-
niques, works excellently; it reduces the dosage for Bragg 
spot collection by some 12 orders of magnitude, i.e., to 
about 10 12  rads for 0.2-nm resolution work, which, with the 
assistance of replaceability and cryo, is acceptable; this is 
the basis for present-day protein crystallography. Where 
crystallinity does not exist or is intentionally bypassed, one 
can turn to Part II phasing, but it has only replaceability, 

cryo, and fl ash to work with. The result for Part II is the 
probable emergence of two distinct experimental regimes. 
With replaceability, fl ash can be used and it promises to 
allow the very large dosage needed for atomic or near-
atomic resolution, accomplishing the exposure before dam-
age becomes evident [ 24 ]. Without replaceability there is 
only cryo, which should, however, allow dosages to roughly 
10 9  rads, or roughly 15 nm resolution, on micrometer size-
range specimens (such as the 3000-nm frozen-hydrated 
yeast cell of our planned project), hopefully making it pos-
sible for crystallography to contribute to cell as well as 
molecular biology. There follows a little more detail on 
these two regimes. 

    The Free-Electron Laser-Flash Technique 
for Molecules 
 As mentioned above, a recent paper [ 24 ] reports computer 
simulation studies indicating that if the needed dosage for 
obtaining the diffraction pattern from a protein molecule is 
delivered to the molecule in a time period of 5 × 10 −15  s or 
less, signifi cant structural alterations in the molecule will 
not have occurred by the time the pattern has been gener-
ated. Furthermore, it appears [ 25 ] that it should, in time, be 
possible to build a free electron laser (FEL) of that pulse 
width and of the needed photon fl ux at 1.5 A wavelength. 
As a result, a consortium of research teams (including our 
own) under the leadership of Prof. Hajdu has submitted a 
research proposal for a fl ash-technique project on high-
resolution imaging of large biomolecules at the Stanford 
Linac Coherent Light Source, based on the possibility that 
such a laser may in the future be constructed. The research 
proposal envisages the delivery of single molecules (or 
very small molecular clusters), in random orientation and 
with no other matter nearby to confuse the pattern, into the 
laser beam. In further support of this, in a recent paper [ 23 ] 
it was assumed that the 2D diffraction patterns from a suc-
cession of 10 6  such randomly oriented molecules of the 
protein rubisco delivered into the beam of an assumed 
1.5 A wavelength FEL laser had been assembled into a 3D 
oversampled data set at 2.5 A resolution; that dataset was 
then successfully phased by the method to be described in 
the section on  Phasing the Pattern . At the planned repetition 
rate of 120 Hz for the fl ashes, the 10 6  2D patterns would be 
acquired in about 2.3 h.  

    A Synchrotron/Cryoprotection Technique 
for Supramolecular Specimens 
 This technique, as currently employed by us on the X1B 
undulator beamline at the National Synchrotron Light 
Source, is diagrammed in Fig.  1 . The undulator, entrance 
slit, grating, and exit slit deliver tunable monochromatic 
photons to the diffraction experiment, the tuning range 

6    This proposal was developed in a conversation in the late 1980s with 
Gerard Bricogne.  
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being  approximately 1.5–5 nm wavelength. 7  The experi-
ment begins with a 10-μm pinhole approximately 10 cm 
upstream from the specimen, narrowing the beam so that a 
single specimen can be illuminated on the specimen holder, 
and also ensuring that all photons reaching the specimen 
are monodirectional to 0.1 mrad. (The monochromaticity 
and monodirectionality produce a sharp Ewald sphere, 
which will allow future software to place each pixel of the 
observed 2D patterns accurately in the fi nal 3D pattern). In 
Fig.  1 , the specimen is shown as being close to a corner of 
the specimen holder; this effectively screens three quad-
rants of the detector from any edge-scatter or Airy pattern 

arising from the pinhole; i.e., in those three quadrants, pho-
tons emanating from the specimen are essentially falling 
into a totally dark area of the detector, allowing the detec-
tion of very weak pattern. A few inches further downstream 
is the detector, a back-thinned liquid- nitrogen cooled CCD 
detector. To catch a 2.34-nm pattern extending to, e.g., 
15-nm resolution, the detector must subtend a full angle of 
about 18° at the specimen. Not shown in the diagram are a 
beam catch just forward of the detector (to protect the cen-
tral area of the CCD from the intense central beam), and a 
silicon nitride window just upstream of the pinhole (to pro-
tect the UHV of the beamline from the moderate vacuum of 
the experiment). Also not shown is the apparatus for posi-
tioning and setting the specimen to its successive orienta-
tions and, for cryo work, for cooling it. A variant 
arrangement (but as yet untried) would use long-throw 
focusing instead of the pinhole to accomplish the beam 
narrowing.

   In addition to subtending a suffi cient angle at the specimen, 
the detector must have enough recording pixels to allow for 
suffi ciently fi ne sampling of the pattern falling on it. If, in 

  Fig. 1    Simplifi ed schematic of the synchrotron-based experiment at NSLS for supramolecular specimens.       

7    This region, falling in the soft X-ray region, is not mandatory (there is 
no reason why X-rays down to 1 Å wavelength cannot be used), but it 
gives adequately short wavelengths for the resolution expected in this 
technique, and offers valuable contrast mechanisms for biological work 
at the absorption edges of low-Z atoms. Thus, for the yeast cell project, 
we plan to use 2.34-nm photons—just on the low-energy side of the 
oxygen absorption edge—for best transparency through the ice portion 
of the frozen-hydrated cell.  
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the example above, the specimen has a diameter of 3000 nm, 
sampling at twice the Nyquist fi neness—this is usually 
somewhat fi ner than necessary; see next section—means 
sampling at intervals of 1/6000 nm, while the extent of the 
pattern is 2/15 nm. Thus, 800 × 800 pixels on the CCD will 
suffi ce. Back-thinned CCDs meeting these requirements 
are available today. The full 3D data set ultimately 
assembled, in this case, could approach 800 × 800 × 800 
numbers. 

 A problem of systematically missing data arises with 
the technique as described. The need for a beam catch to 
protect the CCD produces missing data near the central 
beam; the loss could be reduced if one or a few pixels at 
the center of the CCD were removed or made transparent. 
In addition, in 3D work the planar specimen mount pro-
duces in the data the undesirable effect of a missing double 
cone normal to the plane of the mount. At present (see next 
section), we rely on the phasing algorithm to overcome 
these data losses.   

      Phasing the Pattern 

 It remains to explain how the fi ner sampling can be used in 
a phasing process. Turning back to the start of Part II, we 
pass by the fi rst case of the fi nite specimen (the sizable well- 
formed crystal) as providing no opportunity for fi ner sam-
pling 8  and as having been the subject-matter of Part I. We 
next defer, for a time, the second case (the imperfect or very 
small crystal), and turn directly to the major case (the non-
crystal). Fourier theory then tells us that if the diffraction 
pattern sampling is at the Nyquist fi neness, and the sampled 
values (correctly phased) are Fourier summed, the result 
will be correct images of the specimen indefi nitely repeated 
and just in contact with each other. If the sampling is fi ner 
than Nyquist, and the values (again correctly phased) are 
Fourier summed, the images are still correct and repeated, 
but are now not in contact, thus giving rise to zero regions 
between them. It is the presence of these regions, which 
should be zero, which drives the phasing. The sampling is 
made suffi ciently fi ne that the number of voxels in image 
space between the specimen envelopes somewhat exceeds 
the number of voxels inside the specimen envelopes. Then, 
starting with e.g. random phases, an iterative algorithm, 
repeatedly moving via Fourier transformation between the 
two spaces, alternately (1) in image space pushes the voxels 
between specimen envelopes toward zero and (2) resets 

pattern magnitudes in diffraction space to their experimen-
tally observed values. Our experience is that usually, after 
several hundred to several thousand iterations, the interen-
velope voxels are essentially zero and the intraenvelope 
voxels and the phases are essentially correct (see Figs.  2  and 
 3 ). Arriving at the correct phasing can be assisted by adding 
appropriate positivity constraints on the real and imaginary 
parts of intraenvelope voxels [ 20 ]. The algorithm is basi-
cally a Fienup-type algorithm [ 26 ] and is attractively simple 
and fast, being an alternation of simple processing in one 
space followed by high-speed Fourier transformation to the 
other space.

    This process clearly falls in the constraint-based category 
of phasing methods, and is thus subject to the concern that it 
may produce incorrect, or near-correct but inaccurate, solu-
tions; this concern is perhaps here further heightened by the 
fact that in all real cases there can be data inadequacies, such 
as data error, too much missing data, possibly insuffi ciently 
fi ne sampling, and inaccuracies in the assumed specimen 
envelope. I think a fair summary of what has been learned 
thus far—mainly through computer simulation studies 9 —is 
that with mild data inadequacies (levels that can probably be 
reached with careful experimentation) the probability of cor-
rect and reasonably high-quality phasing and imaging is 
high, but that there may not be a large margin of safety 10  in 
this respect. At this point, however, these matters require 
more study and experience. 

 Finally, in a recent paper [ 22 ], it is shown that the phasing 
process also works for the second case, the imperfect or very 
small crystal. (Insofar as this case has a diffi culty, it lies in 
the experimental portion of the work, and arises from the 
Bragg spots still being strong and taking intensity away from 
the non-Bragg Nyquist points, making the latter more diffi -
cult to measure.) Here the process could be of considerable 

8    However, see Szoke [ 11b ] who suggests that the use of partially coher-
ent radiation in the crystal case will cause the Bragg spots to become 
broader and allow additional information to be observed.  

9    The simulation studies of which I am aware at present are slightly 
fl awed in that they assume pointwise sampling at the sampling points, 
whereas experimental values will normally involve integration over a 
detector pixel size.  
10    The smallness of the margin of safety may be important in our 
planned yeast cell work, where we have signifi cant missing data in 
both the central region and double cone (see section on  Two Probable 
Experimental Regimes: A Synchrotron/Cryoprotection Technique 
for Supramolecular Specimens ). We have shown through simulation 
studies that the algorithm can start with arbitrary magnitudes as well 
as phases in those regions and refi ne both successfully, but that trou-
ble starts to develop as the amount of missing data approaches that 
which we may have to face in practice. With this in mind, we are 
considering an alternative algorithm, resembling a crystallographic 
least-squares model refi nement but with values of Nyquist-fi neness 
pixels (rather than atom positions) being the quantities refi ned in 
image space, and with observed finer-than-Nyquist diffraction 
magnitudes (unobserved magnitudes omitted) being the data to be 
fi tted.  
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  Fig. 2    An example of phasing by oversampling. ( a ) A set of 13,965 discrete magnitudes of a 2D computer-generated diffraction pattern. 
The magnitudes were oversampled by 2 times in each dimension. ( b ) The structure image corresponding to the initial random phasing. ( c – e ) The 
images after 50, 100, and 200 phasing cycles, the cycles primarily devoted to pushing the electron density outside the roughly known specimen 

envelope to zero. Note that after 50 cycles, the zeroing has advanced but is not complete. After 100 cycles, the contents of the envelope are 
taking form, but are not complete. After 200 cycles, the content has reached a fi nal form. ( f ) The actual content on which ( a ) was based. Note 
that ( e ) has correctly found the structure. ( g ,  h ) Like ( e ,  f ) except that 17 % noise (peak-to-peak) was added to the data in ( a ) and 425 cycles 

were needed to complete the phasing (Taken from Ref. [ 19 ]).         
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Fig. 2 (continued)

value in the study of crystal imperfections (Fig.  4 ) and pos-
sibly also in protein crystallography, where it is not infre-
quent for crystallization attempts to result in the production 
of numerous very small crystals.

        Summary 

 The phase problem, which might have stunted the growth 
of crystallography, and held it to not much more than its 
1929 dimensions, did not do so, and the subject has 

(through the work of many) been allowed to grow freely to 
wherever the ability to grow crystals may take it. One 
path to yet further growth is thus through more powerful 
crystal-growing techniques, and one version of this, 
which would be a highly attractive one, is mentioned as a 
future possibility in the last section of Part I. However, a 
second path also may exist and that is the use of new tech-
nology to extract copious diffraction data from arbitrary 
(including noncrystalline) specimens. This path, only 
now approaching its fi rst major tests, is briefl y set forth in 
Part II.     
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  Fig. 3    Simulation of a possible future method of protein structure determination. ( c ) and ( d ) Simulation of one section of the oversampled 3D 
dataset of the protein rubisco, which could be obtained using 10 6  individual randomly oriented rubisco molecules successively illuminated (and 
destroyed) by 10 6  fs-scale 1.5 Å wavelength FEL X-ray pulses. The cumulative intensity of the pulses is suffi cient to yield a 3D pattern to 2.5 Å 
resolution with reasonable Poisson noise statistics. The 10 6  exposures could reasonably be carried out in approximately 2.3 h. ( e ) and ( f ) show 

the molecule and its active site as found after oversampling phasing of the dataset, while ( a ) and ( b ) show the corresponding views of those 
structures as found in the original normal protein crystallographic investigation [ 27 ] (Taken from Ref. [ 23 ]).       
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