
A Switched Parameter Differential
Evolution for Large Scale Global
Optimization – Simpler May Be Better

Swagatam Das, Arka Ghosh and Sankha Subhra Mullick

Abstract In this article we present two very simple modifications to Differential
Evolution (DE), one of the most competitive evolutionary algorithms of recent
interest, to enhance its performance for the high-dimensional numerical functions
while still preserving the simplicity of its algorithmic framework. Instead of
resorting to complicated parameter adaptation schemes or incorporating additional
local search methods, we present a simple strategy where the values of the scale
factor (mutation step size) and crossover rate are switched in a uniformly random
way between two extreme corners of their feasible ranges for different population
members. Also each population member is mutated either by using the DE/rand/1
scheme (where the base vector to be perturbed is a randomly chosen member from
the population) or by using the DE/best/1 scheme (where the base vector is the best
member of the population). The population member is subjected to that mutation
strategy which was responsible for the last successful update at the same population
index under consideration. Our experiments based on the benchmark functions
proposed for the competitions on large-scale global optimization with bound con-
straints held under the IEEE CEC (Congress on Evolutionary Computation) 2008
and 2010 competitions indicate that the basic DE algorithm with these simple
modifications can indeed achieve very competitive results against the currently best
known algorithms.

Keywords Continuous optimization ⋅ Differential evolution ⋅ Large scale
optimization ⋅ Success counter

S. Das (✉) ⋅ A. Ghosh ⋅ S.S. Mullick
Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
e-mail: swagatam.das@isical.ac.in

A. Ghosh
e-mail: arka_t@isical.ac.in

S.S. Mullick
e-mail: mullicksankhasubhra@gmail.com

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_9

103

1 Introduction

Over the past few decades, several families of evolutionary computing algorithms
have been proposed for solving bound-constrained global optimization problems.
Performances of these algorithms remain considerably good for problems with
moderate number of decision variables or dimensions. However, most of them face
difficulties in locating the global optimum with sufficient accuracy and without
consuming too much Function Evaluations (FEs) as the number of dimensions of
the search space increases beyond 100 or so. This is not surprising and is primarily
caused by the exponential increase of the search volume with dimensions. Consider
placing 100 points onto a real interval, say [0,1]. To obtain a similarly dense
coverage, in terms of distance between adjacent points, the 10-dimensional space
0, 1½ �10 would require 10010 = 1020 points. The previously mentioned 100 points
now appear as isolated points in a vast empty space. Usually the distance measures
break down in higher dimensionalities and a search strategy that is valuable in small
dimensions might be useless in large or even moderate dimensional search spaces.

Many real world problems demand optimization of a large number of variables.
A few typical examples of such problems are shape optimization [1, 2],
high-dimensional waveform inversion [3], and large scale economic load dispatch
(involving 140 units or more) [4]. Recently researchers have been paying attention
to the issue of designing scalable nature-inspired optimization techniques for
optimizing very high dimensional functions. The ongoing interest of the scientific
community is also evident from participations in the competitions on large scale
single objective global optimization with bound constraints held under the
IEEE CEC (Congress on Evolutionary Computation) 2008 and 2010 [5, 6].

The evolutionary methods for high-dimensional global optimization problems
can be roughly categorized into three classes: the cooperative co-evolutionary
methods, the micro Evolutionary Algorithms (EAs) and the Local Search
(LS) based methods. Cooperative Co-Evolutionary Algorithms (CCEAs) [7–11] are
well-known for solving high dimensional optimization problems and they result
from an automatic divide and conquer approach. Recently some promising Coop-
erative Co-evolutionary (CC) algorithms were proposed like the CC versions of the
Particle Swarm Optimization (CCPSO and CCPSO2) [10] and CC with Differential
Grouping [11]. Micro–EAs (see for example [12–15]) are instances of typical EAs
characterized by small population size and often simple fitness functions. Different
forms of Memetic Algorithms (MAs) [16–19] developed by combining an LS
method with a global evolutionary optimizer have been frequently applied to solve
large scale function optimization problems.

Differential Evolution (DE) [20, 21] currently stands out as a very competitive
evolutionary optimizer for continuous search spaces. Several attempts have been
made to improve the performance of DE for moderate to high dimensional function
optimization problems. Some noted DE-variants of current interest involve
success-history based parameter adaptation strategies (like SaDE [22], JADE [23]),
new mutation and crossover strategies (like Pro-DE [24], MDE-pBX [25]), and

104 S. Das et al.

combining various offspring generation strategies (CoDE [26], EPSDE [27] etc.).
For high-dimensional problems (more than 500 dimensions) DE has been adopted
by methods encompassing all the three algorithmic philosophies outlined above.
Owing to its inherent simplicity, DE was used as the base optimizer in Yang et al.’s
first work [9] on random grouping based CCEAs. Zamuda et al. [28] extended DE
by log-normal self-adaptation of its control parameters and by using cooperative
co-evolution as a dimensional decomposition mechanism. Parsopoulos developed a
cooperative micro-DE [29] for large scale global optimization. The self-adaptive
DE was hybridized with MTS for large scale optimization by Zhao et al. [30]. Some
other approaches of improving DE for high-dimensional function optimization can
be found in [31–34].

We can see that in order to cope with the growing complexity of the problems to
be solved, DE has been subjected to several modifications. However, despite the
reported performance improvements, the improved DE algorithms are very often
lacking one very important thing, that is the simplicity of the DE framework – the
very reason why DE was and is loved by the practitioners of evolutionary com-
putation. The present work is motivated by the question that can we improve DE for
very high dimensional search spaces by simple parameter control strategies and by
combining the basic ingredients of DE without any additional computation over-
heads (likely to be caused by external achieves, proximity and rank based parent
selection schemes, additional local search schemes, keeping the long records of
successful individuals etc.).

In this paper we present a simple DE scheme where the two crucial
control-parameters of DE, namely the scale factor (equivalent to the mutation step
size) F and the crossover rate Cr are switched between their respective limiting
values in a uniformly random manner for each offspring generation process. Also
each population member is mutated using either the DE/best/1 strategy or the
DE/rand/1 strategy. The difference between these two strategies lies in the selection
of the base vector to be perturbed. In case of DE/best/1, the base vector that has to
be perturbed with the scaled difference of any two distinct population members is
the best vector in the population yielding greatest fitness (i.e. smallest objective
function value for a minimization problem). On the other hand, for the DE/rand/1
scheme, the base vector is a randomly chosen member from the current population.
Each individual undergoes either of the two possible mutation strategies based on
which strategy generated a successful offspring (which replaced the parent during
selection) last time for the same population index. Thus, the choice of the mutation
strategy depends on a unit length success memory of the record of just the last
successful update. The proposed algorithm requires no tunable control parameter
and is very easy to implement.

Switching of the scale factor between two extreme values (here 0.5 and 2) pro-
vides scopes for coarse search of large regions as well as refined search of smaller
basins of attraction. Similarly by switching Cr values between 0 and 1, a balance
between coordinate-wise search and generation of rotationally invariant search
moves can be stricken. Our experiments indicate that the simple parameter switching
coupled with the mixing of DE/best/1 and DE/rand/1 strategies can significantly

A Switched Parameter Differential Evolution … 105

improve the performance of DE on the high-dimensional function optimization
problems. This conclusion is reached through a rigorous performance comparison of
the proposed DE scheme with that of some of the most well-known large-scale
optimizers including the winners of the two CEC competitions. While it is very hard
(if not impossible) to analytically justify the suitability of the simple changes made
to DE, we undertake some empirical studies based on the population spread and
diversity to highlight the effectiveness of each of the modifications suggested.

2 The DE Algorithm

The initial generation of a standard DE algorithm consists of the four basic steps –
initialization, mutation, recombination or crossover, and selection, of which, only
last three steps are repeated into the subsequent DE generations. The generations
continue till some termination criterion (such as exhaustion of maximum functional
evaluations) is satisfied.

2.1 Initialization

DE begins search for the global optima in the D dimensional real parameter space
by initiation of a random population of Np real-valued vectors whose components
represent the D parameters of the optimization problem. A generalized notation
used to identify the ith solution (real parameter vector) of the present generation
G can be shown as:

X ⃗i,G = x1, i,G, x2, i,G, . . . xD, i,G½ �.

Given the decision space bounds, Xm⃗ax = x1,max, x2,max, . . . xD, max½ � and
Xm⃗in = x1,min, x2,min, . . . xD, min½ �, the jth dimension of ith individual can be initialized
as:

xi, j = xj, min + randi, j × xj, max − xj, min
� �

, ð1Þ

where randi, j is a uniformly distributed random number lying in the range [0, 1] and
it is instantiated anew for each ordered pair (i, j).

2.2 Mutation

In DE terminology, a population member (say i) of the current generation, known as
the target vector, is chosen and is differentially mutated with the scaled difference
vector(s) ðX ⃗r1,G −X ⃗r2,GÞ to produce a mutant or donor vector. It is to be noted that

106 S. Das et al.

the indices r1 and r2 are sampled from {1,2,…, Np} are different from the running
index i and ðr1, r2 ∈ 1, 2, . . .Npf g\figÞ. A scaling factor F, usually lying in the
range [0.4, 2], scales the difference vector(s). Two commonly used DE mutation
strategies are listed below:

DE r̸and 1̸:V ⃗i,G =X ⃗r1,G +F Xr⃗2,G −X ⃗r3,G
� �

, ð2aÞ

DE ̸best 1̸:V ⃗i,G =X ⃗best,G +F. X ⃗r1,G −X ⃗r2,G
� �

, ð2bÞ

where r1, r2, r3 are mutually exclusive indices that are stochastically selected from
1, 2, . . . ,Npf g.

2.3 Crossover

In DE, the crossover step aims to combine the individual components of the parent
and the mutant vector into a single offspring commonly known as trial vector
U ⃗i,G = u1, i,G, u2, i,G, . . . uD, i,G½ � DE primarily employs either of the two crossover
strategies: exponential (two-point modulo) and binomial (uniform). Binomial
crossover is preferred since it does away with the inherent representational bias in
n-point crossover by simulating D random trials. Moreover a recent work [35]
attributing to the sensitivity of crossover to population size has reported the
exponential variant to be more prone as compared to its binomial counter-
part. Owing to the aforesaid observations, here we employ binomial crossover to
form the trial vector.

In order to implement the binomial crossover, the control parameter Crossover
rate (Cr) is set to a fixed value lying in the range [0,1] and thenD independent random
numbers, between 0 and 1, are sampled uniformly and compared with Cr to decide
which component is to be included in the trial vector. The method is outlined as:

uj, i,G = vj, i,G, if randi, j <CR and
�

j= jr,
xj, i,G otherwise,

�
ð3Þ

where jr is a randomly chosen index from {1, 2, …, D} and it ensures that at least
one component from the mutant vector is present in the offspring produced.

2.4 Selection

Finally, a selection process is performed through a one-to-one competition between
the parent and the offspring to maintain a constant population size. The selection
process can be described as:

A Switched Parameter Differential Evolution … 107

X ⃗i,G+1 =
U ⃗i if f U ⃗i

� �
≤ f X ⃗i

� �
,

Xi⃗ otherwise,

(
ð4Þ

where f ð.Þ is the objective function to be minimized.

3 The Proposed Method

DE has 3 primary control parameters: the scale factor F, and the crossover rate Cr,
and the population size Np. The performance of DE largely depends on F and Cr.
Several efforts have been made in the past to control and adapt the value of these
two parameters so that the algorithm may strike a balance between its explorative
and exploitative behaviours on different fitness landscapes. Both of these parame-
ters have their own allowable ranges. It is easy to see that Cr is similar to a
probability value and hence it should lie in [0, 1]. Zaharie [36] derived a lower limit
of F and her study revealed that if F be sufficiently small, the population can
converge even in the absence of selection pressure. Ronkkonen et al. [37] stated that
typically 0.4 < F < 0.95 with F = 0.9 can serve as a good first choice. They also
opine that Cr should lie in (0, 0.2) when the function is separable, while in (0.9, 1)
when the function’s variables are dependent. As is evident from [21] and the
therein, numerous approaches have been proposed to improve the performance of
DE by controlling or self-adapting these two control parameters and also by
automating the choice of the appropriate offspring generation strategy. However,
very often such methods may necessitate additional computational burdens, which,
somewhat sacrifice the simplicity of DE. Thus, the question that naturally comes up
is whether we can retain efficient search behaviour and adequate
exploration-exploitation trade-off by doing something very simple? Can such easy
modifications still result into a very competitive performance against the existing
state-of-the-art? This article presents a humble contribution in this context.

The purpose of scaling factor F is to add weight to the difference vector and add
it to base vector to produce mutant/donor vector. It is established in the study that
F is strictly positive and greater than zero. A large value of F will support
exploration, i.e. more of the feasible search volume can be covered. This property
can be often desirable for solving high-dimensional optimization problems, since
they possess a large search space. But, exploration is not helpful for converging and
fine tuning of the solutions, necessary for detecting the optimum. A small value of
F will serve the purpose of exploitation and support the convergence towards a
solution.

In our proposal, for each population member, the F value is switched between
0.5 and 2 in a uniformly randomized way. Note that F = 2 is somewhat an unusual
choice since this extreme value has not been reported for DE in commonly available
papers. However, our experiments indicate that for the large scale problems this

108 S. Das et al.

value can indeed enhance the performance than switching F between 0.5 and 1.
When F is 2, the difference vector gets a higher importance. Consequently, the
newly generated mutant point will be thrown relatively far from current base point,
thereby enhancing the chances of venturing unexplored regions of the search space.
When F takes a value of 0.5, the newly generated mutant point lies near by the base
point as the difference vector gets very less weight. Thus it enhances the certainty of
local neighborhood search. In Fig. 1 two possible distribution of the donor vectors
have been shown around two mutant points generated by perturbing a base vector
X ⃗base with two values of the scale factor, F = 0.5 and F = 2 on a 2D search space.

Similarly for each individual, the Cr value is switched between 0 and 1. Note
that this means in our proposed DE variant can either the mutant/donor vector is
directly accepted as the final offspring (for Cr = 1) or the final offspring differs from
the target (parent) vector at a single index determined by jr (for Cr = 0). While the
former situation corresponds to the generation of rotationally invariant points, the
latter implies an axis parallel movement of the solution points.

Note that a plethora of DE variants has been published with different kinds of
parametric (like sampling from a Cauchy or Gaussian distribution, see e.g. [22, 23])
and non-parametric (sampling from a uniform distribution like [31]) randomization
in the tuning of F and Cr. However, such switching between only two extreme
values has never been proposed earlier. In what follows we name the resulting DE
variant as SWDE (Switching DE).

Each individual in SWDE can be mutated by any of the commonly used
mutation strategies in DE. It is now well-known that DE/best/1 induces somewhat
greedy search behaviour and hence can be recommended for unimodal functions.

Fig. 1 Effect of F = 2 and F = 0.5 in DE mutation

A Switched Parameter Differential Evolution … 109

On the other hand, DE/rand/1 introduces more randomization (since different base
vectors are perturbed to generate the mutant points for different individuals) and
explorability and is, hence, suitable for multimodal functions. In our proposal we
use a simple strategy for choosing any one of these two basic mutation schemes
based on the success record of just the last successful update at the same population
index. This means, at the first generation an individual is mutated either by
DE/rand/1 or DE/best/1 chosen randomly. If the corresponding target individual is
replaced by the trial (offspring), then the mutation scheme can be considered as a
good choice, and will be used for that individual (of same index) in the next
generation as well. If the trial is not selected for the individual, then the mutation
strategy is unsuccessful, and in the next generation the other mutation scheme will
be used for that individual.

We refer to this DE variant that combines the parameter switching scheme with a
success-based selection of the mutation strategies as SWDE_Success (SWitching
DE with Success-based selection of mutation scheme). Note that SWDE_Success
does not require any control parameter to tune, except for the population size Np,
which, however, is not really treated as a control parameter and is kept constant for
most of the representative literature on DE. There is no need to fix any initial values
for F and Cr, knowing only their feasible ranges would be fine. There is no
parametric probability distribution whose parameters (like mean, variance, offset
etc.) are required to be tuned.

Before moving on to the comparative study on standard benchmark suites, we
would like to illustrate that DE with these simple modifications can indeed better
preserve the population diversity, and thus can be helpful in retaining the useful
information about promising search regions in a better way. Measurement of
diversity level of the total population during the optimization work is another
important aspect of empirical analysis, because maintaining diversity along the
search process is another important aspect of large scale optimization. In proposed
work “distance-to-average point” measurement for diversity of the population PG at
generation G, as presented in [38], is used as follows:

diversity PGð Þ= 1
Np× L

∑
Np

i=1

ffi
∑
D

j=1
xij − xj̄
� �2s

, ð5Þ

where Np represents population size, L is the length of the longest diagonal in the
search space of dimension D and xj̄ is the average value of j-th dimension of the
vector. Variation of population diversity with respect to iteration as defined in
(6) for the population is plotted in Fig. 2 for the Rastrigin’s function in 50D. It is
clear from the figure that the population of SWDE_Success never loses diversity
prematurely. In this figure the red line depicts population diversity for
SWDE_Success and blue one represents the same for standard DE.

In Fig. 3 we illustrate the distribution of population members of standard
DE/best/1/bin (F = 0.8 and Cr = 0.8) and the proposed SWDE_Success on a 2D
parameter space of the Rastrigin’s function. The figures present screenshots of the

110 S. Das et al.

Fig. 2 Comparison of variation of population diversity with number of iterations between
SWDE_Success and standard DE/best/1/bin

1noitaretI)1.b(1noitaretI)1.a(

5noitaretI)2.b(5noitaretI)2.a(

 (b.3) Iteration 20 (a.3) Iteration 20

Fig. 3 Screen-shots of the evolving populations on the iso-contours of the 2D Rastrigin’s function
for (a) standard DE/best/1 scheme with F = 0.8 and Cr = 0.8 (b) SWDE_Success

A Switched Parameter Differential Evolution … 111

population at 1st, 5-th and 20-th iterations. Note that for the two algorithms, the
iterations were started from the same initial population, so that the different spread
of the evolving populations may be attributed to their internal search mechanisms
only. It can be seen that the population members following the SWDE_Success
scheme can capture the global optimum more efficiently while still preserving the
population diversity.

4 Experiments and Results

A popular choice for evaluating the performance of the DE algorithm is to use the
benchmark suite proposed for the IEEE CEC (Congress on Evolutionary Compu-
tation) competitions. These suites contain collection of functions of diverse nature,
which can successfully validate the performance of an optimization algorithm in a
variety of scenarios.

The CEC 2008 [5] and CEC 2010 [6] test suites are specially designed with large
scale minimization problems (i.e. of dimensions D = 100, 500, and 1000), and thus,
useful for testing our proposed DE variant (SWDE_Success). Following standard
procedure, the mean and standard deviation of the error value is used to measure the
performance of an algorithm. The error is calculated as the difference between the
actual value of the global optimum and the obtained value of the optimum. Only for
function F7 of CEC 2008, the absolute value of the obtained optimum is recorded
and compared, because for that function, the globally optimal function value is
unknown. The population size has been taken as 100 for SWDE_Success in all the
cases. To evaluate the scalability of the algorithm in the worse condition, the
comparison is rendered on 1000 and 2000 dimensional problems.

For all the CEC 2008 benchmark problems and for all algorithms compared, the
maximum number of Function Evaluations (FEs) corresponding to each run was
taken to be 5000 ×D, where D denotes the dimensionality of the functions fol-
lowing [5]. Similarly for the CEC 2010 benchmarks, the maximum number of FEs
corresponding to each run was fixed to 3000×D [6, 18]. The parametric settings for
all the peer algorithms were kept similar to their respective literatures. For
SWDE_Success, the population size was fixed to Np = 100 for all 1000D problems
and Np = 150 for the 2000D problems. We find that this choice (which is standard
and straight forward) provides consistently good performance on the used bench-
marks, and little improvement takes place with increased execution time if we
increase the population size any further.

A non-parametric statistical test called Wilcoxon’s rank sum test for independent
samples [39] is conducted at the 5 % significance level in order to judge whether the
results obtained with the best performing algorithm differ from the final results of
rest of the competitors in a statistically significant way. In all result tables the
statistical test results are summarized in the following way. If the final error yielded
by an algorithm is statistically significantly different from that of the best per-
forming algorithm on a particular function, then the mean error of the former is

112 S. Das et al.

marked with a † symbol. If the difference of the error values found by one algorithm
is not statistically significant, as compared to its best competitor, then the mean of
this algorithm is marked with a ≈. The best performing algorithm in each case is
marked with boldface.

In order to demonstrate how the proposed parameter switching scheme works
harmoniously with the success-based mutation scheme, we begin with a compar-
ative study among the proposed SWDE_Success, the standard DE/best/1/bin
scheme with fixed F and Cr (F = 0.8, Cr = 0.9) and a SWDE that uses only
DE/best/1 mutation scheme for all its population members. The obtained results are
demonstrated in Table 1, which shows that SWDE provides much better results
than DE/best/1 with fixed F and Cr values. Also it can be observed that
SWDE_Success yields statistically better results as compared to both SWDE and
DE/best/1 on all the 7 functions of the CEC 2008 test bed.

To compare the performance of SWDE_Success against the existing
state-of-the-art, we consider the results of five other algorithms customised for large
scale global optimization. Two of them are the variants of the Particle Swarm
Optimisation (PSO) algorithm namely CCPSO2 [10] and EPUS-PSO (Efficient
Population Utilization Strategy for Particle Swarm Optimization) [40], which use a
variable grouping technique and an efficient population management scheme
respectively. The third one is Sep-CMA-ES [41] a scalable variation of the popular
CMA-ES optimization technique, which performs faster and better than the original
algorithm, especially on separable functions. The fourth is MTS (Multiple Tra-
jectory Search) [16], a hybrid local search method. The fifth one is MLCC
(Multi-Level Cooperative Co-evolution) [42]. The results are listed Table 2, where
SWDE_Success outperformed others, for all the functions except F6. For F6
CCPSO2 performed slightly better than SWDE_Success, however, result of the
rank sum test indicates that this difference is not statistically significant. Thus,
SWDE_Success is found to be more consistent on this benchmark suite. In terms of
the average rank SWDE_Success is the clear winner, followed by CCPSO2 and
MTS.

In Tables 3, 4 and 5 SWDE_Success results are compared with 11 other evo-
lutionary optimizers including some recent DE-variants (DECC-ML, DECC-CG,
DECC-DG, and DE/best/1/bin) on the CEC 2010 benchmarks. Out of the 20
high-dimensional functions SWDE_Success provided statistically significantly
better results compared to all its peer algorithms on 14 functions, and ranked second
in 3 functions. DECC-ML [43] performed best in three functions, namely F3, F11
and F16, jDELsgo [28] performed better on two functions F6 and F19, and
MA-SW-Chains [18] performed better than others only in one case of F12. The
rank sum test results indicate that on F3, the result of SWDE_Success is not
statistically significantly different from the best result given by DECC_ML. Simi-
larly for F6, the best result yielded by jDElsgo is statistically equivalent to that of
SWDE_Success. For CEC 2010 functions also SWDE_Success holds the minimum
average rank, the closest followers are jDELsgo, and MA-SW-Chains.

To further test the scalability of the proposed algorithm, three CEC 2008
functions (1 unimodal and 2 multimodals) of 2000 dimensions are used, as was also

A Switched Parameter Differential Evolution … 113

T
ab

le
1

Pe
rf
or
m
an
ce

im
pr
ov

em
en
t
by

th
e
pr
op

os
ed

al
go

ri
th
m

(S
W
D
E
_S

uc
ce
ss
)
fr
om

D
E
/b
es
t/1

/b
in

an
d
SW

D
E
(D

=
10

00
)

Fu
nc
.

F1
F2

F3
F4

F5
F6

F7

D
E
/b
es
t/1

/b
in

9.
88

e
+

05
†

1.
25

e
+

05
1.
29

1e
+

04
†

5.
62

e
+

01
7.
10

e
+

11
†

2.
35

e
+

09
6.
53

e
+

03
†

2.
55

e
+

02
8.
46

e
+

03
†

3.
52

e
+

02
1.
76

e
+

01
†

7.
89

e
+

00
−
2.
13

e
+

01
†

1.
15

e
+

01
SW

D
E

9.
95

e
−

18
†

1.
23

5
−

19
9.
04

6e
+

01
†

5.
46

e
+

01
6.
33

e
+

05
†

5.
73

e
+

01
5.
23

e
−

09
†

4.
61

e
−

05
1.
61

e
−

14
†

2.
25

e
−

12
2.
50

e
−

09
†

1.
16

e
−

07
−
7.
00

e
+

03
†

1.
22

e
+

01
SW

D
E
_

Su
cc
es
s

0.
00

e
+

00
0.
00

e
+

00
2.
24

e
+

00
2.
01

e
+

01
1.
03

e
−

03
1.
85

e
+

01
0.
00

e
+

00
0.
00

e
+

00
2.
74

e
−

22
1.
25

e
−

18
4.
31

e
−

12
3.
25

e
−

19
−
9.
85

e
+

04
2.
56

e
−

02

114 S. Das et al.

T
ab

le
2

Pe
rf
or
m
an
ce

of
6
la
rg
e
sc
al
e
ev
ol
ut
io
na
ry

op
tim

iz
er
s
in
cl
ud

in
g
SW

D
E
_S

uc
ce
ss

on
C
E
C

20
10

be
nc
hm

ar
k
su
ite

(D
=

10
00

)

Fu
nc
tio

n
F1

F2
F3

F4
F5

F6
F7

A
vg

.
R
an
k

C
C
PS

O
2
[1
0]

4.
99

e
−

13
†

9.
51

e
−

14
7.
55

e
+

01
†

4.
25

e
+

01
1.
30

e
+

03
†

2.
15

e
+

02
1.
17

e
−

03
†

3.
27

e
−

03
1.
17

e
−

03
†

3.
25

e
−

03
1.
01

e
−

12
1.
68

e
−

13
−
1.
44

e
+

04
†

8.
27

e
+

01
R
A
N
K

3
4

4
3

4
1

3
3.
14

Se
p-
C
M
A
-E
S

[4
1]

7.
79

e
−

15
†

1.
22

e
−

15
3.
10

e
+

02
†

9.
22

e
+

00
9.
09

e
+

02
†

4.
22

e
+

01
5.
25

e
+

03
†

2.
48

e
+

02
3.
91

e
−

04
†

1.
96

e
−

03
2.
16

e
+

01
†

3.
19

e
−

01
−
1.
24

e
+

04
†

9.
36

e
+

01
R
A
N
K

2
6

3
5

5
8

5
4.
85

E
PU

S-
PS

O
[4
0]

5.
49

e
+

02
†

2.
82

e
+

01
4.
55

e
+

01
†

4.
00

e
−

01
8.
31

e
+

05
†

1.
56

e
+

05
7.
56

e
+

03
†

1.
50

e
+

02
5.
80

e
+

00
†

3.
92

e
−

01
1.
84

e
+

01
†

2.
49

e
+

00
−
6.
68

e
+

03
†

3.
18

e
+

01
R
A
N
K

6
3

6
7

6
5

6
5.
57

M
L
C
C

[4
2]

8.
25

e
−

13
†

5.
59

e
−

14
1.
28

e
+

02
†

4.
75

e
+

00
1.
77

e
+

03
†

1.
25

e
+

02
1.
42

e
−

10
†

3.
31

e
−

10
4.
17

e
−

13
†

2.
79

e
−

14
1.
06

e
−

12
≈

7.
68

e
−

14
−
1.
49

e
+

04
†

1.
52

e
+

01
R
A
N
K

4
5

5
2

2
3

2
3.
28

M
T
S
[1
6]

1.
21

e
−

03
†

6.
14

e
−

03
4.
60

e
+

01
†

1.
5e

+
00

1.
77

e
−

02
†

7.
81

e
−

03
2.
81

e
+

02
†

4.
74

e
+

02
9.
45

e
−

08
†

2.
61

e
−

07
7.
20

e
−

04
†

2.
67

e
−

03
−
1.
31

e
+

04
†

3.
45

e
+

01
R
A
N
K

5
2

2
4

3
6

4
3.
71

SW
D
E
_

Su
cc
es
s

0.
00

e
+

00
0.
00

e
+

00
2.
24

e
+

00
2.
01

e
+

01
1.
03

e
−

03
1.
85

e
−

02
0.
00

e
+

00
0.
00

e
+

00
2.
74

e
−

22
1.
25

e
−

18
4.
31

e
−

12
≈

3.
25

e
−

19
−
9.
85

e
+

04
2.
56

e
−

02
R
A
N
K

1
1

1
1

1
2

1
1.
14

A Switched Parameter Differential Evolution … 115

T
ab

le
3

Pe
rf
or
m
an
ce

of
12

la
rg
e
sc
al
e
ev
ol
ut
io
na
ry

op
tim

iz
er
s
in
cl
ud

in
g
SW

D
E
_S

uc
ce
ss

on
C
E
C
20

10
be
nc
hm

ar
k
su
ite

(F
1
−

F7
,D

=
10

00
)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F1
F2

F3
F4

F5
F6

F7

jD
E
ls
go

[2
8]

M
ea
n

SD (R
an
k)

8.
85

e
−

20
†

4.
50

e
−

20
(7
)

1.
24

e
−

01
†

3.
44

e
−

01
(2
)

3.
79

e
−

12
≈

5.
02

e
−

12
(6
)

8.
01

e
+

10
†

3.
05

e
+

10
(2
)

9.
71

e
+

07
†

1.
42

e
+

07
(5
)

1.
69

e
−

08
4.
02

e
−

08
(1
)

4.
32

e
−

02
†

6.
35

e
−

02
(2
)

D
E
C
C
-M

L
[4
3]

M
ea
n

SD (R
an
k)

1.
36

e
−

25
†

1.
81

e
−

25
(3
)

2.
15

e
+

02
†

2.
91

e
+

01
(7
)

1.
14

e
−

13
8.
22

e
−

15
(1
)

3.
53

e
+

12
†

1.
51

e
+

12
(7
)

2.
98

e
+

08
†

9.
32

e
+

07
(1
0)

7.
94

e
+

05
†

3.
87

e
+

06
(8
)

1.
21

e
+

08
†

7.
65

e
+

07
(1
0)

D
A
SA

[4
5]

M
ea
n

SD (R
an
k)

1.
51

e
−

21
†

2.
32

e
−

21
(5
)

8.
44

e
+

00
†

2.
50

e
+

00
(5
)

7.
21

e
−

11
†

8.
22

e
−

12
(8
)

5.
04

e
+

11
†

2.
25

e
+

11
(5
)

6.
21

e
+

08
†

7.
81

e
+

07
(1
2)

1.
98

e
+

07
†

4.
41

e
+

04
(1
1)

7.
75

e
+

00
†

3.
11

e
+

00
(3
)

D
M
S-
PS

O
-S
H
S
[4
6]

M
ea
n

SD (R
an
k)

5.
55

e
−

15
†

4.
02

e
−

14
(6
)

8.
52

e
+

01
†

2.
02

e
+

01
(6
)

5.
51

e
−

11
†

3.
21

e
−

10
(7
)

2.
41

e
+

11
†

3.
31

e
+

10
(3
)

8.
35

e
+

07
†

6.
15

e
+

06
(4
)

8.
25

e
−

02
†

9.
95

e
−

01
(4
)

1.
95

e
+

03
†

1.
55

e
+

02
(6
)

SD
E
N
S
[3
4]

M
ea
n

SD (R
an
k)

5.
72

e
−

06
†

4.
42

e
−

06
(1
0)

2.
22

e
+

03
†

8.
92

e
+

01
(1
0)

2.
70

e
−

05
†

1.
52

e
−

05
(9
)

5.
12

e
+

12
†

2.
12

e
+

12
(9
)

1.
12

e
+

08
†

2.
23

e
+

07
(6
)

2.
23

e
−

04
†

4.
56

e
−

05
(3
)

1.
21

e
+

08
†

6.
52

e
+

07
(8
)

E
O
E
A

[4
4]

M
ea
n

SD (R
an
k)

2.
21

e
−

23
†

2.
81

e
−

23
(4
)

3.
61

e
−

01
†

6.
71

e
−

01
(3
)

1.
61

e
−

13
≈

1.
11

e
−

14
(2
)

3.
07

e
+

12
†

1.
66

e
+

12
(6
)

2.
26

e
+

07
†

5.
96

e
+

06
(3
)

3.
86

e
+

06
†

4.
96

e
+

05
(9
)

1.
21

e
+

02
†

1.
51

e
+

02
(5
)

D
E
C
C
-G

[9
]

M
ea
n

SD (R
an
k)

2.
94

e
−

07
†

8.
64

e
−

08
(9
)

1.
34

e
+

03
†

3.
24

e
+

01
(9
)

1.
38

e
+

00
†

9.
75

e
−

02
(1
0)

1.
75

e
+

13
†

5.
34

e
+

12
(1
1)

2.
64

e
+

08
†

8.
44

e
+

07
(9
)

4.
91

e
+

06
†

8.
01

e
+

05
(1
0)

1.
61

e
+

08
†

1.
31

e
+

08
(1
1)

M
L
C
C

[4
2]

M
ea
n

SD (R
an
k)

1.
55

e
−

27
†

7.
62

e
−

27
(2
)

5.
52

e
−

01
†

2.
22

e
+

00
(4
)

9.
82

e
−

13
≈

3.
72

e
−

12
(4
)

9.
60

e
+

12
†

3.
40

e
+

12
(1
0)

3.
80

e
+

08
†

6.
90

e
+

07
(1
1)

1.
61

e
+

07
†

4.
91

e
+

06
(1
2)

6.
81

e
+

05
†

7.
31

e
+

05
(8
) (c
on

tin
ue
d)

116 S. Das et al.

T
ab

le
3

(c
on

tin
ue
d)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F1
F2

F3
F4

F5
F6

F7

M
A
-S
W
-C
ha
in
s
[1
8]

M
ea
n

SD (R
an
k)

2.
09

e
−

14
†

1.
98

e
−

14
(7
)

8.
11

e
+

02
†

5.
81

e
+

01
(8
)

7.
21

e
−

13
≈

3.
41

e
−

13
(3
)

3.
52

e
+

11
†

3.
12

e
+

10
(4
)

1.
67

e
+

08
†

1.
07

e
+

08
(8
)

8.
13

e
+

04
†

2.
83

e
+

05
(7
)

1.
03

e
+

02
†

8.
71

e
+

01
(4
)

D
E
C
C
-D

G
[1
1]

M
ea
n

SD (R
an
k)

5.
41

e
+

03
†

2.
02

e
+

04
(1
1)

4.
33

e
+

03
†

1.
93

e
+

02
(1
1)

1.
61

e
+

01
†

3.
31

e
−

01
(1
1)

4.
78

e
+

12
†

1.
48

e
+

12
(8
)

1.
51

e
+

08
†

2.
12

e
+

07
(7
)

1.
63

e
+

01
†

2.
72

e
−

01
(5
)

1.
12

e
+

04
†

7.
41

e
+

03
(7
)

D
E
/b
es
t/1

/b
in

M
ea
n

SD (R
an
k)

3.
52

e
+

05
†

2.
69

e
+

05
(1
2)

9.
30

e
+

03
†

1.
3e

+
04

(1
2)

3.
53

e
+

03
†

2.
23

e
+

02
(1
2)

5.
25

e
+

19
†

9.
23

e
+

17
(1
2)

5.
23

e
+

06
†

9.
63

+
05

(2
)

2.
55

e
+

01
†

1.
21

e
+

01
(6
)

1.
08

e
+

11
†

9.
08

e
+

10
(1
2)

SW
D
E
_S

uc
ce
ss

M
ea
n

SD (R
an
k)

1.
59

e
−

30
1.
35

e
−

25
(1
)

1.
21

e
−

03
2.
35

e
−

06
(1
)

1.
21

e
−

12
≈

7.
35

e
−

12
(5
)

1.
00

e
+

06
2.
54

e
+

02
(1
)

3.
39

e
+

04
3.
37

e
+

02
(1
)

2.
33

e
−

08
≈

1.
01

e
−

07
(2
)

1.
05

e
−

03
1.
01

e
−

02
(1
)

A Switched Parameter Differential Evolution … 117

T
ab

le
4

Pe
rf
or
m
an
ce

of
12

la
rg
e
sc
al
e
ev
ol
ut
io
na
ry

op
tim

iz
er
s
in
cl
ud

in
g
SW

D
E
_S

uc
ce
ss

on
C
E
C
20

10
be
nc
hm

ar
k
su
ite

(F
8
−

F1
4,

D
=

10
00

)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F8
F9

F1
0

F1
1

F1
2

F1
3

F1
4

jD
E
ls
go

[2
8]

M
ea
n

SD (R
an
k)

3.
12

e
+

06
†

3.
23

e
+

06
(2
)

3.
13

e
+

07
†

5.
02

e
+

06
(5
)

2.
59

e
+

03
†

3.
18

e
+

02
(5
)

2.
21

e
+

01
†

1.
53

e
+

01
(4
)

1.
22

e
+

04
†

2.
05

e
+

03
(6
)

7.
12

e
+

02
†

1.
39

e
+

02
(2
)

1.
67

e
+

08
†

2.
09

e
+

07
(6
)

D
E
C
C
-M

L
[4
3]

M
ea
n

SD (R
an
k)

3.
41

e
+

07
†

3.
52

e
+

07
(7
)

5.
93

e
+

07
†

4.
71

e
+

06
(8
)

1.
21

e
+

04
†

2.
60

e
+

02
(1
2)

1.
79

e
−

13
9.
55

e
−

15
(1
)

3.
56

e
+

06
†

1.
35

e
+

05
(1
2)

1.
12

e
+

03
†

4.
30

e
+

02
(3
)

1.
70

e
+

08
†

1.
45

e
+

07
(7
)

D
A
SA

[4
5]

M
ea
n

SD (R
an
k)

4.
97

e
+

07
†

8.
94

e
+

07
(9
)

3.
61

e
+

07
†

4.
78

e
+

06
(6
)

7.
26

e
+

03
†

2.
61

e
+

02
(1
0)

1.
97

e
+

02
†

1.
52

e
−

01
(9
)

1.
70

e
+

03
†

2.
24

e
+

02
(4
)

1.
20

e
+

03
†

7.
34

e
+

02
(4
)

1.
01

e
+

08
†

7.
85

e
+

06
(4
)

D
M
S-
PS

O
-S
H
S
[4
6]

M
ea
n

SD (R
an
k)

1.
25

e
+

07
†

1.
95

e
+

06
(4
)

8.
55

e
+

06
†

6.
55

e
+

05
(2
)

5.
59

e
+

03
†

5.
19

e
+

02
(8
)

3.
29

e
+

01
†

2.
99

e
+

00
(6
)

6.
15

e
+

02
†

6.
05

e
+

01
(3
)

1.
25

e
+

03
†

1.
06

e
+

02
(5
)

1.
76

e
+

07
†

1.
56

e
+

06
(2
)

SD
E
N
S
[3
4]

M
ea
n

SD (R
an
k)

5.
15

e
+

07
†

2.
15

e
+

07
(1
0)

5.
61

e
+

08
†

5.
71

e
+

07
(1
2)

6.
81

e
+

03
†

5.
61

e
+

02
(9
)

2.
22

e
+

02
†

5.
02

e
−

01
(1
1)

4.
12

e
+

05
†

4.
22

e
+

04
(1
0)

2.
13

e
+

03
†

1.
03

e
+

03
(9
)

1.
83

e
+

09
†

2.
33

e
+

08
(1
1)

E
O
E
A

[4
4]

M
ea
n

SD (R
an
k)

1.
01

e
+

07
†

1.
21

e
+

07
(3
)

4.
62

e
+

07
†

4.
72

e
+

06
(7
)

1.
02

e
+

03
†

6.
92

e
+

01
(3
)

3.
82

e
+

01
†

1.
62

e
+

01
(8
)

1.
57

e
+

04
†

2.
50

e
+

03
(7
)

1.
54

e
+

03
†

4.
19

e
+

02
(6
)

1.
64

e
+

08
†

8.
94

e
+

06
(5
)

D
E
C
C
-G

[9
]

M
ea
n

SD (R
an
k)

6.
43

e
+

07
†

2.
81

e
+

07
(1
1)

3.
20

e
+

08
†

3.
36

e
+

07
(1
1)

1.
05

e
+

04
†

2.
94

e
+

02
(1
1)

2.
30

e
+

01
†

1.
75

e
+

00
(5
)

8.
91

e
+

04
†

6.
81

e
+

03
(9
)

5.
11

e
+

03
†

3.
91

e
+

03
(1
0)

8.
01

e
+

08
†

6.
02

e
+

07
(1
0)

M
L
C
C

[4
2]

M
ea
n

SD (R
an
k)

4.
37

e
+

07
†

3.
44

e
+

07
(8
)

1.
22

e
+

08
†

1.
29

e
+

07
(1
0)

3.
45

e
+

03
†

8.
75

e
+

02
(6
)

1.
91

e
+

02
†

6.
91

e
−

01
(1
0)

3.
41

e
+

04
†

4.
21

e
+

03
(8
)

2.
01

e
+

03
†

7.
21

e
+

02
(8
)

3.
11

e
+

08
†

2.
71

e
+

07
(8
) (c
on

tin
ue
d)

118 S. Das et al.

T
ab

le
4

(c
on

tin
ue
d)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F8
F9

F1
0

F1
1

F1
2

F1
3

F1
4

M
A
-S
W
-C
ha
in
s
[1
8]

M
ea
n

SD (R
an
k)

1.
41

e
+

07
†

3.
62

e
+

07
(5
)

1.
42

e
+

07
†

1.
12

e
+

06
(3
)

2.
02

e
+

03
†

1.
42

e
+

02
(4
)

3.
81

e
+

01
†

7.
31

e
+

00
(7
)

3.
61

e
−

06
5.
91

e
−

07
(1
)

1.
21

e
+

03
†

5.
71

e
+

02
(7
)

3.
11

e
+

07
†

1.
93

e
+

06
(3
)

D
E
C
C
-D

G
[1
1]

M
ea
n

SD (R
an
k)

3.
01

e
+

07
†

2.
11

e
+

07
(6
)

5.
91

e
+

07
†

8.
12

e
+

06
(9
)

4.
53

e
+

03
†

1.
42

e
+

02
(7
)

1.
01

e
+

01
†

1.
02

e
+

00
(3
)

2.
52

e
+

03
†

4.
85

e
+

02
(5
)

4.
58

e
+

06
†

2.
18

e
+

06
(1
2)

3.
46

e
+

08
†

2.
46

e
+

07
(9
)

D
E
/b
es
t/1

/b
in

M
ea
n

SD (R
an
k)

2.
46

e
+

11
†

2.
22

e
+

10
(1
2)

3.
03

e
+

07
†

1.
00

e
+

06
(4
)

4.
65

e
+

01
†

5.
11

e
+

01
(2
)

2.
35

e
+

03
†

1.
39

e
+

03
(1
2)

2.
36

e
+

06
†

1.
59

e
+

06
(1
1)

3.
59

e
+

06
†

1.
09

e
+

05
(1
1)

3.
25

e
+

17
†

1.
59

e
+

15
(1
2)

SW
D
E
_S

uc
ce
ss

M
ea
n

SD (R
an
k)

1.
35

e
+

05
2.
39

e
+

04
(1
)

2.
04

e
+

04
1.
09

e
+

02
(1
)

5.
15

e
+

00
1.
11

e
+

01
(1
)

1.
55

e
−

09
†

1.
35

e
−

10
(2
)

5.
00

e
+

02
†

3.
55

e
+

01
(2
)

3.
00

e
+

02
2.
00

e
+

00
(1
)

8.
15

e
+

06
2.
15

e
+

04
(1
)

A Switched Parameter Differential Evolution … 119

T
ab

le
5

Pe
rf
or
m
an
ce

of
12

la
rg
e
sc
al
e
ev
ol
ut
io
na
ry

op
tim

iz
er
s
in
cl
ud

in
g
SW

D
E
_S

uc
ce
ss

on
C
E
C

20
10

be
nc
hm

ar
k
su
ite

(F
15

−
F2

0,
A
ve
ra
ge

R
an
k,

D
=

10
00

)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

A
vg

.
R
an
k

on
al
l
fu
nc
tio

ns
F1

–
F2

0

jD
E
ls
go

[2
8]

M
ea
n

SD (R
an
k)

5.
85

e
+

03
†

4.
46

e
+

02
(5
)

1.
40

e
+

02
†

3.
42

e
+

01
(8
)

1.
00

e
+

05
†

1.
25

e
+

04
(7
)

1.
86

e
+

03
†

3.
11

e
+

02
(3
)

2.
73

e
+

05
2.
12

e
+

04
(1
)

1.
51

e
+

03
†

1.
32

e
+

02
(7
)

4.
3

D
E
C
C
-M

L
[4
3]

M
ea
n

SD (R
an
k)

1.
54

e
+

04
†

3.
51

e
+

02
(1
1)

5.
07

e
−

02
2.
54

e
−

01
(1
)

6.
56

e
+

06
†

4.
61

e
+

05
(1
1)

2.
42

e
+

03
†

1.
11

e
+

03
(5
)

1.
59

e
+

07
†

1.
71

e
+

06
(1
1)

9.
92

e
+

02
†

3.
55

e
+

01
(4
)

6.
95

D
A
SA

[4
5]

M
ea
n

SD (R
an
k)

1.
44

e
+

04
†

3.
66

e
+

02
(1
0)

3.
94

e
+

02
†

2.
12

e
−

01
(9
)

1.
04

e
+

04
†

8.
9e

+
02

(4
)

4.
42

e
+

03
†

2.
18

e
+

03
(7
)

8.
14

e
+

05
†

5.
56

e
+

04
(3
)

1.
03

e
+

03
†

1.
49

e
+

02
(6
)

6.
7

D
M
S-
PS

O
-S
H
S
[4
6]

M
ea
n

SD (R
an
k)

4.
68

e
+

03
†

2.
15

e
+

02
(4
)

6.
95

e
+

01
†

4.
25

e
+

00
(4
)

3.
23

e
+

03
†

4.
05

e
+

02
(3
)

2.
26

e
+

03
†

1.
16

e
+

02
(4
)

1.
16

e
+

06
†

1.
06

e
+

05
(6
)

3.
52

e
+

02
†

4.
02

e
+

01
(2
)

4.
45

SD
E
N
S
[3
4]

M
ea
n

SD (R
an
k)

7.
36

e
+

03
†

9.
63

e
+

01
(8
)

4.
03

e
+

02
†

2.
53

e
+

00
(1
0)

1.
02

e
+

06
†

1.
12

e
+

05
(1
0)

3.
01

e
+

04
†

1.
21

e
+

04
(1
0)

8.
82

e
+

05
†

1.
52

e
+

05
(4
)

9.
93

e
+

02
†

1.
63

e
+

01
(3
)

8.
6

E
O
E
A

[4
4]

M
ea
n

SD (R
an
k)

2.
14

e
+

03
†

1.
24

e
+

02
(2
)

8.
26

e
+

01
†

1.
68

e
+

01
(6
)

7.
93

e
+

04
†

8.
80

e
+

03
(6
)

2.
94

e
+

03
†

6.
92

e
+

02
(6
)

1.
84

e
+

06
†

9.
97

e
+

04
(8
)

1.
97

e
+

03
†

2.
35

e
+

02
(8
)

5.
35

D
E
C
C
-G

[9
]

M
ea
n

SD (R
an
k)

1.
26

e
+

04
†

8.
91

e
+

02
(9
)

7.
65

e
+

01
†

8.
15

e
+

00
(5
)

2.
85

e
+

05
†

1.
98

e
+

04
(9
)

2.
45

e
+

04
†

1.
05

e
+

04
(9
)

1.
15

e
+

06
†

5.
15

e
+

04
(5
)

4.
05

e
+

03
†

3.
66

e
+

02
(1
0)

9.
15

M
L
C
C

[4
2]

M
ea
n

SD (R
an
k)

7.
11

e
+

03
†

1.
31

e
+

03
(7
)

3.
72

e
+

02
†

4.
72

e
+

01
(1
1)

1.
52

e
+

05
†

1.
42

e
+

04
(8
)

7.
02

e
+

03
†

4.
72

e
+

03
(8
)

1.
32

e
+

06
†

7.
32

e
+

04
(9
)

2.
02

e
+

03
†

1.
82

e
+

02
(9
)

8.
05

(c
on

tin
ue
d)

120 S. Das et al.

T
ab

le
5

(c
on

tin
ue
d)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

A
vg

.
R
an
k

on
al
l
fu
nc
tio

ns
F1

–
F2

0

M
A
-S
W
-C
ha
in
s
[1
8]

M
ea
n

SD (R
an
k)

2.
86

e
+

03
†

1.
25

e
+

02
(3
)

9.
95

e
+

01
†

1.
45

e
+

01
(7
)

1.
25

e
+

00
≈

1.
25

e
−

01
(2
)

1.
34

e
+

03
†

4.
34

e
+

02
(2
)

2.
84

e
+

05
†

1.
69

e
+

04
(2
)

1.
05

e
+

03
†

7.
25

e
+

01
(5
)

4.
6

D
E
C
C
-D

G
[1
1]

M
ea
n

SD (R
an
k)

5.
84

e
+

03
†

1.
04

e
+

02
(6
)

7.
32

e
+

03
†

5.
72

e
−

14
(2
)

4.
06

e
+

04
†

2.
86

e
+

03
(5
)

1.
18

e
+

10
†

2.
08

e
+

09
(1
2)

1.
78

e
+

06
†

9.
58

e
+

04
(7
)

4.
89

e
+

07
†

2.
28

e
+

07
(1
2)

7.
75

D
E
/b
es
t/1

/b
in

M
ea
n

SD (R
an
k)

6.
66

e
+

05
†

5.
69

e
+

05
(1
2)

2.
33

e
+

03
†

1.
11

e
+

03
(1
2)

3.
95

e
+

07
†

6.
69

e
+

06
(1
2)

3.
52

e
+

07
†

1.
09

e
+

07
(1
1)

2.
55

e
+

09
†

1.
59

e
+

07
(1
2)

3.
54

e
+

05
†

9.
23

e
+

04
(1
1)

10
.0
1

SW
D
E
_S

uc
ce
ss

M
ea
n

SD (R
an
k)

1.
10

e
+

03
2.
09

e
+

01
(1
)

8.
50

e
−

01
†

1.
00

e
−

01
(3
)

1.
13

e
+

00
3.
13

e
−

01
(1
)

1.
01

e
+

03
2.
12

e
+

01
(1
)

5.
50

e
+

06
†

2.
00

e
+

05
(1
0)

3.
09

e
+

00
1.
00

e
−

01
(1
)

1.
85

A Switched Parameter Differential Evolution … 121

done in [10]. The performance is compared with two popular evolutionary large
scale optimizers of diverse origins, CCPSO2 and Sep-CMA-ES [41]. The obtained
results are summarized in Table 6. Sep-CMA-ES only performed better than
SWDE_Success in the case of the separable function F1. However, according to the
rank sum test, the difference between the final mean errors of sep-CMA-ES and
SWDE_Success is not statistically meaningful. For the multimodal non-separable
problems F3 and F7, SWDE_Success performed statistically better than both
CCPSO2 and sep-CMA-ES. CCPSO2 took the second place for F7 and
Sep-CMA-ES did the same for F3.

5 Conclusion

To address the problem of optimizing very high-dimensional numerical functions,
this paper presents a new variant of DE, referred here as the SWDE_Success, which
uses a simple switching scheme for the two key parameters of DE, the scale factor
and the crossover rate. SWDE_Success also employs a success-based selection of
either of the two kinds of mutation strategies. The algorithm uses two very common
mutation strategies (the greedy DE/best/1 and the explorative DE/rand/1 schemes)
and applies a simple scheme selection process, which only depends on the success
of a mutation scheme in the previous iteration in terms of generating a successful
offspring (one which could replace its parent during the selection).

Exploring a huge search volume (induced by the large number of variables) with
a limited population of candidate solutions is challenging and it requires a judicious
balance between the explorative and exploitative tendencies of an evolutionary
algorithm. This requirement is nicely fulfilled by the random selection of the control
parameter values from their extremities. Our results indicate that a combination of
the high and unconventional value of F (= 2) with the low value (= 0.5) can be
indeed very useful for solving benchmark functions. In contrast to some of the most
prominent approaches (like [22, 23, 26, 27]) that sample F values from the interval
of (0.4, 1) and Cr values from (0, 1), our results indicate that most of the useful

Table 6 Performance of SWDE_Success, CCPSO2 and Sep-CMA-ES on 3 functions from the
CEC 2008 test-suite (D = 2000)

Algorithms SWDE_Success CCPSO2 Sep-CMA-ES
Functions Mean

(Std. Dev.)
Mean
(Std. Dev.)

Mean
(Std. Dev.)

F1 1.23e − 14≈
(1.01e − 06)

1.03e − 12† (2.56e − 13) 7.12e − 15
(6.24e − 15)

F3 1.00e + 01
(2.10e + 00)

2.91e + 03† (6.43e + 02) 1.73e + 03† (7.77e + 01)

F7 −2.20e + 04
(1.01e + 02)

−2.28e + 04† (1.90e + 02) −2.46e + 04† (1.57e + 02)

122 S. Das et al.

information about F and Cr values can remain attached to the boundaries of their
feasible regions. This point requires further analytical and experimental investiga-
tions in future.

The future works may also include a detailed study on the dynamics and search
procedure of SWDE_Success, alongside an explanation of its success. Also the
parameter switching strategy may be further investigated in other optimization
scenarios like for moderate dimensional problems, for multi-objective, constrained
and dynamic optimization problems.

References

1. Foli, K., Okabe, T., Olhofer, M., Jin, Y., Sendhoff, B.: Optimization of micro heat exchanger:
CFD, analytical results and multiobjective evolutionary algorithms. Int. J. Heat Mass Transf.
49(5–6), 1090–1099 (2006)

2. Sonoda, T., Yamaguchi, Y., Arima, T., Olhofer, M., Sendhoff, B., Schreiber, H.A.: Advanced
high turning compressor airfoils for low Reynolds number condition, part I: Design and
optimization. J. Turbomach. 126(3), 350–359 (2004)

3. Wang, C., Gao, J.: High-dimensional waveform inversion with cooperative coevolutionary
differential evolution algorithm. IEEE Geosci. Remote Sens. Lett. 9(2), 297–301 (2012)

4. Das, S., Suganthan, P.N.: Problem definitions and evaluation criteria for CEC 2011
competition on testing evolutionary algorithms on real world optimization problems.
Technical Report, Jadavpur University, India and Nanyang Technological University,
Singapore (2010)

5. Tang, K., Yao, X., Suganthan, P., MacNish, C., Chen, Y., Chen, C., Yang, Z.: Benchmark
functions for the CEC’2008 special session and competition on large scale global
optimization. In: Nature Inspired Computat. Applicat. Lab., Univ. Sci. Technol. China,
Hefei, China, Tech. Rep. http://nical.ustc.edu.cn/cec08ss.php (2007)

6. Tang, K., Li, X., Suganthan, P., Yang, Z., Weise, T.: Benchmark functions for the CEC’2010
special session and competition on large scale global optimization. In: Nature Inspired
Computat. Applicat. Lab., Univ. Sci. Technol. China, Hefei, China, Tech. Rep. http://nical.
ustc.edu.cn/cec10ss.php (2009)

7. Potter, M., De Jong, K.: Cooperative coevolution: an architecture for evolving coadapted
subcomponents. Evol. Comput. 8(1), 1–29 (2000)

8. Ray, T., Yao, X.: A cooperative coevolutionary algorithm with correlation based adaptive
variable partitioning. In: Proceedings of the IEEE CEC, pp. 983–999, May 2009

9. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative
coevolution. Inf. Sci. 178(15), 2986–2999 (2008)

10. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE
Trans. Evol. Comput. 16(2), 210–224 (2011)

11. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping
for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2013)

12. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function
optimization, SPIE 1196. Intell. Control Adapt. Syst. (1989). doi:10.1117/12.969927

13. Huang, T., Mohan, A.S.: Micro–particle swarm optimizer for solving high dimensional
optimization problems. Appl. Math. Comput. 181(2), 1148–1154 (2006)

14. Dasgupta, S., Biswas, A., Das, S., Panigrahi, B.K., Abraham, A.: A micro-bacterial foraging
algorithm for high-dimensional optimization. In: IEEE Congress on Evolutionary
Computation (CEC 2009), pp. 785–792, Tondheim, Norway, May 2009

A Switched Parameter Differential Evolution … 123

http://nical.ustc.edu.cn/cec08ss.php
http://nical.ustc.edu.cn/cec10ss.php
http://nical.ustc.edu.cn/cec10ss.php
http://dx.doi.org/10.1117/12.969927

15. Rajasekhar, A., Das, S., Das, S.: μABC: a micro artificial bee colony algorithm for large scale
global optimization. In: Soule, T. (ed.) Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation (GECCO ‘12), pp. 1399–1400,
ACM, New York, NY, USA. doi:10.1145/2330784.2330951. http://doi.acm.org/10.1145/
2330784.2330951

16. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE
Congress on Evolutionary Computation (CEC 2008), pp. 3052–3059, Hong Kong, June 2008

17. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory
search for large scale optimization. Soft. Comput. 15, 2175–2185 (2011)

18. Molina, D., Lozano, M., Herrera, F.: MA-SW-Chains: memetic algorithm based on local
search chains for large scale continuous global optimization. In: IEEE Congress on
Evolutionary Computation (CEC 2010), pp. 3153–3160, Barcelona, July, 2010

19. Molina, D., Lozano, M., Sánchez, A.M., Herrera, F.: Memetic algorithms based on local
search chains for large scale continuous optimization problems: MA-SSW-Chains. Soft.
Comput. 15, 2201–2220 (2011)

20. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

21. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans.
Evol. Comput. 15(1), 4–31 (2011)

22. Qin, A.K., Huang, V., Suganthan, P.: Differential evolution algorithm with strategy adaptation
for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

23. Zhang, J., Sanderson, A.: JADE: adaptive differential evolution with optional external archive.
IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

24. Epitropakis, M., Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Enhancing
differential evolution utilizing proximity based mutation operators. IEEE Trans. Evol. Comput.
15(1), 99–119 (2011)

25. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution
algorithm with novel mutation and crossover strategies for global numerical optimization.
IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012)

26. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation
strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

27. Mallipeddi, R., Suganthan, P.N.: Differential evolution algorithm with ensemble of parameters
and mutation and crossover strategies. In: Proc. Swarm Evol. Memet. Comput., Chennai,
India, pp. 71–78 (2010)

28. Zamuda, A., Brest, J., Boˇskovi´c, B., Zumer, V.: Large scale global optimization using
differential evolution with self-adaptation and cooperative co-evolution. In: IEEE Congress on
Evolutionary Computation (CEC 2008), pp. 3718–3725, Hong Kong, June 2008

29. Parsopoulos, K.E.: Cooperative micro-differential evolution for high-dimensional
problems. In: Genetic and Evolutionary Computation Conference 2009 (GECCO 2009),
pp. 531–538, Montreal, Canada (2009)

30. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory
search for large scale optimization. Soft. Comput. 15, 2175–2185 (2011)

31. Brest, J., Maučec, M.S.: Self-adaptive differential evolution algorithm using population size
reduction and three strategies. Soft. Comput. 15(11), 2157–2174 (2011)

32. Wang, H., Wu, Z., Rahnamayan, S.: Enhanced opposition-based differential evolution for
solving high-dimensional continuous optimization problems. Soft. Comput. 15(11),
2127–2140 (2011)

33. Weber, M., Neri, F., Tirronen, V.: Shuffle or update parallel differential evolution for
large-scale optimization. Soft. Comput. 15(11), 2089–2107 (2011)

34. Wang, H., Wu, Z., Rahnamayan, S., Jiang, D.: Sequential DE enhanced by neighborhood
search for large scale global optimization. In: IEEE Congress on Evolutionary Computation
(CEC 2010), pp. 4056–4062, Barcelona, July, 2010

35. Zaharie, D.: Influence of crossover on the behavior of the differential evolution algorithm.
Appl. Soft Comput. 9(3), 1126–1138 (2009)

124 S. Das et al.

http://dx.doi.org/10.1145/2330784.2330951
http://doi.acm.org/10.1145/2330784.2330951
http://doi.acm.org/10.1145/2330784.2330951

36. Zaharie, D.: Critical values for the control parameters of differential evolution algorithms. In:
Proc. 8th Int. Mendel Conf. Soft. Comput., pp. 62–67 (2002)

37. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real parameter optimization with differential
evolution. In: The 2005 IEEE Congress on Evolutionary Computation (CEC2005), vol. 1,
pp. 506–513. IEEE Press (2005)

38. Hu, J., Zeng, J., Tan, Y.: A diversity-guided particle swarm optimizer for dynamic
environments. In: Proceedings of Bio-Inspired Computational Intelligence Applivations, vol.
9, no. 3, pp. 239–247. Lecture Notes in Computer Science (2007)

39. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

40. Hsieh, S.T., Sun, T.Y., Liu, C.C., Tsai, S.J.: Efficient population utilization strategy for
particle swarm optimizer. IEEE Trans. Syst. Man Cybern. B Cybern. 39(2), 444–456 (2009)

41. Ros, R., Hansen, N.: A simple modification in CMA-ES achieving linear time and space
complexity. Lect. Notes Comput. Sci. 5199, 296–305 (2008)

42. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization.
In: Proc. IEEE Congr. Evol. Comput., pp. 1663–1670, June 2008

43. Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale
non-separable function optimization. In: Proc. IEEE Congr. Evol. Comput., pp. 1762–1769,
July 2010

44. Wang, Y., Huang, J., Dong, W.S., Yan, J.C., Tian, C.H., Li, M., Mo, W.T.: Two-stage based
ensemble optimization framework for large-scale global optimization. Eur. J. Oper. Res. 228,
308–320 (2013)

45. Korošec, P., Šilc, J.: The differential ant-stigmergy algorithm for large scale real-parameter
optimization. In: Ant Colony Optimization and Swarm Intelligence, Lecture Notes in
Computer Science, vol. 5217, pp. 413–414, Springer, Berlin Heidelberg (2008)

46. Zhao, S., Liang, J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic multi-swarm particle swarm
optimizer with local search for large scale global optimization. In: Proceedings of IEEE
Congress on Evolutionary Computation, pp. 3845–3852 (2008)

A Switched Parameter Differential Evolution … 125

	9 A Switched Parameter Differential Evolution for Large Scale Global Optimization -- Simpler May Be Better
	Abstract
	1 Introduction
	2 The DE Algorithm
	2.1 Initialization
	2.2 Mutation
	2.3 Crossover
	2.4 Selection

	3 The Proposed Method
	4 Experiments and Results
	5 Conclusion
	References

