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Abstract Herein presented paper is denoted to study of real requirements of evo-
lutionary algorithm to random number generator properties. In the past years novel
studies occurred. These studies pointed that in some situations random number
generator might be replaced by deterministic chaos system. The goal of presented
paper is to point the significant properties of number generator, to extend the class of
systems to use on its place. During preparation of the paper experiments with Evo-
lutionary Strategy algorithm were done and as the test- bed problems of identification
of parameters of two deterministic chaos systems were used. Namely, these systems
were Lorenz and Rabinovich-Fabricant ones. The conclusion of the paper is, that
periodic functions might be used if proper parameters and sampling period of number
generating function replacing random number generator are chosen. This result is not
so interesting from practical viewpoint, because the application of sin(x) function is
slower than standard rand() function of C and C++ language, but it points that
evolutionary algorithms do not require randomness as the source of its capabilities.

Keywords Genetic algorithm ⋅ Evolutionary strategy ⋅ Random number
generator ⋅ Efficiency ⋅ Optimization

1 Introduction

For many years researchers discusses influence of random number generator into
speed of evolutionary process. There it is hard to recognize significant behaviors and
features of the optimal random number generator [1–3]. The work [1] studies influ-
ence of choice of different pseudo-random generators onto performance of selected
genetic algorithms. Theworks [2, 3] discuss impact of the RandomNumberGenerator
quality on Particle SwarmOptimization Algorithm. PSO algorithms are not GA or ES
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algorithms, but they also strongly depend on randomness. On the opposite side, they
are not applying natural selection principle. There is accessible study of random
number generator to genetic algorithm produced by another authors group too in [4].

Studies concluding the possibility to replace the random number generator by
deterministic chaos system [15, 16] are now in works [5–8]. But the pseudo-random
number generators are only long period functions with specific properties; espe-
cially they have constrained magnitudes and large number of crossing of any value
in the output interval during one period. Typically, this requirement is known in the
much stronger form as requirement of uniformity.

There is also the second significant requirement – requirement of independence,
which tells that the generated numbers has no correlation with each other. Thus
there is correct to form question if it is possible to replace random number generator
by any non periodic or long period function?

It is also interesting to mention that any periodical continuous function might be
transformed into non periodic discrete one if the length of period is not integer
multiple of sampling period. This is the alternative way how to satisfy the third
requirement – maximal cycle length. Maximal cycle length is significant especially
in situations when large populations, big number of evolutionary steps and highly
dimensional problems occurs. This fact might be demonstrated e.g. by increasing
popularity of Mersenne-Twister algorithm [9]. This algorithm has extremely long
period, e.g. its implementation MT19937 has period 219937 − 1. Applicability of this
algorithm in evolutionary algorithms is presented e.g. in [10].

Problem of non periodic functions created from periodic ones is that they satisfy
requirement of independence only partially, in contrary to some deterministic chaos
systems.

On the base of this background, the idea of evolutionary system not using
random number generator nor even deterministic chaos system was formulated. As
the test bed, simple evolutionary strategy algorithm described in the Chap. 2 was
used. The random number generator was replaced by sin kxð Þ function, as it is
described in the Chap. 3. As test cases, the identification of parameters of equations
describing Lorenz attractor and Rabinovich-Fabrikant system is applied. The results
are outlined in the Chaps. 4 and 5.

2 Used Evolutionary Strategy Algorithm

The simple evolutionary strategy algorithm is outlined at Fig. 1. It is used as test
bed in herein presented experiments for its simplicity and well known behavior.
n number of individuals
S maximal number of iterations
X vector of individuals
X' vector of new population candidates
f xð Þ fitness function
Errlimit Required error magnitude
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3 Replacement of Random Number Generator by Non
Periodic or Long-Periodic Functions

Random number generators, both natural and artificial, described by specific
equations should satisfy the following properties:

• Uniformity: The numbers generated appear to be distributed uniformly on
interval <0, 1>;

• Independence: The numbers generated show no correlation with each other
within interval of given cycle length;

• Cycle length: It should take long before numbers start to repeat.

Above mentioned works, especially [5–8] demonstrate that it is possible to
replace random number generator by deterministic chaos system equations. These
results are significant, because studied systems do not guarantee the property of
uniformity in common. So, there occurs question, if it is needed to use deterministic
chaos system equations or if it is possible to extend the group of applicable

Given Nn , s 

Initialize kx , 0k
For ,.1k  Do 

 Evaluate kxf

End For 
Sort kx

Cycle=0; 

While 1xf >Errlimit AND k<s Do 

 For ,.1k  with step 2 do 

  Randomly select between mutation and crossover 

   Do 1
/
1

/ ,, kkkk xmutatexmutatexx

   Or 

   Do 1
/
1

/ ,, kkkk xxcrossoverxx

 End For 
 For ,.1k  Do 

  Evaluate /
kxf

  If kk xfxf /  Then 
/
kk xx

 End For 
 Cycle=Cycle+1 
End While 

Fig. 1 Used evolutionary strategy algorithm
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equations? Before answering of this question, it is useful to reason why evolu-
tionary algorithms need to use random number generators?

The evolutionary algorithms use the random numbers in two different situations –
initialization population formulation and processing of evolution. The first case
points especially uniformity of generated numbers. The second one uses random
numbers to achieve diverse modifications, to test big number of different possible
solutions if the number of evolutionary cycles is high. Thus, the cycle length is
significant, because it is the parameter giving the chance to test more values, more
solution candidates.

Probably, there is no reason that avoids us to replace random number generator
by any long periodic or non-periodic function. Even it is possible to sample any
periodic continuous function defined on domain of real numbers and analogous
infinite co-domain such way, that resulting discrete sequence of numbers will have
endless period. E.g. if sin(x) with period of 2π will be sampled with period 1, we
obtain such infinite non-periodic sequence because there does not exist any integers
n and m different from 0, that nπ =m. The next chapters will be denoted to testing
of applicability of two such functions (1) and (2) in above described evolutionary
strategy algorithm on the place of standard random number generator. As test
examples, the identification of parameters of non-linear differential equations of
deterministic chaos will be used. These equations will represent Lorenz attractor (3)
described by [11] and Rabinovich-Fabrikant system (4) described in [12]. Identi-
fication means in the case of Lorenz attractor determining of parameters σ, ρ, and β
magnitudes to fit the modeled data. In the case of Rabinovich-Fabricant system
these parameters are α and γ. Training data set consisted in the case of Lorenz
attractor 400 samples and 2000 samples in the case of Rabinovich-Fabricant sys-
tem. These two systems have been chosen for its nonlinearity, which forces the
need of uniformity and independence of the tested generator and the transformation
of Rabinovich-Fabricant system into more complicated form (6) increases the
significance of cycle length requirement. Bigger number of parameters with similar
influence to final behavior of the identified equation complicated identification and
thus increases needed number of evolutionary algorithm cycles. Increasing of this
number forces the need of longer cycle of number generator together with the larger
genes (more parameters are optimized simultaneously, thus the larger number of
magnitudes must be generated by the generator).

sin knð Þ ð1Þ

sin a sin nxð Þð Þ ð2Þ

The property of this function is illustrated by Fig. 2.

x0 = σ y− xð Þ,
y0 =x ρ− zð Þ− y,

z0 =xy− βz

ð3Þ
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x0 = yðz− 1+ x2Þ+ γx

y0 = x 3z+1− x2
� �

+ γy

z0 = − 2z α+ xyð Þ
ð4Þ

4 Identification of Lorenz Attractor Equations
Parameters

Average number of the used Evolutionary Strategy algorithm in the case of popu-
lation of 1000 individuals (this number of individuals is used in all experiments
presented in this contribution) for identification of Lorenz equations parameters
σ and β are outlined in Table 1 for each variable x, y and z, when standard C++
rand() and sin() number generators are used. All average results were obtained by
1000 times repetition of experiments:

The Fig. 3 presents numbers of iterations when standard rand() function is
replaced by sin(k x) function. These numbers are also similar for all three variables
x, y and z, but they are approximately five times worse than for standard rand
function.

Figures 4 and 5 then display the analogous dependency for random number
generator in the form of Eq. (2) with parameter a equal to 1 and 10 respectively.

Fig. 2 Property of sin(y sin
(x)) function

Table 1 The average number of cycles of Lorenz attractor equations parameter identification
depending on different number generators

Function category variable Rand() sin(kn) sin(sin(kn)) sin(10sin(kn))

X 14.4 42.1 11 13.3
Y 14 60 12.2 16.3
Z 14.6 58.3 18.3 14.3
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Above presented results demonstrate that function (2) gives better results than
(1), as it is summarized in Table 1. This result is in relation to self-correlation of
time series produced by rand function and sin(t) function (rand gives much smaller
than sin(kn), but sin(sin(t)) and especially function sin(sin(10t)) gives competitive
results), but the Lorenz system consist of equations where is only one parameter to
identify. Self-correlation is measure of independence condition of number
generator.

The sin(a sin(kn)) function gives results comparable to rand() function while
sin(kn) produces significantly worse convergence of ES algorithm. It is probably
given by higher self-correlation of sin(x) function in comparison to the rest ones.

Table 2 presents correlations of sin(akt) and sin(ak(t + 1)) functions and Table 3
outlines correlations of sin(sin(kt)) and sin(sin(k(t + 1)) or sin(sin(10 kt)) and
sin(sin(10 k(t + 1)) functions.

Number of ES iterations for random number generator sin(kn)
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Fig. 3 Number of iterations for x, y and z variables, sin(k x) is used on the place of random
number generator

Number of ES iterations for random number generator sin(sin(kn))
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Fig. 4 Number of iterations for x, y and z variables, sin(sin(k x)) is used on the place of random
number generator
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5 Identification of Rabinovich-Fabrikant System
Attractor Parameters

Problem of n-dimensional system is the problem of independence of random time
sub-series influencing each particular parameter. In the case on multidimensional
system the independence is required in more complex manner than in the case of
one dimensional one.

Def. 1: Let is given reasoned number of samples n. Let used Evolutionary
algorithm optimizes m dimensional problem and it need 1 random number to each
parameter to be optimized. Symbol ri denotes i-th number of time series generated
by random number generator or alternative function. Then there is need to inves-
tigate mutual independence and self-independence (independence of data taken in
t and t + d) of all following data sub-series separated from the original series r:

Number of ES iterations for random number generator sin(10sin(kn))
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Fig. 5 Number of iterations for x, y and z variables, sin(10sin(k x)) is used on the place of random
number generator

Table 2 The self-correlation of sin(akt) and sin(ak(t + 1)) functions

Function sin(0.01t) sin(0.1t) sin(t) sin(10t) sin(100t)

correlation 0.9999973 0.99536378 0.54634896 −0.839216 0.86546618

Table 3 The correlations of sin(sin(kt)) and sin(sin(k(t + 1)) or sin(sin(10 kt)) and sin(sin(10k
(t + 1)) functions

Functions sin(sin(kt)) and sin(sin(k(t + 1))) sin(sin(10kt)) and sin(sin(10k(t + 1)))

correlation 0.54388688 −0.126774177
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∀k∈ ⟨1,m⟩,∀l∈ ⟨0,m− 1⟩,∀i∈ ⟨1, n div m⟩, sk, l, i = k+ l, . . . ik+ l. ð5Þ

Rabinovich-Fabrikant system is described by three equations as Lorenz one, but
these equations are strongly non-linear, where e.g. the first equation contains
expression x2y and the second one contains x3 one. These equations were trans-
formed into the form (6), which is much complicated to ES algorithm (they contains
additional parameters α1, . . . , α4):

x0 = yðz− α1 + x2Þ+ γx

y0 = x α2z+ α3 − x2
� �

+ γy

z0 = − α4z α+ xyð Þ
ð6Þ

It means that these equations contain 2, 3 and 2 parameters respectively in contrary
to Eq. (3), where each differential equation contains one parameter to be identified
only. Such situation is avoided by GPA algorithms frequently because these
algorithms have no preventive mechanism against creation of overcomplicated
structures. The solution of this problem is difficult and it is partially solved e.g. by
GPA-ES algorithm [13].

For each number generator it was the most difficult to identify the second
equation (equation describing variable y) with tree parameters. The best results for
each category of functions are summarized in Table 4.

These results point interesting fact that for identification of the first and last
equations, the rand() function is the best random number generator, but from the
viewpoint of the second one sin(k n) or sin(sin(k n)) are better, non looking that
both the first and the second equations both contain nonlinearities in the form of
multiplication of three variables and two or three parameters respectively. To
colorate this paradox, it is need to mention previous work [14], where it is pre-
sented, that symbolic regression of expression x3 is much more complicated than
regression of other expression occurring in Eq. (5). In fact, in herein discussed case
the increase of needed computational complexity is given by presence of three
parameters which masks each other.

Table 4 The average number of cycles of Rabinovich – Fabrikant equations parameters
identification depending on different number generators

Function category variable rand() sin(kn) sin(sin(kn)) sin(10sin(kn))

X 24.6 69.1 62.4 46.9
Y 24017 7776.2 16052.4 27679.5
Z 35.9 79.3 69.8 75.6
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6 Conclusion

Presented paper discusses the possibility to replace standard random number gen-
erator by continuous periodic function. This replacement is possible, when the
requirements of uniformity, independence and cycle length are satisfied. Such
functions as sin(kt) or sin(a sin(kt)), which solve as examples in this paper might be
carefully applied, but the results are applicable to much wider group of functions.
Analysis of the next types of functions and the next function features influencing the
speed of convergence of evolutionary algorithms will be subjects of future works.

The conclusion of above presented work is that nonstandard number generators
as sin(kt) function and composed sin(a sin(kt)) are not significantly worse than
standard rand() random number generator in presented situation. There is chance,
that the random number generators may be replaced by any continuous aperiodic
function satisfying conditions of uniformity, independence and (maximal) cycle
length in application in evolutionary algorithms. Future tests with other functions
with smaller self-correlation will give information about its influence to evolu-
tionary algorithm behaviors. Presented short work is not able to give complete
answer on the question, which random number generator parameters are significant
to evolutionary algorithms, but it points to above mentioned tree conditions. On the
opposite side, while in the case of single parameter equations describing Lorenz
attractor, the sin(k sin(nx)) functions were comparable to rand() generator, in the
case of Rabinovich-Fabrikant system these functions were worse than rand()
generator. Thus there is probably undiscovered some more deep, or it is possible to
say more complicated, property than above discussed three conditions.
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