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Abstract Protein Structure Prediction (PSP) using sequence of amino acids is a

multimodal optimization problem and belongs to NP hard class. Researchers and

scientists put their efforts to design efficient computational intelligent algorithm for

solving this kind of problem. Bees Algorithm (BA) is a swarm intelligence based

algorithm inspired by the foraging behaviour of honey bees colony, already exhibits

its potential ability for solving optimization problems. However, it may produce

premature convergence when solving PSP like problems. To prevent this situation,

Adaptive Polynomial Mutation based Bees Algorithm (APM-BA) has been proposed

in this paper for predicting protein structure in 2D AB off-lattice model. In this strat-

egy, each of best scout bees are mutated with adaptive polynomial mutation tech-

nique when their performances are no more improve during execution phase. The

experiments are conducted on artificial and real protein sequences and numerical

results show that the proposed algorithm has strong ability for solving PSP problem

having minimum energy.
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1 Introduction

Proteins are the primary building blocks in all living organisms and represented by

a sequence of 20 different amino acids. Biological functions of proteins are closely

related with their structures which play an important role in drug design, disease pre-

diction and many more [1, 2]. Therefore, protein structure prediction is an important

research area in computational biology. Anfinsen’s thermodynamic hypothesis [3]

states that the native structure of a protein corresponds to the global minimum of the

free energy surface of the protein. So, the protein structure prediction problem can

be treated as a global optimization problem. This problem is of NP-hard [4] and its

multimodality characteristics increase with the protein sequence length [5].

Experimental methods like X-ray crystallography and Nuclear Magnetic

Resonance (NMR) are time consuming and expensive to predict the structure of pro-

teins. Moreover, due to strict laboratory requirements and heavy operational burdens,

it is not always feasible to determine the protein structure experimentally. There-

fore, researchers focused on predicting protein structure from the given amino acid

sequences by computational methods [6]. A successful study of computational meth-

ods in PSP reveals two facts. The first part is the consideration of physical model

which corresponds to a potential energy function. The second part involves search-

ing of global minimum of the potential energy function. In the literature, most of the

physical models are grouped into two classes of residues: hydrophobic (non-polar

or H) and hydrophilic (polar or P) instead of considering 20 different amino acids

individually. The most widely used simplified model is HP lattice models [7]. An off-

lattice model is a generalization of HP lattice model known as AB off-lattice model

proposed by Stillinger et al. [8] where the hydrophobic and the hydrophilic residues

are labelled by ’A’ and ’B’ respectively. Many computational intelligent algorithms

have been applied on AB off-lattice model for finding global minimum energy to

predict protein structure [9–18].

The Bees Algorithm (BA) [19, 20] is a swarm intelligence based algorithm

inspired by the food foraging behaviour of honey bee colonies developed in 2005

by D. T. Pham. It performs a kind of exploitative neighbourhood search combined

with random explorative search, successfully applied to many engineering optimiza-

tion problems. However, it has the limitation of premature convergence due to lack

of diversity in the search space when solving multimodal optimization problems. In

this paper, to prevent premature convergence and improve the performance of BA,

we have proposed, adaptive polynomial mutation based bees algorithm (APM-BA)

for solving PSP problem in 2D AB off-lattice model. Adaptive polynomial mutation

is applied on best scout bees which do not improve their visited site in a predefined

limit, known ’trial’ counter of inefficient search. As a result, there is a high chance to

jump out from visited site to unvisited site and made exploration on the search space.

Experiments are conducted on artificial and real protein sequences using 2D AB off-

lattice model. The numerical results show that the proposed algorithm is suitable for

solving PSP problem having minimum energy. Moreover, results are compared with

other algorithms demonstrating efficiency of the proposed method.
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The paper is organized as follows: In Sects. 2 and 3, basic principle of 2D AB

off-lattice model and bees algorithm are describe, respectively. The details of APM-

BA are presented in Sect. 4, followed by experimental setups and results in Sect. 5.

Finally, the conclusion is drawn and future works are highlighted in the Sect. 6.

2 AB Off-Lattice Model

AB off-lattice model, known as toy model proposed by Stillinger et al. in 1993 [8]

and widely used for predicting the structure of a protein sequence due to its simplic-

ity. In this model, 20 amino acids are classified into hydrophobic and hydrophilic

residues, labelled as ’A’ and ’B’ respectively. Two residues are linked by rigid unit-

length bonds and the angle between two bonds can change freely in two dimensional

Euclidean space. An n length protein sequence is represented by (n-2) bend angles

𝜃2, 𝜃3, ..., 𝜃n−1 at each of the non-terminal residues. Each bend angles 𝜃i are in the

range −180◦ to 180◦ and 𝜃i = 0 represents linearity in the successive bonds. The

bend angel, 𝜃i ∈ [−180◦, 0) and 𝜃i ∈ (0, 180◦] represent rotation of amino acids

in clockwise and counter clockwise direction respectively. A 2D off-lattice model

of a protein sequence with length 9 shown in Fig. 1. The AB off-lattice model rep-

resents the intra-molecular potential energy for each molecule with backbone bend

potentials V1 and nonbonded interactions V2. Amino acids along the backbone can

be conveniently encoded by a set of bipolar variables 𝜉i. If 𝜉i =1, the ith amino acid is

A while 𝜉i = -1, it is B. Hence, the total potential energy function 𝛷 for any n length

protein sequence is expressed using Eq. 1.

Fig. 1 2D off-lattice model

of a protein sequence with

length 9

𝛷 =
n−1∑

i=2
V1(𝜃i) +

n−2∑

i=1

n∑

j=i+2
V2(rij, 𝜉i, 𝜉j) (1)

Where V1 is the bending potential, independent of protein sequence as defined by

Eq. 2

V1(𝜃i) =
1
4
(1 − cos𝜃i) (2)
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The nonbonded interactions V2 have a species-dependent Lennard-Jones 12, 6 form,

described in Eqs. 3 and 4 respectively.

V2(rij, 𝜉i, 𝜉j) = 4[r−12ij − C(𝜉i, 𝜉j)r−6ij ] (3)

C(𝜉i, 𝜉j) =
1
8
(1 + 𝜉i + 𝜉j + 5𝜉i𝜉j) (4)

Where rij denotes the distance between ith and jth residue of the chain. For an AA pair,

C(𝜉i, 𝜉j) = 1 regarded as strongly attracting for an AB or BA pair while C(𝜉i, 𝜉j) =
−0.5, regarded as weakly repelling and for a BB pair, C(𝜉i, 𝜉j) = 0.5, regarded as

weakly attracting. Our objective is to find the minimum value of Eq. 1, representing

lowest free energy of the structure of a protein.

3 Bees Algorithm (BA)

Bees Algorithm [19] is a swarm intelligence based algorithm inspired by the foraging

behaviour of honey bees used for finding global optimum solution for a given opti-

mization problem. Scout bees i.e. candidate solutions are randomly generated in the

search space and the quality of the visited locations depend on the fitness value. The

generated solutions are ranked and other bees are recruited from the neighbourhood

having the highest ranking locations on the search space. This algorithm locates the

most promising solutions and selectively explores their neighbourhoods looking for

the global minimum of the fitness function.

The population contains N number of scout bees which are randomly scattered

with uniform probability across the search space. Therefore, the jth element of the

ith solution Xi is expressed using Eq. 5.

Xj
i = Xj

min +
(
Xj
max − Xj

min

)
× rand(0, 1), j = 1, 2, ...,D (5)

Where Xj
min and Xj

max denote the lower and upper bound of the jth element and D
denotes the dimension of any Xi. Each scout bees evaluates using the fitness function.

After initialization of the scout bees, BA enters into a cycle which is composed of

four phases [19]. Following phases are executed sequentially until stopping condition

is met.

3.1 Waggle Dance

Say, N number of visited sites are ranked based on fitness information and B number

of sites with highest fitness (i.e. minimum measure) are selected for local search.

The local search is performed by other bees (foragers) that are directed to the neigh-
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bourhood of the selected sites. Each scout bees that are returned from one of the

B best sites performs the ’waggle dance’ to recruit nest mates for local search. The

scout bees visit the first E elite (top-rated) sites among the B sites by recruiting Er
bees for neighbourhood search. The remaining (B − E) sites that visited by the scouts

recruit Br ≤ Er bees for neighbourhood search.

3.2 Local Search

For each of the B selected sites, the recruited bees are randomly placed in a neigh-

bourhood of the high fitness location marked by the scout bees. This neighbourhood

is defined as an D-dimensional hyper box of sides a1, a2, ..., aD, centred on the scout

bee. For each neighbourhood, the fitness is evaluated by the recruited bees. If one

of the recruited bees lands in a position of higher fitness than the scout bee then the

recruited bee is treated as the new scout bee. At the end of the local search, only the

fittest bee is retained. The fittest solution visited so-far is therefore, considered as a

representative of the whole neighbourhood.

3.3 Global Search

In the global search phase, (N − B) number of bees are placed according to Eq. 5

across the search space for new solution. Random scouting represents the exploration

capability of the BA.

3.4 Population Update

At the end of each cycle, the population is updated from two groups. The first group

comprises the B scout bees which are associated with the best solution of each neigh-

bourhood and represents the results of the local exploitative search. The second

group is composed of the (N − B) no. of scout bees associated with a randomly

generated solution and represents the results of the global explorative search.

4 Adaptive Polynomial Mutation Based BA (APM-BA)

BA was originally designed as a numerical optimization technique based on for-

aging behaviour of honey bees and proved its robustness and efficiency to solv-

ing non-linear, real-valued function optimization problems. However, when dealing

with multimodal problems, quality of solution is affected as the number of iterations
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increases and it suffers from premature convergence. The situation occurs when all

the best visited sites converge in a small region of the search space, forcing them

to converge to the global best point found so far which is not a global optima. BA

sometimes suffers from premature convergence due to many local minima in the

search space. In general, convergence is a desirable property that recruited bees of

best visited sites and allowed to search near the global minimum as time progresses.

Unfortunately, in the context of many local minima, the scout bees of the best visited

sites are trapped in one of the local minima and fail to explore more promising neigh-

bouring minima. To enhance the exploration capability and to avoid being trapped

into local optima, a mutation strategy is necessary to increase the diversity of the

best scout bees in the search space. With this observation, an adaptive polynomial

mutation based bees algorithm (APM-BA) has been proposed in this paper to pre-

vent premature convergence. We define a neighbourhood structure of each of the

say, B selected site in the local search processes of APM-BA. For example, the jth
component of ith selected site creates neighbourhood by Eq. 6.

Xj
i = Xj

i + rand(−2, 2) (6)

We assume a parameter trial representing the number of iterations lead to inefficient

search before better position is derived. If the ith best scout bee finds a better site,

trial(i) is set to zero; otherwise, it is incremented by one for the next iteration. How-

ever, the searching competence of a best scout bee should not be evaluated by the

quality of its current site i.e. the fitness value but by the efficiency of current search

i.e. by the trial counter. Finally to avoid premature convergence, we employed adap-

tive polynomial mutation on ith best scout bee when a specific number of times the

ith best scout bee cannot improve its current position.

4.1 Adaptive Polynomial Mutation (APM)

In adaptive polynomial mutation strategy [21], the jth dimension of a ith candidate

solution Xi is mutated with polynomial mutation as expressed in Eq. 7.

Xj
i(t + 1) = Xj

i(t) +
(
Xj
max − Xj

min

)
× 𝛿j (7)

Where t represents current iteration number, Xj
max and Xj

min are the upper and lower

bound of jth component of Xi while 𝛿j represents the polynomial function calculated

using Eq. 8.

𝛿j =
⎧
⎪
⎨
⎪⎩

(2rj)
1

(𝜂m+1) − 1 rj < 0.5

1 − [2(1 − rj)]
1

(𝜂m+1) rj ≥ 0.5
(8)
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𝜂m is the polynomial distribution index and rj represents uniformly distribute random

number in (0,1). The probability of 𝛿j is calculated using Eq. 9.

P(𝛿j) = 0.5(𝜂m + 1)(1 − |𝛿j|)𝜂m (9)

By varying 𝜂m, the perturbation can be varied in the mutated solution. If the value

of 𝜂m is large, a small perturbation of a variable is achieved. To achieve gradu-

ally decreasing perturbation in the mutated solutions, the value of 𝜂m is gradually

increased. The following rule presented in Eq. 10 is applied to achieve the proposed

adaption policy known as adaptive polynomial mutation.

𝜂m = (80 + t) (10)

To improve the performance of BA, we used adaptive polynomial mutation on ith

best scout bees if the trial(i) > D. The mutated solution mXj
i is obtained by Eq. 11.

mXj
i = Xj

i + (Xj
k − Xj

i) × 𝛿j (11)

In Eq. 11, the ith best scout bee exchange information with the kth one in its jth com-

ponent where k ≠ i. If f (mXi) ≤ f (Xi), then ith best scout bee Xi is replaced by mXi
and the trial counter is set to 0 i.e. trial(i) = 0.

The pseudo-code of APM-BA for protein structure prediction is given in Algo-

rithm 1. Since, protein structure prediction is a minimization problem, fitness values

are ranked in ascending order.

5 Experiments and Results

In order to evaluate the performance of the proposed algorithm, the experiments are

performed on both artificial and real protein sequences for protein structure predic-

tion in 2D AB off-lattice model.

5.1 Artificial Protein Sequence

Fibonacci sequence known as artificial protein sequence considered usually as bench-

mark for the protein structure prediction problem in AB off-lattice model [22].

A Fibonacci sequence is defined recursively by

S0 = A, S1 = B, Si+1 = Si−1 ∗ Si
Where

′∗′ is the concatenation operator. The first few sequences are S2 = AB, S3
= BAB, S4 = ABBAB and so on. Hydrophobic residue ’A’ occurs in isolation along

the chain, while hydrophilic residue ’B’ occurs either isolated or in pairs and the
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Algorithm 1 APM-BA Algorithm

1: Initialize the parameters of BA, Maximum iterations G, Number of candidate solutions N,

Dimensions D and the inefficient trial counter trial(i) = 0.

2: Initialize Population X by Eq. 5 and evaluate fitness f (x)
3: Ranked fitness values f (x) and X
4: for 𝑖𝑡𝑒𝑟 = 1 to 𝐺 do
5: for 𝑖 = 1 to 𝐸 do
6: for 𝑗 = 1 to 𝐸

𝑟
do

7: Generate neighbourhoods according to Eq. 6

8: end for
9: Select best neighbourhood, Xngh

10: if f (Xngh) < f (Xi) then
11: update Xi and f (Xi)
12: trial(i) = 0
13: else
14: trial(i) = trial(i) + 1
15: end if
16: if trial(i) > D then
17: generate mXi according to Eq. 11

18: if f (mXi) < f (Xi) then
19: update Xi and f (Xi)
20: trial(i) = 0
21: end if
22: end if
23: end for
24: for 𝑖 = 1 to B − E do
25: for 𝑗 = 1 to 𝐵

𝑟
do

26: repeat lines from 7 to 22

27: end for
28: end for
29: for 𝑖 = 1 to N − B do
30: generate according to Eq. 5 and evaluate fitness f (Xi)
31: end for
32: Ranked fitness values f (x) and X
33: end for
34: Output the best solution

molecules have a hierarchical string structure. Artificial protein sequence lengths

are obtained through the Fibonacci numbers ni+1 = ni−1 + ni. In the experiment, we

have considered artificial protein sequence given in Table 1 with different lengths,

say 13, 21 and 34.

Table 1 Artificial protein sequences

Artificial Protein Sequence Length

S13 ABBABBABABBAB 13

S21 BABABBABABBABBABABBAB 21

S34 ABBABBABABBABBABABBABABBABBABABBAB 34
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5.2 Real Protein Sequence

In order to measure the effectiveness of the APM-BA algorithm in predicting real

protein structures, we select protein sequences from Protein Data Bank (PDB, http://

www.rcsb.org/pdb/home/home.do). The PDB ID of these protein sequences are

1BXP, 1BXL, 1EDP and 1EDN respectively. The sequence information of these real

proteins are given in Table 2. In the experiment, the same K-D method used in the

literature [23] is adopted to distinguish the hydrophobic and hydrophilic residues of

20 amino acids in real protein sequences. The amino acids I, V, L, P, C, M, A, G are

considered as hydrophobic (A) residues and D, E, F, H, K, N, Q, R, S, T, W, Y are

hydrophilic (B) residues.

Table 2 Real protein sequences

Real Protein Sequence Length

1BXP MRYYESSLKSYPD 13

1BXL GQVGRQLAIIGDDINR 16

1EDP CSCSSLMDKECVYFCHL 17

1EDN CSCSSLMDKECVYFCHLDIIW 21

5.3 Parameter Settings and Initialization

The proposed APM-BA algorithm is compared with simple bees algorithm [20] and

the algorithms which are already used for protein structure prediction such as CPSO

[10], EPSO [11], IF-ABC [18] in 2D off-lattice model. All experiments are imple-

mented in MATLAB R2010a and executed on an Intel Core (TM) 17-2670 QMCPU

running at 2.20 GHz with 8 GB of RAM with Windows XP. The independent experi-

ments of each algorithm is repeated 30 times with same initial population. The popu-

lation size (N) for all approaches is fixed at 50 but the dimension D is different based

on the respective length of protein sequences. The stopping criteria is same for all

algorithms based on number of iterations (G). The number of iterations is defined

[24] by G = (D × 10000)∕N. The parameters of the proposed algorithm are given

in Table 3. The best of scout bees are going through adaptive polynomial mutation

when trial counter of each of these scout bees are greater than D.

Table 3 APM-BA learning parameters

Parameters Values

Number of scout bees (N) 50

Number of elite sites (E) 10

Number of best sites (B) 20

Number of recruited bees for elite sites (Er) 10

Number of recruited bees for remaining best sites (Br) 5

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do
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5.4 Results for Artificial Protein Sequences

Table 4 list the mean and standard deviation (Std.Dev) of 30 runs obtained by the

APM-BA along with the results obtained by CPSO, EPSO, IF-ABC and BA for

comparison. From Table 4, we can see that minimum energy obtained by the pro-

posed algorithm dominates all other algorithms for every artificial protein sequences.

Strong significant improvement has been observed in case of protein sequence length

21 and 34 by APM-BA. Three artificial protein sequences are placed in 4th, 3rd and

2nd position with respect to standard deviation by the APM-BA which measures

robustness of the minimum energy, as shown in Table 4. Therefore, the proposed

algorithm out performs than other algorithms as increase the length of artificial pro-

tein sequence. The convergence characteristics of each algorithm on artificial protein

sequences of lengths 13, 21 and 34 are shown in Fig. 2. The APM-BA exhibits better

convergence than other approaches.

(a) L=13 (b) L=21 (c) L=34

Fig. 2 Convergence graph of artificial protein sequence with different length

5.5 Results for Real Protein Sequence

The results obtained by the APM-BA for real protein sequences are summarized

in Table 5, along with the results of other algorithms used for comparison. It has

been observed that lowest energy obtained by the proposed algorithm is significantly

better than that of other algorithms like CPSO. EPSO, IF-ABC and BA. Therefore,

APM-BA is superior in solving real protein sequences. Based on standard deviation

for all real protein sequences compare to other algorithm, the proposed approach is

highly robust compare to other algorithms. The convergence characteristics of the

algorithms on real protein sequences are plotted in Fig. 3.
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Table 5 Results for real protein sequence

Real

protein

CPSO EPSO IF-ABC BA APM-BA

Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev

1BXP -1.893 0.432 -2.110 0.250 -1.517 0.162 -0.118 0.349 -2.335 0.085

1BXL -6.296 1.062 -6.255 1.161 -5.333 0.359 -0.696 1.087 -8.002 0.592

1EDP -3.092 1.593 -3.773 1.438 -3.093 0.386 0.689 0.614 -6.230 0.518

1EDN -4.232 1.325 -5.005 0.812 -4.232 0.482 2.135 1.058 -7.275 1.078

(a) L=13 (b) L=16

(c) L=17 (d) L=21

Fig. 3 Convergence characteristics of real protein Sequence with different length

6 Conclusions

In this paper, an improved BA revised by adaptive polynomial mutation strategy is

introduced to optimize protein structure prediction in 2D AB off-lattice model. In

APM-BA, adaptive polynomial mutation is applied to the best scout bees based on

their inefficiency during the search processes. The proposed strategy is able to pre-

venting stuck at local optima and made exploration on the search space. Experimen-

tal results confirm that APM-BA is significantly more effective for protein structure

prediction problem with respect to artificial and real protein sequences. It should be

noted that our study concerns few number of protein sequences with smaller lengths.



Improved Bees Algorithm for Protein Structure Prediction . . . 51

Predicting structure of more real protein sequences with larger lengths in 3D AB

off-lattice model and investigations on the neighbourhood structure as well as the

selection procedure of best visited sites of BA will be our future work.
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