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Abstract In this paper, we present the full deduction of the scaled conjugate gradi-

ent method for training complex-valued feedforward neural networks. Because this

algorithm had better training results for the real-valued case, an extension to the

complex-valued case is a natural way to enhance the performance of the complex

backpropagation algorithm. The proposed method is exemplified on well-known

synthetic and real-world applications, and experimental results show an improve-

ment over the complex gradient descent algorithm.

Keywords Complex-valued neural networks ⋅ Scaled conjugate gradient algo-

rithm ⋅ Time series prediction

1 Introduction

Over the last few years, the domain of complex-valued neural networks has received

an increasing interest. Popular applications of this type of networks include antenna

design, estimation of direction of arrival and beamforming, radar imaging, commu-

nications signal processing, image processing, and many others (for an extensive

presentation, see [11]).

These networks appear as a natural choice for solving problems such as channel

equalization or time series prediction in the signal processing domain, because some

signals are naturally expressed in complex-valued form. Several methods, which

include different network architectures and different learning algorithms, have been

proposed to increase the efficiency of learning in complex-valued neural networks

(see, for example, [18]). Some of these methods are specially designed for these

networks, while others are extended from the real-valued case.
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One such method, which has proven its efficiency in many applications, is the

scaled conjugate gradient learning method. First proposed by [15], the scaled con-

jugate gradient method has become today a very known and used algorithm to train

feedforward neural networks. Taking this fact into account, it seems natural to extend

this learning algorithm to complex-valued neural networks, also.

In this paper, we present the deduction of the scaled conjugate gradient method.

We also give a general formula to calculate the gradient of the error function that

works both for fully complex, and for split complex activation functions, in the

context of a multilayer feedforward complex-valued neural network. We test the

proposed scaled conjugate gradient method on both synthetic and real-world applica-

tions. The synthetic applications include two fully complex function approximation

problems and one split complex function approximation problem. The real-world

application is a nonlinear time series prediction problem.

The remainder of this paper is organized as follows: Sect. 2 gives a thorough

explanation of the conjugate gradient methods for the optimization of an error func-

tion defined on the complex plane. Then, Sect. 3 presents the scaled conjugate algo-

rithm for complex-valued feedforward neural networks. The experimental results of

the four applications of the proposed algorithms are shown and discussed in Sect. 4,

along with a detailed description of the nature of each problem. Section 5 is dedicated

to presenting the conclusions of the study.

2 Conjugate Gradient Algorithms

Conjugate gradient methods belong to the larger class of line search algorithms.

For minimizing the error function of a neural network, a series of steps through the

weight space are necessary to find the weight for which the minimum of the function

is attained. Each step is determined by the search direction and a real number telling

us how far in that direction we should move. In the classical gradient descent, the

search direction is that of the negative gradient and the real number is the learning

rate parameter. In the general case, we can consider some particular search direction,

and then determine the minimum of the error function in that direction, thus yielding

the real number that tells us how far in that direction we should move. This represents

the line search algorithm, and constitutes the basis for a family of methods that have

better performance than the classical gradient descent. Our deduction of conjugate

gradient algorithms follows mainly the one presented in [3], which too follows that

in [13].

Let’s assume that we have a complex-valued neural network with an error function

denoted by E, and an 2N-dimensional weight vector denoted by 𝐰 = (wR
1 ,w

I
1,… ,

wR
N ,w

I
N)

T
. We must find the weight vector denoted by 𝐰∗

that minimizes the function

E(𝐰). Suppose we are iterating through the weight space to find the value of 𝐰∗
or a

very good approximation of it. Further, let’s assume that at step k in the iteration, we

want the search direction to be 𝐩k, where 𝐩k is obviously an 2N-dimensional vector.
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In this case, the next value for the weight vector is given by 𝐰k+1 = 𝐰k+𝜆k𝐩k, where

the parameter 𝜆k is a real number telling us how far in the direction of 𝐩k we want

to go, which means that 𝜆k should be chosen to minimize E(𝜆) = E(𝐰k + 𝜆𝐩k).
This is a real-valued function in one real variable, so its minimum is attained

when
𝜕E(𝜆)
𝜕𝜆

= 𝜕E(𝐰k+𝜆𝐩k)
𝜕𝜆

= 0. By the chain rule, we can write that

𝜕E(𝐰k + 𝜆𝐩k)
𝜕𝜆

=
N∑

i=1

𝜕E(𝐰k + 𝜆𝐩k)
𝜕(wk,R

i + 𝜆pk,Ri )

𝜕(wk,R
i + 𝜆pk,Ri )

𝜕𝜆

+
N∑

i=1

𝜕E(𝐰k + 𝜆𝐩k)
𝜕(wk,I

i + 𝜆pk,Ii )

𝜕(wk,I
i + 𝜆pk,Ii )
𝜕𝜆

=
N∑

i=1

𝜕E(𝐰k+1)

𝜕wk+1,R
i

pk,Ri +
𝜕E(𝐰k+1)

𝜕wk+1,I
i

pk,Ii

= ⟨∇E(𝐰k+1),𝐩k⟩, (1)

where ⟨𝐚,𝐛⟩ is the Euclidean scalar product in ℝ2N ≃ ℂN
, given by ⟨𝐚,𝐛⟩ =(∑N

i=1 aibi
)R

=
∑N

i=1 a
R
i b

R
i + aIi b

I
i , for all 𝐚,𝐛 ∈ ℝ2N ≃ ℂN

, and by aR and aI

we denoted the real and imaginary part of the complex number a, and by a the con-

jugate of the complex number a.

So, if we denote 𝐠 ∶= ∇E, then (1) can be written in the form

⟨𝐠(𝐰k+1),𝐩k⟩ = 0. (2)

The next search direction 𝐩k+1 is chosen so that the component of the gradient

parallel to the previous search direction 𝐩k remains zero. As a consequence, we have

that ⟨𝐠(𝐰k+1 + 𝜆𝐩k+1),𝐩k⟩ = 0. By the Taylor series expansion to the first order,

we have that 𝐠(𝐰k+1 + 𝜆𝐩k+1) = 𝐠(𝐰k+1) + ∇𝐠(𝐰k+1)T𝜆𝐩k+1, and then, if we take

(2) into account, we obtain that 𝜆⟨∇𝐠(𝐰k+1)T𝐩k+1,𝐩k⟩ = 0, which is equivalent to

⟨𝐇T (𝐰k+1)𝐩k+1,𝐩k⟩ = 0, or, further to

⟨𝐩k+1,𝐇(𝐰k+1)𝐩k⟩ = 0, (3)

where we denoted by 𝐇(𝐰k+1) the Hessian of the error function E(𝐰), because 𝐠 =
∇E, and thus ∇𝐠 is the Hessian.

The search directions that satisfy equation (3) are said to be conjugate directions.

The conjugate gradient algorithm builds the search directions 𝐩k, such that each new

direction is conjugate to all the previous ones.

Next, we will explain the linear conjugate gradient algorithm. For this, we con-

sider an error function of the form

E(𝐰) = E0 + 𝐛T𝐰 + 1
2
𝐰T𝐇𝐰, (4)
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where 𝐛 and 𝐇 are constants, and the matrix 𝐇 is assumed to be positive definite.

The gradient of this function is given by

𝐠(𝐰) = 𝐛 +𝐇𝐰. (5)

The weight vector 𝐰∗
that minimizes the function E(𝐰) satisfies the equation

𝐛 +𝐇𝐰∗ = 0. (6)

As we saw earlier from equation (3), a set of 2N nonzero vectors {𝐩1,𝐩2,… ,

𝐩2N} ⊂ ℝ2N
is said to be conjugate with respect to the positive definite matrix 𝐇 if

and only if

⟨𝐩i,𝐇𝐩j⟩ = 0,∀i ≠ j. (7)

It is easy to show that in these conditions, the set of 2N vectors is also linearly

independent, which means that they form a basis in ℝ2N ≃ ℂN
. If we start from the

initial point 𝐰1 and want to find the value of 𝐰∗
that minimizes the error function

given in (4), taking into account the above remarks, we can write that

𝐰∗ − 𝐰1 =
2N∑

i=1
𝛼i𝐩i. (8)

Now, if we set

𝐰k = 𝐰1 +
k−1∑

i=1
𝛼i𝐩i, (9)

then (8) can be written in the iterative form

𝐰k+1 = 𝐰k + 𝛼k𝐩k, (10)

which means that the value of 𝐰∗
can be determined in at most 2N steps for the error

function (4), using the above iteration. We still have to determine the real parameters

𝛼k that tell us how much we should go in any of the 2N conjugate directions 𝐩k.
For this, we will multiply equation (8) by𝐇 to the left, and take the Euclideanℝ2N

scalar product with 𝐩k. Taking into account equation (6), we obtain that −⟨𝐩k,𝐛 +
𝐇𝐰1⟩ =

∑2N
i=1 𝛼i⟨𝐩k,𝐇𝐩i⟩. But, because the directions 𝐩k are conjugate with respect

to matrix 𝐇, we have from (7) that ⟨𝐩k,𝐇𝐩i⟩ = 0,∀i ≠ k, so the above equation

yields the following value for 𝛼k:

𝛼k = −
⟨𝐩k,𝐛 +𝐇𝐰1⟩
⟨𝐩k,𝐇𝐩k⟩

. (11)
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Now, if we multiply equation (9) by 𝐇 to the left, and take the Euclidean ℝ2N

scalar product with 𝐩k, we have that: ⟨𝐩k,𝐇𝐰k⟩ = ⟨𝐩k,𝐇𝐰1⟩+
∑k−1

i=1 𝛼i⟨𝐩k,𝐇𝐩i⟩, or,

taking into account that ⟨𝐩k,𝐇𝐩i⟩ = 0,∀i ≠ k, we get that ⟨𝐩k,𝐇𝐰k⟩ = ⟨𝐩k,𝐇𝐰1⟩,
and so the relation (11) for calculating 𝛼k becomes:

𝛼k = −
⟨𝐩k,𝐛 +𝐇𝐰k⟩
⟨𝐩k,𝐇𝐩k⟩

= −
⟨𝐩k, 𝐠k⟩
⟨𝐩k,𝐇𝐩k⟩

, (12)

where 𝐠k ∶= 𝐠(𝐰k) = 𝐛 +𝐇𝐰k, as relation (5) shows.

Finally, we need to construct the mutually conjugate directions 𝐩k. For this, the

first direction is initialized by the negative gradient of the error function at the ini-

tial point 𝐰1, i.e. 𝐩1 = −𝐠1. We have the following update rule for the conjugate

directions:

𝐩k+1 = −𝐠k+1 + 𝛽k𝐩k. (13)

Taking the Euclidean ℝ2N
scalar product with 𝐇𝐩k, and imposing the conjugacy

condition ⟨𝐩k+1,𝐇𝐩k⟩ = 0, we obtain that

𝛽k =
⟨𝐠k+1,𝐇𝐩k⟩
⟨𝐩k,𝐇𝐩k⟩

. (14)

It can be easily shown by induction that repeated application of the relations (13)

and (14), yield a set of mutually conjugate directions with respect to the positive

definite matrix 𝐇.

So far, we have dealt with a quadratic error function that has a positive definite

Hessian matrix 𝐇. But in practical applications, the error function may be far from

quadratic, and so the expressions for calculating 𝛼k and 𝛽k that we deduced above,

may not be as accurate as in the quadratic case. Furthermore, these expressions

need the explicit calculation of the Hessian matrix 𝐇 for each step of the algorithm,

because the Hessian is constant only in the case of the quadratic error function. This

calculation is computationally intensive and should be avoided. In what follows, we

will deduce expressions for 𝛼k and 𝛽k that do not need the explicit calculation of the

Hessian matrix, and do not even assume that the Hessian is positive definite.

First of all, let’s consider the expression for 𝛼k, given in (12). Because of the

iterative relation (10), we can replace the explicit calculation of 𝛼k with an inexact

line search that minimizes E(𝐰k+1) = E(𝐰k + 𝛼k𝐩k), i.e. a line minimization along

the search direction 𝐩k, starting at the point 𝐰k. In our experiments, we used the

golden section search, which is guaranteed to have linear convergence, see [4, 14].

Now, let’s turn our attention to 𝛽k. From (5), we have that

𝐠k+1 − 𝐠k = 𝐇(𝐰k+1 − 𝐰k) = 𝛼k𝐇𝐩k,

and so the expression (14) becomes:

𝛽k =
⟨𝐠k+1, 𝐠k+1 − 𝐠k⟩
⟨𝐩k, 𝐠k+1 − 𝐠k⟩

.
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This is known as the Hestenes-Stiefel update expression, see [10].

Similarly, we obtain the Polak-Ribiere update expression (see [17]):

𝛽k =
⟨𝐠k+1, 𝐠k+1 − 𝐠k⟩

⟨𝐠k, 𝐠k⟩
. (15)

We then have that ⟨𝐠k, 𝐠k+1⟩ = 0, and so expression (15) becomes:

𝛽k =
⟨𝐠k+1, 𝐠k+1⟩
⟨𝐠k, 𝐠k⟩

.

This expression is known as the Fletcher-Reeves update formula, see [19].

3 Scaled Conjugate Gradient Algorithm

As we have seen above, in real world applications, the Hessian matrix can be far

from being positive definite. Because of this, Møller proposed in [15] the scaled

conjugate algorithm which uses the model trust region method known from the

Levenberg-Marquardt algorithm, combined with the conjugate gradient method pre-

sented above. To ensure the positive definiteness, we should add to the Hessian

matrix a sufficiently large positive constant 𝜆k multiplied by the identity matrix. With

this change, the formula for the step length given in (12), becomes

𝛼k = −
⟨𝐩k, 𝐠k⟩

⟨𝐩k,𝐇𝐩k⟩ + 𝜆k⟨𝐩k,𝐩k⟩
. (16)

Let us denote the denominator of (16) by 𝛿k ∶= ⟨𝐩k,𝐇𝐩k⟩ + 𝜆k⟨𝐩k,𝐩k⟩. For a

positive definite Hessian matrix, we have that 𝛿k > 0. But if 𝛿k ≤ 0, then we should

increase the value of 𝛿k in order to make it positive. Let 𝛿k denote the new value of

𝛿k, and, accordingly, let 𝜆k denote the new value of 𝜆k. It is clear that we have the

relation

𝛿k = 𝛿k + (𝜆k − 𝜆k)⟨𝐩k,𝐩k⟩, (17)

and, in order to have 𝛿k > 0, we must have 𝜆k > 𝜆k − 𝛿k∕⟨𝐩k,𝐩k⟩. Møller in [15]

chooses to set 𝜆k = 2
(
𝜆k −

𝛿k
⟨𝐩k ,𝐩k⟩

)
, and so the expression for the new value of 𝛿k

given in (17), becomes 𝛿k = −𝛿k + 𝜆k⟨𝐩k,𝐩k⟩ = −⟨𝐩k,𝐇𝐩k⟩, which is now positive

and will be used in (16) to calculate the value of 𝛼k.
Another problem signaled above is the quadratic approximation for the error func-

tion E. The scaled conjugate gradient algorithm addresses this problem by consid-

ering a comparison parameter defined by

𝛥k =
E(𝐰k) − E(𝐰k + 𝛼k𝐩k)
E(𝐰k) − EQ(𝐰k + 𝛼k𝐩k)

, (18)
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where EQ(𝐰) represents the local quadratic approximation of the error function in

the neighborhood of the point 𝐰k, given by

EQ(𝐰k + 𝛼k𝐩k) = E(𝐰k) + 𝛼k⟨𝐩k, 𝐠k⟩ +
1
2
𝛼

2
k ⟨𝐩k,𝐇𝐩k⟩. (19)

We can easily see that 𝛥k measures how good the quadratic approximation really

is. Plugging relation (19) into relation (18), and taking into account expression (12)

for 𝛼k, we have that 𝛥k =
2(E(𝐰k)−E(𝐰k+𝛼k𝐩k))

𝛼k⟨𝐩k ,𝐠k⟩
.

The value of 𝜆k is then updated in the following way

𝜆k+1 =
⎧
⎪
⎨
⎪⎩

𝜆k∕2, if 𝛥k > 0.75
4𝜆k, if 𝛥k < 0.25
𝜆k, else

,

in order to ensure a better quadratic approximation.

Thus, there are two stages of updating 𝜆k: one to ensure that 𝛿k > 0 and one

according to the validity of the local quadratic approximation. The two stages are

applied successively after each weight update.

In order to apply the scaled conjugate gradient algorithm to a complex-valued

feedforward neural network, we only need to calculate the gradient of the error func-

tion at different steps. In what follows, we will give a method for calculating such

gradients, using the well-known backpropagation scheme.

Let’s assume that we have a fully connected complex-valued feedforward network

that has L layers, where layer 1 is the input layer, layer L is the ouput layer, and the

layers denoted by {2,… ,L − 1} are hidden layers. The error function E ∶ ℝ2N ≃
ℂN → ℝ for such a network is

E(𝐰) = 1
2

c∑

i=1
[(yL,Ri − tRi )

2 + (yL,Ii − tIi )
2],

where (yLi )1≤i≤c represent the outputs of the network, (ti)1≤i≤c represent the targets,

and 𝐰 represents the vector of the weights and biases of the network. As a conse-

quence, in order to compute the gradient 𝐠(𝐰) ∶= ∇E(𝐰), we must calculate all the

partial derivatives of the form
𝜕E

𝜕wl,R
jk
(𝐰) and

𝜕E
𝜕wl,I

jk
(𝐰), where wl

jk denotes the weight

connecting neuron j from layer l to neuron k from layer l − 1, for all l ∈ {2,… ,L}.

We further denote

slj ∶=
∑

k
wl
jkx

l−1
k + wl

j0,

ylj ∶= Gl(slj),
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where Gl
is the activation function of layer l ∈ {2,… ,L}, (x1k)1≤k≤d are the network

inputs, and xlk ∶= ylk, ∀l ∈ {2,… ,L − 1}, ∀k, because x1k are the inputs, yLk are the

outputs, and ylk = xlk are the outputs of layer l, which are also inputs to layer l + 1.

By calculations, we obtain the following formula for computing the components

of the gradient of the error function:

𝜕E
𝜕wl,R

jk

(𝐰) + i 𝜕E
𝜕wl,I

jk

(𝐰) = 𝛿

l
jx
l−1
k ,∀l ∈ {2,… ,L},

where

𝛿

l
j =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

(∑
m wl+1

mj 𝛿
l+1
m

)R(
𝜕Gl,R(slj)

𝜕sl,Rj
+ i

𝜕Gl,R(slj)

𝜕sl,Ij

)

+
(∑

m wl+1
mj 𝛿

l+1
m

)I (
𝜕Gl,I (slj)

𝜕sl,Rj
+ i

𝜕Gl,I (slj)

𝜕sl,Ij

)
, l ≤ L − 1

(yl,Rj − tRj )
(

𝜕Gl,R(slj)

𝜕sl,Rj
+ i

𝜕Gl,R(slj)

𝜕sl,Ij

)

+(yl,Ij − tIj )
(

𝜕Gl,I (slj)

𝜕sl,Rj
+ i

𝜕Gl,I (slj)

𝜕sl,Ij

)
, l = L

.

The above formula works both for fully complex, and for split complex activation

functions, and represents a unitary writing of the fully complex and split complex

variants of the complex-valued backpropagation algorithm found in the literature.

4 Experimental Results

4.1 Fully Complex Synthetic Function I

The first synthetic fully complex function we test the proposed algorithm on is the

two variable quadratic function f1(z1, z2) = 1
6

(
z21 + z22

)
. Fully complex functions

treat complex numbers as a whole, and not the real and imaginary parts separately,

as the split complex functions do. This problem was used as a benchmark to test the

performance of different complex-valued neural network architectures and learning

algorithms, for example in [20–22, 25].

To train the networks, we randomly generated 3000 training samples, with each

sample having the inputs z1, z2 inside the disk centered at the origin and with radius

2.5. For testing, we generated 1000 samples with the same characteristics. All the

networks had one hidden layer comprised of 15 neurons and were trained for 5000
epochs. The activation function for the hidden layer was the fully complex hyperbolic

tangent function, given by G2(z) = tanh z = ez−e−z
ez+e−z , and the activation function for

the output layer was the identity G3(z) = z.
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In our experiments, we trained complex-valued feedforward neural networks

using the classical gradient descent algorithm (abbreviated GD), the gradient descent

algorithm with momentum (GDM), the conjugate gradient algorithm with Hestenes-

Stiefel updates (CGHS), the conjugate gradient algorithm with Polak-Ribiere updates

(CGPR), the conjugate gradient algorithm with Fletcher-Reeves updates (CGFR),

and the scaled conjugate gradient algorithm (SCG).

Table 1 Experimental results for the function f1
Algorithm Training Testing

GD 5.23e-5±9.29e-6 5.84e-5±1.16e-5

GDM 5.05e-5±9.23e-6 5.65e-5±1.10e-5

CGHS 1.78e-6±3.59e-7 2.07e-6±5.06e-7

CGPR 1.10e-5±2.56e-6 1.26e-5±3.23e-6

CGFR 9.90e-7±2.11e-7 1.16e-6±2.60e-7

SCG 7.19e-9±2.74e-9 8.77e-9±3.34e-9
FC-RBF [20, 21] 3.61e-6 9.00e-6

FC-RBF with KMC [21] 2.01e-6 1.87e-6

Mc-FCRBF [22] 2.50e-5 2.56e-6

CSRAN [25] 9.00e-6 9.00e-6

CMRAN [20, 21] 4.60e-3 4.90e-3

Training was repeated 50 times for each algorithm, and the resulted mean and

standard deviation of the mean squared error (MSE) are given in Table 1.

The best algorithm was clearly SCG, followed by the conjugate gradient algo-

rithms. The table also gives the MSE of other algorithms used to learn this function,

together with the references in which these algorithms and network architectures first

appeared. We can see that the proposed algorithm was better in terms of performance

than all these other algorithms.

4.2 Fully Complex Synthetic Function II

A more complicated example is given by the following function: f2(z1,z2, z3, z4) =
1
1.5

(
z3 + 10z1z4 +

z22
z1

)
, which was used as a benchmark in [1, 22–24]. We gener-

ated 3000 random training samples and 1000 testing samples, all having the inputs

inside the unit disk. Variable z1 was chosen so that its radius is bigger than 0.1,

because its reciprocal appears in the expression of the function, and otherwise it

could have led to very high values of the function in comparison with the other vari-

ables. The networks had a single hidden layer with 25 neurons, the same activation

functions as the ones used in the previous experiment, and were trained for 5000
epochs. Table 2 shows the results of running each one of the algorithms 50 times.
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The table also presents the values of the MSE for different learning methods and

architectures found in the literature.

In this experiment also, SCG had better results than the conjugate gradient algo-

rithms, but poorer than some other types of architectures used to learn this problem.

Table 2 Experimental results for the function f2
Algorithm Training Testing

GD 5.32e-4±4.35e-5 6.26e-4±1.40e-4

GDM 5.42e-4±5.05e-5 6.69e-4±2.17e-4

CGHS 1.49e-4±2.35e-6 1.66e-4±5.24e-6

CGPR 1.70e-4±5.16e-6 1.87e-4±8.86e-6

CGFR 1.48e-4±1.71e-6 1.64e-4±3.83e-6

SCG 1.37e-4±3.52e-6 1.61e-4±3.42e-6

FCRN [24] 9.00e-4 3.60e-3

FC-RBF [20, 21] 3.84e-4 2.28e-3

FC-RBF with KMC [21] 1.29e-4 8.26e-3

Mc-FCRBF [22] 8.10e-7 8.10e-7
CSRAN [25] 6.40e-5 4.00e-4

CMRAN [20, 21] 6.60e-4 2.50e-1

4.3 Split Complex Synthetic Function I

We now test the proposed algorithm on a split complex function. The function, also

used in [2, 5, 12], is f3(x + iy) = sin x cosh y + i cos x sinh y.
The training set had 3000 samples and the test set had 1000 samples randomly

generated from the unit disk. The neural networks had 15 neurons on a single hidden

layer. The activation functions were split hyperbolic tangent for the hidden layer:

G2(x + iy) = tanh x + i tanh y = ex−e−x
ex+e−x + i e

y−e−y
ey+e−y , and the identity function for the

output layer: G3(z) = z.
The mean and standard deviation of the mean squared error (MSE) over 50 runs

are presented in Table 3. The performances of the algorithms were similar to the ones

in the previous experiments.

4.4 Nonlinear Time Series Prediction

The last experiment deals with the prediction of complex-valued nonlinear signals.

It involves passing the output of the autoregressive filter given by y(k) = 1.79y(k −
1)−1.85y(k−2)+1.27y(k−3)−0.41y(k−4)+n(k), through the nonlinearity given

by z(k) = z(k−1)
1+z2(k−1) + y3(k), which was proposed in [16], and then used in [7–9].
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Table 3 Experimental results for the function f3
Algorithm Training Testing

GD 7.29e-4±1.71e-4 7.72e-4±1.78e-4

GDM 9.20e-4±2.15e-4 9.67e-4±2.20e-4

CGHS 8.83e-6±2.57e-6 9.82e-6±2.83e-6

CGPR 1.88e-4±4.14e-5 2.04e-4±4.42e-5

CGFR 8.02e-6±1.85e-6 8.83e-6±2.15e-6

SCG 5.61e-7±1.12e-7 6.17e-7±1.24e-7

Table 4 Experimental results for nonlinear time series prediction

Algorithm Prediction gain

GD 3.64±3.49e-1

GDM 3.68±4.40e-1

CGHS 8.35±8.34e-4

CGPR 8.31±2.59e-2

CGFR 8.34±7.49e-4

SCG 8.35±3.51e-4
CLMS [26] 1.87

CNGD [9] 2.50

CRTRL [6] 3.76

The complex-valued noise n(k) was chosen so that the variance of the signal as

a whole is 1, taking into account the fact that 𝜎
2 = (𝜎R)2 + (𝜎I)2. The tap input of

the filter was 4, and so the networks had 4 inputs, 4 hidden neurons and one output

neuron. They were trained for 5000 epochs with 5000 training samples.

After running each algorithm 50 times, the results are given in Table 4. In the

table, we presented a measure of performance called prediction gain, defined by

Rp = 10 log10
𝜎

2
x

𝜎
2
e
, where 𝜎

2
x represents the variance of the input signal and 𝜎

2
e rep-

resents the variance of the prediction error. The prediction gain is given in dB. It is

obvious that, because of the way it is defined, a bigger prediction gain means better

performance. It can be easily seen that in this case, SCG, CGHS, and CGFR gave

approximately the same results, with CGPR performing slightly worse, and these

results were better than those of some classical algorithms and network architectures

found in the literature.

5 Conclusions

The full deductions of the scaled conjugate gradient algorithm and of the most known

variants of the conjugate gradient algorithm for training complex-valued feedfor-

ward neural networks were presented. A method for computing gradients of the error
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function was given, which can be applied both for fully complex and for split complex

activation functions. The three variants of the conjugate gradient algorithm with dif-

ferent update rules and the scaled conjugate gradient algorithm for optimizing the

error function were applied for training networks used to solve four well-known syn-

thetic and real-world problems.

Experimental results showed that the scaled conjugate gradient method per-

formed better on the proposed problems than the classical gradient descent and gra-

dient descent with momentum algorithms, in some cases as much as four orders of

magnitude better in terms of training and testing mean squared error.

The scaled conjugate gradient algorithm was generally better than the classical

variants of the conjugate gradient algorithm. This order of the algorithms in terms of

performance is consistent with the one observed in the real-valued case, yet another

argument for the extension of these learning methods to the complex-valued domain.

As a conclusion, it can be said that the scaled conjugate gradient algorithm rep-

resents an efficient and fast method for training feedforward complex-valued neural

networks, as it was shown by its performance in solving very heterogeneous synthetic

and real-world problems.
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