
A Minimisation of Network Covering
Services in a Threshold Distance

Miloš Šeda and Pavel Šeda

Abstract In this paper, we deal with a special version of the set covering problem,
which consists in finding the minimum number of service centres providing spe-
cialized services for all customers (or larger units, such as urban areas) within a
reasonable distance given by a threshold. If a suitable threshold is found that makes it
possible to determine a feasible solution of the task, the task is transformed into a
general set covering problem. However, this has a combinatorial nature and, because
it belongs to the class of NP-hard problems, for a large instance of the problem, it
cannot be used to find the optimal solution in a reasonable amount of time. In the
paper, we present a solution by means of two stochastic heuristic methods - genetic
algorithms and simulated annealing – and, using a test instance from OR-Library, we
present the parameter settings of both methods and the results achieved.

Keywords Set covering ⋅ Unicost problem ⋅ Threshold ⋅ Reachability
matrix ⋅ Genetic algorithm ⋅ Repair operator

1 Introduction

There are numerous discussions on how to optimise a network of public facilities
(e.g. hospitals and schools) that provide essential services (health, education) for the
population so that the cost of their operation is as low as possible and each

M. Šeda (✉)
Faculty of Mechanical Engineering, Brno University of Technology,
Technická 2, 616 69 Brno, Czech Republic
e-mail: seda@fme.vutbr.cz

P. Šeda
IBM Global Services Delivery Center, Technická 21, 616 00 Brno, Czech Republic
e-mail: pavelseda@email.cz

P. Šeda
Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1,
613 00 Brno, Czech Republic

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_13

159

inhabitant or an urban district has at least one of the service centres in an affordable
distance. It is clear that the question of what is an affordable distance is debatable
and could be determined by agreement of the ruling political parties. In this text,
however, we ignore the political aspects and address a formal mathematical
approach to solve such tasks.

In the literature, the general set covering problem is studied that does not address
any threshold of availability, but it is directly given by the matrix of binary values
and a covering of all columns by suitable choice of rows is looked for. This task is
an NP-hard problem [3] and, for a larger problem instance, can be solved in a
reasonable time only by heuristic methods.

The problem that we investigate can be converted to a set covering problem
because, by using a threshold, the distance matrix is changed to binary reachability
matrix. However, if the threshold is chosen inadequately, the original task may have
a number of degenerative cases, described in the following section, and we will
show how setting an appropriate threshold makes it possible to find a solution using
genetic algorithms and simulated annealing.

2 Problem Formulation

Assume that the transport network contains m vertices, that can be used as operating
service centres, and n vertices to be served, and for each pair of vertices vi (con-
sidered as service centres) and vj (serviced vertex) their distance dij is given and
Dmax is the maximum distance which will be accepted for operation between the
service centres and serviced vertices.

The aim is to determine which vertices must be used as service centres for each
vertex to be covered by at least one of the centres and for the total number of
operating centres to be minimal.

Remark 1.

1. A condition necessary to solve the task is that all of the serviced vertices are
reachable from at least one place where an operating service centre is
considered.

2. Serviced vertex vj is reachable from vertex vi, which is regarded as an operating
service centre if dij ≤ Dmax. If this inequality is not satisfied, vertex vj is
unreachable from vi.

Here, aij = 1 means that vertex vj is reachable from vi and aij = 0 means that it is
not if vi is operating service centre i.

Similarly, xi = 1 means that service centre i is selected while xi = 0 means that it
is not selected.

Then, the set covering problem can be described by the following mathematical
model:

160 M. Šeda and P. Šeda

Minimise

z= ∑
m

i=1
xi ð1Þ

subject to

∑
m

i=1
aijxi ≥ 1, j=1, . . . , n ð2Þ

xi ∈ 0, 1f g, i=1, . . . ,m ð3Þ

The objective function (1) represents the number of operating centres, constraint
(2) means that each serviced vertex is assigned at least to one operating service
centre. The parameter Dmax represents a threshold of service reachability.

Example:
Consider the following distance matrix which expresses service centres and

serviced vertices (= customer locations) and Dmax = 40.

serviced vertices (customer locations)

service centres 1 2 3 4 5 6 7 8

1

2

3

4

5

5 41 50 26 38 60 44 59

49 82 13 67 68 20 32 31

45 17 61 45 67 48 53 127

37 170 195 32 77 88 90 30

58 42 25 101 133 32 21 78

0
BBBBBB@

1
CCCCCCA

From Dmax = 40 we get the reachability matrix of serviced vertices from service
centres.

1 2 3 4 5 6 7 8

1

2

3

4

5

1 0 0 1 1 0 0 0

0 0 1 0 0 1 1 1

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0

0
BBBBBB@

1
CCCCCCA

Since only service centre 3 is reachable from the second serviced vertex (ser-
viced vertex 2 is covered by the 3rd service centre) and only service centre 1 is
reachable from serviced vertex 5, these service centres must not be omitted. These
two centres cover serviced vertices 1, 4, 5, and 2.

A Minimisation of Network Covering Services … 161

This means that the service centres must be found that cover the remaining
uncovered vertices 3, 6, 7 and 8. This can be achieved either by selecting the service
centres 2 and 5, or 4 and 5.

Thus, the example has two solutions, where four vertices are sufficient to cover
serviced vertices (either 1, 3, 2, 5, or 1, 3, 4, 5)

In the general case, however, the selection of service centres for k uncovered
vertices has 2k possibilities and, thus, the task complexity increases exponentially
with the number of uncovered vertices.

For large k, we must solve the task by a heuristic method, e.g., by a genetic
algorithm [2, 4, 7, 8], ant colonies [6], differential evolution, SOMA (Self Orga-
nizing Migrating Algorithm) [12], HC12 meta-heuristic algorithm [13].

2.1 Special Cases

In this section, we will summarise cases for which the problem has no solution, or
specified data need a modification.

We will show this directly by using the below reachability matrices.

1 2 3 4 5 6 7 8

1

2

3

4

5

1 0 0 1 1 0 0 0

0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0

0
BBBBBB@

1
CCCCCCA

In the 3rd row of the previous matrix, we can see that service centre 3 can be
omitted because it exceeds the threshold distance to all customers and nobody
would visit it.

1 2 3 4 5 6 7 8

1

2

3

4

5

1 0 0 1 0 0 0 0

0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0

0
BBBBBB@

1
CCCCCCA

In the 5th column of the previous matrix, we can see that the threshold distance
is too low and the 5th customer has no chance to visit a centre in a reachable
distance. The threshold must be increased to get at least one 1 in each column.

162 M. Šeda and P. Šeda

If a service centre must not be omitted, it represents only one centre for a
customer, i.e., in the customer column, there is only one 1. Of course, we can have
more necessary centres which cannot be omitted. However, if necessary centres
cover all customers, then no centre needs to be added to the necessary ones and we
immediately have a solution.

3 Computational Results

Since the mathematical model is simple, it seems that the problem could be solved
by one of the optimisation toolboxes.

E.g. in GAMS (General Algebraic Modelling System) the main part of code is as
follows:

However, this software tool is successful for only “small” instances. All com-
putations leading to optimum were performed in a few seconds, but for larger
instances, they ended with a run time error with GAMS indicating “insufficient
space to update U-factor …”. It is caused by the fact that time complexity of the
problem with m rows is O(2m) and, say, for an instance with 200 rows and 2000
columns tested in the following sections, its searching space has 2200 possible
selections and 2200 = (1024)20 ≈ 1060.

Therefore, for these cases, a heuristic approach must be used. Two of them,
genetic algorithm and simulated annealing, have been implemented and recom-
mendations of their parameter settings are presented, based on many tests with
various sets of possible operators (selection, crossover, mutation, etc.).

A Minimisation of Network Covering Services … 163

3.1 Genetic Algorithm

Since the principles of GA’s are well-known, we will only deal with GA parameter
settings for the problems to be studied. Now we describe the general settings and
the problem-oriented setting used in our application.

Individuals in the population (chromosomes) are represented as binary strings of
length n, where a value of 0 or 1 at bit i (gene) implies that xi = 0 or 1 in the
solution respectively.

The population size is usually set in the range [50, 200], in our programme,
implemented in Java, 200 individuals in the population were used, because 50
individuals led to a reduction chromosome diversity and premature convergence.

Initial population is obtained by generating random strings of 0 s and 1 s in the
following way: First, all bits in all strings are set to 0, and then, for each of the
strings, randomly selected bits are set to 1 until the solutions (represented by
strings) are feasible.

The fitness function corresponds to the objective function to be maximised or
minimised, here, it is minimised.

Three most commonly used methods of selection of two parents for reproduc-
tion, roulette selection, ranking selection, and tournament selection, were tested.

As to crossover, uniform crossover, one-point and two-point crossover operators
were implemented.

Mutation was set to 5, 10 and 15 %, exchange mutation, shift mutation, and
mutation inspired by well-known Lin-2-Opt change operator usually used for
solving the travelling salesman problem [5] were implemented.

In replacement operation two randomly selected individuals with below-average
fitness were replaced by generated children.

Termination of a GA was controlled by specifying a maximum number of
generations tmax, e.g. tmax ≤ 10000.

The chromosome is represented by an m-bit binary string S where m is the
number of columns in the SCP. A value of 1 for bit i implies that service centre i is
in the solution and 0 otherwise.

Since the SCP is a minimisation problem, the lower the fitness value, the more fit
the solution is. The fitness of a chromosome for the unicost SCP is calculated by (4).

f ðSÞ= ∑
m

i=1
Si ð4Þ

The binary representation causes problems with generating infeasible chromo-
somes, e.g., in initial population, in crossover, and/or mutation operations. To avoid
infeasible solutions, a repair operator [10] is applied.

164 M. Šeda and P. Šeda

Let
I = {1, … , m} = the set of all rows;
J = {1, … , n} = the set of all columns;
S = the set of rows in a solution;
U = the set of uncovered columns;
wj = the number of rows that cover column j, j∈J in S.
α j = {i∈I | aij =1}= the set of rows that cover column j, j∈J;
β i = {j∈J | aij =1}= the set of columns that are covered by row i, i∈I;

The repair operator for the unicost SCP has the following form:
initialise wj : = | S ∩ α j | , ∀j ∈ J ;
initialise U : = {j | wj = 0, ∀j ∈ J};
for each column j in U (in increasing order of j) do

begin find the first row i (in increasing order of i) in α j

that minimises 1/ |U ∩ β i | ;
S : = S + i ;
wj : = wj + 1, ∀j ∈β i ;
U : = U − β i

end;
for each row i in S (in decreasing order of i) do
if wj ≥ 2 , ∀j ∈β i

then begin S : = S − i ;
wj : = wj − 1, ∀j ∈β i

end ;
{ S is now a feasible solution to the SCP and contains no redundant rows }

Initialising steps identify the uncovered columns. For statements are “greedy”
heuristics in the sense that in the 1st for, rows with low cost-ratios are being
considered first and in the 2nd for, rows with high costs are dropped first whenever
possible.

The genetic algorithm was tested using an instance from OR-Library [1] with
200 rows and 2000 columns.

Figure 1 shows the computation of a fitness function as depending on the
sequence of generations of the algorithm. The upper characteristic shows the
average value of the fitness function of all individuals in the population and the
lower one shows the fitness function of the best individual in the population. It can
be seen that the algorithm converges quite rapidly to a pseudo-optimal solution (no
optimal solution is known for such a large instance).

The test results showed that one-point crossover gave worse results than
two-point crossover, which, in turn, was even worse than a uniform crossover.
Obviously, it would also be appropriate to monitor the width of the middle part of a
chromosome in the two-point crossover because, when its width is very small, it
brings very little change in comparison with parental chromosomes and reduces the
diversity of genetic material in the population, which increases the risk of small or
almost no changes in the fitness function after only a small number of generations.

A Minimisation of Network Covering Services … 165

3.2 Simulated Annealing

The simulated annealing (SA) technique has been given much attention as a
general-purpose way of solving difficult optimisation tasks. Its idea is based on
simulating the cooling of a material in a heat bath - a process known as annealing.
More details may be found in [9].

As in the previous section we only mention the parameter settings:

• initial temperature T0 = 10000,
• final temperature Tf = 1,
• temperature reduction function α(t) = t * decrement, where decrement = 0.999,
• neighbourhood for a given solution x0 is generated so that each neighbour is

given by the inverse of one position in the binary string representing x0.
(This means that the number of neighbours of x0 is equal to the number of
positions in this string.) (Fig. 2)
It is obvious that simulated annealing converges to the same, or a very close

approximation of the optimal solution, which is consistent with the well-known
“No free lunch theorem” [11]. Because the simulated annealing is a one-point

Fig. 1 Computation by genetic algorithm (instance with 200 rows and 2000 columns, roulette
wheel selection, uniform crossover, mutation probability 5 %, 6500 generations, the best solution
from 10 runs)

166 M. Šeda and P. Šeda

method, only the dependence of the objective function for gradually updated points
x0 (centres for generating neighbours) in the search space is plotted. The chart also
shows that the likelihood of transfer to a worse neighbour is decreasing steadily as
temperature decreases, which is also in line with the principle of the method.

As in the genetic algorithm, it is necessary to apply the repair operator for the

selected solution in the neighbourhood, as described in the previous section.
The computational time of GA for the tested instance with 200 rows was only

19 s on a computer with a processor frequency of 2.4 GHz and operating memory
of 4 GB while SA takes more than 1 min. The reason is that, in each GA iteration,
we generate only two children while SA creates the neighbourhood with 200
neighbours in each iteration when a new position is chosen.

An even worse situation would be for a hill-climbing algorithm, where each
individual would have to be modified by the repair operator in order to determine
the best neighbour. For simulated annealing, it is sufficient to apply the repair
operator only to a randomly selected individual from the neighbourhood.

Fig. 2 Computation by simulated annealing (the same instance as in GA)

A Minimisation of Network Covering Services … 167

4 Practical Aspects

In the foregoing, we investigated the set covering problem in a version that did not
take into account the importance of individual centres. If we apply the above
procedure to minimising a network of hospitals and schools, we could get a solution
where hospitals and schools respectively in cities would be omitted. In this case, it
is appropriate to consider their importance given by their size or necessity. As the
objective function is minimised, it is necessary to determine the weights so that the
lower the weight, the higher the priority.

It could even be suitable to classify facilities with high importance as necessary
as if they represent unique choice for some customers.

If weights of service centres are expressed by coefficients cj, the corresponding
mathematical model would change as follows:

Minimise

z= ∑
m

i=1
cixi ð5Þ

subject to

∑
m

i=1
aijxi ≥ 1, j=1, . . . , n ð6Þ

xi ∈ 0, 1f g, i=1, . . . ,m ð7Þ

From the point of view of the problem representation and parameter settings,
there is no change with the exception of the objective function, for which Eq. (5) is
used rather than Eq. (1).

5 Conclusions

In this paper, we studied the set covering problem in a special case, in which a
threshold is defined. This task may be used for optimising networks providing
public services with operation costs being minimal [12].

Due to the exponential time complexity, classical optimisation programs often
based on a branch and bound method cannot be used to solve larger instances of
(mixed-)integer programming problems. Therefore a heuristic approach was
proposed.

The programme for solving this problem was implemented and parameter set-
tings recommended based on testing many combinations of possible selections of
their operators. It was shown that these methods yield very similar results when
executed tens of times.

168 M. Šeda and P. Šeda

In the future, we will include weights of service centres in our considerations and
try to implement other modern heuristic methods [13, 14].

References

1. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 11,
1069–1072 (1990)

2. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res.
94, 392–404 (1996)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York (1979)

4. Goldberg, D.E.: The Design of Innovation (Genetic Algorithms and Evolutionary
Computation). Kluwer Academic Publishers, Dordrecht (2002)

5. Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and Its Variations. Kluwer
Academic Publishers, Dordrecht (2002)

6. Lessing, L., Dumitrescu, I., Stützle, T.: A comparison between ACO algorithms for the set
covering problem. In: Dorigo, M. (ed.) ANTS 2004. Lecture Notes in Computer Science, vol.
3172, pp. 1–12. Springer-Verlag, Berlin (2004)

7. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn.
Springer, Berlin (1996)

8. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2002)
9. Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific

Publications, Oxford (1993)
10. Šeda, M., Roupec, J., Šedová, J.: Transportation problem and related tasks with application in

agriculture. Int. J. Appl. Math. Inf. 8, 26–33 (2014)
11. Wolpert, D.H., McReady, W.G.: No Free Lunch Theorems for Optimization. IEEE Trans.

Evol. Comput. 1, 67–82 (1997)
12. Zelinka, I., Snášel, V., Abraham, A. (eds.): Handbook of Optimization: From Classical to

Modern Approach. Berlin. Springer, Berlin (2013)
13. Matousek, R.: HC12: the principle of CUDA implementation. In: Proceedings of 16th

International Conference on Soft Computing – MENDEL 2010. Mendel series vol. 2010,
pp. 303–308, Brno (2010), ISSN: 1803-3814

14. Matousek, R., Zampachova, E.: Promissing GAHC and HC12 algorithms in global
optimization tasks. J. Optim. Methods Softw. 26(3), 405–419 (2011)

A Minimisation of Network Covering Services … 169

	13 A Minimisation of Network Covering Services in a Threshold Distance
	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Special Cases

	3 Computational Results
	3.1 Genetic Algorithm
	3.2 Simulated Annealing

	4 Practical Aspects
	5 Conclusions
	References

