
Advances in Intelligent Systems and Computing 378

Radek Matoušek Editor

Mendel
2015
Recent Advances in Soft Computing

Advances in Intelligent Systems and Computing

Volume 378

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Advances in Intelligent Systems and Computing” contains publications on theory,
applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually
all disciplines such as engineering, natural sciences, computer and information science, ICT,
economics, business, e-commerce, environment, healthcare, life science are covered. The list
of topics spans all the areas of modern intelligent systems and computing.

The publications within “Advances in Intelligent Systems and Computing” are primarily
textbooks and proceedings of important conferences, symposia and congresses. They cover
significant recent developments in the field, both of a foundational and applicable character.
An important characteristic feature of the series is the short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central “Marta Abreu” de Las Villas, Santa Clara, Cuba
e-mail: rbellop@uclv.edu.cu

Emilio S. Corchado, University of Salamanca, Salamanca, Spain
e-mail: escorchado@usal.es

Hani Hagras, University of Essex, Colchester, UK
e-mail: hani@essex.ac.uk

László T. Kóczy, Széchenyi István University, Győr, Hungary
e-mail: koczy@sze.hu

Vladik Kreinovich, University of Texas at El Paso, El Paso, USA
e-mail: vladik@utep.edu

Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan
e-mail: ctlin@mail.nctu.edu.tw

Jie Lu, University of Technology, Sydney, Australia
e-mail: Jie.Lu@uts.edu.au

Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico
e-mail: epmelin@hafsamx.org

Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland
e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl

Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

http://www.springer.com/series/11156

Radek Matoušek
Editor

Mendel 2015
Recent Advances in Soft Computing

123

Editor
Radek Matoušek
Faculty of Mechanical Engineering
Department of Applied Computer Science
Brno University of Technology
Brno
Czech Republic

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-3-319-19823-1 ISBN 978-3-319-19824-8 (eBook)
DOI 10.1007/978-3-319-19824-8

Library of Congress Control Number: 2015940969

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This proceedings book of the Mendel conference (http://www.mendel-conference.
org) contains a collection of selected accepted papers which have been presented at
this event in June 2015. The Mendel conference was held in the second largest city
in the Czech Republic—Brno (http://www.brno.cz/en), which is a well-known
university city. The Mendel conference was established in 1995 and is named after
the scientist and Augustinian priest Gregor J. Mendel, who discovered the famous
Laws of Heredity. In 2015 we are commemorating 150 years since Mendel’s lec-
tures, which he presented in Brno during February and March 1865.

Themain aim of theMendel conference is to create a regular possibility for students,
academics and researchers to exchange their ideas on novel researchmethods aswell as
to establish new friendships on a yearly basis. The scope of the conference includes
many areas of Soft Computing including: Genetic Algorithms, Genetic Programming,
Grammatical Evolution, Differential Evolution, Evolutionary Strategies, Hybrid and
Distributed Algorithms, Probabilistic Metaheuristics, Swarm Intelligence, Ant Colo-
nies, Artificial Immune Systems, Computational Intelligence, Evolvable Hardware,
Chemical Evolution, Fuzzy Logic, Bayesian methods, Neural Networks, Data mining,
Multi-Agent Systems, Artificial Life, Self-organization, Chaos, Complexity, Fractals,
Image Processing, Computer Vision, Control Design, Robotics, Motion Planning,
Decision-making, Metaheuristic Optimization Algorithms, Intelligent Control,
Bio-Inspired Robots, Computer Vision and Intelligent Image Processing.

Soft computing is a formal area of computer science and an important part in the
field of artificial intelligence. Professor Lotfi A. Zadeh introduced the first definition
of soft computing in the early 1990s: “Soft computing principles differs from hard
(conventional) computing in that, unlike hard computing, it is tolerant of impre-
cision, uncertainty, partial truth, and approximation”. The role model for soft
computing is the human mind and its cognitive abilities. The guiding principle of
soft computing can be specified as follows: exploit the tolerance for imprecision,
uncertainty, partial truth, and approximation to achieve tractability and robustness
at a low solution cost.

The main constituents of soft computing include fuzzy logic, neural computing,
evolutionary computation, machine learning, and probabilistic reasoning, whereby

v

http://www.mendel-conference.org
http://www.mendel-conference.org
http://www.brno.cz/en

probabilistic reasoning contains belief networks as well as chaos theory. It is
important to say that soft computing is not a random mixture of solution approa-
ches. Rather, it is a collection of methodologies in which each part contributes in a
distinct way to address a certain problem in its specific domain. From this point of
view, the set of soft computing methodologies can be seen as complementary rather
than competitive. Furthermore, soft computing is an important component for the
emerging field of contemporary artificial intelligence.

Image processing is a complex process, in which image processing routines and
domain-dependent interpretation steps often alternate. In many cases, image pro-
cessing has to be extensively intelligent regarding the tolerance of imprecision and
uncertainty. A typical application of intelligent image processing is computer vision
in robotics.

Bio-inspired robotics is a fairly new sub-category of robotics. It is about learning
concepts from nature and applying them to the design of real-world engineered
systems. More specifically, this field is about making robots that are inspired by
biological systems. It includes difficult mathematical theories as well as simple
central pattern generators (CPG) based on biological neural networks.

This proceedings book contains three chapters which present recent advances in
soft computing including intelligent image processing and bio-inspired robotics.
The accepted selection of papers was rigorously reviewed in order to maintain the
high quality of the conference. Based on the topics of accepted papers the pro-
ceedings book consists of three Parts: Part I: Evolutionary Computing, Swarm
Intelligence, Part II: Neural Networks, Self-organization, and Machine Learning,
and Part III: Intelligent Image Processing, and Bio-Inspired Robotics.

We would like to thank the members of the International Program Committees
and Reviewers for their hard work. We believe that the Mendel conference rep-
resents a high standard conference in the domain of Soft Computing. Mendel 2015
enjoyed outstanding keynote lectures by distinguished guest speakers: Julian Miller
(United Kingdom), Swagatam Das (India), Wolfram Wiesemann (United King-
dom), Eva Matalová (Czech Republic) and René Lozi (France).

Particular thanks go to the conference organizers and main sponsors as well. In
2015 the conference is organized under the auspices of the Brno City Mayor Petr
Vokřál and Brno University of Technology with support from WU Vienna Uni-
versity of Economics and Business, and University of Vaasa. The conference
sponsors are Humusoft Ltd. (International reseller and developer for MathWorks,
Inc., U.S.A.), B&R automation Ltd. (multinational company, specialised in factory
and process automation software), and Autocont Ltd. (private Czech company that
operates successfully in the area of ICT).

We would like to thank all contributing authors, as well as the members of the
International Program Committees, the Local Organizing Committee and the
Executive Organizing Committee namely Ronald Hochreiter and Jouni Lampinen
for their hard and highly valuable work. Their work has definitely contributed to the
success of the Mendel 2015 conference.

Radek Matoušek

vi Preface

Organization

International Program Committee and Reviewers Board

Alex Gammerman, Royal Holloway, University of London, UK
Camelia Chira, Babes-Bolyai University, Romania
Conor Ryan, University of Limerick, Ireland
Daniela Zaharie, West University of Timisoara, Romania
Eva Volná, Universitas Ostraviensis, Czech Republic
Halina Kwasnicka, Wroclaw University of Technology, Poland
Hans-Georg Beyer, Vorarlberg University of Applied Science, Austria
Hana Druckmullerova, Brno University of Technology, Czech Republic
Ivan Sekaj, Slovak University of Technology, Slovakia
Ivan Zelinka, Technical University of Ostrava, Czech Republic
Janez Brest, University of Maribor, Slovenia
Jaromír Kukal, Czech Technical University in Prague, Czech Republic
Jerry Mendel, University of Southern California, USA
Jiri Pospichal, Slovak University of Technology, Slovakia
Jirí Bila, Czech Technical University in Prague, Czech Republic
Josef Tvrdik, Universitas Ostraviensis, Czech Republic
Jouni Lampinen, University of Vaasa, Finland
Lars Nolle, Jade University of Applied Science, Germany
Luis Gacogne, Nottingham Trent University, France
Lukáš Sekanina, LIP6 Universite Paris VI, Czech Republic
Michael O'Neill, Brno University of Technology, Ireland
Michael Wagenknecht, University College Dublin, Germany
Miloslav Druckmuller, Brno University of Technology, Czech Republic
Napoleon Reyes, Massey University, New Zealand
Olaru Adrian, University Politehnica of Bucharest, Romania
Patric Suganthan, Nanyang Technological University, Singapore
Pavel Popela, Brno University of Technology, Czech Republic
Riccardo Poli, University of Essex, UK
Roman Senkerik, Tomas Bata University in Zlín, Czech Republic

vii

Ronald Hochreiter, WU Vienna University of Economics and Business, Austria
Salem Abdel-Badeh, Ain Shams University, Egypt
Tomoharu Nakashima, Osaka Prefecture University, Japan
Urszula Boryczka, University of Silesia, Poland
William Langdon, University College London, UK
Xin-She Yang, National Physical Laboratory UK, UK
Zuzka Oplatkova, Tomas Bata University in Zlín, Czech Republic

Executive Organizing Committee and Local Organizers

Radek Matoušek (Chair and volume Editor-in-Chief), Czech Republic
Jouni Lampinen (Co-chair and associate adviser), Finland
Ronald Hochreiter (Co-chair and associate adviser), Austria
Lars Nolle (Co-chair and associate adviser), Germany

Local Organizers

Ladislav Dobrovský (Technical Review Manager)
Jiří Dvořák (Peer Review Manager)
Jitka Pavlíková (Accommodation Manager)
Daniel Zuth (Senior Organizer)
Petr Krček (Senior Organizer)
Petr Šoustek (Junior Organizer)
Kamil Miškařík (Junior Organizer)

viii Organization

Contents

Part I Evolutionary Computing, Swarm Intelligence

Avoidance Strategies in Particle Swarm Optimisation 3
Karl Mason and Enda Howley

Two-Stage Stochastic Programming for Transportation Network
Design Problem . 17
Dušan Hrabec, Pavel Popela, Jan Roupec, Jan Mazal and Petr Stodola

A Novel Hyper-Heuristic Approach for Channel Assignment
in Cognitive Radio Networks . 27
Emrullah Gazioglu, A. Sima Etaner-Uyar and Berk Canberk

Improved Bees Algorithm for Protein Structure Prediction
Using AB Off-Lattice Model. 39
Nanda Dulal Jana, Jaya Sil and Swagatam Das

Limited Randomness Evolutionary Strategy Algorithm 53
Tomas Brandejsky

Data Mining Application on Complex Dataset
from the Off-Grid Systems . 63
Tomas Vantuch, Jindrich Stuchly, Stanislav Misak and Tomas Burianek

Population Size Reduction in Particle Swarm Optimization
Using Product Graphs . 77
Iztok Fister Jr., Aleksandra Tepeh, Janez Brest and Iztok Fister

Cooperation of Evolutionary Algorithms: A Comparison
of Several Hierarchical Models. 89
Radka Poláková and Josef Tvrdík

ix

http://dx.doi.org/10.1007/978-3-319-19824-8_1
http://dx.doi.org/10.1007/978-3-319-19824-8_2
http://dx.doi.org/10.1007/978-3-319-19824-8_2
http://dx.doi.org/10.1007/978-3-319-19824-8_3
http://dx.doi.org/10.1007/978-3-319-19824-8_3
http://dx.doi.org/10.1007/978-3-319-19824-8_4
http://dx.doi.org/10.1007/978-3-319-19824-8_4
http://dx.doi.org/10.1007/978-3-319-19824-8_5
http://dx.doi.org/10.1007/978-3-319-19824-8_6
http://dx.doi.org/10.1007/978-3-319-19824-8_6
http://dx.doi.org/10.1007/978-3-319-19824-8_7
http://dx.doi.org/10.1007/978-3-319-19824-8_7
http://dx.doi.org/10.1007/978-3-319-19824-8_8
http://dx.doi.org/10.1007/978-3-319-19824-8_8

A Switched Parameter Differential Evolution for Large Scale
Global Optimization – Simpler May Be Better 103
Swagatam Das, Arka Ghosh and Sankha Subhra Mullick

The Initial Study on the Potential of Super-Sized Swarm in PSO 127
Michal Pluhacek, Roman Senkerik and Ivan Zelinka

A Levy Interior Search Algorithm for Chaotic
System Identification . 137
Rushi Jariwala, Rohan Patidar and Nithin V. George

Hybridization of Adaptivity and Chaotic Dynamics
for Differential Evolution . 149
Roman Senkerik, Michal Pluhacek, Donald Davendra,
Ivan Zelinka, Zuzana Kominkova Oplatkova and Jakub Janostik

A Minimisation of Network Covering Services
in a Threshold Distance . 159
Miloš Šeda and Pavel Šeda

CUDA-based Analytic Programming by Means
of SOMA Algorithm . 171
Lumir Kojecky and Ivan Zelinka

Computing Trading Strategies Based on Financial Sentiment Data
Using Evolutionary Optimization . 181
Ronald Hochreiter

Part II Neural Networks, Self-organization, Machine Learning

An Approach to ANFIS Performance . 195
Stepan Dalecky and Frantisek V. Zboril

Values and Bayesian Probabilities of Mental States
from BSDT PL Analysis of Memory ROCs. 207
Petro Gopych and Ivan Gopych

Scaled Conjugate Gradient Learning for Complex-Valued
Neural Networks . 221
Călin-Adrian Popa

x Contents

http://dx.doi.org/10.1007/978-3-319-19824-8_9
http://dx.doi.org/10.1007/978-3-319-19824-8_9
http://dx.doi.org/10.1007/978-3-319-19824-8_10
http://dx.doi.org/10.1007/978-3-319-19824-8_11
http://dx.doi.org/10.1007/978-3-319-19824-8_11
http://dx.doi.org/10.1007/978-3-319-19824-8_12
http://dx.doi.org/10.1007/978-3-319-19824-8_12
http://dx.doi.org/10.1007/978-3-319-19824-8_13
http://dx.doi.org/10.1007/978-3-319-19824-8_13
http://dx.doi.org/10.1007/978-3-319-19824-8_14
http://dx.doi.org/10.1007/978-3-319-19824-8_14
http://dx.doi.org/10.1007/978-3-319-19824-8_15
http://dx.doi.org/10.1007/978-3-319-19824-8_15
http://dx.doi.org/10.1007/978-3-319-19824-8_16
http://dx.doi.org/10.1007/978-3-319-19824-8_17
http://dx.doi.org/10.1007/978-3-319-19824-8_17
http://dx.doi.org/10.1007/978-3-319-19824-8_18
http://dx.doi.org/10.1007/978-3-319-19824-8_18

Off-Grid Parameters Analysis Method Based on Dimensionality
Reduction and Self-organizing Map . 235
Tomas Burianek, Tomas Vantuch, Jindrich Stuchly
and Stanislav Misak

Matrix-Valued Neural Networks. 245
Călin-Adrian Popa

A Feature Clustering Approach for Dimensionality Reduction
and Classification . 257
Kotte VinayKumar, R. Srinivasan and Elijah Blessing Singh

An Application of ANNs Method for Solving Fractional
Fredholm Equations . 269
Ahmad Jafarian and S. Measoomy Nia

Solving Circle Packing Problem by Neural Gas. 281
Jiri Pospichal

Cost Functions Based on Different Types of Distance
Measurements for Pseudo Neural Network Synthesis 291
Zuzana Kominkova Oplatkova and Roman Senkerik

Part III Intelligent Image Processing, Bio-Inspired Robotics

Labyrinth Arrangement Analysis Based on Image Processing 305
Pavel Škrabánek

Neural Network Approach to Image Steganography Techniques 317
Robert Jarušek, Eva Volna and Martin Kotyrba

Rough-Fuzzy Collaborative Multi-level Image Thresholding:
A Differential Evolution Approach . 329
Sujoy Paul, Shounak Datta and Swagatam Das

Fusion of 3D Model and Uncalibrated Stereo Reconstruction. 343
Jan Klecka and Karel Horak

Visual SLAM Based on Phase Correlation and Particle Filters 353
Michal Růžička and Petr Mašek

Contents xi

http://dx.doi.org/10.1007/978-3-319-19824-8_19
http://dx.doi.org/10.1007/978-3-319-19824-8_19
http://dx.doi.org/10.1007/978-3-319-19824-8_20
http://dx.doi.org/10.1007/978-3-319-19824-8_21
http://dx.doi.org/10.1007/978-3-319-19824-8_21
http://dx.doi.org/10.1007/978-3-319-19824-8_22
http://dx.doi.org/10.1007/978-3-319-19824-8_22
http://dx.doi.org/10.1007/978-3-319-19824-8_23
http://dx.doi.org/10.1007/978-3-319-19824-8_24
http://dx.doi.org/10.1007/978-3-319-19824-8_24
http://dx.doi.org/10.1007/978-3-319-19824-8_25
http://dx.doi.org/10.1007/978-3-319-19824-8_26
http://dx.doi.org/10.1007/978-3-319-19824-8_27
http://dx.doi.org/10.1007/978-3-319-19824-8_27
http://dx.doi.org/10.1007/978-3-319-19824-8_28
http://dx.doi.org/10.1007/978-3-319-19824-8_29

Notes on Differential Kinematics in Conformal Geometric
Algebra Approach . 363
Jaroslav Hrdina and Petr Vašík

Trident Snake Control Based on Conformal Geometric Algebra 375
Aleš Návrat and Radomil Matoušek

Author Index . 387

xii Contents

http://dx.doi.org/10.1007/978-3-319-19824-8_30
http://dx.doi.org/10.1007/978-3-319-19824-8_30
http://dx.doi.org/10.1007/978-3-319-19824-8_31

Part I
Evolutionary Computing,

Swarm Intelligence

Avoidance Strategies in Particle Swarm
Optimisation

Karl Mason and Enda Howley

Abstract Particle swarm optimisation (PSO) is an optimisation algorithm in which

particles traverse a problem space moving towards promising locations which either

they or their neighbours have previously visited. This paper presents a new PSO

variant with the Avoidance of Worst Locations (AWL). This variation was inspired

by animal behaviour. In the wild, an animal will react to negative stimuli as well

as positive, e.g. an animal looking for food will also be conscious of danger. PSO

AWL enables particles to remember previous poor solutions as well as good. As a

result, the particles change the way they move and avoid known bad areas. Balancing

the influence of these poor locations is vital. The research in this paper found that a

small influence from bad locations on the particles leads to a significant improvement

on overall performance when compared to the standard PSO. When compared to

previous implementations of worst location memory, PSO AWL demonstrates vast

improvements.

1 Introduction

Particle swarm optimisation (PSO) can be classified as a swarm intelligence approach

to optimisation. The PSO algorithm was initially proposed by Kennedy et al. in

1995 [7]. The algorithm came about as a result of modelling the flight of a flock of

birds. The algorithm functions by inserting particles randomly into a problem space.

These particles evaluate their position as they move around. The particles change

their velocity based on their own personal best position and that of their neighbour-

hood. This gives the particle both a cognitive and a social manner of behaving. Most

research into PSO focuses on either improving its performance [10] or applying it

to real world problems [11]. Improvements on performance focus on areas such as

K. Mason ⋅ E. Howley (✉)
Discipline of Information Technology,

National University of Ireland Galway, Galway, Ireland

e-mail: enda.howley@nuigalway.ie

K. Mason

e-mail: k.mason2@nuigalway.ie

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_1

3

4 K. Mason and E. Howley

initialisation [4], topology [8, 9], particle memory [2, 5] and boundary conditions

[14]. Currently the algorithm functions as a result of particles converging on the

best location. This paper extends the particles’ equation of motion to take account of

negative stimuli, similar to how an animal would avoid a predator in the wild. The

particles will still converge on the best solution while also avoiding the worst. This

paper aims to answer the following three questions:

1. Can the PSO be significantly improved by incorporating the memory of bad pre-

vious locations?

2. How should the worst locations be implemented?

3. How does the proposed PSO perform when compared to previous similar imple-

mentations?

The rest of the paper will be structured as follows: Sect. 2 will define a standard PSO

and will highlight the main research conducted in the area of influencing particles

with the memory of bad previous locations. Section 3 will describe the proposed

PSO with Avoidance of Worst Locations and how it will be evaluated. Section 4 will

present performance results of PSO AWL. In Sect. 5, the results from the Sect. 4

will be discussed. Lastly, we conclude our paper by discussing the implications of

our results and our plans for future work.

2 Background

2.1 Standard Particle Swarm Optimisation

As a result of the research conducted into PSO, certain features have been widely

adopted as standard. At a time t, each particle has a position xt and a velocity vt [7].

The particles move through a problem space evaluating positions. Particles move

towards positions with the best fitness scores using the following equations:

vt+1 = 𝜒(vt + r1c1(pbestt − xt) + r2c2(gbestt − xt) (1a)

xt+1 = xt + vt (1b)

In these equations, r1 and r2 are random numbers between 0 and 1, c1 and c2 = 2.05
are acceleration coefficients. Pbest refers to a particles previous best location while

gbest refers to the best previous location within a particle’s neighbourhood. 𝜒 is a

constriction factor and is calculated by:

𝜒 = 2
|2 − 𝜑 −

√
𝜑2 − 4𝜑|

(2a)

𝜑 = c1 + c2 (2b)

Avoidance Strategies in Particle Swarm Optimisation 5

𝜒 ≈ 0.72984 has been derived to give the best convergence when c1 = c2 = 2.05 [3].

The equations above are the accepted standard [1] and will be used as a benchmark

to which our experimental results will be compared to.

2.2 PSO and Worst Locations

The idea of using the worst locations within the problem space to influence the

motion of the particles was first introduced by Yang et al. in 2005 [15]. This early

adaptation implemented only the worst locations as a means to dictate the particles’

motion.

In 2007 Selvakumar et al. proposed their new PSO (NPSO) which updated a par-

ticle’s velocity using both the particle’s best and worst location [12]. The NPSO was

the first attempt to merge the PSO of Yang et al. with the standard PSO. Below is

the velocity update equation used by Selvakumar et al.:

vt+1 = 𝜔vt + r1c1(pbestt − xt) + r2c2(xt − pworstt)
+ r3c3(gbestt − xt) (3)

In 2014 Jayabarathi et al. extended this velocity update equation to also include the

worst location within a particle’s neighbourhood [6]. Below is their velocity update

equation:

vt+1 = 𝜔vt + r1c1(pbestt − xt) + r2c2(gbestt − xt)
+ r3c3(xt − pworst) + r4c4(xt − gworst) (4)

3 PSO with Avoidance of Worst Locations

Here we introduce a new velocity update equation which incorporates the previous

worst location of the particle and the previous worst location within its neighbour-

hood. The proposed velocity update equation ensures that the extra velocity given

from the worst locations is always in the direction of the best locations. The new

velocity update equation also ensures that the extra velocity given to a particle is

maximised when the particle is at its worst location and decreases as the particle

moves away. This is not the case in the implementations described in Sect. 2.2. Mod-

ifying the velocity update equation in this way encourages the particles towards good

solutions and away from known bad solutions.

6 K. Mason and E. Howley

3.1 Proposed Equation

To implement this extra velocity from the worst locations, the velocity update equa-

tion has been changed as follows:

vt+1 =𝜒(vt + t1 + t2 + t3 + t4) (5a)

t1 = r1c1(pbt − xt) (5b)

t2 = r2c2(gbt − xt) (5c)

t3 =r3c3(
t1

(1 + |xt − pwt|)
) (5d)

t4 =r4c4(
t2

(1 + |xt − gwt|)
) (5e)

The t1 and t2 terms are the same as in the standard PSO. The new t3 and t4 terms

take into account the worst location by using the difference between the particles

current position and the worst position. The absolute value of this difference is taken

to ensure the extra velocity given to the particle from t3 and t4 is in the same direction

as t1 and t2 respectively.

Within t3 and t4, t1 and t2 are divided by |xt − pwt| and |xt − gwt| respectively, so

that the extra velocity given to the particle is at its highest at the worst position and

decreases as the particle moves away.

Finally, to avoid dividing by 0 when the particle is at the worst location and to

limit the extra velocity given to the particle from t3 and t4, 1 is added to |xt − pwt|
and |xt − gwt|. All r values are random numbers between 0 and 1 while all c values

are the acceleration coefficients.

3.2 Selection of Acceleration Coefficients

Choosing the correct parameters for the PSO is critical to its performance. To do this,

a series of parameter sweeps were conducted over the different values of c1, c2, c3
and c4 with 𝜒 = 0.72984. These parameter sweeps are outlined in the table below

(Table 1):

Table 1 Acceleration coeffients parameter sweeps

Parameter

sweep

Initial c1,c2 Final c1,c2 Initial c3,c4 Final c3,c4 Incremental

change

1 1.025 2.05 1.025 0 0.1025

2 1.025 1.5375 1.025 1.5375 0.05125

3 1.025 1.025 0 3.075 0.205

4 1.5375 1.5375 0 3.075 0.205

5 2.05 2.05 0 3.075 0.205

Avoidance Strategies in Particle Swarm Optimisation 7

3.3 Selection of Constriction Value

A final parameter sweep was then conducted over the set of c values which gave

the most promising results from Sect. 3.2. This parameter sweep kept the c values

constant while varying the constriction value 𝜒 from 0.4 up to 0.9 in increments of

0.05. The aim of this last parameter sweep was to investigate which 𝜒 value yields

the optimum performance.

3.4 Evaluation

All of the parameter sweeps above were conducted on PSO AWL with three differ-

ent topologies: global, ring and von Neumann. These were carried out on 7 bench-

mark functions: Sphere, Rosenbrock, Ackley, Griewank, Rastrigin, Schaffer 2D and

Griewank 10D. The best performing topology and set of parameters from the first 7

functions was further tested on the 25 functions outlined in [13]. This set of results

was compared to the standard PSO (SPSO) with global, ring and von Neumann

topologies. These functions were all evaluated in 30 dimensions with the exception

of the Schaffer 2D function and the Griewank 10D which were tested in 2 and 10

dimensions respectively. The results from each function were averaged over 25 runs

with each run consisting of 10,000 iterations and a swarm size of 50 particles. When

a particle reaches a boundary, it is reflected back into the problem space except for

problems 14 and 32 which have optima outside of the initialisation region. The PSO

AWL was then compared with the PSO of Selvakumar et al. (NPSO1) [12] and the

PSO of Jayabarathi et al. (NPSO2) [6].

4 Results

4.1 Parameter Selection

The parameters c1 and c2 = 1.845 and c3 and c4 = 0.205 were selected as the accel-

eration coefficients which gave the best overall performance. These values were used

in the final parameter sweep over the constriction values outlined in Sect. 3.3. This

last parameter sweep showed the best value for the constriction to be 𝜒 = 0.72984
as is the case for the standard PSO. Of the three topologies tested, the von Neumann

topology performed the best overall. This set of parameters, with a von Neumann

topology, was then evaluated on 32 functions.

8 K. Mason and E. Howley

4.2 PSO AWL Vs Standard PSO

The PSO AWL with these parameters was then compared to the standard PSO on

the 32 functions. The SPSO was implemented on three different topologies: global,

ring and von Neumann. Table 2 shows the performance results of each PSO and the

number of functions where each PSO performed exclusively the best and worst. The

PSO AWL was then compared individually against each SPSO. Table 2 gives the

number of functions in which the PSO AWL performed significantly better, worse

and equal compared to each other PSO. In order to determine if the difference in

results were significant, the Wilcoxon signed rank test was conducted to compare the

PSO AWL with the SPSO on each function. A p-value of 0.05 was used to determine

significant differences in performance. Values under 10−14 were then rounded down

to 0 when displayed in Table 2.

4.3 PSO AWL Vs Previous Implementations

The NPSO1 and NPSO2 gave similar performance when evaluated with global,

ring and von Neumann topologies. A global topology was selected for NPSO1

and NPSO2 when comparing with the PSO AWL as it was the best performing of

the three topologies and was the topology used in their origional implementations

[6, 12]. Table 3 shows how each PSO performed on all 32 functions. The same com-

parisons and rounding was conducted for Table 3 as was conducted for Table 2.

5 Discussion

5.1 Parameter Selection

The results show that an improvement was made to the performance of the PSO.

The parameter sweeps demonstrate that higher values of c3 and c4 lead to improved

performance on functions with many local minima such as Rastrigin and Schaffer.

Conversely lower values of c3 and c4 will improve performance on unimodal func-

tions such as Sphere and Rosenbrock. These lower values have a smaller influence on

the particles’ velocity and performed best overall. The optimal acceleration coeffi-

cients are c1 and c2 = 1.845 and c3 and c4 = 0.205. This answers research question 2.

These values for c1, c2, c3 and c4 yield a value of 𝜑 = 4.1, if Eq. 2b from Sect. 2.1

is extended to include the new acceleration coefficients. When inserting 𝜑 = 4.1
into Eq. 2a from Sect. 2.1, the constriction value is calculated to be 𝜒 = 0.72984.

This correlates with the result of the final parameter sweep in which 𝜒 = 0.72984
was found to be the optimal constriction value. Using these parameters for PSO AWL

gave the best balance between exploration with convergence. These parameters were

used to compare PSO AWL to the standard PSO.

Avoidance Strategies in Particle Swarm Optimisation 9

Ta
bl
e
2

P
S

O
A

W
L

v
s

s
ta

n
d
a
r
d

P
S

O

F
u
n
c
ti

o
n

P
S

O
A

W
L

m
e
a
n

P
S

O
A

W
L

s
td

G
lo

b
a
l

m
e
a
n

G
lo

b
a
l

s
td

R
in

g
m

e
a
n

R
in

g
s
td

v
o
n

N
e
u
m

a
n
n

m
e
a
n

v
o
n

N
e
u
m

a
n
n

s
td

S
p
h
e
r
e

0
.0

0
E

+
0
0
0

0
.0

0
E

+
0
0
0

0.
00
E+

00
0

0
.0

0
E

+
0
0
0

0
.0

0
E

+
0
0
0

0
.0

0
E

+
0
0
0

0
.0

0
E

+
0
0
0

0
.0

0
E

+
0
0
0

R
o
s
e
n
b
ro

c
k

6
.6

8
E

+
0
0
0

1
.5

0
E

+
0
0
0

2.
15
E+

00
0

2
.2

6
E

+
0
0
0

1
.4

5
E

+
0
0
1

2
.3

9
E

+
0
0
0

1
.0

4
E

+
0
0
1

1
.9

6
E

+
0
0
0

A
c
k
le

y
1
.2

8
E

-
0
1
4

0
.0

0
E

+
0
0
0

1
.0

3
E

+
0
0
0

9
.2

1
E

-
0
0
1

1
.5

1
E

-
0
1
4

0
.0

0
E

+
0
0
0

1.
27
E-
01
4

0
.0

0
E

+
0
0
0

G
r
ie

w
a
n
k

3
.4

5
E

-
0
0
3

5
.3

5
E

-
0
0
3

1
.3

9
E

-
0
0
2

2
.4

5
E

-
0
0
2

1.
18
E-
00
3

2
.7

1
E

-
0
0
3

7
.1

9
E

-
0
0
3

1
.1

0
E

-
0
0
2

R
a
s
tr

ig
in

4
.3

8
E

+
0
0
1

1
.0

1
E

+
0
0
1

4
.8

2
E

+
0
0
1

1
.3

0
E

+
0
0
1

4
.9

5
E

+
0
0
1

1
.0

2
E

+
0
0
1

3.
86
E+

00
1

9
.6

0
E

+
0
0
0

S
c
h
a
ff

e
r
2
D

1
.2

0
E

-
0
0
4

3
.2

0
E

-
0
0
4

5
.5

2
E

-
0
0
4

4
.8

9
E

-
0
0
4

1
.9

9
E

-
0
0
4

3
.9

3
E

-
0
0
4

3.
94
E-
00
5

1
.9

3
E

-
0
0
4

G
r
ie

w
a
n
k
1
0
D

2
.7

9
E

-
0
0
2

2
.0

5
E

-
0
0
2

7
.0

4
E

-
0
0
2

2
.9

8
E

-
0
0
2

2.
18
E-
00
2

1
.2

7
E

-
0
0
2

3
.2

2
E

-
0
0
2

1
.5

1
E

-
0
0
2

f
1

-
4
.5

0
E

+
0
0
2

2
.7

8
E

-
0
1
4

-
4
.5

0
E

+
0
0
2

1
.1

4
E

-
0
1
4

-
4
.5

0
E

+
0
0
2

3
.9

4
E

-
0
1
4

-
4
.5

0
E

+
0
0
2

3
.0

1
E

-
0
1
4

f
2

-
4
.5

0
E

+
0
0
2

1
.0

7
E

-
0
1
3

-
4
.5

0
E

+
0
0
2

1
.5

3
E

-
0
1
3

-
4
.5

0
E

+
0
0
2

2
.3

0
E

-
0
0
4

-
4
.5

0
E

+
0
0
2

1
.7

2
E

-
0
0
8

f
3

-
4
.5

0
E

+
0
0
2

2
.5

4
E

-
0
1
4

-
4
.5

0
E

+
0
0
2

2
.2

7
E

-
0
1
4

-
4
.5

0
E

+
0
0
2

3
.7

7
E

-
0
1
4

-
4
.5

0
E

+
0
0
2

1
.6

1
E

-
0
1
4

f
4

-
4
.1

4
E

+
0
0
2

5
.3

7
E

+
0
0
1

-4
.4
9E

+
00
2

3
.1

7
E

+
0
0
0

2
.0

9
E

+
0
0
3

2
.1

6
E

+
0
0
3

-
3
.8

2
E

+
0
0
2

1
.2

3
E

+
0
0
2

f
5

2.
23
E+

00
4

1
.4

4
E

+
0
0
4

3
.0

3
E

+
0
0
4

1
.5

5
E

+
0
0
4

3
.0

5
E

+
0
0
4

1
.0

4
E

+
0
0
4

2
.3

9
E

+
0
0
4

1
.2

3
E

+
0
0
4

f
6

3.
94
E+

00
2

5
.8

5
E

+
0
0
0

3
.9

8
E

+
0
0
2

2
.8

6
E

+
0
0
1

3
.9

7
E

+
0
0
2

6
.9

6
E

+
0
0
0

4
.1

4
E

+
0
0
2

3
.7

7
E

+
0
0
1

f
7

-
1
.8

0
E

+
0
0
2

2
.9

4
E

-
0
0
2

-
1
.8

0
E

+
0
0
2

2
.5

7
E

-
0
0
2

-
1
.8

0
E

+
0
0
2

2
.2

5
E

-
0
0
2

-1
.8
0E

+
00
2

1
.2

8
E

-
0
0
2

f
8

-1
.1
9E

+
00
2

7
.4

3
E

-
0
0
2

-
1
.1

9
E

+
0
0
2

9
.0

3
E

-
0
0
2

-
1
.1

9
E

+
0
0
2

9
.8

0
E

-
0
0
2

-
1
.1

9
E

+
0
0
2

5
.7

7
E

-
0
0
2

f
9

-
2
.7

7
E

+
0
0
2

1
.2

9
E

+
0
0
1

-
2
.7

5
E

+
0
0
2

1
.5

1
E

+
0
0
1

-
2
.7

3
E

+
0
0
2

1
.1

6
E

+
0
0
1

-2
.8
6E

+
00
2

1
.1

2
E

+
0
0
1

f
1
0

-2
.6
4E

+
00
2

1
.8

8
E

+
0
0
1

-
2
.2

1
E

+
0
0
2

3
.1

9
E

+
0
0
1

-
2
.5

1
E

+
0
0
2

1
.7

5
E

+
0
0
1

-
2
.5

8
E

+
0
0
2

1
.8

4
E

+
0
0
1

f
1
1

1
.1

7
E

+
0
0
2

2
.2

9
E

+
0
0
0

1.
15
E+

00
2

3
.2

5
E

+
0
0
0

1
.1

7
E

+
0
0
2

1
.8

6
E

+
0
0
0

1
.1

6
E

+
0
0
2

2
.2

9
E

+
0
0
0

f
1
2

5.
90
E+

00
3

7
.1

9
E

+
0
0
3

1
.8

1
E

+
0
0
4

2
.9

1
E

+
0
0
4

6
.0

9
E

+
0
0
3

4
.7

1
E

+
0
0
3

6
.7

2
E

+
0
0
3

6
.0

2
E

+
0
0
3

f
1
3

-
1
.2

5
E

+
0
0
2

1
.4

5
E

+
0
0
0

-
1
.2

4
E

+
0
0
2

3
.0

9
E

+
0
0
0

-
1
.2

3
E

+
0
0
2

1
.9

9
E

+
0
0
0

-1
.2
5E

+
00
2

9
.8

3
E

-
0
0
1

f
1
4

-2
.9
0E

+
00
2

7
.3

5
E

-
0
0
1

-
2
.9

0
E

+
0
0
2

7
.8

9
E

-
0
0
1

-
2
.8

9
E

+
0
0
2

5
.2

3
E

-
0
0
1

-
2
.9

0
E

+
0
0
2

7
.4

2
E

-
0
0
1

f
1
5

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

1
.4

4
E

+
0
0
2

1
.1

8
E

+
0
0
2

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

(
c
o
n
ti

n
u
e
d
)

10 K. Mason and E. Howley

Ta
bl
e
2

(
c
o
n
ti

n
u
e
d
)

F
u
n
c
ti

o
n

P
S

O
A

W
L

m
e
a
n

P
S

O
A

W
L

s
td

G
lo

b
a
l

m
e
a
n

G
lo

b
a
l

s
td

R
in

g
m

e
a
n

R
in

g
s
td

v
o
n

N
e
u
m

a
n
n

m
e
a
n

v
o
n

N
e
u
m

a
n
n

s
td

f
1
6

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

1
.2

0
E

+
0
0
2

2
.1

3
E

-
0
1
4

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

f
1
7

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

1
.2

0
E

+
0
0
2

1
.1

7
E

-
0
1
4

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

1
.2

0
E

+
0
0
2

0
.0

0
E

+
0
0
0

f
1
8

1
.3

9
E

+
0
0
2

2
.3

0
E

+
0
0
2

5
.5

3
E

+
0
0
2

1
.0

9
E

+
0
0
1

1
.3

9
E

+
0
0
2

2
.2

9
E

+
0
0
2

1.
17
E+

00
2

2
.1

4
E

+
0
0
2

f
1
9

2.
63
E+

00
2

1
.7

2
E

+
0
0
0

5
.0

4
E

+
0
0
2

2
.6

2
E

+
0
0
2

2
.7

1
E

+
0
0
2

3
.1

5
E

+
0
0
1

2
.7

4
E

+
0
0
2

2
.8

7
E

+
0
0
1

f
2
0

5
.5

0
E

+
0
0
2

5
.4

0
E

+
0
0
0

6
.0

7
E

+
0
0
2

1
.5

5
E

+
0
0
2

4.
88
E+

00
2

1
.6

6
E

+
0
0
2

5
.2

6
E

+
0
0
2

1
.0

5
E

+
0
0
2

f
2
1

6.
33
E+

00
2

2
.8

4
E

+
0
0
2

1
.2

3
E

+
0
0
3

1
.7

6
E

+
0
0
2

9
.6

1
E

+
0
0
2

5
.2

4
E

+
0
0
1

7
.0

3
E

+
0
0
2

2
.8

2
E

+
0
0
2

f
2
2

1.
00
E+

00
3

1
.5

1
E

+
0
0
2

1
.2

2
E

+
0
0
3

1
.0

1
E

+
0
0
2

1
.0

9
E

+
0
0
3

5
.3

2
E

+
0
0
1

1
.0

3
E

+
0
0
3

6
.2

5
E

+
0
0
1

f
2
3

7.
29
E+

00
2

2
.7

9
E

+
0
0
2

1
.1

8
E

+
0
0
3

1
.4

4
E

+
0
0
2

9
.8

3
E

+
0
0
2

8
.0

0
E

+
0
0
1

9
.1

7
E

+
0
0
2

1
.2

4
E

+
0
0
2

f
2
4

8.
70
E+

00
2

3
.9

1
E

+
0
0
2

1
.3

0
E

+
0
0
3

5
.2

6
E

+
0
0
1

1
.2

6
E

+
0
0
3

6
.2

3
E

+
0
0
1

1
.0

2
E

+
0
0
3

3
.6

1
E

+
0
0
2

f
2
5

6
.7

1
E

+
0
0
2

4
.1

9
E

+
0
0
2

1
.3

3
E

+
0
0
3

6
.0

9
E

+
0
0
1

1
.2

7
E

+
0
0
3

8
.8

8
E

+
0
0
1

4.
74
E+

00
2

3
.3

1
E

+
0
0
2

B
e
s
t

1
1

4
3

8

W
o
r
s
t

1
1
6

1
0

1

P
S

O
A

W
L

s
ta

ti
s
ti

c
a
ll

y
b

e
tt

e
r

1
7

1
7

9

P
S

O
A

W
L

s
ta

ti
s
ti

c
a
ll

y
w

o
r
s
e

3
1

4

P
S

O
A

W
L

s
ta

ti
s
ti

c
a
ll

y
e
q
u

a
l

1
2

1
4

1
9

Avoidance Strategies in Particle Swarm Optimisation 11

Ta
bl
e
3

P
S

O
A

W
L

v
s

N
P

S
O

1
&

N
P

S
O

2

F
u
n
c
ti

o
n

P
S

O
A

W
L

m
e
a
n

P
S

O
A

W
L

s
td

N
P

S
O

1
m

e
a
n

N
P

S
O

1
s
td

N
P

S
O

2
m

e
a
n

N
P

S
O

2
s
td

S
p
h
e
r
e

0.
00
E+

00
0

0
.0

0
E

+
0
0
0

2
.7

9
E

+
0
0
1

2
.6

2
E

+
0
0
0

7
.7

7
E

+
0
0
1

7
.6

2
E

+
0
0
0

R
o
s
e
n
b
ro

c
k

6.
68
E+

00
0

1
.5

0
E

+
0
0
0

7
.7

0
E

+
0
0
2

1
.6

2
E

+
0
0
2

1
.9

0
E

+
0
0
3

2
.2

2
E

+
0
0
2

A
c
k
le

y
1.
28
E-
01
4

0
.0

0
E

+
0
0
0

1
.4

7
E

+
0
0
1

6
.1

5
E

-
0
0
1

1
.8

9
E

+
0
0
1

2
.7

7
E

-
0
0
1

G
r
ie

w
a
n
k

3.
45
E-
00
3

5
.3

5
E

-
0
0
3

9
.7

6
E

+
0
0
1

1
.2

7
E

+
0
0
1

2
.6

7
E

+
0
0
2

3
.1

1
E

+
0
0
1

R
a
s
tr

ig
in

4.
38
E+

00
1

1
.0

1
E

+
0
0
1

2
.6

4
E

+
0
0
2

1
.9

8
E

+
0
0
1

3
.0

0
E

+
0
0
2

8
.2

7
E

+
0
0
0

S
c
h
a
ff

e
r
2
D

1
.2

0
E

-
0
0
4

3
.2

0
E

-
0
0
4

1.
33
E-
00
7

2
.3

2
E

-
0
0
7

5
.3

3
E

-
0
0
4

3
.8

5
E

-
0
0
4

G
r
ie

w
a
n
k
1
0
D

2.
79
E-
00
2

2
.0

5
E

-
0
0
2

4
.9

4
E

+
0
0
0

8
.0

7
E

-
0
0
1

1
.8

5
E

+
0
0
1

5
.3

7
E

+
0
0
0

f
1

-4
.5
0E

+
00
2

2
.7

8
E

-
0
1
4

4
.0

8
E

+
0
0
3

9
.2

1
E

+
0
0
2

1
.7

7
E

+
0
0
4

3
.5

1
E

+
0
0
3

f
2

-4
.5
0E

+
00
2

1
.0

7
E

-
0
1
3

7
.6

5
E

+
0
0
3

1
.9

0
E

+
0
0
3

2
.9

8
E

+
0
0
4

5
.1

1
E

+
0
0
3

f
3

-4
.5
0E

+
00
2

2
.5

4
E

-
0
1
4

3
.9

5
E

+
0
0
3

7
.4

9
E

+
0
0
2

1
.7

2
E

+
0
0
4

2
.2

9
E

+
0
0
3

f
4

-4
.1
4E

+
00
2

5
.3

7
E

+
0
0
1

9
.0

5
E

+
0
0
3

2
.2

5
E

+
0
0
3

3
.5

0
E

+
0
0
4

5
.6

4
E

+
0
0
3

f
5

2.
23
E+

00
4

1
.4

4
E

+
0
0
4

2
.9

4
E

+
0
0
4

4
.0

9
E

+
0
0
3

8
.1

9
E

+
0
0
4

8
.6

3
E

+
0
0
3

f
6

3.
94
E+

00
2

5
.8

5
E

+
0
0
0

1
.3

7
E

+
0
0
8

5
.0

1
E

+
0
0
7

2
.5

8
E

+
0
0
9

5
.4

9
E

+
0
0
8

f
7

-1
.8
0E

+
00
2

2
.9

4
E

-
0
0
2

1
.6

2
E

+
0
0
2

1
.0

3
E

+
0
0
2

8
.6

1
E

+
0
0
3

2
.0

1
E

+
0
0
3

f
8

-1
.1
9E

+
00
2

7
.4

3
E

-
0
0
2

-
1
.1

9
E

+
0
0
2

4
.7

2
E

-
0
0
2

-
1
.1

9
E

+
0
0
2

5
.9

8
E

-
0
0
2

f
9

-2
.7
7E

+
00
2

1
.2

9
E

+
0
0
1

-
1
.2

8
E

+
0
0
2

1
.2

7
E

+
0
0
1

-
7
.3

1
E

+
0
0
1

1
.2

0
E

+
0
0
1

f
1
0

-2
.6
4E

+
00
2

1
.8

8
E

+
0
0
1

-
9
.3

1
E

+
0
0
1

1
.4

3
E

+
0
0
1

3
.8

2
E

+
0
0
0

2
.4

3
E

+
0
0
1

f
1
1

1.
17
E+

00
2

2
.2

9
E

+
0
0
0

1
.2

3
E

+
0
0
2

2
.5

3
E

+
0
0
0

1
.2

9
E

+
0
0
2

8
.9

5
E

-
0
0
1

f
1
2

5.
90
E+

00
3

7
.1

9
E

+
0
0
3

2
.6

3
E

+
0
0
5

5
.2

9
E

+
0
0
4

7
.7

9
E

+
0
0
5

1
.4

4
E

+
0
0
5

f
1
3

-1
.2
5E

+
00
2

1
.4

5
E

+
0
0
0

7
.2

5
E

+
0
0
1

8
.4

6
E

+
0
0
1

2
.8

9
E

+
0
0
4

1
.8

4
E

+
0
0
4

f
1
4

-2
.9
0E

+
00
2

7
.3

5
E

-
0
0
1

-
2
.8

9
E

+
0
0
2

5
.0

1
E

-
0
0
1

-
2
.8

8
E

+
0
0
2

2
.2

4
E

-
0
0
1

(
c
o
n
ti

n
u
e
d
)

12 K. Mason and E. Howley

Ta
bl
e
3

(
c
o
n
ti

n
u
e
d
)

F
u
n
c
ti

o
n

P
S

O
A

W
L

m
e
a
n

P
S

O
A

W
L

s
td

N
P

S
O

1
m

e
a
n

N
P

S
O

1
s
td

N
P

S
O

2
m

e
a
n

N
P

S
O

2
s
td

f
1
5

1.
20
E+

00
2

0
.0

0
E

+
0
0
0

1
.2

0
E

+
0
0
3

2
.3

9
E

+
0
0
1

1
.3

7
E

+
0
0
3

1
.9

0
E

+
0
0
1

f
1
6

1.
20
E+

00
2

0
.0

0
E

+
0
0
0

1
.2

8
E

+
0
0
3

2
.2

3
E

+
0
0
1

1
.4

5
E

+
0
0
3

2
.6

3
E

+
0
0
1

f
1
7

1.
20
E+

00
2

0
.0

0
E

+
0
0
0

1
.3

4
E

+
0
0
3

3
.1

4
E

+
0
0
1

1
.5

0
E

+
0
0
3

2
.9

3
E

+
0
0
1

f
1
8

1.
39
E+

00
2

2
.3

0
E

+
0
0
2

1
.2

0
E

+
0
0
3

3
.0

9
E

+
0
0
1

1
.4

1
E

+
0
0
3

4
.5

4
E

+
0
0
1

f
1
9

2.
63
E+

00
2

1
.7

2
E

+
0
0
0

1
.2

0
E

+
0
0
3

2
.3

8
E

+
0
0
1

1
.4

2
E

+
0
0
3

3
.4

2
E

+
0
0
1

f
2
0

5.
50
E+

00
2

5
.4

0
E

+
0
0
0

1
.0

3
E

+
0
0
3

2
.1

5
E

+
0
0
1

1
.2

7
E

+
0
0
3

2
.4

5
E

+
0
0
1

f
2
1

6.
33
E+

00
2

2
.8

4
E

+
0
0
2

1
.6

6
E

+
0
0
3

5
.2

9
E

+
0
0
1

1
.9

0
E

+
0
0
3

5
.0

7
E

+
0
0
1

f
2
2

1.
00
E+

00
3

1
.5

1
E

+
0
0
2

1
.5

2
E

+
0
0
3

4
.1

0
E

+
0
0
1

1
.6

6
E

+
0
0
3

3
.1

9
E

+
0
0
1

f
2
3

7.
29
E+

00
2

2
.7

9
E

+
0
0
2

1
.6

5
E

+
0
0
3

4
.1

4
E

+
0
0
1

1
.9

0
E

+
0
0
3

4
.6

3
E

+
0
0
1

f
2
4

8.
70
E+

00
2

3
.9

1
E

+
0
0
2

1
.4

8
E

+
0
0
3

3
.6

4
E

+
0
0
1

1
.5

8
E

+
0
0
3

3
.1

7
E

+
0
0
1

f
2
5

6.
71
E+

00
2

4
.1

9
E

+
0
0
2

1
.3

9
E

+
0
0
3

3
.8

1
E

+
0
0
1

1
.9

4
E

+
0
0
3

3
.4

7
E

+
0
0
1

B
e
s
t

3
1

1
0

W
o
r
s
t

0
0

3
2

P
S

O
A

W
L

s
ta

ti
s
ti

c
a
ll

y
b

e
tt

e
r

3
1

3
2

P
S

O
A

W
L

s
ta

ti
s
ti

c
a
ll

y
w

o
r
s
e

1
0

P
S

O
A

W
L

s
ta

ti
s
ti

c
a
ll

y
e
q
u

a
l

0
0

Avoidance Strategies in Particle Swarm Optimisation 13

5.2 PSO AWL Vs Standard PSO

When compared to the standard PSO, PSO AWL performs best most often and worst

least often. This is illustrated in Table 2. When compared individually against the

global SPSO, the PSO AWL performs statistically better on 17 functions and worse

on 3 functions. Similarly, the PSO AWL performs statistically better on 17 functions

and worse on 1 function when compared to the ring SPSO. The PSO AWL is closer

in performance to the von Neumann SPSO due to each being implemented with a

von Neumann topology. Statistically, the PSO AWL performs better on 9 functions

and worse on 4 functions. Overall it performs best on 11 functions compared to 8 for

the von Neumann SPSO, thus showing an improvement on the PSO and addressing

research question 1.

5.3 Function Type Performance

The PSO AWL performs better on functions with certain properties. This is high-

lighted in Table 2. Functions f15 through to f25 are composite functions which have

many local minima and are more complex. For these 10 functions the PSO AWL

performs best on 5, and the same on 3. The PSO AWL never performs the worst

on any of these 11 functions. This demonstrates that the PSO AWL is better able to

optimise complex functions than the SPSO.

Functions where the optimum is at the boundary favour the PSO AWL. Of the 3

functions where this is the case (f5, f8 and f20), the PSO AWL performs best on 2 (f5

and f8). This is due to the particles having less velocity as they move away from the

worst position. This better enables them to converge on an optimum at the boundary

than faster moving particles of the SPSO.

The performance of PSO AWL improves on problems where the optimum is

shifted. The PSO AWL has average performance on the initial 7 functions which

have their optima at the origin. For the subsequent 25 functions, the PSO AWL per-

forms exclusively the best on 11 functions, equally optimal on 6 functions, average

on 7 functions and the worst on 1 function. The optimum is shifted away from the

origin in each of these functions. PSO AWL is the second best performing PSO on

the rosenbrock function but is the best performing PSO on function f6 (shifted rosen-

brock). This further illustrates a preference for shifted functions. Similar results are

seen for rotated functions. PSO AWL performs second best on f9 but performs best

on f10 (f10 is f9 rotated).

PSO AWL performs worse on functions which have no boundaries. This is due

to the particles having less velocity as they move away from the worst position. This

causes the particles to converge faster. If the optimum is far outside of the initiali-

sation region, the particles will not have enough velocity to reach this optimum and

converge on a local minimum as a result. This is the case for functions f7 and f25.

Function f7 is the only function which the PSO AWL performs worst on. On function

f25, PSO AWL performs worse than the von Neumann SPSO.

14 K. Mason and E. Howley

5.4 PSO AWL Vs Previous Implementations

PSO AWL has superior performance compared to both previous implementations

that include worst fitness locations. This gives a clear answer to research question 3.

Table 3 outlines the performance of each PSO. PSO AWL performed best out of the

3 PSO algorithms on 31 out of the 32 functions tested. On the function where PSO

AWL didn’t perform best, it was not the worst performing PSO algorithm. The results

show that PSO AWL performs better than previous attempts to take into account of

worst fitness locations.

6 Conclusion

The experiments conducted in this paper have addressed the three research questions

asked in Sect. 1. Consequently it is clear that:

1. Using poor locations can significantly improve upon the SPSO, as demonstrated

by the PSO AWL.

2. The best implementation of worst locations is to influence the particles in a subtle

way. A small influence from the location of the worst positions is best so that the

particles’ convergence is not negatively affected. It is vital to the success of the

PSO that t1 and t2 are still the dominating factors in determining the motion of

the particles.

3. The PSO AWL improves upon previous attempts of implementing worst fitness

locations. This is because the effects of the PSO AWL velocity update equation

are more subtle than previous attempts which improves convergence.

This paper has examined a novel and very promising extension to existing PSO

research. Therefore, in future research, it is hoped to explore other possible veloc-

ity update equations that might better implement worst fitness locations than PSO

AWL. It is also hoped that further insights can be gained by refining the influence

that the worst locations have on the particles in order to better balance exploration

and convergence.

References

1. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: Swarm Intel-

ligence Symposium, SIS 2007, pp. 120–127. IEEE (2007)

2. Broderick, I., Howley, E.: Particle swarm optimisation with enhanced memory particles. In:

Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T.

(eds.) ANTS 2014. LNCS, vol. 8667, pp. 254–261. Springer, Heidelberg (2014)

3. Clerc, M., Kennedy, J.: The particle swarm–explosion, stability, and convergence in a multidi-

mensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

Avoidance Strategies in Particle Swarm Optimisation 15

4. Helwig, S., Wanka, R.: Theoretical analysis of initial particle swarm behavior. In: Rudolph, G.,

Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 889–898.

Springer, Heidelberg (2008)

5. X. Hu, Eberhart, R.C., Shi, Y.: Particle swarm with extended memory for multiobjective opti-

mization. In: Swarm Intelligence Symposium, SIS’03. Proceedings of the 2003 IEEE, pp. 193–

197. IEEE (2003)

6. Jayabarathi, T., Kolipakula, R.T., Krishna, M.V., Yazdani, A.: Application and comparison of

PSO, its variants and hde techniques to emission/economic dispatch. Arab. J. Sci. Eng. 39(2),

967–976 (2014)

7. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–

766. Springer (2010)

8. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceed-

ings of the 2002 Congress on Evolutionary Computation, CEC’02, vol. 2, pp. 1671–1676.

IEEE (2002)

9. Liu, H., Howely, E., Duggan, J.: Particle swarm optimisation with gradually increasing directed

neighbourhoods. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary

Computation, pp. 29–36. ACM (2011)

10. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57

(2007)

11. Robinson, J., Rahmat-Samii, Y.: Particle swarm optimization in electromagnetics. IEEE Trans.

Antennas Propag. 52(2), 397–407 (2004)

12. Selvakumar, A.I., Thanushkodi, K.: A new particle swarm optimization solution to nonconvex

economic dispatch problems. IEEE Trans. Power Syst. 22(1), 42–51 (2007)

13. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem

defnitions and evaluation criteria for the CEC 2005 special session on real-parameter optimiza-

tion. KanGAL Report 2005005, 2005 (2005)

14. Xu, S., Rahmat-Samii, Y.: Boundary conditions in particle swarm optimization revisited. IEEE

Trans. Antennas Propag. 55(3), 760–765 (2007)

15. Yang, C., Simon, D.: A new particle swarm optimization technique. In: 18th International

Conference on Systems Engineering, ICSEng 2005, pp. 164–169. IEEE (2005)

Two-Stage Stochastic Programming
for Transportation Network Design Problem

Dušan Hrabec, Pavel Popela, Jan Roupec,
Jan Mazal and Petr Stodola

Abstract The transportation network design problem is a well-known optimiza-

tion problem with many practical applications. This paper deals with demand-based

applications, where the operational as well as many other decisions are often made

under uncertainty. Capturing the uncertain demand by using scenario-based ap-

proach, we formulate the two-stage stochastic mixed-integer linear problem, where

the decision, which is made under uncertainty, of the first-stage program, is followed

by the second-stage decision that reacts to the observed demand. Such a program

may reach solvability limitations of algorithms for large scale real world data, so

we refer to the so-called hybrid algorithm that combines a traditional optimization

algorithm and a suitable genetic algorithm. The obtained results are presented in an

explanatory form with the use of a sequence of figures.

Keywords Two-stage stochastic programming ⋅ Scenario-based approach ⋅
Transportation model ⋅ Network design problem ⋅ Genetic algorithm ⋅ Hybrid

algorithm

D. Hrabec (✉) ⋅ P. Popela ⋅ J. Roupec

Faculty of Mechanical Engineering, Brno University of Technology, Technická 2,

616 69 Brno, Czech Republic

e-mail: hrabec.dusan@gmail.com

P. Popela

e-mail: pavel.popela@fme.vutbr.cz

J. Roupec

e-mail: jan.roupec@fme.vutbr.cz

J. Mazal ⋅ P. Stodola

Faculty of Military Leadership, University of Defence in Brno, Kounicova 65,

662 10 Brno, Czech Republic

e-mail: jan.mazal@unob.cz

P. Stodola

e-mail: petr.stodola@unob.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_2

17

18 D. Hrabec et al.

1 Introduction

The transportation network design problem (TNDP) deals with optimization of trans-

portation networks under specific constraints [1]. Specifically, TNDP is an important

topic in transportation planning and development, where the objective is to minimize

transporting costs or to maximize achieved profit. The discrete case of the network

design problem (NDP) focuses on addition of new roads to a transportation network

while the continuous case deals with capacity expansion of existing links. A mix-

ture of both is referred to as the mixed NDP (see [2, 3]). See also [4, 5] for recent

overviews of the NDP.

The decisions on production and transportation/supply planning must often be

made without (exact) knowledge of the customer’s demand. We will further empha-

size the importance of uncertainty in problems of demand based management, that

we interpret as a decision-making under uncertainty. Many real-world complex sys-

tems include these uncertainties, and they can be modeled in different ways. One of

them is stochastic programming (SP), see [6]. The beginning of SP, and in particu-

lar stochastic linear programming, dates back to the 50’s and early 60’s of the last

century. Although many ways have been proposed to model uncertain quantities,

stochastic models have proved their flexibility and usefulness in diverse areas of sci-

ence. Finally, integer programming deals with models where some of the variables

are discrete, see [7] for general concepts.

The paper deals with two-stage stochastic TNDP. Two-stage programs have been

named in various ways by different authors (e.g., two-stage programs, programs with

recourse, two-stage programs with recourse). Such problem was firstly introduced

by Dantzig [8] and Beale [9], independendtly, and has been studied extensively in

the years since (see [6] or [10]). As a typical and famous example of the two-stage

stochastic linear problem we have identified the so-called STORM model, which

appears in paper by Mulvey and Ruszczyński [11]. It was used by the US Military to

plan the allocation of aircrafts to routes during the Gulf War of 1991 (see also paper

by Higle and Sen [12] for more details). In this original two-period problem, routes

are scheduled to satisfy a set of demands at first-stage, demands occur, and unmet

demands are delivered at higher costs in second-stage to account for shortcomings

[13]. The STORM served well for tests of algorithms and evaluation of the solution

quality (see, e.g., VSS fundamental concept in SP).

Various approaches have been taken to solve NDP as well as TNDP. For a detailed

review of solution techniques see, e.g., [14, 15]. However, suitable algorithms for

large scale problems are still under development as a challenging optimization field.

This paper presents a hybrid algorithm for the solution of a two-stage scenario-based

stochastic mixed integer linear program.

Two-Stage Stochastic Programming for Transportation Network … 19

2 Two-Stage Stochastic Transportation Network Design
Model

The important property of the problem considered in this paper is based on the fact

that the decisions (at least some of them) must be made under uncertainty. In general,

uncertainty may be included in the model in many ways. By computational purposes,

we prefer to deal with the case of discrete random variable 𝜉 with a finite support

[16]. We model the situation by using a scenario-based (SB) approach to two-stage

stochastic programs (see [16]) that helps us to capture the evolution of demand, and

so, we can develop SP model for determining the operational and network design

decisions.

In our two-stage problem, we will distinguish two different decisions that have

to be made at two different time stages: (a) amount to be transported (b) new links

to be added to the network. The first-stage decisions are made before the demand

is observed, and so, we decide due to demand given by all considered scenarios.

When the demand is observed, the second stage decisions are made to satisfy real

customers’ demand (with a higher transporting/penalty cost), see Fig. 1 for an illus-

trative example.

Then, we define the following two-stage SB stochastic mixed-integer linear pro-

gram (SMILP):

min

∑

e
cexe +

∑

en

den𝛿en +
∑

s
ps

(
∑

e∗
qe∗ye∗,s +

∑

i
(r+i,sw

+
i,s + r−i,sw

−
i,s)

)

s.t.
∑

e
Ai,exe +

∑

e∗
A∗
i,e∗ye∗,s = bi,s − w+

i,s + w−
i,s, ∀i ∈ I,∀s ∈ S,

xen ≤ 𝛿enM, ∀en ∈ En,

w+
i,s ≤ bi,s, ∀i ∈ I,∀s ∈ S,
xe ≥ 0, ∀e ∈ E,

ye∗,s ≥ 0, ∀e∗ ∈ E∗
,∀s ∈ S,

w+
i,s,w

−
i,s ≥ 0, ∀i ∈ I,∀s ∈ S,
𝛿en ∈ {0, 1}, ∀en ∈ En,

(1)

with the first-stage decision variables:

xe ∶ amount of a product to be transported on edge e,
𝛿en ∶ 1 if new edge en is built, 0 otherwise,

the second-stage decision variables:

ye∗ ,s ∶ amount of a product to be transported on edge e∗ in scenario s,
w+
i,s ∶ shortages in a node i in scenario s,

w−
i,s ∶ leftovers in a node i in scenario s,

20 D. Hrabec et al.

the sets of indices:

E ∶ set of edges, e ∈ E,
En ∶ set of new (built) edges, en ∈ En, En ⊂ E,
E∗ ∶ set of edges for the second-stage decision, e∗ ∈ E∗

, depending on

the problem, e.g., E∗
⊂ E or E∗ = E,

I1 ∶ set of customers (or places with a non-zero demand), i1 ∈ I1,
I2 ∶ set of production places (or warehouses), i2 ∈ I2,
I3 ∶ set of traffic nodes, i3 ∈ I3,
I ∶ set of all nodes in the network, i ∈ I, I = I1 ∪ I2 ∪ I3,
S ∶ set of all possible scenarios, s ∈ S, s = 1, 2,… ,m,

and parameters:

Ai,e ∶ incidence matrix, Ai,e

⎧
⎪
⎨
⎪
⎩

1 if edge e from a node to node i exists,

−1 if edge e from node i to a node exists,

0 otherwise,

A∗
i,e∗ ∶ incidence matrix for the second stage,

bi,s ∶ the demand in a node i for a scenario s (alternatively denoted by 𝜉i,s),
ce ∶ unit transporting cost on edge e,
den ∶ cost of building of new edge en,
qe∗ ∶ unit cost for the second-stage transporting on edge e∗,
r+i,s ∶ unit penalty cost for shortages at node i in scenario s,

r−i,s ∶ unit penalty cost for leftovers at node i in scenario s,

ps ∶ probability of observing a scenario s,
∑

s ps = 1,
M ∶ a large number, e.g. M =

∑
i2
(−bi2).

Analysing principal ideas from references introduced in the previous paragraphs, we

can see that we have turned from static programs discussed in previous papers, e.g.

[17, 18], to the programs having two decision stages. So, the decision 𝐱, obtained as

the solution of the first-stage program (master program), is followed by the decision

𝐲(𝜉) that solves the second-stage program (see [16]). The network design decisions

(when to make them, respectively), 𝛿’s, can be modified due to needs of the particular

problem. We illustrate the decision sequence in Fig. 1.

3 Computational Example

In this section, we introduce our testing network example that was previously used

in [17–20] (see Fig. 2) and solve the two-stage SMILP given by (1). We use next

modification of our hybrid algorithm that we previously used for simpler cases with

recourse in [17, 18]. We also shortly demonstrate the main idea of the algorithm

(see Sect. 3.1). For an exhaustive description of the interface and further details see

[17, 18].

Two-Stage Stochastic Programming for Transportation Network … 21

Fig. 1 Two-stage scenario

tree illustrating sequence of

transportation decisions
s1

s2

sm

x yξ

Fig. 2 Example of the

network: m = 30, solid lines

present existing network

while dash lines are the

potential network design

variables/connections;

moreover

b(i1) > 0, I1 = 1, 2,…14,

b(i2) < 0, I2 = 15, 16, and

b(i3) = 0, I3 = 17, 18,…30

3.1 Hybrid Algorithm

We have implemented our model (1) in GAMS and we have solved it by the use of

BARON, CONOPT, and CPLEX solvers for small test instances obtaining accept-

able results (see [17, 18]). The attempt to solve larger test problems in the same way

led to significant increase of computational time. Thus, we have modified and uti-

lized our original hybrid computational technique that combines the GAMS code

with genetic algorithm (GA). The algorithm is efficiently implemented in C++ with

focus on GAMS-GA interface features.

22 D. Hrabec et al.

Hybrid algorithm description

1 Initialization of parameters for all procedures and memory allocation.

2 Set up the scenario-based GAMS model (read model and data in *.gms files) for

each scenario. Set up control parameters for the GA.

3 Create an initial population for each GA instance, so initial values of 0− 1 vari-

ables must be generated and placed into the so called $INCLUDE files, where

they can be read-in by GAMS. Several runs of random generation are needed,

corresponding to the population size and number of scenarios.

4 Repeatedly run the GAMS model by using the CPLEX solver. Each run solves

the two-stage stochastic linear program for the fixed values of 0 − 1 variables.

Profit function values are calculated, also for new individuals created by means

of the genetic operators, initially in 3. and then in 8.
5 Save the best results obtained from GAMS in 4. for comparisons.

6 Test the algorithm termination rules and stop in case of their satisfaction. Oth-

erwise continue till the last scenario solution is obtained.

7 Generate input values for the GA from GAMS results, see step 4. Specifically,

the profit function values for each member of population of the GA are obtained

from results of the GAMS runs in 4.
8 Run GA to update the set of 0 − 1 variables (population).

Switch of binary variables belonging to edges having zero flow and recalculate

the objective function (by using GAMS). Return to step 3.

3.2 Results

In this subsection, we present results of the computations on Figs. 3 and 4. The first-

stage decisions are realted to the network flow (Fig. 3a) and to the network design

(Fig. 3b). When the real demands are known, we make the second-stage decisions:

see the network flow (Fig. 4a) and the network design (Fig. 4b). Practically, if the

second-stage decisions must be made as well as realized very quickly (e.g. in mil-

itary applications, see similarities to aforementioned STORM ideas) then the net-

work design decision from the second-stage should be realized in advance, i.e. in the

first-stage. Then, the second stage decisions are restricted to only the transportation

(network flow).

3.3 Conclusions and Further Research

The paper presents principle ideas behind the development of the original modifi-

cation of hybrid algorithm involving GA and GAMS for the solution of the large-

Two-Stage Stochastic Programming for Transportation Network … 23

(a) Network flow in the first-stage. (b) Network design in the first stage.

Fig. 3 First-stage decisions: network flow (x) and network design (𝛿).

(a) Network flow in the second stage:
line thickness captures number of uses
of the edge in n = 100 scenarios.

(b) Network design in the second-stage.

Fig. 4 Second-stage decisions: network flow (y) and network design (𝛿).

scale stochastic TNDP. The introduced hybrid algorithm can be further applied to

engineering optimization of design parameters in civil engineering applications and

continuous casting, where both integer and continuous variables may appear in the

large scale instances of modeled problems. The idea is to test these conclusions more

carefully for large test cases and real world applications in, e.g., waste management

problems especially in the related transportation network design. The approach is

24 D. Hrabec et al.

also portable to other problems leading to nonlinear integer programming formula-

tions. The hybrid algorithm can be further tested comparing with some other evolu-

tionary approaches (see, e.g., [21]).

Acknowledgments The present work has been supported by the specific research project “Modern

Methods of Applied Mathematics for the Use in Technical Sciences”, no. FSI-S-14-2290, id. code

25053. We would like to acknowledge the help of Petr Jindra with the visualization of achieved

results.

References

1. Ghiani, G., Laporte, G., Musmanno, R.: Introduction to Logistic Systems Planning and Con-

trol, Wiley-interscience series in systems and optimization. Wiley, Chichester (2004)

2. Magnati, T.L., Wong, R.T.: Network design and transportation planning: models and algo-

rithms. Transp. Sci. 18(1), 1–55 (1984)

3. Yang, H., Bell, M.G.H.: Models and algorithms for road network design: a review and some

new developments. Transp. Rev. 18(3), 257–278 (1998)

4. Liu, Ch.: A Stochastic Programming Approach for Transportation Network Protection. Uni-

versity of California, Davis, Research Report, Institute of Transportation Studies (2009)

5. Chen, A., Zhou, Z., Chootinan, P., Ryu, S., Yang, Ch., Wong, S.C.: Transport network de-

sign problem under uncertainty: a review and new developments. Transp. Rev. 31(6), 743–768

(2011)

6. Kall, P., Wallace, S.W.: Stochastic Programming, 2nd edn. Wiley, Chichester (1994)

7. Wolsey, L.A.: Integer programming. Wiley-interscience Series in Discrete Mathematics and

Optimization (1998)

8. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1, 197–206 (1955)

9. Beale, E.M.L.: On Minimizing a convex function subject to linear inequalities. J. Roy. Stat.

Soc. 17b, 173–184 (1955)

10. Glynn, P.W., Infanger, G.: Simulation-based confidence bounds for two-stage stochastic pro-

grams. Math. Program. 138(1–2), 15–42 (2013)

11. Mulvey, J.M., Ruszczyński, A.: A new scenario decomposition method for large-scale stochas-

tic optimization. Oper. Res. 43(3), 477–490 (1995)

12. Higle, J.L., Sen, S.: Stochastic Decomposition. A Statistical Method for Large Scale Stochastic

Linear Programming. Kluwer Academic Publishers, Dordrecht (2004)

13. Holmes, D.: A Collection of Stochastic Programming Problems. Technical report, University

of Michigan (1994)

14. Babazadeh, A., Poorzahedy, H., Nikoosokhan, S.: Application of particle swarm optimization

to transportation network design problem. J. King Saud Univ. Sci. 23, 293–300 (2011)

15. Poorzahedy, H., Rouhani, O.M.: Hybrid meta-heuristic algorithms for solving network design

problem. Eur. J. Oper. Res. 182, 578–596 (2007)

16. Popela, P., Novotný, J., Roupec, J., Hrabec, D., Olstad, A.: Two-stage stochastic programming

for engineering problems. Eng. Mech. 21(5), 335–353 (2014)

17. Roupec, J., Popela, P., Hrabec, D., Novotný, J., Olstad, A., Haugen, K.K.: Hybrid algorithm for

network design problem with uncertain demands. In: Proceedings of the World Congress on

Engineering and Computer Science, WCECS 2013, pp. 554–559. San Francisco, USA (2013)

18. Hrabec, D., Popela, P., Roupec, J., Jindra, P., Haugen, K.K., Novotný, J., Olstad, A.: Hybrid

algorithm for wait-and-see network design problem. In: 20th International Conference on the

Soft Computing MENDEL 2014, pp. 97–104. Brno, Czech Republic (2014)

19. Hrabec. D.: Stochastic programming for engineering design. Diploma thesis, Department of

Mathematics, Faculty of Mechanical Engineering, BUT, 2011

Two-Stage Stochastic Programming for Transportation Network … 25

20. Hrabec, D., Popela, P., Novotný, J., Haugen, K.K., Olstad, A.: The stochastic network design

problem with pricing. In: 18th International Conference on the Soft Computing MENDEL

2012, pp. 416–421. Brno, Czech Republic (2012)

21. Stodola, P., Mazal, J., Podhorec, M., Litvaj, O.: Using the ant colony optimization algorithm

for the capacitated vehicle routing problem. In: 16th International Conference on Mechatronics

- Mechatronika (ME), pp. 503–510 (2014)

22. Matousek, R.: HC12: the principle of CUDA implementation. In Proceedings of 16th Interna-

tional Conference on Soft Computing MENDEL 2010, Mendel series, vol. 2010, pp. 303–308,

Brno (2010). ISSN: 1803–3814

A Novel Hyper-Heuristic Approach
for Channel Assignment in Cognitive
Radio Networks

Emrullah Gazioglu, A. Sima Etaner-Uyar and Berk Canberk

Abstract Wireless networks communicate with each other using radio spectrum

bands which are assigned to license owners. Due to the fixed spectrum assignment

policy, a large portion of the spectrum stays unused. The aim of cognitive radio is

enabling users which do not hold a license to be able to access the spectrum assigned

to license owners. In the channel assignment problem, the objective is to assign chan-

nels to unlicensed users in order to maximize channel utilization without causing any

interference to licensed users. In this study, we propose a hyper-heuristic approach

to solve the channel assignment problem in cognitive radio networks. Results show

that our approach gives high channel utilization rates by allowing unlicensed users to

access the channels owned by licensed users. The results are promising and promote

further study.

1 Introduction

Wireless networks communicate with each other using radio spectrum bands which

are assigned to license owners. Traditionally, there is a fixed spectrum assignment

policy issued by the governments or the communication companies [1]. Because of

the fixed spectrum assignment policy, a large portion of the spectrum stays unused.

To utilize these unused spectrum portions, the idea of Cognitive Radio (CR) was

proposed by J.Mitola [2, 3]. A CR is defined by the The Federal Communications

Commission (FCC) as [4]: “A CR is a radio that can change its transmitter parameters

E. Gazioglu (✉) ⋅ A.S. Etaner-Uyar ⋅ B. Canberk

Faculty of Computer and Informatics, Istanbul Technical University,

34469 Istanbul, Turkey

e-mail: egazioglu@itu.edu.tr

http://www.cs.itu.edu.tr/en

A.S. Etaner-Uyar

e-mail: etaner@itu.edu.tr

B. Canberk

e-mail: canberk@itu.edu.tr

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_3

27

28 E. Gazioglu et al.

based on its interaction with the environment in which it operates. This interaction

may involve active negotiation or communications with other spectrum users and/or

passive sensing and decision making within the radio.” The aim of CR is maximizing

spectrum utilization in an intelligent way. By doing that, CR enables the unlicensed

users to also access the spectrum. However, this process should be done in such a

way that when an unlicensed user attempts to use a spectrum, it should not interfere

with the licensed users.

In CR Networks (CRN) terminology, a primary user (PU) is a licensed user which

has been assigned a spectrum, while a secondary user (SU) is an unlicensed user

which does not have a license to access a spectrum. For this reason, SUs use the CR

technology to access the spectrum when the spectrum is not occupied by the PU.

This unoccupied spectrum portion is represented by a spectrum hole or white space.

In CRN, PUs are known as the owners of a spectrum. They can use the spectrum

whenever they want. On the other hand, SUs can use the spectrum if and only if the

spectrum is not currently occupied by the PU. However, in [5], a new data transmis-

sion protocol, which allows a PU and a SU to work cooperatively, was proposed. In

this method, a PU releases a portion of the bandwidth (BW) to the SU to transmit its

own data in exchange for making the SU to also relay the PU’s data.

A CRN fundamentally includes primary networks (PN) and secondary networks

(SN) [1]. Normally, PNs do not share the spectrum with the SUs. On the other hand,

SNs have a Base Station (BS) to assign channels to the SUs that are requesting spec-

trum access. However, before such an an access can be allowed, the BS must have

some information on the PU’s spectrum usage in the form of time slots. To col-

lect this information from the environment, SUs sense (Spectrum Sensing) the PUs

and they transmit the collected data to the BS. After that, the BS uses different data

fusion techniques to put this data together and makes decisions (Spectrum Decision)

to assign (Channel Assignment) available channels to the SUs. In this study, we only

deal with the channel assignment stage of the problem.

Channel Assignment (CA) is a fundamental technique to control interference in

the CRNs. The aim of CA is to assign channels to SUs in order to maximize channel

utilization. In CA, the percentage of channel utilization can be increased by trans-

mitting SU data and PU data simultaneously as given in [5].

In this study, we use hyper-heuristics (HH) to solve the CA problem. In literature,

CA algorithms try to optimize various objectives such as utilization optimization,

interference minimization, network overhead minimization, throughput maximiza-

tion, etc [6]. Our objective is to maximize channel utilization. Hyper-heuristics are

methods that work on the search space of low level heuristics rather than on the

search space of solution candidates [7]. Single point based search heuristics or pop-

ulation based metaheuristics can serve as hyper-heuristics. In this study we use a

single point based search heuristic, namely Adaptive Iterated Construction Search
(AICS) [8]. In [9] and more recently in [6], a taxonomy of solution techniques to the

CA problem is provided. One classification is based on the solution technique used.

Based on this, our aproach as HH falls under the category of heuristics [6].

A Novel Hyper-Heuristic Approach . . . 29

The rest of the paper is organized as follows: In Sect. 2, background informa-

tion on hyper-heuristics and the AICS method used as a HH in this study is given.

The problem definition and the proposed method is described in detail in Sect. 3.

Section 4 shows the results. Section 5 concludes the paper and provides possibilities

for future work.

2 Background

2.1 Hyper-Heuristics

In [10], hyper-heuristics are defined as heuristics that select heuristics. A more recent

definition of HHs is given in [11] as: “A hyper-heuristic is an automated methodology

for selecting or generating heuristics to solve hard computational search problems”.

HHs work on a search space of low-level heuristics (LLH) as opposed to working

on the search space of solutions. There are two types of HHs, i.e. Selection HHs and

Generation HHs [11]. Selection HHs choose from existing heuristics defined for a

problem, while generation HHs generate new heuristics for a given problem by using

components of existing heuristics. In this study we work with selection HHs, so for

the rest of the paper we will use HHs to denote selection HHs.

As demonstrated in Fig. 1, in a HH framework the HH is isolated from the problem

domain. It can only access the LLHs provided for that problem domain. This implies

that once a HH has been developed, it can be applied to different problem domains

by changing the set of LLHs and the evaluation function [12].

Fig. 1 Hyper-heuristic

framework

Single point based search approaches as well as population based metaheuristics,

such as ant colony optimization algorithms, can be used as HHs. In this study we use

a single point based search approach, namely Adaptive Iterated Construction Search
(AICS) [8]. AICS can be considered as being a simple Ant Colony Optimization

(ACO) algorithm [13] which works using a single ant.

30 E. Gazioglu et al.

2.2 Adaptive Iterated Construction Search

ACO [13], is a well-known metaheuristic approach inspired from the behavior of real

ants. One of the key concepts of ACO is the use of pheromone trails. Real ants release

pheromones along the path from their nest to the food source. In ACO, pheromone

values are associated with the edges between the nodes of a construction graph. The

pheromone values in the pheromone matrix are updated when a new ant chooses

to use the corresponding edges. The choosing process is accomplished with a prob-

ability p calculated using the pheromone level value (𝜏ij) between the nodes and

some heuristic information (𝜂ij). At the beginning of the algorithm, all values in the

pheromone matrix are initialized with a small value 𝜏0. Each ant adds selected solu-

tion components into its own solution candidate set by walking on the construction

graph. At the end of its walk, it constructs a complete solution candidate. In AICS,

a single ant constructs a complete solution candidate and updates the pheromone

matrix for the next iteration. AICS can be used as a HH mechanism like proposed

in [14], where the probability p for choosing the next component is calculated as

given in Eq. 1:

pij =
⎧
⎪
⎨
⎪
⎩

𝜏
𝛼

ij
∑

l∈Ni
𝜏
𝛼

il
if j ∈ Ni

0 if j ∉ Ni

(1)

where 𝜏ij is the pheromone level between components i and j respectively, 𝛼 is a

parameter used to determine the effect of the pheromone level, Ni is the allowed

neighborhood of the ant when it is at node i. Note that, the heuristic information 𝜂ij
is not used in this equation for calculating the probability values because there is no

available heuristic information for the CA problem we addressed in this study.

In each iteration, after a complete solution candidate is constructed, the

pheromone levels are updated. First, all the pheromone values in the pheromone

matrix are evaporated with a constant factor. Then the pheromone values which are

between the components that were used by the ant are increased. Pheromone evap-

oration and update are calculated as in Eqs. 2 and 3 respectively,

𝜏ij ← (1 − 𝜌)𝜏ij (2)

𝜏ij ← 𝜏ij + 𝛥(i, j, s) if edge(i, j) ∈ T (3)

where 𝛥(i, j, s) is the amount of pheromone to be added between the corresponding

solution components. It is set to Q∕fitness(s) if the fitness(s) > 0 (Q is a constant),

otherwise it is set to a very big number. The constant evaporation variable 𝜌 is a

value between 0 and 1. Finally, T is the set of edges which have been visited.

A Novel Hyper-Heuristic Approach . . . 31

3 The Channel Assignment Problem

3.1 Problem Definition

In our CA problem model, both PUs and SUs can transmit their data simultaneously

on the same channel. However, we should remember that a SU can use the spectrum

as far as the PU permits it in the form of BW. In this study, we assume an underlying

network architecture. More specifically, a SU can utilize the vacant channel as long as

it does not disturb the PU. For example, if we assume that the possible total channel

utilization is 1.0, and a PU is using the channel with a rate of 0.4, this means that

the SU can use it with a rate of 0.6. In Fig. 2, a sample channel usage of PUs can be

seen. The rows represent the channels and the columns represent time. The values

in the cells represent the PUs’ BW usage rate for each channel at each point in time,

e.g. at time t0 the PUs use CH2 and CH4 with the rates of 0.52 and 0.7 respectively

and use no BW on channels CH1 and CH3. This means that at time t0 SUs can use

the full BW on channels CH1 and CH3, while they can use channels CH2 and CH4
with the rates of 0.48 and 0.3 respectively.

Fig. 2 Sample spectrum usage

Our main aim in solving the CA problem is to maximize the total channel uti-

lization at each point in time by allowing the SUs to use the remaining BW on the

channels. For our model of the CA problem, the objective function can be defined

as given in Eq. 4.

maximize
n∑

j=1

[

req(Nj) +
r∑

i=1
(usg(Mi).xji)

]

(4)

subject to

0 ≤ req(Nj) + usg(Mi) ≤ 1 (5)

where n is the number of SUs; r is the number of channels (i.e. the number of PUs),

req(Nj) is the jth SU’s BW request rate, usg(Mi) is the ith PU’s channel usage rate,

xji is the 0/1 decision variable that shows whether channel Mi is assigned to SU Nj
or not.

32 E. Gazioglu et al.

3.2 Solution Approach

To solve the CA problem, we use a HH approach based on AICS. Given a traffic

matrix, i.e. the PUs’ spectrum usage information for each channel and for each time

slot (e.g. as shown in Fig. 2), the HH aims to assign a channel to the SUs for each

time slot. To accomplish this, first, the HH constructs a solution candidate which

includes a set of LLHs. Then, each LLH in the solution candidate is invoked in the

order given by the solution candidate, to assign a channel to a SU. Next, the fitness

value of the resulting assignments is calculated.

Solution Candidate: In Fig. 3 a possible solution candidate is illustrated. It can be

seen from this figure, that a LLH can be used in a solution candidate more than once.

The values in the solution candidate are integers between 1 and the total number of

LLHs. Each number shows which LLH is used to choose the next SU for channel

assignment. Since there are n SUs which require a channel assignment, the length of

the solution candidate is equal to n.

Fig. 3 Example solution candidate

At each step of the assignment process, a LLH chooses a SU. For example in

Fig. 3, the first LLH is used to choose the first and the second SUs while the fourth

LLH is used to choose the third SU, etc. For each chosen SU, the channel assignment

is done based on a best-fit policy. The aim of best-fit policy is to assign a channel to

a SU based on its BW request so as to maximize channel utilization.

Assignment Table: Once the assignment is finished, the fitness value of the cre-

ated assignment table is evaluated. In Fig. 4, a sample assignment table is given.

The table shows channel assignments for 8 SUs. Each entry in the table denotes the

channel number which was assigned to the corresponding SU, e.g. the fifth channel

is assigned to the 2nd SU.

Fig. 4 Example assignment

table

SU Properties: Each SU has some properties which define its behavior. In this

study we used three different properties for the SUs: the BW request which is a

number between 0 and 1; a priority level for which there are three commonly used

settings as Gold, Silver and Bronze; the degree of the node corresponding the the

SU in the graph representing the underlying network.

A Novel Hyper-Heuristic Approach . . . 33

The Fitness Function: The objective of the CA problem is to maximize channel

utilization. To achieve this we designed a fitness function which consists of three

parts.

– Unused BW (c1): Amount of total BW that was not used. This is to be minimized,

therefore, it forces the algorithm to use as much spectrum BW as possible.

– Overflowed BW (c2): Amount of total BW that is assigned to SUs which is more

than the available amount on each channel after the corresponding PUs utilization

is subtracted. This is to be minimized because it causes a solution candidate to

be infeasible due to the constraint defined in Eq. 5. However, to let the algorithm

be able to search the whole search space freely, infeasible solutions are allowed

during the search stage but not as a final solution.

– Unassigned SU (c3): Number of SUs that have a request for that time slot but are

not assigned to any channels if there are any available channels.

Each part of the fitness function is normalized based on worst case scenarios as

shown in Eqs. 6, 7 and 8 respectively.

c1 = c1∕number of assigned SU (6)

c2 = c2∕number of assigned SU (7)

c3 = c3∕(G.(number of SUs − number of available channels)) (8)

where G is a number denoting the value used for the gold level priorities. Based on

these three parts, the total fitness function is calculated as given in Eq. 9.

fitness(x) = 𝛼1.c1 + 𝛼2.c2 + 𝛼3.c3 (9)

where 𝛼1, 𝛼2 and 𝛼3 are weight coefficients for each component of the fitness func-

tion. The algorithm tries to minimize this fitness function for each time slot in order

to maximize the channel utilization.

Low-level Heuristics: In this study we used six LLHs for the CA problem. Each

LLH selects a SU when it is invoked. For all LLHs, the channel assignment is done

using the best-fit policy.

– The Maximum/Minimum Degree Heuristic selects the SU with the maximum/

minimum degree based on a graph with SUs as vertices.

– The Maximum/Minimum Request Heuristic selects the SU with the maximum/

minimum BW request.

– The Maximum Priority Heuristic selects the SU with the maximum priority.

– The Random Heuristic selects a SU randomly.

34 E. Gazioglu et al.

3.3 Proposed Algorithm

In this study, we proposed a solution approach to the CA problem in CRNs which

uses the AICS algorithm as a HH to select the SUs at each step of the CA. The

pseudo-code of the whole proposed solution approach is given in Algorithm 1.

fitness ← calculate a random solution;

for each time slot t do
s ← AICS(t, fitness);
assignmentTable ← invokeSelectedLLHs(s);
fitness ← calculateFitness(assignmentTable);

end
Algorithm 1: Pseudo code of the proposed solution approaches.

The AICS approach in [8] is used in this study as a HH. In AICS, once the prob-

abilities are calculated, the well known roulette-wheel selection technique used in

evolutionary algorithms [15] is used for selecting the next LLH based on the cal-

culated probabilities from the pheromone values. As noted before, since there is no

heuristic information, probabilities are based only on pheromone values [14].

4 Experiments

4.1 Experiment Design

To test the proposed approach we generated several test instances based on four para-

meters as follows:

– Traffic matrix: We generated the traffic matrix using the Poisson distribution to

determine the arrival times of the packets. We used three different 𝜆 values for

the Poisson distribution, which are 𝜆 = 1, 5, 10. As 𝜆 gets bigger, the arrivals of

the packets become sparse and vice-versa. To determine the size of the packets

we used the uniform distribution. While doing that, we made sure there were no

overlapping packets.

– Packet counts: We used two different packet counts in the experiments as 10 and

20. The BW of the packets are generated randomly between 0 and 1. These repre-

sent the PUs channel usage rates.

– Number of SUs: Four different settings were used as (80, 100, 200, 300). The BW

requests for the SUs are generated randomly between 0 and 1. The priority for

each SU is determined randomly as 0.5, 0.3 or 0.2 corresponding to Gold, Silver

and Bronze respectively.

– Number of channels: Three different settings were used as (60, 80, 100).

A Novel Hyper-Heuristic Approach . . . 35

By using the above parameters we created 72 different test instances. In AICS,

for 𝜌 and for the constant Q we used fixed values as 0.1 and 1000 respectively as

suggested in [14]. The coefficients 𝛼1, 𝛼2, 𝛼3 used in the fitness calculation are set to

10, 1000, 10 respectively. These values were determined experimentally.

We evaluate the approaches tested in this study based on two criteria:

– Channel Assignment Success Rate (CASR) shows the success rate of an approach.

It is calculated as the percentage of feasible assignments to the total number of

channels. A feasible assignment is one where the constraint given in Eq. 5 is sat-

isfied for all time slots.

– Channel Utilization Rate (CUR) shows the utilization rate of the channels at

time t, weighted by the CASR as shown in Eq. 10.

CUR(t) =
∑r

i=1 utili(t)
r

∗ CASR (10)

utili(t) is the channel utilization rate for channel i at time t and r is the total number

of channels.

4.2 Results and Discussions

To show the effectiveness of the HH approach which uses six LLHs, each of the 72
test instances was solved with the proposed HH (AICS) as well as each LLH sep-

arately. Since AICS is a stochastic algorithm, we ran the AICS algorithm 20 times

independently for each test instance. For this reason, in our result plots, we show the

average value of 20 runs for AICS. The results are shown as Weighted Channel Uti-
lization Rates over Time (CUR(t)). Due to lack of space, here we only show sample

plots
1

for seven different test instances. The samples are chosen so as to show the

effect of each parameter, i.e. 𝜆 used in generating the traffic matrix, the number of

channels (CH) and the number of SUs. Note that the packet count is kept fixed at 20
since it only affects the length of the time axis and does not have an important effect

on performance. In all plots, the results for the six LLHs and the proposed approach

denoted as AICS are given, where the x-axis shows the time and the y-axis shows

CUR.

The Effect of 𝝀 In this part, we want to analyze the effect of the traffic density on

performance, so we fix the number of channels and the number of SUs as CH = 60
and SU = 300 respectively. In Fig. 5, we provide the plots for different 𝜆 settings.

𝜆 = 1 denotes dense traffic where the interarrival time between the packets is small.

As 𝜆 increases, packet traffic becomes more sparse.

1
The plots for all 72 instances can be seen on the web page at http://web.itu.edu.tr/egazioglu/cr.

http://web.itu.edu.tr/egazioglu/cr

36 E. Gazioglu et al.

(a) λ: 1 (dense) (b) λ: 5 (medium) (c) λ: 10 (sparse)

Fig. 5 Example CUR plots for different 𝜆 settings where CH = 60 and SU = 300

It can be seen in Fig. 5 that the drop in CUR and CASR are much higher for the

individual LLHs than for AICS. As the traffic density decreases, the performance of

the LLHs drops. However, AICS is not affected from the change in traffic density.

The Effect of the Number of SUs In this part, we want to analyze the effect of the

number of SUs in the system that want to use the available channel BW, so we fix

the traffic density and the number of channels as 𝜆 = 5 and CH = 60 respectively. In

Fig. 6, we provide the plots for different SU settings. We chose SU = 100, 200, 300
to denote a low, medium and high number of SUs respectively.

(a) SU: 100 (low) (b) SU: 200 (medium) (c) SU: 300 (high)

Fig. 6 Example CUR plots for different SU settings where 𝜆 = 5 and CH = 60

It can be seen in Fig. 6 that there is a high drop in CUR and CASR for the indi-

vidual LLHs. This is to be expected because as the number of SUs increases, it

becomes harder to assign the limited amount of channel BW efficiently. There is

a slight decrease in CASR for the AICS but its CUR is not affected by the number of

SUs in the system. This shows that AICS is able to provide good performance with

regard to CASR and CUR for a range of SU counts.

The Effect of the Number of Channels In this part, we want to analyze the effect

of the number of channels (CH) (i.e. number of PUs) in the system, so we fix the

traffic density and the number of SUs as 𝜆 = 5 and SU = 300 respectively. In Fig. 7,

we provide the plots for different CH settings. We used CH = 60, 80, 100 to denote

a low, medium and high number of available channels respectively.

A Novel Hyper-Heuristic Approach . . . 37

(a) CH: 60 (low) (b) CH: 80 (medium) (c) CH: 100 (high)

Fig. 7 Example CUR plots for different SU settings where 𝜆 = 5 and CH = 60

It can be seen in Fig. 7 that all approaches are affected similarly from the changes

in the channel counts and AICS is the best performer in all three cases with regard

to CASR and CUR.

Overall Evaluation In Figs. 5–7 it can be seen that among the LLHs, Max. Degree
and Max. Priority LLHs are the best performers with regard to CUR in all cases.

Similarly, Min. Request is the best performer among all LLHs with regard to CASR.

However, the CUR for this LLH is very low. The reason for this behavior is that this

LLH chooses the SUs in the increasing order of their requests. It is easier to find a

channel assignment for smaller requests, therefore the CASR of this LLH is high.

However, since it assigns channels to those SUs with lower requests first, the CURs

of the assigned channels do not increase much after the assignments. Min. Degree,

Max. Request and Random are the worst performing LLHs with CASR = 0. In the

plots given in the paper, AICS is either the best performer or it has a performance of

similar quality to the well performing LLHs.

These observations are generally true also when the results for all 72 instances

are considered. However, there are a very few cases where Max. Request achieves

a CASR > 0. However, even then, its performance is not comparable to the best

performers. Over all instances, there are some cases where AICS is outperformed

by one or more of the LLHs but this is to be expected since HHs are designed to be

general solvers which should be applicable to all instances without requiring specific

information about the nature of a specific instance. In this sense, the results show that

AICS is very successful with regard to both CASR and CUR over all instances.

5 Conclusion and Future Work

In this work, we studied the channel assignment problem in CRNs. We applied the

AICS algorithm as a HH which uses six LLHs. Experiments were performed to see

the effects of different parameters on the performance of the proposed approach.

Test instances that exhibit various properties were generated and each LLH was also

tested on each test instance separately. The approaches were evaluated based on two

38 E. Gazioglu et al.

criteria, namely their success rates in making feasible channel assignments and the

channel utilization rates they provided over time.

The results show that for some types of instances one LLH is better whereas

another LLH may be better for others. So overall, as each LLH favors one aspect of

the instance (e.g. one LLH uses the requests of the SUs to select a SU), it performs

better in related cases. However, HHs harvest the advantages of the LLHs and benefit

from being able to utilize all of them in each instance. The learning mechanism

incorporated in the AICS in the form of pheromone trails helps the HH to learn

over time which LLHs are good. However, as is expected HHs allow for good and

acceptable results for all instances, without needing to know the properties of each

instance, but they may not be the best performing approach in all instances.

The experiments provided in this study suggest that using Hyper-Heuristics allows

unlicensed users (SUs) to access spectrum with a high channel utilization rate under

many different types of traffic and channel and SU counts. Overall, AICS as a HH is

a very promising technique for the channel assignment problem used here. As future

work, other types of heuristics and metaheuristics may be considered as a HH.

References

1. Haykin, Simon: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel.

Areas Commun. 23(2), 201–220 (2005)

2. Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Pers.

Commun. 6(4), 13–18 (1999)

3. Mitola, J.: Cognitive radio–an integrated agent architecture for software defined radio (2000)

4. FCC: Notice of proposed rule making and order, et docket no. 03–322 (2003)

5. Su, W., Matyjas, J.D., Batalama, S.: Active cooperation between primary users and cognitive

radio users in heterogeneous ad-hoc networks. IEEE Trans. Signal Process. 60(4), 1796–1805

(2012)

6. Ahmed, E., Gani, A., Abolfazli, S., Yao, L.J., Khan, S.U.: Channel assignment algorithms in

cognitive radio networks: taxonomy, open issues, and challenges. IEEE Commun. Surv. Tutor.

(99), 1–1 (2014)

7. Peter Ross: Hyper-heuristics. In: Search methodologies, pp. 529–556. Springer (2005)

8. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations & applications. Elsevier (2004)

9. Tragos, E.Z., Zeadally, S., Fragkiadakis, A.G., Siris, V.A.: Spectrum assignment in cognitive

radio networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 15(3), 1108–1135 (2013)

10. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales summit.

In: Practice and Theory of Automated Timetabling III, pp. 176–190. Springer (2001)

11. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classification

of hyper-heuristic approaches. In: Handbook of Metaheuristics, pp. 449–468. Springer (2010)

12. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an

emerging direction in modern search technology. In: Handbook of Metaheuristics, pp. 457–

474. Springer (2003)

13. Stützle, M.E., Dorigo, T.: Ant colony optimization (2004)

14. Ergin, F.C., Uyar, A., Yayimli, A.: Investigation of hyper-heuristics for designing survivable

virtual topologies in optical wdm networks. In: Applications of Evolutionary Computation,

pp. 1–10. Springer (2011)

15. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer Science & Busi-

ness Media (2003)

Improved Bees Algorithm for Protein
Structure Prediction Using AB Off-Lattice
Model

Nanda Dulal Jana, Jaya Sil and Swagatam Das

Abstract Protein Structure Prediction (PSP) using sequence of amino acids is a

multimodal optimization problem and belongs to NP hard class. Researchers and

scientists put their efforts to design efficient computational intelligent algorithm for

solving this kind of problem. Bees Algorithm (BA) is a swarm intelligence based

algorithm inspired by the foraging behaviour of honey bees colony, already exhibits

its potential ability for solving optimization problems. However, it may produce

premature convergence when solving PSP like problems. To prevent this situation,

Adaptive Polynomial Mutation based Bees Algorithm (APM-BA) has been proposed

in this paper for predicting protein structure in 2D AB off-lattice model. In this strat-

egy, each of best scout bees are mutated with adaptive polynomial mutation tech-

nique when their performances are no more improve during execution phase. The

experiments are conducted on artificial and real protein sequences and numerical

results show that the proposed algorithm has strong ability for solving PSP problem

having minimum energy.

Keywords Protein structure prediction ⋅ Bees algorithm ⋅ Adaptive polynomial

mutation ⋅ Artificial and real protein sequences

N.D. Jana (✉)
Department of IT, National Institute of Technology, Durgapur 713209, India

e-mail: nanda.jana@gmail.com

J. Sil

Department of CST, Indian Institute of Engineering Science & Technology,

Shibpur 711103, India

e-mail: js@cs.iiests.ac.in

S. Das

ECS Unit, Indian Statistical Institute, Kolkata 700108, India

e-mail: swagatam.das@isical.ac.in

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_4

39

40 N.D. Jana et al.

1 Introduction

Proteins are the primary building blocks in all living organisms and represented by

a sequence of 20 different amino acids. Biological functions of proteins are closely

related with their structures which play an important role in drug design, disease pre-

diction and many more [1, 2]. Therefore, protein structure prediction is an important

research area in computational biology. Anfinsen’s thermodynamic hypothesis [3]

states that the native structure of a protein corresponds to the global minimum of the

free energy surface of the protein. So, the protein structure prediction problem can

be treated as a global optimization problem. This problem is of NP-hard [4] and its

multimodality characteristics increase with the protein sequence length [5].

Experimental methods like X-ray crystallography and Nuclear Magnetic

Resonance (NMR) are time consuming and expensive to predict the structure of pro-

teins. Moreover, due to strict laboratory requirements and heavy operational burdens,

it is not always feasible to determine the protein structure experimentally. There-

fore, researchers focused on predicting protein structure from the given amino acid

sequences by computational methods [6]. A successful study of computational meth-

ods in PSP reveals two facts. The first part is the consideration of physical model

which corresponds to a potential energy function. The second part involves search-

ing of global minimum of the potential energy function. In the literature, most of the

physical models are grouped into two classes of residues: hydrophobic (non-polar

or H) and hydrophilic (polar or P) instead of considering 20 different amino acids

individually. The most widely used simplified model is HP lattice models [7]. An off-

lattice model is a generalization of HP lattice model known as AB off-lattice model

proposed by Stillinger et al. [8] where the hydrophobic and the hydrophilic residues

are labelled by ’A’ and ’B’ respectively. Many computational intelligent algorithms

have been applied on AB off-lattice model for finding global minimum energy to

predict protein structure [9–18].

The Bees Algorithm (BA) [19, 20] is a swarm intelligence based algorithm

inspired by the food foraging behaviour of honey bee colonies developed in 2005

by D. T. Pham. It performs a kind of exploitative neighbourhood search combined

with random explorative search, successfully applied to many engineering optimiza-

tion problems. However, it has the limitation of premature convergence due to lack

of diversity in the search space when solving multimodal optimization problems. In

this paper, to prevent premature convergence and improve the performance of BA,

we have proposed, adaptive polynomial mutation based bees algorithm (APM-BA)

for solving PSP problem in 2D AB off-lattice model. Adaptive polynomial mutation

is applied on best scout bees which do not improve their visited site in a predefined

limit, known ’trial’ counter of inefficient search. As a result, there is a high chance to

jump out from visited site to unvisited site and made exploration on the search space.

Experiments are conducted on artificial and real protein sequences using 2D AB off-

lattice model. The numerical results show that the proposed algorithm is suitable for

solving PSP problem having minimum energy. Moreover, results are compared with

other algorithms demonstrating efficiency of the proposed method.

Improved Bees Algorithm for Protein Structure Prediction . . . 41

The paper is organized as follows: In Sects. 2 and 3, basic principle of 2D AB

off-lattice model and bees algorithm are describe, respectively. The details of APM-

BA are presented in Sect. 4, followed by experimental setups and results in Sect. 5.

Finally, the conclusion is drawn and future works are highlighted in the Sect. 6.

2 AB Off-Lattice Model

AB off-lattice model, known as toy model proposed by Stillinger et al. in 1993 [8]

and widely used for predicting the structure of a protein sequence due to its simplic-

ity. In this model, 20 amino acids are classified into hydrophobic and hydrophilic

residues, labelled as ’A’ and ’B’ respectively. Two residues are linked by rigid unit-

length bonds and the angle between two bonds can change freely in two dimensional

Euclidean space. An n length protein sequence is represented by (n-2) bend angles

𝜃2, 𝜃3, ..., 𝜃n−1 at each of the non-terminal residues. Each bend angles 𝜃i are in the

range −180◦ to 180◦ and 𝜃i = 0 represents linearity in the successive bonds. The

bend angel, 𝜃i ∈ [−180◦, 0) and 𝜃i ∈ (0, 180◦] represent rotation of amino acids

in clockwise and counter clockwise direction respectively. A 2D off-lattice model

of a protein sequence with length 9 shown in Fig. 1. The AB off-lattice model rep-

resents the intra-molecular potential energy for each molecule with backbone bend

potentials V1 and nonbonded interactions V2. Amino acids along the backbone can

be conveniently encoded by a set of bipolar variables 𝜉i. If 𝜉i =1, the ith amino acid is

A while 𝜉i = -1, it is B. Hence, the total potential energy function 𝛷 for any n length

protein sequence is expressed using Eq. 1.

Fig. 1 2D off-lattice model

of a protein sequence with

length 9

𝛷 =
n−1∑

i=2
V1(𝜃i) +

n−2∑

i=1

n∑

j=i+2
V2(rij, 𝜉i, 𝜉j) (1)

Where V1 is the bending potential, independent of protein sequence as defined by

Eq. 2

V1(𝜃i) =
1
4
(1 − cos𝜃i) (2)

42 N.D. Jana et al.

The nonbonded interactions V2 have a species-dependent Lennard-Jones 12, 6 form,

described in Eqs. 3 and 4 respectively.

V2(rij, 𝜉i, 𝜉j) = 4[r−12ij − C(𝜉i, 𝜉j)r−6ij] (3)

C(𝜉i, 𝜉j) =
1
8
(1 + 𝜉i + 𝜉j + 5𝜉i𝜉j) (4)

Where rij denotes the distance between ith and jth residue of the chain. For an AA pair,

C(𝜉i, 𝜉j) = 1 regarded as strongly attracting for an AB or BA pair while C(𝜉i, 𝜉j) =
−0.5, regarded as weakly repelling and for a BB pair, C(𝜉i, 𝜉j) = 0.5, regarded as

weakly attracting. Our objective is to find the minimum value of Eq. 1, representing

lowest free energy of the structure of a protein.

3 Bees Algorithm (BA)

Bees Algorithm [19] is a swarm intelligence based algorithm inspired by the foraging

behaviour of honey bees used for finding global optimum solution for a given opti-

mization problem. Scout bees i.e. candidate solutions are randomly generated in the

search space and the quality of the visited locations depend on the fitness value. The

generated solutions are ranked and other bees are recruited from the neighbourhood

having the highest ranking locations on the search space. This algorithm locates the

most promising solutions and selectively explores their neighbourhoods looking for

the global minimum of the fitness function.

The population contains N number of scout bees which are randomly scattered

with uniform probability across the search space. Therefore, the jth element of the

ith solution Xi is expressed using Eq. 5.

Xj
i = Xj

min +
(

Xj
max − Xj

min

)

× rand(0, 1), j = 1, 2, ...,D (5)

Where Xj
min and Xj

max denote the lower and upper bound of the jth element and D
denotes the dimension of any Xi. Each scout bees evaluates using the fitness function.

After initialization of the scout bees, BA enters into a cycle which is composed of

four phases [19]. Following phases are executed sequentially until stopping condition

is met.

3.1 Waggle Dance

Say, N number of visited sites are ranked based on fitness information and B number

of sites with highest fitness (i.e. minimum measure) are selected for local search.

The local search is performed by other bees (foragers) that are directed to the neigh-

Improved Bees Algorithm for Protein Structure Prediction . . . 43

bourhood of the selected sites. Each scout bees that are returned from one of the

B best sites performs the ’waggle dance’ to recruit nest mates for local search. The

scout bees visit the first E elite (top-rated) sites among the B sites by recruiting Er
bees for neighbourhood search. The remaining (B − E) sites that visited by the scouts

recruit Br ≤ Er bees for neighbourhood search.

3.2 Local Search

For each of the B selected sites, the recruited bees are randomly placed in a neigh-

bourhood of the high fitness location marked by the scout bees. This neighbourhood

is defined as an D-dimensional hyper box of sides a1, a2, ..., aD, centred on the scout

bee. For each neighbourhood, the fitness is evaluated by the recruited bees. If one

of the recruited bees lands in a position of higher fitness than the scout bee then the

recruited bee is treated as the new scout bee. At the end of the local search, only the

fittest bee is retained. The fittest solution visited so-far is therefore, considered as a

representative of the whole neighbourhood.

3.3 Global Search

In the global search phase, (N − B) number of bees are placed according to Eq. 5

across the search space for new solution. Random scouting represents the exploration

capability of the BA.

3.4 Population Update

At the end of each cycle, the population is updated from two groups. The first group

comprises the B scout bees which are associated with the best solution of each neigh-

bourhood and represents the results of the local exploitative search. The second

group is composed of the (N − B) no. of scout bees associated with a randomly

generated solution and represents the results of the global explorative search.

4 Adaptive Polynomial Mutation Based BA (APM-BA)

BA was originally designed as a numerical optimization technique based on for-

aging behaviour of honey bees and proved its robustness and efficiency to solv-

ing non-linear, real-valued function optimization problems. However, when dealing

with multimodal problems, quality of solution is affected as the number of iterations

44 N.D. Jana et al.

increases and it suffers from premature convergence. The situation occurs when all

the best visited sites converge in a small region of the search space, forcing them

to converge to the global best point found so far which is not a global optima. BA

sometimes suffers from premature convergence due to many local minima in the

search space. In general, convergence is a desirable property that recruited bees of

best visited sites and allowed to search near the global minimum as time progresses.

Unfortunately, in the context of many local minima, the scout bees of the best visited

sites are trapped in one of the local minima and fail to explore more promising neigh-

bouring minima. To enhance the exploration capability and to avoid being trapped

into local optima, a mutation strategy is necessary to increase the diversity of the

best scout bees in the search space. With this observation, an adaptive polynomial

mutation based bees algorithm (APM-BA) has been proposed in this paper to pre-

vent premature convergence. We define a neighbourhood structure of each of the

say, B selected site in the local search processes of APM-BA. For example, the jth
component of ith selected site creates neighbourhood by Eq. 6.

Xj
i = Xj

i + rand(−2, 2) (6)

We assume a parameter trial representing the number of iterations lead to inefficient

search before better position is derived. If the ith best scout bee finds a better site,

trial(i) is set to zero; otherwise, it is incremented by one for the next iteration. How-

ever, the searching competence of a best scout bee should not be evaluated by the

quality of its current site i.e. the fitness value but by the efficiency of current search

i.e. by the trial counter. Finally to avoid premature convergence, we employed adap-

tive polynomial mutation on ith best scout bee when a specific number of times the

ith best scout bee cannot improve its current position.

4.1 Adaptive Polynomial Mutation (APM)

In adaptive polynomial mutation strategy [21], the jth dimension of a ith candidate

solution Xi is mutated with polynomial mutation as expressed in Eq. 7.

Xj
i(t + 1) = Xj

i(t) +
(

Xj
max − Xj

min

)

× 𝛿j (7)

Where t represents current iteration number, Xj
max and Xj

min are the upper and lower

bound of jth component of Xi while 𝛿j represents the polynomial function calculated

using Eq. 8.

𝛿j =
⎧
⎪
⎨
⎪
⎩

(2rj)
1

(𝜂m+1) − 1 rj < 0.5

1 − [2(1 − rj)]
1

(𝜂m+1) rj ≥ 0.5
(8)

Improved Bees Algorithm for Protein Structure Prediction . . . 45

𝜂m is the polynomial distribution index and rj represents uniformly distribute random

number in (0,1). The probability of 𝛿j is calculated using Eq. 9.

P(𝛿j) = 0.5(𝜂m + 1)(1 − |𝛿j|)𝜂m (9)

By varying 𝜂m, the perturbation can be varied in the mutated solution. If the value

of 𝜂m is large, a small perturbation of a variable is achieved. To achieve gradu-

ally decreasing perturbation in the mutated solutions, the value of 𝜂m is gradually

increased. The following rule presented in Eq. 10 is applied to achieve the proposed

adaption policy known as adaptive polynomial mutation.

𝜂m = (80 + t) (10)

To improve the performance of BA, we used adaptive polynomial mutation on ith

best scout bees if the trial(i) > D. The mutated solution mXj
i is obtained by Eq. 11.

mXj
i = Xj

i + (Xj
k − Xj

i) × 𝛿j (11)

In Eq. 11, the ith best scout bee exchange information with the kth one in its jth com-

ponent where k ≠ i. If f (mXi) ≤ f (Xi), then ith best scout bee Xi is replaced by mXi
and the trial counter is set to 0 i.e. trial(i) = 0.

The pseudo-code of APM-BA for protein structure prediction is given in Algo-

rithm 1. Since, protein structure prediction is a minimization problem, fitness values

are ranked in ascending order.

5 Experiments and Results

In order to evaluate the performance of the proposed algorithm, the experiments are

performed on both artificial and real protein sequences for protein structure predic-

tion in 2D AB off-lattice model.

5.1 Artificial Protein Sequence

Fibonacci sequence known as artificial protein sequence considered usually as bench-

mark for the protein structure prediction problem in AB off-lattice model [22].

A Fibonacci sequence is defined recursively by

S0 = A, S1 = B, Si+1 = Si−1 ∗ Si
Where

′∗′ is the concatenation operator. The first few sequences are S2 = AB, S3
= BAB, S4 = ABBAB and so on. Hydrophobic residue ’A’ occurs in isolation along

the chain, while hydrophilic residue ’B’ occurs either isolated or in pairs and the

46 N.D. Jana et al.

Algorithm 1 APM-BA Algorithm

1: Initialize the parameters of BA, Maximum iterations G, Number of candidate solutions N,

Dimensions D and the inefficient trial counter trial(i) = 0.

2: Initialize Population X by Eq. 5 and evaluate fitness f (x)
3: Ranked fitness values f (x) and X
4: for 𝑖𝑡𝑒𝑟 = 1 to 𝐺 do
5: for 𝑖 = 1 to 𝐸 do
6: for 𝑗 = 1 to 𝐸

𝑟
do

7: Generate neighbourhoods according to Eq. 6

8: end for
9: Select best neighbourhood, Xngh

10: if f (Xngh) < f (Xi) then
11: update Xi and f (Xi)
12: trial(i) = 0
13: else
14: trial(i) = trial(i) + 1
15: end if
16: if trial(i) > D then
17: generate mXi according to Eq. 11

18: if f (mXi) < f (Xi) then
19: update Xi and f (Xi)
20: trial(i) = 0
21: end if
22: end if
23: end for
24: for 𝑖 = 1 to B − E do
25: for 𝑗 = 1 to 𝐵

𝑟
do

26: repeat lines from 7 to 22

27: end for
28: end for
29: for 𝑖 = 1 to N − B do
30: generate according to Eq. 5 and evaluate fitness f (Xi)
31: end for
32: Ranked fitness values f (x) and X
33: end for
34: Output the best solution

molecules have a hierarchical string structure. Artificial protein sequence lengths

are obtained through the Fibonacci numbers ni+1 = ni−1 + ni. In the experiment, we

have considered artificial protein sequence given in Table 1 with different lengths,

say 13, 21 and 34.

Table 1 Artificial protein sequences

Artificial Protein Sequence Length

S13 ABBABBABABBAB 13

S21 BABABBABABBABBABABBAB 21

S34 ABBABBABABBABBABABBABABBABBABABBAB 34

Improved Bees Algorithm for Protein Structure Prediction . . . 47

5.2 Real Protein Sequence

In order to measure the effectiveness of the APM-BA algorithm in predicting real

protein structures, we select protein sequences from Protein Data Bank (PDB, http://

www.rcsb.org/pdb/home/home.do). The PDB ID of these protein sequences are

1BXP, 1BXL, 1EDP and 1EDN respectively. The sequence information of these real

proteins are given in Table 2. In the experiment, the same K-D method used in the

literature [23] is adopted to distinguish the hydrophobic and hydrophilic residues of

20 amino acids in real protein sequences. The amino acids I, V, L, P, C, M, A, G are

considered as hydrophobic (A) residues and D, E, F, H, K, N, Q, R, S, T, W, Y are

hydrophilic (B) residues.

Table 2 Real protein sequences

Real Protein Sequence Length

1BXP MRYYESSLKSYPD 13

1BXL GQVGRQLAIIGDDINR 16

1EDP CSCSSLMDKECVYFCHL 17

1EDN CSCSSLMDKECVYFCHLDIIW 21

5.3 Parameter Settings and Initialization

The proposed APM-BA algorithm is compared with simple bees algorithm [20] and

the algorithms which are already used for protein structure prediction such as CPSO

[10], EPSO [11], IF-ABC [18] in 2D off-lattice model. All experiments are imple-

mented in MATLAB R2010a and executed on an Intel Core (TM) 17-2670 QMCPU

running at 2.20 GHz with 8 GB of RAM with Windows XP. The independent experi-

ments of each algorithm is repeated 30 times with same initial population. The popu-

lation size (N) for all approaches is fixed at 50 but the dimension D is different based

on the respective length of protein sequences. The stopping criteria is same for all

algorithms based on number of iterations (G). The number of iterations is defined

[24] by G = (D × 10000)∕N. The parameters of the proposed algorithm are given

in Table 3. The best of scout bees are going through adaptive polynomial mutation

when trial counter of each of these scout bees are greater than D.

Table 3 APM-BA learning parameters

Parameters Values

Number of scout bees (N) 50

Number of elite sites (E) 10

Number of best sites (B) 20

Number of recruited bees for elite sites (Er) 10

Number of recruited bees for remaining best sites (Br) 5

http://www.rcsb.org/pdb/home/home.do
http://www.rcsb.org/pdb/home/home.do

48 N.D. Jana et al.

5.4 Results for Artificial Protein Sequences

Table 4 list the mean and standard deviation (Std.Dev) of 30 runs obtained by the

APM-BA along with the results obtained by CPSO, EPSO, IF-ABC and BA for

comparison. From Table 4, we can see that minimum energy obtained by the pro-

posed algorithm dominates all other algorithms for every artificial protein sequences.

Strong significant improvement has been observed in case of protein sequence length

21 and 34 by APM-BA. Three artificial protein sequences are placed in 4th, 3rd and

2nd position with respect to standard deviation by the APM-BA which measures

robustness of the minimum energy, as shown in Table 4. Therefore, the proposed

algorithm out performs than other algorithms as increase the length of artificial pro-

tein sequence. The convergence characteristics of each algorithm on artificial protein

sequences of lengths 13, 21 and 34 are shown in Fig. 2. The APM-BA exhibits better

convergence than other approaches.

(a) L=13 (b) L=21 (c) L=34

Fig. 2 Convergence graph of artificial protein sequence with different length

5.5 Results for Real Protein Sequence

The results obtained by the APM-BA for real protein sequences are summarized

in Table 5, along with the results of other algorithms used for comparison. It has

been observed that lowest energy obtained by the proposed algorithm is significantly

better than that of other algorithms like CPSO. EPSO, IF-ABC and BA. Therefore,

APM-BA is superior in solving real protein sequences. Based on standard deviation

for all real protein sequences compare to other algorithm, the proposed approach is

highly robust compare to other algorithms. The convergence characteristics of the

algorithms on real protein sequences are plotted in Fig. 3.

Improved Bees Algorithm for Protein Structure Prediction . . . 49

Ta
bl

e
4

R
e
s
u

lt
s

fo
r

a
r
ti

fi
c
ia

l
p

ro
te

in
s
e
q
u

e
n

c
e

A
r
ti

fi
c
ia

l

p
ro

te
in

C
P

S
O

E
P

S
O

I
F

-A
B

C
B

A
A

P
M

-
B

A

M
e
a
n

S
td

.D
e
v

M
e
a
n

S
td

.D
e
v

M
e
a
n

S
td

.D
e
v

M
e
a
n

S
td

.D
e
v

M
e
a
n

S
td

.D
e
v

S 1
3

−
1.
65
3

0
.5

1
8

−
1.
97
4

0
.3

4
6

−
1.
84
6

0
.1

9
0

0
.0

2
0

0
.2

2
8

−
2.
59
6

0
.3

7
0

S 2
1

−
3.
35
2

0
.7

4
1

−
3.
40
0

0
.4

3
2

−
3.
06
2

0
.2

6
4

1
.4

9
1

0
.8

5
0

−
4.
96
4

0
.6

0
1

S 3
4

−
5.
28
4

1
.3

0
2

−
5.
67
1

0
.9

1
0

−
4.
58
6

0
.3

6
3

2
3
9
7
.4

4
8

2
8
4
5
.3

8
4

−
6.
69
4

0
.7

0
1

50 N.D. Jana et al.

Table 5 Results for real protein sequence

Real

protein

CPSO EPSO IF-ABC BA APM-BA

Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev

1BXP -1.893 0.432 -2.110 0.250 -1.517 0.162 -0.118 0.349 -2.335 0.085

1BXL -6.296 1.062 -6.255 1.161 -5.333 0.359 -0.696 1.087 -8.002 0.592

1EDP -3.092 1.593 -3.773 1.438 -3.093 0.386 0.689 0.614 -6.230 0.518

1EDN -4.232 1.325 -5.005 0.812 -4.232 0.482 2.135 1.058 -7.275 1.078

(a) L=13 (b) L=16

(c) L=17 (d) L=21

Fig. 3 Convergence characteristics of real protein Sequence with different length

6 Conclusions

In this paper, an improved BA revised by adaptive polynomial mutation strategy is

introduced to optimize protein structure prediction in 2D AB off-lattice model. In

APM-BA, adaptive polynomial mutation is applied to the best scout bees based on

their inefficiency during the search processes. The proposed strategy is able to pre-

venting stuck at local optima and made exploration on the search space. Experimen-

tal results confirm that APM-BA is significantly more effective for protein structure

prediction problem with respect to artificial and real protein sequences. It should be

noted that our study concerns few number of protein sequences with smaller lengths.

Improved Bees Algorithm for Protein Structure Prediction . . . 51

Predicting structure of more real protein sequences with larger lengths in 3D AB

off-lattice model and investigations on the neighbourhood structure as well as the

selection procedure of best visited sites of BA will be our future work.

References

1. Freitas, A.A., Wieser, D.C., Apweiler, R.: On the importance of comprehensible classification

models for protein function prediction. IEEE/ACM Trans. Comput. Biol. Bioinform 7(1), 172–

182 (2010)

2. May, A., Pool, R., Dijk, E.V., Bijlard, J., Abeln, S., Heringa, J., Feenstra, K.A.: Coarse-grained

versus atomistic simulations: realistic interaction free energies for real proteins. Bioinformatics

30(3), 326–334 (2014)

3. Anfinsen, C.B.: Principles that govern the folding of protein chain. Science 181(4096), 223–

230 (1973)

4. Pierce, N.A., Winfree, E.: Protein design is np-hard. Protein. Eng. 15(10), 779–782 (2002)

5. Rossi, G., Ferrando, R.: Searching for low-energy structures of nanoparticles: a comparison of

different methods and algorithms. J. Phy. Condens. Matter 21(8), 84208 (2009)

6. Dorn, M., e Silva, M.B., Buriol, L.S., Lamb, L.C.: Three-dimensional protein structure pre-

diction: methods and computational strategies. Comput. Biol. Chem. 53, 251–276 (2014)

7. Dill, A.K., Bromberg, S., Yue, K., Fiebig, K.M., Yee, D.P., Thomas, P.D., Chan, H.S.: Principle

of protein folding: a perspective from simple exact models. Protein Sci. 4(4), 561–602 (1995)

8. Stillinger, F.H., Head-Gordon, T., Hirshfel, C.L.: Toy model for protein folding. Phys. Rev.

48(2), 1469–1477 (1993)

9. Kim, S.Y., Lee, S.B., Lee, J.: Structure optimization by conformational space annealing in an

off-lattice protein model. Phys. Rev. 72(1), 011916 (2005)

10. Liu, J., Wang, L., He, L., Shi, F.: Analysis of toy model for protein folding based on particle

swarm optimization algorithm. In: Wang, L., Chen, Ke, S. Ong, Yew (eds.) ICNC 2005. LNCS,

vol. 3612, pp. 636–645. Springer, Heidelberg (2005)

11. Zhu, H., Pu, C., Lin, X., Gu, J., Zhang, S., Su, M.: Protein structure prediction with epso in toy

model. In: Second International Conference on Intelligent Networks and Intelligent Systems,

2009. ICINIS ’09, pp. 673–676 (2009)

12. Liu, J.F., Xue, S.J., Chen, D.B., Geng, H.T., Liu, Z.X.: Structure optimization of the two-

dimensional off-lattice hydrophobichydrophilic model. J. Biol. Phys. 35(3), 245–253 (2009)

13. Cheng-yuan, L., Yan-rui, D., Wen-bo, X.: Multiple-layer quantum-behaved particle swarm

optimization and toy model for protein structure prediction. In: 2010 Ninth International Sym-

posium on Distributed Computing and Applications to Business Engineering and Science

(DCABES), pp. 92–96 (2010)

14. Kalegari, D.H., Lopes, H.S.: A differential evolution approach for protein structure optimiza-

tion using a 2d off-lattice model. J. Bio-Inspired Comput. 2(3), 242–250 (2010)

15. Mansour, R.: Applying an evolutionary algorithm for protein structure pre-diction. Am. J.

Bioinf. Res. 1(1), 18–23 (2011)

16. Jana, N.D., S, Jaya: Hybrid particle swarm optimization technique for protein structure predic-

tion using 2D off-lattice model. In: Panigrahi, Bijaya Ketan, Suganthan, Ponnuthurai Nagarat-

nam, Das, Swagatam, Dash, Shubhransu Sekhar (eds.) SEMCCO 2013, Part II. LNCS, vol.

8298, pp. 193–204. Springer, Heidelberg (2013)

17. Jingfa, L., Sun, Y., Li, G., Song, B., Huang, W.: Heuristic based tabu search algorithm for fold-

ing two-dimensional ab off-lattice model proteins. Comput. Biol. Chem. 47, 142–148 (2013)

18. Li, B., Li, Y., Gong, L.: Protein secondary structure optimization using an improved artificial

bee colony algorithm based on ab off-lattice model. Eng. Appl. Artif. Intell. 27, 70–79 (2014)

19. Pham, D., Castellani, M.: The bees algorithmmodelling foraging behaviour to solve continuous

optimisation problems. J. Bio-Inspired Comput. 223(12), 2919–2938 (2009)

52 N.D. Jana et al.

20. Pham, D., Castellani, M.: Benchmarking and comparison of nature-inspired population based

continuous optimization algorithms. Soft comput. 18, 871–903 (2014)

21. Saha, A., Datta, R., Deb, K.: Hybrid gradient projection based genetic algorithms for con-

strained optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8

(2010)

22. Stillinger, F.H.: Collective aspects of protein folding illustrated by a toy model. Phys. Rev. E

52(3), 2872–2877 (1995)

23. Mount, D.W.: Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor Labora-

tory Press, Cold Spring Harbor, New York (2001)

24. Liang, J.J., Qu, B.Y., Suganthan, P.N., Hernandez-Diaz, A.G.: Problem definitions and evalu-

ation criteria for the cec 2013 special session on real-parameter optimization. Technical report

DAMTP 2000/NA10, Nanyang Technological University, Singapore (2013)

Limited Randomness Evolutionary
Strategy Algorithm

Tomas Brandejsky

Abstract Herein presented paper is denoted to study of real requirements of evo-
lutionary algorithm to random number generator properties. In the past years novel
studies occurred. These studies pointed that in some situations random number
generator might be replaced by deterministic chaos system. The goal of presented
paper is to point the significant properties of number generator, to extend the class of
systems to use on its place. During preparation of the paper experiments with Evo-
lutionary Strategy algorithm were done and as the test- bed problems of identification
of parameters of two deterministic chaos systems were used. Namely, these systems
were Lorenz and Rabinovich-Fabricant ones. The conclusion of the paper is, that
periodic functions might be used if proper parameters and sampling period of number
generating function replacing random number generator are chosen. This result is not
so interesting from practical viewpoint, because the application of sin(x) function is
slower than standard rand() function of C and C++ language, but it points that
evolutionary algorithms do not require randomness as the source of its capabilities.

Keywords Genetic algorithm ⋅ Evolutionary strategy ⋅ Random number
generator ⋅ Efficiency ⋅ Optimization

1 Introduction

For many years researchers discusses influence of random number generator into
speed of evolutionary process. There it is hard to recognize significant behaviors and
features of the optimal random number generator [1–3]. The work [1] studies influ-
ence of choice of different pseudo-random generators onto performance of selected
genetic algorithms. Theworks [2, 3] discuss impact of the RandomNumberGenerator
quality on Particle SwarmOptimization Algorithm. PSO algorithms are not GA or ES

T. Brandejsky (✉)
Faculty of Transportation Sciences, CTU in Prague, Prague, Czech Republic
e-mail: brandejsky@fd.cvut.cz

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_5

53

algorithms, but they also strongly depend on randomness. On the opposite side, they
are not applying natural selection principle. There is accessible study of random
number generator to genetic algorithm produced by another authors group too in [4].

Studies concluding the possibility to replace the random number generator by
deterministic chaos system [15, 16] are now in works [5–8]. But the pseudo-random
number generators are only long period functions with specific properties; espe-
cially they have constrained magnitudes and large number of crossing of any value
in the output interval during one period. Typically, this requirement is known in the
much stronger form as requirement of uniformity.

There is also the second significant requirement – requirement of independence,
which tells that the generated numbers has no correlation with each other. Thus
there is correct to form question if it is possible to replace random number generator
by any non periodic or long period function?

It is also interesting to mention that any periodical continuous function might be
transformed into non periodic discrete one if the length of period is not integer
multiple of sampling period. This is the alternative way how to satisfy the third
requirement – maximal cycle length. Maximal cycle length is significant especially
in situations when large populations, big number of evolutionary steps and highly
dimensional problems occurs. This fact might be demonstrated e.g. by increasing
popularity of Mersenne-Twister algorithm [9]. This algorithm has extremely long
period, e.g. its implementation MT19937 has period 219937 − 1. Applicability of this
algorithm in evolutionary algorithms is presented e.g. in [10].

Problem of non periodic functions created from periodic ones is that they satisfy
requirement of independence only partially, in contrary to some deterministic chaos
systems.

On the base of this background, the idea of evolutionary system not using
random number generator nor even deterministic chaos system was formulated. As
the test bed, simple evolutionary strategy algorithm described in the Chap. 2 was
used. The random number generator was replaced by sin kxð Þ function, as it is
described in the Chap. 3. As test cases, the identification of parameters of equations
describing Lorenz attractor and Rabinovich-Fabrikant system is applied. The results
are outlined in the Chaps. 4 and 5.

2 Used Evolutionary Strategy Algorithm

The simple evolutionary strategy algorithm is outlined at Fig. 1. It is used as test
bed in herein presented experiments for its simplicity and well known behavior.
n number of individuals
S maximal number of iterations
X vector of individuals
X' vector of new population candidates
f xð Þ fitness function
Errlimit Required error magnitude

54 T. Brandejsky

http://dx.doi.org/10.1007/978-3-319-19824-8_2
http://dx.doi.org/10.1007/978-3-319-19824-8_3
http://dx.doi.org/10.1007/978-3-319-19824-8_4
http://dx.doi.org/10.1007/978-3-319-19824-8_5

3 Replacement of Random Number Generator by Non
Periodic or Long-Periodic Functions

Random number generators, both natural and artificial, described by specific
equations should satisfy the following properties:

• Uniformity: The numbers generated appear to be distributed uniformly on
interval <0, 1>;

• Independence: The numbers generated show no correlation with each other
within interval of given cycle length;

• Cycle length: It should take long before numbers start to repeat.

Above mentioned works, especially [5–8] demonstrate that it is possible to
replace random number generator by deterministic chaos system equations. These
results are significant, because studied systems do not guarantee the property of
uniformity in common. So, there occurs question, if it is needed to use deterministic
chaos system equations or if it is possible to extend the group of applicable

Given Nn , s

Initialize kx , 0k
For ,.1k Do

 Evaluate kxf

End For
Sort kx

Cycle=0;

While 1xf >Errlimit AND k<s Do

 For ,.1k with step 2 do

 Randomly select between mutation and crossover

 Do 1
/
1

/ ,, kkkk xmutatexmutatexx

 Or

 Do 1
/
1

/ ,, kkkk xxcrossoverxx

 End For
 For ,.1k Do

 Evaluate /
kxf

 If kk xfxf / Then
/
kk xx

 End For
 Cycle=Cycle+1
End While

Fig. 1 Used evolutionary strategy algorithm

Limited Randomness Evolutionary Strategy Algorithm 55

equations? Before answering of this question, it is useful to reason why evolu-
tionary algorithms need to use random number generators?

The evolutionary algorithms use the random numbers in two different situations –
initialization population formulation and processing of evolution. The first case
points especially uniformity of generated numbers. The second one uses random
numbers to achieve diverse modifications, to test big number of different possible
solutions if the number of evolutionary cycles is high. Thus, the cycle length is
significant, because it is the parameter giving the chance to test more values, more
solution candidates.

Probably, there is no reason that avoids us to replace random number generator
by any long periodic or non-periodic function. Even it is possible to sample any
periodic continuous function defined on domain of real numbers and analogous
infinite co-domain such way, that resulting discrete sequence of numbers will have
endless period. E.g. if sin(x) with period of 2π will be sampled with period 1, we
obtain such infinite non-periodic sequence because there does not exist any integers
n and m different from 0, that nπ =m. The next chapters will be denoted to testing
of applicability of two such functions (1) and (2) in above described evolutionary
strategy algorithm on the place of standard random number generator. As test
examples, the identification of parameters of non-linear differential equations of
deterministic chaos will be used. These equations will represent Lorenz attractor (3)
described by [11] and Rabinovich-Fabrikant system (4) described in [12]. Identi-
fication means in the case of Lorenz attractor determining of parameters σ, ρ, and β
magnitudes to fit the modeled data. In the case of Rabinovich-Fabricant system
these parameters are α and γ. Training data set consisted in the case of Lorenz
attractor 400 samples and 2000 samples in the case of Rabinovich-Fabricant sys-
tem. These two systems have been chosen for its nonlinearity, which forces the
need of uniformity and independence of the tested generator and the transformation
of Rabinovich-Fabricant system into more complicated form (6) increases the
significance of cycle length requirement. Bigger number of parameters with similar
influence to final behavior of the identified equation complicated identification and
thus increases needed number of evolutionary algorithm cycles. Increasing of this
number forces the need of longer cycle of number generator together with the larger
genes (more parameters are optimized simultaneously, thus the larger number of
magnitudes must be generated by the generator).

sin knð Þ ð1Þ

sin a sin nxð Þð Þ ð2Þ

The property of this function is illustrated by Fig. 2.

x0 = σ y− xð Þ,
y0 =x ρ− zð Þ− y,

z0 =xy− βz

ð3Þ

56 T. Brandejsky

x0 = yðz− 1+ x2Þ+ γx

y0 = x 3z+1− x2
� �

+ γy

z0 = − 2z α+ xyð Þ
ð4Þ

4 Identification of Lorenz Attractor Equations
Parameters

Average number of the used Evolutionary Strategy algorithm in the case of popu-
lation of 1000 individuals (this number of individuals is used in all experiments
presented in this contribution) for identification of Lorenz equations parameters
σ and β are outlined in Table 1 for each variable x, y and z, when standard C++
rand() and sin() number generators are used. All average results were obtained by
1000 times repetition of experiments:

The Fig. 3 presents numbers of iterations when standard rand() function is
replaced by sin(k x) function. These numbers are also similar for all three variables
x, y and z, but they are approximately five times worse than for standard rand
function.

Figures 4 and 5 then display the analogous dependency for random number
generator in the form of Eq. (2) with parameter a equal to 1 and 10 respectively.

Fig. 2 Property of sin(y sin
(x)) function

Table 1 The average number of cycles of Lorenz attractor equations parameter identification
depending on different number generators

Function category variable Rand() sin(kn) sin(sin(kn)) sin(10sin(kn))

X 14.4 42.1 11 13.3
Y 14 60 12.2 16.3
Z 14.6 58.3 18.3 14.3

Limited Randomness Evolutionary Strategy Algorithm 57

Above presented results demonstrate that function (2) gives better results than
(1), as it is summarized in Table 1. This result is in relation to self-correlation of
time series produced by rand function and sin(t) function (rand gives much smaller
than sin(kn), but sin(sin(t)) and especially function sin(sin(10t)) gives competitive
results), but the Lorenz system consist of equations where is only one parameter to
identify. Self-correlation is measure of independence condition of number
generator.

The sin(a sin(kn)) function gives results comparable to rand() function while
sin(kn) produces significantly worse convergence of ES algorithm. It is probably
given by higher self-correlation of sin(x) function in comparison to the rest ones.

Table 2 presents correlations of sin(akt) and sin(ak(t + 1)) functions and Table 3
outlines correlations of sin(sin(kt)) and sin(sin(k(t + 1)) or sin(sin(10 kt)) and
sin(sin(10 k(t + 1)) functions.

Number of ES iterations for random number generator sin(kn)

0

20

40

60

80

100

120

140

160

0.01 0.1 1 10 100

k

N
o

x

y

z

Fig. 3 Number of iterations for x, y and z variables, sin(k x) is used on the place of random
number generator

Number of ES iterations for random number generator sin(sin(kn))

0

5

10

15

20

25

30

35

0010111.010.0

k

N
o

x

y

z

Fig. 4 Number of iterations for x, y and z variables, sin(sin(k x)) is used on the place of random
number generator

58 T. Brandejsky

5 Identification of Rabinovich-Fabrikant System
Attractor Parameters

Problem of n-dimensional system is the problem of independence of random time
sub-series influencing each particular parameter. In the case on multidimensional
system the independence is required in more complex manner than in the case of
one dimensional one.

Def. 1: Let is given reasoned number of samples n. Let used Evolutionary
algorithm optimizes m dimensional problem and it need 1 random number to each
parameter to be optimized. Symbol ri denotes i-th number of time series generated
by random number generator or alternative function. Then there is need to inves-
tigate mutual independence and self-independence (independence of data taken in
t and t + d) of all following data sub-series separated from the original series r:

Number of ES iterations for random number generator sin(10sin(kn))

0

5

10

15

20

25

0.01 0.1 1 10 100

k

N
o

x

y

z

Fig. 5 Number of iterations for x, y and z variables, sin(10sin(k x)) is used on the place of random
number generator

Table 2 The self-correlation of sin(akt) and sin(ak(t + 1)) functions

Function sin(0.01t) sin(0.1t) sin(t) sin(10t) sin(100t)

correlation 0.9999973 0.99536378 0.54634896 −0.839216 0.86546618

Table 3 The correlations of sin(sin(kt)) and sin(sin(k(t + 1)) or sin(sin(10 kt)) and sin(sin(10k
(t + 1)) functions

Functions sin(sin(kt)) and sin(sin(k(t + 1))) sin(sin(10kt)) and sin(sin(10k(t + 1)))

correlation 0.54388688 −0.126774177

Limited Randomness Evolutionary Strategy Algorithm 59

∀k∈ ⟨1,m⟩,∀l∈ ⟨0,m− 1⟩,∀i∈ ⟨1, n div m⟩, sk, l, i = k+ l, . . . ik+ l. ð5Þ

Rabinovich-Fabrikant system is described by three equations as Lorenz one, but
these equations are strongly non-linear, where e.g. the first equation contains
expression x2y and the second one contains x3 one. These equations were trans-
formed into the form (6), which is much complicated to ES algorithm (they contains
additional parameters α1, . . . , α4):

x0 = yðz− α1 + x2Þ+ γx

y0 = x α2z+ α3 − x2
� �

+ γy

z0 = − α4z α+ xyð Þ
ð6Þ

It means that these equations contain 2, 3 and 2 parameters respectively in contrary
to Eq. (3), where each differential equation contains one parameter to be identified
only. Such situation is avoided by GPA algorithms frequently because these
algorithms have no preventive mechanism against creation of overcomplicated
structures. The solution of this problem is difficult and it is partially solved e.g. by
GPA-ES algorithm [13].

For each number generator it was the most difficult to identify the second
equation (equation describing variable y) with tree parameters. The best results for
each category of functions are summarized in Table 4.

These results point interesting fact that for identification of the first and last
equations, the rand() function is the best random number generator, but from the
viewpoint of the second one sin(k n) or sin(sin(k n)) are better, non looking that
both the first and the second equations both contain nonlinearities in the form of
multiplication of three variables and two or three parameters respectively. To
colorate this paradox, it is need to mention previous work [14], where it is pre-
sented, that symbolic regression of expression x3 is much more complicated than
regression of other expression occurring in Eq. (5). In fact, in herein discussed case
the increase of needed computational complexity is given by presence of three
parameters which masks each other.

Table 4 The average number of cycles of Rabinovich – Fabrikant equations parameters
identification depending on different number generators

Function category variable rand() sin(kn) sin(sin(kn)) sin(10sin(kn))

X 24.6 69.1 62.4 46.9
Y 24017 7776.2 16052.4 27679.5
Z 35.9 79.3 69.8 75.6

60 T. Brandejsky

6 Conclusion

Presented paper discusses the possibility to replace standard random number gen-
erator by continuous periodic function. This replacement is possible, when the
requirements of uniformity, independence and cycle length are satisfied. Such
functions as sin(kt) or sin(a sin(kt)), which solve as examples in this paper might be
carefully applied, but the results are applicable to much wider group of functions.
Analysis of the next types of functions and the next function features influencing the
speed of convergence of evolutionary algorithms will be subjects of future works.

The conclusion of above presented work is that nonstandard number generators
as sin(kt) function and composed sin(a sin(kt)) are not significantly worse than
standard rand() random number generator in presented situation. There is chance,
that the random number generators may be replaced by any continuous aperiodic
function satisfying conditions of uniformity, independence and (maximal) cycle
length in application in evolutionary algorithms. Future tests with other functions
with smaller self-correlation will give information about its influence to evolu-
tionary algorithm behaviors. Presented short work is not able to give complete
answer on the question, which random number generator parameters are significant
to evolutionary algorithms, but it points to above mentioned tree conditions. On the
opposite side, while in the case of single parameter equations describing Lorenz
attractor, the sin(k sin(nx)) functions were comparable to rand() generator, in the
case of Rabinovich-Fabrikant system these functions were worse than rand()
generator. Thus there is probably undiscovered some more deep, or it is possible to
say more complicated, property than above discussed three conditions.

References

1. Cantú-Paz, E.: On random numbers and the performance of genetic algorithms. In: GECCO
2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 9–13. New
York, USA, Morgan Kaufmann (July 2002)

2. Bastos-Filho, C.J.A., Oliveira Junior, M.A.C., Nascimento, D.N.O., Ramos A.D.: Impact of
the random number generator quality on particle swarm optimization algorithm running on
graphic processor units. In: Conference: 10th International Conference on Hybrid Intelligent
Systems (HIS 2010), pp. 23–25. Atlanta, GA, USA (August 2010)

3. Rodgers, M.: Random Numbers and Their Effect on Particle Swarm Optimization. On_Line
paper, http://ncre.ucd.ie/COMP30290/Crc2006/rodgers.pdf. Accessed 15 March 2015

4. Meysenburg, M.M., Foster, J.A.: The quality of pseudorandom number generators and simple
genetic algorithm performance. In: Proceedings of the Seventh International Conference on
Genetic Algorithms, pp. 276–281. Morgan Kaufmann (1997)

5. Senkerik, R., Davendra, D.D., Zelinka, I., Pluhacek, M., Kominkova-Oplatkova, Z.: Chaos
driven differential evolution with lozi map in the task of chemical reactor optimization. Lecture
Notes in Computer Science, vol. 7895, pp. 56–66. Springer (2013)

6. Senkerik, R., Davendra, D.D., Zelinka, I., Pluhacek, M., Kominkova-Oplatkova, Z.: On the
differential evolution driven by selected discrete chaotic systems: extended study. In: Mendel

Limited Randomness Evolutionary Strategy Algorithm 61

http://ncre.ucd.ie/COMP30290/Crc2006/rodgers.pdf

2013: 19th International Conference on Soft Computing, June, pp. 26–28, Brno, Czech
Republic, Brno University of Technology, pp. 137–144 (2013)

7. Senkerik, R., Pluhacek, M., Davendra, D.D., Zelinka, I., Kominkova-Oplatkova, Z.: Chaos
driven evolutionary algorithm: a new approach for evolutionary optimization. In: Proceedings
of the 2013 International Conference on Systems, Control and Informatics (SCI 2013). Recent
Advances in Systems, Control and Informatics, September, pp. 28–30, 2013, Venice, Italy,
WSEAS Press, pp. 117–122 (2013)

8. Senkerik, R., Pluhacek, M., Kominkova-Oplatkova, Z.: Simulationof time-continuous chaotic
systems for the generating of random numbers. In: Proceedings of the 18th International
Conference on Systems (part of CSCC’14). Latest Trends on Systems—Volume II. Santorini
Island, Greece, July, pp. 17–21, ISSN: 1790-5117, ISBN: 978-1-61804-244-6. pp. 557–561

9. Matsumoto, M.; Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30
(1998)

10. Meysenburg, M.M., Hoelting, D., Mcelvain, D., Foster, J.A.: How random generator quality
impacts genetic algorithm performance, pp. 480–487. In: Langdon, W.B., et al.
(eds) GECCO-2002: Proceedings of the Genetic and Evolutionary Computation Conference,
Morgan-Kaufmann, ISBN: 1-55860-878-8 (2002)

11. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)
12. Rabinovich, M.I., Fabrikant, A.L.: Stochastic self-modulation of waves in nonequilibrium

media. Sov. Phys. JETP 50, 311 (1979)
13. Brandejsky, T., The use of local models optimized by genetic programming algorithm in

biomedical-signal analysis. Handbook of optimization from Classical to Modern Approach.
Springer, Heidelberg, pp. 697–716 (2012). ISBN: 978-3-642-30503-0

14. Brandejsky, T., Zelinka, I: Specific bahaviour of GPA-ES evolutionary system observed in
deterministic chaos regression. In: Roesler, O.E., et al. (eds.) Nostradamus: Modern Methods
of Prediction, Modeling and Analysis of Nonlinear Systems. Springer, Heidelberg, pp. 73–82
(2012)

15. Matousek, R., Minar, P.: Stabilization of chaotic logistic equation using HC12 and
grammatical evolution. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A.
(eds.) Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems, Advances
in Intelligent Systems and Computing. Springer International Publishing, vol. 210,
pp. 137–146. doi:10.1007/978-3-319-00542-3, ISSN: 2194- 5357

16. Matousek, R., Dobrovsky, L., Minar, P., Mouralova, K.: A note about robust stabilization of
chaotic Hénon system using grammatical evolution. In: Zelinka, I., Suganthan, P.N., Chen, G.,
Snasel, V., Abraham, A., Rössler, O.E. (eds.) Nostradamus 2014: Prediction, Modeling and
Analysis of Complex Systems, Advances in Intelligent Systems and Computing. Springer
International Publishing, vol. 289, pp. 219–228. doi:10.1007/978-3-319-07410-6, ISSN:
2194- 5357

62 T. Brandejsky

http://dx.doi.org/10.1007/978-3-319-00542-3
http://dx.doi.org/10.1007/978-3-319-07410-6

Data Mining Application on Complex
Dataset from the Off-Grid Systems

Tomas Vantuch, Jindrich Stuchly, Stanislav Misak and Tomas Burianek

Abstract The Off-Grid systems with renewable sources of stochastic behavior’s

nature are facing to the issue of keeping the power quality parameters in national

and international defined limits. This article aims on this problem by the application

of data-mining. There is an attempt to uncover the influence between the variables

of the system by synthesis of the classification rules. Next task that has to be solved

and it is partly started in this article is to gain the robust strategy to keep this Off-grid

systems stable and safety.

Keywords Power quality parameters ⋅ Genetic programming ⋅ Decision tree

1 Introduction

The Off-Grid Systems are defined as the independent energy units which are inde-

pendent of the power supply from external grids. These systems are operated under

different conditions than the regular energy units are have their specific characteris-

tics. The low and variable short-circuit power as the one of their important parame-

ters becomes an appreciable issue in this context [8, 9]. Its behavior is determined

mainly by a character of a source part of Off-Grid systems because Off-Grid systems

T. Vantuch (✉) ⋅ T. Burianek

Department of Computer Science, VSB-Technical University of Ostrava,

17. Listopadu 15 708 33, Ostrava-poruba, Czech Republic

e-mail: tomas.vantuch@vsb.cz

T. Burianek

e-mail: tomas.burianek.st1@vsb.cz

J. Stuchly ⋅ S. Misak

Department of Electrical Power Engineering, VSB-Technical University of Ostrava,

17. Listopadu 15 708 33, Ostrava-poruba, Czech Republic

e-mail: jindrich.stuchly@vsb.cz

S. Misak

e-mail: stanislav.misak@vsb.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_6

63

64 T. Vantuch et al.

use mainly renewable sources (RESs). These renewable energy sources have stochas-

tic character of a power supply [13] and together with energy storage device are these

power sources the only one source of a short-circuit power. The problem with their

stochastic behavior is possible to solve by the energy storage device, whereas the

power management can be controlled by using of the methods based on an artificial

intelligence for example the DSM – demand side management [21].

Due to the variable and a low short-circuit power, these above mentioned algo-

rithms are employed mainly to handle the power quality parameters (PQP) in

requested limits, which are defined by the national and international standards and

norms [1, 14].

There are no problems to keep the PQPs in requested limits in regular On-Grid

systems, because the short-circuit power of On-Grid system is ca. 1000 times higher

than in Off-Grid systems. The short-Circuit power in On-Grid systems is defined

by a rotating machines and transformers operated at mega or gigawatts power level,

whereas in Off-Grid system is defined by a energy storage devices (mostly battery

bank) and RESs [17].

Due to the low short-circuit power can any change of source part’s operation state

affects the part of the power consumption. On the other hand any change of the oper-

ational state of a power consumption part can affects the PQPs of the source part too.

By previously mentioned statements, it is clearly evident that Off-Grid system with

all the variables and all the external and internal influences becomes to a complex

issue to handle.

Because of this complexity, the data mining, analysis and forecasting methods

are arising as the possible application. First of all, there is requirement to pre-

process the data set by a subset selection technique [19] to maximize the data mining

efficiency [3].

This paper deals with the Correlation Based Feature Selection [11, 12, 26] as

an attribute’s subset selector, because of its reasonable results [10]. For the task of

the data mining there was employed two algorithms, the C4.5 implementation of

the Decision Tree and the genetic programming. Both of them were focused to syn-

thesize the hidden rules for the classification of the PQP’s, which could confirm

the original idea of the authors. The idea is to reveal the evidence of dependencies

between meteorological variables, variables of the electric power consumption and

power and power quality parameters.

The secondary motivation of this paper is to compare the accuracy and suitability

of both applied data mining algorithms.

2 Experiment Design

The experiment was performed on data set contains more than one hundred attributes

that were possibly related to previously mentioned PQPs. The part of the attributes

is described in the appendix. The total count of the attributes was 118 and their

values represents one minute measurements. The number of all observations was

Data Mining Application on Complex Dataset from the Off-Grid Systems 65

8640 (minutes) which are in real conditions six days of continual measurement in

the Off-Grid system.

The work-flow of this experiment consist of two phases, preprocessing and data

mining.

As a simple preprocessing step, there was performed feature’s sub set selection

[19] in faith to chose the most suitable subset [3] for each of the PQPs. All the refer-

enced attributes were firstly converted into nominal variables by their limits defined

by the national and international standards. By this approach, there was created only

two classes for each of the referenced variable, so first class “in” means that the

value is not exceed the limits and the second class “out” means that the value of the

variable exceed the limits.

In the second step, there were employed two widely known algorithms for data

mining. Both of them were focused to synthesize the rules that could forecast the

value of the power quality parameter by the values of the dataset’s attributes. Of

course there was available the final comparison to find out, which of the classifica-

tions was the most accurate.

2.1 Feature’s Subset Selection

The quality of the data is one of the most important factors in data mining and deci-

sion making area [3, 19], because many data sets deals with keeping of redundant,

noisy or irrelevant data. There are many approaches to solve this issue [15] and one

of the most used is the features subset selection [10].

In this case, there was used Correlation-Based Feature Selection (CBFS) [11, 12]

driven by Genetic Algorithm (GA) [4]. The combination of these two models met

with success in previous studies [26].

Them main focus of the CBFS is to evaluate the subset by correlation analysis.

The attributes that are correlated or strongly related to each other can bring redundant

information for the data mining. On the other hand the uncorrelated variables with

the referenced attributes are probably not caring enough information or can be noisy.

The idea of this algorithm is that the ideal subset will contain only high correlated

attributes to the referenced variables and the less possible correlation between each

other in the subset.

The Ms is the heuristic “merit” of the subset and consists of the k as a number

of features, the rcf is the average feature-class correlation and rff means the average

feature-feature inter-correlation.

Ms =
krcf

√

k + k(k − 1)rff

(1)

As it was mentioned before, there was applied the Genetic algorithm [4] as a

search engine, to gain the best possible subset. The idea of Genetic algorithm is

66 T. Vantuch et al.

simply inspired by Darvin’s theory of evolution and as a framework it is widely

used.

GA consists of two major phases, breeding and selection. The primary entity in

this process is an individual, representing one of the possible solution to the given

problem. In this case the individual consists of the vector of attribute’s IDs and rep-

resents one subset. The algorithm goes through iterations, where population of such

individuals are firstly breed by cross-overs (one-point cross-over simple splits cho-

sen individual’s vector into two parts and one part is switched with other individual’s

part) and mutation (one id in the vector is randomly changed to any other valid id,

that is not already contained) of the previous best individuals. On the next step there

is a selection phase to choose the best candidates for coming crossovers and muta-

tions or for the final output. For the selection purpose, there is a fitness function

based on CBFS’s merit to gain the best subset after defined count of iterations.

2.2 C4.5 Decision Tree

Decision tree is an induction algorithm widely described and used by machine-

learning and applied statistic [24]. C4.5 is an extension of ID3 algorithm, that brings

the ability of dealing with continuous attributes [5]. The model of building the tree

is supervised learning where the input data (observations) and their classification

(nominal variable) are given. The result of the algorithm is a set of conditions in

the tree structure that is able to categorize each record of the observations to the

given classes. Once the tree is obtained, it can be used for predicting the classifica-

tion of the measurements by the given values, and this approach meets with a lot of

applications [6, 16].

There are a several steps of constructing the decision tree, that are repeated until

all observations are not correctly classified:

1. For each attribute of the data set do an evaluation and compute the information

gain and select best splitting attribute X.

2. If X is categorical with x values:

– Split the dataset’s observations into x distinct nodes according to X

3. If X is numerical:

– Split the dataset’s observations into n distinct nodes according to computed

threshold values on X

4. For each node Nx :

– If each observation of the Nx refers to the same class:

– Nx is a leaf with the resulted class.

– otherwise

– Repeat the algorithm for observations of the Nx.

Data Mining Application on Complex Dataset from the Off-Grid Systems 67

The information gain is calculated from the entropy and conditional entropy

(information), where entropy of the attribute is is a simple measure of disorder of

data.

E(S) = −
n∑

j=1
P(sj)log(P(sj)) (2)

I(S|A) =
∑

i

|Si|

|S|
× E(Si) (3)

G(S|A) = E(S) − I(S|A) (4)

By this algorithm the DT is always attempting to fit the training data for 100 %,

which brings the possible issue of over fitting [24]. This usually happens when DT

grows so much that the number of its nodes is close to the size of the training data.

In that case it has a lot of specific leafs conditions for every specific observation and

only few leafs that are able of general classification decisions. This kind of the tree

can have lower accuracy on the testing data.

There is an approach known as pruning [7] to make DT able of more general

classifications and there are more available pruning algorithms [24]. In this case

there was used reduced-error pruning [25] in post-pruning phase. This approach

requires to divide the data set into training and testing set and pruning is performed

on inducted tree by the validation on the testing data. The procedure evaluates each

node, if it can be replaced by most frequent class without harmful impact on the

tree accuracy. This operation is terminated when any further pruning will cause the

decreasing of the tree accuracy.

2.3 Genetic Programming

GP is a set of evolutionary based algorithms inspired by biological evolution [18]

and they are very popular due to their widely applications [2]. From defined set

of individuals based on given grammar (Backus-Naur form) there is a synthesized

solution to the defined problem. Genetic programming based on grammar is called

Grammatical evolution [22].

The process comes through more steps. First the individual is represented by

binary vector and using splitting is converted into codons - the vector of integers.

This integers are substituted by the members of the given grammar. The mapping

is performed by modulation of the codon’s values by the number of the replacing

rules of the nonterminal symbol. The mapping starts from the starting terminal of

the grammar and ends until all the nonterminals are not replaced by the terminals. In

case, that the mapping went more time through all the codons values and the individ-

ual is still not mapped into valid form, the process can be stopped and the individual

is evaluated with the zero fitness value. The example of the valid individual with all

substituted nonterminals in a tree structure is in Fig. 1.

68 T. Vantuch et al.

Fig. 1 The tree interpretation of the GP’s individual

The next phase is the evaluation of all the valid individuals (Boolean forms) by

adjusted fitness function. In this case it was computing of the percentage of the cor-

rect classified observations. On the subset of the best candidates there is performed

the crossover [23] and mutation to create new generation of the population. The

crossover is simply cutting the tree into two or three sub-trees (based on the number

of points of crossover), mapping back to the codon values and replacing the geno-

type with the codon’s parts of the other crossovered individual. The mutation is only

modification of a single codon value, which has an impact to the resulted Boolean

form. After defined number of iterations (generations), the best individual should

represent the ideal solution.

The implementation of this algorithm was based on ECJ toolkit [20, 27]. Each

individual was defined by the grammar that contains operators like +, −, ×, ÷, sin(x),
cos(x), ex

, etc. The behavior of some of the operations was modified. The absolute

values serve as the inputs for the square root, as well as for the logarithm. In case of

zero input it returns zero the same way as division by zero. All this restrictions was

used to make the process of GP more stable.

Breeding of the individual was performed by MultiBreedingPipeline [20], where

the options like List-Crossover, duplication and mutation of genes were simply

adjusted. Details of the settings and results are described in next chapter.

3 Adjustments and Results

In this section there are described settings and results from the all of the steps of the

experiment. First step was choosing the most suitable subset for each of the refer-

enced variables (Thdi, Thdu, Plt, Pst, Freq) described in the appendix. As it was men-

tioned before, this task was performed by Correlation based filter selection driven

Data Mining Application on Complex Dataset from the Off-Grid Systems 69

Table 1 Filtered subsets for each referenced attribute with their merit and sizes

Attribute Criteria Value Subset

Thdu Total m 0.41479 S_SI, THDu_max_1, THDi_max_1, freq, Urms_1_avg,

Pst_1,

Subset size 12 Uharm7_1, Uharm9_1, Uharm11_1, Uharm15_1, Uharm17_1,

Subsets m 0.94246 Uharm25_1

Thdi Total m 0.25476 U_Generator, f_SI, Q_Tracker, I_DC, S_F2, THDu_1,

Subset size 20 THDu_max_1, THDi_max_1, Urms_1_avg, Q_1_avg,

S_1_avg,

Subsets m 0.4286 cos_1_avg, PF_1_avg, Uharm5_1, Uharm7_1, Uharm9_1,

Uharm19_1, Uharm21_1, Uharm23_1

Pst Total m 0.2209 f_SI, I_BAT, S_Tracker, Q_G1, S_G2, U_DC, Q_F1,

Subset size 24 P_F3, Smer_Vetru, Relativni_Vlhkost, THDu_1,

Subsets m 0.4453 THDu_max_1, cos_1_avg, PIt_1, Uharm7_1, Uharm11_1,

Uharm13_1, Uharm15_1, Uharm17_1, Uharm19_1,

Uharm21_1, Uharm23_1, Uharm25_1

Plt Total m 0.23338 U_SI, f_SI, U_BAT, S_G2, M_GEN, I_F3, P_F3,

Subset size 21 Atmosfericky_Tlak, Teplota_horniho_cidla, THDu_1,

Subsets m 0.36156 THDi_max_1, freq, Urms_1_avg, Pst_1, Uharm7_1,

Uharm9_1, Uharm15_1, Uharm19_1, Uharm21_1, Uharm23_1

Freq Total m 0.19996 S_SI, I_Tracker, Q_Tracker, I_G1, RV_Meteo,

Subset size 18 Irms_1_avg, Q_1_avg, S_1_avg, cos_1_avg, Pst_1,

Subsets m 0.65152 Uharm3_1, Uharm7_1, Uharm9_1, Uharm11_1, Uharm13_1,

Uharm15_1, Uharm19_1

by Genetic Algorithm. The amount of the subset’s merit Ms was the fitness function

of the GA. Every subset’s selection obtained the same adjustment (number of gener-

ations: 1000, number of individuals: 500, crossover prob.: 0.6, mutation prob.: 0.01,

crossover type: one-point). Resulted subsets are summarized in Table 1.

For each attribute, is evaluated the “Total m” which means the merit value of the

entire given data set (118 attributes) to the referenced attribute. The subset size is

the amount of chosen attributes for the referenced attribute due to the highest gained

merit value and the “Subset m” holds that value.

In the next phase, the subsets were duplicated 7 times and modified by the replace-

ment of the resulted class of the observation of n-ticks (0–6) back. This was pro-

ceeded to force the algorithms to create the forecast rules for the classification (1st.

dataset for 0 tick forecast, 2nd. dataset for 1 tick forecast, 3rd. for 2 ticks forecast,...).

This was possible to attend only with the confirmed evidence of auto-correlation in

all of the variables for all of the subsets, which was confirmed due to the natural

character of all of the attributes and of course by statistical test that was performed.

After the data preprocess phases, there comes the phase of the DT classification

creation and measuring its accuracy. DT was obtained in the WEKA software as J48

70 T. Vantuch et al.

classifier with adjusted reduced error pruning. The accuracy of all DT based classi-

fiers is shown in Table 3. The average time to build a single DT was approximately

4 seconds on the standard notebook (2 thread CPU, 6GB RAM).

On the same datasets in the next phase was the synthesize the boolean formulas

by the GP. For each of the dataset, there was created 5 populations with different

adjustments for crossover, mutation, tournament size, etc. These multiple population

computing was used in faith to obtain different but equally good results. Settings for

all the populations are shown in Table 2. The accuracy of the best individuals from

the five populations were averaged, so in the Table 3 there are approximated numbers

to the results that were achieved, because the nature of the algorithm is stochastic

and the random seed or mutations can not guarantee any of the results. The average

time to run the GP for all of the 5 populations (they ran parallel) was approximately

12 min on the server station (30 thread CPU, 1TB RAM).

As an example there are two equally good synthesized rules for classification of

THDu in time one tick ahead. The first is made by GP (listing 1.1) and the second is

a product of C4.5 (Fig. 2). Both of them are easy to understand and apply.

Listing 1.1 GP synthesized classification condition for Thdu attribute

if (THDu_max_1 <
Urms_1_avg * (cos(THDu_max_1) + Urms_1_avg)) * (Uharm15_1 *

sin(Uharm11_1))
THDu[t+1] = "in";

else
THDu[t+1] = "out";

As we can see, the GP is able to synthesize much shorter classification rule, due

to the usage of more complex grammar. The differences were obtained in all of the

classifiers. The table of average number of nodes of the classifies is presented in

Fig. 3.

The quality of all of the obtained results was measured by their classification’s

accuracy, first on the training and second on the testing dataset. This numbers was

compared to the results from C4.5 algorithm. The comparison of all of the classifiers

is shown in the Table 3. The GP accuracy is the average of five population’s best

individual accuracy on a given dataset. GP means result of Grammatical evolution

algorithm synthesis on training data and GP* is the same result but on testing data.

Each line of the table represents the classification for < 0, 6 > ticks ahead.

4 Conclusions

The outcomes of the data mining methods of this paper corresponds with the orig-

inal idea of the authors, that the measured variables has a non-zero impact to each

other. There is strongly evidence of dependencies between meteorological variables,

power and power quality parameters. The results of this experiment become a cor-

ner stone for forecasting of PQP of electric energy as a part of Active-Demand Side

Management for complex handling of energy distribution in Off-Grid systems.

Data Mining Application on Complex Dataset from the Off-Grid Systems 71

Table 2 Adjustment of GE sub-populations

Settings pop. 01 pop. 02 pop. 03 pop. 04 pop. 05

Candidates 1024 1024 1024 1024 1024

Generations 2500 2500 2500 2500 2500

Breed elite 7 10 1 25 50

List crossover

prob.

0.1 0.6 0.6 0.5 0.9

Crossover

type

one-point one-point two-point two-point one-point

Gene

duplication

prob.

0.25 0.35 0.05 0.2 0.05

Vector

mutation prob.

0.65 0.05 0.35 0.3 0.05

Fig. 2 Pruned tree for Thdu’s one minute ahead classification

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

C
ou

nt
 o

f n
od

es

Ticks ahead

DT GP

Fig. 3 Average numbers of nodes of classifiers on power quality attributes

72 T. Vantuch et al.

Ta
bl

e
3

T
h

e
ta

b
le

s
o
f

c
la

s
s
ifi

c
a
ti

o
n
’s

a
c
c
u

r
a
c
y

F
r
e
q

T
H

D
i

T
H

D
u

c
la

s
s
.
fo

r
C

4
.5

G
P

G
P

*
C

4
.5

G
P

G
P

*
C

4
.5

G
P

G
P

*

C
t

9
9
.8

9
7

%
9
9
.3

0
7

%
9
8
.6

8
7

%
9
6
.9

6
6

%
9
8
.2

6
3

%
8
4
.0

9
4

%
9
9
.8

6
3

%
9
9
.9

4
2

%
9
9
.3

4
3

%

C
t+
1

9
9
.5

9
1

%
9
9
.1

1
4

%
9
5
.2

5
2

%
9
5
.0

5
8

%
9
7
.1

1
8

%
8
1
.7

2
5

%
9
9
.2

1
6

%
9
9
.5

2
2

%
9
9
.1

1
4

%

C
t+
2

9
9
.0

7
9

%
9
8
.7

8
1

%
9
8
.1

5
9

%
9
3
.9

3
1

%
9
6
.3

1
6

%
7
5
.8

1
0

%
9
8
.9

0
9

%
9
9
.0

5
7

%
9
8
.7

5
6

%

C
t+
3

9
8
.7

0
4

%
9
8
.3

6
4

%
9
7
.4

0
0

%
9
0
.8

9
7

%
9
5
.5

4
8

%
7
6
.1

0
8

%
9
8
.3

6
4

%
9
8
.9

1
2

%
9
7
.8

6
1

%

C
t+
4

9
9
.1

1
3

%
9
8
.2

7
2

%
9
7
.9

8
8

%
9
2
.3

6
0

%
9
5
.1

4
0

%
6
8
.3

9
4

%
9
8
.8

0
6

%
9
8
.7

8
5

%
9
6
.8

6
3

%

C
t+
5

9
8
.6

0
2

%
9
7
.9

3
4

%
9
5
.8

1
4

%
9
1
.9

8
5

%
9
4
.5

6
6

%
7
3
.8

0
7

%
9
8
.6

3
6

%
9
8
.6

1
8

%
9
7
.6

8
2

%

C
t+
6

9
7
.9

5
4

%
9
7
.8

2
0

%
9
7
.8

3
4

%
9
0
.4

5
0

%
9
4
.2

9
4

%
7
2
.0

6
8

%
9
8
.3

9
7

%
9
8
.4

9
1

%
9
6
.2

2
4

%

P
lt

P
s
t

c
la

s
s
.
fo

r
C

4
.5

G
P

G
P

*
C

4
.5

G
P

G
P

*

C
t

9
8
.0

9
1

%
8
8
.7

6
7

%
8
4
.3

7
6

%
9
5
.0

2
3

%
9
2
.4

9
1

%
8
2
.2

4
5

%

C
t+
1

9
8
.3

3
0

%
8
9
.3

6
0

%
8
3
.1

4
0

%
9
6
.1

4
9

%
9
2
.8

3
8

%
8
4
.4

6
1

%

C
t+
2

9
8
.3

6
4

%
9
0
.5

9
2

%
8
3
.3

6
9

%
9
4
.7

8
4

%
9
2
.9

1
2

%
8
2
.1

2
6

%

C
t+
3

9
8
.1

9
3

%
8
9
.6

7
5

%
7
7
.6

8
5

%
9
5
.3

6
3

%
9
3
.0

9
2

%
8
4
.1

0
3

%

C
t+
4

9
8
.0

9
0

%
8
9
.6

0
5

%
6
9
.9

2
8

%
9
5
.2

5
9

%
9
2
.9

9
6

%
8
3
.9

3
3

%

C
t+
5

9
7
.6

8
1

%
8
9
.2

7
6

%
7
5
.7

2
5

%
9
5
.1

2
3

%
9
3
.2

8
9

%
7
8
.8

7
8

%

C
t+
6

9
8
.1

5
8

%
8
9
.0

8
3

%
8
0
.3

1
0

%
9
5
.1

5
7

%
9
2
.6

3
6

%
8
3
.7

7
1

%

Data Mining Application on Complex Dataset from the Off-Grid Systems 73

As it turns out, one of the weak spots can be considered not enough suitable data

set for the demand of the experiment. The filtering partly solve this issue by obtaining

the subsets with much greater merit values, than merit value of the entire data set.

This turns out as an improvement, because the correlation between the higher merit

value (Table 1) and the accuracy of the classification (Table 3) are evident.

Classifications made from the C4.5 algorithm with reduced error pruning dealt

with accuracy more than 90 percent for most times of the experiment. The grater time

gap between observation values and the desired classification caused the lower evi-

dence of accuracy. The other issue of increasing time gap appears. The trees become

bigger and bigger, so they were loosing generality and became more and more spe-

cific (over-fitting problem). Even with used pruning, their size became more than

250 nodes and in comparison to the GP results, the trees from DT were at least three

times bigger. That could be the problem in case of application on bigger data set.

The genetic programming faced to the same issues as the C4.5 algorithm. On

the lower count of the observations it is easier for GP individual to converge into

non-general solution, which will appear as a problem on testing data.

For the comparison of the data-mining algorithms, it appears that both of them

dealt with the almost equal problems. The GP’s results were in this experiment more

promising due to ability of use of the complex grammar in the Boolean forms and

due to the rapidly growing of the DTs in many cases (3).

Acknowledgments This paper was conducted within the framework of the IT4Innovations Cen-

tre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070, project ENET CZ.1.05/2.1.00/03.0069,

Students Grant Competition project reg. no. SP2015/142, SP2015/146, SP2015/170, SP2015/178,

project LE13011 Creation of a PROGRES 3 Consortium Office to Support Cross-Border Cooper-

ation (CZ.1.07/2.3.00/20.0075) and project TACR: TH01020426.

Appendix

freq System Frequency (Hz)

THDi_1 Total Current Harmonic distortion in 1 min interval (%)

THDi_max_1 Maximal Total Current Harmonic distortion (%)

THDu_1 Voltage total harminic distortion in 1 min interval (%)

Uharm11_1 11th harmonic order of Voltage

Uharm15_1 15th harmonic order of Voltage

PIt_1 flicker long term severity (−)

Pst_1 flicker short term severity (−)

THDu_max_1 Maximal Voltage total harminic distortion in 1 min interval (%)

Urms_1_avg Loads Voltage (V)

74 T. Vantuch et al.

References

1. Ieee recommended practice for monitoring electric power quality. IEEE Std 1159–2009 (Revi-

sion of IEEE Std 1159–1995) pp. c1–81 (June 2009)

2. Allen, F., Karjalainen, R.: Using genetic algorithms to find technical trading rules1. J. Finan.

Econ. 51(2), 245–271 (1999)

3. Almuallim, H., Dietterich, T.G.: Learning with many irrelevant features. In: Proceedings of

the Ninth National Conference on Artificial Intelligence, pp. 547–552. AAAI Press (1991)

4. Beasley, D., Bull, D.R., Martin, R.R.: An Overview of Genetic Algorithms: Part 1, Fundamen-

tals (1993)

5. Bhargava, D.N., Sharma, G., Bhargava, R., Mathuria, M.: Decision tree analysis on j48 algo-

rithm for data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3 (June 2013)

6. Duan, F., Zhao, Z., Zeng, X.: Application of decision tree based on c4.5 in analysis of coal

logistics customer. In: Third International Symposium on Intelligent Information Technology

Application, IITA 2009, vol. 2, pp. 380–383 (Nov 2009)

7. Frank, E.: Pruning decision trees and lists. Tech. rep. (2000)

8. Goksu, O., Teodorescu, R., Bak-Jensen, B., Iov, F., Kjr, P.: An iterative approach for symmet-

rical and asymmetrical short-circuit calculations with converter-based connected renewable

energy sources. application to wind power. In: Power and Energy Society General Meeting,

2012 IEEE, pp. 1–8 (July 2012)

9. Gugale, P., Wang, J., Alt, B., Muller, H., Monti, A.: Development of network dimensioning

guidelines for renewable island. In: Innovative Smart Grid Technologies Conference Europe

(ISGT-Europe), 2014 IEEE PES, pp. 1–6 (Oct 2014)

10. Hall, M., Holmes, G.: Benchmarking attribute selection techniques for discrete class data min-

ing. IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003)

11. Hall, M.A.: Correlation-based feature selection for machine learning. Disertation thesis,

Department of Computer Science, Hamilton, New Zealand (1999)

12. Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learn-

ing. In: Proceedings of the Seventeenth International Conference on Machine Learning, pp.

359–366. ICML ’00, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)

13. Inman, R.H., Pedro, H.T., Coimbra, C.F.: Solar forecasting methods for renewable energy inte-

gration. Prog. Energy Combust. Sci. 39(6), 535–576 (2013). http://www.sciencedirect.com/

science/article/pii/S0360128513000294

14. Ji, N.: Steady-state signal generation compliant with iec61000-4-30: 2008. In: 22nd Interna-

tional Conference and Exhibition on Electricity Distribution (CIRED 2013), pp. 1–4 (June

2013)

15. Kantardzic, M.: Data Mining: Concepts, Models, Methods and Algorithms. Wiley, New York

(2002)

16. Kim, J.W., Lee, B.H., Shaw, M.J., Chang, H.L., Nelson, M.: Application of decision-tree induc-

tion techniques to personalized advertisements on internet storefronts. Int. J. Electron. Com-

mer. 5(3), 45–62 (2001)

17. Kosmak, J., Vramba, J., Uher, M., Stuchly, J., Kubalik, P.: Short-circuit protection in off-

grid system. In: 14th International Conference on Environment and Electrical Engineering

(EEEIC), pp. 339–344 (May 2014)

18. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA (1992)

19. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer

Academic Publishers, Norwell, MA, USA (1998)

20. Luke, S.: The ECJ Owner‘s Manual—A User Manual for The ECJ Evolutionary Computation

Library (2014)

21. Matallanas, E., Castillo-Cagigal, M., Gutirrez, A., Monasterio-Huelin, F., Caamao-Martn,

E., Masa, D., Jimnez-Leube, J.: Neural network controller for active demand-side manage-

ment with PV energy in the residential sector. Appl. Energy 91(1), 90–97 (2012). http://www.

sciencedirect.com/science/article/pii/S0306261911005630

http://www.sciencedirect.com/science/article/pii/S0360128513000294
http://www.sciencedirect.com/science/article/pii/S0360128513000294
http://www.sciencedirect.com/science/article/pii/S0306261911005630
http://www.sciencedirect.com/science/article/pii/S0306261911005630

Data Mining Application on Complex Dataset from the Off-Grid Systems 75

22. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an

Arbitrary Language, vol. 4. Springer Science & Business Media (2003)

23. Poli, R., Langdon, W.B.: Genetic programming with one-point crossover and point muta-

tion. Soft Computing in Engineering Design and Manufacturing, pp. 180–189. Springer-Verlag

(1997)

24. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San

Francisco (1993)

25. Rinkal Patel, R.A.: A reduced error pruning technique for improving accuracy of decision tree

learning. Int. J. Eng. Adv. Technol. 3 (June 2014)

26. Singh, M.P., Tiwari, R.: Article:correlation-based attribute selection using genetic algorithm.

Int. J. Comput. Appl. 4(8), 28–34 (August 2010) (Published By Foundation of Computer

Science)

27. White, D.: Software review: the ECJ toolkit. Genet. Program. Evolvable Mach. 13(1), 65–67

(2012)

Population Size Reduction in Particle Swarm
Optimization Using Product Graphs

Iztok Fister Jr., Aleksandra Tepeh, Janez Brest and Iztok Fister

Abstract Purpose of this paper is to introduce a population size reduction in par-

ticle swarm optimization algorithm, where the reduction is performed by selecting

two particles (also donor particles) randomly and replacing these by a new particle

with elements determined from a set of pair values obtained by the Cartesian product

of both donor particles for each particular element randomly. Average values of each

pair values from the donor particles are calculated for corresponding elements of the

new particle. The proposed PSOGP was applied on a benchmark function suite con-

sisted of four well-known functions and compared with the original PSO algorithm.

The results are very promising and show the potential of the proposed idea.

Keywords Product graphs ⋅ Optimization ⋅ Particle swarm optimization ⋅ Popula-

tion size reduction

1 Introduction

In the past decades, nature-inspired algorithms gained immeasurable attention from

scientific public. Nature-inspired algorithms are a very efficient tool for solving the

different kinds of optimization tasks. In line with this, many various nature-inspired

algorithms were proposed so far. Since the number of these algorithms became so

huge, there is impossible to classify them all. Anyway, few years ago, one proposed

taxonomy was developed in [5]. In this taxonomy, nature-inspired algorithms were

I. Fister Jr.(✉) ⋅ A. Tepeh ⋅ J. Brest ⋅ I. Fister

Faculty of Electrical Engineering and Computer Science,

University of Maribor, Smetanova Ul. 17, 2000 Maribor, Slovenia

e-mail: iztok.fister1@um.si

A. Tepeh

e-mail: aleksandra.tepeh@um.si

J. Brest

e-mail: janez.brest@um.si

I. Fister

e-mail: iztok.fister@um.si

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_7

77

78 I. Fister et al.

divided into four groups based on their primary inspirations. These four groups can

be summarized as follows:

– swarm intelligence (SI) based algorithms,

– bio-inspired algorithms (without SI-based algorithm),

– physics and chemistry based algorithms,

– other algorithms (e.g. inspiration of which have roots in sociology, history and

some even in sport)

Currently, SI-based algorithms seem to be one of the more popular in research area.

They were used in solving discrete and numerical optimization problems as well

as practical applications, e.g., in [7, 11, 13, 17–19]. According to the NFL theo-

rem [16], average performances of different algorithm families are the same when

they are applied to all classes of problems. Therefore, a lot of special techniques

were developed in order to improve the results by solving the different problems

[4, 6, 14, 15].

This paper proposes a population size reduction borrowed from Brest and

Maučec [2], where authors justified an advantage of this mechanism as follows. A di-

versity of population is high at the start of optimization. The diversity becomes lower

when a search process progresses and stepwise directs itself in promising regions of

the search space. Thus, the search process can continue with a smaller number of

population members because of wasting the number of fitness function evaluations.

Typically, the population size is reduced proportionally to the number of generations.

Primarily, a candidate for elimination must be determined by the reduction. This

paper proposes the PSOPG algorithm that selects two donor particles from the cur-

rent population randomly for replacing them with the new particle. Here, these two

donor particles are treated as sets of nodes V(G) and V(H) that are combined using

the Cartesian product of these sets, V(G)×V(H). The new particle is calculated with

elements as an average of pairs of elements (ui, vj), where the node vj is selected

randomly. The PSOPG algorithm was tested on a benchmark of four well-known

functions from the literature. Interestingly, the PSOPG outperformed the results of

the original PSO algorithm and showed the potential for the future work, where dif-

ferent type of graph products can be applied.

The remainder of the paper is structured as follows: in Sect. 2 a basic overview of

graph products is given, and Sect. 3 presents a short overview of a swarm intelligence

and particle swarm optimization. In Sect. 4 the new algorithm is proposed. Section 5

presents experiments and results, while the concluding section shows directions for

possible future work.

2 Product Graphs

A graph product of two graphs G = (V(G),E(G)) and H = (V(H),E(H)) is a new

graph whose node set is the Cartesian product of sets V(G) × V(H) and where for

any two nodes (g, h) and (g′, h′) in the product, the adjacency of those two nodes

is determined entirely by the adjacency (or equality, or non-adjacency) of g and g′,

Population Size Reduction in Particle Swarm Optimization . . . 79

and that of h and h′. It turns out that there are 256 different types of graph products

that can be defined. Among products that have been widely investigated and have

many significant applications are the Cartesian product, the direct product, the strong

product and the lexicographic product (the terminology is not quite standardized, so

these products may actually be referred to by different names, however, we adopt the

terminology from [8], where a comprehensive overview of graph products can be

found).

(a) Cartesian product (b) Direct product

(c) Strong product

Fig. 1 Graph products

80 I. Fister et al.

For the mentioned (so called standard) products, edges are defined as follows.

In the Cartesian product G□H of graphs G and H two nodes (g, h) and (g′, h′)
are adjacent when (gg′ ∈ E(G) and h = h′) or (g = g′ and hh′ ∈ E(H)). In the

direct product G × H nodes (g, h) and (g′, h′) are adjacent when gg′ ∈ E(G) and

hh′ ∈ E(H). In the strong product G ⊠ H nodes (g, h) and (g′, h′) are adjacent

whenever (gg′ ∈ E(G) and h = h′) or (g = g′ and hh′ ∈ E(H)) or (gg′ ∈ E(G) and

hh′ ∈ E(H)). Note that E(G⊠ H) = E(G□H) ∪ E(G × H) and that the notation of

these three products comes from multiplying two copies of K2 (complete graph on

two nodes), see Fig. 1. Finally, in the lexicographic product G[H] nodes (g, h) and

(g′, h′) are adjacent if either gg′ ∈ E(G) or (g = g′ and hh′ ∈ E(H)).
It follows immediately from the definitions that the Cartesian, the direct and the

strong product are commutative in the sense that the graph G ∗ H is isomorphic

to H ∗ G, where ∗ stands for any one of the three mentioned products. Note that

the lexicographic product is not commutative (we want to emphasize this fact with

the notation G[H], although in the literature the notation G◦H is often used for this

product). However, all four standard products are associative, i.e. for given graphs

G1,G2,G3 the graphs (G1 ∗ G2) ∗ G3 and G1 ∗ (G2 ∗ G3) are isomorphic (here ∗
stands for any one of the four standard products). Associativity of all four products

allows the easy extension of these products to arbitrarily many factors.

3 The Particle Swarm Optimization

The particle swarm optimization (PSO) is one of the older members of SI-based al-

gorithm family. It was proposed by Kennedy and Eberhart [12] in 1995. The PSO

algorithm mimics behavior of bird flocks. Therefore, it is a population-based al-

gorithm, where the population consists of 𝑁𝑝 particles. Each particle represents a

solution of the problem to be solved. Typically, the solution is represented as a vector

𝐱i = {xi,j} for j = 1,… , n with real-valued elements xi,j ∈ 𝐑, where n determines a

dimensionality of the problem.

The pseudo-code of the original PSO algorithm is illustrated in Algorithm 1 that

consists of the following components:

– initialization of population randomly (function init_particles),

– fitness function evaluation (function evaluate_the_new_solution),

– selection of the local best solution (lines 8–10),

– selection of the global best solution (lines 11–13),

– generation of the new solution (function generate_new_solution).

Additionally, the termination condition (function termination_condition_not_

meet) needs to be defined in order to complete operating the PSO algorithm. Typ-

ically, the maximum number of fitness function evaluations MAX_FE is used as a

termination condition. Interestingly, the PSO algorithm works with two sets of parti-

cles because it manages the local best solutions 𝐩(t)i for each particle 𝐱(t)i . Moreover,

the best solution in the population 𝐠(t) is determined in each generation. The new

particle position is generated as follows:

Population Size Reduction in Particle Swarm Optimization . . . 81

𝐯(t+1)i = 𝐯(t)i + C1U(0, 1)(𝐩(t)i − 𝐱(t)i) + C2U(0, 1)(𝐠(t) − 𝐱(t)i),

𝐱(t+1)i = 𝐱(t)i + 𝐯(t+1)i ,

(1)

where U(0, 1) denotes a random value drawn from the uniform distribution, and C1
and C2 are learning factors.

4 The Proposed PSOPG Algorithm

The proposed algorithm PSOPG implements a population size reduction feature,

where the population size 𝑁𝑝 is stepwise reduced by increasing the generation num-

ber t. This reduction is controlled by an additional parameter so-called reductionRate
that determines when the reduction needs to be performed. The pseudo-code as pre-

sented in Algorithm 2 is added to a pseudo-code of Algorithm 1 after line 16 in order

to implement this feature.

Algorithm 1 Tho original PSO algorithm

Input: PSO population of particles 𝐱i = (xi,1,… , xi,n)T for i = 1,… ,Np, MAX_FE.

Output: The best solution 𝐠 and its corresponding value f
𝑚𝑖𝑛

= min(f (𝐱)).
1: init_particles;

2: t = 0; // generation counter

3: eval = 0; // counter of the fitness function evaluations

4: while termination_condition_not_meet do
5: for i = 1 to Np do
6: f

𝑖
= evaluate_the_new_solution(𝐱(t)i);

7: eval = eval + 1;
8: if fi ≤ pBesti then
9: 𝐩(t)i = 𝐱(t)i ; pBest(t)i = fi; // save the local best solution

10: end if
11: if fi ≤ f

𝑚𝑖𝑛
then

12: 𝐠(t) = 𝐱(t)i ; f
𝑚𝑖𝑛

= fi; // save the global best solution

13: end if
14: 𝐱(t)i = generate_new_solution(𝐱(t)i);

15: end for
16: t = t + 1;

17: end while

Algorithm 2 Proposed algorithm PSOPG

1: if ((t 𝐦𝐨𝐝 reductionRate) == 0) then
2: makeReduction; // performing the population size reduction

3: end if

82 I. Fister et al.

In fact, the additional code launches the process of population size reduction via

themakeReduction function call. However, the question is which particle to eliminate

from the population by this reduction. In this paper, an idea from product graphs [1]

is implemented.

In the proposed PSOPG algorithm, each particle in the population is treated as an

empty graph G (recall that an empty graph on n nodes consists of n isolated nodes

and contains no edges), where elements of a particle are represented by a set of nodes

V(G). Two randomly selected donor particles, i.e. empty graphs G and H, enter in

the population reduction process to generate the new particle with characteristics of

the both donors. Two elements of donor particles are identified by the pair (ui, vj)
for the i-th element of the new particle (also trial particle), where the element vj is

selected randomly. The value of this element is obtained by calculating the average

value of elements ui and vj.
We remark that to describe our idea, the Cartesian product of sets would be

enough. However, we used the notion of the Cartesian product of graphs since we

believe that our idea could be improved using graphs. More precisely, we believe that

representation of particles as paths (a path Pk is a graph with V(Pk) = {u1,… , uk}
and E(Pk) = {uiui+1|i ∈ {1,… , k − 1}}), or even other simple graphs, and usage of

different graph products would be worth to study (Fig. 2).

Fig. 2 The Cartesian product G□H of empty graphs G and H with V(G) = {u1, u2, u3} and

V(H) = {v1, v2, v3}. This product consists of isolated nodes, represented by the ordered pairs

(ui, vj). In our case, the average value of corresponding nodes ui and vj in factors is calculated,

that represents a potential value for the i-th element of the new particle

Motivation behind a selection of the candidate for elimination by the reduction

is to preserve the particle in the next generation that transfers characteristics of both

donors whereby both must be eliminated from the population. The selection opera-

tion acts as follows. The i-th element of the trial particle is selected randomly from

the set {(ui, vj)|j ∈ {1,… , n}}. As a result, the value for the i-th element of the

trial particle is calculated as an average between a value of node ui and vj in the

corresponding donor particles. In other words, this operation is expressed mathe-

matically as

Population Size Reduction in Particle Swarm Optimization . . . 83

x(t+1)i =
x(t)ui + x(t)vj

2
. (2)

As can be seen from Eq. 2, the trial particle becomes the new one i-th particle for

the next generation. Thus, the j-th particle is eliminated by squeezing the current

population according to the following equation

𝐱(t+1)k = 𝐱(t)k+1, for k = 1,… , 𝑁𝑝
(t) − 1. (3)

Finally, the population size is decremented after this operation.

5 Experiments

The goal of our experimental work was to show that the population size reduction in

the PSOPG algorithm using the product graphs outperforms the results of the origi-

nal PSO by optimizing the benchmark test suite consisted of four well-known func-

tions from literature. All algorithms were implemented in Python programming lan-

guage, while the Cartesian products were obtained using NetworkX library. During

the tests, the parameters of both PSO algorithms were set as follows: C1 = C2 = 2.0,

𝑀𝐴𝑋_𝐹𝐸 = 50, 000 and the starting population size of the PSOPG 𝑁𝑝
(0) = 100.

The 25 independent runs were conducted, and the accumulated results were com-

pared according to their best, median, worst and mean values, as well as standard

deviation. In the remainder of the paper, the benchmark test suite is illustrated, the

results of experiments are presented and discussed.

5.1 Benchmark Function Suite

Benchmark functions were downloaded from Neal Holtschulte website [10] and they

are presented in Table 1.

Table 1 Summary of the benchmark functions

Tag Function Definition Domain

F1 Ackley’s f (𝐱) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i) −

exp(1
n

∑n
i=1 cos(2𝜋xi)) + 20 + e

[−32, 32]

F2 Griewank f (𝐱) = 1 + 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) [−512, 512]

F3 Rastrigin f (𝐱) = 10n +
∑n

i=1(x
2
i − 10cos(2𝜋xi)) [−5.12, 5.12]

F4 Sphere f (𝐱) = ∑n
i=1 x

2
i [−5.12, 5.12]

84 I. Fister et al.

The purpose of this preliminary research was to show that an idea of using the

product graphs by reducing the population size could be successfully applied to the

original PSO algorithm. Therefore, the original benchmark functions without shift-

ing and rotating were considered in our tests. Note that functions of dimension n = 10
were employed during the tests.

5.2 Results

Four variants of the PSOPG algorithm were taken into consideration in order to show

how the parameter reductionRate influences the results of the optimization. Thus,

this parameter was varied as 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 = {80, 60, 40, 20} that corresponds to a

reduction of the population sizes for 𝛥
𝑁𝑝

= {6, 8, 13, 29} when the initial population

size of 𝑁𝑝
(0) = 100 is considered. Additionally, two different population sizes were

used for the original PSO, i.e., 𝑁𝑝 = {100, 50}.

The results of the mentioned tests are presented in Table 2, where the character-

istic measures are displayed for each variant of the PSO and PSOPG algorithms for

each specific function. Here, the particular variant of the algorithm is denoted either

by the population size of the PSO or the parameter reductionRate of PSOPG that are

enclosed by parentheses following the algorithm names. The best results according

to mean values are represented bold in the table.

As can be seen from Table 2, the best results according to the mean values are ob-

tained by the PSOPG using the smaller values of reductionRate (i.e., 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
{20, 40}). Interestingly, the original PSO with population size 𝑁𝑝 = 100 outper-

formed the results of the PSO with smaller population size 𝑁𝑝 = 50 by the same

number of the fitness function evaluations 𝑀𝐴𝑋_𝐹𝐸 = 50, 000.

5.3 Discussion

Two facts can be concluded from the results of our experimental work. Firstly, the

population size reduction using the product graphs in the PSOPG algorithm outper-

formed the results of the original PSO. Secondly, the parameter reductionRate has

the important influence on the results of the PSOPG. The lower this value is, the bet-

ter the results. However, in our tests, the allowed maximum reducing the population

size was 𝛥
𝑁𝑝

= 29 for the starting population size 𝑁𝑝0 = 100. This means that the

original population size can be maximally reduced for near 30% that is still far from

the reasonable minimum of 90%. Therefore, more tests should be performed in the

future in order to determine the correct behavior of this parameter.

It seems the used product graphs is similar to arithmetic crossover in evolution-

ary algorithms [3] or in PSO [9]. The purpose of our study was not to outperform

Population Size Reduction in Particle Swarm Optimization . . . 85

Table 2 Comparison of the experimental results

F1 F2 F3 F4

Best 3.21 0.29 1.90E-06 0.00033

Median 7.38 1.10 1.39 0.46

PSO (100) Worst 10.52 2.49 78.18 3.18

Mean 7.51 1.10 16.28 0.65

Std 1.67 0.53 23.06 0.76

Best 4.50 0.23 9.58E-07 0.0063

Median 7.24 0.88 2.33 0.27

PSO (50) Worst 12.10 3.28 53.78 4.52

Mean 7.40 1.02 11.62 0.70

Std 1.89 0.59 17.04 0.97

Best 1.92E-05 5.38E-07 3.37E-14 3.61E-18

Median 3.17 0.53 5.68E-10 2.70E-10

PSOGP (80) Worst 7.08 0.96 77.65 1.75E-06

Mean 2.68 0.51 9.97 1.53E-07

Std 2.04 0.29 22.18 3.92E-07

Best 1.59E-06 1.72E-11 0.0 7.76E-18

Median 3.57 0.44 3.22E-10 1.43E-12

PSOGP (60) Worst 5.62 0.93 55.44 1.65E-06

Mean 3.38 0.42 15.95 6.72E-08

Std 1.55 0.31 21.38 3.24E-07

Best 9.19E-07 3.77E-15 0.0 3.72E-25

Median 2.80 0.54 1.77E-15 1.50E-17

PSOGP (40) Worst 7.87 0.83 3.85 2.55E-11

Mean 2.54 0.47 3.85 1.74E-12

Std 2.16 0.25 13.07 5.99E-12

Best 5.01E-14 0.0 0.0 7.69E-44

Median 1.63E-07 0.35 0.0 7.68E-33

PSOGP (20) Worst 7.10 0.83 58.07 3.14E-24

Mean 1.07 0.37 11.14 1.31E-25
Std 1.78 0.22 19.35 6.14E-25

operating this kind of crossover, but to show that the neighbourhood of candidate

solution can be defined as product graphs. However, a potential of this idea needs to

be fully elaborated in the future work.

6 Conclusion

In this paper we presented a new variant of the PSO algorithm. i.e., the PSOGP that

proposes the use of graph products in order to help to reduce the population size. Ex-

periments were conducted on a benchmark functions and results show the potential

86 I. Fister et al.

of developed idea. However, this study leaves a lot of free space for further improve-

ments. For instance, the other graph products like strong, lexicographic, direct could

be applied in place of Cartesian product. Furthermore, in place of calculating the av-

erage values, the various operators between nodes should be also selected. Finally,

there are also possibilities to test this idea in other nature-inspired algorithms.

Acknowledgments The second author is supported by ARRS Research Program P1-00383.

References

1. Bondy, J.-A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics. Springer, New

York (2008)

2. Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm.

Appl. Intell. 29(3), 228–247 (2008)

3. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer Science & Busi-

ness Media (2003)

4. Fister, I., Strnad, D., Yang, X.-S., Fister I.: Adaptation and hybridization in nature-inspired al-

gorithms. In: Adaptation and Hybridization in Computational Intelligence, pp. 3–50. Springer

(2015)

5. Fister I., Yang, X.-S., Fister, I., Brest, J., Fister, D.: A brief review of nature-inspired algorithms

for optimization. Elektrotehniški vestnik 80(3), 116–122 (2013)

6. Fister, I., Yang, X.-S., Ljubič, K., Fister, D., Brest, J., Fister, I.: Towards the novel reasoning

among particles in PSO by the use of rdf and sparql. The Scientific World Journal 2014 (2014)

7. Gálvez, A., Iglesias, A.: Efficient particle swarm optimization approach for data fitting with

free knot b-splines. Comput. Aided Des. 43(12), 1683–1692 (2011)

8. Hammack, R.H., Imrich, W., Klavžar, S.: Handbook of Product Graphs. Discrete mathematics

and its applications. CRC Press, Boca Raton (2011)

9. Hao, Z.-F., Wang, Z.-G., Huang, H.: A particle swarm optimization algorithm with crossover

operator. In: 2007 International Conference on Machine Learning and Cybernetics, vol. 2, pp.

1036–1040. IEEE (2007)

10. Holtschulte, N., Moses, M.: Should every man be an island? (website). (2013)

11. Kaiwartya, O., Kumar, S., Lobiyal, D.K., Tiwari, P.K., Abdullah, A.H., Hassan, A.N.: Multi-

objective dynamic vehicle routing problem and time seed based solution using particle swarm

optimization. J. Sens. 2015 (2015)

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings., IEEE International

Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

13. Olusanya, M.O., Arasomwan, M.A., Adewumi, A.O.: Particle swarm optimization algorithm

for optimizing assignment of blood in blood banking system. Comput. Math. Methods Med.

(2014)

14. Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: Gathering algorithm: A new concept of

PSO based metaheuristic with dimensional mutation. In: 2014 IEEE Symposium on Swarm

Intelligence (SIS), pp. 1–6. IEEE (2014)

15. Tvrdík, J., Poláková, R., Veselskỳ, J., Bujok, P.: Adaptive variants of differential evolu-

tion: Towards control-parameter-free optimizers. In: Handbook of Optimization, pp. 423–449.

Springer (2013)

16. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1(1), 67–82 (1997)

17. Ye, Z., Wang, M., Hu, Z., Liu, W.: An adaptive image enhancement technique by combin-

ing cuckoo search and particle swarm optimization algorithm. Comput. Intell. Neurosci. 2015
(2015)

Population Size Reduction in Particle Swarm Optimization . . . 87

18. Zhang, Y., Wu, L.: Crop classification by forward neural network with adaptive chaotic particle

swarm optimization. Sensors 11(5), 4721–4743 (2011)

19. Zhang, Y., Wu, L., Dong, Z., Wang, S., Zhou, Z.: Face orientation estimation by particle swarm

optimization. In: 2009 Second International Symposium on Information Science and Engineer-

ing (ISISE), pp. 388–391. IEEE (2009)

Cooperation of Evolutionary Algorithms:
A Comparison of Several Hierarchical
Models

Radka Poláková and Josef Tvrdík

Abstract The cooperation of evolutionary algorithms in a simple hierarchical model

was proposed. Three adaptive variants of differential evolution and covariance-

matrix-adaptation evolutionary strategy were chosen for cooperation. The perfor-

mance of the model was tested on the learning-based CEC 2015 suite of 15 functions

at levels of the dimension 10 and 30. The results showed that the proposed coopera-

tion is beneficial. The proposed model was superior significantly compared to any of

individual algorithms included in the cooperation. The cooperation of the selected

four algorithms appeared beneficial especially in the problems of dimension D = 30,

where the cooperative model outperformed all the algorithms including other coop-

erative models in comparison.

Keywords Evolutionary algorithms ⋅ Cooperation ⋅ Hierarchical model ⋅ Experi-

mental comparison

1 Introduction

Various evolutionary algorithms differ in the performance on different optimization

problems substantially. The search strategy used in an algorithm is suitable for some

problems, whilst it fails on the other problems. Cases of bad convergence or stagna-

tion of some algorithms are described in the literature [9]. This is reason for consid-

ering the concept of some cooperative models combining different search strategies.

Such models have appeared in the design of parallel evolutionary algorithms, e.g.

[3, 16]. Simple models of cooperation are also described in [4, 28].

We proposed a simple model of hierarchical cooperation of four evolutionary

algorithms and applied it to CEC 2015 competition of algorithms for the boundary

R. Poláková (✉) ⋅ J. Tvrdík

Centre of Excellence IT4Innovations, Institute for Research and Applications

of Fuzzy Modeling, University of Ostrava, 30. Dubna 22, 701 03 Ostrava, Czech Republic

e-mail: radka.polakova@osu.cz

J. Tvrdík

e-mail: josef.tvrdik@osu.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_8

89

90 R. Poláková and J. Tvrdík

constrained problems [13]. The test suite of 15 functions at several levels of dimen-

sion was defined specially for this competition as well as the conditions for the run

of algorithms and the way of presentation of experimental results [10].

The algorithms in proposed model [13] were selected more or less intuitively.

The aim of this paper is to study this model in more detail, especially to get an

insight into the role of the algorithms involved in cooperation. The rest of the paper is

organized as follows. The proposed hierarchical model of cooperation is described in

Sect. 2 and the algorithms selected for the cooperation in Sect. 3. Section 4 presents

the setting of experiments and the results are shown in Sect. 5. The paper is concluded

in Sect. 6.

2 Model of Cooperation

A simple hierarchical model for the cooperation of the selected algorithms was

inspired by the topology of the parallel model used in [3]. A similar model has also

appeared in Elsayed et al. [4], where CMA-ES, a real-value coded genetic algorithm,

and an adaptive DE cooperate in the search.

The model uses a star topology with several islands and one mainland depicted in

Fig. 1. The algorithms on islands work independently and they can work in parallel

mode. Pseudo-parallel regime was used in our Matlab implementation. A very sim-

ple migration way was chosen: when the algorithms on islands finished the search,

the populations are prepared to migrate. After stopping all the island processes, the

current island populations are put together and the joint population containing all the

individuals found on the islands is moved to the mainland, where the search continues

until the stopping condition for the mainland is reached. Then the whole process is

finished, i.e. there is no migration from the mainland to the islands. It is also possible

to propose a bit more complicated cooperative model, in which the process contin-

ues by redistribution of the final mainland population into the islands and the search

repeats cyclically with renewed populations containing the individuals evolved on

the mainland.

Fig. 1 Topology of

cooperative model

In the versions of cooperative algorithms compared in this paper, the total num-

ber of function evaluations maximally allowed (MaxFES) is distributed uniformly

among all k + 1 nodes of the cooperative model, k is the number of islands.

Cooperation of Evolutionary Algorithms: A Comparison . . . 91

Another question which arises when we consider the hierarchical cooperative

model, is the selection of algorithms for cooperation. We should select efficient

algorithms using different search strategies. Thus, we choose algorithms which suc-

ceeded in CEC 2013 or CEC 2014 competitions. According these rather vague crite-

ria, we choose the following four algorithms. One of them is the well-known covari-

ance matrix adaptation evolutionary strategy, the remaining three algorithms are dif-

ferent adaptive DE versions:

– Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [8], which was

the base of all the algorithms with the best ranking in CEC competitions. Its aim in

the cooperative model is to provide a rotation-invariant search substantially distant

from any DE variant.

– SHADE [20] as the best DE version in CEC 2013 competition. It uses an archive

of former solutions and the current-to-pbest mutation completely different from

mutation commonly used in DE.

– b6e6rl variant of competition-adaptive DE [24] as base of the algorithms that

achieved the second [14] and the third [2] best ranking among DE versions in CEC

2014 competition. The expected advantage of this DE variant in the cooperation

is the exploitation of various DE strategies including the exponential crossover.

– L-SHADE [21], the best DE variant in CEC 2014. It was selected despite using

search strategy like SHADE but it decreases the population size dynamically,

which is suitable for its use as the mainland algorithm because it can cope with

initial population of large size effectively. Thus, all the individuals evolved on the

islands are used in the final search on the mainland.

3 Description of Algorithm Selected to Cooperation

The DE algorithm [17, 18] works with a population of individuals (NP points in

the search domain) that are considered as candidates of solution. A parameter NP is

called the size of the population. The population is developed by using evolutionary

operators of selection, mutation, and crossover generation by generation. Applica-

tions of evolutionary operators in the old generation P create individuals for a new

generation Q. After completing the new generation Q, the generation Q becomes the

old generation P for next iteration. A new trial point is generated by using mutation

(with control parameter F) and crossover (with control parameter CR).

3.1 CDE Algorithm, Version B6e6rl

Competitive adaptation of the DE strategies and the control parameters was orig-

inally proposed in [22]. There are H different DE strategies or settings of control

parameters (F, CR) in a pool and we choose randomly among them with probabili-

92 R. Poláková and J. Tvrdík

ties proportional to their success rate in preceding steps. This adaptive variant of DE

is called competitive differential evolution (CDE) hereafter.

Several variants of CDE were compared in different benchmark tests [23, 24].

The CDE variant denoted b6e6rl was found as one of the most efficient among

all the tested CDE variants. The variant uses twelve different DE strategies or

parameter settings. This b6e6rl version appeared the most reliable and the second

fastest algorithm in the comparison with the state-of-the-art adaptive DE algorithms

[1, 12, 15, 26, 27] on the benchmark set of six shifted functions at three levels of

dimension (D = 10, 30, and 100) [25].

3.2 SHADE

Success-History Based Parameter Adaptation for Differential Evolution (SHADE)

algorithm [19, 20] was introduced by Tanabe and Fukunaga in 2013. This very effi-

cient optimization method was derived from the Adaptive Differential Evolution with

Optional External Archive (JADE) [27] proposed by Zhang and Sanderson. The main

extension of SHADE compared to original JADE is in a history-based adaptation of

the control parameters F and CR. Both JADE and SHADE variants use an efficient

greedy current-to-pbest mutation strategy, archive A and the adaptation of parame-

ters F and CR. The new mutant vector u is generated from four mutually different

individuals – the current individual xi, xpbest (which is randomly chosen individ-

ual from the p × 100% best points of P), randomly selected point xr1 from P and

randomly selected point xr2 from P∪A (A is archive), as it is formed in the equation:

u = xi + F ⋅ (xpbest − xi) + F ⋅ (xr1 − xr2). (1)

Unlike JADE, the parameter of p (separately for each xi) for selecting the xpbest is

uniformly distributed random number from interval p ∈ [2∕NP, 0.2], then the point

xpbest is selected from the p × 100% best points of P. After mutation, the binomial

crossover operation is used for generating the trial point.

If the function value of the newly composed trial point y is better than the function

value in xi, the trial point y replaces the xi in population and the point xi is inserted

into archive A. At the beginning of the algorithm, the archive A is set to A = ∅.

When the size of the archive A exceeds the size of the population NP, superfluous

randomly chosen points are deleted from the archive A. The purpose of the archive is

to store old good solutions from previous generations and use them for the mutation

according to (1).

The successful values of the control parameters F and CR are stored into auxiliary

memories SF and SC. At the start of computing of new generation, SF and SC equal

to ∅. The historical circle memories MF and MC used for generating new values

of the control parameters F and CR are updated using the successful values stored

in auxiliary memories SF and SC after each generation. The size of these two circle

memories is set to |MF| = |MC| = H. At the beginning of the algorithm, all values in

Cooperation of Evolutionary Algorithms: A Comparison . . . 93

memories MF and MC are set to 0.5. The new values of MF𝓁 and MC𝓁
are computed

as weighted Lehmer mean of the current values from SF and weighted arithmetic

mean of the current values from SC according to (2), respectively. The means (3) are

weighted by the difference between function value in ym and xm, see Eq. (4). The

values of MF𝓁 , MC𝓁
, and 𝓁 remain the same if no successful point was created in the

last generation. At the beginning 𝓁 = 1, and 𝓁 is increased by 1 after each writing

into MF and MC memories. If 𝓁 > H, then 𝓁 is again set to 𝓁 = 1.

MF𝓁 = meanWL(SF) if SF ≠ ∅, MC𝓁
= meanWA(SC) if SC ≠ ∅, (2)

meanWL(SF) =
∑|SF|

m=1 wm F2
m

∑|SF|
m=1 wm Fm

, meanWA(SC) =
|SC|∑

m=1
wm CRm, (3)

wm =
𝛥fm

∑|SC|
h=1 𝛥fh

, 𝛥fm = |f (xm) − f (ym)|. (4)

The parameters F and CR are generated before each computing of a new trial point y
as follows: for index r randomly chosen, 1 ≤ r ≤ H, F is generated from Cauchy dis-

tribution with parameters MFr and 0.1 and CR is generated from normal distribution

with parameters MCr
and 0.1.

3.3 L-SHADE

L-SHADE [21] was derived from SHADE [19, 20] by Tanabe and Fukunaga in 2014.

L-SHADE differs from SHADE above all in dynamic reduction of the population

size. The population size is decreasing linearly generation by generation with the

increasing number of the objective function evaluations (FES) during the search

process from the initial value NPinit
to the final value NPmin

at the end of the search

process, i.e. if allowed number of the function evaluations (MaxFES) is reached:

NPG+1 = round
[

(NP
min − NPinit

MaxFES
) FES + NPinit

]

, (5)

where FES is the current number of the objective function evaluations. Whenever

NPG+1 < NPG, the (NPG − NPG+1) worst individuals (i.e. the individuals with the

highest function values) are deleted from the population.

Unlike SHADE, the constant value p for the current-to-pbest mutation is used in

L-SHADE. The size of archive of 2.6×NP is recommended by the authors.L-SHADE
with this parameter setting was the best version of DE in CEC2014 competition [11].

94 R. Poláková and J. Tvrdík

3.4 CMA-ES

The evolutionary strategy (ES) with covariance matrix adaptation was proposed by

Hansen a Ostermeier in [8]. From each current vector (point), 𝜆 new points can be

generated according to

xN𝓁 = x + 𝛿Bz𝓁 , (6)

where x = (x1,… , xD)T ∈ RD
is the current vector to be optimized, z = (z1,… , zD)T

∼ N(𝟎, I), its elements zi ∼ N(0, 1) are independent, z𝓵 , 𝓁 = 1,… , 𝜆 are indepen-

dent realizations of z, and 𝛿 > 0 is a parameter determining the step size. Covariance

matrix C of the mutation distribution determines B, so that Bz ∼ N(𝟎,C), C = BBT

holds, Cstart = I. Matrix C is adapted during the search process.

The source code of CMA-ES in Matlab used in our algorithms was downloaded

from [7]. The purecmaes.m function was then modified for the cooperative algo-

rithms.

4 Experiments

The aim of the paper is to investigate the role of individual algorithms cooperat-

ing in the proposed hierarchical model. Therefore, the cooperative algorithm with

four optimizer mentioned above (denoted HiCo hereafter) was compared with each

component running alone (abbreviated by CMAES, SHADE, b6e6rl, and LSHADE
hereafter) and with hierarchical cooperative algorithms, in which only two islands

are used. LSHADE is used as the mainland algorithm without any change. It results

in the comparison with algorithms labeled HiCoxx, where xx stands for the first letter

of the algorithms on the islands. The list of HiCoxx algorithms follows:

– HiCoSb – two islands, where SHADE and b6e6rl are used, CMAES is omitted.

Only three different DE variants are used in this model.

– HiCoCb – two islands, where CMAES and b6e6rl are used, SHADE is omitted.

Completely different strategies of the search are used on the islands.

– HiCoCS – two islands, where CMAES and SHADE are used, b6e6rl is omitted.

Completely different strategies of the search are used on the islands in this model,

too.

The comparison of results achieved by HiCo and CMAES, SHADE, b6e6rl, and

LSHADE working alone gives us evidence if the hierarchical cooperation of four

optimizers can outperform the best performing algorithm working alone. The com-

parison of HiCo with HiCoxx variants shows if three-island algorithm is better than

the simpler variants with only two islands. This comparison brings also an insight

into the role of the individual algorithms included in cooperation.

The algorithms are implemented in Matlab 2010a and this environment is used

for experiments. The performance of the algorithms is tested on the CEC 2015 suite

Cooperation of Evolutionary Algorithms: A Comparison . . . 95

of 15 minimizations problems defined in the report [10]. Search range for all the test

functions is [−100, 100]D. The source code of functions in C was downloaded from

the web page [10] and compiled for Matlab via mex command.

The tests were carried out at two levels of dimension, namely D = 10 and D =
30. 51 repeated runs were performed per the test function and the dimension of the

problem except HiCoxx variants, where only 25 runs per problem were done. The

run was stopped if the MaxFES = D × 104 prescribed in [10] was reached. The best

solution found in the run in form of function error fmin − f (x∗) was recorded (among

other values), where fmin is the least function value and f (x∗) is the function value at

the global minimum, which is known for the test problems.

The population size of the algorithms in the cooperation was set up as follows:

NP = 50 for b6e6rl and SHADE, NP = 𝜇 = 25 for CMAES and NPinit = 125
for LSHADE. The other control parameters were set up to their default values. In

experiments with the algorithms running individually, the same size population was

used except LSHADE, where NPinit = 18 × D was used as recommended in [21].

5 Results

The results of the experimental comparison of individual algorithms with HiCo
for D = 10 are shown in Table 1, where the medians of function-error values are

reported together with p values achieved by Kruskal-Wallis test of distribution-

equality hypothesis. When p < 0.05, the null hypothesis (equivalent performance

Table 1 Medians of function error and results of Kruskal-Wallis test for individual algorithms and

HiCo, D = 10
F CMAES SHADE b6e6rl LSHADE HiCo p

1 0 0 0 0 0 1.000

2 0 0 0 0 0 1.000

3 20 20.0169 20.0575 20.0073 20.0073 0.000

4 2.98488 2.99866 5.05762 3.97991 2.98488 0.000

5 133.558 129.581 146.234 15.5309 118.891 0.000

6 459.382 4.34509 0.41629 3.23841 1.57033 0.000

7 1.03306 0.25717 0.16884 0.23807 0.19322 0.000

8 75.0498 0.31807 0.37843 0.76884 0.42442 0.000

9 100 100.851 100.005 100 100 0.000

10 151.087 143.109 143.109 143.109 141.529 0.000

11 390.963 3.91969 3.16197 3.07095 3.08909 0.000

12 111.284 112.526 111.587 112.166 111.278 0.000

13 0.10857 0.09273 0.09273 0.09273 0.09273 0.000

14 6794 6677.01 6670.66 6670.66 6662.87 0.000

15 100 100 100 100 100 1.000

96 R. Poláková and J. Tvrdík

of the algorithms in comparison) is rejected. The results for D = 30 in the same

structure are presented in Table 2. We can see that the performance of algorithms

was different in most problems significantly. The equivalent performance was found

only in three problems for D = 10 and in one problem for D = 30, where all the

algorithms found the same solutions in all runs.

Based on the results of Kruskal-Wallis test, the ranks of performance were

assigned to the algorithms in each problem. If the algorithms do not differ signif-

icantly, the same ranks were assigned to them corresponding to their average ranks.

Then the sums of ranks on 15 problems were computed for each algorithm. The com-

parison of the ranks observed forHiCo and individual algorithms is shown in Table 3.

From the sums of ranks is obvious thatHiCo algorithm with hierarchical cooperation

outperforms all the individual algorithms substantially. The medians of the function

errors and the results of Kruskal-Wallis test for the comparison of the cooperative

algorithms are shown in Table 4 for D = 10 and in Table 5 for D = 30, respectively.

The performance of the algorithms does not differ significantly in about half prob-

lems of D = 10, while the significant difference in performance was observed in 13

out of 15 problems for D = 30.

Table 2 Medians of function error and results of Kruskal-Wallis test for individual algorithms and

HiCo, D = 30
F CMAES SHADE b6e6rl LSHADE HiCo p

1 0 4632.65 14138.6 0 0 0.000

2 0 0 0.27878 0 0 0.000

3 20.9365 20.0747 20.2691 20.1047 20.0342 0.000

4 14.9244 44.3321 42.2026 25.0974 14.9244 0.000

5 981.276 1836.15 2066.05 1242.31 1064.97 0.000

6 1354.18 1579.09 2719.69 197.065 1151.27 0.000

7 7.24943 9.00941 7.01717 6.8496 5.87447 0.000

8 767.921 382.957 152.27 52.0179 196.2 0.000

9 106.046 109.138 106.037 107.076 105.965 0.000

10 710.835 868.635 665.241 616.434 660.477 0.000

11 400 597.514 416.695 556.304 400 0.000

12 107.082 111.226 110.132 109.363 107.143 0.000

13 0.01344 0.01081 0.01049 0.01073 0.01042 0.000

14 44872.2 43572.3 42786.9 42558.5 36775.4 0.000

15 100 100 100 100 100 1.000

Like in the previous comparison, the ranks of performance were assigned to the

algorithms in each problem. If the algorithms do not differ significantly, the same

ranks were assigned to them corresponding to their average ranks. Then the sums

of ranks on 15 problems were computed for each algorithm. The comparison of the

ranks observed for HiCo and HiCoxx variants is shown in Table 6.

Cooperation of Evolutionary Algorithms: A Comparison . . . 97

Ta
bl
e
3

R
a
n
k

s
o
f

th
e

a
lg

o
r
it

h
m

s
o
n

te
s
t

p
ro

b
le

m
s

a
n
d

th
e

s
u
m

o
f

r
a
n
k

s
fo

r
e
a
c
h

a
lg

o
r
it

h
m

in
c
o
m

p
a
r
is

o
n

D
=
10

D
=
30

F
C

M
A

E
S

S
H

A
D

E
b
6
e
6
rl

L
S

H
A

D
E

H
iC

o
C

M
A

E
S

S
H

A
D

E
b
6
e
6
rl

L
S

H
A

D
E

H
iC

o

1
3

3
3

3
3

2
4

5
2

2

2
3

3
3

3
3

2
.5

2
.5

5
2
.5

2
.5

3
1

4
5

2
.5

2
.5

5
2

4
3

1

4
1
.5

3
5

4
1
.5

1
.5

5
4

3
1
.5

5
4

3
5

1
2

1
4

5
3

2

6
5

4
1

3
2

3
4

5
1

2

7
5

4
1

3
2

4
5

3
2

1

8
5

1
2

4
3

5
4

2
1

3

9
2

5
4

2
2

3
5

2
4

1

1
0

5
3

3
3

1
4

5
3

1
2

1
1

5
4

3
1

2
1
.5

5
3

4
1
.5

1
2

2
5

3
4

1
1

5
4

3
2

1
3

5
2
.5

2
.5

2
.5

2
.5

5
4

2
3

1

1
4

5
4

2
.5

2
.5

1
5

4
3

2
1

1
5

3
3

3
3

3
3

3
3

3
3

Σ
5
4
.5

5
1
.5

4
6

4
1
.5

3
1
.5

4
6
.5

6
1
.5

5
3

3
7
.5

2
6
.5

98 R. Poláková and J. Tvrdík

Table 4 Medians of function error and results of Kruskal-Wallis test forHiCo andHiCoxx variants,

D = 10
F HiCo HiCoSb HiCoCb HiCoCS p

1 0 0 0 0 1.000

2 0 0 0 0 1.000

3 20.0073 20.0037 20.0056 20.0035 0.256

4 2.98488 3.98054 2.98488 2.98488 0.002

5 118.891 27.3323 130.33 22.0338 0.227

6 1.57033 0.46805 0.83673 6.82087 0.000

7 0.19322 0.11907 0.17329 0.14706 0.014

8 0.42442 0.32485 0.53236 0.45825 0.187

9 100 100.009 100 100 0.000

10 141.529 141.525 141.525 143.642 0.008

11 3.08909 2.9951 3.38306 3.4156 0.131

12 111.278 111.328 111.318 111.297 0.810

13 0.09273 0.09273 0.09433 0.09273 0.000

14 6662.87 6662.87 6670.66 6670.85 0.000

15 100 100 100 100 1.000

Table 5 Medians of function error and results of Kruskal-Wallis test forHiCo andHiCoxx variants,

D = 30
F HiCo HiCoSb HiCoCb HiCoCS p

1 0 19511.4 0 0 0.000

2 0 0.00958 0 0 0.000

3 20.0342 20.0185 20.0229 20.0194 0.000

4 14.9244 34.8353 18.9042 15.9193 0.000

5 1064.97 1550.18 1219.18 1016.31 0.000

6 1151.27 1678.02 1247.21 1328.02 0.010

7 5.87447 6.44536 6.247 6.81616 0.025

8 196.2 184.341 205.916 468.894 0.000

9 105.965 106.703 106.079 106.109 0.000

10 660.477 685.858 650.583 731.757 0.005

11 400 420.244 400 400 0.173

12 107.143 110.01 106.763 107.342 0.000

13 0.01042 0.01048 0.01053 0.01076 0.000

14 36775.4 42765.1 42665.6 43565.8 0.003

15 100 100 100 100 1.000

The sums of ranks are almost the same for the problems of D = 10, which means

that the performance of the algorithms does not differ substantially. However, the

performance of the algorithms differs apparently for the problems of D = 30. The

winner is HiCo with three islands followed by HiCoCb variant, which is the second

best performing algorithm. The performance of the other HiCoxx variants is worse.

Cooperation of Evolutionary Algorithms: A Comparison . . . 99

Table 6 Ranks of the algorithms on test problems and the sum of ranks for each algorithm in

comparison

D = 10 D = 30
F HiCo HiCoSb HiCoCb HiCoCS HiCo HiCoSb HiCoCb HiCoCS

1 2.5 2.5 2.5 2.5 2 4 2 2

2 2.5 2.5 2.5 2.5 2 4 2 2

3 2.5 2.5 2.5 2.5 4 1 3 2

4 2 4 2 2 1 4 3 2

5 2.5 2.5 2.5 2.5 2 4 3 1

6 3 1 2 4 1 4 2 3

7 4 1 3 2 1 3 2 4

8 2.5 2.5 2.5 2.5 2 1 3 4

9 2 4 2 2 1 4 2 3

10 3 1.5 1.5 4 2 3 1 4

11 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

12 2.5 2.5 2.5 2.5 2 4 1 3

13 2 2 4 2 1 2 3 4

14 1.5 1.5 3 4 1 3 2 4

15 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Σ 37.5 35 37.5 40 27 46 34 43

6 Conclusion

The cooperation of evolutionary algorithms in the solution of the global minimiza-

tion problem with boundary constraints was studied. A simple hierarchical model

with one mainland and several islands was implemented and tested on the CEC

2015 suite of 15 functions of the dimension 10 and 30. The proposed model exploits

only one-way migration from the islands to the mainland, no communication among

islands during their runs occurs in the models in the test.

The model labeled HiCo with three islands was compared experimentally with

all the individual algorithms taking part in the hierarchical model. The results of the

comparison show that the proposed cooperation is beneficial for the performance,

especially in the problems of dimension D = 30. Moreover, HiCo was also com-

pared with hierarchical models labeled HiCoxx, where only two islands are used.

The comparison reveals that the difference in performance is small for the D = 10
(HiCo was the second best) but significant difference was found in the problems of

D = 30, where the proposed HiCo model was the best performing.

The results are promising for next research of more sophisticated models with

controlled migration among the islands and the most recent adaptive DE variants

[5, 6] included in cooperative model. Such models can bring an efficient optimization

algorithm without deficiencies like stagnation and similar drawbacks.

100 R. Poláková and J. Tvrdík

Acknowledgments This work was supported by the European Regional Development Fund in the

IT4Innovations Centre of Excellence project (CZ.1.05/ 1.1.00/02.0070).

References

1. Brest, J., Greiner, S., Boškovič, B., Mernik, M., Žumer, V.: Self-adapting control parameters

in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans.

Evol. Comput. 10, 646–657 (2006)

2. Bujok, P., Tvrdík, J., Poláková, R.: Differential evolution with rotation-invariant mutation and

competing-strategies adaptation. In: Proceedings of the IEEE Congress on Evolutionary Com-

putation, pp. 2253–2258 (2014)

3. Bujok, P., Tvrdík, J.: Parallel migration model employing various adaptive variants of differen-

tial evolution. In: ICAISC 2012—SIDE 2012, pp. 39–47. Springer-Verlag, Berlin, Heidelberg

(2012)

4. Elsayed, S.M., Sarker, R.A., Essam, D.L., Hamza, N.M.: Testing united multi-operator evo-

lutionary algorithms on the CEC2014 real-parameter numerical optimization. In: Proceedings

of the IEEE Congress on Evolutionary Computation, pp. 1650–1657 (2014)

5. Guo, S.M., Yang, C.C.: Enhancing differential evolution utilizing eigenvector-based crossover

operator. IEEE Trans. Evol. Comput. 19, 31–49 (2015)

6. Guo, S.M., Yang, C.C., Hsu, P.H., Tsai, J.S.H.: Improving differential evolution with

successful-parent-selecting framework. IEEE Transactions on Evolutionary Computation (in

press)

7. Hansen, N.: purecmaes.m (2009). https://www.lri.fr/hansen/purecmaes.m

8. Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution

strategies: the covariance matrix adaptation. In: Proceedings of the 1996 IEEE Internatinal

Conference on Evolutionary Computation, pp. 312–317 (1996)

9. Lampinen, J., Zelinka, I.: On stagnation of differential evolution algorithm. In: MENDEL 2000,

6th International Conference on Soft Computing, pp. 76–83 (2000)

10. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definition and evaluation criteria for the

CEC 2015 competition on learning-based real-parameter single objective optimization (2014).

http://www.ntu.edu.sg/home/epnsugan/

11. Liang, J.J., Qu, B., Suganthan, P.N.: Ranking results of CEC14 special session and compe-

tition on real-parameter single objective optimization (2014). http://www3.ntu.edu.sg/home/

epnsugan/

12. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm

with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11, 1679–1696

(2011)

13. Poláková, R., Tvrdík, J.: Cooperation of optimization algorithms: a simple hierarchical model.

In: Proceedings of the IEEE Congress on Evolutionary Computation (accepted) (2015)

14. Poláková, R., Tvrdík, J., Bujok, P.: Controlled restart in differential evolution applied to

CEC2014 benchmark functions. In: Proceedings of the IEEE Congress on Evolutionary Com-

putation, pp. 2230–2236 (2014)

15. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adap-

tation for global numerical optimization. IEEE Trans. Evol. Comput. 13, 398–417 (2009)

16. Ruciński, M., Izzo, D., Biscani, F.: On the impact of the migration topology on the island

model. Parallel Comput. 36, 555–571 (2010)

17. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global opti-

mization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997)

18. Storn, R., Price, K., Lampinen, J.: Differential Evolution—A Practical Approach to Global

Optimization. Springer, Berlin, Germany (2005)

https://www.lri.fr/hansen/purecmaes.m
http://www.ntu.edu.sg/home/epnsugan/
http://www3.ntu.edu.sg/home/epnsugan/
http://www3.ntu.edu.sg/home/epnsugan/

Cooperation of Evolutionary Algorithms: A Comparison . . . 101

19. Tanabe, R., Fukunaga, A.: Evaluating the performance of SHADE on CEC 2013 benchmark

problems. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1952–1959

(2013)

20. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolu-

tion. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 71–78 (2013)

21. Tanabe, R., Fukunaga, A.: Improving the search performance of shade using linear population

size reduction. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1658–

1665 (2014)

22. Tvrdík, J.: Competitive differential evolution. In: Matoušek, R., Ošmera, P. (eds.) MENDEL

2006, 12th International Conference on Soft Computing, pp. 7–12 (2006)

23. Tvrdík, J.: Adaptation in differential evolution: a numerical comparison. Appl. Soft Comput.

9, 1149–1155 (2009)

24. Tvrdík, J.: Self-adaptive variants of differential evolution with exponential crossover. Ser.

Math.-Inform. 47, 151–168 (2009) (Analele of West University Timisoara)

25. Tvrdík, J., Poláková, R., Veselský, J., Bujok, P.: Adaptive variants of differential evolu-

tion: towards control-parameter-free optimizers. In: Handbook of Optimization, pp. 423–449.

Springer (2012)

26. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation

strategies and control parameters. IEEE Trans. Evol. Comput. 15, 55–66 (2011)

27. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external

archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)

28. Zhang, Q., Yu, G., Song, H.: A hybrid bird mating optimizer algorithm with teaching-learning-

based optimization for global numerical optimization. Stat. Optim. Inf. Comput. 3, 54–65

(2015)

A Switched Parameter Differential
Evolution for Large Scale Global
Optimization – Simpler May Be Better

Swagatam Das, Arka Ghosh and Sankha Subhra Mullick

Abstract In this article we present two very simple modifications to Differential
Evolution (DE), one of the most competitive evolutionary algorithms of recent
interest, to enhance its performance for the high-dimensional numerical functions
while still preserving the simplicity of its algorithmic framework. Instead of
resorting to complicated parameter adaptation schemes or incorporating additional
local search methods, we present a simple strategy where the values of the scale
factor (mutation step size) and crossover rate are switched in a uniformly random
way between two extreme corners of their feasible ranges for different population
members. Also each population member is mutated either by using the DE/rand/1
scheme (where the base vector to be perturbed is a randomly chosen member from
the population) or by using the DE/best/1 scheme (where the base vector is the best
member of the population). The population member is subjected to that mutation
strategy which was responsible for the last successful update at the same population
index under consideration. Our experiments based on the benchmark functions
proposed for the competitions on large-scale global optimization with bound con-
straints held under the IEEE CEC (Congress on Evolutionary Computation) 2008
and 2010 competitions indicate that the basic DE algorithm with these simple
modifications can indeed achieve very competitive results against the currently best
known algorithms.

Keywords Continuous optimization ⋅ Differential evolution ⋅ Large scale
optimization ⋅ Success counter

S. Das (✉) ⋅ A. Ghosh ⋅ S.S. Mullick
Indian Statistical Institute, 203 B. T. Road, Kolkata 700 108, India
e-mail: swagatam.das@isical.ac.in

A. Ghosh
e-mail: arka_t@isical.ac.in

S.S. Mullick
e-mail: mullicksankhasubhra@gmail.com

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_9

103

1 Introduction

Over the past few decades, several families of evolutionary computing algorithms
have been proposed for solving bound-constrained global optimization problems.
Performances of these algorithms remain considerably good for problems with
moderate number of decision variables or dimensions. However, most of them face
difficulties in locating the global optimum with sufficient accuracy and without
consuming too much Function Evaluations (FEs) as the number of dimensions of
the search space increases beyond 100 or so. This is not surprising and is primarily
caused by the exponential increase of the search volume with dimensions. Consider
placing 100 points onto a real interval, say [0,1]. To obtain a similarly dense
coverage, in terms of distance between adjacent points, the 10-dimensional space
0, 1½ �10 would require 10010 = 1020 points. The previously mentioned 100 points
now appear as isolated points in a vast empty space. Usually the distance measures
break down in higher dimensionalities and a search strategy that is valuable in small
dimensions might be useless in large or even moderate dimensional search spaces.

Many real world problems demand optimization of a large number of variables.
A few typical examples of such problems are shape optimization [1, 2],
high-dimensional waveform inversion [3], and large scale economic load dispatch
(involving 140 units or more) [4]. Recently researchers have been paying attention
to the issue of designing scalable nature-inspired optimization techniques for
optimizing very high dimensional functions. The ongoing interest of the scientific
community is also evident from participations in the competitions on large scale
single objective global optimization with bound constraints held under the
IEEE CEC (Congress on Evolutionary Computation) 2008 and 2010 [5, 6].

The evolutionary methods for high-dimensional global optimization problems
can be roughly categorized into three classes: the cooperative co-evolutionary
methods, the micro Evolutionary Algorithms (EAs) and the Local Search
(LS) based methods. Cooperative Co-Evolutionary Algorithms (CCEAs) [7–11] are
well-known for solving high dimensional optimization problems and they result
from an automatic divide and conquer approach. Recently some promising Coop-
erative Co-evolutionary (CC) algorithms were proposed like the CC versions of the
Particle Swarm Optimization (CCPSO and CCPSO2) [10] and CC with Differential
Grouping [11]. Micro–EAs (see for example [12–15]) are instances of typical EAs
characterized by small population size and often simple fitness functions. Different
forms of Memetic Algorithms (MAs) [16–19] developed by combining an LS
method with a global evolutionary optimizer have been frequently applied to solve
large scale function optimization problems.

Differential Evolution (DE) [20, 21] currently stands out as a very competitive
evolutionary optimizer for continuous search spaces. Several attempts have been
made to improve the performance of DE for moderate to high dimensional function
optimization problems. Some noted DE-variants of current interest involve
success-history based parameter adaptation strategies (like SaDE [22], JADE [23]),
new mutation and crossover strategies (like Pro-DE [24], MDE-pBX [25]), and

104 S. Das et al.

combining various offspring generation strategies (CoDE [26], EPSDE [27] etc.).
For high-dimensional problems (more than 500 dimensions) DE has been adopted
by methods encompassing all the three algorithmic philosophies outlined above.
Owing to its inherent simplicity, DE was used as the base optimizer in Yang et al.’s
first work [9] on random grouping based CCEAs. Zamuda et al. [28] extended DE
by log-normal self-adaptation of its control parameters and by using cooperative
co-evolution as a dimensional decomposition mechanism. Parsopoulos developed a
cooperative micro-DE [29] for large scale global optimization. The self-adaptive
DE was hybridized with MTS for large scale optimization by Zhao et al. [30]. Some
other approaches of improving DE for high-dimensional function optimization can
be found in [31–34].

We can see that in order to cope with the growing complexity of the problems to
be solved, DE has been subjected to several modifications. However, despite the
reported performance improvements, the improved DE algorithms are very often
lacking one very important thing, that is the simplicity of the DE framework – the
very reason why DE was and is loved by the practitioners of evolutionary com-
putation. The present work is motivated by the question that can we improve DE for
very high dimensional search spaces by simple parameter control strategies and by
combining the basic ingredients of DE without any additional computation over-
heads (likely to be caused by external achieves, proximity and rank based parent
selection schemes, additional local search schemes, keeping the long records of
successful individuals etc.).

In this paper we present a simple DE scheme where the two crucial
control-parameters of DE, namely the scale factor (equivalent to the mutation step
size) F and the crossover rate Cr are switched between their respective limiting
values in a uniformly random manner for each offspring generation process. Also
each population member is mutated using either the DE/best/1 strategy or the
DE/rand/1 strategy. The difference between these two strategies lies in the selection
of the base vector to be perturbed. In case of DE/best/1, the base vector that has to
be perturbed with the scaled difference of any two distinct population members is
the best vector in the population yielding greatest fitness (i.e. smallest objective
function value for a minimization problem). On the other hand, for the DE/rand/1
scheme, the base vector is a randomly chosen member from the current population.
Each individual undergoes either of the two possible mutation strategies based on
which strategy generated a successful offspring (which replaced the parent during
selection) last time for the same population index. Thus, the choice of the mutation
strategy depends on a unit length success memory of the record of just the last
successful update. The proposed algorithm requires no tunable control parameter
and is very easy to implement.

Switching of the scale factor between two extreme values (here 0.5 and 2) pro-
vides scopes for coarse search of large regions as well as refined search of smaller
basins of attraction. Similarly by switching Cr values between 0 and 1, a balance
between coordinate-wise search and generation of rotationally invariant search
moves can be stricken. Our experiments indicate that the simple parameter switching
coupled with the mixing of DE/best/1 and DE/rand/1 strategies can significantly

A Switched Parameter Differential Evolution … 105

improve the performance of DE on the high-dimensional function optimization
problems. This conclusion is reached through a rigorous performance comparison of
the proposed DE scheme with that of some of the most well-known large-scale
optimizers including the winners of the two CEC competitions. While it is very hard
(if not impossible) to analytically justify the suitability of the simple changes made
to DE, we undertake some empirical studies based on the population spread and
diversity to highlight the effectiveness of each of the modifications suggested.

2 The DE Algorithm

The initial generation of a standard DE algorithm consists of the four basic steps –
initialization, mutation, recombination or crossover, and selection, of which, only
last three steps are repeated into the subsequent DE generations. The generations
continue till some termination criterion (such as exhaustion of maximum functional
evaluations) is satisfied.

2.1 Initialization

DE begins search for the global optima in the D dimensional real parameter space
by initiation of a random population of Np real-valued vectors whose components
represent the D parameters of the optimization problem. A generalized notation
used to identify the ith solution (real parameter vector) of the present generation
G can be shown as:

X ⃗i,G = x1, i,G, x2, i,G, . . . xD, i,G½ �.

Given the decision space bounds, Xm⃗ax = x1,max, x2,max, . . . xD, max½ � and
Xm⃗in = x1,min, x2,min, . . . xD, min½ �, the jth dimension of ith individual can be initialized
as:

xi, j = xj, min + randi, j × xj, max − xj, min
� �

, ð1Þ

where randi, j is a uniformly distributed random number lying in the range [0, 1] and
it is instantiated anew for each ordered pair (i, j).

2.2 Mutation

In DE terminology, a population member (say i) of the current generation, known as
the target vector, is chosen and is differentially mutated with the scaled difference
vector(s) ðX ⃗r1,G −X ⃗r2,GÞ to produce a mutant or donor vector. It is to be noted that

106 S. Das et al.

the indices r1 and r2 are sampled from {1,2,…, Np} are different from the running
index i and ðr1, r2 ∈ 1, 2, . . .Npf g\figÞ. A scaling factor F, usually lying in the
range [0.4, 2], scales the difference vector(s). Two commonly used DE mutation
strategies are listed below:

DE r̸and 1̸:V ⃗i,G =X ⃗r1,G +F Xr⃗2,G −X ⃗r3,G
� �

, ð2aÞ

DE ̸best 1̸:V ⃗i,G =X ⃗best,G +F. X ⃗r1,G −X ⃗r2,G
� �

, ð2bÞ

where r1, r2, r3 are mutually exclusive indices that are stochastically selected from
1, 2, . . . ,Npf g.

2.3 Crossover

In DE, the crossover step aims to combine the individual components of the parent
and the mutant vector into a single offspring commonly known as trial vector
U ⃗i,G = u1, i,G, u2, i,G, . . . uD, i,G½ � DE primarily employs either of the two crossover
strategies: exponential (two-point modulo) and binomial (uniform). Binomial
crossover is preferred since it does away with the inherent representational bias in
n-point crossover by simulating D random trials. Moreover a recent work [35]
attributing to the sensitivity of crossover to population size has reported the
exponential variant to be more prone as compared to its binomial counter-
part. Owing to the aforesaid observations, here we employ binomial crossover to
form the trial vector.

In order to implement the binomial crossover, the control parameter Crossover
rate (Cr) is set to a fixed value lying in the range [0,1] and thenD independent random
numbers, between 0 and 1, are sampled uniformly and compared with Cr to decide
which component is to be included in the trial vector. The method is outlined as:

uj, i,G = vj, i,G, if randi, j <CR and
�

j= jr,
xj, i,G otherwise,

�
ð3Þ

where jr is a randomly chosen index from {1, 2, …, D} and it ensures that at least
one component from the mutant vector is present in the offspring produced.

2.4 Selection

Finally, a selection process is performed through a one-to-one competition between
the parent and the offspring to maintain a constant population size. The selection
process can be described as:

A Switched Parameter Differential Evolution … 107

X ⃗i,G+1 =
U ⃗i if f U ⃗i

� �
≤ f X ⃗i

� �
,

Xi⃗ otherwise,

(

ð4Þ

where f ð.Þ is the objective function to be minimized.

3 The Proposed Method

DE has 3 primary control parameters: the scale factor F, and the crossover rate Cr,
and the population size Np. The performance of DE largely depends on F and Cr.
Several efforts have been made in the past to control and adapt the value of these
two parameters so that the algorithm may strike a balance between its explorative
and exploitative behaviours on different fitness landscapes. Both of these parame-
ters have their own allowable ranges. It is easy to see that Cr is similar to a
probability value and hence it should lie in [0, 1]. Zaharie [36] derived a lower limit
of F and her study revealed that if F be sufficiently small, the population can
converge even in the absence of selection pressure. Ronkkonen et al. [37] stated that
typically 0.4 < F < 0.95 with F = 0.9 can serve as a good first choice. They also
opine that Cr should lie in (0, 0.2) when the function is separable, while in (0.9, 1)
when the function’s variables are dependent. As is evident from [21] and the
therein, numerous approaches have been proposed to improve the performance of
DE by controlling or self-adapting these two control parameters and also by
automating the choice of the appropriate offspring generation strategy. However,
very often such methods may necessitate additional computational burdens, which,
somewhat sacrifice the simplicity of DE. Thus, the question that naturally comes up
is whether we can retain efficient search behaviour and adequate
exploration-exploitation trade-off by doing something very simple? Can such easy
modifications still result into a very competitive performance against the existing
state-of-the-art? This article presents a humble contribution in this context.

The purpose of scaling factor F is to add weight to the difference vector and add
it to base vector to produce mutant/donor vector. It is established in the study that
F is strictly positive and greater than zero. A large value of F will support
exploration, i.e. more of the feasible search volume can be covered. This property
can be often desirable for solving high-dimensional optimization problems, since
they possess a large search space. But, exploration is not helpful for converging and
fine tuning of the solutions, necessary for detecting the optimum. A small value of
F will serve the purpose of exploitation and support the convergence towards a
solution.

In our proposal, for each population member, the F value is switched between
0.5 and 2 in a uniformly randomized way. Note that F = 2 is somewhat an unusual
choice since this extreme value has not been reported for DE in commonly available
papers. However, our experiments indicate that for the large scale problems this

108 S. Das et al.

value can indeed enhance the performance than switching F between 0.5 and 1.
When F is 2, the difference vector gets a higher importance. Consequently, the
newly generated mutant point will be thrown relatively far from current base point,
thereby enhancing the chances of venturing unexplored regions of the search space.
When F takes a value of 0.5, the newly generated mutant point lies near by the base
point as the difference vector gets very less weight. Thus it enhances the certainty of
local neighborhood search. In Fig. 1 two possible distribution of the donor vectors
have been shown around two mutant points generated by perturbing a base vector
X ⃗base with two values of the scale factor, F = 0.5 and F = 2 on a 2D search space.

Similarly for each individual, the Cr value is switched between 0 and 1. Note
that this means in our proposed DE variant can either the mutant/donor vector is
directly accepted as the final offspring (for Cr = 1) or the final offspring differs from
the target (parent) vector at a single index determined by jr (for Cr = 0). While the
former situation corresponds to the generation of rotationally invariant points, the
latter implies an axis parallel movement of the solution points.

Note that a plethora of DE variants has been published with different kinds of
parametric (like sampling from a Cauchy or Gaussian distribution, see e.g. [22, 23])
and non-parametric (sampling from a uniform distribution like [31]) randomization
in the tuning of F and Cr. However, such switching between only two extreme
values has never been proposed earlier. In what follows we name the resulting DE
variant as SWDE (Switching DE).

Each individual in SWDE can be mutated by any of the commonly used
mutation strategies in DE. It is now well-known that DE/best/1 induces somewhat
greedy search behaviour and hence can be recommended for unimodal functions.

Fig. 1 Effect of F = 2 and F = 0.5 in DE mutation

A Switched Parameter Differential Evolution … 109

On the other hand, DE/rand/1 introduces more randomization (since different base
vectors are perturbed to generate the mutant points for different individuals) and
explorability and is, hence, suitable for multimodal functions. In our proposal we
use a simple strategy for choosing any one of these two basic mutation schemes
based on the success record of just the last successful update at the same population
index. This means, at the first generation an individual is mutated either by
DE/rand/1 or DE/best/1 chosen randomly. If the corresponding target individual is
replaced by the trial (offspring), then the mutation scheme can be considered as a
good choice, and will be used for that individual (of same index) in the next
generation as well. If the trial is not selected for the individual, then the mutation
strategy is unsuccessful, and in the next generation the other mutation scheme will
be used for that individual.

We refer to this DE variant that combines the parameter switching scheme with a
success-based selection of the mutation strategies as SWDE_Success (SWitching
DE with Success-based selection of mutation scheme). Note that SWDE_Success
does not require any control parameter to tune, except for the population size Np,
which, however, is not really treated as a control parameter and is kept constant for
most of the representative literature on DE. There is no need to fix any initial values
for F and Cr, knowing only their feasible ranges would be fine. There is no
parametric probability distribution whose parameters (like mean, variance, offset
etc.) are required to be tuned.

Before moving on to the comparative study on standard benchmark suites, we
would like to illustrate that DE with these simple modifications can indeed better
preserve the population diversity, and thus can be helpful in retaining the useful
information about promising search regions in a better way. Measurement of
diversity level of the total population during the optimization work is another
important aspect of empirical analysis, because maintaining diversity along the
search process is another important aspect of large scale optimization. In proposed
work “distance-to-average point” measurement for diversity of the population PG at
generation G, as presented in [38], is used as follows:

diversity PGð Þ= 1
Np× L

∑
Np

i=1

ffi

∑
D

j=1
xij − xj̄
� �2

s

, ð5Þ

where Np represents population size, L is the length of the longest diagonal in the
search space of dimension D and xj̄ is the average value of j-th dimension of the
vector. Variation of population diversity with respect to iteration as defined in
(6) for the population is plotted in Fig. 2 for the Rastrigin’s function in 50D. It is
clear from the figure that the population of SWDE_Success never loses diversity
prematurely. In this figure the red line depicts population diversity for
SWDE_Success and blue one represents the same for standard DE.

In Fig. 3 we illustrate the distribution of population members of standard
DE/best/1/bin (F = 0.8 and Cr = 0.8) and the proposed SWDE_Success on a 2D
parameter space of the Rastrigin’s function. The figures present screenshots of the

110 S. Das et al.

Fig. 2 Comparison of variation of population diversity with number of iterations between
SWDE_Success and standard DE/best/1/bin

1noitaretI)1.b(1noitaretI)1.a(

5noitaretI)2.b(5noitaretI)2.a(

 (b.3) Iteration 20 (a.3) Iteration 20

Fig. 3 Screen-shots of the evolving populations on the iso-contours of the 2D Rastrigin’s function
for (a) standard DE/best/1 scheme with F = 0.8 and Cr = 0.8 (b) SWDE_Success

A Switched Parameter Differential Evolution … 111

population at 1st, 5-th and 20-th iterations. Note that for the two algorithms, the
iterations were started from the same initial population, so that the different spread
of the evolving populations may be attributed to their internal search mechanisms
only. It can be seen that the population members following the SWDE_Success
scheme can capture the global optimum more efficiently while still preserving the
population diversity.

4 Experiments and Results

A popular choice for evaluating the performance of the DE algorithm is to use the
benchmark suite proposed for the IEEE CEC (Congress on Evolutionary Compu-
tation) competitions. These suites contain collection of functions of diverse nature,
which can successfully validate the performance of an optimization algorithm in a
variety of scenarios.

The CEC 2008 [5] and CEC 2010 [6] test suites are specially designed with large
scale minimization problems (i.e. of dimensions D = 100, 500, and 1000), and thus,
useful for testing our proposed DE variant (SWDE_Success). Following standard
procedure, the mean and standard deviation of the error value is used to measure the
performance of an algorithm. The error is calculated as the difference between the
actual value of the global optimum and the obtained value of the optimum. Only for
function F7 of CEC 2008, the absolute value of the obtained optimum is recorded
and compared, because for that function, the globally optimal function value is
unknown. The population size has been taken as 100 for SWDE_Success in all the
cases. To evaluate the scalability of the algorithm in the worse condition, the
comparison is rendered on 1000 and 2000 dimensional problems.

For all the CEC 2008 benchmark problems and for all algorithms compared, the
maximum number of Function Evaluations (FEs) corresponding to each run was
taken to be 5000 ×D, where D denotes the dimensionality of the functions fol-
lowing [5]. Similarly for the CEC 2010 benchmarks, the maximum number of FEs
corresponding to each run was fixed to 3000×D [6, 18]. The parametric settings for
all the peer algorithms were kept similar to their respective literatures. For
SWDE_Success, the population size was fixed to Np = 100 for all 1000D problems
and Np = 150 for the 2000D problems. We find that this choice (which is standard
and straight forward) provides consistently good performance on the used bench-
marks, and little improvement takes place with increased execution time if we
increase the population size any further.

A non-parametric statistical test called Wilcoxon’s rank sum test for independent
samples [39] is conducted at the 5 % significance level in order to judge whether the
results obtained with the best performing algorithm differ from the final results of
rest of the competitors in a statistically significant way. In all result tables the
statistical test results are summarized in the following way. If the final error yielded
by an algorithm is statistically significantly different from that of the best per-
forming algorithm on a particular function, then the mean error of the former is

112 S. Das et al.

marked with a † symbol. If the difference of the error values found by one algorithm
is not statistically significant, as compared to its best competitor, then the mean of
this algorithm is marked with a ≈. The best performing algorithm in each case is
marked with boldface.

In order to demonstrate how the proposed parameter switching scheme works
harmoniously with the success-based mutation scheme, we begin with a compar-
ative study among the proposed SWDE_Success, the standard DE/best/1/bin
scheme with fixed F and Cr (F = 0.8, Cr = 0.9) and a SWDE that uses only
DE/best/1 mutation scheme for all its population members. The obtained results are
demonstrated in Table 1, which shows that SWDE provides much better results
than DE/best/1 with fixed F and Cr values. Also it can be observed that
SWDE_Success yields statistically better results as compared to both SWDE and
DE/best/1 on all the 7 functions of the CEC 2008 test bed.

To compare the performance of SWDE_Success against the existing
state-of-the-art, we consider the results of five other algorithms customised for large
scale global optimization. Two of them are the variants of the Particle Swarm
Optimisation (PSO) algorithm namely CCPSO2 [10] and EPUS-PSO (Efficient
Population Utilization Strategy for Particle Swarm Optimization) [40], which use a
variable grouping technique and an efficient population management scheme
respectively. The third one is Sep-CMA-ES [41] a scalable variation of the popular
CMA-ES optimization technique, which performs faster and better than the original
algorithm, especially on separable functions. The fourth is MTS (Multiple Tra-
jectory Search) [16], a hybrid local search method. The fifth one is MLCC
(Multi-Level Cooperative Co-evolution) [42]. The results are listed Table 2, where
SWDE_Success outperformed others, for all the functions except F6. For F6
CCPSO2 performed slightly better than SWDE_Success, however, result of the
rank sum test indicates that this difference is not statistically significant. Thus,
SWDE_Success is found to be more consistent on this benchmark suite. In terms of
the average rank SWDE_Success is the clear winner, followed by CCPSO2 and
MTS.

In Tables 3, 4 and 5 SWDE_Success results are compared with 11 other evo-
lutionary optimizers including some recent DE-variants (DECC-ML, DECC-CG,
DECC-DG, and DE/best/1/bin) on the CEC 2010 benchmarks. Out of the 20
high-dimensional functions SWDE_Success provided statistically significantly
better results compared to all its peer algorithms on 14 functions, and ranked second
in 3 functions. DECC-ML [43] performed best in three functions, namely F3, F11
and F16, jDELsgo [28] performed better on two functions F6 and F19, and
MA-SW-Chains [18] performed better than others only in one case of F12. The
rank sum test results indicate that on F3, the result of SWDE_Success is not
statistically significantly different from the best result given by DECC_ML. Simi-
larly for F6, the best result yielded by jDElsgo is statistically equivalent to that of
SWDE_Success. For CEC 2010 functions also SWDE_Success holds the minimum
average rank, the closest followers are jDELsgo, and MA-SW-Chains.

To further test the scalability of the proposed algorithm, three CEC 2008
functions (1 unimodal and 2 multimodals) of 2000 dimensions are used, as was also

A Switched Parameter Differential Evolution … 113

T
ab

le
1

Pe
rf
or
m
an
ce

im
pr
ov

em
en
t
by

th
e
pr
op

os
ed

al
go

ri
th
m

(S
W
D
E
_S

uc
ce
ss
)
fr
om

D
E
/b
es
t/1

/b
in

an
d
SW

D
E
(D

=
10

00
)

Fu
nc
.

F1
F2

F3
F4

F5
F6

F7

D
E
/b
es
t/1

/b
in

9.
88

e
+

05
†

1.
25

e
+

05
1.
29

1e
+

04
†

5.
62

e
+

01
7.
10

e
+

11
†

2.
35

e
+

09
6.
53

e
+

03
†

2.
55

e
+

02
8.
46

e
+

03
†

3.
52

e
+

02
1.
76

e
+

01
†

7.
89

e
+

00
−
2.
13

e
+

01
†

1.
15

e
+

01
SW

D
E

9.
95

e
−

18
†

1.
23

5
−

19
9.
04

6e
+

01
†

5.
46

e
+

01
6.
33

e
+

05
†

5.
73

e
+

01
5.
23

e
−

09
†

4.
61

e
−

05
1.
61

e
−

14
†

2.
25

e
−

12
2.
50

e
−

09
†

1.
16

e
−

07
−
7.
00

e
+

03
†

1.
22

e
+

01
SW

D
E
_

Su
cc
es
s

0.
00

e
+

00
0.
00

e
+

00
2.
24

e
+

00
2.
01

e
+

01
1.
03

e
−

03
1.
85

e
+

01
0.
00

e
+

00
0.
00

e
+

00
2.
74

e
−

22
1.
25

e
−

18
4.
31

e
−

12
3.
25

e
−

19
−
9.
85

e
+

04
2.
56

e
−

02

114 S. Das et al.

T
ab

le
2

Pe
rf
or
m
an
ce

of
6
la
rg
e
sc
al
e
ev
ol
ut
io
na
ry

op
tim

iz
er
s
in
cl
ud

in
g
SW

D
E
_S

uc
ce
ss

on
C
E
C

20
10

be
nc
hm

ar
k
su
ite

(D
=

10
00

)

Fu
nc
tio

n
F1

F2
F3

F4
F5

F6
F7

A
vg

.
R
an
k

C
C
PS

O
2
[1
0]

4.
99

e
−

13
†

9.
51

e
−

14
7.
55

e
+

01
†

4.
25

e
+

01
1.
30

e
+

03
†

2.
15

e
+

02
1.
17

e
−

03
†

3.
27

e
−

03
1.
17

e
−

03
†

3.
25

e
−

03
1.
01

e
−

12
1.
68

e
−

13
−
1.
44

e
+

04
†

8.
27

e
+

01
R
A
N
K

3
4

4
3

4
1

3
3.
14

Se
p-
C
M
A
-E
S

[4
1]

7.
79

e
−

15
†

1.
22

e
−

15
3.
10

e
+

02
†

9.
22

e
+

00
9.
09

e
+

02
†

4.
22

e
+

01
5.
25

e
+

03
†

2.
48

e
+

02
3.
91

e
−

04
†

1.
96

e
−

03
2.
16

e
+

01
†

3.
19

e
−

01
−
1.
24

e
+

04
†

9.
36

e
+

01
R
A
N
K

2
6

3
5

5
8

5
4.
85

E
PU

S-
PS

O
[4
0]

5.
49

e
+

02
†

2.
82

e
+

01
4.
55

e
+

01
†

4.
00

e
−

01
8.
31

e
+

05
†

1.
56

e
+

05
7.
56

e
+

03
†

1.
50

e
+

02
5.
80

e
+

00
†

3.
92

e
−

01
1.
84

e
+

01
†

2.
49

e
+

00
−
6.
68

e
+

03
†

3.
18

e
+

01
R
A
N
K

6
3

6
7

6
5

6
5.
57

M
L
C
C

[4
2]

8.
25

e
−

13
†

5.
59

e
−

14
1.
28

e
+

02
†

4.
75

e
+

00
1.
77

e
+

03
†

1.
25

e
+

02
1.
42

e
−

10
†

3.
31

e
−

10
4.
17

e
−

13
†

2.
79

e
−

14
1.
06

e
−

12
≈

7.
68

e
−

14
−
1.
49

e
+

04
†

1.
52

e
+

01
R
A
N
K

4
5

5
2

2
3

2
3.
28

M
T
S
[1
6]

1.
21

e
−

03
†

6.
14

e
−

03
4.
60

e
+

01
†

1.
5e

+
00

1.
77

e
−

02
†

7.
81

e
−

03
2.
81

e
+

02
†

4.
74

e
+

02
9.
45

e
−

08
†

2.
61

e
−

07
7.
20

e
−

04
†

2.
67

e
−

03
−
1.
31

e
+

04
†

3.
45

e
+

01
R
A
N
K

5
2

2
4

3
6

4
3.
71

SW
D
E
_

Su
cc
es
s

0.
00

e
+

00
0.
00

e
+

00
2.
24

e
+

00
2.
01

e
+

01
1.
03

e
−

03
1.
85

e
−

02
0.
00

e
+

00
0.
00

e
+

00
2.
74

e
−

22
1.
25

e
−

18
4.
31

e
−

12
≈

3.
25

e
−

19
−
9.
85

e
+

04
2.
56

e
−

02
R
A
N
K

1
1

1
1

1
2

1
1.
14

A Switched Parameter Differential Evolution … 115

T
ab

le
3

Pe
rf
or
m
an
ce

of
12

la
rg
e
sc
al
e
ev
ol
ut
io
na
ry

op
tim

iz
er
s
in
cl
ud

in
g
SW

D
E
_S

uc
ce
ss

on
C
E
C
20

10
be
nc
hm

ar
k
su
ite

(F
1
−

F7
,D

=
10

00
)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F1
F2

F3
F4

F5
F6

F7

jD
E
ls
go

[2
8]

M
ea
n

SD (R
an
k)

8.
85

e
−

20
†

4.
50

e
−

20
(7
)

1.
24

e
−

01
†

3.
44

e
−

01
(2
)

3.
79

e
−

12
≈

5.
02

e
−

12
(6
)

8.
01

e
+

10
†

3.
05

e
+

10
(2
)

9.
71

e
+

07
†

1.
42

e
+

07
(5
)

1.
69

e
−

08
4.
02

e
−

08
(1
)

4.
32

e
−

02
†

6.
35

e
−

02
(2
)

D
E
C
C
-M

L
[4
3]

M
ea
n

SD (R
an
k)

1.
36

e
−

25
†

1.
81

e
−

25
(3
)

2.
15

e
+

02
†

2.
91

e
+

01
(7
)

1.
14

e
−

13
8.
22

e
−

15
(1
)

3.
53

e
+

12
†

1.
51

e
+

12
(7
)

2.
98

e
+

08
†

9.
32

e
+

07
(1
0)

7.
94

e
+

05
†

3.
87

e
+

06
(8
)

1.
21

e
+

08
†

7.
65

e
+

07
(1
0)

D
A
SA

[4
5]

M
ea
n

SD (R
an
k)

1.
51

e
−

21
†

2.
32

e
−

21
(5
)

8.
44

e
+

00
†

2.
50

e
+

00
(5
)

7.
21

e
−

11
†

8.
22

e
−

12
(8
)

5.
04

e
+

11
†

2.
25

e
+

11
(5
)

6.
21

e
+

08
†

7.
81

e
+

07
(1
2)

1.
98

e
+

07
†

4.
41

e
+

04
(1
1)

7.
75

e
+

00
†

3.
11

e
+

00
(3
)

D
M
S-
PS

O
-S
H
S
[4
6]

M
ea
n

SD (R
an
k)

5.
55

e
−

15
†

4.
02

e
−

14
(6
)

8.
52

e
+

01
†

2.
02

e
+

01
(6
)

5.
51

e
−

11
†

3.
21

e
−

10
(7
)

2.
41

e
+

11
†

3.
31

e
+

10
(3
)

8.
35

e
+

07
†

6.
15

e
+

06
(4
)

8.
25

e
−

02
†

9.
95

e
−

01
(4
)

1.
95

e
+

03
†

1.
55

e
+

02
(6
)

SD
E
N
S
[3
4]

M
ea
n

SD (R
an
k)

5.
72

e
−

06
†

4.
42

e
−

06
(1
0)

2.
22

e
+

03
†

8.
92

e
+

01
(1
0)

2.
70

e
−

05
†

1.
52

e
−

05
(9
)

5.
12

e
+

12
†

2.
12

e
+

12
(9
)

1.
12

e
+

08
†

2.
23

e
+

07
(6
)

2.
23

e
−

04
†

4.
56

e
−

05
(3
)

1.
21

e
+

08
†

6.
52

e
+

07
(8
)

E
O
E
A

[4
4]

M
ea
n

SD (R
an
k)

2.
21

e
−

23
†

2.
81

e
−

23
(4
)

3.
61

e
−

01
†

6.
71

e
−

01
(3
)

1.
61

e
−

13
≈

1.
11

e
−

14
(2
)

3.
07

e
+

12
†

1.
66

e
+

12
(6
)

2.
26

e
+

07
†

5.
96

e
+

06
(3
)

3.
86

e
+

06
†

4.
96

e
+

05
(9
)

1.
21

e
+

02
†

1.
51

e
+

02
(5
)

D
E
C
C
-G

[9
]

M
ea
n

SD (R
an
k)

2.
94

e
−

07
†

8.
64

e
−

08
(9
)

1.
34

e
+

03
†

3.
24

e
+

01
(9
)

1.
38

e
+

00
†

9.
75

e
−

02
(1
0)

1.
75

e
+

13
†

5.
34

e
+

12
(1
1)

2.
64

e
+

08
†

8.
44

e
+

07
(9
)

4.
91

e
+

06
†

8.
01

e
+

05
(1
0)

1.
61

e
+

08
†

1.
31

e
+

08
(1
1)

M
L
C
C

[4
2]

M
ea
n

SD (R
an
k)

1.
55

e
−

27
†

7.
62

e
−

27
(2
)

5.
52

e
−

01
†

2.
22

e
+

00
(4
)

9.
82

e
−

13
≈

3.
72

e
−

12
(4
)

9.
60

e
+

12
†

3.
40

e
+

12
(1
0)

3.
80

e
+

08
†

6.
90

e
+

07
(1
1)

1.
61

e
+

07
†

4.
91

e
+

06
(1
2)

6.
81

e
+

05
†

7.
31

e
+

05
(8
) (c
on

tin
ue
d)

116 S. Das et al.

T
ab

le
3

(c
on

tin
ue
d)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F1
F2

F3
F4

F5
F6

F7

M
A
-S
W
-C
ha
in
s
[1
8]

M
ea
n

SD (R
an
k)

2.
09

e
−

14
†

1.
98

e
−

14
(7
)

8.
11

e
+

02
†

5.
81

e
+

01
(8
)

7.
21

e
−

13
≈

3.
41

e
−

13
(3
)

3.
52

e
+

11
†

3.
12

e
+

10
(4
)

1.
67

e
+

08
†

1.
07

e
+

08
(8
)

8.
13

e
+

04
†

2.
83

e
+

05
(7
)

1.
03

e
+

02
†

8.
71

e
+

01
(4
)

D
E
C
C
-D

G
[1
1]

M
ea
n

SD (R
an
k)

5.
41

e
+

03
†

2.
02

e
+

04
(1
1)

4.
33

e
+

03
†

1.
93

e
+

02
(1
1)

1.
61

e
+

01
†

3.
31

e
−

01
(1
1)

4.
78

e
+

12
†

1.
48

e
+

12
(8
)

1.
51

e
+

08
†

2.
12

e
+

07
(7
)

1.
63

e
+

01
†

2.
72

e
−

01
(5
)

1.
12

e
+

04
†

7.
41

e
+

03
(7
)

D
E
/b
es
t/1

/b
in

M
ea
n

SD (R
an
k)

3.
52

e
+

05
†

2.
69

e
+

05
(1
2)

9.
30

e
+

03
†

1.
3e

+
04

(1
2)

3.
53

e
+

03
†

2.
23

e
+

02
(1
2)

5.
25

e
+

19
†

9.
23

e
+

17
(1
2)

5.
23

e
+

06
†

9.
63

+
05

(2
)

2.
55

e
+

01
†

1.
21

e
+

01
(6
)

1.
08

e
+

11
†

9.
08

e
+

10
(1
2)

SW
D
E
_S

uc
ce
ss

M
ea
n

SD (R
an
k)

1.
59

e
−

30
1.
35

e
−

25
(1
)

1.
21

e
−

03
2.
35

e
−

06
(1
)

1.
21

e
−

12
≈

7.
35

e
−

12
(5
)

1.
00

e
+

06
2.
54

e
+

02
(1
)

3.
39

e
+

04
3.
37

e
+

02
(1
)

2.
33

e
−

08
≈

1.
01

e
−

07
(2
)

1.
05

e
−

03
1.
01

e
−

02
(1
)

A Switched Parameter Differential Evolution … 117

T
ab

le
4

Pe
rf
or
m
an
ce

of
12

la
rg
e
sc
al
e
ev
ol
ut
io
na
ry

op
tim

iz
er
s
in
cl
ud

in
g
SW

D
E
_S

uc
ce
ss

on
C
E
C
20

10
be
nc
hm

ar
k
su
ite

(F
8
−

F1
4,

D
=

10
00

)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F8
F9

F1
0

F1
1

F1
2

F1
3

F1
4

jD
E
ls
go

[2
8]

M
ea
n

SD (R
an
k)

3.
12

e
+

06
†

3.
23

e
+

06
(2
)

3.
13

e
+

07
†

5.
02

e
+

06
(5
)

2.
59

e
+

03
†

3.
18

e
+

02
(5
)

2.
21

e
+

01
†

1.
53

e
+

01
(4
)

1.
22

e
+

04
†

2.
05

e
+

03
(6
)

7.
12

e
+

02
†

1.
39

e
+

02
(2
)

1.
67

e
+

08
†

2.
09

e
+

07
(6
)

D
E
C
C
-M

L
[4
3]

M
ea
n

SD (R
an
k)

3.
41

e
+

07
†

3.
52

e
+

07
(7
)

5.
93

e
+

07
†

4.
71

e
+

06
(8
)

1.
21

e
+

04
†

2.
60

e
+

02
(1
2)

1.
79

e
−

13
9.
55

e
−

15
(1
)

3.
56

e
+

06
†

1.
35

e
+

05
(1
2)

1.
12

e
+

03
†

4.
30

e
+

02
(3
)

1.
70

e
+

08
†

1.
45

e
+

07
(7
)

D
A
SA

[4
5]

M
ea
n

SD (R
an
k)

4.
97

e
+

07
†

8.
94

e
+

07
(9
)

3.
61

e
+

07
†

4.
78

e
+

06
(6
)

7.
26

e
+

03
†

2.
61

e
+

02
(1
0)

1.
97

e
+

02
†

1.
52

e
−

01
(9
)

1.
70

e
+

03
†

2.
24

e
+

02
(4
)

1.
20

e
+

03
†

7.
34

e
+

02
(4
)

1.
01

e
+

08
†

7.
85

e
+

06
(4
)

D
M
S-
PS

O
-S
H
S
[4
6]

M
ea
n

SD (R
an
k)

1.
25

e
+

07
†

1.
95

e
+

06
(4
)

8.
55

e
+

06
†

6.
55

e
+

05
(2
)

5.
59

e
+

03
†

5.
19

e
+

02
(8
)

3.
29

e
+

01
†

2.
99

e
+

00
(6
)

6.
15

e
+

02
†

6.
05

e
+

01
(3
)

1.
25

e
+

03
†

1.
06

e
+

02
(5
)

1.
76

e
+

07
†

1.
56

e
+

06
(2
)

SD
E
N
S
[3
4]

M
ea
n

SD (R
an
k)

5.
15

e
+

07
†

2.
15

e
+

07
(1
0)

5.
61

e
+

08
†

5.
71

e
+

07
(1
2)

6.
81

e
+

03
†

5.
61

e
+

02
(9
)

2.
22

e
+

02
†

5.
02

e
−

01
(1
1)

4.
12

e
+

05
†

4.
22

e
+

04
(1
0)

2.
13

e
+

03
†

1.
03

e
+

03
(9
)

1.
83

e
+

09
†

2.
33

e
+

08
(1
1)

E
O
E
A

[4
4]

M
ea
n

SD (R
an
k)

1.
01

e
+

07
†

1.
21

e
+

07
(3
)

4.
62

e
+

07
†

4.
72

e
+

06
(7
)

1.
02

e
+

03
†

6.
92

e
+

01
(3
)

3.
82

e
+

01
†

1.
62

e
+

01
(8
)

1.
57

e
+

04
†

2.
50

e
+

03
(7
)

1.
54

e
+

03
†

4.
19

e
+

02
(6
)

1.
64

e
+

08
†

8.
94

e
+

06
(5
)

D
E
C
C
-G

[9
]

M
ea
n

SD (R
an
k)

6.
43

e
+

07
†

2.
81

e
+

07
(1
1)

3.
20

e
+

08
†

3.
36

e
+

07
(1
1)

1.
05

e
+

04
†

2.
94

e
+

02
(1
1)

2.
30

e
+

01
†

1.
75

e
+

00
(5
)

8.
91

e
+

04
†

6.
81

e
+

03
(9
)

5.
11

e
+

03
†

3.
91

e
+

03
(1
0)

8.
01

e
+

08
†

6.
02

e
+

07
(1
0)

M
L
C
C

[4
2]

M
ea
n

SD (R
an
k)

4.
37

e
+

07
†

3.
44

e
+

07
(8
)

1.
22

e
+

08
†

1.
29

e
+

07
(1
0)

3.
45

e
+

03
†

8.
75

e
+

02
(6
)

1.
91

e
+

02
†

6.
91

e
−

01
(1
0)

3.
41

e
+

04
†

4.
21

e
+

03
(8
)

2.
01

e
+

03
†

7.
21

e
+

02
(8
)

3.
11

e
+

08
†

2.
71

e
+

07
(8
) (c
on

tin
ue
d)

118 S. Das et al.

T
ab

le
4

(c
on

tin
ue
d)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F8
F9

F1
0

F1
1

F1
2

F1
3

F1
4

M
A
-S
W
-C
ha
in
s
[1
8]

M
ea
n

SD (R
an
k)

1.
41

e
+

07
†

3.
62

e
+

07
(5
)

1.
42

e
+

07
†

1.
12

e
+

06
(3
)

2.
02

e
+

03
†

1.
42

e
+

02
(4
)

3.
81

e
+

01
†

7.
31

e
+

00
(7
)

3.
61

e
−

06
5.
91

e
−

07
(1
)

1.
21

e
+

03
†

5.
71

e
+

02
(7
)

3.
11

e
+

07
†

1.
93

e
+

06
(3
)

D
E
C
C
-D

G
[1
1]

M
ea
n

SD (R
an
k)

3.
01

e
+

07
†

2.
11

e
+

07
(6
)

5.
91

e
+

07
†

8.
12

e
+

06
(9
)

4.
53

e
+

03
†

1.
42

e
+

02
(7
)

1.
01

e
+

01
†

1.
02

e
+

00
(3
)

2.
52

e
+

03
†

4.
85

e
+

02
(5
)

4.
58

e
+

06
†

2.
18

e
+

06
(1
2)

3.
46

e
+

08
†

2.
46

e
+

07
(9
)

D
E
/b
es
t/1

/b
in

M
ea
n

SD (R
an
k)

2.
46

e
+

11
†

2.
22

e
+

10
(1
2)

3.
03

e
+

07
†

1.
00

e
+

06
(4
)

4.
65

e
+

01
†

5.
11

e
+

01
(2
)

2.
35

e
+

03
†

1.
39

e
+

03
(1
2)

2.
36

e
+

06
†

1.
59

e
+

06
(1
1)

3.
59

e
+

06
†

1.
09

e
+

05
(1
1)

3.
25

e
+

17
†

1.
59

e
+

15
(1
2)

SW
D
E
_S

uc
ce
ss

M
ea
n

SD (R
an
k)

1.
35

e
+

05
2.
39

e
+

04
(1
)

2.
04

e
+

04
1.
09

e
+

02
(1
)

5.
15

e
+

00
1.
11

e
+

01
(1
)

1.
55

e
−

09
†

1.
35

e
−

10
(2
)

5.
00

e
+

02
†

3.
55

e
+

01
(2
)

3.
00

e
+

02
2.
00

e
+

00
(1
)

8.
15

e
+

06
2.
15

e
+

04
(1
)

A Switched Parameter Differential Evolution … 119

T
ab

le
5

Pe
rf
or
m
an
ce

of
12

la
rg
e
sc
al
e
ev
ol
ut
io
na
ry

op
tim

iz
er
s
in
cl
ud

in
g
SW

D
E
_S

uc
ce
ss

on
C
E
C

20
10

be
nc
hm

ar
k
su
ite

(F
15

−
F2

0,
A
ve
ra
ge

R
an
k,

D
=

10
00

)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

A
vg

.
R
an
k

on
al
l
fu
nc
tio

ns
F1

–
F2

0

jD
E
ls
go

[2
8]

M
ea
n

SD (R
an
k)

5.
85

e
+

03
†

4.
46

e
+

02
(5
)

1.
40

e
+

02
†

3.
42

e
+

01
(8
)

1.
00

e
+

05
†

1.
25

e
+

04
(7
)

1.
86

e
+

03
†

3.
11

e
+

02
(3
)

2.
73

e
+

05
2.
12

e
+

04
(1
)

1.
51

e
+

03
†

1.
32

e
+

02
(7
)

4.
3

D
E
C
C
-M

L
[4
3]

M
ea
n

SD (R
an
k)

1.
54

e
+

04
†

3.
51

e
+

02
(1
1)

5.
07

e
−

02
2.
54

e
−

01
(1
)

6.
56

e
+

06
†

4.
61

e
+

05
(1
1)

2.
42

e
+

03
†

1.
11

e
+

03
(5
)

1.
59

e
+

07
†

1.
71

e
+

06
(1
1)

9.
92

e
+

02
†

3.
55

e
+

01
(4
)

6.
95

D
A
SA

[4
5]

M
ea
n

SD (R
an
k)

1.
44

e
+

04
†

3.
66

e
+

02
(1
0)

3.
94

e
+

02
†

2.
12

e
−

01
(9
)

1.
04

e
+

04
†

8.
9e

+
02

(4
)

4.
42

e
+

03
†

2.
18

e
+

03
(7
)

8.
14

e
+

05
†

5.
56

e
+

04
(3
)

1.
03

e
+

03
†

1.
49

e
+

02
(6
)

6.
7

D
M
S-
PS

O
-S
H
S
[4
6]

M
ea
n

SD (R
an
k)

4.
68

e
+

03
†

2.
15

e
+

02
(4
)

6.
95

e
+

01
†

4.
25

e
+

00
(4
)

3.
23

e
+

03
†

4.
05

e
+

02
(3
)

2.
26

e
+

03
†

1.
16

e
+

02
(4
)

1.
16

e
+

06
†

1.
06

e
+

05
(6
)

3.
52

e
+

02
†

4.
02

e
+

01
(2
)

4.
45

SD
E
N
S
[3
4]

M
ea
n

SD (R
an
k)

7.
36

e
+

03
†

9.
63

e
+

01
(8
)

4.
03

e
+

02
†

2.
53

e
+

00
(1
0)

1.
02

e
+

06
†

1.
12

e
+

05
(1
0)

3.
01

e
+

04
†

1.
21

e
+

04
(1
0)

8.
82

e
+

05
†

1.
52

e
+

05
(4
)

9.
93

e
+

02
†

1.
63

e
+

01
(3
)

8.
6

E
O
E
A

[4
4]

M
ea
n

SD (R
an
k)

2.
14

e
+

03
†

1.
24

e
+

02
(2
)

8.
26

e
+

01
†

1.
68

e
+

01
(6
)

7.
93

e
+

04
†

8.
80

e
+

03
(6
)

2.
94

e
+

03
†

6.
92

e
+

02
(6
)

1.
84

e
+

06
†

9.
97

e
+

04
(8
)

1.
97

e
+

03
†

2.
35

e
+

02
(8
)

5.
35

D
E
C
C
-G

[9
]

M
ea
n

SD (R
an
k)

1.
26

e
+

04
†

8.
91

e
+

02
(9
)

7.
65

e
+

01
†

8.
15

e
+

00
(5
)

2.
85

e
+

05
†

1.
98

e
+

04
(9
)

2.
45

e
+

04
†

1.
05

e
+

04
(9
)

1.
15

e
+

06
†

5.
15

e
+

04
(5
)

4.
05

e
+

03
†

3.
66

e
+

02
(1
0)

9.
15

M
L
C
C

[4
2]

M
ea
n

SD (R
an
k)

7.
11

e
+

03
†

1.
31

e
+

03
(7
)

3.
72

e
+

02
†

4.
72

e
+

01
(1
1)

1.
52

e
+

05
†

1.
42

e
+

04
(8
)

7.
02

e
+

03
†

4.
72

e
+

03
(8
)

1.
32

e
+

06
†

7.
32

e
+

04
(9
)

2.
02

e
+

03
†

1.
82

e
+

02
(9
)

8.
05

(c
on

tin
ue
d)

120 S. Das et al.

T
ab

le
5

(c
on

tin
ue
d)

Fu
nc
tio

ns
A
lg
or
ith

m
s

F1
5

F1
6

F1
7

F1
8

F1
9

F2
0

A
vg

.
R
an
k

on
al
l
fu
nc
tio

ns
F1

–
F2

0

M
A
-S
W
-C
ha
in
s
[1
8]

M
ea
n

SD (R
an
k)

2.
86

e
+

03
†

1.
25

e
+

02
(3
)

9.
95

e
+

01
†

1.
45

e
+

01
(7
)

1.
25

e
+

00
≈

1.
25

e
−

01
(2
)

1.
34

e
+

03
†

4.
34

e
+

02
(2
)

2.
84

e
+

05
†

1.
69

e
+

04
(2
)

1.
05

e
+

03
†

7.
25

e
+

01
(5
)

4.
6

D
E
C
C
-D

G
[1
1]

M
ea
n

SD (R
an
k)

5.
84

e
+

03
†

1.
04

e
+

02
(6
)

7.
32

e
+

03
†

5.
72

e
−

14
(2
)

4.
06

e
+

04
†

2.
86

e
+

03
(5
)

1.
18

e
+

10
†

2.
08

e
+

09
(1
2)

1.
78

e
+

06
†

9.
58

e
+

04
(7
)

4.
89

e
+

07
†

2.
28

e
+

07
(1
2)

7.
75

D
E
/b
es
t/1

/b
in

M
ea
n

SD (R
an
k)

6.
66

e
+

05
†

5.
69

e
+

05
(1
2)

2.
33

e
+

03
†

1.
11

e
+

03
(1
2)

3.
95

e
+

07
†

6.
69

e
+

06
(1
2)

3.
52

e
+

07
†

1.
09

e
+

07
(1
1)

2.
55

e
+

09
†

1.
59

e
+

07
(1
2)

3.
54

e
+

05
†

9.
23

e
+

04
(1
1)

10
.0
1

SW
D
E
_S

uc
ce
ss

M
ea
n

SD (R
an
k)

1.
10

e
+

03
2.
09

e
+

01
(1
)

8.
50

e
−

01
†

1.
00

e
−

01
(3
)

1.
13

e
+

00
3.
13

e
−

01
(1
)

1.
01

e
+

03
2.
12

e
+

01
(1
)

5.
50

e
+

06
†

2.
00

e
+

05
(1
0)

3.
09

e
+

00
1.
00

e
−

01
(1
)

1.
85

A Switched Parameter Differential Evolution … 121

done in [10]. The performance is compared with two popular evolutionary large
scale optimizers of diverse origins, CCPSO2 and Sep-CMA-ES [41]. The obtained
results are summarized in Table 6. Sep-CMA-ES only performed better than
SWDE_Success in the case of the separable function F1. However, according to the
rank sum test, the difference between the final mean errors of sep-CMA-ES and
SWDE_Success is not statistically meaningful. For the multimodal non-separable
problems F3 and F7, SWDE_Success performed statistically better than both
CCPSO2 and sep-CMA-ES. CCPSO2 took the second place for F7 and
Sep-CMA-ES did the same for F3.

5 Conclusion

To address the problem of optimizing very high-dimensional numerical functions,
this paper presents a new variant of DE, referred here as the SWDE_Success, which
uses a simple switching scheme for the two key parameters of DE, the scale factor
and the crossover rate. SWDE_Success also employs a success-based selection of
either of the two kinds of mutation strategies. The algorithm uses two very common
mutation strategies (the greedy DE/best/1 and the explorative DE/rand/1 schemes)
and applies a simple scheme selection process, which only depends on the success
of a mutation scheme in the previous iteration in terms of generating a successful
offspring (one which could replace its parent during the selection).

Exploring a huge search volume (induced by the large number of variables) with
a limited population of candidate solutions is challenging and it requires a judicious
balance between the explorative and exploitative tendencies of an evolutionary
algorithm. This requirement is nicely fulfilled by the random selection of the control
parameter values from their extremities. Our results indicate that a combination of
the high and unconventional value of F (= 2) with the low value (= 0.5) can be
indeed very useful for solving benchmark functions. In contrast to some of the most
prominent approaches (like [22, 23, 26, 27]) that sample F values from the interval
of (0.4, 1) and Cr values from (0, 1), our results indicate that most of the useful

Table 6 Performance of SWDE_Success, CCPSO2 and Sep-CMA-ES on 3 functions from the
CEC 2008 test-suite (D = 2000)

Algorithms SWDE_Success CCPSO2 Sep-CMA-ES
Functions Mean

(Std. Dev.)
Mean
(Std. Dev.)

Mean
(Std. Dev.)

F1 1.23e − 14≈
(1.01e − 06)

1.03e − 12† (2.56e − 13) 7.12e − 15
(6.24e − 15)

F3 1.00e + 01
(2.10e + 00)

2.91e + 03† (6.43e + 02) 1.73e + 03† (7.77e + 01)

F7 −2.20e + 04
(1.01e + 02)

−2.28e + 04† (1.90e + 02) −2.46e + 04† (1.57e + 02)

122 S. Das et al.

information about F and Cr values can remain attached to the boundaries of their
feasible regions. This point requires further analytical and experimental investiga-
tions in future.

The future works may also include a detailed study on the dynamics and search
procedure of SWDE_Success, alongside an explanation of its success. Also the
parameter switching strategy may be further investigated in other optimization
scenarios like for moderate dimensional problems, for multi-objective, constrained
and dynamic optimization problems.

References

1. Foli, K., Okabe, T., Olhofer, M., Jin, Y., Sendhoff, B.: Optimization of micro heat exchanger:
CFD, analytical results and multiobjective evolutionary algorithms. Int. J. Heat Mass Transf.
49(5–6), 1090–1099 (2006)

2. Sonoda, T., Yamaguchi, Y., Arima, T., Olhofer, M., Sendhoff, B., Schreiber, H.A.: Advanced
high turning compressor airfoils for low Reynolds number condition, part I: Design and
optimization. J. Turbomach. 126(3), 350–359 (2004)

3. Wang, C., Gao, J.: High-dimensional waveform inversion with cooperative coevolutionary
differential evolution algorithm. IEEE Geosci. Remote Sens. Lett. 9(2), 297–301 (2012)

4. Das, S., Suganthan, P.N.: Problem definitions and evaluation criteria for CEC 2011
competition on testing evolutionary algorithms on real world optimization problems.
Technical Report, Jadavpur University, India and Nanyang Technological University,
Singapore (2010)

5. Tang, K., Yao, X., Suganthan, P., MacNish, C., Chen, Y., Chen, C., Yang, Z.: Benchmark
functions for the CEC’2008 special session and competition on large scale global
optimization. In: Nature Inspired Computat. Applicat. Lab., Univ. Sci. Technol. China,
Hefei, China, Tech. Rep. http://nical.ustc.edu.cn/cec08ss.php (2007)

6. Tang, K., Li, X., Suganthan, P., Yang, Z., Weise, T.: Benchmark functions for the CEC’2010
special session and competition on large scale global optimization. In: Nature Inspired
Computat. Applicat. Lab., Univ. Sci. Technol. China, Hefei, China, Tech. Rep. http://nical.
ustc.edu.cn/cec10ss.php (2009)

7. Potter, M., De Jong, K.: Cooperative coevolution: an architecture for evolving coadapted
subcomponents. Evol. Comput. 8(1), 1–29 (2000)

8. Ray, T., Yao, X.: A cooperative coevolutionary algorithm with correlation based adaptive
variable partitioning. In: Proceedings of the IEEE CEC, pp. 983–999, May 2009

9. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative
coevolution. Inf. Sci. 178(15), 2986–2999 (2008)

10. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE
Trans. Evol. Comput. 16(2), 210–224 (2011)

11. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping
for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2013)

12. Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function
optimization, SPIE 1196. Intell. Control Adapt. Syst. (1989). doi:10.1117/12.969927

13. Huang, T., Mohan, A.S.: Micro–particle swarm optimizer for solving high dimensional
optimization problems. Appl. Math. Comput. 181(2), 1148–1154 (2006)

14. Dasgupta, S., Biswas, A., Das, S., Panigrahi, B.K., Abraham, A.: A micro-bacterial foraging
algorithm for high-dimensional optimization. In: IEEE Congress on Evolutionary
Computation (CEC 2009), pp. 785–792, Tondheim, Norway, May 2009

A Switched Parameter Differential Evolution … 123

http://nical.ustc.edu.cn/cec08ss.php
http://nical.ustc.edu.cn/cec10ss.php
http://nical.ustc.edu.cn/cec10ss.php
http://dx.doi.org/10.1117/12.969927

15. Rajasekhar, A., Das, S., Das, S.: μABC: a micro artificial bee colony algorithm for large scale
global optimization. In: Soule, T. (ed.) Proceedings of the 14th Annual Conference
Companion on Genetic and Evolutionary Computation (GECCO ‘12), pp. 1399–1400,
ACM, New York, NY, USA. doi:10.1145/2330784.2330951. http://doi.acm.org/10.1145/
2330784.2330951

16. Tseng, L.Y., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE
Congress on Evolutionary Computation (CEC 2008), pp. 3052–3059, Hong Kong, June 2008

17. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory
search for large scale optimization. Soft. Comput. 15, 2175–2185 (2011)

18. Molina, D., Lozano, M., Herrera, F.: MA-SW-Chains: memetic algorithm based on local
search chains for large scale continuous global optimization. In: IEEE Congress on
Evolutionary Computation (CEC 2010), pp. 3153–3160, Barcelona, July, 2010

19. Molina, D., Lozano, M., Sánchez, A.M., Herrera, F.: Memetic algorithms based on local
search chains for large scale continuous optimization problems: MA-SSW-Chains. Soft.
Comput. 15, 2201–2220 (2011)

20. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

21. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans.
Evol. Comput. 15(1), 4–31 (2011)

22. Qin, A.K., Huang, V., Suganthan, P.: Differential evolution algorithm with strategy adaptation
for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417 (2009)

23. Zhang, J., Sanderson, A.: JADE: adaptive differential evolution with optional external archive.
IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

24. Epitropakis, M., Tasoulis, D., Pavlidis, N., Plagianakos, V., Vrahatis, M.: Enhancing
differential evolution utilizing proximity based mutation operators. IEEE Trans. Evol. Comput.
15(1), 99–119 (2011)

25. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution
algorithm with novel mutation and crossover strategies for global numerical optimization.
IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 482–500 (2012)

26. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation
strategies and control parameters. IEEE Trans. Evol. Comput. 15(1), 55–66 (2011)

27. Mallipeddi, R., Suganthan, P.N.: Differential evolution algorithm with ensemble of parameters
and mutation and crossover strategies. In: Proc. Swarm Evol. Memet. Comput., Chennai,
India, pp. 71–78 (2010)

28. Zamuda, A., Brest, J., Boˇskovi´c, B., Zumer, V.: Large scale global optimization using
differential evolution with self-adaptation and cooperative co-evolution. In: IEEE Congress on
Evolutionary Computation (CEC 2008), pp. 3718–3725, Hong Kong, June 2008

29. Parsopoulos, K.E.: Cooperative micro-differential evolution for high-dimensional
problems. In: Genetic and Evolutionary Computation Conference 2009 (GECCO 2009),
pp. 531–538, Montreal, Canada (2009)

30. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evolution with multi-trajectory
search for large scale optimization. Soft. Comput. 15, 2175–2185 (2011)

31. Brest, J., Maučec, M.S.: Self-adaptive differential evolution algorithm using population size
reduction and three strategies. Soft. Comput. 15(11), 2157–2174 (2011)

32. Wang, H., Wu, Z., Rahnamayan, S.: Enhanced opposition-based differential evolution for
solving high-dimensional continuous optimization problems. Soft. Comput. 15(11),
2127–2140 (2011)

33. Weber, M., Neri, F., Tirronen, V.: Shuffle or update parallel differential evolution for
large-scale optimization. Soft. Comput. 15(11), 2089–2107 (2011)

34. Wang, H., Wu, Z., Rahnamayan, S., Jiang, D.: Sequential DE enhanced by neighborhood
search for large scale global optimization. In: IEEE Congress on Evolutionary Computation
(CEC 2010), pp. 4056–4062, Barcelona, July, 2010

35. Zaharie, D.: Influence of crossover on the behavior of the differential evolution algorithm.
Appl. Soft Comput. 9(3), 1126–1138 (2009)

124 S. Das et al.

http://dx.doi.org/10.1145/2330784.2330951
http://doi.acm.org/10.1145/2330784.2330951
http://doi.acm.org/10.1145/2330784.2330951

36. Zaharie, D.: Critical values for the control parameters of differential evolution algorithms. In:
Proc. 8th Int. Mendel Conf. Soft. Comput., pp. 62–67 (2002)

37. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real parameter optimization with differential
evolution. In: The 2005 IEEE Congress on Evolutionary Computation (CEC2005), vol. 1,
pp. 506–513. IEEE Press (2005)

38. Hu, J., Zeng, J., Tan, Y.: A diversity-guided particle swarm optimizer for dynamic
environments. In: Proceedings of Bio-Inspired Computational Intelligence Applivations, vol.
9, no. 3, pp. 239–247. Lecture Notes in Computer Science (2007)

39. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric
statistical tests as a methodology for comparing evolutionary and swarm intelligence
algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

40. Hsieh, S.T., Sun, T.Y., Liu, C.C., Tsai, S.J.: Efficient population utilization strategy for
particle swarm optimizer. IEEE Trans. Syst. Man Cybern. B Cybern. 39(2), 444–456 (2009)

41. Ros, R., Hansen, N.: A simple modification in CMA-ES achieving linear time and space
complexity. Lect. Notes Comput. Sci. 5199, 296–305 (2008)

42. Yang, Z., Tang, K., Yao, X.: Multilevel cooperative coevolution for large scale optimization.
In: Proc. IEEE Congr. Evol. Comput., pp. 1663–1670, June 2008

43. Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale
non-separable function optimization. In: Proc. IEEE Congr. Evol. Comput., pp. 1762–1769,
July 2010

44. Wang, Y., Huang, J., Dong, W.S., Yan, J.C., Tian, C.H., Li, M., Mo, W.T.: Two-stage based
ensemble optimization framework for large-scale global optimization. Eur. J. Oper. Res. 228,
308–320 (2013)

45. Korošec, P., Šilc, J.: The differential ant-stigmergy algorithm for large scale real-parameter
optimization. In: Ant Colony Optimization and Swarm Intelligence, Lecture Notes in
Computer Science, vol. 5217, pp. 413–414, Springer, Berlin Heidelberg (2008)

46. Zhao, S., Liang, J., Suganthan, P.N., Tasgetiren, M.F.: Dynamic multi-swarm particle swarm
optimizer with local search for large scale global optimization. In: Proceedings of IEEE
Congress on Evolutionary Computation, pp. 3845–3852 (2008)

A Switched Parameter Differential Evolution … 125

The Initial Study on the Potential
of Super-Sized Swarm in PSO

Michal Pluhacek, Roman Senkerik and Ivan Zelinka

Abstract In this initial study it is addressed the issue of population size for the
PSO algorithm. For many years now it is understood that population size of several
dozens is sufficient for the vast majority of optimization tasks. With strict limitation
of cost function evaluations (CFEs) the setting is typically limited to adjusting the
number of iterations of the algorithm. In this study it is investigated the possibility
of using population of thousands of particles and its effect on the performance of the
algorithm in limited CFEs. It is also proposed an alternative setting of acceleration
constants in order to improve the performance of the PSO with super-sized pop-
ulation. The performance of the proposed method is tested on IEEE CEC 2013
benchmark set and compared with original PSO design and state of art methods.

Keywords Particle swarm optimization ⋅ PSO ⋅ Population size

1 Introduction

As one of the most prominent representatives of evolutionary computational
techniques (ECTs) the Particle swarm optimization algorithm (PSO) [1–4] is still,
years after its introduction, studied, modified and applied by many researchers. The
well-known issue of premature convergence into locals [1, 2, 5] has been one of the

M. Pluhacek (✉) ⋅ R. Senkerik
Faculty of Applied Informatics, Tomas Bata University in Zlin,
Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic
e-mail: pluhacek@fai.utb.cz

R. Senkerik
e-mail: senkerik@fai.utb.cz

I. Zelinka
Faculty of Electrical Engineering and Computer Science,
Technical University of Ostrava, 17. Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
e-mail: ivan.zelinka@vsb.cz

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_10

127

biggest challenges for PSO researchers. Many different approaches were recently
developed to improve the performance of PSO such as the multi-swarms [6],
comprehensive learning [7] or orthogonal learning [8]. Despite the increasing
complexity of the latest PSO modifications this study intends to prove that there is
still potential for simple but effective alternations of the original design. The issue
of population size and structure [9] has been studied previously but in these days
the complexity of optimization tasks has significantly increased and the perfor-
mance of the PSO with alternative population size setting may prove very prom-
ising when dealing with the most complex problems. The inspiration came from
nature where insect swarm can easily have thousands of individuals.

The rest of the paper is structured as follows: In the following section the PSO
algorithm and the motivation for the alternative population size setting is explained.
The experiment is designed in Sect. 3 and results presented in Sect. 4. The results
are discussed in Sect. 5 before the final conclusion.

2 Particle Swarm Optimization Algorithm
and Population Size

Original PSO takes the inspiration from behavior of fish and birds. The knowledge
of global best found solution (typically noted gBest) is shared among the particles in
the swarm. Furthermore each particle has the knowledge of its own (personal) best
found solution (noted pBest). Last important part of the algorithm is the velocity of
each particle that is taken into account during the calculation of the particle
movement. The new position of each particle is then given by (1), where xi

t+1 is the
new particle position; xi

t refers to current particle position and vi
t+1 is the new

velocity of the particle.

xt+1
i = xti + vt+1

i ð1Þ

To calculate the new velocity the distance from pBest and gBest is taken into
account alongside with current velocity (2).

vt+1
ij =w ⋅ vtij + c1 ⋅Rand ⋅ ðpBestij − xtijÞ+ c2 ⋅Rand ⋅ ðgBestj − xtijÞ ð2Þ

Where:
vij
t+1 - New velocity of the ith particle in iteration t + 1. (component j of the
dimension D).
w - Inertia weight value.
vij
t - Current velocity of the ith particle in iteration t. (component j of the
dimension D).
c1, c2 = 2 - Acceleration constants.

128 M. Pluhacek et al.

pBestij - Local (personal) best solution found by the ith particle. (component j of
the dimension D).
gBestj - Best solution found in a population. (component j of the dimension D).
xij
t - Current position of the ith particle (component j of the dimension D) in
iteration t.
Rand - Pseudo random number, interval (0, 1).

Finally the linear decreasing inertia weight [2, 3] is used. The dynamic inertia
weight is meant to slow the particles over time thus to improve the local search
capability in the later phase of the optimization. The inertia weight has two control
parameters wstart and wend. A new w for each iteration is given by (3), where t stands
for current iteration number and n stands for the total number of iterations. The
typical values used in this study were wstart = 0.9 and wend = 0.4.

w=wstart −
wstart −wendð Þ ⋅ tð Þ

n
ð3Þ

The population size is typically set to 30–60 for PSO [5–9]. In this work an
experiment is carried out to investigate the impact of significant increase of the
population size on the performance of the original PSO. As the limitation of
maximum number of cost function evaluations (CFEs) is constant the increasing of
population size leads to significant decrease of the number of iterations of the
algorithm. The presumption in this work is that the super-sized swarms may be
capable to outperform the PSO with typical population size settings on particularly
complex optimization tasks. During initial experiments it was found out that the
issue of premature convergence that is typical for PSO cannot be solved by simple
addition of particles and decreasing the number of iterations. The performance of
above mentioned approach is presented in this paper. However with the signifi-
cantly increased population size it is possible to alter one of the fundamental
principles of PSO and set both acceleration constants to the value of 1. By doing so,
the performance of the algorithm can be significantly improved on complex test
functions as is presented in the following sections.

3 Experiment Setup

In this initial study the performance of the newly proposed method was tested on
the full IEEE CEC 2013 benchmark set [10] for dim = 10. According to the
benchmark rules 51 separate runs were performed for each algorithm and the
maximum number of cost function evaluations (CFEs) was set to 100000. The
population size (NP) for the alternative setting was set to 2000 based on tuning
experiment.

For different combinations of setting were tested and noted PSO 1, PSO 2, PSO 3
and PSO 4.

The Initial Study on the Potential of Super-Sized Swarm in PSO 129

For PSO 1:
c1,c2 = 2; NP = 50; Iterations = 2000;

For PSO 2:
c1,c2 = 2; NP = 2000; Iterations = 50;

For PSO 3:
c1,c2 = 1; NP = 50; Iterations = 2000;

For PSO 4:
c1,c2 = 1; NP = 2000; Iterations = 50;

Other controlling parameters of the PSO and DE were set to typical values as
follows:

wstart = 0.9;

wend = 0.4;

vmax = 0.2;

4 Results

The mean results of all previously described PSO variants are presented in the
following Table 1. The best results are given in bold numbers.

Furthermore as an example the mean history of the best found solution during
the optimization in given in Figs. 1, 2 and 3.

In Table 2 the performance of PSO 4 is compared to the state of art methods
based on PSO: the self-adaptive heterogeneous PSO for real-parameter optimization
[11] noted fk-PSO and the Particle Swarm Optimization and Artificial Bee Colony
Hybrid algorithm noted ABS-SPSO [12].

5 Results Discussion

The main focus of this study was the performance of proposed alternative setting of
the PSO on the most complex benchmark functions (noted with c in the tables).

Initially the PSO with population of 2000 particles (PSO 2) did not outperform
the original design and therefore proved that the simple act of increasing the size of
the population at the cost of less iteration is not beneficial for the optimization
process. However when the acceleration constants values were altered also the PSO
with population size 2000 significantly improved its performance and outperformed
all other settings on complex functions.

The performance of the PSO with super-sized population and alternative setting
of acceleration constants (noted PSO 4) was significantly improved on the majority
of the complex problems in the benchmark set (see Table 1). In Addition the
performance on the unimodal yet non-primitive functions f2 and f3 is also very

130 M. Pluhacek et al.

encouraging. The differences in convergence curves can be clearly observed from
Figs. 1, 2 and 3. It is clear that in the selected cases (complex functions) the
proposed alternative settings achieves not only better final results but also faster
convergence speed.

Furthermore when compared with the more complex state of art algorithms this
simple alternation of the original PSO presented very promising performance on the
complex functions (Table 2).

These results clearly support the idea that super-sized swarms may prove
effective for complex tasks and may bring new view into the discussion of optimal
population size for swarm based ECTs.

Table 1 Mean results comparison, dim = 10, max. CFE = 100000

Function fmin PSO 1 PSO 2 PSO 3 PSO 4

f u1 −1400 −1.40E + 03 −1.40E + 03 −1.40E + 03 −1.40E + 03

f u2 −1300 2.45E + 05 1.35E + 06 7.24E + 05 1.53E + 05
f u3 −1200 1.86E + 06 2.99E + 07 1.72E + 07 1.76E + 06
f u4 −1100 −5.20E + 02 1.14E + 03 1.58E + 03 −1.94E + 02

f u5 −1000 −1.00E + 03 −9.99E + 02 −1.00E + 03 −1.00E + 03

f m6 −900 −8.94E + 02 −8.86E + 02 −8.79E + 02 −8.92E + 02

f m7 −800 −7.96E + 02 −7.87E + 02 −7.83E + 02 −7.94E + 02

f m8 −700 −6.80E + 02 −-6.80E + 02 −6.80E + 02 −6.80E + 02

f m9 −600 −5.97E + 02 −5.95E + 02 −5.96E + 02 −5.97E + 02

f m10 −500 −5.00E + 02 −4.98E + 02 −4.99E + 02 −5.00E + 02

f m11 −400 −3.98E + 02 −3.79E + 02 −3.96E + 02 −3.94E + 02

f m12 −300 −2.87E + 02 −2.72E + 02 −2.84E + 02 −2.88E + 02
f m13 −200 −1.80E + 02 −1.71E + 02 −1.73E + 02 −1.83E + 02
f m14 −100 5.72E + 01 7.45E + 02 1.43E + 02 2.23E + 02

f m15 100 8.45E + 02 1.34E + 03 7.92E + 02 7.58E + 02
f m16 200 2.01E + 02 2.01E + 02 2.01E + 02 2.01E + 02

f m17 300 3.14E + 02 3.43E + 02 3.16E + 02 3.20E + 02

f m18 400 4.32E + 02 4.44E + 02 4.22E + 02 4.23E + 02

f m19 500 5.01E + 02 5.03E + 02 5.01E + 02 5.01E + 02

f m20 600 6.03E + 02 6.03E + 02 6.03E + 02 6.02E + 02
f c21 700 1.08E + 03 1.07E + 03 1.09E + 03 1.10E + 03

f c22 800 9.71E + 02 1.72E + 03 1.12E + 03 1.19E + 03

f c23 900 1.81E + 03 2.46E + 03 2.00E + 03 1.79E + 03
f c24 1000 1.21E + 03 1.21E + 03 1.22E + 03 1.20E + 03
f c25 1100 1.30E + 03 1.30E + 03 1.31E + 03 1.29E + 03
f c26 1200 1.36E + 03 1.40E + 03 1.35E + 03 1.38E + 03

f c27 1300 1.67E + 03 1.73E + 03 1.73E + 03 1.63E + 03
f c28 1400 1.69E + 03 1.70E + 03 1.76E + 03 1.66E + 03

The Initial Study on the Potential of Super-Sized Swarm in PSO 131

NP 50 000 100 000
CFE

2500

3000

3500

gBest Value

PSO 4
PSO 3
PSO 2
PSO 1

Fig. 1 Mean best value history comparison 51 runs – f23

NP 50 000 100 000
CFE

1800

1900

2000

2100

2200

gBest Value

PSO 4
PSO 3
PSO 2
PSO 1

Fig. 2 Mean best value history comparison 51 runs – f27

132 M. Pluhacek et al.

NP 50 000 100 000 CFE

1800

2000

2200

2400

2600

gBest Value

PSO 4
PSO 3
PSO 2
PSO 1

Fig. 3 Mean best value history comparison 51 runs – f28

Table 2 Mean results comparison, dim = 10, max. CFE = 100000

Function fmin PSO 4 fk-PSO ABS-SPSO

f u1 −1400 −1.40E + 03 −1.40E + 03 −1.40E + 03

f u2 −1300 1.53E + 05 1.43E + 05 1.48E + 05

f u3 −1200 1.76E + 06 6.74E + 05 1.27E + 05
f u4 −1100 −1.94E + 02 −6.84E + 02 1.30E + 03

f u5 −1000 −1.00E + 03 −1.00E + 03 −1.00E + 03

f m6 −900 −8.92E + 02 −8.97E + 02 −8.95E + 02

f m7 −800 −7.94E + 02 −7.98E + 02 −8.00E + 02
f m8 −700 −6.80E + 02 −6.80E + 02 −6.80E + 02

f m9 −600 −5.97E + 02 −5.97E + 02 −5.96E + 02

f m10 −500 −5.00E + 02 −4.99E + 02 −5.00E + 02

f m11 −400 −3.94E + 02 −4.00E + 02 −4.00E + 02

f m12 −300 −2.88E + 02 −2.93E + 02 −2.94E + 02
f m13 −200 −1.83E + 02 −1.89E + 02 −1.94E + 02
f m14 −100 2.23E + 02 −6.22E + 01 −9.96E + 01
f m15 100 7.58E + 02 5.54E + 02 5.96E + 02

f m16 200 2.01E + 02 2.00E + 02 2.00E + 02

f m17 300 3.20E + 02 3.11E + 02 3.10E + 02
f m18 400 4.23E + 02 4.16E + 02 4.17E + 02

f m19 500 5.01E + 02 5.01E + 02 5.00E + 02
f m20 600 6.02E + 02 6.03E + 02 6.02E + 02

f c21 700 1.10E + 03 1.08E + 03 1.10E + 03
(continued)

The Initial Study on the Potential of Super-Sized Swarm in PSO 133

6 Conclusion

In this paper the idea of super-sized population for PSO was presented. The
inspiration for this approach came from nature where insect swarm can easily have
thousands of individuals. The population size was set to 2000 and the performance
of the algorithm was tested on the CEC´13 benchmark set.

Furthermore the acceleration constants were changed to value of 1 and by doing
so the performance of PSO algorithm with linear decreasing inertia weight and
saturation of max. velocity was significantly improved on the majority of complex
benchmark functions when compared with the original design. Furthermore the
comparison of this very simple method with significantly more complex state-of-art
methods brought very encouraging results.

It is necessary to support this initial and small scale study with further and more
extensive studies. This will be the main objective of future research. The usefulness
of this method for other evolutionary computational techniques will also be
investigated.

Acknowledgments This work was supported by Grant Agency of the Czech Republic - GACR
P103/15/06700S, further by financial support of research project NPU I No. MSMT-7778/2014 by
the Ministry of Education of the Czech Republic. also by the European Regional Development
Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, partially supported by Grant of
SGS No. SP2015/142, VŠB - Technical University of Ostrava, Czech Republic and by Internal
Grant Agency of Tomas Bata University under the project No. IGA/FAI/2015/057.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on
Neural Networks, pp. 1942–1948 (1995)

2. Yuhui, S., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on
Computational Intelligence, pp. 69–73, 4–9 May 1998

3. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization
algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011)

Table 2 (continued)

Function fmin PSO 4 fk-PSO ABS-SPSO

f c22 800 1.19E + 03 9.22E + 02 8.13E + 02
f c23 900 1.79E + 03 1.42E + 03 1.50E + 03

f c24 1000 1.20E + 03 1.20E + 03 1.20E + 03

f c25 1100 1.29E + 03 1.31E + 03 1.30E + 03

f c26 1200 1.38E + 03 1.39E + 03 1.33E + 03
f c27 1300 1.63E + 03 1.67E + 03 1.65E + 03

f c28 1400 1.66E + 03 1.73E + 03 1.69E + 03

134 M. Pluhacek et al.

4. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers
(2001)

5. van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle
trajectories. Inf. Sci. 176(8), 937–971 (2006)

6. Liang, J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer. In: Swarm
Intelligence Symposium, SIS 2005, pp. 124–129 (2005)

7. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm
optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3),
281–295 (2006)

8. Zhi-Hui, Z., Jun, Z., Yun, L., Yu-hui, S.: Orthogonal learning particle swarm optimization.
IEEE Trans. Evol. Comput. 15(6), 832–847 (2011)

9. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In:
Proceedings of the 2002 Congress on Evolutionary Computation, CEC ‘02, 2002,
pp. 1671–1676 (2002)

10. Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernández-Díaz, A.G.: Problem Definitions and
Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter
Optimization, Technical Report 201212. Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang Technological University,
Singapore (2013)

11. Nepomuceno F., Engelbrecht A.: A self-adaptive heterogeneous pso for real-parameter
optimization. In: Proceedings of the IEEE International Conference on Evolutionary
Computation (2013)

12. El-Abd M.: Testing a Particle Swarm Optimization and Artificial Bee Colony Hybrid
algorithm on the CEC13 benchmarks. In: IEEE Congress on Evolutionary Computation,
pp. 2215–2220 (2013)

The Initial Study on the Potential of Super-Sized Swarm in PSO 135

A Levy Interior Search Algorithm
for Chaotic System Identification

Rushi Jariwala, Rohan Patidar and Nithin V. George

Abstract In this paper, an improved interior search algorithm (ISA) is designed

by incorporating Lévy flight for solving optimisation problems. Lévy flight pattern

seen in some birds, is a special type of movement along a straight line followed by

sudden turns in random directions. The convergence rate of ISA is improved using

the principles of Lévy flight in the proposed levy interior search algorithm (LISA).

LISA is validated against a set of benchmark optimisation problems to demonstrate

its performance. Further, LISA is used for parameter identification of an integer order

Rossler’s chaotic system. Simulation results show that LISA outperforms other well-

known existing optimisation algorithms like particle swarm optimisation (PSO), ISA

and cuckoo search algorithm (CSA).

Keywords Interior search algorithm ⋅ Particle swarm optimisation ⋅Cuckoo search

algorithm ⋅ Chaotic systems

1 Introduction

Many popular deterministic optimisation techniques use a gradient descent approach

and such methods can suffer from local optima problems when applied to solve multi-

modal optimisation tasks. Meta-heuristic algorithms have been designed to solve

this limitation of traditional deterministic optimisation schemes. Some of the most

popular meta-heuristic algorithms include the genetic algorithm (GA) [6], particle

swarm optimisation (PSO) [8], differential evolution (DE) [10], ant colony optimi-

sation (ACO) [2] and artificial bee colony (ABC) optimisation algorithm [7].

R. Jariwala ⋅ R. Patidar ⋅ N.V. George (✉)
Department of Electrical Engineering, Indian Institute of Technology Gandhinagar,

Ahmedabad 382424, Gujarat, India

e-mail: nithin@iitgn.ac.in

R. Patidar

e-mail: rohanpatidar@iitgn.ac.in

R. Jariwala

e-mail: rushi.jariwala@iitgn.ac.in

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_11

137

138 R. Jariwala et al.

Even though most of the popular meta-heuristic algorithms are bio-inspired,

there are a few other famous meta-heuristic algorithms which are inspired by other

phenomena. For example, harmony search algorithm (HSA) is a meta-heuristic

algorithm based on the way musicians create a piece of music [5]. Internal search

algorithm (ISA) is a recent meta-heuristic algorithm, which is inspired by the man-

ner in which a designer organizes objects in a room to enhance the overall aesthetics

[4]. ISA has been successfully applied for engineering optimisation in [3].

Cuckoo search algorithm (CSA) is a recently developed evolutionary meta-

heuristic algorithm, which has gained significant attention of the optimisation com-

munity [12]. CSA is inspired by the breeding behaviour of a species of cuckoo and

has been successfully applied in solving several classes of optimisation problems in

engineering and technology [1, 9, 11]. The effectiveness of CSA is solving global

optimisation problems may be attributed to the concept of Lévy flights, which are

random motion that can been seen in some species of birds. With an objective to

enhance the optimisation capability of ISA, we have designed a new meta-heuristic

optimisation algorithm namely the Lévy interior search algorithm (LISA) by incor-

porating some of the concepts of Lévy flights into ISA. We have also designed a

variable selection parameter to further enhance the convergence characteristics of

LISA.

The rest of the paper is organized as follows. The Lévy interior search algorithm

is introduced in Sect. 2. The effectiveness of the new algorithm is tested in Sect. 3

by using the algorithm in solving some benchmark optimisation tasks. The proposed

algorithm has also been employed for identifying unknown parameters in a chaotic

system in Sect. 3 and the concluding remarks are made in Sect. 4.

2 Levy Interior Search Algorithm

ISA is an evolutionary computing algorithm, which has been proposed recently. ISA

has been inspired from the design principles of a room, especially from the aesthetics

point of view, in which the architect tries to replicate the best features of a room. An

attempt has been made in this section to improve the optimisation capability of ISA

by incorporating the principle of Lévy flights. Lévy flights are a flight pattern seen in

birds and the proposed algorithm is called the Lévy interior search algorithm (LISA).

The basic steps involved in LISA are summarised as follows:

Step 1 Define the search space and randomly distribute n elements, xi for i =
1, 2, 3,… , n within the search space.

Step 2 Evaluate the fitness fi for all the elements. Identify the element with the best

fitness, which is referred to as xglobal.
Step 3 Randomly cluster the elements into two groups, the composition and mirror

groups. An element xi will be added to the mirror group (MG) if

randi ≤ 𝛼 (1)

A Levy Interior Search Algorithm for Chaotic System Identification 139

and will be added to composition group (CG) otherwise. In (1), 𝛼 (with

0 ≤ 𝛼 ≤ 1) is a selection parameter, which has been considered as a fixed

value in a conventional ISA [4]. It may be noted that having more elements

in CG improves the global search capability. In an endeavour to improve the

convergence speed, we have used a dynamic 𝛼, which varies linearly upto

80% of the iterations and is kept as a constant close to 1 after that. Keeping

𝛼 near 1 towards the later stages of the iterations result in a larger mirror

group (which can help in local search). Overall a variable 𝛼 leads to faster

convergence.

Step 4 An image of an MG element xi is created at the position xnewi by placing

a mirror at xmirror. The mirror is placed perpendicular to a line joining the

element xi of MG and xglobal. The location of the mirror is given by

xmirror = rand ∗ xi + (1 − rand) ∗ xglobal (2)

and the updated position for the mirror element is given by

xnewi = 2 ∗ xmirror − xi. (3)

This is analogous to placing a mirror near the best object in the room to

emphasize its beauty and to make the view more attractive.

Step 5 The position of all elements in CG are updated to new positions

xnewi = LCG + (UCG − LCG) ∗ rand (4)

where LCG and UCG are the lower and upper bounds of the elements in CG

during the previous generation. The position update in (4) will be discarded

if the fitness at xnewi is worse than that at the original position xi. This concept

is similar to a situation in which the designer move objects within a room to

enhance the room’s beauty and the objects will be placed at their new position

only if the beauty of the room is enhanced by the change.

Step 6 The global best element is updated as

xnew
global = xglobal + rn ∗ 𝜆 (5)

where rn is a normally distributed random vector and 𝜆 is a scale factor, which

is dependent on the search area. The updated global best element is retained

only if the fitness at the new position is better than that at the earlier position.

Step 7 An attempt is made to update the positions of all elements through a Lévy
manoeuvre which is a random motion seen in birds. The position which is

giving better fitness among the updated and original position is kept as the

final position of the element in this step. Lévy flight is performed on all ele-

ments to obtain new positions

140 R. Jariwala et al.

Fig. 1 Flowchart for LISA

A Levy Interior Search Algorithm for Chaotic System Identification 141

xinew = xi + 𝜇 ⊕ Lévy(𝛽), (6)

where 𝜇 is the step size, ⊕ represents the entry wise multiplication operation

and 𝛽 is a Lévy flight parameter (1 < 𝛽 ≤ 3).
Step 8 Combine the MG and CG into a single group of all elements.

Step 9 Repeat steps 2 to 8 until stopping criteria is met and the return the best ele-

ment as the solution.

Figure 2 shows the schematic diagram of the different types of agent motion (for

one iteration) which happens in the proposed LISA and the flowchart of the algorithm

is given in Fig. 1.

Fig. 2 Schematic diagram of agent movement in the search space for two generations of LISA

3 Simulation Study

The effectiveness of the proposed LISA in solving optimisation problems is evalu-

ated in this section. This section is divided into two parts. In the first section, the

feasibility of using proposed LISA is validated against a set of benchmark test func-

tions. The results obtained are compared with that of a classical evolutionary algo-

rithm like PSO. It is also compared with the results obtained using ISA and CSA.

142 R. Jariwala et al.

Fig. 3 (a) Comparison of

convergence characteristics

for computing the minimum

value of a Rosenbrock

function. (b) Variation of

𝛼 with respect to iterations

0 500 1000 1500 2000
0.2

0.4

0.6

0.8

1

Iterations

α

0 500 1000 1500 2000
−300

−200

−100

0

100

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(d
B

)

LISA

ISA

CSA

(a)

(b)

In the second section, LISA is used for parameter identification of Rossler’s system,

which is a popular chaotic system.

3.1 Case A: Benchmark Test Functions

LISA has been employed for optimisation of a few benchmark problems. The task

is to determine the minimum value of the test function (fi) and we have considered

four multimodal and four unimodal test functions for this study. The definition of

the test functions, the range of the search space as well as the actual minimum value

of each of test function is given in Table 1. For all the algorithms considered in this

study, the population size has been taken as 100 and 50 for multimodal and unimodal

functions respectively.

The various parameters used in this case are given below. The scale factor 𝜆 for

ISA as well as LISA has been taken as 1 × 10−9 × (U − L), where U and L are the

upper and lower bounds of the search space. For LISA, the value of the parameter 𝛼

has been set to increase linearly from 0.2 to 0.3 for the first 80% of the generations

and thereafter 𝛼 has been kept constant at 0.8. However in ISA, 𝛼 is kept constant

at 0.25. The Lévy flight step size of LISA has been considered as 0.1. For CSA, the

step size is taken as 0.1 and pa = 0.25. We have employed a standard PSO algorithm

with the acceleration parameters c1 and c2 taken as 2 the inertial weight 𝜇 is linearly

varied from 0.9 to 0.2 for improved convergence.

The mean and standard deviation of the error, for each of the algorithm stud-

ied, in reaching the global minimum value has been compared in Table 2. These

values are an average of 100 independent experiments and have been measured at

the end of 2000 iterations for multimodal functions and 50 iterations for unimodal

functions. The improved capability of LISA in finding the optimal solutions, in com-

A Levy Interior Search Algorithm for Chaotic System Identification 143

Ta
bl
e
1

D
e
fi

n
it

io
n

o
f

th
e

b
e
n
c
h
m

a
rk

te
s
t

f
u
n
c
ti

o
n
s

f i
F

u
n
c
ti

o
n

n
a
m

e

D
im

e
n
s
io

n

(
d
)

F
u
n
c
ti

o
n

F
u
n
c
ti

o
n

m
in

im
a

R
a
n
g
e

f 1
A

c
k
le

y
12
8

f(
x)

=
−
20
ex
p(

−
0.
2√

1 d

∑
d i=
1
x2 i)

−
ex
p(

1 d

∑
d i=
1
co
s(
2𝜋

x i
))

+
a
+
ex
p(
1)

0
[−

32
.7
68
,
32
.7
68
]

f 2
Z

a
k
h
a
ro

v
30

f(
x)

=
∑

d i=
1
x2 i

+
(∑

d i=
1
0.
5i
x i
)2
+
(∑

d i=
1
0.
5i
x i
)4

0
[−

5,
10
]

f 3
R

o
s
e
n
b
ro

c
k

16
f(
x)

=
∑

d−
1

i=
1
[1
00
(x

i+
1
−
x2 i)

2
+
(x

i
−
1)

2]
0

[−
5,
10
]

f 4
D

e
J
o
n
g

25
6

f(
x)

=
∑

d i=
1
x2 i

0
[−

5.
12
,
5.
12
]

f 5
S

h
u
b
e
r
t

2
f(
x)

=
(
∑

5 i=
1
ic
os
((i

+
1)
x 1

+
i))

(
∑

5 i=
1
ic
os
((i

+
1)
x 2

+
i))

−
18
6.
73
09

[−
5.
12
,
5.
12
]

f 6
E

a
s
o
m

2
f(
x)

=
−
co
s(
x 1
)c
os
(x

2)
ex
p(

−
(x

1
−
𝜋
)2
−
(x

2
−
𝜋
)2
)

−
1

[−
10
0,
10
0]

f 7
M

ic
h
a
le

w
ic

z
2

f(
x)

=
−
∑

d i=
1
si
n(
x i
)(
si
n2

0 (
ix

2 i

𝜋
))

−
1.
80
13

[0
,
3.
14
]

f 8
B

e
a
le

2
f(
x)

=
(1
.5
−
x 1

−
x 1
x 2
)2
+
(2
.2
5
−
x 1

+
x 1
x2 2)

2
+
(2
.6
25

−
x 1

+
x 1
x3 2)

2
0

[−
4.
5,
4.
5]

144 R. Jariwala et al.

Table 2 Comparison of optimisation performance for benchmark problems solved using PSO,

CSA, ISA and LISA

fi PSO ISA CSA LISA

f1 Best 2.1553 9.5345 2.4135e − 02 4.5564e − 13
Worst 5.3264 7.1114e − 1 1.9500e − 01 7.1632e − 12
Mean 3.2861 7.9346 0.1408 1.9817e − 12
Std.dev. 0.5108 0.7111 0.0241 1.1037e − 12

f2 Best 0.4811 4.4300e − 02 1.4977e − 11 0
Worst 27.3124 1.3588e − 10 2.5473 1.4142e − 18
Mean 6.6932 2.7976e − 12 1.5343 3.0143e − 20
Std.dev. 4.6694 1.6499e − 11 0.3533 1.4631e − 19

f3 Best 2.7526e − 04 6.5501e − 11 8.1103e − 03 2.2212e − 20
Worst 6.6588e + 01 3.9867 5.7964e − 01 3.6953e − 11
Mean 6.5237 0.2392 0.1213 8.8744e − 13
Std.dev. 7.2004 0.9515 0.1084 4.0998e − 12

f4 Best 5.2929 1.4078 2.1280e − 01 2.1966e − 18
Worst 20.0427 7.6475 4.0170e − 01 6.3264e − 17
Mean 9.9611 3.7332 0.3117 1.5660e − 17
Std.dev. 2.8848 1.2184 0.0416 1.1083e − 17

f5 Best 5.4898e − 08 8.5265e − 14 1.1591e − 04 0
Worst 2.8961 3.5650e − 04 3.6777e − 01 7.7051e − 11
Mean 0.0635 3.9330e − 06 0.0427 1.5054e − 12
Std.dev. 0.3175 3.5689e − 05 0.0589 8.5783e − 12

f6 Best 7.2423e − 08 3.9968e − 15 1.3718e − 03 0
Worst 0.8936 1.0000 1.0000 1.0264e − 07
Mean 0.0315 0.0936 0.4837 3.0303e − 09
Std.dev. 0.1262 0.2769 0.3796 1.5672e − 08

f7 Best 2.2639e − 12 6.6613e − 16 3.7148e − 08 4.4409e − 16
Worst 7.4111e − 08 1.5832e − 13 5.4580e − 05 8.8818e − 16
Mean 5.7420e − 09 8.1512e − 15 8.3602e − 06 5.5067e − 16
Std.dev. 1.0735e − 08 2.3411e − 14 1.0672e − 05 1.1587e − 16

f8 Best 5.6661e − 10 5.9857e − 19 1.9708e − 07 3.5648e − 25
Worst 7.2059e − 05 3.8437e − 12 6.8985e − 04 1.3835e − 18
Mean 3.1774e − 06 1.8491e − 13 8.8162e − 05 3.8202e − 20
Std.dev. 9.4007e − 06 5.9948e − 13 1.1552e − 04 1.5044e − 19

parison with PSO, CSA and ISA is clear from the Table. Figure 3 shows the conver-

gence characteristics for the algorithms studied in finding the minimum value of the

Rosenbrock test function. It may be observed that both LISA and ISA has improved

convergence in comparison with PSO and CSA for the initial generations. The Lévy
flight principle employed in LISA has helped it to achieve improved steady state

error minimisation in comparison with all the algorithms compared.

A Levy Interior Search Algorithm for Chaotic System Identification 145

Fig. 4 Parameter estimation

of Rossler’s system

0 10 20 30 40 50 60 70 80 90 100
−80

−70

−60

−50

−40

−30

−20

−10

Iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(d
B

)

LISA
CSA
ISA
PSO

Fig. 5 Chaotic behaviour of

Rossler’s system

−20
−10

0
10

20

−20

0

20
0

10

20

30

x
y

z

3.2 Case B: Parameter Identification in Chaotic Systems

The newly proposed algorithm is further tested by applying it to identify the parame-

ters of a Rossler’s system, which is an integer order chaotic system. The parameter

identification task has been formulated as an optimisation task which is performed

using ISA, PSO, CSA and LISA. The behaviour of a Rossler’s system is governed

by

ẋ = −y − z (7)

ẏ = x + ay
ż = b + z(x − c)

with, a = 0.1, b = 0.1 and c = 14. We have considered a search space of [0, 30] for

all the three unknown parameters and the initial states have been taken as x(0) = 1,

y(0) = 1 and z(0) = 1. Figure 5 shows the chaotic behaviour of a Rossler’s system.

The main task in the parameter identification problem is to estimate the values of a,

b and c from the measured values of input and output. The number of agents consid-

ered for each algorithm are 50 and number of iterations are 100. Figure 4 shows the

convergence characteristics for this problem using the four algorithms studied. The

146 R. Jariwala et al.

Ta
bl
e
3

C
o
m

p
a
r
is

o
n

o
f

p
a
r
a
m

e
te

r
e
s
ti

m
a
ti

o
n

o
f

R
o
s
s
le

r’
s

s
y
s
te

m
a
m

o
n
g

P
S

O
,

I
S

A
,

C
S

A
a
n
d

L
I
S

A

M
e
a
n

S
ta

n
d
a
r
d

d
e
v
ia

ti
o
n

P
a
ra

m
e
te

r
s

P
S

O
I
S

A
C

S
A

L
I
S

A
P

S
O

I
S

A
C

S
A

L
I
S

A

a
(
0
.1

)
0
.2

6
1
2

0
.0

6
9
9
8
1
0
8
1

0
.0

6
7
9
8
3
5
5
2

0
.0

9
0
0
7
0
0
1
9

0
.1

6
4
2

0
.0

5
6
9

0
.0

6
7
4

0
.0

9
0
1

b
(
0
.1

)
4
.3

9
7
4

0
.1

5
7
0
7
5
2
4
7

0
.0

7
7
4
0
0
5
5
2

0
.1

2
4
9
5
9
2
9

2
.9

8
8
5

0
.1

1
2
9

0
.0

9
3

0
.0

4
6
8

c
(
1
4
)

1
9
.3

5
0
3

1
4
.0

9
6
0
0
1
4
8

1
3
.9

6
5
2
1
9
0
7

1
4
.0

2
8
7
5
0
8
6

3
.8

0
0
1

0
.1

2
8
4

0
.1

1
9
2

0
.1

1
3
6

M
S

E
2
.2

0
E
−

0
4

1
.8

6
E
−

0
7

2
.2

1
E
−

0
7

7
.8

0
E
−

0
8

1
.1

9
E
−

0
4

1
.2

8
E
−

0
7

9
.3

7
E

-
0
8

3
.8

4
E
−

0
8

A Levy Interior Search Algorithm for Chaotic System Identification 147

mean and standard deviation of the error in estimation of the parameters (averaged

over thirty independent experiments) is shown in Table 3. The improved capability

of the proposed LISA in finding global solutions, in comparison with other popular

algorithms, is evident from the simulation study.

4 Conclusions

A new optimisation algorithm, LISA inspired from ISA has been proposed in the

paper. Levy flight is incorporated to the elements of ISA and along with it a new cri-

teria for the selection is employed. The proposed LISA has been applied for solving

both unimodal and multimodal benchmark optimisation problems. It is clearly evi-

dent from the simulation study that LISA is more efficient in optimisation than other

classical evolutionary algorithms in terms of accuracy and convergence rate. LISA

has also been tested on parameter identification problem of chaotic system which

further demonstrates its better performance.

Acknowledgments This work was supported by the Department of Science and Technology, Gov-

ernment of India under the INSPIRE Faculty Award Scheme (IFA-13 ENG-45).

References

1. Bhargava, V., Fateen, S.E.K., Bonilla-Petriciolet, A.: Cuckoo search: a new nature-inspired

optimization method for phase equilibrium calculations. Fluid Phase Equilib. 337, 191–200

(2013)

2. Dorigo, M., Gambardella, L.M.: Ant colony system:a cooperative learning approach to the

traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)

3. Gandomi, A., Roke, D.: Engineering optimization using interior search algorithm. In: 2014

IEEE Symposium on Swarm Intelligence (SIS), pp. 1–7 (Dec 2014)

4. Gandomi, A.H.: Interior search algorithm (ISA): a novel approach for global optimization. ISA

Trans. 53(4), 1168–1183 (2014)

5. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: Harmony

search. Simulation 76(2), 60–68 (2001)

6. Goldberg, D.E.: Genetic Algorithms. Pearson Education India (2006)

7. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimiza-

tion: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on

Neural Networks, vol. 4, pp. 1942–1948 (Nov 1995)

9. Patwardhan, A.P., Patidar, R., George, N.V.: On a cuckoo search optimization approach towards

feedback system identification. Digit. Sig. Proc. 32, 156–163 (2014)

10. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimiza-

tion over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

11. Wong, P.K., Wong, K.I., Vong, C.M., Cheung, C.S.: Modeling and optimization of biodiesel

engine performance using kernel-based extreme learning machine and cuckoo search. Renew-

able Energy 74, 640–647 (2015)

12. Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proceedings of IEEE World Congress

on Nature and Biologically Inspired Computing, pp. 210–214 (2009)

Hybridization of Adaptivity and Chaotic
Dynamics for Differential Evolution

Roman Senkerik, Michal Pluhacek, Donald Davendra, Ivan Zelinka,
Zuzana Kominkova Oplatkova and Jakub Janostik

Abstract This research deals with the hybridization of the two modern approaches
for evolutionary algorithms, which are the adaptivity and complex chaotic dynamics.
This paper aims on the investigations on the chaos-driven adaptive Differential
Evolution (DE) concept. This paper is aimed at the embedding of discrete dissipative
chaotic systems in the form of chaotic pseudo random number generators for the state
of the art adaptive representative jDE. Repeated simulations for two different driving
chaotic systems were performed on the IEEE CEC 13 benchmark set. Finally, the
obtained results are compared with the canonical not-chaotic jDE.

Keywords Differential evolution ⋅ Deterministic chaos ⋅ jDE

1 Introduction

This research deals with the hybridization of the two modern approaches for
evolutionary algorithms, which are the adaptivity and embedding of complex
chaotic dynamics. This paper is aimed at investigating the influence of chaotic
dynamics to the performance of adaptive Differential Evolution (DE) algorithm [1].

R. Senkerik (✉) ⋅ M. Pluhacek ⋅ Z.K. Oplatkova ⋅ J. Janostik
Tomas Bata University in Zlin Faculty of Applied Informatics,
Nam T.G. Masaryka 5555, 760 01 Zlin, Czech Republic
e-mail: senkerik@fai.utb.cz

M. Pluhacek
e-mail: pluhacek@fai.utb.cz

D. Davendra ⋅ I. Zelinka
Technical University of Ostrava, Faculty of Electrical Engineering and Computer,
Science, 17. Listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
e-mail: donald.davendra@vsb.cz

I. Zelinka
e-mail: ivan.zelinka@vsb.cz

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_12

149

The adaptive strategy of interest within this paper is the state of the art represen-
tative jDE. [2] Although a number of DE variants have been recently developed,
including adaptive and self-adaptive strategies, the focus of this paper is the further
development and experimental testing of ChaosDE concept, which is based on the
embedding of chaotic systems in the form of Chaos Pseudo Random Number
Generators (CPRNG) into the DE.

A chaotic approach generally uses the chaotic map in the place of a pseudo
random number generator [3]. This causes the heuristic to map unique regions,
since the chaotic map iterates to new regions. The task is then to select a very good
chaotic map as the pseudo random number generator.

The focus of our research is the direct embedding of chaotic dynamics in the
form of CPRNG for evolutionary algorithms. The initial concept of embedding
chaotic dynamics into the evolutionary algorithms is given in [4]. Later, the initial
study [5] was focused on the simple embedding of chaotic systems in the form of
chaos pseudo random number generator (CPRNG) for DE and Self Organizing
Migration Algorithm (SOMA) [6] in the task of optimal PID tuning. Also the PSO
(Particle Swarm Optimization) algorithm with elements of chaos was introduced as
CPSO [7]. The concept of ChaosDE proved itself to be a powerful heuristic also in
combinatorial problems domain [8]. At the same time the chaos embedded PSO
with inertia weigh strategy was closely investigated [9], followed by the intro-
duction of a PSO strategy driven alternately by two chaotic systems [10].

Firstly, the motivation for this research is proposed. The next sections are
focused on the description of evolutionary algorithm jDE, the concept of chaos
driven jDE and the experiment description. Results and conclusion follow
afterwards.

2 Related Work and Motivation

This research is an extension and continuation of the previous successful initial
experiments with chaos driven PSO and DE algorithms [11, 12].

In this paper the concept for jDE strategy driven by chaotic maps (systems) is
introduced. From the aforementioned previous research it follows, that very
promising experimental results were obtained through the utilization of different
chaotic dynamics. And at the same time it was clear that different chaotic systems
have different effects on the performance of the algorithm. Unfortunately numerous
experiments proved that the positive influence of chaotic dynamics is suppressed by
either fixed (not-adaptive) or wrong settings of control parameters for
meta-heuristic. The idea was then to connect into the one simple concept two
different influences to the performance of DE, which are control parameters
adaptability and chaotic dynamics as CPRNG. Such a concept is presented in this
research. The adaptive jDE strategy is hybridized here with chaotic CPRNGs.

150 R. Senkerik et al.

3 Differential Evolution

DE is a population-based optimization method that works on real-number-coded
individuals [1, 13]. DE is quite robust, fast, and effective, with global optimization
ability. A schematic of the canonical DE strategy is given in Fig. 1.

There are essentially five sections to the code depicted in Fig. 1. Section 1
describes the input to the heuristic. D is the size of the problem, Gmax is the
maximum number of generations, NP is the total number of solutions, F is the
scaling factor of the solution and CR is the factor for crossover. F and CR together
make the internal tuning parameters for the heuristic.

Section 2 in Fig. 1 outlines the initialization of the heuristic. Each solution
xi,j,G=0 is created randomly between the two bounds x(lo) and x(hi). The parameter
j represents the index to the values within the solution and parameter i indexes the
solutions within the population. So, to illustrate, x4,2,0 represents the fourth value of
the second solution at the initial generation.

After initialization, the population is subjected to repeated iterations in Sect. 3.
Section 4 describes the conversion routines of DE. Initially, three random

numbers r1, r2, r3 are selected, unique to each other and to the current indexed
solution i in the population in 4.1. Henceforth, a new index jrand is selected in the
solution. jrand points to the value being modified in the solution as given in 4.2. In
4.3, two solutions, xj,r1,G and xj,r2,G are selected through the index r1 and r2 and
their values subtracted. This value is then multiplied by F, the predefined scaling
factor. This is added to the value indexed by r3.

Fig. 1 DE schematic

Hybridization of Adaptivity and Chaotic Dynamics … 151

However, this solution is not arbitrarily accepted in the solution. A new random
number is generated, and if this random number is less than the value of CR, then
the new value replaces the old value in the current solution. The fitness of the
resulting solution, referred to as a perturbed (or trial) vector uj,i,G., is then compared
with the fitness of xj,i,G. If the fitness of uj,i,G is better than the fitness of xj,i,G., then
xj,i,G. is replaced with uj,i,G; otherwise, xj,i,G. remains in the population as xj,i,G+1.
Hence the competition is only between the new child solution and its parent
solution.

4 The Concept of Chaotic jDE

A simple and very efficient adaptive DE strategy, known as jDE, was introduced by
Brest et al. [2]. This adaptive strategy utilizes basic DE/rand/1/bin scheme with a
simple adaptive mechanism for mutation and crossover control parameters F and
CR. The ensemble of these two control parameters is assigned to each individual of
the population and survives if an individual is successful. The initialization of
values of F and CR is fully random with uniform distribution for each solution in
population. If the new generated solution is not successful, i.e. trial vector has
worse fitness than compared original active individual; the new (possibly) mutated
control parameters disappear together with not successful solution. The both DE
control parameters can be randomly mutated with given probabilities τ1 and τ2. If
the mutation condition happens, new random value of CR ∈ [0, 1] is generated,
together with new value of F which is mutated in [Fl, Fu + Fl]. These new control
parameters are thereafter stored in the new population. Input parameters are typi-
cally set to Fl = 0.1, Fu = 0.9, τ1 = 0.1, and τ2 = 0.1 as originally given in [2, 14].

The general idea of basic ChaosDE (Chaos_jDE) and CPRNG is to replace the
default pseudorandom number generator (PRNG) with the discrete chaotic map. As
the discrete chaotic map is a set of equations with a static start position, we created a
random start position of the map, in order to have different start position for
different experiments (runs of EA’s). This random position is initialized with the
default PRNG, as a one-off randomizer. Once the start position of the chaotic map
has been obtained, the map generates the next sequence using its current position.

In this research, direct output iterations of the chaotic maps were used for the
generation of real numbers in the process of crossover based on the user defined CR
value and for the generation of the integer values used for selection of individuals.

Previous successful initial experiments with chaos driven PSO and DE algo-
rithms [11, 12] have manifested that very promising experimental results were
obtained through the utilization of Delayed Logistic, Lozi, Burgers and Tinkerbelt
maps. The last two mentioned chaotic maps have unique properties with connection
to DE: strong progress towards global extreme, but weak overall statistical results,

152 R. Senkerik et al.

like average cost function (CF) value and std. dev., and tendency to premature
stagnation. While through the utilization of the Lozi and Delayed Logistic map the
continuously stable and very satisfactory performance of ChaosDE was achieved.

In this research, two representatives of these aforementioned two different
influences were embedded into jDE, thus Chaos_jDE concept was introduces and
tested.

5 Chaotic Maps

This section contains the description of discrete dissipative chaotic maps used as the
chaotic pseudo random generators for jDE. Following chaotic maps were used:
Burgers (1), and Lozi map (2).

The Burgers mapping is a discretization of a pair of coupled differential equa-
tions which were used by Burgers [15] to illustrate the relevance of the concept of
bifurcation to the study of hydrodynamics flows. The map equations are given in
(4) with control parameters a = 0.75 and b = 1.75 as suggested in [16].

Xn+1 = aXn − Y2
n

Yn+1 = bYn +XnYn
ð1Þ

The Lozi map is a discrete two-dimensional chaotic map. The map equations are
given in (2). The parameters used in this work are: a = 1.7 and b = 0.5 as suggested
in [16]. For these values, the system exhibits typical chaotic behavior and with this
parameter setting it is used in the most research papers and other literature sources.

Xn+1 = 1− a Xnj j+ bYn
Yn+1 =Xn

ð2Þ

The illustrative histograms of the distribution of real numbers transferred into the
range <0–1> generated by means of studied chaotic maps are in Fig. 2.

6 Results

IEEE CEC 2013 benchmark set [17] was utilized within this experimental research
for the purpose of performance comparison of two versions of chaotic jDE and
original (canonical) jDE,

Hybridization of Adaptivity and Chaotic Dynamics … 153

Experiments were performed in the combined environments of Wolfram
Mathematica and C language; canonical jDE for comparisons therefore used the
built-in C language pseudo random number generator Mersenne Twister C repre-
senting traditional pseudorandom number generators in comparisons. All experi-
ments used different initialization, i.e. different initial population was generated in
each run.

Within this research, one type of experiment was performed. It utilizes the
maximum number of generations fixed at 1500 generations, Population size of 75
and dimension dim = 30. This allowed the possibility to analyze the progress of all
studied DE variants within a limited number of generations and cost function
evaluations.

To track the influence of adaptive multi-chaotic approach, an experiment
encompasses three groups:

• Chaos_jDE with Lozi map
• Chaos_jDE with Burgers map
• State of the art adaptive representative canonical jDE (with default PRNG).

Results of the experiments are shown in Tables 1 and 2. Table 1 contains the
final average CF values, whereas Table 2 shows the minimum found CF values
representing the best individual solution for all 50 repeated runs of two versions of

Chaos_jDE, and canonical jDE. Finally the Table 3 shows the overall perfor-
mance comparison for all aforementioned DE versions. Within Tables 1 and 2, the
bold values represent the best performance, italic equal. Some big difference (even
for known extreme) for f2-f5 is given by the high complexity of composite
function.

0.2 0.4 0.6 0.8 1.0
Val

500

1000

1500

Frequency

0.2 0.4 0.6 0.8 1.0
Value

00

00

00

00
equency

Fig. 2 Histogram of the distribution of real numbers transferred into the range <0–1> generated
by means of the chaotic Lozi map (left) and Burgers map (right) – 5000 samples

154 R. Senkerik et al.

Table 1 Final average CF values: Performance comparison for two versions of Chaos_DE and
canonical jDE on CEC 13 Benchmark Set, dim = 30, max. Generations = 1500

DE Version/Function f min jDE Chaos_jDE Lozi Chaos_jDE Burgers

f1 −1400 −1400.00 −1400.00 −1400.00
f2 −1300 9423247.23 2459441.56 1714008.06
f3 −1200 3478148.18 1550246.13 3370508.56
f4 −1100 24893.68 4461.53 4174.92
f5 −1000 −1000.00 −1000.00 −1000.00
f6 −900 −879.19 −882.45 −874.45
f7 −800 −787.25 −794.09 −796.10
f8 −700 −679.01 −679.02 −679.01
f9 −600 −565.52 −570.81 −582.50
f10 −500 −498.98 −499.84 −499.96
f11 −400 −362.54 −353.36 −333.69
f12 −300 −132.14 −150.63 −189.51
f13 −200 −20.26 −30.34 −37.65
f14 −100 2164.55 2608.70 4672.46
f15 100 7303.26 7353.36 7556.45
f16 200 202.73 202.59 202.71
f17 300 387.12 398.23 442.64
f18 400 619.07 616.37 611.72
f19 500 507.63 508.16 511.21
f20 600 612.54 612.42 612.25
f21 700 1007.26 1002.47 1011.02
f22 800 3641.35 3954.23 5702.65
f23 900 8447.26 8354.20 8667.09
f24 1000 1206.76 1203.90 1204.07
f25 1100 1396.26 1359.35 1351.13
f26 1200 1400.35 1400.11 1400.07
f27 1300 1880.70 1717.35 1663.98
f28 1400 1700.00 1700.00 1700.00

Hybridization of Adaptivity and Chaotic Dynamics … 155

Table 2 Best solutions - minimal CF values: Performance comparison for two versions of
Chaos_DE and canonical jDE on CEC 13 Benchmark Set, dim = 30, max. Generations = 1500

DE Version/Function f min jDE Chaos_jDE Lozi Chaos_jDE Burgers

f1 −1400 −1400.00 −1400.00 −1400.00
f2 −1300 2689600.43 748839.05 535148.42
f3 −1200 17586.85 17720.10 30670.27
f4 −1100 17613.32 1440.31 919.47
f5 −1000 −1000.00 −1000.00 −1000.00
f6 −900 −884.44 −885.63 −886.09
f7 −800 −795.20 −798.20 −799.49
f8 −700 −679.16 −679.14 −679.24
f9 −600 −569.61 −588.38 −594.86
f10 −500 −499.36 −499.99 −499.99
f11 −400 −372.68 −362.96 −361.32
f12 −300 −160.77 −275.49 −281.09
f13 −200 −41.88 −76.97 −173.79
f14 −100 1525.76 2038.37 3329.97
f15 100 6554.82 6839.32 6941.17
f16 200 201.93 201.94 202.16
f17 300 377.58 379.90 412.40
f18 400 583.29 578.69 585.44
f19 500 506.38 505.08 508.15
f20 600 612.10 611.88 611.60
f21 700 900.00 900.00 900.00

f22 800 2991.66 3127.59 4277.37
f23 900 7533.31 7270.73 7873.32
f24 1000 1202.35 1200.67 1200.32
f25 1100 1366.27 1300.53 1336.44
f26 1200 1400.17 1400.05 1400.02
f27 1300 1688.58 1622.76 1604.68
f28 1400 1700.00 1700.00 1700.00

Table 3 Overall statistical performance comparison

jDE Chaos_DE Lozi Chaos_jDE Burgers

Average CF value 6 +, 3 =, 19- 7 +, 3 = , 18- 12 +, 3 =, 13-
Min. CF value 7 +, 4 =, 17- 4 +, 5 = , 19- 12 +, 5 =, 11-

156 R. Senkerik et al.

7 Conclusion

The primary aim of this work is to use and test the hybridization of natural chaotic
dynamics as the chaotic pseudo random number generators and self-adaptive
mechanism for differential evolution algorithm. In this paper the novel concept of
Chaos_jDE strategy driven by chaotic maps (systems) is introduced. These two
different influences to the performance of DE were connected here into the one
adaptive chaotic concept. Repeated simulations were performed on the IEEE CEC
13 benchmark set. The obtained results were compared with the original state of the
art adaptive representative canonical jDE. The findings can be summarized as
follows:

• The high sensitivity of the DE to the internal dynamics of the chaotic PRNG is
fully manifested.

• When comparing the Chaos_jDE and original jDE, the chaos driven heuristic
has outperformed the original jDE in both cases of final average CF values and
min. CF values.

• Based on the previous point, we can assume that in case of differential evolu-
tion, the sensitivity to the internal chaotic dynamics driving the selection of
individuals and crossover process may significantly increase the influence of
adaptive tuning of control parameters. Nevertheless this will be more experi-
mentally investigated in future work and research experiments.

• Furthermore the direct embedding of chaotic dynamics into the
evolutionary/swarm based algorithms is advantageous, since it can be easily
implemented into any existing algorithm. Also there are no major adjustments in
the code required (instead of calling function Rand(), one iteration of chaotic
system is taken).

Acknowledgements This work was supported by Grant Agency of the Czech Republic - GACR
P103/15/06700S, further by financial support of research project NPU I No. MSMT-7778/2014 by
the Ministry of Education of the Czech Republic and also by the European Regional Development
Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, partially supported by Grant of
SGS No. SP2015/142 and SP2015/141 of VSB - Technical University of Ostrava, Czech Republic
and by Internal Grant Agency of Tomas Bata University under the projects No. IGA/FAI/2015/057
and IGA/FAI/2015/061.

References

1. Price, K.V.: An introduction to differential evolution. In: Corne, D., Dorigo, M., Glover, F.
(eds.) New Ideas in Optimization. McGraw-Hill Ltd., pp. 79–108 (1999)

2. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters
in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans.
Evol. Comput. 10(6), 646–657 (2006)

Hybridization of Adaptivity and Chaotic Dynamics … 157

3. Aydin, I., Karakose, M., Akin, E.: Chaotic-based hybrid negative selection algorithm and its
applications in fault and anomaly detection. Expert Syst. Appl. 37(7), 5285–5294 (2010)

4. Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the
performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)

5. Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of
PID control. Comput. Math Appl. 60(4), 1088–1104 (2010)

6. Zelinka, I.: SOMA — self-organizing migrating algorithm. New Optimization Techniques in
Engineering, vol. 141, pp. 167–217. Studies in Fuzziness and Soft Computing. Springer,
Berlin (2004)

7. Coelho, L.D.S., Mariani, V.C.: A novel chaotic particle swarm optimization approach using
Hénon map and implicit filtering local search for economic load dispatch. Chaos, Solitons
Fractals 39(2), 510–518 (2009)

8. Davendra, D., Bialic-Davendra, M., Senkerik, R.: Scheduling the Lot-Streaming Flowshop
scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution.
In: 2013 IEEE Symposium on Differential Evolution (SDE), pp 119–126, 16–19 April 2013

9. Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the
behavior and performance of chaos driven PSO algorithm with inertia weight. Comput. Math
Appl. 66(2), 122–134 (2013)

10. Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: Chaos PSO algorithm driven alternately
by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary
Computation (CEC), pp. 2444–2449, 20–23 June 2013

11. Senkerik, R., Pluhacek, M., Davendra, D., Zelinka, I., Oplatkova, Z.: Performance testing of
multi-chaotic differential evolution concept on shifted benchmark functions. In: Polycarpou,
M., de Carvalho, A.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) Hybrid
Artificial Intelligence Systems, Lecture Notes in Computer Science, vol. 8480, pp. 306–317.
Springer International Publishing. doi:10.1007/978-3-319-07617-1_28

12. Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: New adaptive approach for chaos PSO
algorithm driven alternately by two different chaotic maps – an initial study. In: Zelinka, I.,
Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction,
Modeling and Analysis of Complex Systems, vol 210, pp. 77–87. Advances in Intelligent
Systems and Computing. Springer International Publishing. doi:10.1007/978-3-319-00542-3_9

13. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to
Global Optimization. Natural Computing Series, Springer, Berlin (2005)

14. Tvrdík, J., Poláková, R., Veselský, J., Bujok, P.: Adaptive variants of differential evolution:
towards control-parameter-free optimizers. In: Zelinka, I., Snášel, V., Abraham, A. (eds.)
Handbook of Optimization. Intelligent Systems Reference Library, vol. 38, pp. 423–449.
Springer, Berlin Heidelberg (2013)

15. Elabbasy, E., Agiza, H., El-Metwally, H., Elsadany, A.: Bifurcation analysis, chaos and
control in the burgers mapping. Int. J. Nonlinear Sci. 4 (3), 171–185

16. Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)
17. Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernández-Díaz, A.G.: Problem Definitions and

Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter
Optimization, Technical Report 201212. Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Technical Report, Nanyang Technological University,
Singapore (2013)

158 R. Senkerik et al.

http://dx.doi.org/10.1007/978-3-319-07617-1_28
http://dx.doi.org/10.1007/978-3-319-00542-3_9

A Minimisation of Network Covering
Services in a Threshold Distance

Miloš Šeda and Pavel Šeda

Abstract In this paper, we deal with a special version of the set covering problem,
which consists in finding the minimum number of service centres providing spe-
cialized services for all customers (or larger units, such as urban areas) within a
reasonable distance given by a threshold. If a suitable threshold is found that makes it
possible to determine a feasible solution of the task, the task is transformed into a
general set covering problem. However, this has a combinatorial nature and, because
it belongs to the class of NP-hard problems, for a large instance of the problem, it
cannot be used to find the optimal solution in a reasonable amount of time. In the
paper, we present a solution by means of two stochastic heuristic methods - genetic
algorithms and simulated annealing – and, using a test instance from OR-Library, we
present the parameter settings of both methods and the results achieved.

Keywords Set covering ⋅ Unicost problem ⋅ Threshold ⋅ Reachability
matrix ⋅ Genetic algorithm ⋅ Repair operator

1 Introduction

There are numerous discussions on how to optimise a network of public facilities
(e.g. hospitals and schools) that provide essential services (health, education) for the
population so that the cost of their operation is as low as possible and each

M. Šeda (✉)
Faculty of Mechanical Engineering, Brno University of Technology,
Technická 2, 616 69 Brno, Czech Republic
e-mail: seda@fme.vutbr.cz

P. Šeda
IBM Global Services Delivery Center, Technická 21, 616 00 Brno, Czech Republic
e-mail: pavelseda@email.cz

P. Šeda
Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1,
613 00 Brno, Czech Republic

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_13

159

inhabitant or an urban district has at least one of the service centres in an affordable
distance. It is clear that the question of what is an affordable distance is debatable
and could be determined by agreement of the ruling political parties. In this text,
however, we ignore the political aspects and address a formal mathematical
approach to solve such tasks.

In the literature, the general set covering problem is studied that does not address
any threshold of availability, but it is directly given by the matrix of binary values
and a covering of all columns by suitable choice of rows is looked for. This task is
an NP-hard problem [3] and, for a larger problem instance, can be solved in a
reasonable time only by heuristic methods.

The problem that we investigate can be converted to a set covering problem
because, by using a threshold, the distance matrix is changed to binary reachability
matrix. However, if the threshold is chosen inadequately, the original task may have
a number of degenerative cases, described in the following section, and we will
show how setting an appropriate threshold makes it possible to find a solution using
genetic algorithms and simulated annealing.

2 Problem Formulation

Assume that the transport network contains m vertices, that can be used as operating
service centres, and n vertices to be served, and for each pair of vertices vi (con-
sidered as service centres) and vj (serviced vertex) their distance dij is given and
Dmax is the maximum distance which will be accepted for operation between the
service centres and serviced vertices.

The aim is to determine which vertices must be used as service centres for each
vertex to be covered by at least one of the centres and for the total number of
operating centres to be minimal.

Remark 1.

1. A condition necessary to solve the task is that all of the serviced vertices are
reachable from at least one place where an operating service centre is
considered.

2. Serviced vertex vj is reachable from vertex vi, which is regarded as an operating
service centre if dij ≤ Dmax. If this inequality is not satisfied, vertex vj is
unreachable from vi.

Here, aij = 1 means that vertex vj is reachable from vi and aij = 0 means that it is
not if vi is operating service centre i.

Similarly, xi = 1 means that service centre i is selected while xi = 0 means that it
is not selected.

Then, the set covering problem can be described by the following mathematical
model:

160 M. Šeda and P. Šeda

Minimise

z= ∑
m

i=1
xi ð1Þ

subject to

∑
m

i=1
aijxi ≥ 1, j=1, . . . , n ð2Þ

xi ∈ 0, 1f g, i=1, . . . ,m ð3Þ

The objective function (1) represents the number of operating centres, constraint
(2) means that each serviced vertex is assigned at least to one operating service
centre. The parameter Dmax represents a threshold of service reachability.

Example:
Consider the following distance matrix which expresses service centres and

serviced vertices (= customer locations) and Dmax = 40.

serviced vertices (customer locations)

service centres 1 2 3 4 5 6 7 8

1

2

3

4

5

5 41 50 26 38 60 44 59

49 82 13 67 68 20 32 31

45 17 61 45 67 48 53 127

37 170 195 32 77 88 90 30

58 42 25 101 133 32 21 78

0
BBBBBB@

1
CCCCCCA

From Dmax = 40 we get the reachability matrix of serviced vertices from service
centres.

1 2 3 4 5 6 7 8

1

2

3

4

5

1 0 0 1 1 0 0 0

0 0 1 0 0 1 1 1

0 1 0 0 0 0 0 0

1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0

0
BBBBBB@

1
CCCCCCA

Since only service centre 3 is reachable from the second serviced vertex (ser-
viced vertex 2 is covered by the 3rd service centre) and only service centre 1 is
reachable from serviced vertex 5, these service centres must not be omitted. These
two centres cover serviced vertices 1, 4, 5, and 2.

A Minimisation of Network Covering Services … 161

This means that the service centres must be found that cover the remaining
uncovered vertices 3, 6, 7 and 8. This can be achieved either by selecting the service
centres 2 and 5, or 4 and 5.

Thus, the example has two solutions, where four vertices are sufficient to cover
serviced vertices (either 1, 3, 2, 5, or 1, 3, 4, 5)

In the general case, however, the selection of service centres for k uncovered
vertices has 2k possibilities and, thus, the task complexity increases exponentially
with the number of uncovered vertices.

For large k, we must solve the task by a heuristic method, e.g., by a genetic
algorithm [2, 4, 7, 8], ant colonies [6], differential evolution, SOMA (Self Orga-
nizing Migrating Algorithm) [12], HC12 meta-heuristic algorithm [13].

2.1 Special Cases

In this section, we will summarise cases for which the problem has no solution, or
specified data need a modification.

We will show this directly by using the below reachability matrices.

1 2 3 4 5 6 7 8

1

2

3

4

5

1 0 0 1 1 0 0 0

0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0

0
BBBBBB@

1
CCCCCCA

In the 3rd row of the previous matrix, we can see that service centre 3 can be
omitted because it exceeds the threshold distance to all customers and nobody
would visit it.

1 2 3 4 5 6 7 8

1

2

3

4

5

1 0 0 1 0 0 0 0

0 0 1 0 0 1 1 1

0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1

0 0 1 0 0 1 1 0

0
BBBBBB@

1
CCCCCCA

In the 5th column of the previous matrix, we can see that the threshold distance
is too low and the 5th customer has no chance to visit a centre in a reachable
distance. The threshold must be increased to get at least one 1 in each column.

162 M. Šeda and P. Šeda

If a service centre must not be omitted, it represents only one centre for a
customer, i.e., in the customer column, there is only one 1. Of course, we can have
more necessary centres which cannot be omitted. However, if necessary centres
cover all customers, then no centre needs to be added to the necessary ones and we
immediately have a solution.

3 Computational Results

Since the mathematical model is simple, it seems that the problem could be solved
by one of the optimisation toolboxes.

E.g. in GAMS (General Algebraic Modelling System) the main part of code is as
follows:

However, this software tool is successful for only “small” instances. All com-
putations leading to optimum were performed in a few seconds, but for larger
instances, they ended with a run time error with GAMS indicating “insufficient
space to update U-factor …”. It is caused by the fact that time complexity of the
problem with m rows is O(2m) and, say, for an instance with 200 rows and 2000
columns tested in the following sections, its searching space has 2200 possible
selections and 2200 = (1024)20 ≈ 1060.

Therefore, for these cases, a heuristic approach must be used. Two of them,
genetic algorithm and simulated annealing, have been implemented and recom-
mendations of their parameter settings are presented, based on many tests with
various sets of possible operators (selection, crossover, mutation, etc.).

A Minimisation of Network Covering Services … 163

3.1 Genetic Algorithm

Since the principles of GA’s are well-known, we will only deal with GA parameter
settings for the problems to be studied. Now we describe the general settings and
the problem-oriented setting used in our application.

Individuals in the population (chromosomes) are represented as binary strings of
length n, where a value of 0 or 1 at bit i (gene) implies that xi = 0 or 1 in the
solution respectively.

The population size is usually set in the range [50, 200], in our programme,
implemented in Java, 200 individuals in the population were used, because 50
individuals led to a reduction chromosome diversity and premature convergence.

Initial population is obtained by generating random strings of 0 s and 1 s in the
following way: First, all bits in all strings are set to 0, and then, for each of the
strings, randomly selected bits are set to 1 until the solutions (represented by
strings) are feasible.

The fitness function corresponds to the objective function to be maximised or
minimised, here, it is minimised.

Three most commonly used methods of selection of two parents for reproduc-
tion, roulette selection, ranking selection, and tournament selection, were tested.

As to crossover, uniform crossover, one-point and two-point crossover operators
were implemented.

Mutation was set to 5, 10 and 15 %, exchange mutation, shift mutation, and
mutation inspired by well-known Lin-2-Opt change operator usually used for
solving the travelling salesman problem [5] were implemented.

In replacement operation two randomly selected individuals with below-average
fitness were replaced by generated children.

Termination of a GA was controlled by specifying a maximum number of
generations tmax, e.g. tmax ≤ 10000.

The chromosome is represented by an m-bit binary string S where m is the
number of columns in the SCP. A value of 1 for bit i implies that service centre i is
in the solution and 0 otherwise.

Since the SCP is a minimisation problem, the lower the fitness value, the more fit
the solution is. The fitness of a chromosome for the unicost SCP is calculated by (4).

f ðSÞ= ∑
m

i=1
Si ð4Þ

The binary representation causes problems with generating infeasible chromo-
somes, e.g., in initial population, in crossover, and/or mutation operations. To avoid
infeasible solutions, a repair operator [10] is applied.

164 M. Šeda and P. Šeda

Let
I = {1, … , m} = the set of all rows;
J = {1, … , n} = the set of all columns;
S = the set of rows in a solution;
U = the set of uncovered columns;
wj = the number of rows that cover column j, j∈J in S.
α j = {i∈I | aij =1}= the set of rows that cover column j, j∈J;
β i = {j∈J | aij =1}= the set of columns that are covered by row i, i∈I;

The repair operator for the unicost SCP has the following form:
initialise wj : = | S ∩ α j | , ∀j ∈ J ;
initialise U : = {j | wj = 0, ∀j ∈ J};
for each column j in U (in increasing order of j) do

begin find the first row i (in increasing order of i) in α j

that minimises 1/ |U ∩ β i | ;
S : = S + i ;
wj : = wj + 1, ∀j ∈β i ;
U : = U − β i

end;
for each row i in S (in decreasing order of i) do
if wj ≥ 2 , ∀j ∈β i

then begin S : = S − i ;
wj : = wj − 1, ∀j ∈β i

end ;
{ S is now a feasible solution to the SCP and contains no redundant rows }

Initialising steps identify the uncovered columns. For statements are “greedy”
heuristics in the sense that in the 1st for, rows with low cost-ratios are being
considered first and in the 2nd for, rows with high costs are dropped first whenever
possible.

The genetic algorithm was tested using an instance from OR-Library [1] with
200 rows and 2000 columns.

Figure 1 shows the computation of a fitness function as depending on the
sequence of generations of the algorithm. The upper characteristic shows the
average value of the fitness function of all individuals in the population and the
lower one shows the fitness function of the best individual in the population. It can
be seen that the algorithm converges quite rapidly to a pseudo-optimal solution (no
optimal solution is known for such a large instance).

The test results showed that one-point crossover gave worse results than
two-point crossover, which, in turn, was even worse than a uniform crossover.
Obviously, it would also be appropriate to monitor the width of the middle part of a
chromosome in the two-point crossover because, when its width is very small, it
brings very little change in comparison with parental chromosomes and reduces the
diversity of genetic material in the population, which increases the risk of small or
almost no changes in the fitness function after only a small number of generations.

A Minimisation of Network Covering Services … 165

3.2 Simulated Annealing

The simulated annealing (SA) technique has been given much attention as a
general-purpose way of solving difficult optimisation tasks. Its idea is based on
simulating the cooling of a material in a heat bath - a process known as annealing.
More details may be found in [9].

As in the previous section we only mention the parameter settings:

• initial temperature T0 = 10000,
• final temperature Tf = 1,
• temperature reduction function α(t) = t * decrement, where decrement = 0.999,
• neighbourhood for a given solution x0 is generated so that each neighbour is

given by the inverse of one position in the binary string representing x0.
(This means that the number of neighbours of x0 is equal to the number of
positions in this string.) (Fig. 2)
It is obvious that simulated annealing converges to the same, or a very close

approximation of the optimal solution, which is consistent with the well-known
“No free lunch theorem” [11]. Because the simulated annealing is a one-point

Fig. 1 Computation by genetic algorithm (instance with 200 rows and 2000 columns, roulette
wheel selection, uniform crossover, mutation probability 5 %, 6500 generations, the best solution
from 10 runs)

166 M. Šeda and P. Šeda

method, only the dependence of the objective function for gradually updated points
x0 (centres for generating neighbours) in the search space is plotted. The chart also
shows that the likelihood of transfer to a worse neighbour is decreasing steadily as
temperature decreases, which is also in line with the principle of the method.

As in the genetic algorithm, it is necessary to apply the repair operator for the

selected solution in the neighbourhood, as described in the previous section.
The computational time of GA for the tested instance with 200 rows was only

19 s on a computer with a processor frequency of 2.4 GHz and operating memory
of 4 GB while SA takes more than 1 min. The reason is that, in each GA iteration,
we generate only two children while SA creates the neighbourhood with 200
neighbours in each iteration when a new position is chosen.

An even worse situation would be for a hill-climbing algorithm, where each
individual would have to be modified by the repair operator in order to determine
the best neighbour. For simulated annealing, it is sufficient to apply the repair
operator only to a randomly selected individual from the neighbourhood.

Fig. 2 Computation by simulated annealing (the same instance as in GA)

A Minimisation of Network Covering Services … 167

4 Practical Aspects

In the foregoing, we investigated the set covering problem in a version that did not
take into account the importance of individual centres. If we apply the above
procedure to minimising a network of hospitals and schools, we could get a solution
where hospitals and schools respectively in cities would be omitted. In this case, it
is appropriate to consider their importance given by their size or necessity. As the
objective function is minimised, it is necessary to determine the weights so that the
lower the weight, the higher the priority.

It could even be suitable to classify facilities with high importance as necessary
as if they represent unique choice for some customers.

If weights of service centres are expressed by coefficients cj, the corresponding
mathematical model would change as follows:

Minimise

z= ∑
m

i=1
cixi ð5Þ

subject to

∑
m

i=1
aijxi ≥ 1, j=1, . . . , n ð6Þ

xi ∈ 0, 1f g, i=1, . . . ,m ð7Þ

From the point of view of the problem representation and parameter settings,
there is no change with the exception of the objective function, for which Eq. (5) is
used rather than Eq. (1).

5 Conclusions

In this paper, we studied the set covering problem in a special case, in which a
threshold is defined. This task may be used for optimising networks providing
public services with operation costs being minimal [12].

Due to the exponential time complexity, classical optimisation programs often
based on a branch and bound method cannot be used to solve larger instances of
(mixed-)integer programming problems. Therefore a heuristic approach was
proposed.

The programme for solving this problem was implemented and parameter set-
tings recommended based on testing many combinations of possible selections of
their operators. It was shown that these methods yield very similar results when
executed tens of times.

168 M. Šeda and P. Šeda

In the future, we will include weights of service centres in our considerations and
try to implement other modern heuristic methods [13, 14].

References

1. Beasley, J.E.: OR-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 11,
1069–1072 (1990)

2. Beasley, J.E., Chu, P.C.: A genetic algorithm for the set covering problem. Eur. J. Oper. Res.
94, 392–404 (1996)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York (1979)

4. Goldberg, D.E.: The Design of Innovation (Genetic Algorithms and Evolutionary
Computation). Kluwer Academic Publishers, Dordrecht (2002)

5. Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and Its Variations. Kluwer
Academic Publishers, Dordrecht (2002)

6. Lessing, L., Dumitrescu, I., Stützle, T.: A comparison between ACO algorithms for the set
covering problem. In: Dorigo, M. (ed.) ANTS 2004. Lecture Notes in Computer Science, vol.
3172, pp. 1–12. Springer-Verlag, Berlin (2004)

7. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn.
Springer, Berlin (1996)

8. Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2002)
9. Reeves, C.R.: Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientific

Publications, Oxford (1993)
10. Šeda, M., Roupec, J., Šedová, J.: Transportation problem and related tasks with application in

agriculture. Int. J. Appl. Math. Inf. 8, 26–33 (2014)
11. Wolpert, D.H., McReady, W.G.: No Free Lunch Theorems for Optimization. IEEE Trans.

Evol. Comput. 1, 67–82 (1997)
12. Zelinka, I., Snášel, V., Abraham, A. (eds.): Handbook of Optimization: From Classical to

Modern Approach. Berlin. Springer, Berlin (2013)
13. Matousek, R.: HC12: the principle of CUDA implementation. In: Proceedings of 16th

International Conference on Soft Computing – MENDEL 2010. Mendel series vol. 2010,
pp. 303–308, Brno (2010), ISSN: 1803-3814

14. Matousek, R., Zampachova, E.: Promissing GAHC and HC12 algorithms in global
optimization tasks. J. Optim. Methods Softw. 26(3), 405–419 (2011)

A Minimisation of Network Covering Services … 169

CUDA-based Analytic Programming
by Means of SOMA Algorithm

Lumir Kojecky and Ivan Zelinka

Abstract Analytic programming is one of methods of symbolic regression that is

composing simple elements into more complex units. This process can be used e.g.

for approximation of measured data with suitable mathematical formula. To find the

most suitable mathematical formula, it is necessary to use an evolutionary algorithm.

The constructed formulas can consist of mathematical operators, functions, variables

and constants. Since values of these constants are not known at the time of construc-

tion of the formula, it is necessary to estimate the values by means of another evolu-

tionary algorithm. Unfortunately, due to this estimation, the whole process becomes

too slow. Therefore, this algorithm is implemented in one of the most widespread

programming architecture NVIDIA CUDA and the results in terms of execution time

are compared.

Keywords Analytic programming ⋅ Symbolic regression ⋅ SOMA ⋅ Evolutionary

algorithms ⋅ Parallelization ⋅ Cuda

1 Introduction

Symbolic regression [4, 20] is a process that is composing simple elements into more

complex units. This process can be used for approximation of measured data with

suitable mathematical formula, for neural network synthesis, logic circuit synthesis,

etc. There are several approaches to symbolic regression, for example Genetic pro-

gramming [7, 13], Grammatical Evolution [11, 16] or Analytic programming (AP)

[18, 19].

The main goal of analytic programming is to compose simple elements into more

complex units – programs. These elements are placed in General Functional Set

L. Kojecky (✉) ⋅ I. Zelinka

Department of Computer Science, VSB-Technical University of Ostrava, FEI Tr. 17. Listopadu

15, Ostrava, Czech Republic

e-mail: lumir.kojecky@vsb.cz

I. Zelinka

e-mail: ivan.zelinka@vsb.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_14

171

172 L. Kojecky and I. Zelinka

(GFS) and they can consist of mathematical operators, functions, variables or con-

stants. At the input, AP takes a set of indexes-pointers to the GFS. At the output, AP

generates a program that is composed of elements indexed at the input. This process

is for better imagination visualized in Fig. 1.

Fig. 1 Main principle of AP

[19]

As the input set of indexes can be used individuals of the arbitrary evolution-

ary algorithm [19] like Differential evolution [17], Particle Swarm Optimization [5],

Simulated Annealing [6], or Self-organizing Migrating Algorithm (SOMA) [2, 3,

12]. The input is then converted to a program, i.e. mathematical formula, and then

is calculated area (difference) between the formula and measured data. The area is

used as the individual’s fitness – AP is used as fitness function in essence. As an

example of an evolutionary algorithm, SOMA was chosen.

SOMA is a stochastic optimization algorithm based in essence on vector oper-

ations, imitating the social behavior of cooperating individuals. The population of

individuals is randomly initialized at the beginning, evaluated and then is chosen

individual with the highest fitness, which becomes a leader. In each migration loop,

all other individuals are moving through the space towards the leader and seeking

their best position with the highest fitness. Before each individual’s step is created

a binary perturbation (PRT) vector, that controls movement of the individual in al-

lowed dimensions. Individuals thus do not move directly towards to the leader and

the probability of finding the optimal position is increasing.

There are two options how to handle constants in AP. The first option [7] is to

add many randomly generated constant values to GFS. However, the number of all

possible generated formulas rapidly increases. The second option [19] is to add only

one general constant into GFS, called K. This constant is then inserted into a formula

at various places and it is indexed (1). Values of all indexed constants are estimated

using a second evolutionary algorithm. Unfortunately, due to this estimation, the

whole process becomes too slow. Therefore, this research explores the advantages

of applying both evolutionary algorithm [1, 9] and symbolic regression algorithm

[14, 15] on the GPU.

K1 ⋅ sin(x + K2) (1)

CUDA-based Analytic Programming by Means of SOMA Algorithm 173

2 Experiment Design

2.1 NVIDIA CUDA

The Compute Unified Device Architecture (CUDA) [10] is one of the most wide-

spread parallel programming architecture invented by NVIDIA. It provides us a

platform for accessing the NVIDIA GPU for processing in essence by extensions

to standard programming languages like C/C++.

The general outline of CUDA is given in Fig. 2. In CUDA programs, functions

launched from the CPU are referred to as kernels. Each kernel consists of a number of

blocks that are executed independently from each other around an array of Streaming

Multiprocessors. Each block is divided into a number of threads. These threads have

access to the registers and shared memory in a block they belong to. The kernels

can be made up of any combination of blocks and threads – the whole configuration

depends on the application requirements. However, the number of threads in one

block is limited by 1,024.

There are several types of memory having each its capabilities and purpose, dif-

fering in access latency, size, address space, scope, lifetime and whether it is cached

or writable (summarized in the Table 1):

1. Global memory resides in device memory and it is used for communication be-

tween host and device, therefore is accessible from both CPU and GPU and it has

lifetime of whole application. However, access latency to the global memory is

very high (hundreds of cycles).

2. Constant memory shares the same memory banks as global memory, but there is

only a limited amount of the memory that can be declared. On the other side this

memory is cached and access to this memory is much faster than access to global

memory.

3. Shared memory is a very fast on-chip memory that has a lifetime of a block and

it is accessible only by threads within the same block. There is also a limited

amount of the memory that can be declared (48 kB).

4. Registers are the fastest on-chip memory used for thread variables. Number of

registers that are available per block is also limited.

5. Local memory is used for storing variables that will not fit in registers. This mem-

ory has the same access latency as global memory.

The CUDA syntax is really simple and does not differ from standard C/C++

code so much. Memory allocation of variables is given as: cudaMalloc(&name,
size * sizeof(type));, where name is the variable name, type is the data type

and size is the total size to be allocated. Then, data is copied to the GPU using

cudaMemcpy(GPU,CPU,size*sizeof(type),cudaMemcpyHostToDevice);.

The kernel (marked by --global-- keyword) is launched using execution config-

uration [10] syntax: kernel <<< grid, block, shared >>> (parameters);,

where grid refers to the number of blocks in the grid, block refers to the number

of threads in blocks, and shared refers to the size of allocated shared memory (this

174 L. Kojecky and I. Zelinka

Table 1 Summary of the scope and lifetime of CUDA memories

Memory Scope EA Lifetime

Global Grid Application

Constant Grid Application

Shared Block Kernel

Register Thread Kernel

Local Thread Kernel

Fig. 2 CUDA outline [1]

parameter is optional). Within the kernel, blocks and thread indexes are given by

blockIdx and threadIdx variables. After execution of kernels, the processed data

is copied back to the host.

2.2 Code Design on the GPU

When designing the code on the GPU, it is highly desirable to write bigger kernels

with more functionality instead of calling many small kernels. It is also desirable

to avoid many memory transfers from CPU to GPU and vice versa. Finally, due to

very high access latency of global memory, using shared memory is one of the most

crucial steps in this application.

According to these recommendations, all memories in the program are generated

only once. There is only one array for outer SOMA population, one array for all

expressions, or one big array for all inner SOMA populations. Memory transfers

between the CPU and GPU are reduced only to 3 cases:

CUDA-based Analytic Programming by Means of SOMA Algorithm 175

1. Transferring GFS elements and data to approximate from the CPU to GPU. The

data is read from the application configuration file.

2. Transferring number of constants in an expression from the GPU to CPU to de-

cide whether to run the inner evolution to estimate the constants or not.

3. Transferring the final (best) expression and its constants from the GPU to CPU.

Not only fitness function evaluation [1], but all computation tasks are also moved

from CPU to GPU (population generation, migrations, etc.). This approach reduces

transferring data from CPU to GPU to a minimum. According to [10], any access to

data in global memory compiles to a single global memory instruction if the size of

the data type is 1, 2, 4, 8, or 16 bytes and the data is naturally aligned (address is a

multiple of that size). This means that it is desirable to use structures of these sizes

and align them well in memory.

As mentioned above, using shared memory is one of the most crucial steps in this

application. First step is to identify whether it is worth to use it. To use the shared

memory, it has to be allocated, data has to be loaded from global memory to shared

memory, and all threads in a block need to be synchronized (to ensure that data are

loaded by all threads). Then, the calculation is performed and the result data is stored

back to global memory. This approach is unnecessary resource wasting when single

thread is accessing the memory only for simple operation. In this program, shared

memory is widely used – each individual or expression is processed in one block so

this is an ideal candidate for using shared memory:

1. Mathematical fitness function evaluation is most often sequential process (if we

do not take account of parallel reduction). Instead of step-by-step accessing slow

global memory by one thread it is possible to load all values to shared memory

by one instruction (at once by multiple threads) and then step-by-step access fast

shared memory.

2. A similar approach is in the application used for determining the population

leader individual. One hundred threads copy the individuals’ values at once and

sequential computation is processed over fast shared memory.

3. Shared memory is also very useful for composing expressions. GFS is loaded

into shared memory at once as well as appropriate indexed expressions from the

shared GFS. All these indexed expressions, one by one, have to be paired with

other ones (pointers to the arguments) and checked whether the final expression

is pathological or not.

4. The most important is to use the shared memory at the time of the expression

evaluation, where each expression is evaluated concurrently in 50 points. The

expression and the points to evaluate, as well as constant values, are loaded into

shared memory that is also used for intermediate computations.

To efficient use of GPU resources it is necessary to appropriately design the grid.

We decided that one individual in SOMA, as well as one expression in AP, is han-

dled by one block of threads. Then, the grid consists of PopSize blocks and each

block consists of Dim threads. This grid layout allows us to efficiently utilize shared

memory to load the whole individual or the whole expression.

176 L. Kojecky and I. Zelinka

In population migration loops, each individual in the main population performs⌊
PathLength

Step

⌋

steps towards the leader individual. The steps are independent of each

other and can be handled in parallel as one big step population ofPopSize⋅
⌊
PathLength

Step

⌋

size. The entire migration loop process is then divided into the following steps (ker-

nels):

1. Selection of the leader individual of the main population – one block of PopSize
threads loads the values of all individuals into the shared memory and evaluates

the best one.

2. Migration – calculation of the new possible individual’s position (step) performed

byPopSize⋅
⌊
PathLength

Step

⌋

blocks. Each thread in the block calculates a new position

and saves it into the step population.

3. Composing the expressions from the step populations individuals – the process

of the expression composition is, except parallel loading GFS to shared memory,

fully sequential. Each element of the expression has to be paired with another

ones (its arguments) and it has also to be checked whether it is not pathological

(i.e. all arguments have to be closed).

4. Expression evaluation – the most time-consuming step. The process of evalua-

tion is performed sequentially for one expression (element by element) but con-

currently for all 50 points. In this step may occur two cases:

(a) The expression has no constants – it is evaluated in the standard way.

(b) The expression has at least one constant – the constants are estimated by

a secondary evolutionary algorithm with its own main and step population.

Individuals are here used as the constant values that are substituted into the

expression which is then evaluated in the standard way.

5. Selection of the leader individuals of the step populations – PopSize blocks are

identifying the best of all steps for each individual in the main population.

6. Moving the step leaders to the main population, if they have smaller cost than the

original individual.

3 Simulations and Results

Experiments done in this research were focused on validation of the application using

the GPU in terms of performance measurement and comparison with current single-

thread C# application. For experiments here was at first measured performance of

SOMA itself (AllToOne), optimizing Schwefel’s function (2). Then was measured

performance of the basic AP algorithm (no use of constants). Finally, the perfor-

mance of the AP algorithm with estimation of constant values by means of secondary

evolutionary algorithm was measured.

Each experiment was repeated 50 times. For testing, as measured data to ap-

proximation was generated 50 points of Quintic equation (3) in the interval [−1, 1].

CUDA-based Analytic Programming by Means of SOMA Algorithm 177

Table 2 Algorithm settings for SOMA. The dimension of the inner EA equals to the number of

estimated constants

Parameter Outer EA Inner EA Basic AP SOMA only

Dimensions 50 − [20, 30, 50] [20, 30, 50]
PopSize 100 50 100 100

Migrations 12 11 100 200

PRT 0.1 0.1 0.1 0.1

PathLength 3 2 3 3

Step 0.11 0.21 0.11 0.11

Table 3 Dimension 20: SOMA only

Implementation Max Median Average Min

C# 3.07 2.88 2.90 2.85

CUDA 0.16 0.06 0.06 0.05

Speedup 19.19 48.00 48.33 57.00

Table 4 Dimension 20: Basic AP

Implementation Max Median Average Min

C# 6.32 6.19 6.18 6.02

CUDA 0.3 0.11 0.12 0.11

Speedup 21.07 56.27 51.50 54.73

Table 5 Dimension 30: SOMA only

Implementation Max Median Average Min

C# 4.24 4.20 4.20 4.17

CUDA 0.20 0.06 0.07 0.06

Speedup 21.20 70.00 60.00 69.50

The operating parameters for all use cases of SOMA are given in the Table 2. Sim-

ulations also included testing of optimization of various dimensions for SOMA and

basic AP algorithm.
n∑

i=1
−xi sin(

√
|
|xi||) (2)

x5 − 2x3 + x (3)

All experiments were done on a desktop PC with Intel Core i7 at 3.4 GHz (3.9

GHz Turbo) and NVIDIA GeForce 750 Ti that has 1 GPU core (640 CUDA cores)

178 L. Kojecky and I. Zelinka

Table 6 Dimension 30: Basic AP

Implementation Max Median Average Min

C# 9.96 9.70 9.68 9.33

CUDA 0.26 0.15 0.15 0.15

Speedup 38.31 64.67 64.53 62.20

Table 7 Dimension 50: SOMA only

Implementation Max Median Average Min

C# 7.56 7.20 7.22 7.14

CUDA 0.21 0.11 0.11 0.10

Speedup 36.00 65.45 65.64 71.40

Table 8 Dimension 50: Basic AP

Implementation Max Median Average Min

C# 18.23 17.70 17.67 16.99

CUDA 0.41 0.29 0.30 0.29

Speedup 44.96 61.03 58.90 58.59

Table 9 Dimension 50: AP with constants

Implementation Max Median Average Min

C# 2210.68 1735.53 1726.06 1262.56

CUDA 116.60 111.63 111.68 106.94

Speedup 18.96 15.55 15.46 11.81

with 2,048 MB RAM memory, 1,020 MHz (1,085 MHz boost) core clock speed and

compute capability version 5.0.

All results from the simulations are summarized in Tables 3, 4, 5, 6, 7, 8, 9. In

each Table is recorded the worst (maximal), median, average and the best (minimal)

simulation execution time of all 50 simulations of both C# and CUDA implementa-

tions.

4 Conclusion

In this paper was implemented CUDA-based Analytic programming by means of

SOMA algorithm. The results in Tables 3, 4, 5, 6, 7, 9 show the performance of

newly implemented algorithm under CUDA parallel platform compared to the same

algorithm written in C# language. Three kinds of the algorithm were implemented:

CUDA-based Analytic Programming by Means of SOMA Algorithm 179

pure SOMA, AP without secondary evolution to estimating constants, and full AP

with constant estimation.

Simulations of pure SOMA and basic AP showed us that average speedup of

CUDA implementation compared to C# implementation was surprisingly from 48×
to 65× (and sometimes even more). This speedup was achieved especially by proper

use of shared memory and minimizing memory transfers between the CPU and GPU.

Simulations included testing of optimization of various dimensions. From the time

results can be seen that lower dimension means lower computation time [8]. How-

ever, results in Tables 3 and 5 for CUDA implementation are almost same. The com-

putation time for lower dimensions is so low and most of the time is consumed i.e.

by memory allocation.

Simulations of full AP showed us that average speedup of CUDA implementation

was 15×. In this case, the problem size is so big that one graphic card cannot process

all data in one big transaction – the transaction has to be divided into more smaller

transactions. The CPU results from Table 9 show us that there is also a big difference

(75 %) between minimal and maximal execution time. This is caused by fact that

number of constants in the expression is every time different – in the expression

there can be only 1 constant or 20 constants. In CUDA, the difference is not so big

for the reasons mentioned above.

All the results of the simulations are satisfactory, but AP is in essence a simple

algorithm and there are many much more complicated algorithms. In the future re-

search of the algorithm parallelization field, we want to utilize more than one CUDA

GPU or to utilize the other parallel platforms to achieve even better results. Currently,

we are preparing similar simulations on Anselm, x86-64 Intel based supercomputer

hosted at VSB-Technical University of Ostrava.

Acknowledgments The following grants are acknowledged for the financial support provided for

this research: Grant Agency of the Czech Republic – GACR P103/15/06700S and partially sup-

ported by Grant of SGS No. SP2015/142, VSB-Technical University of Ostrava.

References

1. Davendra, D., Gaura, J., Bialic-Davendra, M., Senkerik, R.: Cuda based enhanced differential

evolution: a computational analysis. ECMS, pp. 399–404 (2012)

2. Davendra, D., Zelinka, I.: Flow shop scheduling using self organizing migration algorithm.

In: Modelling and Simulation.[Proceedings of the European Conference.] Nicosia: European

Council of Modelling and Simulation, pp. 195–200 (2008)

3. Davendra, D., Zelinka, I.: Optimization of quadratic assignment problem using self organising

migrating algorithm. Comput. Inf. 28(2), 169–180 (2012)

4. Davidson, J., Savic, D.A., Walters, G.A.: Symbolic and numerical regression: experiments and

applications. Inf. Sci. 150(1), 95–117 (2003)

5. Kennedy, J., Kennedy, J.F., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann (2001)

6. Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34(5–

6), 975–986 (1984)

7. Koza, J.R.: Genetic Programming III: Darwinian Invention and Problem Solving, vol. 3. Mor-

gan Kaufmann (1999)

180 L. Kojecky and I. Zelinka

8. Matousek, R.: Hc12: the principle of cuda implementation. In: Proceedings of 16th Interna-

tional Conference on Soft Computing—Mendel 2010, vol. 2010, pp. 303–308 (2010)

9. Mussi, L., Daolio, F., Cagnoni, S.: Evaluation of parallel particle swarm optimization algo-

rithms within the cuda architecture. Inf. Sci. 181(20), 4642–4657 (2011)

10. Nvidia, C.: Nvidia Cuda C Programming Guide. NVIDIA Corporation 120 (2011)

11. O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an

Arbitrary Language, vol. 4. Springer Science & Business Media (2003)

12. Onwubolu, G.C., Babu, B.: New Optimization Techniques in Engineering, vol. 141. Springer

Science & Business Media (2004)

13. O’Reilly, U.M.: Genetic programming ii: automatic discovery of reusable programs. Artif. Life

1(4), 439–441 (1994)

14. Pospichal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the cuda architecture. Appli-

cations of Evolutionary Computation, pp. 442–451. Springer (2010)

15. Pospichal, P., Murphy, E., O’Neill, M., Schwarz, J., Jaros, J.: Acceleration of grammatical

evolution using graphics processing units: computational intelligence on consumer games and

graphics hardware. In: Proceedings of the 13th Annual Conference Companion on Genetic and

Evolutionary Computation, pp. 431–438. ACM (2011)

16. Ryan, C., Collins, J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary

language. Genetic Programming, pp. 83–96. Springer (1998)

17. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimiza-

tion over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

18. Zelinka, I.: Analytic programming by means of soma algorithm. In: Proceedings of the 8th

International Conference on Soft Computing, Mendel, vol. 2, pp. 93–101 (2002)

19. Zelinka, I., Oplatkova, Z., Nolle, L.: Analytic programming-symbolic regression by means of

arbitrary evolutionary algorithms. Int. J. Simul. Syst. Sci. Technol. 6(9), 44–56 (2005)

20. Zelinka, I., Volna, E.: Neural network synthesis by means of analytic programming-

preliminary results. In: Proceedings of the 11th International Conference on Soft Computing,

Mendel 2005, vol. 2005 (2005)

Computing Trading Strategies Based
on Financial Sentiment Data Using
Evolutionary Optimization

Ronald Hochreiter

Abstract In this paper we apply evolutionary optimization techniques to compute

optimal rule-based trading strategies based on financial sentiment data. The senti-

ment data was extracted from the social media service StockTwits to accommodate

the level of bullishness or bearishness of the online trading community towards cer-

tain stocks. Numerical results for all stocks from the Dow Jones Industrial Average

(DJIA) index are presented and a comparison to classical risk-return portfolio selec-

tion is provided.

Keywords Evolutionary optimization ⋅ Sentiment analysis ⋅ Technical trading ⋅
Portfolio optimization

1 Introduction

In this paper we apply evolutionary optimization techniques to compute optimal rule-

based trading strategies based on financial sentiment data. The number of application

areas in the field of sentiment analysis is huge, see especially [1] for a comprehensive

overview. The field of Finance attracted research on how to use specific financial

sentiment data to find or optimize investment opportunities and strategies, see e.g.

[2–4].

This paper is organized as follows. Section 2 describes the financial sentiment

data used for the evolutionary approach to optimize trading strategies and portfo-

lios. Section 3 presents an evolutionary optimization algorithm to create optimal

trading strategies using financial sentiment data and how to build a portfolio using

single-asset trading strategies. Section 4 contains numerical results obtained with the

R. Hochreiter (✉)
Department of Finance, Accounting and Statistics, WU Vienna University of Economics

and Business, Wien, Austria

e-mail: ronald.hochreiter@wu.ac.at

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_15

181

182 R. Hochreiter

presented algorithm and a comparison to classical risk-return portfolio optimization

strategies as proposed by [5] using stock market data from all stocks in the Dow

Jones Industrial Average (DJIA) index. Section 5 concludes the paper.

2 Financial Sentiments

We apply financial sentiment data created by PsychSignal.
1

The PsychSignal tech-

nology utilizes the wisdom of crowds in order to extract meaningful analysis, which

is not achievable through the study of single individuals, see [6] for a general intro-

duction to measurement of psychological states through verbal behavior. Let a group

of individuals together be a crowd. Not all crowds are wise, however four elements

have been identified, which are required to form a wise crowd: diversity of opinion,

independence, decentralization and aggregation as proposed by [7]. These four el-

ements are sometimes present in some forms of social media platforms, e.g. in the

financial community StockTwits, from which the crowd wisdom used for the evolu-

tionary approach described in this paper is derived.

Emotions are regarded as being unique to individual persons and occurring over

brief moments in time. Let a mood be a set of emotions together. In order to quantify

the collective mood of a crowd, distinct emotions of individual members within the

crowd must be quantified. Subsequently, individual emotions can be aggregated to

form a collective crowd mood. PsychSignals’ Natural Language Processing Engine

is tuned to the social media language of individual traders and investors based on the

general findings of e.g. [8] and of [9] for the financial domain. The engine further

targets and extracts emotions and attitudes in that distinct language and categorizes

as well as quantifies these emotions from text. The methodology is based on the

linguistic inquiry and word count (LIWC) project, which is available publicly.
2

See

also [10] for a description of an algorithm on how to generate such a semantic lexicon

for financial sentiment data directly.

The main idea is to assign a degree of bullishness or bearishness on stocks depend-

ing on the messages, which are sent through StockTwits,
3

which utilizes Twitter’s

application programming interface (API) to integrate StockTwits as a social media

platform of market news, sentiment and stock-picking tools. StockTwits utilized so

called cashtags with the stock ticker symbol, similar to the Twitter hashtag, as a way

of indexing people’s thoughts and ideas about companies and their respective stocks.

The available sentiment data format is described in Table 1. The data was obtained

through Quandl,
4

where PsychSignal’s sentiment data for stocks can be accessed

easily.

1
http://www.psychsignal.com/.

2
http://www.liwc.net/.

3
http://www.stocktwits.com/.

4
http://www.quandl.com/.

http://www.psychsignal.com/
http://www.liwc.net/
http://www.stocktwits.com/
http://www.quandl.com/

Computing Trading Strategies Based on Financial Sentiment Data . . . 183

Table 1 PsychSignal.com StockTwits sentiment data format per asset

Variable Content

Date Day of the analyzed data

I
bull

Each message’s language strength of

bullishness on a 0–4 scale

I
bear

Each message’s language strength of

bearishness on a 0–4 scale

n
bull

Total count of bullish sentiment messages

n
bear

Total count of bearish sentiment messages

n
total

Total number of messages

Both intensities I
bull

and I
bear

are measured on a real-valued scale from 0 to 4,

where 0 means no bullish/bearish sentiment and 4 the strongest bullish/bearish sen-

timent. We normalize these values to 1 by diving the respective value by 4 and

obtain the variables i
bull

and i
bear

. Furthermore, we create two relative variables

for the number of bullish and bearish messages, i.e. r
bull

= n
bull

∕n
total

as well as

r
bear

= n
bear

∕n
total

, such that we end up in the final data format we are going to

use for subsequent analysis. See Table 2 for an example of the stock with the ticker

symbol BA (The Boeing Company).

Table 2 Sentiment values for stock BA starting at the first trading days in 2011

i
bull

i
bear

r
bull

r
bear

n
total

2011-01-03 0.59 0 0.50 0 4

2011-01-04 0 0 0 0 1

2011-01-05 0 0.11 0 1 1

2011-01-06 0.61 0 0.25 0 4

2011-01-07 0.52 0 0.17 0 6

2011-01-11 0.67 0 1 0 2

3 Evolutionary Investment Strategy Generation

We aim at creating an evolutionary optimization approach to generate optimal trad-

ing strategies for single stocks based on the sentiment analysis data described above.

Evolutionary and Genetic Programming techniques have been applied to various fi-

nancial problems successfully. See especially the series of books on Natural Com-

puting in Finance for more examples, i.e. [11–13]. Generating automatic trading

rules has been a core topic in this domain, see especially [14–17], and the references

therein.

184 R. Hochreiter

One main technique in the field of meta-heuristics and technical trading is to let

the optimizer generate optimal investment rules given a set of technical indicators.

However, instead of using a variety of technical indicators for generating an optimal

trading rule, we use the above described financial sentiment data to create investment

rules. Thereby we start by using a simplified rule-set approach, whereby the rules

are generated by a special genotype encoding. Furthermore, as we are considering to

create a portfolio allocation out of the single asset strategies and additionally focus

on stocks only, we do not allow for shorting assets, i.e. the decision is whether to

enter or exit a long position on a daily basis. The rule is based on the respective

sentiment values, such that this basic rule-set can be defined as shown in Eq. (1).

[
IF(i

bull
≥ v1)

]

b1

[
AND

]

b1&b2

[
IF(r

bull
≥ v2)

]

b2
THEN long.

[
IF(i

bear
≥ v3)

]

b3

[
AND

]

b3&b4

[
IF(r

bear
≥ v4)

]

b4
THEN exit.

(1)

Each chromosome within the evolutionary optimization process consists of the

values (b1, b2, b3, b4, v1, v2, v3, v4), where the b values are binary encoded (0, 1) and

the v values are real values between 0 and 1. The b values indicate whether the re-

spective part of the rule notated in square brackets is included (1) or not (0), while the

v values represent the concrete values within the conditions. Consider the following

example: the (randomly chosen) chromosome (0,1,1,1,0.4,0.3,0.5,0.2) results in the

rule-set shown in Eq. (2).

IF (r
bull

≥ 0.3) THEN long position.

IF (i
bear

≥ 0.5) AND IF (r
bear

≥ 0.2) THEN exit position.
(2)

In this special case, the sum of b1 and b2 as well as b3 and b4 must be greater or

equal to 1, to have at least one condition for entering and leaving the long position.

We end up with nine different possible assignments for b. A repair operator has to

be applied after each evolutionary operation, which may distort this structure.

The evaluation of the chromosomes is such that the respective trading strategy

is tested on the in-sample testing set of length T , i.e. we obtain a series of returns

r1,… , rT for each chromosome, which can be evaluated with different financial met-

rics. The following strategy performance characteristics are considered:

– The cumulative return r, and the standard deviation 𝜎.

– The maximum drawdown d, and the Value-at-Risk v
𝛼
(𝛼 = 0.05), as well as

– the ratio s of expected return divided by the standard deviation, which is based on

the Sharpe-ratio proposed by [18].

We use simple mutation operators for new populations because the chromosome

encoding of the investment rule described above is short, i.e. contains only eight

genes. The following mutation operators are applied:

– b binary flip: One randomly selected gene of the binary b part is 0−1 flipped. The

resulting chromosome needs to be repaired with the repair operator, which itself

determines randomly, which of the two possibilities is set to 1 if necessary.

Computing Trading Strategies Based on Financial Sentiment Data . . . 185

– v random mutation: One randomly selected gene of the binary v part is replaced

by a uniform random variable between 0 and 1.

– v mutation divided in half: One randomly selected gene of the binary v part is

divided in half. The rationale of this operation is that the intensities of bullishness

and bearishness are often small, see e.g. Table 3 for the statistics of the sentiment

values for a selected stock.

Table 3 Statistical summary of sentiment values for stock BA 2010–2014

Minimum First

quantile

Median Mean Third

quantile

Maximum

ibull 0 0 0.3821 0.2987 0.5050 0.8250

ibear 0 0 0 0.1763 0.3887 0.86

Besides these operators, elitist selection is applied as well as a number of random

additions will be added to each new population. The structure of the algorithm is

a general genetic algorithm, see e.g. [19] for a description of this class of meta-

heuristics.

The analysis above is based on single assets. To compose a portfolio out of the

single investment strategies, the resulting portfolio will be created as an equally

weighted representation of all assets, which are currently selected to be in a long

position by its respective trading strategy for each day.

4 Numerical Results

In this section we begin with a description of the data used to compute numerical re-

sults in Sect. 4.1. Section 4.2 summarizes the in-sample and out-of-sample results of

the evolutionary sentiment trading strategy. A short overview of classical risk-return

portfolio optimization is given in Sect. 4.3, and finally a performance comparison is

presented in Sect. 4.4. Everything was implemented using the statistical computing

language R [20].

4.1 Data

We use data from all stocks from the Dow Jones Industrial Average (DJIA) index

using the composition of September 20, 2013, i.e. using the stocks with the ticker

symbols AXP, BA, CAT, CSCO, CVX, DD, DIS, GE, GS, HD, IBM, INTC, JNJ,

JPM, KO, MCD, MMM, MRK, MSFT, NKE, PFE, PG, T, TRV, UNH, UTX, V, VZ,

WMT, XOM.

186 R. Hochreiter

Training data is taken from the beginning of 2010 until the end of 2013. The

out-of-sample tests are applied to data from the year 2014.

4.2 Results of the Evolutionary Optimization

For each stock, the optimal strategy was computed. The evolutionary parameters

were set to be as follows:

– The initial population size has been set to 100, and each new population contains

the

– 10 best chromosomes of the previous population (elitist selection), as well as

– 20 of each of the three mutation operators described above, and

– 10 random chromosomes, such that the population size is 80.

For evaluation purposes, the parameter s will be maximized. Of course, the

system is flexible to use any other risk metric or a combination of metrics. See

Table 4 for the in-sample performance results comparing a long-only buy-and-hold

strategy of each asset compared to the trading strategy of the best respective strat-

egy, e.g. the best strategy for AXP is (1, 1, 1, 0, 0.44, 0.41, 0.41, 0.17) and for BA

(1, 0, 1, 0, 0.41, 0.37, 0.5, 0.41), while for CAT it is (0, 1, 1, 1, 0.195, 0.34, 0.02, 0.24)
to give an impression of single strategy results. The cumulative return performance

r is raised (sometimes significantly) for almost all assets except for MCD, UTX, V.

However, in those three cases the decrease in profit is low. The standard deviation

𝜎 is lower (i.e. better) in all cases, which was expected as the algorithm leaves the

long-position for a certain time, such that the standard deviation clearly has to de-

crease. The Sharpe-ratio like metric s is better for all assets but DIS, JNJ, UTX,

XOM. Again, the loss in all four cases is low compared to the gain of the other posi-

tions. In summary, the in-sample results show that the fitting of the algorithm works

very well.

4.3 Classical Portfolio Optimization

To compare the performance of the portfolio created with single asset investment

strategies based on financial sentiments with a standard approach to portfolio op-

timization, we construct a portfolio using classical risk-return portfolio selection

techniques. [5] pioneered the idea of risk-return optimal portfolios using the stan-

dard deviation of the portfolios profit and loss function as risk measure. In this case,

the optimal portfolio x is computed by solving the quadratic optimization problem

shown in Eq. 3. The investor needs to estimate a vector of expected returns r of the

Computing Trading Strategies Based on Financial Sentiment Data . . . 187

Table 4 Single stock in-sample results of the evolutionary optimization

Long-only stock Trading strategy

r 𝜎 s r 𝜎 s
AXP 1.223 0.016 0.057 1.574 0.013 0.068

BA 1.450 0.016 0.063 1.771 0.013 0.070

CAT 0.575 0.018 0.034 0.978 0.014 0.043

CSCO −0.070 0.019 0.006 1.246 0.011 0.061

CVX 0.597 0.013 0.042 0.723 0.012 0.044

DD 0.912 0.015 0.051 1.177 0.011 0.070

DIS 1.351 0.015 0.065 1.522 0.013 0.065

GE 0.842 0.015 0.048 1.054 0.013 0.050

GS 0.042 0.019 0.012 0.662 0.010 0.041

HD 1.825 0.014 0.082 2.209 0.012 0.087

IBM 0.430 0.012 0.036 0.711 0.005 0.083

INTC 0.249 0.015 0.022 0.600 0.009 0.043

JNJ 0.415 0.008 0.045 0.415 0.008 0.041

JPM 0.399 0.019 0.027 0.873 0.016 0.037

KO −0.277 0.019 −0.004 0.363 0.006 0.042

MCD 0.549 0.009 0.052 0.515 0.006 0.060

MMM 0.688 0.013 0.048 0.795 0.012 0.051

MRK 0.359 0.012 0.032 0.516 0.010 0.041

MSFT 0.222 0.014 0.021 0.509 0.012 0.031

NKE 0.190 0.022 0.022 0.511 0.019 0.030

PFE 0.677 0.012 0.048 0.805 0.011 0.049

PG 0.332 0.009 0.036 0.406 0.007 0.046

T 0.238 0.010 0.026 0.397 0.007 0.040

TRV 0.805 0.012 0.053 0.946 0.011 0.064

UNH 1.400 0.016 0.063 2.443 0.013 0.091

UTX 0.621 0.013 0.042 0.563 0.011 0.042

V 1.530 0.017 0.062 1.494 0.010 0.072

VZ 0.471 0.011 0.041 0.572 0.009 0.045

WMT 0.464 0.009 0.045 0.654 0.007 0.058

XOM 0.473 0.012 0.039 0.506 0.010 0.036

assets under consideration as well as the covariance matrix ℂ. Finally the minimum

return target 𝜇 has to be defined. Any standard quadratic programming solver can be

used to solve this problem numerically.

188 R. Hochreiter

−0
.0

5
0.

00
0.

05
0.

10

C
um

ul
at

iv
e

R
et

ur
n

 Performance

−0
.0

2
−0

.0
1

0.
00

0.
01

0.
02

D
ai

ly
 R

et
ur

n

Jan 02 Feb 03 Mar 03 Apr 01 May 01 Jun 02 Jul 01 Aug 01 Sep 02 Oct 01 Nov 03 Dec 01 Dec 31

−0
.0

6
−0

.0
4

−0
.0

2
0.

00

D
ra

w
do

w
n

Fig. 1 Out-of-sample performance of a buy-and-hold Markowitz portfolio in 2014

Table 5 Optimal Markowitz portfolio using daily return data from 2010–2013

Ticker

symbol

HD JNJ MCD PG UNH V VZ WMT

Portfolio

weight [%]

10.26 16.69 22.67 11.92 6.41 4.22 7.56 20.27

minimize xTℂx
subject to r × x ≥ 𝜇

∑
x = 1 (3)

In addition, we also compare the performance to the 1-over-N portfolio, which

equally weights every asset under consideration. It has been shown that there are cases,

where this simple strategy outperforms clever optimization strategies, see e.g. [21].

Computing Trading Strategies Based on Financial Sentiment Data . . . 189

Table 6 Selected risk metrics for the different out-of-sample tests

Markowitz 1-over-N Evolutionary

Semi deviation 0.0042 0.0048 0.0038

Downside deviation

(Rf = 0 %)

0.0040 0.0047 0.0037

Maximum drawdown 0.0631 0.0687 0.0549

Historical VaR (95 %) −0.0092 −0.0105 −0.0081
Historical ES (95 %) −0.0125 −0.0157 −0.0124

Fig. 2 Out-of-sample performance of an equally weighted portfolio out of the evolutionary senti-

ment trading strategies in 2014

4.4 Performance Comparison

The asset composition of the optimal Markowitz portfolio is shown in Table 5 -

only eight out of the 30 assets are selected. The underlying covariance matrix was

190 R. Hochreiter

estimated from daily returns of the training data, i.e. using historical returns from

the beginning of 2010 until the end of 2013. This portfolio is used as a buy-and-hold

portfolio over the year 2014. This out-of-sample performance is shown in Fig. 1.
5

While the performance of the 1-over-N portfolio is not shown graphically, Fig. 2

depicts the performance of a portfolio, which is created by equally weighting all

single asset trading strategies computed by the evolutionary optimization algorithm

based on financial sentiment data into one portfolio. To get a better impression of

the differences (see Table 6), where some important risk metrics are summarized for

all three strategies. The evolutionary trading portfolio exhibits better risk properties

than both other portfolios in all five metrics. Especially important is the reduction of

the maximum drawdown, which is of importance to asset managers nowadays, be-

cause investors are increasingly looking to this metric if they are searching for secure

portfolios.

5 Conclusion

In this paper an evolutionary optimization approach to compute optimal rule-based

trading strategies based on financial sentiment data has been developed. It can be

shown that a portfolio composed out of the single trading strategies outperforms

classical risk-return portfolio optimization approaches in this setting. The next step

is to include transaction costs to see how this active evolutionary strategy loses per-

formance when transaction costs are considered. Future extensions include extensive

numerical studies on other indices as well as using and comparing different evalu-

ation risk metrics or a combination of metrics. One may also consider to create a

more flexible rule-generating algorithm e.g. by using genetic programming. Finally,

to achieve an even better out-of-sample performance the recalibrating of the trading

strategy can be done using a rolling horizon approach every month.

References

1. Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89

(2013)

2. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1),

1–8 (2011)

3. Oliveira, N., Cortez, P., Areal, N.: On the predictability of stock market behavior using Stock-

Twits sentiment and posting volume. Lect. Notes Comput. Sci. 8154, 355–365 (2013)

4. Smailović, J., Grčar, M., Lavrač, N., Žnidaršič, M.: Stream-based active learning for sentiment

analysis in the financial domain. Inf. Sci. 285, 181–203 (2014)

5. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)

6. Gottschalk, L.A., Gleser, G.C.: Measurement of Psychological States Through the Content

Analysis of Verbal Behaviour. University of California Press (1969)

5
Performance graphs are generated using the PerformanceAnalytics R package [22].

Computing Trading Strategies Based on Financial Sentiment Data . . . 191

7. Surowiecki, J.: The Wisdom of Crowds. Anchor Books (2005)

8. Das, S.R., Chen, M.Y.: Yahoo! for Amazon: sentiment extraction from small talk on the web.

Manage. Sci. 53(9), 1375–1388 (2007)

9. Tumarkin, R., Whitelaw, R.F.: News or noise? Internet postings and stock prices. Financ. Anal.

J. 57(3), 41–51 (2001)

10. Oliveira, N., Cortez, P., Areal, N.: Automatic creation of stock market lexicons for sentiment

analysis using StockTwits data. In: Proceedings of the 18th International Database Engineering

& Applications Symposium, ACM, pp. 115–123 (2014)

11. Brabazon, A., O’Neill, M. (eds.): Natural computing in computational finance. Volume 100 of

Studies in Computational Intelligence. Springer (2008)

12. Brabazon, A., O’Neill, M. (eds.): Natural computing in computational finance, volume 2. Vol-

ume 185 of Studies in Computational Intelligence. Springer (2009)

13. Brabazon, A., O’Neill, M., Maringer, D. (eds.): Natural computing in computational finance,

volume 3. Volume 293 of Studies in Computational Intelligence. Springer (2010)

14. Bradley, R.G., Brabazon, A., O’Neill, M.: Evolving trading rule-based policies. Lect. Notes

Comput. Sci. 6025, 251–260 (2010)

15. Brabazon, A., O’Neill, M.: Evolving technical trading rules for spot foreign-exchange markets

using grammatical evolution. Comput. Manage. Sci. 1(3–4), 311–327 (2004)

16. Brabazon, A., O’Neill, M.: Intra-day trading using grammatical evolution. In: Brabazon, A.,

O’Neill, M. (eds.) Biologically Inspired Algorithms for Financial Modelling, pp. 203–210.

Springer (2006)

17. Lipinski, P., Korczak, J.J.: Performance measures in an evolutionary stock trading expert sys-

tem. Lect. Notes Comput. Sci. 3039, 835–842 (2004)

18. Sharpe, W.F.: The sharpe ratio. J. Portfolio Manage. 21(1), 49–58 (1994)

19. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual

comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

20. R Core Team: R: a language and environment for statistical computing. R Foundation for Sta-

tistical Computing, Vienna, Austria (2014)

21. DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus naive diversification: How inefficient is

the 1/n portfolio strategy? Rev. Financ. Stud. 22(5), 1915–1953 (2009)

22. Peterson, B.G., Carl, P.: PerformanceAnalytics: econometric tools for performance and risk

analysis. R package version 1.4.3541 (2014)

Part II
Neural Networks, Self-organization,

Machine Learning

An Approach to ANFIS Performance

Stepan Dalecky and Frantisek V. Zboril

Abstract The paper deals with Adaptive neuro-fuzzy inference system (ANFIS)

and its performance. Firstly, ANFIS is described as a hybrid system based on fuzzy

logic/sets and artificial neural networks. Subsequently, modifications of ANFIS are

proposed. The aim of these modifications is to improve performance, accuracy or

reduce computational time. Finally, experiments are presented and findings are as-

sessed.

Keywords ANFIS ⋅ Artificial neural network ⋅ Performance ⋅ Fuzzy sets ⋅ Fuzzy

logic

1 Introduction

Many problems can be successfully solved using some combination of fuzzy logic

[6, 7] and artificial neural networks [1, 6, 8]. Each of these two theories has its

pros and cons. That is the reason why it is worth to develop hybrid system which

takes advantages of both. One well known example of such system is the Adaptive

neuro-fuzzy inference system (ANFIS) developed by Jang [3, 4, 6]. ANFIS has bor-

rowed vagueness and fuzziness from fuzzy sets and learning capability from artificial

neural networks. This system has been used for solving many problems, e.g. control-

ling [5], prediction [2] and classification problems. This paper describes ANFIS and

proposed modification of ANFIS that leads to better performance, accuracy and/or

less computational time.

S. Dalecky (✉) ⋅ F.V. Zboril

Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

e-mail: idalecky@fit.vutbr.cz

F.V. Zboril

e-mail: zboril@fit.vutbr.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_16

195

196 S. Dalecky and F.V. Zboril

2 ANFIS

From fuzzy sets point of view, ANFIS represents Sugeno model of the first order.

On the other hand, from artificial neural networks point of view, ANFIS represents

six layer feed-forward neural network. Architecture of ANFIS is shown in Fig. 1a.

It is obvious that ANFIS shown in this figure divides an input space as it is shown

in Fig. 1b and next four rules can be derived from it:

Parameters kij are specific constants for each rule and their settings will be

described later.

Fig. 1 ANFIS

Rule1 ∶
IF x1 is A1
AND x2 is B1
THEN y = k10 + k11x1 + k12x2

Rule3 ∶
IF x1 is A2
AND x2 is B1
THEN y = k30 + k31x1 + k32x2

Rule2 ∶
IF x1 is A2
AND x2 is B2
THEN y = k20 + k21x1 + k22x2

Rule4 ∶
IF x1 is A1
AND x2 is B2
THEN y = k40 + k41x1 + k42x2

2.1 Description of Layers

In this subsection, functions of all layers with respect to ANFIS [3, 6] architecture

in Fig. 1a are explained into more details. Symbols x(l)ij and y(l)i denote j-th input and

output of i-th neuron in l-th layer, respectively. If i-th neuron has one input only then

this input is denoted simply as x(l)i .

An Approach to ANFIS Performance 197

Layer 1–Input Layer The first layer only distributes input values to the second

layer using Eq. (1) as follows.

y(1)i = x(1)i (1)

Layer 2 – Fuzzification Layer The second layer accomplish fuzzification of in-

puts using bell membership function Eq. (2) as follows.

y(2)i = bell(x(2)i ; ai, bi, ci) =
1

1 +
(

x(2)i −ai
ci

)2bi
(2)

It is obvious that parameters ai, bi, ci determine shape of the bell function: centre,

width, and slope.

Layer 3 – Rule Layer The third layer corresponds to the rules. Each neuron in

this layer represents one rule. Inputs of this layer are membership degrees (outputs

of the previous layer), outputs are strength of the rules computed using Eq. (3) as

products of all inputs. C (i) symbol denotes the set of neurons of the second layer

which are connected to i-th neuron in the third layer.

y(3)i =
∏

j∈C(i)
x(3)j = 𝜇i (3)

Layer 4 –Normalization LayerThe fourth layer is used for normalization of rule

strength. Inputs of all neurons are corresponding outputs of n neurons of the previous

layer. Normalized strengths of corresponding rules are computed using Eq. (4).

y(4)i =
x(4)i
n∑

j=1
x(4)j

=
𝜇i
n∑

j=1
𝜇j

= �̄�i (4)

Layer 5 – Defuzzification Layer The fifth layer uses Eq. (5) to compute conse-

quent (THEN part) strengths of the rule according to the first order Sugeno model

[4, 6]. Inputs of this layer are outputs of the previous layer and input variables x1
and x2.

y(5)i = x(5)i
[
ki0 + ki1x1 + ki2x2

]
= �̄�i

[
ki0 + ki1x1 + ki2x2

]
(5)

Layer 6 – Sum Layer The sixth layer computes output of whole network as sum

of layer inputs using Eq. (6) as follows.

y = y(6) =
n∑

i=1
x(6)i =

n∑

i=1
�̄�i

[
ki0 + ki1x1 + ki2x2

]
(6)

198 S. Dalecky and F.V. Zboril

2.2 Parameters and Learning

Good performance of proposed model considerably depends on values of parameters

ai, bi, ci in the second layer and kij in the fifth layer. It is impossible to determine

optimal value of these parameters directly so we have to estimate them and then tune

them to get better performance.

Process of tuning parameters is called learning of ANFIS. Parameters that have

to be tuned are divided into two groups:

– parameters that are linear from the output point of view (parameters kij),
– parameters that are non-linear from the output point of view (parameters ai,
bi, ci).

Each group of parameters is tuned separately. One learning step consists of forward

pass and backward pass.

Forward Pass Vector k of parameters kij is tuned during this pass. Suppose m
inputs of ANFIS and n neurons in the third layer (number of rules) now, instead 2

inputs and 4 rules shown in Fig. 1a. Then vector k is n(1 + m) vector of parameters

of the fifth layer.

k =
[
k10 k11 k12 … k1m k20 k21 k22 … k2m … kn0 kn1 kn2 … knm

]T

Let P be number of training vectors. Then outputs of network create vector y of P
elements - each row of y is response of ANFIS to the one input vector. We can write

y = 𝐀k (7)

where 𝐀 is P × n(1 + m) dimensional matrix which holds network state after the

computation of the fourth layer output.

𝐀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̄�1(1) �̄�1(1)x1(1) ⋯ �̄�1(1)xm(1) ⋯ �̄�n(1) �̄�n(1)x1(1) ⋯ �̄�n(1)xm(1)
�̄�1(2) �̄�1(2)x1(2) ⋯ �̄�1(2)xm(2) ⋯ �̄�n(2) �̄�n(2)x1(2) ⋯ �̄�n(2)xm(2)
⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮

�̄�1(p) �̄�1(p)x1(p) ⋯ �̄�1(p)xm(p) ⋯ �̄�n(p) �̄�n(p)x1(p) ⋯ �̄�n(p)xm(p)
⋮ ⋮ ⋯ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮

�̄�1(P) �̄�1(P)x1(P) ⋯ �̄�1(P)xm(P) ⋯ �̄�n(P) �̄�n(P)x1(P) ⋯ �̄�n(P)xm(P)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Equation (7) is a matrix notation of Eq. (6) and Eq. (5) for set of training vectors.

Let yd be P × 1 vector of desired outputs.

yd =
[
yd(1) yd(2) … yd(p) … yd(P)

]T

Then error vector e of the network can be defined as follows

e = yd − y (8)

An Approach to ANFIS Performance 199

Goal of the learning is to find such vector k, respectively its estimate k∗, for which

mean square error defined by Eq. (9) is minimal (zero).

‖e‖2 = ‖
‖yd − y‖‖

2 = ‖
‖yd − 𝐀k‖‖

2
(9)

Vector k can be computed using Eq. (10) as follows (with respect to Eq. (7)).

k = (𝐀T𝐀)−1𝐀Tyd (10)

However inverse matrix (𝐀T𝐀)−1 can be calculated if and only if the matrix

(𝐀T𝐀) is regular. Unfortunately there is no guarantee of this and that is why we have

to compute estimate of vector k, denoted k∗, using pseudoinverse matrix Eq. (11).

k∗ = 𝐀+yd (11)

Symbol 𝐀+
denotes pseudoinverse of matrix 𝐀. Finally, vector k∗ is vector of

estimated parameters of the fifth layer.

Backward Pass During this pass, parameters ai and ci are tuned (bi remains con-

stant). Method is similar to well-known backpropagation method - it uses backward

propagation of errors. Error is computed using Eq. (12), where yd and y denote de-

sired and real output of the network, respectively.

E = 1
2
(
yd − y

)2
(12)

Goal of learning is to minimize error E by changing values of parameters in the

second layer. Assume that 𝛼m denotes general parameter of the m-th neuron in the

second layer. Then minimization is done according to Eq. (13) by tuning 𝛼m.E should

decreases if partial derivative of E with respect to 𝛼m is negative. Symbol 𝜅 denotes

a learning rate.

𝛥𝛼m = −𝜅 𝜕E
𝜕𝛼m

(13)

Using the chain rule and Eq. (13) we can derive Eq. (14), where n(5) is number of

neurons in the fifth layer (number of rules), C−1(m) is a set of neurons of the third

layer which are connected with m-th neuron in the second layer and
𝜕y(2)m
𝜕𝛼m

is partial

derivative of bell membership function with respect to 𝛼m.

𝛥𝛼m = 𝜅
yd − y(6)

y(2)m

⎛
⎜
⎜
⎝

∑

j∈C−1(m)

(

y(5)j

)

−
n(5)∑

j=1

⎛
⎜
⎜
⎝

y(5)j

y(3)j

y(4)j

⎞
⎟
⎟
⎠

∑

l∈C−1(m)

(

y(3)l

)⎞
⎟
⎟
⎠

𝜕y(2)m
𝜕𝛼m

(14)

200 S. Dalecky and F.V. Zboril

Partial derivative of bell membership function with respect to ai and ci are com-

puted using Eq. (15) and Eq. (16).

𝜕y(2)i
𝜕ai

= y(2)i
2bi
ci

(
y(1)i − ai

ci

)2bi−1

(15)

𝜕y(2)i
𝜕ci

=
2bi

(
y(1)i −ai

ci

)2bi

ci

((
y(1)i −ai

ci

)2bi
+ 1

)2 (16)

Finally, values of 𝛥ai and 𝛥ci are computed by substitution Eq. (15) and Eq. (16)

into Eq. (14).

3 Proposed Modifications of ANFIS

This section describes proposed modifications of ANFIS. After each modification is

presented their impact on performance or accuracy is discussed.

3.1 Different Number of Fuzzy Sets for Each Input

Original ANFIS uses the same number of fuzzy sets for each input variable regardless

of variable properties. For example if one variable does not change much (e.g. affects

output only linearly or similarly) there is no need to has as much fuzzy sets as must

have a variable which changes a lot (affects outputs non-linear, high frequency etc.).

We can distribute the same amount of fuzzy sets more precisely and put it where

they improve accuracy and performance with the same or even less computational

time.

This modification brings performance and/or accuracy in comparison with the

original ANFIS, depending on the use. The worst case that should happened is that

all inputs have the same number of fuzzy sets and it can be easily reached even with

this modification.

3.2 Data Normalization

Great method for improve ANFIS performance is data pre-processing. Z-score nor-

malization Eq. (17) is used for this purpose.

An Approach to ANFIS Performance 201

z = x − 𝜇

𝜎
(17)

Symbol x denotes input/output variable, 𝜇 denotes mean and 𝜎 is standard devi-

ation. Such normalization can be used for every input/output variable but we have

to save mean and standard deviation values for each variable to be able to normal-

ize training vectors, testing vectors etc. in the same way and also for reconstructing

original value of variable.

Benefit of this modification heavily depends on data properties and it will be

discussed in the experiment section.

3.3 Fuzzy Sets Initialization

Parameters ai, bi and ci have to be properly initialized. Good approach is to analyse

training data and estimate these parameters. After the z-score normalization, min-

imum and maximum of each input variable is computed, desired fuzzy count for

variable is divided uniformly from minimum to maximum. Parameter bi is a con-

stant (e.g. bi = 2 for reasonable membership function shape), parameters ai and ci
are computed using Eq. (18).

step = max − min
n

ai = min +
step
2

+ i ⋅ step ci =
step
2

(18)

Symbols min and max denote minimum and maximum of input values respec-

tively, n is desired number of fuzzy sets.

This modification has main impact on performance. Proper fuzzy sets initializa-

tion can significantly decrease learning time on the other hand bad fuzzy sets initial-

ization increases learning time because learning process start from point far from the

solution. Accuracy is affected negligibly because it should converges to the almost

same solution as well but it takes more time.

3.4 Changing Learning Rate 𝜿

We borrowed this modification from article [3]. Idea is to modify learning rate in

order to improve performance. Symbol 𝜅 in Eq. (14) is computed using Eq. (19).

𝜅 = 𝜂
√

(
𝜕E
𝜕ai

)2
+
(
𝜕E
𝜕ci

)2
(19)

Symbol 𝜅 denotes new learning rate, 𝜂 is old learning rate. 𝜂 is usually initialized

from interval 0.001 to 0.1. Main advantage is that new learning rate doesn’t depend

202 S. Dalecky and F.V. Zboril

on input data as much as original 𝜅. This modification also brings possibility to

tune 𝜂 depending on success of error minimization. If network error decreases then

learning rate increases, on the other hand if error oscillates learning rate decreases,

finally if error increases there is no change of learning rate. 𝜂 is increased by 5%
after 4 consecutive iterations which decrease error. If error oscillates (up, down, up,

down) during 4 consecutive iterations 𝜂 is decreased by 10%.

Described modification may slightly decrease accuracy in favour to significant

performance improvement.

4 Experiments

Two problems has been chosen to demonstrate how proposed system works - func-

tion approximation and controlling of a system.

At the first, some metrics to measure performance and accuracy are described.

Performance can be divided into two aspects:

– number of learning iterations (forward and backward pass),

– time that ANFIS needs to converge (to stop learning).

Accuracy is measured as difference between ANFIS output y(p) and desired out-

put yd(p) for training vector p ∈ P using E or EA from Eq. (20).

E (P) =

∑

p∈P

(
y (p) − yd (p)

)2

|P|
EA (P) =

∑

p∈P
|
|y (p) − yd (p)||

|P|
(20)

4.1 Function Approximation

Two non-linear functions and their modifications have been chosen to demonstrate

performance and accuracy of proposed ANFIS. Both functions are uniformly sam-

pled in each axis in interval < −5, 5 > with 0.1 steps.

The first function is two variables sinc function Eq. (21). This function is symmet-

ric in terms of input variable so it is appropriate to have same number of fuzzy sets

for each input. In this experiment 3 fuzzy sets are used. To demonstrate efficiency of

different number of fuzzy sets for each input, function sincm Eq. (21) is chosen and

4 fuzzy sets are used for input variable x, only 3 fuzzy sets are used for y.

sinc (x, y) = sin x
x

+
sin y
y

sincm (x, y) = sin 2x
x

+
sin y
y

(21)

An Approach to ANFIS Performance 203

To verify and confirm results another function f and its modified version fm have

been chosen Eq. (22). In case of f , 3 fuzzy sets are used for x and y while in case of

fm, 4 fuzzy sets are used for x and 3 for y only.

f (x, y) = sin2x ⋅ cos y fm (x, y) = sin2x ⋅ cos
y
2

(22)

Fig. 2 Membership function after initialization and after learning.

Fuzzy sets after initialization are shown
1

in Fig. 2 by dashed line and solid line

is used to represent fuzzy sets after learning. Corresponding sets have same colours

(shade of black). It can be seen that there are noticeable differences between fuzzy

sets of original (sinc, f) and modified (sincm, fm) functions.

Performance and accuracy of this experiments are shown in Table 1. To avoid

impact of initial learning rate several 𝜂 are chosen {𝜂1 = 5 ⋅10−4, 𝜂2 = 1 ⋅10−3, 𝜂3 =
5 ⋅ 10−3, 𝜂4 = 1 ⋅ 10−2, 𝜂5 = 3 ⋅ 10−2, 𝜂6 = 5 ⋅ 10−2}. Table is organized as follows:

Each experiment is on two rows. The first one contains used ANFIS configuration
2

and number of iterations for each 𝜂 while the second row contains accuracy
3

and

time in seconds.
4

1
Values on both axes are normalized by z-score. So they don’t directly correspond to the values of

sinc.

2
OrigAB is used for original ANFIS with A fuzzy sets for x and B for y while ModAB means our

modified ANFIS with A fuzzy sets for x and B for y.

3
Accuracy means maximal error computed using E from Eq. (20).

4
Time is measured on our testing machine with Intel Core i5-2540M.

204 S. Dalecky and F.V. Zboril

Table 1 Number of learning iterations and consumed time

It can be seen in Table 1 that modified ANFIS works well. Function sinc Table 2a

is learned in about 76.1% less iterations and 76.8% less time with error below 10−3
in average, about 50% of iterations and time are saved with error below 10−4. With

sincm Table 2c modified ANFIS uses only about 6.7% less iterations but time is

reduced about 50.3% with the same accuracy 2 ⋅ 10−4. Function f Table 2b,

ANFIS used in about 60.4% less iterations and 62.6% less time with same accu-

racy. Finally, using fm iterations are about 11.6% more but time is reduced about

21.0%. So proposed modifications save time and iterations from 7% to nearly 80%.

4.2 Controlling Discrete System

The second experiment is controlling discrete system Eq. (23) which has been pre-

sented in literature [4]. This system has one state variable y and one input u.

y (k + 1) =
y (k) ⋅ u (k)
1 + y (k)2

− tan (u (k)) (23)

Goal of controlling is to produce such input u that force state variable y (in

this case the same variable as output variable) to track desired trajectory given by

Eq. (24).

yd (k) = 0.6 sin
(2𝜋k
250

)

+ 0.2 sin
(2𝜋k
50

)

(24)

An Approach to ANFIS Performance 205

Fig. 3 Comparison of original and proposed ANFIS.

Table 2 Average error

Orig22 Orig33 Mod22 Mod23 Mod32 Mod33

Average

error

0.0161 0.0023 0.0162 0.0058 0.0097 0.0021

Inverse learning [4] is used to generate training data and control the system.

Size of training vector is 100 samples, initial learning rate 𝜂 = 5 ⋅ 10−3. Training

environment consists of follows: y(0) = 0 and action u(k) is generated randomly

each step from range < −1, 1 > using uniform distribution. Training vectors are[
y (k) , y (k + 1) ; u (k)

]
.

Accuracy of controlling is shown in Fig. 3. It can be seen that error of proposed

ANFIS is slightly lower than error of original ANFIS. Main improvement comes

from possibility to have different number of fuzzy sets and make ANFIS to fit your

needs - accuracy vs. performance. Exact results can bee seen in Table 2 computed

using EA from Eq. (20).

5 Conclusion

This paper presented modification of ANFIS. Main goal was to improve performance

and to get more accurate results in reasonable time and it has been reached. Proposed

modification relies on these changes: number of fuzzy sets for each input may dif-

fer, data normalization is added and intelligent fuzzy sets initialization is used, also

changing learning rate from original Jang article [3] is borrowed.

206 S. Dalecky and F.V. Zboril

To verify benefits of modification two experiments were done. The first one was

function approximation and the second one was controlling of a discrete dynamic

system. In both cases modified ANFIS had better performance and/or accuracy.

Accuracy improvement is not significant in all experiments but the lower number

of iterations and less computational time also have to be counted in. Improvement of

accuracy and/or performance heavily depends on solved problem and training data.

These experiments verified that proposed modification can be successfully used to

improve ANFIS performance and/or accuracy.

Further research could be done in way of tuning parameters. For example ex-

tended Kalman filter [9] can be used to speed up learning.

Acknowledgments This work was supported by the European Regional Development Fund in the

IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070) and by the Reliability and

Security in IT project (FIT-S-14-2486).

References

1. Aliev, R.A., Aliev, R.R.: Soft Computing and its Applications. World Scientific Publishing Co.,

Pte. Ltd. (2001)

2. Boyacioglu, M.A., Avci, D.: An adaptive network-based fuzzy inference system (anfis) for the

prediction of stock market return: the case of the istanbul stock exchange. Expert Syst. Appl.

37(12), 7908–7912 (2010)

3. Jang, J.-S.R.: Adaptive-network-based fuzzy inference system. (1993)

4. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational

Approach to Learning and Machine Intelligence. Prentice Hall (1997)

5. Liu, Y., Chen, Z., Xue, D., Xu, X.: Real-time controlling of inverted pendulum by fuzzy logic. In:

IEEE International Conference on Automation and Logistics, 2009. ICAL ’09, pp. 1180–1183

(2009)

6. Negnevitsky, M.: Artificial Intelligence: A Guide to Intelligent Systems. Addison-Wesley (2002)

7. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. The MIT Press

(1998)

8. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson (2010)

9. Simon, D.: Training fuzzy systems with the extended kalman filter. Fuzzy Sets and Systems

(2002). http://academic.csuohio.edu/simond/fuzzyopt/fss.pdf

http://academic.csuohio.edu/simond/fuzzyopt/fss.pdf

Values and Bayesian Probabilities
of Mental States from BSDT PL Analysis
of Memory ROCs

Petro Gopych and Ivan Gopych

Abstract BSDT PL is a binary (using the binary signal detection theory, BSDT)
version of primary language, PL, an extension of mathematics by the hypothesis of
concurrent infinity: all things of the world are describable by one-way infinite
binary strings with one-way infinite common beginning. Together with its phe-
nomenology formalization, BSDT PL enables descriptions of any life and mind
phenomena with the rigor of mathematics. In this paper, BSDT PL knowledge and
knowledge-related notions are defined and applied to designing BSDT PL
semi-representational memory for words. By BSDT PL fitting of memory ROC
curves measured in healthy humans and patients with injured brains, the values and
Bayesian probabilities of mental states serving verbal memory’s items are found.
BSDT PL measure of subjectivity of word recognition mechanisms is proposed and
numerically estimated. It is demonstrated that statistical learning and Bayesian
learning are the constituents of cognitive learning. Applications are briefly
discussed.

Keywords Concurrent infinity ⋅ Subjectivity ⋅ Semi-representational memory ⋅
Neural network ⋅ Object ⋅ Symbol ⋅ Knowledge ⋅ Cognitive learning

1 Introduction

Statistical learning, e.g., [1] and Bayesian leaning, e.g., [2] are unable to cope with
problems of learning from a single example and learning to process meaningful
messages. But these problems are solvable by recent cognitive learning [3].

P. Gopych (✉)
Universal Power Systems USA-Ukraine LLC, 3 Kotsarskaya St., Kharkiv 61012, Ukraine
e-mail: pmgopych@gmail.com

I. Gopych
Kharkiv Regional Clinical Oncology Centre, 4 Lisoparkivs’ka St., Kharkiv 61070, Ukraine
e-mail: gipgip80@gmail.com

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_17

207

The discreteness of active agents’ descriptions ensures their ability to learn from
a single example [3, 4]. To provide their ability to process meaningful messages, a
strict theory of meaning and meaningful communication is needed. Since traditional
mathematics ignores meanings by its very essence, it was done by an extension of
its axiomatic by the hypothesis of concurrent infinity and its phenomenology for-
malization [5]. Resulting primary language, PL, and its binary (using the binary
signal detection theory, BSDT [4]) version, BSDT PL, provide a possibility to
describe meanings and other subjective phenomena, to design algorithms/devices
for processing meaningful messages [5], and to account for data measured in
cognitive (where meanings are essential) experiments [3, 6].

In this paper, BSDT PL theory of knowledge or epistemology has been devel-
oped and used to design a semi-representational memory for meaningful messages,
e.g., words and a theory of communication by meaningful messages, e.g., words.
Complete quantitative BSDT PL description of memory ROCs (receiver operating
characteristics) measured in healthy humans and patients with specific brain injuries
[7] has been achieved (see [3] for fitting methodology and complementary results)
and everything formal that can ever be known from memory ROC measurements
about subjectivity of mechanisms of recall/recognition of meaningful words has
been extracted. A person’s capacity to discern features of things, his/her cognitive
capacity, the values and Bayesian probabilities of his/her memory states have
quantitatively been found. It has been demonstrated that statistical learning [1] and
Bayesian learning [2] are independent but complementary mechanisms constituting
together the cognitive learning [3].

2 BSDT PL and Phenomenology Formalization

Concurrent infinity adds to the axiomatic of traditional mathematics the concept of
coevolution [5] and the principle of sufficient reason (“a thing cannot occur without
a cause which produces it” [8, p. 3]). It postulates the possibility of describing the
things by their unique PL strings, cxixij – infinite on semi-axes binary strings with an
infinite on a semi-axis common beginning. PL string’s affix xij ∈ Sxi is its i-bit PL
name (one of 2i binary vectors with spin-like components ± 1 constituting an
i-dimensional binary vector space Sxi); its one-way infinite beginning of the length
of 0א bits, cxi, is PL name’s context 0א) is Cantor’s aleph naught, the totality of
natural numbers). All PL strings of the same infinite length (of the same meaning or
evolutionary complexity) constitute together an ultimate or proper class Scx0 – the
set that cannot be a subset of any other set; the amount of cxixij ∈ Scx0 is also infinite
but countable, .0א PL names xij of PL strings cxixij name/enumerate all things of the
world, known as well unknown but conceivable. The totality of PL strings is
complete and consistent; Gödel’s incompleteness holds for the totality of xij taken
without their contexts or for its infinite fractions only. That is, primary language,
PL, is mathematics of PL strings; PL computations are performed by super-Turing

208 P. Gopych and I. Gopych

machines. If the arrangement of PL strings with their one-way infinite common
beginning is destroyed then the PL transforms back into traditional mathematics [5].

Concurrent infinity leads simultaneously to phenomenology formalization. It
means it is postulated the literary equivalence of such usually incommensurable
things as a one-way infinite binary PL string cxixij, meaning of the xij, the real-world
physical device devoted to recognize the meaning of xij and feeling (“quale” or
primary thought) it causes. Of this follows that PL strings cxixij define meanings of
their PL names xij or subjective/first-person experiences or psychological
(momentary internal) states of the agent who is the owner of devices recognizing
the xij [5].

BSDT [4] is the best technique for computations with binary strings/PL names
xij. For this reason, the version of the PL employing BSDT coding/decoding
algorithms is most convenient for given the infinite common context PL processing
of PL names; we refer to it as BSDT PL. BSDT abstract selectional machines,
ASMs [9], implement its best algorithms; they have some different but computa-
tionally equivalent (Hamming distance, convolutional, neural network) forms and
represent BSDT’s universal neural network computational units [4, 6, 9].

3 Elements of BSDT PL Epistemology

BSDT PL allows us to develop epistemology as a quantitative discipline.

3.1 BSDT PL Things, Living Organisms, Objects, and Their
Features

A thing, say 𝒴i
k = cyiyik, is anything of the world that is different from anything else

[5]. Each of them can be considered as an infinitely deep hierarchy of other things
evolutionary embedded into the first one [10]. Since the thing’s properties or fea-
tures are given by its embedded things, their amount is infinite but countable
[5, 10].

A living organism, say an animal or a human, is a thing that is able to change
itself to self-sustain and self-reproduce itself in its permanently changing envi-
ronment [10]. To be able to adapt to it, an organism must be able to detect, discern,
classify, memorize and utilize those environmental features that are essential for its
aim. We refer to the organism’s part classifying and memorizing these features as
its memory system or its neural space [6]. The organism’s part detecting environ-
mental signals and discerning specific patterns of them is called the organism’s
sensory system; it consists of sensors and sensory pathways and generates the neural
space’s inputs. The organism’s part that could transform the neural space’s outputs

Values and Bayesian Probabilities of Mental States … 209

into the organism’s actions is called its executory system; it consists of behavioral
pathways and behavioral devices/actuators that directly influence the environment.
The neural space (memory as a whole) is divided into (consist of) numerous neural
subspaces (memory items), each of which, say𝒳 i

k, represents a finite fraction of the
thing’s features.

An object is a representation of a thing by the organism’s neural subspace
𝒳 i

k = cxixik or the meaning of the subspace’s PL name xik (a binary code the 𝒳 i
k is

devoted to process [5]). The object specifies, see (1), a finite set of i of the thing’s
distinctive features but remains unspecified infinite number of its other features. The
claim “a subspace represents a thing” means it is able to produce self-generated
outputs coinciding with outputs it produces when it is stimulated by inputs from the
sensory system exposed to signals from the thing. For this reason, if i of the thing’s
features are only considered then the subspace 𝒳 i

k and the object the𝒳
i
k represents

are equivalent; otherwise, 𝒳 i
k is simply a thing with infinite number of its features.

Objects reduce infinite number of features of a thing to be perceived to a finite
set of them and, in this way, ensure the finiteness of the thing’s particular repre-
sentation. The amount of objects an organism constructs for a thing is as large as the
amount of neural subspaces it uses to process its sensory inputs. Separate objects
produce together the thing’s whole/composite object, with the list of features of its
constituents. If a human (researcher) uses an additional man-made apparatus to
enhance his/her normal (healthy) sensory system then, with its help, he/she teaches
a new his/her neural subspace (his/her new neural subspace learns) to recognize
new his/her sensory inputs; in this way, the researcher designs for himself/herself a
new the thing’s object representing the set of the thing’s features that are
unavailable to his/her unaided sensory system. The amount of such new objects
could be as large as the amount of different experimental set-ups, measurement and
data-processing protocols one could design to enhance his/her sensory system, i.e.,
it is infinite in principle but restricted at any time by practical reasons.

3.2 BSDT PL Semi-representational Memory
and First-Person Knowledge

The BSDT PL defines an organism’s memory or its neural space as a manifold or a
“society” of numerous mutually interacting memory items or neural subspaces
𝒳 i

k = cxixik each of which stores the only meaningful memory record, cxixik; that is
the reason why BSDT PL learning paradigm one-memory-trace-per-one-network
[6] should be a property of all organisms, not only humans. To recall/recognize the
memory record the𝒳 i

k stores, it is insufficient to identify binary code xik pointing to
or representing the𝒳 i

k; it is also needed to activate the physical body of𝒳
i
k; that is

the reason why BSDT PL neural space is a semi-representational memory system
[6, 9].

210 P. Gopych and I. Gopych

For the ikth subspace 𝒳 i
k = cxixik , cxi is a brain structure 𝒞xi that, after its

learning, can generate 2i neural subspaces 𝒳 i
k devoted to process 2i meaningful

messages cxixk
i related to the same category of them, 𝒞xi = cxixi, xi (x

i is a set of
i empty slots to be filled by components of different xk

i in the course of learning the
category’s items, see Fig. 8 in [5]). Each xk

i is represented as a pattern of i spikes or
a symbol (a certain the subspace’s physical response, Sect. 3.3) specified by
components of xik, x

i
kj k=1, 2, . . . 2i; j=1, 2, . . . ið Þ. In other words, cxi is the

physical body 𝒞xi of all neural subspaces 𝒳 i
k before they were learned to process

different xik and𝒳
i
k is a fraction of 𝒞xi after it was learned to process particular xk

i .
Throughout this paper, cf. [10], we use same upper-case and lower-case letters to
designate real-world things (e.g., 𝒞xi or𝒳 i

k) and their symbolic descriptions/names
(e.g., cxi or xik).

The dimensionality i of PL name xik of PL string cxixik defines the total amount, it
is also i, of the object’s features (respective thing’s distinctive features) the sub-
space 𝒳 i

k is able to recognize; these features distinguish the object the 𝒳 i
k rep-

resents from other objects of the same category the organism knows (its memory
stores/represents). The jth component of xik , x

i
kj (it is physically implemented as a

spike [5]), points to the jth object’s feature and to its real-brain implementation (the
order of numbering these features does not matter [5]); the sign of xikj defines

whether the presence xikj = +1
� �

or the absence xikj = − 1
� �

of the jth feature

specifies the object the 𝒳 i
k represents (spikes targeted to excitatory and inhibitory

synapses give positive and negative values of xikj, respectively). We refer to the ikth
meaningful binary vector xik, PL name of PL string cxixik interpreted as described, as
given the context PL knowledge or first-person knowledge about the object the 𝒳 i

k
represents or about its meaning cxixk

i . “Given the context” means not only given the
body of neural subspace𝒳 i

k but also given specific sensors (enhanced by additional
apparatus or not) and sensory pathways; it is because the organism’s sensory system
prepares inputs to all the organism’s neural subspaces. Hence, PL knowledge is a
real-brain or first-person meaningful symbolic (using specific the subspace’s out-
put, cf. Sect. 3.3) representation of the thing’s distinctive features by the organism’s
particular neural subspace. First-person knowledge is essentially subjective and
directly available to the organism itself only.

3.3 Symbols, Knowledge Understanding, and Third-Person
Knowledge

Let the 𝒴i
k = cyiyik be an arbitrary in general but always the same environmental

thing, which is called a symbol (e.g., a behavioral action/gesture), produced by the
organism’s executory system in response to the output xik of its neural subspace𝒳

i
k.

If it is, then yik is a third-person (directed to others) meaningful symbolic

Values and Bayesian Probabilities of Mental States … 211

representation of first-person knowledge xik. Let another organism be a copy of the
first one (has the same anatomy and developed in the same environment [10]). If
𝒴i

k is able to activate another organism’s sensors feeding its subspace 𝒳 i
k then

everything formal or symbolic that these sensors generate from their current inputs
is zǐk, another organism’s initial response to𝒴i

k. Since z
ǐ
k is “noised” by signals from

other things, another organism’s sensory pathways rectify it and transform zǐk into
zǐk, an input to neural subspace 𝒳 i

k (the same as for the first organism). If zik is
identified by another organism’s 𝒳 i

k as x
i
k (the same as for the first organism) then

another organism identifies meanings of links of the chain zǐk → zik → xik as the
meaning of PL name yik of the symbol 𝒴i

k. It means another organism stimulated by
the symbol 𝒴i

k regenerates in its subspace 𝒳 i
k the meaningful record cxixik the

subspace 𝒳 i
k of the first organism stores. In such a case, we say that communi-

cating organisms understand the meaning cyiyik of the symbol 𝒴i
k in the same way

or, briefly, understand each other.
Mutual understanding of symbols is only possible if communicators are copies

or “mirror” replicas of each other [5], i.e., if they have equivalent sensory/executory
systems and neural subspaces. It means, in particular, an understanding takes place
if communicating organisms have such a neural subspace that is active when they
produce or only perceive the symbol. This BSDT PL prediction [5] is directly
supported by discovering “mirror neurons” (they are active when an animal/human
performs an action or only observes it, e.g., [11] and [12]) and by discovering
“secrete-and-sense cells” (they secrete and sense the same signaling molecule by
same secretion reporters and sensory receptors [13]). Another direct validation of
this prediction is given by empirical finding of spatially and temporally coherent
brain activity in humans mutually understanding meaningful messages of each
other [14].

Third-person knowledge is such a symbolic representation of an organism’s
first-person knowledge that other organisms (and the organism itself) are able to
perceive and understand. Any third-person knowledge could be presented by many
different arrangements of symbols (organism’s knowledge-specific actions) but,
since it is understandable by others, it is always reducible to its same first-person
form.

3.4 Knowledge Conditioning, Legacies of Evolution
and Development

First-person knowledge is a mix of an organism’s internal symbolism (binary
strings implemented as patterns of spikes) and its internal reality (real-brain devices
devoted to process these binary strings); its meaning is always certain (uncondi-
tional), complete, unique, unambiguous and directly perceivable by (available to)
the organism itself only (these features originate in PL phenomenology

212 P. Gopych and I. Gopych

formalization and the uniqueness of each of PL strings [5]). Third-person knowl-
edge is a kind of environmental things and its meaning is by definition conditioned
because it has only a sense with respect to particular organism, its first-person
particular knowledge, and particular mechanisms of its first-to-third-person and
third-to-first-person knowledge transformations (Sect. 3.3).

PL equation (cf. [10]) describing the ikth neural subspace (item of memory) 𝒳 i
k

is

𝒳i
k = cxixik =ℰmnℱm

n xik
� �

=ℰmncfm xik
� �

f mn ð1Þ

where ℱm
n xik
� �

are brain representations of the subspace’s features distinguishing
the object the 𝒳 i

k represents from other objects of the same category of them; PL
strings cfm xik

� �
f mn give meanings of ℱm

n xik
� �

; the sign ℰmn designates PL-specific
operation of evolutionary embedding of parts of a whole into the whole itself [10].
The features ℱm

n xik
� �

are also distinctive features of the thing the 𝒳 i
k represents.

Pairs of indices i and k k=1, 2, . . . , 2ið Þ, m and n n=1, 2, . . . , 2m; 2m ≥ ið Þ
enumerate categories of objects/subspaces and features of these objects/subspaces
[5, 10].

PL Eq. 1 reflects the equivalence of the subspace/object as a whole 𝒳i
k = cxixik

(i of features of 𝒳 i
k are indicated but unspecified) and the subspace/object as an

embedded set ℰmnℱm
n xik
� �

=ℰmncfm xik
� �

f mn of i of its features ℱm
n xik
� �

completely
specified by PL strings cfm xik

� �
f mn . Given their contexts, xik and f

m
n provide

first-person knowledge of the 𝒳 i
k (or of the object the 𝒳

i
k represents) and of each

of its features ℱm
n xik
� �

, respectively. If contexts cxi and cfm xik
� �

are further
unspecified then 𝒳 i

k is simultaneously the neural space and the object it represents.
For an organism, PL strings cfm xik

� �
f mn represent complete histories of evolu-

tionary design and developmental elaboration of features ℱm
n xik
� �

[10] of the
subspace/object 𝒳 k

i . Their contexts and PL names, cfm xik
� �

and f mn , give the legacy
of all the organism’s ancestors (of its evolution) and the legacy of all the organism’s
individual life experiences (of its development), respectively; the former is fixed as
the anatomy of the organism’s body and in general remains the same over its life,
the latter is fixed as an anatomy-specific easy-to-change symbolic features of the
organism’s body and in general is changeable over its life. Here, it does not matter
in which way it was actually done; it is only important that, since life experience is
accumulated over the organism’s life, PL strings cfm xik

� �
f mn , in addition to their

m-bit affixes f mn , could have in general different in length explicitly specified binary
fractions of their contexts, providing BSDT PL descriptions of this experience or
items of the organism’s first-person knowledge about the features ℱm

n xik
� �

.
Normally, in an act of meaningful communication, organisms generate and perceive
symbols that bear no information about specific form of first-person knowledge
items initiated their appearance. To observe them directly, special efforts are
required (Sect. 4).

Values and Bayesian Probabilities of Mental States … 213

3.5 The Significance of First-Person Knowledge
and the Probability of Its Use

For certainty, let us consider a memory for meaningful words studied by rating
measurements of memory ROCs in humans, e.g., [7]. For brevity, let us restrict
ourselves by considering the only word 𝒴i

k that, given the context cyi, bears
third-person knowledge item yik; we will refer to this word, its PL name and its
context as 𝒴, y and cy, respectively. To better comply with notations of the work
[3], let us refer to the dimension of yik and other participating vectors as N. It means,
in what follows, 𝒴, y, cy, 𝒳, x, cx, N, etc. are respectively understood as partic-
ular samples of 𝒴i

k , y
i
k , cyi, 𝒳

i
k, x

i
k, cxi, i, etc. Thanks to such simplified notations,

(1) takes the form

𝒳= cxx=ℰmnℱm
n xð Þ =ℰmncfm xð Þf mn =ℰrℱr =ℰrcvrvr ð2Þ

where ℱm
n xð Þ=ℱr are N real-brain representations of features distinguishing the

neural subspace/object 𝒳 = cxx and the word 𝒴 it represents; PL strings
cfm xð Þf mn = cvrvr are meanings of ℱm

n xð Þ=ℱr; indices r r=1, 2, . . . ,N; N ≤ 2mð Þ
are PL names f mn presented as successive natural numbers [5]. Each PL string cvrvr
consists of a one-way infinite substring cvr = cumn xð Þ and a finite substring
cvr = csmn xð Þf mn ; the former is an initial fraction of cfm xð Þ given as a part of physical
body of 𝒳, the latter is a concatenation of PL name f mn and everything symbolic in
cfm xð Þ, c s

mn xð Þ; in the history of designing the ℱm
n xð Þ, cfm xð Þ= cumn xð Þc s

mn xð Þ,
c u
cm xð Þ and c s

mn represent contributions of human evolution and human individual
development, respectively.

We understand the length of vr in bits, Vr, as a measure of significance of the
feature ℱr of the word 𝒴 represented by the subspace 𝒳 – the amount of infor-
mation about ℱr extracted from an individual’s life experience and stored in
memory. It reflects the importance of ℱr for discovering the 𝒴 among other
similarly presented words: the more the Vr the more the significance of ℱr is and,
consequently, the more the chance that particular individual will use ℱr to identify
𝒴. Since Vr is related to a chance of employing the ℱr for an identification of 𝒴,
after a normalization, it can also be treated as a probability of the use of ℱr in
different acts of decoding the 𝒴. Consequently, the significance of ℱr and the
probability of its use are given by the same but differently normalized (Sect. 4.2)
parameter Vr. If Vr = Vt at all r ≠ t (r = 1, 2, …, N and t = 1, 2, …, N) then, in
different appearances of𝒴, allℱr are used for the identification of𝒴 with the same
probability. If at some r ≠ t some Vr ≠ Vt then, in different identifications of 𝒴,
different ℱr are used with different probabilities.

214 P. Gopych and I. Gopych

4 Numerical Validation of BSDT PL Epistemology

4.1 First-Person Knowledge Manifestation in BSDT PL
ROCs and BDPs

First-person knowledge cvrvr about the rth featureℱr of the word𝒴= cyy represented
by the subspace 𝒳= cxx is directly quantified by the probability of its use, Vr;
first-person knowledge about the 𝒴 as a whole is quantified by the set of N proba-
bilities Vr we understand as components of a string/vector V. In a separate commu-
nication act, neither the whole V nor its separate Vr are observable (Sect. 3.4); they
can only be detectable inmultiple acts of recall/recognition of𝒴. The subspace𝒳, the
best BSDT PL decoding device [4, 6, 9], compares the amount of ℱr available in a
current identification event, H x, zð Þ, with a threshold defining the confidence of
decisions, θ: if H x, zð Þ≥ θ, then z is interpreted as a knowledge of 𝒴 [3, 4, 6].
Here, H x, zð Þ= j with 0≤H0 ≤ j≤N is Hamming distance between the vector x (it is
fixed, its N components xr point toℱr the𝒳 stores) and a vector z (it is changeable,
itsN components zr point toℱr found by sensory system for the current identification
event);H0 is the amount ofℱr that are certainly known (0≤H0 ≤N; given the state of
𝒳 and the health of sensory system,H0 depends on the state of the environment only);
θ is separately chosen for each decoding event [3, 4, 6, 9].

If all probabilities Vr are the same then all H x, zð Þ= j are generated with equal
probabilities (remember, the order of enumeration of ℱr is not specified, Sect. 3.2)
and, consequently, all sets of j of ℱr are equally probable. If, at different r, Vr are
not the same then, in different events of decoding the 𝒴, some of H x, zð Þ become
more/less probable/significant. If the significance/probability of an event H x, zð Þ= j
is pj then, we say, it is the jth component of a string/vector p. The p includes also
the probability/significance p0 of an extreme case when everything about 𝒴 is
certainly unknown (all features of 𝒴 are unknown/ignored) and the
probability/significance pN +1 of an extreme case when everything about 𝒴 is
certainly known (all features of𝒴 are taken into account). As a result, N parameters
Vr specifying separate ℱr r=1, 2, . . . ,Nð Þ are transformed into N + 2 parameters
pj j=0, 1, . . . ,N +1ð Þ specifying separate arrangements of ℱr. It means H(x,
z) and P N, H, θð Þ, the probability of recall/recognition of 𝒴, should additionally
depend on the fuzzy parameters V and p, respectively; for this reason, it is more
accurately to write H x, z, Vð Þ instead of H x, z,ð Þ and P N, H, θð Þ, p instead of
P N, H, θð Þ; if all Vr and, consequently, all pj are equal to each other then
H x, z, Vð Þ=H x, z,ð Þ and P N, H, θð Þ, p=P N, H, θð Þ.

Given the environment (the amount of certainly knownℱr, H0), by changing the
θ, an individual changes the actual amount H x, z,ð Þ of ℱr used to identify the
𝒴 and, consequently, his/her probability PH N, H, θð Þ, p of an identification of
𝒴. Given the confidence of decoding decisions (a threshold θ), by changing the
environment (the amount of certainly known ℱr, H0), he/she changes the H(x,
z) and his/her probability PH N, H, θð Þ, p of an identification of 𝒴. Discrete-valued
functions PH N, H, θð Þ, p and PH N, H, θð Þ, p define BSDT PL ROCs and BDPs

Values and Bayesian Probabilities of Mental States … 215

(basic decoding performance functions) [3, 4, 6]. PH N, H, θð Þ, p can be compared,
e.g., [3] with empirical memory ROCs measured in animals/humans, e.g., [7];
PH N, H, θð Þ, p can be compared, e.g., [6] with empirical psychometric functions
measured in animals/humans, e.g., [15].

4.2 Values and Bayesian Probabilities of Mental States
Found from ROCs

For the healthy sensory system, the perfect subspace 𝒳 = cxx, and the same at all
r relative significance Vr of featuresℱr of the word𝒴 (Sect. 4.1), BSDT PL correct
decoding probability P N, H, θð Þ, p can analytically be found [4, 6] as a
discrete-valued function P N, q, iθð Þ of arguments N (the dimensionality of x or the
amount ofℱr to be considered), q (the environmental cue [3, 4, 6, 9] or a fraction of
certainly known ℱr, H0/N), and jθ (specific choice of θ for the criterion H x, z,ð Þ≥ θ
or the rate of decision confidence [3, 4, 6, 9]). In general case [3], the measured hit
rate or empirically estimated correct decoding probability of 𝒴, Pj

exp, is given by

Pj
exp = p j

expP N, q, jð Þ ð3Þ

where j = jθ, a measurement parameter. Given the jθ, estimations p j
exp of all N + 2

parameters pj can be found as described in [3] by fitting empirical memory ROCs,
e.g., [7] and the use of (3); examples are shown in Fig. 1. Some other memory
parameters found by BSDT PL fitting of same ROCs [3] are given in Table 1
(numerical ROC analysis, e.g., [7] using the traditional signal detection theory gives
no information of values and Bayesian probabilities of memory states).

Presenting the Pj
exp as a product (3) of two factors, p j

exp and P(N, q, j), implies
coexistence of two independent but complementary components of a compositional
word recognition process: (1) discovering a pattern of j of an input’s features ℱr

and its preliminary identification as the object 𝒳 representing the 𝒴; (2) weighting
the results of the process 1 by N parameters Vr designed for each of ℱr on the basis
of human individual life experience and their transformation into the jth
experience-specific (motivationally biased) value of pj defining (e.g., dark bar in
Fig. 1H) the probability that 𝒳 will in the end recognize 𝒴 with the rate of
confidence j. The process 1 is implemented by sensory and memory systems taken
together; the process 2 is implemented by a widely distributed whole-brain value
system (it is described in, e.g., [16]) defining the significance/importance or cog-
nitive value or, simply, the value of each of the person’s mental (e.g., memory)
states. We suggest that parameters pj defined in Sect. 4.1 and extracted, with the
help of (3), from memory ROCs (Fig. 1) do give a quantitative BSDT PL repre-
sentation of mental states’ values that so far were only qualitatively defined, e.g.,
[16] on the basis of neuroscience arguments.

216 P. Gopych and I. Gopych

Values pj of mental (e.g., human memory) states are normalized by (4), a for-
malization of the fact of certainty of the word to be recognized (Fig. 1U); its
mathematically equivalent form is given by (5):

∑ pj =N +2, ð4Þ

∑ pj ̸ N +2ð Þ=1. ð5Þ

Of (4) and (5) follows that values pj of respective states of 𝒳 presented as ratios
pj ̸ N +2ð Þ are simultaneously the probabilities of identification of 𝒴 by j of its
features ℱr. These probabilities are manifestations of first-person knowledge items
vr (Sect. 3.5) and, consequently, are essentially subjective, as it is for Bayesian
probabilities [2, 8]. Prior Bayesian probabilities are presented in Fig. 1U; their
distribution is uniform and reflects, for a person, the absence of his/her previous life
experience. Examples of frequency estimations p j

exp ̸ N +2ð Þ of posterior Bayesian
probabilities are given in Fig. 1C, H, and H+; they were obtained by BSDT PL
fitting of memory ROCs measured using multiple the word’s presentations [7], are

0 4 8 12 16
0,0

0,5

1,0

1,5

2,0

N = 16

j

j0 = 12Cpexp
j

0,0

0,5

1,0

1,5

2,0

pj = p11
N = 15

j

j0 = 12Hpexp
j

0,0

0,5

1,0

1,5

2,0

N = 15

j

j0 = 10

H+
pexp

j

0 4 8 12 16
0,0

0,5

1,0

1,5

2,0
U

j

pexp
j

N = 15

Fig. 1 Estimations p j
exp of (cognitive) values pj of jth states of the subspace 𝒳 = cxx dealing with

j features ℱr of the word 𝒴 in humans learned to recognize the 𝒴 (C, control/healthy subjects, cf.
Fig. 2C in [3]; H and H+, patients with injured brains; U, cognitively unlearned/naïve subjects).
Estimations of p0 (the value of overdoubt decisions) and pN + 1 (the value of overconfident
decisions) are shown as left-most and right-most shaded bars, respectively. The height of the dark
bar, pj ̸ N + 2ð Þ= p11 1̸7, gives, for patients of the H-group, the probability that 𝒴 is recognized
with the rate of confidence j = 11. Histograms were found by BSDT PL fitting of memory ROCs
measured in [7]; magnitudes of N and j0 are from Table 1

Values and Bayesian Probabilities of Mental States … 217

non-uniform (have a maximum at j = j0) and reflect a person’s capacity to employ
the lessons of his/her life for choosing the confidence of his/her recognition deci-
sions. The very fact of existence of a preferred j0 means a person’s ability to
persuade a goal (to understand and follow instructions); its specific magnitude (e.g.,
Table 1) defines his/her preferred (motivationally biased) rate of confidence of
identification decisions.

We see the process of recall/recognition of words consists of two independent
but complementary mechanisms: discerning the features and performing their
motivational biasing. For this reason, learning to recognize words should also
consist of two processes: (1) acquiring the skill of discerning the word’s features or
statistical (“supervised”) learning [1] and (2) accumulating the experience of
making motivationally biased word-recognition decisions or Bayesian (“rein-
forcement”) learning [2]. It means, in addition to the capacity to discover the
features of things, experience-specific cognitive learning [3] should take into
account a quantitative description (e.g., Fig. 1) of a subjective experience (feeling)
about the importance of things to be recognized. The only quantitative information
that can here be available and used is the distribution of Bayesian probabilities of
mental (memory) states.

4.3 BSDT PL Measure of Subjectivity

Even patients with most severe brain damages [7] produce a non-uniform posterior
Bayesian probability distribution (Fig. 1H+) and, consequently, keep their ability to
make motivationally biased decisions. This fact motivates our suggestion to use the

non-uniformity of posterior probability distribution, b = ∑ p i
exp − 1

���
��� (see Table 1),

as a measure of subjectivity of word-recognition mechanisms or, more generally, of
cognitive capacity of humans. This idea is illustrated by plotting the b and the q (an
argument of (3) and the capacity to discern the word’s features) as a function of
brain damage degree and as functions of each other (Fig. 2).

Table 1 Results of fitting empirical memory ROCs [7] for groups C, H, and H+; N, q, and j0
(arguments of (3)) are from [3]; Δ= ∑ p j

exp −N − 2
� �

̸ N +2ð Þ, relative accuracy of histograms in

Fig. 1; b= ∑ p j
exp − 1

���
���, a measure of their non-uniformity (all p j

exp − 1
���

���≥ 0 andΔb=ΔbÞ

Group N q j0 Δ b ± Δb
C, control subjects 16 5/16 ≈ 0.31 12 0.066 3.34 ± 0.22
H, hypoxia patients 15 3/15 = 0.20 12 0.075 2.27 ± 0.17
H+, infarct patients 15 2/15 ≈ 0.13 10 0.084 1.94 ± 0.16

218 P. Gopych and I. Gopych

Magnitudes of b and q depend respectively on the health of a person’s value
system and the health of his/her sensory and memory systems. Since these systems
are widely distributed and overlapped structures, brain injuries should simulta-
neously damage all of them. It makes of the q (the curvature of ROCs [3, 4]) a
measure of damage affecting the b: the more the q the more the b is, and vice versa.
Examples of possible extrapolations of empirically found values of b(q), 0 ≤ q ≤ 1,
are shown in Fig. 2. Line 2 seems biologically more plausible than line 1; to be
conclusive, further research is needed. If q > 0.31 (healthy subjects), it is expected a
new information of ROC measurements in subjects with intact brains could be
obtained.

5 Conclusions

Quantitative BSDT PL epistemology has been developed from the first principles,
coevolution and causality. With its help, a semi-representational network memory
model for meaningful words has been constructed and applied to complete quan-
titative description of memory ROCs measured in healthy humans and patients with
injured brains. It has been demonstrated that everything formal that can ever be
known about subjective experience of humans performing word-recognition tasks is
a frequency estimation of the distribution of posterior Bayesian probabilities of
given the confidence recall/recognition decisions. Samples of such distributions
have been found by fitting empirical memory ROCs adopted from [7]. Hence, for
the first time, epistemology has been considered as a branch of natural or even
applied sciences.

0,0 0,1 0,2 0,3

0

1

2

3

4

b

q

H+
H C

2

Brain damage degree

1

Fig. 2 The capacity of motivational biasing (Bayesian learning) b vs. feature discerning
(statistical learning) capacity q. Line 1 gives an extension of the best linear interpolation across
three empirical points (filled signs) and line 2 implements the assumption b(q) = 0 if q = 0 (open
circle; simultaneous inability to discern the thing’s features and to make motivationally biased
decisions). The arrow indicates the degree of brain injury (C, intact brains; H, patients with an
intermediate brain injury; H+, most injured brains; data are from Table 1)

Values and Bayesian Probabilities of Mental States … 219

The non-uniformity of Bayesian probability distributions has been proposed to
use to measure the capacity to make motivationally biased recall/recognition
decisions. It has been demonstrated that cognitive learning we introduced [3] is a
complementary mix of statistical learning [1] (the ability to discern features of
things) and Bayesian learning [2] (the ability to make motivationally biased
decisions).

Results could for example be used in engineering (e.g., for designing robots or
computer codes imitating experience-dependent behaviors of animals/humans),
medicine (e.g., for estimating functional mind deficit or brain damage degree of
patients with injured brains), psychology and cognitive sciences (e.g., for
explaining the mind, mind-related behavioral and neurobiological phenomena or for
developing most efficient learning methodologies), and probability theory (e.g., for
clarifying the relations between definitions of probabilities by Bernoulli and
Bayes/Laplace).

References

1. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
2. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, Upper Saddle River (2003)
3. Gopych, P., Gopych, I.: BSDT ROC and cognitive learning hypothesis. In: Herrero, Á. et al.

(eds.) CISIS 2010. AISC 85, pp. 13–23. Springer, Berlin-Heidelberg (2010)
4. Gopych, P.M.: Elements of the binary signal detection theory, BSDT. In: Yoshida, M., Sato,

H. (eds.) New Research in Neural Networks, pp. 55–63. Nova Science, New York (2008)
5. Gopych, P.: Beyond the Zermelo-Fraenkel axiomatic system: BSDT primary language and its

perspective applications. Int. J. Adv. Intell. Syst. 5, 493–517 (2012)
6. Gopych, P.: Biologically plausible BSDT recognition of complex images: the case of human

faces. Int. J. Neural Syst. 18, 527–545 (2008)
7. Yonelinas, A.P., Kroll, N.E., Quamme, J.R. et al.: Effects of extensive temporal lobe damage

or mild hypoxia on recollection and familiarity. Nat. Neurosci. 5, 1236–1241 (2002)
8. Laplace, P.S.: A philosophical essay on probabilities. In: Truscott, F.W., Emory, F.L.

(translated from the 6th French edn.). Wiley, New York (1902)
9. Gopych, P.: Minimal BSDT abstract selectional machines and their selectional and

computational performance. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.)
Ideal 2007. LNCS, vol. 4881, pp. 198–208. Springer, Berlin-Heidelberg (2007)

10. Gopych, P.: Thinking machines versus thinking organisms. In: Iliadis, L., Papadopoulos,
H., Jane, C. (eds.) EANN2013, Part I. CCIS, vol. 383, pp. 71–80. Springer, Berlin-Heidelberg
(2013)

11. Rizzolatti, G., Craighero, L.: The Mirror-neuron system. Ann. Rev. Neurosci. 27, 169–192
(2004)

12. Keysers, C., Kaas, J.H., Gazzola, V.: Somatosensation in social perception. Nat. Rev.
Neurosci. 11, 417–428 (2010)

13. Youk, H., Lim, W.A.: Secreting and sensing the same molecules allows cells to achieve
versatile social behaviors. Science 343, 1242782 (2014)

14. Stolk, A., Noordzij, M.L., Verhagen, L., et al.: Cerebral coherence between communicators
marks the emergence of meaning. Proc. Natl. Acad. Sci. U.S.A. 111, 18183–18188 (2014)

15. Rhodes, G., Jeffery, L.: Adaptive norm-based coding of facial identity. Vision. Res. 46,
2977–2987 (2006)

16. Edelman, G.M.: Wider than the Sky. Yale University Press, New Haven (2004)

220 P. Gopych and I. Gopych

Scaled Conjugate Gradient Learning
for Complex-Valued Neural Networks

Călin-Adrian Popa

Abstract In this paper, we present the full deduction of the scaled conjugate gradi-

ent method for training complex-valued feedforward neural networks. Because this

algorithm had better training results for the real-valued case, an extension to the

complex-valued case is a natural way to enhance the performance of the complex

backpropagation algorithm. The proposed method is exemplified on well-known

synthetic and real-world applications, and experimental results show an improve-

ment over the complex gradient descent algorithm.

Keywords Complex-valued neural networks ⋅ Scaled conjugate gradient algo-

rithm ⋅ Time series prediction

1 Introduction

Over the last few years, the domain of complex-valued neural networks has received

an increasing interest. Popular applications of this type of networks include antenna

design, estimation of direction of arrival and beamforming, radar imaging, commu-

nications signal processing, image processing, and many others (for an extensive

presentation, see [11]).

These networks appear as a natural choice for solving problems such as channel

equalization or time series prediction in the signal processing domain, because some

signals are naturally expressed in complex-valued form. Several methods, which

include different network architectures and different learning algorithms, have been

proposed to increase the efficiency of learning in complex-valued neural networks

(see, for example, [18]). Some of these methods are specially designed for these

networks, while others are extended from the real-valued case.

C.-A. Popa (✉)

Department of Computer and Software Engineering, Polytechnic University Timişoara,

Blvd. V. Pârvan, No. 2, 300223 Timişoara, Romania

e-mail: calin.popa@cs.upt.ro

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_18

221

222 C.-A. Popa

One such method, which has proven its efficiency in many applications, is the

scaled conjugate gradient learning method. First proposed by [15], the scaled con-

jugate gradient method has become today a very known and used algorithm to train

feedforward neural networks. Taking this fact into account, it seems natural to extend

this learning algorithm to complex-valued neural networks, also.

In this paper, we present the deduction of the scaled conjugate gradient method.

We also give a general formula to calculate the gradient of the error function that

works both for fully complex, and for split complex activation functions, in the

context of a multilayer feedforward complex-valued neural network. We test the

proposed scaled conjugate gradient method on both synthetic and real-world applica-

tions. The synthetic applications include two fully complex function approximation

problems and one split complex function approximation problem. The real-world

application is a nonlinear time series prediction problem.

The remainder of this paper is organized as follows: Sect. 2 gives a thorough

explanation of the conjugate gradient methods for the optimization of an error func-

tion defined on the complex plane. Then, Sect. 3 presents the scaled conjugate algo-

rithm for complex-valued feedforward neural networks. The experimental results of

the four applications of the proposed algorithms are shown and discussed in Sect. 4,

along with a detailed description of the nature of each problem. Section 5 is dedicated

to presenting the conclusions of the study.

2 Conjugate Gradient Algorithms

Conjugate gradient methods belong to the larger class of line search algorithms.

For minimizing the error function of a neural network, a series of steps through the

weight space are necessary to find the weight for which the minimum of the function

is attained. Each step is determined by the search direction and a real number telling

us how far in that direction we should move. In the classical gradient descent, the

search direction is that of the negative gradient and the real number is the learning

rate parameter. In the general case, we can consider some particular search direction,

and then determine the minimum of the error function in that direction, thus yielding

the real number that tells us how far in that direction we should move. This represents

the line search algorithm, and constitutes the basis for a family of methods that have

better performance than the classical gradient descent. Our deduction of conjugate

gradient algorithms follows mainly the one presented in [3], which too follows that

in [13].

Let’s assume that we have a complex-valued neural network with an error function

denoted by E, and an 2N-dimensional weight vector denoted by 𝐰 = (wR
1 ,w

I
1,… ,

wR
N ,w

I
N)

T
. We must find the weight vector denoted by 𝐰∗

that minimizes the function

E(𝐰). Suppose we are iterating through the weight space to find the value of 𝐰∗
or a

very good approximation of it. Further, let’s assume that at step k in the iteration, we

want the search direction to be 𝐩k, where 𝐩k is obviously an 2N-dimensional vector.

Scaled Conjugate Gradient Learning for Complex-Valued . . . 223

In this case, the next value for the weight vector is given by 𝐰k+1 = 𝐰k+𝜆k𝐩k, where

the parameter 𝜆k is a real number telling us how far in the direction of 𝐩k we want

to go, which means that 𝜆k should be chosen to minimize E(𝜆) = E(𝐰k + 𝜆𝐩k).
This is a real-valued function in one real variable, so its minimum is attained

when
𝜕E(𝜆)
𝜕𝜆

= 𝜕E(𝐰k+𝜆𝐩k)
𝜕𝜆

= 0. By the chain rule, we can write that

𝜕E(𝐰k + 𝜆𝐩k)
𝜕𝜆

=
N∑

i=1

𝜕E(𝐰k + 𝜆𝐩k)
𝜕(wk,R

i + 𝜆pk,Ri)

𝜕(wk,R
i + 𝜆pk,Ri)

𝜕𝜆

+
N∑

i=1

𝜕E(𝐰k + 𝜆𝐩k)
𝜕(wk,I

i + 𝜆pk,Ii)

𝜕(wk,I
i + 𝜆pk,Ii)
𝜕𝜆

=
N∑

i=1

𝜕E(𝐰k+1)

𝜕wk+1,R
i

pk,Ri +
𝜕E(𝐰k+1)

𝜕wk+1,I
i

pk,Ii

= ⟨∇E(𝐰k+1),𝐩k⟩, (1)

where ⟨𝐚,𝐛⟩ is the Euclidean scalar product in ℝ2N ≃ ℂN
, given by ⟨𝐚,𝐛⟩ =

(∑N
i=1 aibi

)R
=

∑N
i=1 a

R
i b

R
i + aIi b

I
i , for all 𝐚,𝐛 ∈ ℝ2N ≃ ℂN

, and by aR and aI

we denoted the real and imaginary part of the complex number a, and by a the con-

jugate of the complex number a.

So, if we denote 𝐠 ∶= ∇E, then (1) can be written in the form

⟨𝐠(𝐰k+1),𝐩k⟩ = 0. (2)

The next search direction 𝐩k+1 is chosen so that the component of the gradient

parallel to the previous search direction 𝐩k remains zero. As a consequence, we have

that ⟨𝐠(𝐰k+1 + 𝜆𝐩k+1),𝐩k⟩ = 0. By the Taylor series expansion to the first order,

we have that 𝐠(𝐰k+1 + 𝜆𝐩k+1) = 𝐠(𝐰k+1) + ∇𝐠(𝐰k+1)T𝜆𝐩k+1, and then, if we take

(2) into account, we obtain that 𝜆⟨∇𝐠(𝐰k+1)T𝐩k+1,𝐩k⟩ = 0, which is equivalent to

⟨𝐇T (𝐰k+1)𝐩k+1,𝐩k⟩ = 0, or, further to

⟨𝐩k+1,𝐇(𝐰k+1)𝐩k⟩ = 0, (3)

where we denoted by 𝐇(𝐰k+1) the Hessian of the error function E(𝐰), because 𝐠 =
∇E, and thus ∇𝐠 is the Hessian.

The search directions that satisfy equation (3) are said to be conjugate directions.

The conjugate gradient algorithm builds the search directions 𝐩k, such that each new

direction is conjugate to all the previous ones.

Next, we will explain the linear conjugate gradient algorithm. For this, we con-

sider an error function of the form

E(𝐰) = E0 + 𝐛T𝐰 + 1
2
𝐰T𝐇𝐰, (4)

224 C.-A. Popa

where 𝐛 and 𝐇 are constants, and the matrix 𝐇 is assumed to be positive definite.

The gradient of this function is given by

𝐠(𝐰) = 𝐛 +𝐇𝐰. (5)

The weight vector 𝐰∗
that minimizes the function E(𝐰) satisfies the equation

𝐛 +𝐇𝐰∗ = 0. (6)

As we saw earlier from equation (3), a set of 2N nonzero vectors {𝐩1,𝐩2,… ,

𝐩2N} ⊂ ℝ2N
is said to be conjugate with respect to the positive definite matrix 𝐇 if

and only if

⟨𝐩i,𝐇𝐩j⟩ = 0,∀i ≠ j. (7)

It is easy to show that in these conditions, the set of 2N vectors is also linearly

independent, which means that they form a basis in ℝ2N ≃ ℂN
. If we start from the

initial point 𝐰1 and want to find the value of 𝐰∗
that minimizes the error function

given in (4), taking into account the above remarks, we can write that

𝐰∗ − 𝐰1 =
2N∑

i=1
𝛼i𝐩i. (8)

Now, if we set

𝐰k = 𝐰1 +
k−1∑

i=1
𝛼i𝐩i, (9)

then (8) can be written in the iterative form

𝐰k+1 = 𝐰k + 𝛼k𝐩k, (10)

which means that the value of 𝐰∗
can be determined in at most 2N steps for the error

function (4), using the above iteration. We still have to determine the real parameters

𝛼k that tell us how much we should go in any of the 2N conjugate directions 𝐩k.
For this, we will multiply equation (8) by𝐇 to the left, and take the Euclideanℝ2N

scalar product with 𝐩k. Taking into account equation (6), we obtain that −⟨𝐩k,𝐛 +
𝐇𝐰1⟩ =

∑2N
i=1 𝛼i⟨𝐩k,𝐇𝐩i⟩. But, because the directions 𝐩k are conjugate with respect

to matrix 𝐇, we have from (7) that ⟨𝐩k,𝐇𝐩i⟩ = 0,∀i ≠ k, so the above equation

yields the following value for 𝛼k:

𝛼k = −
⟨𝐩k,𝐛 +𝐇𝐰1⟩

⟨𝐩k,𝐇𝐩k⟩
. (11)

Scaled Conjugate Gradient Learning for Complex-Valued . . . 225

Now, if we multiply equation (9) by 𝐇 to the left, and take the Euclidean ℝ2N

scalar product with 𝐩k, we have that: ⟨𝐩k,𝐇𝐰k⟩ = ⟨𝐩k,𝐇𝐰1⟩+
∑k−1

i=1 𝛼i⟨𝐩k,𝐇𝐩i⟩, or,

taking into account that ⟨𝐩k,𝐇𝐩i⟩ = 0,∀i ≠ k, we get that ⟨𝐩k,𝐇𝐰k⟩ = ⟨𝐩k,𝐇𝐰1⟩,
and so the relation (11) for calculating 𝛼k becomes:

𝛼k = −
⟨𝐩k,𝐛 +𝐇𝐰k⟩

⟨𝐩k,𝐇𝐩k⟩
= −

⟨𝐩k, 𝐠k⟩
⟨𝐩k,𝐇𝐩k⟩

, (12)

where 𝐠k ∶= 𝐠(𝐰k) = 𝐛 +𝐇𝐰k, as relation (5) shows.

Finally, we need to construct the mutually conjugate directions 𝐩k. For this, the

first direction is initialized by the negative gradient of the error function at the ini-

tial point 𝐰1, i.e. 𝐩1 = −𝐠1. We have the following update rule for the conjugate

directions:

𝐩k+1 = −𝐠k+1 + 𝛽k𝐩k. (13)

Taking the Euclidean ℝ2N
scalar product with 𝐇𝐩k, and imposing the conjugacy

condition ⟨𝐩k+1,𝐇𝐩k⟩ = 0, we obtain that

𝛽k =
⟨𝐠k+1,𝐇𝐩k⟩
⟨𝐩k,𝐇𝐩k⟩

. (14)

It can be easily shown by induction that repeated application of the relations (13)

and (14), yield a set of mutually conjugate directions with respect to the positive

definite matrix 𝐇.

So far, we have dealt with a quadratic error function that has a positive definite

Hessian matrix 𝐇. But in practical applications, the error function may be far from

quadratic, and so the expressions for calculating 𝛼k and 𝛽k that we deduced above,

may not be as accurate as in the quadratic case. Furthermore, these expressions

need the explicit calculation of the Hessian matrix 𝐇 for each step of the algorithm,

because the Hessian is constant only in the case of the quadratic error function. This

calculation is computationally intensive and should be avoided. In what follows, we

will deduce expressions for 𝛼k and 𝛽k that do not need the explicit calculation of the

Hessian matrix, and do not even assume that the Hessian is positive definite.

First of all, let’s consider the expression for 𝛼k, given in (12). Because of the

iterative relation (10), we can replace the explicit calculation of 𝛼k with an inexact

line search that minimizes E(𝐰k+1) = E(𝐰k + 𝛼k𝐩k), i.e. a line minimization along

the search direction 𝐩k, starting at the point 𝐰k. In our experiments, we used the

golden section search, which is guaranteed to have linear convergence, see [4, 14].

Now, let’s turn our attention to 𝛽k. From (5), we have that

𝐠k+1 − 𝐠k = 𝐇(𝐰k+1 − 𝐰k) = 𝛼k𝐇𝐩k,

and so the expression (14) becomes:

𝛽k =
⟨𝐠k+1, 𝐠k+1 − 𝐠k⟩
⟨𝐩k, 𝐠k+1 − 𝐠k⟩

.

226 C.-A. Popa

This is known as the Hestenes-Stiefel update expression, see [10].

Similarly, we obtain the Polak-Ribiere update expression (see [17]):

𝛽k =
⟨𝐠k+1, 𝐠k+1 − 𝐠k⟩

⟨𝐠k, 𝐠k⟩
. (15)

We then have that ⟨𝐠k, 𝐠k+1⟩ = 0, and so expression (15) becomes:

𝛽k =
⟨𝐠k+1, 𝐠k+1⟩
⟨𝐠k, 𝐠k⟩

.

This expression is known as the Fletcher-Reeves update formula, see [19].

3 Scaled Conjugate Gradient Algorithm

As we have seen above, in real world applications, the Hessian matrix can be far

from being positive definite. Because of this, Møller proposed in [15] the scaled

conjugate algorithm which uses the model trust region method known from the

Levenberg-Marquardt algorithm, combined with the conjugate gradient method pre-

sented above. To ensure the positive definiteness, we should add to the Hessian

matrix a sufficiently large positive constant 𝜆k multiplied by the identity matrix. With

this change, the formula for the step length given in (12), becomes

𝛼k = −
⟨𝐩k, 𝐠k⟩

⟨𝐩k,𝐇𝐩k⟩ + 𝜆k⟨𝐩k,𝐩k⟩
. (16)

Let us denote the denominator of (16) by 𝛿k ∶= ⟨𝐩k,𝐇𝐩k⟩ + 𝜆k⟨𝐩k,𝐩k⟩. For a

positive definite Hessian matrix, we have that 𝛿k > 0. But if 𝛿k ≤ 0, then we should

increase the value of 𝛿k in order to make it positive. Let 𝛿k denote the new value of

𝛿k, and, accordingly, let 𝜆k denote the new value of 𝜆k. It is clear that we have the

relation

𝛿k = 𝛿k + (𝜆k − 𝜆k)⟨𝐩k,𝐩k⟩, (17)

and, in order to have 𝛿k > 0, we must have 𝜆k > 𝜆k − 𝛿k∕⟨𝐩k,𝐩k⟩. Møller in [15]

chooses to set 𝜆k = 2
(

𝜆k −
𝛿k

⟨𝐩k ,𝐩k⟩

)

, and so the expression for the new value of 𝛿k

given in (17), becomes 𝛿k = −𝛿k + 𝜆k⟨𝐩k,𝐩k⟩ = −⟨𝐩k,𝐇𝐩k⟩, which is now positive

and will be used in (16) to calculate the value of 𝛼k.
Another problem signaled above is the quadratic approximation for the error func-

tion E. The scaled conjugate gradient algorithm addresses this problem by consid-

ering a comparison parameter defined by

𝛥k =
E(𝐰k) − E(𝐰k + 𝛼k𝐩k)
E(𝐰k) − EQ(𝐰k + 𝛼k𝐩k)

, (18)

Scaled Conjugate Gradient Learning for Complex-Valued . . . 227

where EQ(𝐰) represents the local quadratic approximation of the error function in

the neighborhood of the point 𝐰k, given by

EQ(𝐰k + 𝛼k𝐩k) = E(𝐰k) + 𝛼k⟨𝐩k, 𝐠k⟩ +
1
2
𝛼
2
k ⟨𝐩k,𝐇𝐩k⟩. (19)

We can easily see that 𝛥k measures how good the quadratic approximation really

is. Plugging relation (19) into relation (18), and taking into account expression (12)

for 𝛼k, we have that 𝛥k =
2(E(𝐰k)−E(𝐰k+𝛼k𝐩k))

𝛼k⟨𝐩k ,𝐠k⟩
.

The value of 𝜆k is then updated in the following way

𝜆k+1 =
⎧
⎪
⎨
⎪
⎩

𝜆k∕2, if 𝛥k > 0.75
4𝜆k, if 𝛥k < 0.25
𝜆k, else

,

in order to ensure a better quadratic approximation.

Thus, there are two stages of updating 𝜆k: one to ensure that 𝛿k > 0 and one

according to the validity of the local quadratic approximation. The two stages are

applied successively after each weight update.

In order to apply the scaled conjugate gradient algorithm to a complex-valued

feedforward neural network, we only need to calculate the gradient of the error func-

tion at different steps. In what follows, we will give a method for calculating such

gradients, using the well-known backpropagation scheme.

Let’s assume that we have a fully connected complex-valued feedforward network

that has L layers, where layer 1 is the input layer, layer L is the ouput layer, and the

layers denoted by {2,… ,L − 1} are hidden layers. The error function E ∶ ℝ2N ≃
ℂN → ℝ for such a network is

E(𝐰) = 1
2

c∑

i=1
[(yL,Ri − tRi)

2 + (yL,Ii − tIi)
2],

where (yLi)1≤i≤c represent the outputs of the network, (ti)1≤i≤c represent the targets,

and 𝐰 represents the vector of the weights and biases of the network. As a conse-

quence, in order to compute the gradient 𝐠(𝐰) ∶= ∇E(𝐰), we must calculate all the

partial derivatives of the form
𝜕E

𝜕wl,R
jk
(𝐰) and

𝜕E
𝜕wl,I

jk
(𝐰), where wl

jk denotes the weight

connecting neuron j from layer l to neuron k from layer l − 1, for all l ∈ {2,… ,L}.

We further denote

slj ∶=
∑

k
wl
jkx

l−1
k + wl

j0,

ylj ∶= Gl(slj),

228 C.-A. Popa

where Gl
is the activation function of layer l ∈ {2,… ,L}, (x1k)1≤k≤d are the network

inputs, and xlk ∶= ylk, ∀l ∈ {2,… ,L − 1}, ∀k, because x1k are the inputs, yLk are the

outputs, and ylk = xlk are the outputs of layer l, which are also inputs to layer l + 1.

By calculations, we obtain the following formula for computing the components

of the gradient of the error function:

𝜕E
𝜕wl,R

jk

(𝐰) + i 𝜕E
𝜕wl,I

jk

(𝐰) = 𝛿
l
jx
l−1
k ,∀l ∈ {2,… ,L},

where

𝛿
l
j =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

(∑
m wl+1

mj 𝛿
l+1
m

)R(𝜕Gl,R(slj)

𝜕sl,Rj
+ i

𝜕Gl,R(slj)

𝜕sl,Ij

)

+
(∑

m wl+1
mj 𝛿

l+1
m

)I (𝜕Gl,I (slj)

𝜕sl,Rj
+ i

𝜕Gl,I (slj)

𝜕sl,Ij

)

, l ≤ L − 1

(yl,Rj − tRj)
(

𝜕Gl,R(slj)

𝜕sl,Rj
+ i

𝜕Gl,R(slj)

𝜕sl,Ij

)

+(yl,Ij − tIj)
(

𝜕Gl,I (slj)

𝜕sl,Rj
+ i

𝜕Gl,I (slj)

𝜕sl,Ij

)

, l = L

.

The above formula works both for fully complex, and for split complex activation

functions, and represents a unitary writing of the fully complex and split complex

variants of the complex-valued backpropagation algorithm found in the literature.

4 Experimental Results

4.1 Fully Complex Synthetic Function I

The first synthetic fully complex function we test the proposed algorithm on is the

two variable quadratic function f1(z1, z2) = 1
6

(
z21 + z22

)
. Fully complex functions

treat complex numbers as a whole, and not the real and imaginary parts separately,

as the split complex functions do. This problem was used as a benchmark to test the

performance of different complex-valued neural network architectures and learning

algorithms, for example in [20–22, 25].

To train the networks, we randomly generated 3000 training samples, with each

sample having the inputs z1, z2 inside the disk centered at the origin and with radius

2.5. For testing, we generated 1000 samples with the same characteristics. All the

networks had one hidden layer comprised of 15 neurons and were trained for 5000
epochs. The activation function for the hidden layer was the fully complex hyperbolic

tangent function, given by G2(z) = tanh z = ez−e−z
ez+e−z , and the activation function for

the output layer was the identity G3(z) = z.

Scaled Conjugate Gradient Learning for Complex-Valued . . . 229

In our experiments, we trained complex-valued feedforward neural networks

using the classical gradient descent algorithm (abbreviated GD), the gradient descent

algorithm with momentum (GDM), the conjugate gradient algorithm with Hestenes-

Stiefel updates (CGHS), the conjugate gradient algorithm with Polak-Ribiere updates

(CGPR), the conjugate gradient algorithm with Fletcher-Reeves updates (CGFR),

and the scaled conjugate gradient algorithm (SCG).

Table 1 Experimental results for the function f1
Algorithm Training Testing

GD 5.23e-5±9.29e-6 5.84e-5±1.16e-5

GDM 5.05e-5±9.23e-6 5.65e-5±1.10e-5

CGHS 1.78e-6±3.59e-7 2.07e-6±5.06e-7

CGPR 1.10e-5±2.56e-6 1.26e-5±3.23e-6

CGFR 9.90e-7±2.11e-7 1.16e-6±2.60e-7

SCG 7.19e-9±2.74e-9 8.77e-9±3.34e-9
FC-RBF [20, 21] 3.61e-6 9.00e-6

FC-RBF with KMC [21] 2.01e-6 1.87e-6

Mc-FCRBF [22] 2.50e-5 2.56e-6

CSRAN [25] 9.00e-6 9.00e-6

CMRAN [20, 21] 4.60e-3 4.90e-3

Training was repeated 50 times for each algorithm, and the resulted mean and

standard deviation of the mean squared error (MSE) are given in Table 1.

The best algorithm was clearly SCG, followed by the conjugate gradient algo-

rithms. The table also gives the MSE of other algorithms used to learn this function,

together with the references in which these algorithms and network architectures first

appeared. We can see that the proposed algorithm was better in terms of performance

than all these other algorithms.

4.2 Fully Complex Synthetic Function II

A more complicated example is given by the following function: f2(z1,z2, z3, z4) =
1
1.5

(

z3 + 10z1z4 +
z22
z1

)

, which was used as a benchmark in [1, 22–24]. We gener-

ated 3000 random training samples and 1000 testing samples, all having the inputs

inside the unit disk. Variable z1 was chosen so that its radius is bigger than 0.1,

because its reciprocal appears in the expression of the function, and otherwise it

could have led to very high values of the function in comparison with the other vari-

ables. The networks had a single hidden layer with 25 neurons, the same activation

functions as the ones used in the previous experiment, and were trained for 5000
epochs. Table 2 shows the results of running each one of the algorithms 50 times.

230 C.-A. Popa

The table also presents the values of the MSE for different learning methods and

architectures found in the literature.

In this experiment also, SCG had better results than the conjugate gradient algo-

rithms, but poorer than some other types of architectures used to learn this problem.

Table 2 Experimental results for the function f2
Algorithm Training Testing

GD 5.32e-4±4.35e-5 6.26e-4±1.40e-4

GDM 5.42e-4±5.05e-5 6.69e-4±2.17e-4

CGHS 1.49e-4±2.35e-6 1.66e-4±5.24e-6

CGPR 1.70e-4±5.16e-6 1.87e-4±8.86e-6

CGFR 1.48e-4±1.71e-6 1.64e-4±3.83e-6

SCG 1.37e-4±3.52e-6 1.61e-4±3.42e-6

FCRN [24] 9.00e-4 3.60e-3

FC-RBF [20, 21] 3.84e-4 2.28e-3

FC-RBF with KMC [21] 1.29e-4 8.26e-3

Mc-FCRBF [22] 8.10e-7 8.10e-7
CSRAN [25] 6.40e-5 4.00e-4

CMRAN [20, 21] 6.60e-4 2.50e-1

4.3 Split Complex Synthetic Function I

We now test the proposed algorithm on a split complex function. The function, also

used in [2, 5, 12], is f3(x + iy) = sin x cosh y + i cos x sinh y.
The training set had 3000 samples and the test set had 1000 samples randomly

generated from the unit disk. The neural networks had 15 neurons on a single hidden

layer. The activation functions were split hyperbolic tangent for the hidden layer:

G2(x + iy) = tanh x + i tanh y = ex−e−x
ex+e−x + i e

y−e−y
ey+e−y , and the identity function for the

output layer: G3(z) = z.
The mean and standard deviation of the mean squared error (MSE) over 50 runs

are presented in Table 3. The performances of the algorithms were similar to the ones

in the previous experiments.

4.4 Nonlinear Time Series Prediction

The last experiment deals with the prediction of complex-valued nonlinear signals.

It involves passing the output of the autoregressive filter given by y(k) = 1.79y(k −
1)−1.85y(k−2)+1.27y(k−3)−0.41y(k−4)+n(k), through the nonlinearity given

by z(k) = z(k−1)
1+z2(k−1) + y3(k), which was proposed in [16], and then used in [7–9].

Scaled Conjugate Gradient Learning for Complex-Valued . . . 231

Table 3 Experimental results for the function f3
Algorithm Training Testing

GD 7.29e-4±1.71e-4 7.72e-4±1.78e-4

GDM 9.20e-4±2.15e-4 9.67e-4±2.20e-4

CGHS 8.83e-6±2.57e-6 9.82e-6±2.83e-6

CGPR 1.88e-4±4.14e-5 2.04e-4±4.42e-5

CGFR 8.02e-6±1.85e-6 8.83e-6±2.15e-6

SCG 5.61e-7±1.12e-7 6.17e-7±1.24e-7

Table 4 Experimental results for nonlinear time series prediction

Algorithm Prediction gain

GD 3.64±3.49e-1

GDM 3.68±4.40e-1

CGHS 8.35±8.34e-4

CGPR 8.31±2.59e-2

CGFR 8.34±7.49e-4

SCG 8.35±3.51e-4
CLMS [26] 1.87

CNGD [9] 2.50

CRTRL [6] 3.76

The complex-valued noise n(k) was chosen so that the variance of the signal as

a whole is 1, taking into account the fact that 𝜎
2 = (𝜎R)2 + (𝜎I)2. The tap input of

the filter was 4, and so the networks had 4 inputs, 4 hidden neurons and one output

neuron. They were trained for 5000 epochs with 5000 training samples.

After running each algorithm 50 times, the results are given in Table 4. In the

table, we presented a measure of performance called prediction gain, defined by

Rp = 10 log10
𝜎
2
x

𝜎2e
, where 𝜎

2
x represents the variance of the input signal and 𝜎

2
e rep-

resents the variance of the prediction error. The prediction gain is given in dB. It is

obvious that, because of the way it is defined, a bigger prediction gain means better

performance. It can be easily seen that in this case, SCG, CGHS, and CGFR gave

approximately the same results, with CGPR performing slightly worse, and these

results were better than those of some classical algorithms and network architectures

found in the literature.

5 Conclusions

The full deductions of the scaled conjugate gradient algorithm and of the most known

variants of the conjugate gradient algorithm for training complex-valued feedfor-

ward neural networks were presented. A method for computing gradients of the error

232 C.-A. Popa

function was given, which can be applied both for fully complex and for split complex

activation functions. The three variants of the conjugate gradient algorithm with dif-

ferent update rules and the scaled conjugate gradient algorithm for optimizing the

error function were applied for training networks used to solve four well-known syn-

thetic and real-world problems.

Experimental results showed that the scaled conjugate gradient method per-

formed better on the proposed problems than the classical gradient descent and gra-

dient descent with momentum algorithms, in some cases as much as four orders of

magnitude better in terms of training and testing mean squared error.

The scaled conjugate gradient algorithm was generally better than the classical

variants of the conjugate gradient algorithm. This order of the algorithms in terms of

performance is consistent with the one observed in the real-valued case, yet another

argument for the extension of these learning methods to the complex-valued domain.

As a conclusion, it can be said that the scaled conjugate gradient algorithm rep-

resents an efficient and fast method for training feedforward complex-valued neural

networks, as it was shown by its performance in solving very heterogeneous synthetic

and real-world problems.

References

1. Amin, M., Savitha, R., Amin, M., Murase, K.: Complex-valued functional link network design

by orthogonal least squares method for function approximation problems. In: International

Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1489–1496 (2011)

2. Arena, P., Fortuna, L., Re, R., Xibilia, M.: Multilayer perceptrons to approximate complex

valued functions. Int. J. Neural Syst. 6(4), 435–446 (1995)

3. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press Inc, New York

(1995)

4. Brent, R.: Algorithms for Minimization Without Derivatives. Prentice-Hall Inc, Englewood

Cliffs, New Jersey (1973)

5. Buchholz, S., Sommer, G.: On clifford neurons and clifford multi-layer perceptrons. Neural

Netw. 21(7), 925–935 (2008)

6. Goh, S., Mandic, D.: A class of low complexity and fast converging algorithms for complex-

valued neural networks. In: IEEE Signal Processing Society Workshop on Machine Learning

for Signal Processing, pp. 13–22 (2004)

7. Goh, S., Mandic, D.: A complex-valued rtrl algorithm for recurrent neural networks. Neural

Comput. 16(12), 2699–2713 (2004)

8. Goh, S., Mandic, D.: Nonlinear adaptive prediction of complex-valued signals by complex-

valued prnn. IEEE Trans. Signal Process. 53(5), 1827–1836 (2005)

9. Goh, S., Mandic, D.: Stochastic gradient-adaptive complex-valued nonlinear neural adaptive

filters with a gradient-adaptive step size. IEEE Trans. Neural Netw. 18(5), 1511–1516 (2007)

10. Hestenes, M., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res.

Natl. Bur. Stand. 49(6), 409–436 (1952)

11. Hirose, A.: Complex-Valued Neural Networks: Advances and Applications. Wiley, New York

(2013)

12. Huang, G.B., Li, M.B., Chen, L., Siew, C.K.: Incremental extreme learning machine with fully

complex hidden nodes. Neurocomputing 71(4–6), 576–583 (2008)

13. Johansson, E., Dowla, F., Goodman, D.: Backpropagation learning for multilayer feed-forward

neural networks using the conjugate gradient method. Int. J. Neural Syst. 2(4), 291–301 (1991)

Scaled Conjugate Gradient Learning for Complex-Valued . . . 233

14. Luenberger, D., Ye, Y.: Linear and nonlinear programming. In: International Series in Opera-

tions Research & Management Science, vol. 116. Springer, Berlin (2008)

15. Møller, M.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw.

6(4), 525–533 (1993)

16. Narendra, K., Parthasarathy, K.: Identification and control of dynamical systems using neural

networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990)

17. Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. Rev. Fr.

d’Informatique Rech. Opérationnelle 3(16), 35–43 (1969)

18. Popa, C.A.: Enhanced gradient descent algorithms for complex-valued neural networks. In:

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), IEEE, pp. 272–279 (2014)

19. Reeves, C., Fletcher, R.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–

154 (1964)

20. Savitha, R., Suresh, S., Sundararajan, N.: Complex-valued function approximation using a fully

complex-valued rbf (fc-rbf) learning algorithm. In: International Joint Conference on Neural

Networks (IJCNN), IEEE, pp. 2819–2825 (2009)

21. Savitha, R., Suresh, S., Sundararajan, N.: A fully complex-valued radial basis function network

and its learning algorithm. Int. J. Neural Syst. 19(4), 253–267 (2009)

22. Savitha, R., Suresh, S., Sundararajan, N.: A self-regulated learning in fully complex-valued

radial basis function networks. In: International Joint Conference on Neural Networks

(IJCNN), IEEE, pp. 1–8 (2010)

23. Savitha, R., Suresh, S., Sundararajan, N.: A fast learning complex-valued neural classifier for

real-valued classification problems. In: International Joint Conference on Neural Networks

(IJCNN), IEEE, pp. 2243–2249 (2011)

24. Savitha, R., Suresh, S., Sundararajan, N.: A meta-cognitive learning algorithm for a fully

complex-valued relaxation network. Neural Netw. 32, 209–218 (2012)

25. Suresh, S., Savitha, R., Sundararajan, N.: A sequential learning algorithm for complex-valued

self-regulating resource allocation network-csran. IEEE Trans. Neural Netw. 22(7), 1061–1072

(2011)

26. Widrow, B., McCool, J., Ball, M.: The complex lms algorithm. Proc. IEEE 63(4), 719–720

(1975)

Off-Grid Parameters Analysis Method
Based on Dimensionality Reduction
and Self-organizing Map

Tomas Burianek, Tomas Vantuch, Jindrich Stuchly and Stanislav Misak

Abstract Off-Grid systems are energetic objects independent of an external power

supply. It uses primarily renewable sources what causes low and variable short-

circuit power that must be controlled. Also in the Off-Grid system is a need to keep

power quality parameters in requested limits. This requires a power quality para-

meters forecast and also a forecast of electric energy production from renewable

sources. For these forecasts a complex analysis of Off-Grid parameters is an impor-

tant task. This paper proposes method that processes data set from the Off-Grid sys-

tem using Dimensionality Reduction and the Self-organizing Map to obtain relations

and dependencies between power quality parameters, electric power parameters and

meteorological parameters.

Keywords Self-organizing map ⋅ Principal component analysis ⋅ Time-series ⋅
Clustering ⋅ Off-grid system

1 Introduction

The Off-Grid System is a system independent of the power supply from external

grids. Its specific characteristic is a low and variable short-circuit power [8] in com-

parison with the On-Grid systems. This is given mainly by a character of a source

part because the Off-Grid systems use primarily renewable sources (RES). These

T. Burianek (✉) ⋅ T. Vantuch ⋅ J. Stuchly ⋅ S. Misak

Department of Computer Science, Department of Electrical Power Engineering,

VSB - Technical University of Ostrava, FEECS,

17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

e-mail: tomas.burianek.st1@vsb.cz

T. Vantuch

e-mail: tomas.vantuch@vsb.cz

J. Stuchly

e-mail: jindrich.stuchly@vsb.cz

S. Misak

e-mail: stanislav.misak@vsb.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_19

235

236 T. Burianek et al.

RES have a stochastic character and in a conjunction with storage devices are only

sources of a short-circuit power. This problem with a stochastic character of RES

power supply is possible to solve by a storage device, whereas the power manage-

ment in the Off-Grid is controlled by using sophisticated artificial methods for exam-

ple by Demand Side Management (DSM) [17]. However, another problem related

to variable and a low short-circuit power is keeping power quality parameters (PQP)

in requested limits. PQP are defined by the national and international standards,

norms [1, 9]. (i) Level of supplied voltage, (ii) supplied voltage frequency, (iii) peri-

odical fluctuation of voltage as well as (iv) total harmonic distortion (THD) is possi-

ble to mention from a primary PQP. These above mentioned PQP is needful to keep

in defined limits for a restraint of a reliable and safe running all of the appliances

in the system. PQP out of desired limits may cause reduction of a service life of

the appliances and in the worst case may cause damage. This brings a need of PQP

controlling implementation to the DSM conception. This is possible to realize only

with understanding of a PQP progress in a time interval (PQP forecasting) and rela-

tions between PQP and other Off-Grid parameters such as electrical parameters and

meteorological conditions. The developing of tools for PQP forecasting (predictors)

is very important for restraint of reliable and safe Off-Grid system running whereas

the developing of predictors is possible to realize only in a case of detailed analysis

of relations between PQP and other Off-Grid parameters, how was mentioned.

An analysis of a time-series data is an important field of a data mining [5].

Each time-series that consists of many data points could be seen as a single object.

In retrieval of relations between those complex objects a clustering methods are

important tools for analysis. There are many algorithms used for a time-series clus-

tering. The basic k-means clustering algorithm is one of the most used for this task.

The k-means assigns objects to k clusters, where k is a user defined parameter [2].

Another is the Hierarchical clustering algorithm that creates a nested hierarchy of

corresponding groups based on the Euclidean distance between pairs of objects [19].

The Self-organizing Map is a clustering technique that provides a mapping from a

high dimensional input space to a two dimensional grid [12].

This paper proposes method for the Off-Grid parameters analysis based on the

clustering that employs the Self-organizing Map (SOM). Each parameter time-series

results to high-dimensional data with redundant information. Therefore a dimen-

sionality reduction method is applied on the data to extract only important features

before presenting to the Self-organizing Map. The Self-organizing Map then pro-

vides mapping from the reduced data set to the two-dimensional grid. To obtain

relevant clusters from map the k-means clustering algorithm adapted to the SOM is

then involved.

Paper is organized as follows: Sect. 2 describes the dimensionality reduction with

the Principal Component Analysis method in more details, Sect. 3 describes the Self-

organizing Map method and in Sect. 4 the k-means clustering of the Self-organizing

Map is explained. Method for the Off-Grid parameters analysis is proposed in Sect. 5

and the experiments and results obtained by proposed method are discussed in

Sect. 6. The conclusion about results and future work are given in Sect. 7.

Off-Grid Parameters Analysis Method Based on Dimensionality . . . 237

2 Dimensionality Reduction

The problem of dimensionality reduction for a set of variables X = {x1,… , xn}
where xi ∈ ℝD

is to find a lower dimensional representation of this set Y =
{y1,… , yn}where yi ∈ ℝd

and where d < D (often d ≪ D) in such a way to preserve

content of the original data as much as possible [3]. For dimensionality reduction task

several methods may be used such as Principal Component Analysis (PCA), Stochas-

tic Neighbor Embedding (SNE), Factor Analysis (FA), Diffusion Maps, Sammon

Mapping, Autoencoder, Neighborhood Preserving Embedding (NPE) [15, 21]. In

the next subsection the Principal Component Analysis is described in more details.

2.1 Principal Component Analysis

Principal component analysis (PCA) is a statistical linear method that provides the

dimensionality reduction. Dimensionality reduction is done by embedding the orig-

inal data into linear subspace with lower dimension in a way to preserve as much of

a relevant information as possible [10, 18]. It finds a mapping M to lower dimension

data with maximal variance. This is done by solving equation of a eigenproblem [7].

cov(X)M = 𝜆M, (1)

where cov(X) is the covariance matrix of a input data X. The mapping matrix M
is orthogonal and is formed by principal components - eigenvectors of the covari-

ance matrix cov(M). The matrix 𝜆 contains eigenvalues of the covariance matrix on

diagonal. To provide the dimensionality reduction a columns of the mapping matrix

M are sorted according to the decreasing eigenvalues in the matrix 𝜆. The mapping

matrix is then truncated to keep only first d principal components. A new data set Y
reduced into the dimension d is then computed by Eq. 2.

Y = XMd. (2)

Principal Component Analysis was successfully applied in the area of feature

extraction and signal processing [20].

3 Self Organizing Map

The Self-organizing Map (SOM) was introduced in 1982 by Kohonen [12]. This

method performs a nonlinear projection mapping from a higher dimensional input

space into a lower dimensional output grid of prototype nodes called map [11]. It is

related to the classical Vector Quantization (VQ) [13]. The output map is usually

two-dimensional that is easy for a graphical visualization and analysis.

238 T. Burianek et al.

Fig. 1 Self-organizing Map structure with 5 × 5 map grid and 3 input nodes connected with map

by weighted connections

The idea of method is that a similar data items corresponds to the prototype nodes

closely related in the grid and a less similar data models are farther to each other. The

Self-organizing map is based on an artificial neural network trained by an unsuper-

vised competitive learning process. The model structure consists of map of prototype

nodes, where each node has its position in the map grid and has a weigh vector of

the same size as the input data space. The weight vectors preserves mapping from

the high dimensional input space into the lower dimensional grid space. The map

grid is usually organized into a hexagonal or a rectangular shape. Whole structure

of the SOM could be presented by Fig. 1 as a two-layer neural network, where an

output layer forms the grid of nodes and an input layer are input nodes, where each

grid node is connected with an input node by the weighted connection.

The primary aim of the SOM learning is to optimize the weights of nodes.

Thereby the map structure is organized in a way to respond to the similar input data

items in the close related map prototype nodes.

Process of the training starts with initialization of all weights. It could be proceed

by initialization to small random values or by initialization by random samples from

the input data set. After initialization there is a repeated process of adaptation. From

the input data set with the size n an input vector xi where 0 ≤ i < n is presented to the

map by computing Euclidean distance to each node’s weight vector. The input item

i could be presented in ordered manner or by another method, for example could be

randomly picked from the input data set. The node b with a least distance to the input

vector is considered as a best matching unit (BMU). Then weights of the BMU node

and nodes close to it on the map grid are adapted according to the input vector. The

weight adaptation process of each node j in map with m nodes is depicted by Eq. 3.

wj(t + 1) = wj(t) + 𝛼(t)𝜂(t, j, b)(xi − wj(t)). (3)

Off-Grid Parameters Analysis Method Based on Dimensionality . . . 239

The new weight vector for the next step t+1 is computed from the previous weight in

the step t that is adjusted towards the input vector xi. A magnitude of this adaptation

depends on a monotonically decreasing learning coefficient 𝛼(t) and a neighborhood

function 𝜂(t, j, b). The neighborhood function 𝜂(t, j, b) captures influence of the BMU

node b to the current node j in the step t based on a distance between nodes on the out-

put map grid. For the neighborhood function could be used several functions but the

most common is the Gaussian function. The neighborhood influence is decreasing

during the adaptation process. The adaptation process stops after selected number

of steps.

4 SOM Clustering Using K-Means Algorithm

Clustering of the Self-organzing Map could be done by a hierarchical or partitive

clustering algorithms [22]. In this work the partitive clustering algorithm called

k-means is involved.

The k-means algorithm that was first introduced in [16] is well-known clustering

method. This algorithm minimizes an error function:

E =
k∑

i=1

∑

x∈Si

‖
‖x − ci‖‖

2
, (4)

where k is a number of clusters and ci is the center of cluster Si. Computation of

error is done by sum of squared distances of each data point x in each cluster S.

The algorithm of k-means iteratively computes partitioning for the data and updates

cluster centers based on the error function.

In Self-organizing map the prototype nodes are used for clustering instead of all

input data set. In this approach, the number of clusters k is unknown. Therefore

k-means algorithm is run multiple times for each k ∈ ⟨2,
√
N⟩ where N is number of

samples and the best k settings is selected based on the Davies-Boulding index [4]

calculated for each k clustering.

5 Proposed Off-Grid Parameters Analysis Method

To analyze relations and dependencies of parameters in the Off-Grid system, an algo-

rithm consisting of several steps is proposed. A block diagram in Fig. 2 describes four

main steps.

In the first step a data set is constructed from parameters, where each row is a

time-series of each parameter. Each parameter has different range of values. Then

each row is normalized to the same range in ⟨0, 1⟩.

240 T. Burianek et al.

Fig. 2 Block diagram of

proposed algorithm
Data preprocessing

Dimensionality
Reduction

Self-organizing
map processing

k-means clustering

The second step consist of dimensionality reduction of the data set to a specific

dimension. In this step only important features are extracted from the original high-

dimensional data and speeds up the following SOM adaptation. The Principal Com-

ponent Analysis is used for task of dimensionality reduction. The specific dimension

could be obtained by computing intrinsic dimension of the data set. The Maximum

Likelihood Estimation [14], the eigenvalues of PCA [6] or other method may be used

for this task.

In the next step the reduced data set is processed by the Self-organizing Map.

Each map prototype node is labeled by parameter names, where each node may have

0, 1 or more labels. Labeled map could be used for visual analysis with the idea

that parameters of the same or near nodes in the map are related to each other. This

visual analysis of groups of parameters could be supported by visualization of the

U-matrix, which shows distances between map nodes in the input space by coloring

associated neighboring cells.

The last step performs identification of parameter groups - clusters. For this task

the k-means clustering algorithm adapted to the Self-organizing Map from Sect. 4

is involved. Obtained clusters are then analyzed to reveal important relations in the

Off-Grid parameter data set.

6 Experiments and Results

The experiments of the Off-Grid Parameters Analysis method were performed on

the data set obtained from the Off-Grid system. This data set consists of 117 power

quality, meteorological and electric power parameter time-series. Each time-series

is formed by 14400 one-minute ticks.

Input settings of proposed method are showed in Table 1. Selected dimensional-

ity reduction method was PCA described in Sect. 2.1. Setting of other parameters

of the SOM are based on designed map structure and performed experiments. The

results obtained by the proposed method correspond with the original idea of rela-

tions between meteorological parameters, power parameters and basic power qual-

ity parameters. Figure 3 shows on the right side the Self-organizing Map labeled by

Off-Grid Parameters Analysis Method Based on Dimensionality . . . 241

Table 1 Table of settings

Dimensionality Reduction Method PCA

Intrinsic Dimensionality Method MLE

SOM Map Size 10 × 10
SOM Lattice Hexa

SOM neighborhood Gaussian

SOM learning coefficient 𝛼 0.5
SOM epochs 1000

U−matrix
Labeled map with clustersITra

STra
QTra

THDu1
THDumax1
Uharm131
Uharm211
Uharm231PTra

Uharm91
Uharm111

QSB

Uharm31

QSI
Irms1avg
S1avg

PFSB
PFG1
PFG3

fSI
Pst1

Uharm151
Uharm171
Uharm191
Uharm251

THDimax1

ISI
SSI

RelativniVlhkost

PFF2

SG1
SG2
SG3

Uharm71

IGen
UDC

UGen
SGen
PFF1

IBAT
PBAT

PSB
IFVE2

PFVE2

IG1
QG1
IG2

QG2
IG3

QG3

THDi1

PF1

TeplotaSpodnihoCidla

PFF3

IFVE1
PFVE1

IF2
SF2
IF3

SF3

RVGondolaVTE

IF1
SF1
QF1

P1avg

PFG2
MGEN

PWB
PFTra

IDC

USB
UWB

PFWB
USI
PG1
PG2
PG3
PF2

PIt1

PFGen
SWB
QWB

PDC

AtmoTlak
Urms1avg

ISB
SSB

TeplotahornihoCidla
Uharm51

PSI

QGen

PGen

UTra
UF2
UF3

SmerVetru

UF1

GlobalniZareni

IWB
UBAT

TeplotaVzduchu
TeplotaKol

cos1avg

Q1avg

PF1avg

PFSI

RVMeteo

UG1
UG2
UG3

RPMGEN
QF2

QF3

freq

UFVE2
UFVE1

Fig. 3 Left figure represents U-matrix visualization, right figure shows clusters and labels in map

names of all parameters and on the left side the visualized U-matrix that gives notion

about distances between prototype nodes in the input space and its distribution. Clus-

ters computed by the k-means algorithm are highlighted in the right figure by distinct

colors of cells. The resulting groups of parameters are shown in Table 2.

Cluster 1 associates voltage on each part of Photovoltaic power lant (PV) string

UFVE1 and UFVE2 which are in relation with frequency freq in the Off-Grid System

and subsequently affect PFSI - a power factor of Off-Grid inverter. Management of

Off-Grid Inverter (SI) has ability to limit output power from the renewable sources. If

parameter freq rises to defined bound 50.5 Hz(50Hz is nominal), Photovoltaic power

plant Inverter (PVI) overpasses out of an ideal point of Maximum power point track-

ing (MPPT) and increases voltage on its DC inputs to value UOC what is an open

circuit voltage of PV arrays. In this case when consumption of electric energy in the

Off-Grid system is minimal an appliances are in the stand-by mode and the para-

meter PFSI converges to zero, because connected appliances that have almost pure

capacitive character caused by switching sources. Results in this cluster correspond

with this fact.

Cluster 2 collects important power quality parameters together with power and

meteorological variables. These parameters associate internal linkages of the system

242 T. Burianek et al.

Table 2 Table of clusters

Cluster 1 PFSI , freq, UFVE2, UFVE1

Cluster 2 ITra, STra, QTra, THDu1, THDumax1, Uharm131, Uharm211, Uharm231, PTra,

Uharm91, Uharm111, QSB, Uharm31, fSI , Pst1, Uharm151, Uharm171,

Uharm191, Uharm251, THDimax1, SG1, SG2, SG3, Uharm71, IGen, UDC, IG1,

QG1, IG2, QG2, IG3, QG3, THDi1, IF2, SF2, IF3, SF3, RVGondolaVTE , IF1, SF1, QF1,

P1avg, PIt1, ISB, SSB, GlobalniZareni
Cluster 3 QSI , Irms1avg, S1avg, ISI , SSI
cluster 4 PFF2, PSB, IFVE2, PFVE2, PFF3, IFVE1, PFVE1, PWB, PFTra, IDC, USB, UWB,

PFWB, USI , PG1, PG2, PG3, PF2, PF3, AtmoTlak, Urms1avg
Cluster 5 PF1, PFG2, MGEN , PFGen, SWB, QWB, TeplotahornihoCidla, Uharm51, PSI , IWB,

UBAT , RVMeteo

Cluster 6 PF1avg, UG1, UG2, UG3, RPMGEN , QF2, QF3

Cluster 7 QGen, PGen, TeplotaVzduch, TeplotaKol, cos1avg
Cluster 8 PFSB, PFG1, PFG3

Cluster 9 RelVlhkost, UGen, SGen, PFF1, IBAT , PBAT , TepSpoCidla
Cluster 10 PDC, UTra, UF2, UF3, SmerVetru, UF1, Q1avg

in a complex plane. The reason of this are relations between meteorological

parameters(GlobalniZareni and RVGondola−VTE) and power variables such as reactive

and apparent power components (QSB and SSB). The system reacts to the power

variables by change of the power quality parameters such as a negative changes

of harmonics of higher orders (UHarm7 - UHarm25), overall harmonic voltage and

current distortion (Thdu and Thdi) together with short term and long term flicker

severity(Pst1 and Plt1). Clusters such as Cluster 3, Cluster 4, Cluster 5 and other

confirm previously stated ideas about mutual interactions of parameters and even

revealed relations that in common system parameters evaluation are not evident.

Example for this behavior could be group of parameters in Cluster 4 where PV power

output (PFVE2 and PFVE1) and current of individual PV strings (IFVE2 and IFVE1) and

AC power output of PV inverter (PSB) affect atmospheric pressure (AtmoTlak) what

makes sense in context with change of weather. Change of the atmospheric pressure

leads to the change of energy production from PV. With the high atmospheric pres-

sure a good meteorologic conditions are expected (sun shining) and PV production

is near to a maximal possible power.

7 Conclusion and Future Work

In this work the Off-Grid Parameter Analysis Method was proposed. This method

has four main steps: preprocessing of the data, dimensionality reduction by Principal

Component Analysis, processing by the Self-organizing Map and clustering of map

by the k-means algorithm. Results are presented in Fig. 3 that shows the labeled map

Off-Grid Parameters Analysis Method Based on Dimensionality . . . 243

with highlighted clusters. List of 10 obtained clusters with named parameters are

showed in Table 2.

These results corresponds with the original idea of authors, that measured para-

meters in the Off-Grid system have an effect on each other. It means that there exist

direct links between meteorological parameters, electric power parameters and para-

meters of power quality. One of the main objectives was analysis and verification

of these relations. Results of this analysis will be important base for power quality

parameters forecasting, forecasting of electric energy production from the renewable

sources and also as a tool for prediction of consumer behavior in given energetic

objects. All these tools will be associated in sophisticated dispatching system called

the Active Demand Side Management for a complex control of energy flows in the

Off-Grid systems.

Acknowledgments This paper was conducted within the framework of the IT4Innovations Cen-

tre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070, project ENET CZ.1.05/2.1.00/03.0069,

Students Grant Competition project reg. no. SP2015/142, SP2015/146, SP2015/170, SP2015/178,

project LE13011 Creation of a PROGRES 3 Consortium Office to Support Cross-Border Cooper-

ation (CZ.1.07/2.3.00/20.0075) and project TACR: TH01020426.

References

1. IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE Std 1159, c1–81

(2009) (Revision of IEEE Std 1159–1995)

2. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. ICML 98, 91–99

(1998)

3. Cunningham, P.: Dimension reduction. In: Machine Learning Techniques for Multimedia, pp.

91–112. Springer, Berlin (2008)

4. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach.

Intell. 1(2), 224–227 (1979)

5. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45(1), 12:1–12:34 (2012)

6. Fan, M., Gu, N., Qiao, H., Zhang, B.: Intrinsic dimension estimation of data by principal com-

ponent analysis. CoRR abs/1002.2050 (2010)

7. Francis, J.G.F.: The qr transformation a unitary analogue to the lr transformation part 1. Com-

put. J. 4(3), 265–271 (1961)

8. Goksu, O., Teodorescu, R., Bak-Jensen, B., Iov, F., Kjr, P.: An iterative approach for symmet-

rical and asymmetrical short-circuit calculations with converter-based connected renewable

energy sources. Application to wind power. In: Power and Energy Society General Meeting,

2012 IEEE, pp. 1–8 (2012)

9. Ji, N.: Steady-state signal generation compliant with iec61000-4-30: 2008. In: 22nd Interna-

tional Conference and Exhibition on Electricity Distribution (CIRED 2013), pp. 1–4 (2013)

10. Jolliffe, I.: Principal Component Analysis. Springer Series in Statistics, Springer, Berlin (2002)

11. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

12. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern.

43(1), 59–69 (1982)

13. twenty-fifth Anniversay Commemorative Issue Essentials of the self-organizing map. Neural

Networks. 37(0), 52–65 (2013)

14. Levina, E., Bickel, P.J.: Maximum Likelihood Estimation of Intrinsic Dimension. In: NIPS

(2004)

244 T. Burianek et al.

15. van der Maaten, L.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: A compar-

ative review. Journal of Machine Learning Research 10(1–41), 66–71 (2009)

16. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations.

In: Cam, L.M.L., Neyman, J. (eds.) Proc. of the fifth Berkeley Symposium on Mathematical

Statistics and Probability. vol. 1, pp. 281–297. University of California Press (1967)

17. Matallanas, E., Castillo-Cagigal, M., Gutirrez, A., Monasterio-Huelin, F., Caamao-Martn, E.,

Masa, D., Jimnez-Leube, J.: Neural network controller for active demand-side management

with PV energy in the residential sector. Applied Energy 91(1), 90–97 (2012)

18. Partridge, M., Calvo, R.A.: Fast dimensionality reduction and simple pca. Intelligent Data

Analysis 2(3), 203–214 (1998)

19. Rodrigues, P., Gama, J., Pedroso, J.: Hierarchical clustering of time-series data streams. Knowl-

edge and Data Engineering, IEEE Transactions on 20(5), 615–627 (2008)

20. Siuly, S., Li, Y.: Designing a robust feature extraction method based on optimum allocation

and principal component analysis for epileptic EEG signal classification. Computer Methods

and Programs in Biomedicine 119(1), 29–42 (2015)

21. Sorzano, C.O.S., Vargas, J., Pascual-Montano, A.D.: A survey of dimensionality reduction

techniques. CoRR abs/1403.2877 (2014)

22. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. Neural Networks, IEEE

Transactions on 11(3), 586–600 (2000)

Matrix-Valued Neural Networks

Călin-Adrian Popa

Abstract This paper introduces matrix-valued feedforward neural networks, for

which the inputs, outputs, weights and biases are all square matrices. This type of net-

works represents a natural generalization of the complex-, hyperbolic-, quaternion-

and Clifford-valued neural networks that have been intensively studied over the last

few years. The full deduction of the gradient descent algorithm for training such

networks is presented. The proposed networks are tested on three synthetic function

approximation problems, with promising results for the future.

Keywords Clifford-valued neural networks ⋅Backpropagation algorithm ⋅Matrix-

valued neural networks

1 Introduction

In the last few years, there has been an increasing interest in the study of neural

networks with values in multidimensional domains. The simplest form of multidi-

mensional neural networks are complex-valued neural networks, which were first

introduced in the 1970s (see, for example, [24]), but have received more attention

in the 1990s and in the past decade, because of their numerous applications, start-

ing from those in complex-valued signal processing and continuing with applica-

tions in telecommunications and image processing (see, for example, [6, 9]). It has

also been proven, that because they have orthogonal decision boundaries, complex-

valued neural networks can solve the XOR problem and the detection of symmetry

problem using a single complex-valued neuron, which is impossible using a single

real-valued neuron, see [13–16].

Besides complex-valued neural networks, an extension of the neural networks in

the real domain are the hyperbolic-valued neural networks, defined on the

2-dimensional algebra of hyperbolic numbers, see [4, 8, 21]. An interesting prop-

C.-A. Popa

Department of Computer and Software Engineering, Polytechnic University Timişoara,

Blvd. V. Pârvan, No. 2, 300223 Timişoara, Romania

e-mail: calin.popa@cs.upt.ro

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_20

245

246 C.-A. Popa

erty exhibited by these networks is that their decision boundary consists of two

hypersurfaces which can have any angle, depending on the weights of the network.

If the complex-valued neural networks always have orthogonal decision boundaries,

hyperbolic-valued neural networks can have anywhere from orthogonal to parallel

decision boundaries, feature that might prove very effective in applications.

An extension of the complex and hyperbolic numbers are the quaternion numbers,

which are defined by four real numbers, thus the quaternion algebra is 4-dimensional.

Quaternion-valued neural networks were introduced in the 1990s also, in the begin-

ning as a generalization of the complex-valued neural networks, see [1–3, 12, 17].

But soon, interesting applications were found, from chaotic time series prediction, to

the 4-bit parity problem, and, in recent times, to quaternion-valued signal processing.

Three dimensional objects can be represented using quaternions, and so applications

have emerged in 3-dimensional image processing, also.

All the above generalizations of the real-valued neural networks fall into the

wider category of Clifford-valued neural networks, which have dimension 2n, n ≥ 1.

Clifford algebras or geometric algebras have many applications in physics and engi-

neering, which recommends them for use in the field of neural newtorks, also.

Clifford-valued neural networks were defined in [22, 23], and later discussed in, for

example [5, 7, 8]. They can offer, in the future, a way to solve many problems arising

in the design of intelligent systems, because of the close relation between Clifford

algebras and geometry, allowing them to process different geometric objects and

apply different geometric models to data.

Vector-valued neural networks are a somewhat different approach, that has no

direct connection with the Clifford algebras discussed above, see [10, 11, 18]. These

networks process three dimensional input vectors in two ways: one based on the

vector product, which have three dimensional vectors as weights, and one which

have orthogonal matrices as weights (i.e. matrices that satisfy AAT = ATA = I).
This last variant was further generalized to N-dimensional vectors, and thus the N-

dimensional neural networks (see [19, 20]), have N-dimensional vector inputs and

outputs, but orthogonal matrix weights. Both three-dimensional and N-dimensional

neural networks were used successfully in applications, the first in geometric trans-

formations, and the second in the N-bit parity problem, which was solved using a

single N-dimensional neuron.

All the considerations above, combined with the fact that complex, hyperbolic,

quaternion and Clifford numbers can be written in matrix form (for example, a com-

plex number a + ib, i =
√
−1, can be written in the form

(
a −b
b a

)

), led to the

natural idea of defining multidimensional neural networks with matrix inputs, out-

puts, weights and biases. Matrix-valued neural networks are thus a generalization of

all the above neural networks, because each of the algebras on which these neural

networks were defined, can be seen as a subalgebra of the algebra of square matri-

ces, with the natural addition and multiplication of the matrices. Because of their

degree of generality, these neural networks are bound to have many applications in

the future at solving problems at which traditional neural networks have failed or

performed poorly.

Matrix-Valued Neural Networks 247

They can be used to solve matrix equations, to compute matrix averages, or to

learn any functions defined on the algebra of matrices. Matrix-valued neural net-

works might also have interesting applications in computer vision, image processing,

and all other areas related to geometric transformations of objects, but they might

also perform better on some n-dimensional problems than the solutions available at

this time.

The remainder of this paper is organized as follows: Sect. 2 gives the full deduc-

tion of the gradient descent algorithm for training matrix-valued feedforward neural

networks. The experimental results of three applications of the proposed algorithm

are shown and discussed in Sect. 3. Section 4 is dedicated to presenting the conclu-

sions of the study.

2 Matrix-Valued Neural Networks

Consider the algebra n of square matrices of order n.

In what follows, we will define feedforward neural networks for which the inputs,

outputs, weights and biases are all from n, which means that they are square matri-

ces. Let’s assume we have a fully connected feedforward neural network with values

from n, with L layers, where 1 is the input layer, L is the output layer, and the

layers denoted by {2,… ,L−1} are hidden layers. The error function E ∶ N
n → ℝ

for such a network is

E(𝐖) = 1
2

c∑

i=1
||YL

i − Ti||2, (1)

where ||Y|| is the Frobenius norm of matrix Y defined by ||Y|| ∶=
√
Tr(YYT), and

Tr(Y) is the trace of matrix Y . (YL
i)1≤i≤c ∈ c

n represent the outputs of the network,

(Ti)1≤i≤c ∈ c
n represent the targets of the network, and 𝐖 ∈ N

n is the vector of

all the N weights and biases of the network, which is a vector whose components are

matrices from n.

If we denote by Wl
jk ∈ n the weight connecting neuron j from layer l with

neuron k from layer l − 1, for all l ∈ {2,… ,L}, we can define the update step of

weight Wl
jk in epoch t as being

𝛥Wl
jk(t) = Wl

jk(t + 1) −Wl
jk(t).

With this notation, the gradient descent method has the following update rule for the

weight Wl
jk ∈ n:

𝛥Wl
jk(t) = −𝜀

(

𝜕E
𝜕[Wl

jk]ab
(t)

)

1≤a,b≤n

,

248 C.-A. Popa

where 𝜀 is a real number representing the learning rate and we denoted by
𝜕E

𝜕[Wl
jk]ab

(t)

the partial derivative of the error function E with respect to each element [Wl
jk]ab of

the matrix Wl
jk ∈ n, with 1 ≤ a, b ≤ n. Thus, to minimize the function E, we

need to compute the partial derivatives
𝜕E

𝜕[Wl
jk]ab

(t). Now, we will make the following

notations

Slj =
∑

k
Wl

jkX
l−1
k , (2)

Yl
j = Gl(Slj), (3)

where (2) shows that the multiplication from the real-valued case is replaced

with matrix multiplication, Gl
represents the activation function for the layer l ∈

{2,… ,L}, (X1
k)1≤k≤d ∈ d

n are the inputs of the network, and we have that

Xl
k ∶= Yl

k, ∀l ∈ {2,… ,L − 1}, ∀k, because X1
k are the inputs, YL

k are the outputs,

and Yl
k = Xl

k are the outputs of layer l, which are also inputs to layer l + 1. The

activation function is considered to be defined element-wise. For instance, for the

matrix

⎛
⎜
⎜
⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎟
⎟
⎠

∈ 3, an example of activation function is the element-wise

hyperbolic tangent function defined by

G
⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

tanh a11 tanh a12 tanh a13
tanh a21 tanh a22 tanh a23
tanh a31 tanh a32 tanh a33

⎞
⎟
⎟
⎠

.

We will first compute the update rule for the weights between layer L − 1 and

output layer L, i.e.

𝛥WL
jk(t) = −𝜀

(

𝜕E
𝜕[WL

jk]ab

)

1≤a,b≤n

.

Using the chain rule, we can write the following set of relations ∀1 ≤ a, b ≤ n:

𝜕E
𝜕[WL

jk]ab
=

∑

1≤c,d≤n

𝜕E
𝜕[SLj]cd

𝜕[SLj]cd
𝜕[WL

jk]ab
. (4)

We will first handle
𝜕[SLj]cd
𝜕[WL

jk]ab
. To compute this derivative, we need an explicit formula

for [SLj]cd, which can be easily deduced from (2):

Matrix-Valued Neural Networks 249

[SLj]cd =
∑

k

n∑

m=1
[WL

jk]cm[X
L−1
k]md, (5)

∀1 ≤ c, d ≤ n. Now, we can see that

𝜕[SLj]cd
𝜕[WL

jk]ab
=

{
[XL−1

k]bd, if c = a
0, else

, (6)

and so relation (4) can be written in the form

𝜕E
𝜕[WL

jk]ab
=

n∑

d=1

𝜕E
𝜕[SLj]ad

[XL−1
k]bd, (7)

or, equivalently

𝜕E
𝜕[WL

jk]ab
=

n∑

d=1

𝜕E
𝜕[SLj]ad

[(XL−1
k)T]db. (8)

Next, by denoting 𝛥
L
j ∶= 𝜕E

𝜕SLj
, we have from the chain rule that

[𝛥L
j]cd = 𝜕E

𝜕[SLj]cd
=

∑

1≤e,f≤n

𝜕E
𝜕[YL

j]ef

𝜕[YL
j]ef

𝜕[SLj]cd
, (9)

∀1 ≤ c, d ≤ n. Taking into account notation (3), and the expression of the error

function given in (1), we have that

[𝛥L
j]cd =

∑

1≤e,f≤n
([YL

j]ef − [Tj]ef)
𝜕[GL(SLj)]ef
𝜕[SLj]cd

= ([YL
j]cd − [Tj]cd)

𝜕[GL(SLj)]cd
𝜕[SLj]cd

, (10)

∀1 ≤ c, d ≤ n, because [GL(SLj)]ef depends upon [SLj]cd only for e = c and f = d,

which means that
𝜕[GL(SLj)]ef
𝜕[SLj]cd

= 0,∀(e, f) ≠ (c, d). If we denote by ⊙ the element-wise

multiplication of two matrices, the above relation gives

𝛥
L
j = (YL

j − Tj)⊙
𝜕GL(SLj)

𝜕SLj
, (11)

250 C.-A. Popa

where
𝜕GL(SLj)

𝜕SLj
represents the matrix of element-wise derivatives of the activation

function GL
. For instance, if S =

⎛
⎜
⎜
⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎟
⎟
⎠

∈ 3, then

𝜕G(S)
𝜕S

=
⎛
⎜
⎜
⎝

sech2 a11 sech2 a12 sech2 a13
sech2 a21 sech2 a22 sech2 a23
sech2 a31 sech2 a32 sech2 a33

⎞
⎟
⎟
⎠

,

with the function G defined as in the above example.

Finally, from (8), we get the expression for the desired update rule in the form

𝛥WL
jk(t) = −𝜀𝛥L

j (X
L−1
k)T ,

where the matrix 𝛥
L
j ∈ n is given by relation (11).

Now, we will compute the update rule for an arbitrary weight Wl
jk, where l ∈

{2,… ,L − 1}. First, we can write that

𝛥Wl
jk(t) = −𝜀

(

𝜕E
𝜕[Wl

jk]ab

)

1≤a,b≤n

,

and then, from the chain rule, we have that

𝜕E
𝜕[Wl

jk]ab
=

∑

1≤c,d≤n

𝜕E
𝜕[Slj]cd

𝜕[Slj]cd
𝜕[Wl

jk]ab
. (12)

∀1 ≤ a, b ≤ n. Applying the chain rule again, we obtain that

𝜕E
𝜕[Slj]cd

=
∑

r

∑

1≤e,f≤n

𝜕E
𝜕[Sl+1r]ef

𝜕[Sl+1r]ef
𝜕[Slj]cd

, (13)

∀1 ≤ c, d ≤ n, where the sum is taken for all neurons r in layer l+1 to which neuron

j from layer l sends connections. We further have that

𝜕[Sl+1r]ef
𝜕[Slj]cd

=
∑

1≤g,h≤n

𝜕[Sl+1r]ef
𝜕[Yl

j]gh

𝜕[Yl
j]gh

𝜕[Slj]cd
, (14)

∀1 ≤ c, d ≤ n, ∀1 ≤ e, f ≤ n. Again from (2), we can compute

Matrix-Valued Neural Networks 251

𝜕[Sl+1r]ef
𝜕[Yl

j]gh
=

{
[Wl+1

rj]eg, if f = h
0, else

, (15)

and then

𝜕[Sl+1r]ef
𝜕[Slj]cd

=
n∑

g=1
[Wl+1

rj]eg
𝜕[Gl(Slj)]gf
𝜕[Slj]cd

, (16)

∀1 ≤ c, d ≤ n, ∀1 ≤ e, f ≤ n. Now, returning to equation (13), and putting it all

together, we have that

𝜕E
𝜕[Slj]cd

=
∑

r

∑

1≤e,f≤n

𝜕E
𝜕[Sl+1r]ef

n∑

g=1
[Wl+1

rj]eg
𝜕[Gl(Slj)]gf
𝜕[Slj]cd

=
∑

r

∑

1≤e,f ,g≤n
[Wl+1

rj]eg
𝜕E

𝜕[Sl+1r]ef

𝜕[Gl(Slj)]gf
𝜕[Slj]cd

=
∑

r

(n∑

e=1
[(Wl+1

rj)T]ce
𝜕E

𝜕[Sl+1r]ed

)
𝜕[Gl(Slj)]cd
𝜕[Slj]cd

=
∑

r
[(Wl+1

rj)T𝛥l+1
r]cd

𝜕[Gl(Slj)]cd
𝜕[Slj]cd

, (17)

∀1 ≤ c, d ≤ n, where again we took into account the fact that
𝜕[Gl(Slj)]gf
𝜕[Slj]cd

= 0,∀(g, f) ≠

(c, d). Now, by denoting 𝛥
l
j ∶=

𝜕E
𝜕Slj

, we can write the above relation in the form

𝛥
l
j =

(
∑

r
(Wl+1

rj)T𝛥l+1
r

)

⊙

𝜕Gl(Slj)

𝜕Slj
, (18)

where ⊙ denotes the element-wise multiplication of two matrices.

Finally, taking into account the fact that

𝜕[Slj]cd
𝜕[Wl

jk]ab
=

{
[Xl−1

k]bd, if c = a,
0, else

, (19)

252 C.-A. Popa

relation (12) becomes

𝜕E
𝜕[Wl

jk]ab
=

n∑

d=1

𝜕E
𝜕[Slj]ad

[Xl−1
k]bd

=
n∑

d=1

𝜕E
𝜕[Slj]ad

[(Xl−1
k)T]db

= [𝛥l
j(X

l−1
k)T]ab, (20)

∀1 ≤ a, b ≤ n. Thus, the update rule for the weight Wl
jk can be written in matrix

form in the following way:

𝛥Wl
jk(t) = −𝜀𝛥l

j(X
l−1
k)T ,

which is similar to the formula we obtained for the layer L.

To summarize, we have the following formula for the update rule of the

weight Wl
jk:

𝛥Wl
jk(t) = −𝜀𝛥l

j(X
l−1
k)T ,∀l ∈ {2,… ,L}, (21)

where

𝛥
l
j =

⎧
⎪
⎨
⎪
⎩

(∑
r(W

l+1
rj)T𝛥l+1

r

)

⊙
𝜕Gl(Slj)

𝜕Slj
, l ≤ L − 1

(Yl
j − Tj)⊙

𝜕Gl(Slj)

𝜕Slj
, l = L

. (22)

3 Experimental Results

3.1 Synthetic Function Approximation 1

In our experiments, we consider square matrices of order 3. The first function we

will test the proposed algorithm on is the simple arithmetic mean of two matrices

f1(A,B) =
1
2
(A + B). (23)

For training of the matrix-valued neural network, we generated 3000 training

samples with random elements between 0 and 1. The testing set contained 1000
samples generated in the same way. The network had 15 neurons on a single hidden

layer. The activation function for the hidden layer was the element-wise hyperbolic

tangent function given by

Matrix-Valued Neural Networks 253

G2
⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

tanh a11 tanh a12 tanh a13
tanh a21 tanh a22 tanh a23
tanh a31 tanh a32 tanh a33

⎞
⎟
⎟
⎠

,

and for the output layer, the activation function was the identity function: G3(S) = S.

The experiment showed that the neural network converges, and the mean squared

error (MSE) for both the training and testing sets was approximately the same, and

equal to 0.009030. Training was done for 1000 epochs. Although the result is not

spectacular, we must take into account the fact that each matrix is formed of 9 real

numbers, as opposed to two or four real numbers that form the complex, hyperbolic,

and respectively quaternion numbers.

3.2 Synthetic Function Approximation 2

A more complicated function is the two variable quadratic function

f2(A,B) = A2 + B2
. (24)

This example was inspired by the synthetic functions on which the complex- and

quaternion-valued neural networks were tested. The square matrices of order 3
that compose the training and testing sets were randomly generated with elements

between 0 and 1, 3000 for the training set, and 1000 for the test set. The activation

functions were the same as the ones above. The architecture had 15 neurons on a

single hidden layer, and the network was trained for 1000 epochs.

Like in the above experiment, the training and testing MSE had similar values,

equal in this case with 0.009897. The performance is slightly worse than the one

obtained in the previous experiment, but in this case, the function was more compli-

cated. These results give reasons for hope that in the future these networks can be

optimized to perform better on matrix-valued function approximation problems.

3.3 Synthetic Function Approximation 3

The last experiment involves the inverse of a single matrix argument:

f3(A) = A−1
. (25)

This experiment was done having in mind the fact that matrix inverse is a com-

plicated operation, which is necessary in many applications. We wanted to see if the

matrix inversion can be learned by a neural network, specifically a matrix-valued

neural network.

The results were not as good as with the above two experiments, but gave reason

for optimism. The network was trained using 6000 square matrices of order 3, gen-

254 C.-A. Popa

erated in the same way as the ones in the above experiments. A network architecture

with a single hidden layer comprised of 15 neurons was trained for 1000 epochs.

The training and testing mean squared error (MSE) were 0.021971, bigger than in

the two experiments above, but promising taking into account the complexity of the

problem to be learned, and the relatively small number of training samples.

4 Conclusions

The full deduction of the gradient descent algorithm for training matrix-valued

neural networks was presented. Matrix-valued neural networks are a generalization

of the complex-, hyperbolic-, quaternion- and Clifford-valued neural networks, since

each of the algebras these networks is defined on admits a representation as a matrix

subalgebra of the square matrix algebra with the natural operations of addition and

multiplication of the matrices.

Since in recent years, many applications have emerged in the field of complex-

and quaternion-valued neural networks, it is natural to think that the future will bring

even more applications, both for these types of networks, and for their direct gener-

alization, namely the Clifford-valued neural networks. But taking into account the

fact that Clifford algebras have dimension 2n, n ≥ 1, it is possible that the appli-

cations do not need such a large dimension for the values of the input data. This is

where matrix-valued neural networks might come into play, because their dimension

is only n2, and thus it allows more efficient use of memory than in the case of Clifford

networks.

Three synthetic function approximation problems were used to test the matrix-

valued backpropagation algorithm. Although not spectacular, the performances of

the networks in terms of training and testing mean squared error were promising,

leaving place for future developments in the topic of matrix-valued neural net-

works. Because of the dimension of the input space, more accurate results should

be obtained by increasing the number of training samples, and optimizing the oper-

ations done by the gradient descent algorithm.

The present work represents only a first step done towards a more general frame-

work for neural networks, which could benefit not only from increasing the number

of hidden layers and making the architecture ever more complicated, but also from

increasing the dimensionality of the data that is handled by the network.

References

1. Arena, P., Baglio, S., Fortuna, L., Xibilia, M.: Chaotic time series prediction via quaternionic

multilayer perceptrons. In: International Conference on Systems, Man and Cybernetics, vol. 2,

pp. 1790–1794. IEEE (1995)

2. Arena, P., Fortuna, L., Muscato, G., Xibilia, M.: Multilayer perceptrons to approximate quater-

nion valued functions. Neural Netw. 10(2), 335–342 (1997)

Matrix-Valued Neural Networks 255

3. Arena, P., Fortuna, L., Occhipinti, L., Xibilia, M.: Neural networks for quaternion-valued

function approximation. In: International Symposium on Circuits and Systems (ISCAS),

vol. 6, pp. 307–310. IEEE (1994)

4. Buchholz, S., Sommer, G.: A hyperbolic multilayer perceptron. In: International Joint Confer-

ence on Neural Networks (IJCNN), vol. 2, pp. 129–133. IEEE (2000)

5. Buchholz, S., Sommer, G.: On clifford neurons and clifford multi-layer perceptrons. Neural

Netw. 21(7), 925–935 (2008)

6. Hirose, A.: Complex-Valued Neural Networks, Studies in Computational Intelligence, vol. 400.

Springer, Berlin (2012)

7. Kuroe, Y.: Models of clifford recurrent neural networks and their dynamics. In: International

Joint Conference on Neural Networks (IJCNN), pp. 1035–1041. IEEE (2011)

8. Kuroe, Y., Tanigawa, S., Iima, H.: Models of hopfield-type clifford neural networks and their

energy functions - hyperbolic and dual valued networks -. In: International Conference on

Neural Information Processing. pp. 560–569. No. 7062 in Lecture Notes in Computer Science

(2011)

9. Mandic, D., Goh, S.: Complex Valued Nonlinear Adaptive Filters Noncircularity, Widely

Linear and Neural Models. Wiley, New York (2009)

10. Nitta, T.: A back-propagation algorithm for neural networks based on 3d vector product. In:

International Joint Conference on Neural Netwoks (IJCNN), vol. 1, pp. 589–592. IEEE (1993)

11. Nitta, T.: Generalization ability of the three-dimensional back-propagation network. In: Inter-

national Conference on Neural Networks, vol. 5, pp. 2895–2900. IEEE (1994)

12. Nitta, T.: A quaternary version of the back-propagation algorithm. In: International Conference

on Neural Networks, vol. 5, pp. 2753–2756. IEEE (1995)

13. Nitta, T.: An extension of the back-propagation algorithm to complex numbers. Neural Netw.

10(8), 1391–1415 (1997)

14. Nitta, T.: An analysis of the fundamental structure of complex-valued neurons. Neural Process.

Lett. 12(3), 239–246 (2000)

15. Nitta, T.: On the inherent property of the decision boundary in complex-valued neural net-

works. Neurocomputing 50, 291–303 (2003)

16. Nitta, T.: Solving the xor problem and the detection of symmetry using a single complex-valued

neuron. Neural Netw. 16(8), 1101–1105 (2003)

17. Nitta, T.: A solution to the 4-bit parity problem with a single quaternary neuron. Neural Inf.

Process. Lett. Rev. 5(2), 33–39 (2004)

18. Nitta, T.: Three-dimensional vector valued neural network and its generalization ability. Neural

Inf. Process. Lett. Rev. 10(10), 237–242 (2006)

19. Nitta, T.: N-dimensional vector neuron. In: IJCAI Workshop on Complex-Valued Neural Net-

works and Neuro-Computing: Novel Methods, Applications and Implementations, pp. 2–7

(2007)

20. Nitta, T.: Complex-Valued Neural Networks: Advances and Applications, chap.

N-Dimensional Vector Neuron and its Application to the N-Bit Parity Problem, pp. 59–

74. Wiley, New York (2013)

21. Nitta, T., Buchholz, S.: On the decision boundaries of hyperbolic neurons. In: International

Joint Conference on Neural Networks (IJCNN), pp. 2974–2980. IEEE (2008)

22. Pearson, J., Bisset, D.: Back propagation in a clifford algebra. Int. Conf. Artif. Neural Netw. 2,

413–416 (1992)

23. Pearson, J., Bisset, D.: Neural networks in the clifford domain. In: International Conference on

Neural Networks, vol. 3, pp. 1465–1469. IEEE (1994)

24. Widrow, B., McCool, J., Ball, M.: The complex lms algorithm. Proc. IEEE 63(4), 719–720

(1975)

A Feature Clustering Approach
for Dimensionality Reduction
and Classification

Kotte VinayKumar, R. Srinivasan and Elijah Blessing Singh

Abstract Dimensionality reduction is one of the primary challenges when handling

high dimensional data. Feature clustering is a powerful approach for reducing the

dimensionality of the global feature vector when performing classification. In this

paper, we discuss the current research issues in handling data streams and high di-

mensional data and introduce an approach to perform dimensionality reduction by

computing the standard deviation of each feature with every transaction or document

of the entire dataset. We then rank and cluster the features of the global feature vec-

tor to obtain feature-cluster matrix. The feature-cluster matrix so formed is used to

perform dimensionality reduction. Then we show how the reduced dimensionality

can be used to perform classification after elimination of noise. In this work, we clas-

sify the new test document or transaction after reducing dimensionality. In future,

the idea is to cluster the features using a kernel measure and perform clustering and

classification of text streams dynamically.

Keywords Feature clustering ⋅ Classification ⋅ Dimensionality reduction

1 Introduction

Clustering is a process of grouping similar entities together. This process is quite

challenging as we need to face several challenges to achieve accuracy and efficiency.

The fact that accuracy is challenging is because there is no thumb rule or method

existing which helps us deciding the correct number of clusters. The challenge in

K.VinayKumar (✉)
Kakatiya Institute of Technology and Science, Warangal, India

e-mail: vinaykumar.kitswgl@gmail.com

R. Srinivasan

Karunya University, Coimbatore, India

e-mail: srini0402@gmail.com

E.B. Singh

School of CSE, Karunya University, Coimbatore, India

e-mail: director_cst@karunya.edu

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_21

257

258 K. VinayKumar et al.

achieving efficiency is the requirement of accurate similarity measure which can

compute the similarity. In the literature several similarity measures are proposed

with the aim of computing similarity between two entities [2]. But most of these

similarity measures are suitable for computing similarity in low dimensional data

space. There is an immediate need for coming up with new and accurate similarity

measures applicable for applications related to the high dimensional data space. In

this work, we concentrate on evaluating similarity measures for low dimensional and

high dimensional data space.

Now the question is:

1. What a high dimensional data space is.

2. Why the similarity measures suitable for low dimensional data space become

unsuitable for high dimensional data spaces.

3. How to handle noise in high dimensional data space

4. Evaluating suitability of similarity measure for computing similarity between

objects defined over high dimensional data space.

In this work, we restrict our contribution to address 1, 2, 3 above. The idea is

to, analytically restrict our contribution to address the problem of dimensionality

reduction and extend the work in future to address above 4 by designing a suitable

similarity measure for performing clustering and classification of text streams.

Let D be a data object defined over a finite set of attributes. Now any data ob-

ject defined by less than 10 attributes is treated to be low dimensional and the one

which is defined by more than 10 attributes is treated to be high dimensional data

object [1].

Clustering high dimensional data may be defined as a search problem of finding

the clusters and the spatial dimensional over which these clusters may be generated

so as to be reliable [2, 6].

In [4], the authors propose an approach for reducing the dimensionality of

document-word matrix using feature clustering approach and then try to classify

the test document using the reduced dimension matrix. In [5], the authors introduce

a similarity measure for clustering text documents and document sets. The infor-

mation on various algorithms, data stream models in the literature is explained in

[2, 8–10]. Finding frequent patterns in data streams using sliding window approach

is contributed in [13]. An approach for clustering data streams is contributed in

[11, 12, 14, 15].

2 Research Challenges in Handling High Dimensional Data

In this section we discuss the most important research challenges that require imme-

diate attention that also need to be addressed in the view of clustering, classification

of high dimensional data streams which is not addressed in detail in the literature.

A Feature Clustering Approach for Dimensionality Reduction and Classification 259

2.1 Handling Noise in High Dimensional Data

Consider the customer transaction information in Table 1 for 3 customers with 10

attributes (transaction items). If we now evaluate the suitability of Euclidean measure

for computing similarity between any two customers w.r.t transactions to study the

behavior of customers then we cannot distinguish between the customers as all the

customer have same distance value 1.414. However if we now look at the Table 1,

we can arrive at a decision that the customer V and S, share at least some degree of

similarity as compared to no similarity between customers V and P. This is where the

Euclidean distance measure fails to be a similarity measure for high dimensional data

spaces. The reason for this is the noisy data which downplays the Euclidean measure

to be accurate and affective to suit for high dimensional data space applications.

Table 1 Customer transaction table

A1 A2 A3 A4 A4 A5 A6 A7 A8 A9 A10

Vinay (V) 1 0 0 0 0 0 0 0 0 0 0

Prudvi (P) 1 0 0 0 0 0 0 0 0 0 0

Srinivas (S) 1 0 0 0 0 0 0 0 0 0 0

From the above table, using Euclidean measure we have the distance between

customers (V, P), (V, S) and (P, S) as 1.414.

Table 2 Distance of records of customer transaction table

Euclidean distance measure Prudvi Srinivas

Vinay 1.414 1.414

Prudvi 0 1.414

From Table 2, it is evident that the traditional similarity measure is not effective

for high dimensional data. The main reason for this is the noise coining out of the

high dimensions. So, finding clusters without eliminating the noise data leads to

inaccurate and unreliable clusters. These clusters are hence meaningless and hence

cannot be considered.

2.2 Identifying Representatives for Clusters

The second challenge before data mining researchers is finding the unique represen-

tative for each cluster. This means that apart from handling noise in high dimensional

data, another important challenge for researchers is finding the representatives for

each cluster. These representatives must define each of the clusters uniquely, accu-

rately and effectively.

260 K. VinayKumar et al.

As goes from the old saying, always find where you have lost, we need to verify

and validate the suitability of existing measures by properly applying and making

use of them suitably or design a new measure or approach to suit the need.

2.3 Reduce Dimensionality to Handle High Dimensional Data

Any chance of reducing high dimensionality is always good in terms of cost of

processing, resources and time. One of the immediate challenges while when han-

dling the high dimensional data is the dimensionality itself which must be reduced

as much as possible. Designing and validating the suitable approach and method

requires immediate attention from the researchers in the current situation and near

future as huge data is generated from applications continuously and is now coined

as Big Data.

2.4 Individuate Clusters and Noise to Handle Outliers

This is the most challenging task before data mining researchers. Assume we have

a database containing the records of customers for an insurance company. When

clustered all the customers with similar behavior are grouped. In the process of clus-

tering, we may miss the outlier(s) who show unusual behavior such as trying to fraud

the company which requires further investigation also called fraud detection. Han-

dling outliers is also another important challenge which needs to be addressed.

2.5 Defining Suitable Distance Measure

Identifying suitable distance measures or defining new distance measure which can

help to effectively reduce the dimensions of high dimensional data to its equivalent

low dimensional representation is also one of the most significant challenges before

data mining researchers. Reducing the dimension must also be in view of retaining

important outliers without missing them. This makes to retain features which show

unusual behavior as compared other entities.

3 Proposed Approach

In this section, we discuss the algorithm for clustering features of the transaction

database. The cluster-feature matrix so formed is then used to reduce the dimension-

ality of the original matrix which is the equivalent representation in low dimensional

space. The purpose of eliminating the features is to handle the noise which makes

the decision incorrect in applications related to classification. Here noise is the set of

features which make the similarity get deviated or decision deviated from legitimate

A Feature Clustering Approach for Dimensionality Reduction and Classification 261

one. Section 3.1 outlines the algorithm for feature clustering and Sect. 3.2 discusses

a sample case study with a simple example database.

3.1 Feature Clustering Algorithm for Dimensionality
Reduction Algorithm 1

// Database: Set of transactions of the entire dataset denoted by Tf

// Transaction: Set of items from the itemset denoted by T

// Itemset: Set of all items or features denoted by I = I1,I2,I3,... In
1. For each feature from the global feature vector of the transaction database de-

noted by DB, obtain its corresponding standard deviation over the entire database.

The transaction may be binary or weighted. For feature clustering con- sider binary

form of transactions.

Let Ti be any given transaction denoted by Ti = I = I1,I2,I3,... Im defined over items

I1 , I2 , I3 . Im.

The standard deviation for feature Im can be found by

𝜎(featurei) =

√
√
√
√

∑j=n
j=1(Iij − 𝜇ij)2

∣ DB ∣
(1)

2. Cluster the features based on their respective standard deviation with error rate

defined by the user specified threshold denoted by Umin−dev.
3. Form the cluster-feature matrix, say G.

For each feature f1 ∈ set or Itemset do

if (feature f1 ∈ Cluster Gh) then

G[h, i] =1 // here feature is same as item from itemset

else G[h, i] =0

endif

4. Transpose the cluster-feature matrix G to get the feature cluster matrix say, G′
.

5. Reduce the dimensions of the initial transaction-feature matrix by multiplying

the initial transaction-feature matrix with G obtained in step-4. Call it Tfnew.

6. The resulting matrixTfnew, is the low dimensional representation of the initial

transaction-feature matrix in different subspace.

3.2 Case Study

We give an example of how our method of dimensionality reduction works. For

sake of simplicity we consider a simple high dimensional customer transaction table

262 K. VinayKumar et al.

defined for 9 customers C1, C2, C3, C9 with 10 features A1, A2, A3, A10. The

reason we say high dimensional is because the customer table has 10 features which

makes it high dimensional.

Table 3 A simple customer transaction table

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

C1 0 1 0 0 1 1 0 0 0 1

C2 0 0 0 0 0 1 1 1 0 0

C3 0 0 0 0 0 0 1 0 0 0

C4 0 0 1 0 1 1 1 1 0 1

C5 0 0 0 1 0 1 0 0 1 0

C6 1 1 1 0 0 1 0 0 1 0

C7 1 1 1 1 0 1 0 1 1 0

C8 1 0 1 1 0 1 0 0 0 0

C9 1 1 1 1 0 0 0 0 0 0

Step-1: For each item of the transaction, we find its corresponding standard devi-

ation over the entire database.

Table 4 Standard deviation of features of Table 3

Feature A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

𝜎(SD) 0.527 0.527 0.527 0.527 0.441 0.441 0.5 0.5 0.5 0.441

Step-2: Cluster the features based on their standard deviation. In this case, we get

three clusters say G1, G2, G3 (Tables 4 and 5).

Table 5 Feature clusters

Clusters Features or transaction items

G1 A1, A2, A3, A4

G2 A5, A6, A10

G3 A7, A8, A9

Step-3: Form the cluster-feature matrix.

This is done by assigning a 1 to the corresponding cell of the matrix if the feature

belongs to the cluster and a 0 if the feature does not belong to the cluster. I.e if feature

i belongs to cluster k, then the element denoted by M (k, i) of the matrix is assigned

1 otherwise 0. This is shown in the Table 6 below.

A Feature Clustering Approach for Dimensionality Reduction and Classification 263

Table 6 Cluster-feature matrix

Cluster/feature A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

G1 1 1 1 1 0 0 0 0 0 0

G2 0 0 0 1 1 0 0 0 1

G3 0 0 0 0 0 0 1 1 1 0

Step-4: Transpose the cluster-feature matrix obtained in step-3. This gives

the feature cluster matrix which is then suitable for reducing the dimensionality of

the initial customer-transaction matrix in tabular form as in Table 3

Step-5: Reduce the dimension of initial customer transaction matrix by multiply-

ing matrix of step-1 with one obtained in step-4.

This may be shown mathematically as

CReduce = C9X10 ∗ CF10X3 (2)

Table 7 Feature-cluster

matrix
Feature/cluster G1 G2 G3

A1 1 0 0

A2 1 0 0

A3 1 0 0

A4 1 0 0

A5 0 1 0

A6 0 1 0

A7 0 0 1

A8 0 0 1

A9 0 0 1

A10 0 1 0

The high dimensional data of order 10 is now transformed into its equivalent

low dimensional form of order 3 which may now be used for performing clustering,

classification or any data mining related analysis (Table 7).

The final customer transaction matrix with reduced dimensionality into different

subspace is shown below in Table 8.

264 K. VinayKumar et al.

Table 8 Low dimensional

matrix representation of

matrix of Table 3

Feature A11 A12 A13

C1 1 3 0

C2 0 1 2

C3 0 0 1

C4 1 3 2

C5 1 1 1

C6 3 1 1

C7 4 1 2

C8 3 1 0

C9 4 0 0

4 Classification - Case Study

4.1 Classification Approach Using Feature Cluster Matrix -
Algorithm2

Begin of algorithm: Algorithm as follows

// Database: transaction-item matrix or doc-word matrix in the binary form

// Transaction: Set of items from the itemset denoted by T

// Itemset: Set of all items or features denoted by T

1. Transform each feature of the transaction database into binary form by making

non-zero feature values equal to 1 and zero valued features as 0. Then obtain the

corresponding standard deviation of each feature over the entire database.

Let Ti be any given transaction denoted by Ti = I = I1,I2,I3,... Im defined over

items I1 , I2 , I3 . Im.

The standard deviation for feature Im can be found by

𝜎(featurei) =

√
√
√
√

∑j=n
j=1(Iij − 𝜇ij)2

∣ DB ∣
(3)

2. Cluster the features based on their respective standard deviation with error

rate defined by the user specified threshold denoted by Umin−dev. In the example

considered for case study in Sect. 4.2 we assume zero error rate

3. Rank the features based upon the standard deviation (S.D) values from lowest

to highest. A low value of S.D implies high rank and a high value indicates low rank.

We can choose top-k rank features as per user requirement.

4. Obtain the matrix in low dimensional form by multiplying the feature-cluster

matrix obtained from Algorithm 1 of Sect. 3.1.

A Feature Clustering Approach for Dimensionality Reduction and Classification 265

5. Reduce the new test document or transaction by multiplying with the feature

cluster matrix.

6. Obtain the similarity value of new test document w.r.t each document in the

input dataset. We can use the similarity measure available in the literature such as

Euclidean; Cosine etc. or we can have our similarity measure defined.

7. Classify the test document to belong to the category of the document with

highest similarity value.

End of Algorithm

4.2 Classification of a New Transaction or Document

We now demonstrate the use of noise elimination from the transaction-feature data-

base for classification. Consider the Tables 9 and 10 below for Transactions or docu-

ments D1 to D9 in binary and frequency form. We use the binary form of document

word Table 10 for performing dimensionality reduction.

In Tables 9 and 10, the last column indicates class of respective documents.

The Table 11 below shows the standard deviation and rank values of each feature

and the Table 12 depicts the cluster-word matrix and Table 13 shows the low dimen-

sional equivalent representation of Table 9 obtained after performing dimensionality

reduction.

If a new document D10 denoted by D10 = [1 1 1 1 1 1 0 1 0 1] is to be classified

then we need to find the similarity of this transaction with documents D1 to D9. The

transformed document D10 is represented as shown in Table 14.

Here, we use cosine function [1, 4] and the distance of D10 with remaining set

of documents as shown in Table 15 below

Table 9 A simple document-word table in binary form

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Class

D1 1 1 1 1 1 1 1 1 0 1 Easy

D2 1 1 1 1 1 1 1 1 1 1 Easy

D3 1 1 1 0 0 0 1 1 1 0 Easy

D4 1 1 1 1 1 1 1 1 1 0 Medium

D5 1 0 1 1 1 1 1 0 1 1 Medium

D6 1 1 0 1 1 1 1 1 0 0 Medium

D7 0 0 1 1 1 1 1 1 1 1 Hard

D8 1 1 1 0 0 1 1 1 1 0 Hard

D9 1 1 0 1 1 1 1 1 1 1 Hard

266 K. VinayKumar et al.

Table 10 A simple document-word table in frequency form

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 Class

C1 4 6 2 3 3 1 1 1 0 1 easy

C2 5 5 3 1 1 2 3 3 2 1 easy

C3 2 3 4 0 0 0 2 1 2 0 easy

C4 2 2 3 5 6 4 3 2 1 0 medium

C5 1 0 1 2 3 2 2 0 2 1 medium

C6 3 2 0 5 6 5 4 3 0 0 medium

C7 0 0 2 3 2 3 5 4 6 1 hard

C8 2 3 3 0 0 3 5 5 4 0 hard

C9 1 1 0 3 3 2 4 3 3 1 hard

Table 11 Standard deviation and rank of features of Table 9

Feature W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

𝜎(SD) 0.333 0.4409 0.4409 0.4409 0.4409 0.333 0 0.333 0.4409 0.5

Rank 1 2 2 2 2 1 0 1 2 3

Table 12 Cluster-feature matrix for Table 11

Cluster/feature A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

G1 1 0 0 0 0 1 0 1 0 0

G2 0 1 1 1 1 0 0 0 1 0

G3 0 0 0 0 0 0 0 0 0 1

Table 13 Document-word matrix after dimensionality reduction

G1 G2 C3

D1 6 14 1

D2 10 12 3

D3 3 9 2

D4 8 17 3

D5 3 8 2

D6 11 13 4

D7 7 13 5

D8 10 10 5

D9 6 10 4

Table 14 Test document after reduction

C1 C2 C3

D10 9 14 0

A Feature Clustering Approach for Dimensionality Reduction and Classification 267

Table 15 Similarity before eliminating noise

Clusters Similarity with document D10 Similarity with document D10

(binary form) (non-binary form)

D1 0.942809 0.877145

D2 0.894427 0.860698

D3 0.57735 0.761929

D4 0.824958 0.755929

D5 0.75 0.536111

D6 0.801784 0.646686

D7 0.75 0.449359

D8 0.668153 0.620387

D9 0.824958 0.525577

Table 16 Similarity after eliminating noise

Clusters Similarity with document D10

D1 0.984061

D2 0.974585

D3 0.948173

D4 0.978966

D5 0.951765

D6 0.965174

D7 0.944328

D8 0.921291

D9 0.945453

The Table 16 shows that the document D10 is most similar to document D1 after

elimination of noise and hence is classified to category 1, which is ‘easy’ in both the

cases with and without noise.

5 Conclusions

In this paper, we have presented the feature clustering approach by computing stan-

dard deviation and rank of each feature which is then used to cluster the features.

These clusters are denoted by feature cluster matrix. This feature cluster matrix is

then used to perform dimensionality reduction of the initial high dimensional doc-

ument or transaction dataset. This is then followed by demonstration of the classi-

fication process w.r.t a new document received. The approach is validated using a

simple but effective case study considering the worst case scenario. We may im-

prove the feature clustering to make it dynamic so as to cluster the features in a self

clustering manner.

268 K. VinayKumar et al.

In future, Reduced Dimensionality may, then be used to perform clustering and

classification of text streams. The idea is to verify and validate a suitable distribution

function, which can act as an efficient kernel measure.

References

1. Jiawei Han, M., Kamber, J.P.: Data Mining Concepts and Techniques, 3rd edn. (2012)

2. Agarwal, C.: Data Streams Models and Algorithms. Springer Publications (2007)

3. Gama, J.: Knowledge Discovery from Databases. CRC Press (2013)

4. Jiang, J.-Y., et al.: A Fuzzy self constructing feature clustering algorithm for text classification.

In: IEEE Transactions of Knowledge and Data Engineering, pp. 335–349 (2011)

5. Lin, Y.-S., et al.: A similarity measure for text classification and clustering. In: IEEE Transac-

tions of Knowledge and Data Engineering (2013)

6. Han, J., Kamber, M.: Data mining: concepts and techniques. In: Kacprzyk, J., Jain, L.C. (eds.)

vol. 54, 2nd edn. Morgan Kaufmann (2006)

7. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams, a review, SIGMODC

Record, vol. 34, No 2 (2005)

8. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream

systems. In: Proceedings of PODS (2002)

9. Tatbul, N., Zdonik, S.: A subset-based load shedding approach for aggregation queries over

data streams. In: Proceedings of International Conference on very Large Data Bases (VLDB)

(2006)

10. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Towards an adaptive approach for mining data

streams in resource constrained environments. In: The Proceedings of Sixth International Con-

ference on Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science

(LNCS), Springer (2004)

11. Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algorithms for clustering prob-

lems. In: Proceedings of 35th ACM Symposium on Theory of Computing (2003)

12. Aggarwal C., Han, J., Wang, J., Yu, P.: A framework for clustering evolving data streams. In:

VLDB Conference (2003)

13. Chang, J.H., Lee, W.S.: estWin: online data stream stream mining of recent frequent item sets

by sliding window method. J. Inf. Sci. 31(2), 7690 (2005)

14. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams, a Review. SIGMODC

Record, vol. 34, No 2 (2005)

15. Phridviraj, M.S.B., Srinivas, C., GuruRao, C.V.: Clustering text data streams a tree based ap-

proach with ternary function and ternary feature vector. Proc. Comput. Sci. 31, 976–984

An Application of ANNs Method
for Solving Fractional Fredholm
Equations

Ahmad Jafarian and S. Measoomy Nia

Abstract For the last decade, several authors demonstrated the performance of
artificial neural network models over other traditional testing methods. The current
research, aimed to present a global optimization technique based on combination of
neural networks approach and power series method for the numerical solution of a
fractional Fredholm type integro-differential equation involving the Caputo deriv-
ative. In other words, an accurate truncated power series representation of the
solution function is achieved when a suitable learning algorithm is used for the
suggested neural architecture. As applications of the present iterative approach,
some kinds of integro-differential equations are investigated. The achieved simu-
lations are compared with the results obtained by some existing algorithms.

Keywords Fractional Fredholm type integro-differential equation ⋅ Generalized
power series expansion ⋅ ANNs approach ⋅ Caputo fractional derivative ⋅
Approximate solution

1 Introduction

Fractional Fredholm integro-differential equations are extensively appeared in
mathematical modeling of real life problems. On the other hand, the analytical
solutions of these kinds of equations cannot be found easily, thus there has been
growing interest in the proposition of alternative numerical methods. The most
commonly used ones are, fixed point method [1, 19], Adomian decomposition
method [13, 17], upper and lower solutions method [12], Chebyshev wavelet

A. Jafarian (✉)
Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran
e-mail: jafarian5594@yahoo.com

S. Measoomy Nia
Department of Mathematics, Science and Research Branch, Islamic Azad University,
Urmia, Iran

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_22

269

method [20], Variational iteration and Homotopy perturbation methods [14], Taylor
expansion method [5]. Among these methods, the series expansion technique is
more attractive and gives a closed form solution for a linear fractional
integro-differential equation.

In this study, a combinative iterative procedure will be proposed for the solution
of fractional Fredholm type integro-differentialequations. The present technique
uses a modification of the power series method for transforming the origin problem
to non-linear algebraic equations system that can be solved with an usual method.
There are a lot of optimization algorithms attainable to solve the resulting system.
Among diversity of the theoretical studies, we employ an implementation of
one-hidden-layer feed-forward neural net architecture to complete this procedure. In
our recent works, different architecture of artificial neural networks (ANNs) have
been widely applied to approximate solutions of various types of integral equations
(see [6–10]). To begin the optimization process, a training set of collocation points
is built by discretization of the differential interval into arbitrary length subintervals.
Assuming that the equation has an unique solution, the unknown series coefficients
are quantified randomly to obtain a primary approximate solution. The gradient
descent based back-propagation learning algorithm is then used to achieve the
unknown coefficients which were considered as network parameters. The organi-
zation of this paper proceeds as follows. In the following section, we first review
some basic concepts and definitions of neural networks and then extend in detail the
ANNs approach for solving the mentioned type integro-differential equation. Some
numerical examples with comparison to some offered algorithms are given in
Sect. 4. Obtained simulative experimental results show that the approach has the
potentiality to become an effective method. The final section contains conclusions
and directions for future research.

2 Illustration of the Method

In this section, we will mainly concentrate on the solution of both linear and
nonlinear fractional Fredholm type integro-differential equations (F-FIDEs). As we
know, all of the methods discussed in the last section are also valid, but we are
interested in the proposition of a general scheme in which can be easily imple-
mented for various classes of fractional equations. For this aim, the approximate
solution is represented by means of a modification of the so called power series
method, whose coefficients are estimated by training an appropriate neural network
architecture. This work yields a truncated power series representation of the solu-
tion function, which usually is enough for obtaining approximation to it. We start
by presenting some commonly used fundamental concepts.

270 A. Jafarian and S. Measoomy Nia

2.1 A Brief Introduction to ANNs

In this part we deal with essential concepts in which will be used further on. It is not
an exaggeration to say that research in the field of artificial neural networks has
been growing attention in the last ten years than ever before. First of all, we make a
cursory review to neural network surrogate modeling for the numerical solution of a
given problem. For more information in this issue, refer to [3, 4, 16].

The proposed three-layer feed-forward neural network framework shown in
Fig. 1, contains one external input, n hidden neurons and an output signal. This
architecture shows how a power series expansion can be performed as a neural net.
Let v and w denote the 1 × n weight vectors, and also b is bias term. In the present
architecture, the input signal which is represented by the mathematical symbol x,
when multiplied by connection weight vi, gives a weighted input. In this case, this
product is fed through the activation function f to generate a result. Net output N
(x) is computed by multiplying the output of neuron i in the hidden layer with the
weight parameter wi and then adding to the bias signal b. The input-output relation
of each unit in the proposed neural architecture can be summarized as follows:

• Input unit:

O1 = χ.

• Hidden unit:

O2
i = f netið Þ,

neti = x . υi, i=1, . . . , n.

• Output unit:

N xð Þ= ∑
n

i=1
o2i ⋅ wi
� �

+ b.

3 Solving the F-FIDE Problem

In this study, we restrict our attention to the nonlinear initial value fractional
integro-differential equation of the form:

cDα
χ u xð Þ½ �=ϕ1 x, u xð Þð Þ+ λ

Z 1

0
ξ x, tð Þϕ2 u tð Þð Þdt, 0≤ x ≤ 1,

An Application of ANNs Method … 271

subject to the initial condition u(0) = β. Here, cDα
x denotes the Caputo differential

operator of order α ∈ (0, 1], λ is a real known parameter, ϕ1,ϕ2 ∈ L2 0, 1½ �ð Þ and
ξ∈ L2 0.1½ �2

� �
are given functions, and u xð Þ id the unknown to be determined.

Definition 1 Let u(x) is continuously differentiable function on finite interval [a,b]
up to order k. The Caputo fractional derivative operator cDα

x of order α > 0 is
defined by:

cDα
x u xð Þ½ �=

dku xð Þ
dxk

, α= k∈N,

1
Γ k− αð Þ

Z x

c

u kð Þ τð Þ
x− τð Þα− k+1 dτ, x> c, 0≤ k− 1< α< k,

8
>>><

>>>:

where Γ(.) denotes the Gamma function. Recall that for the Caputo sense, derivative
of a constant is zero and the following useful property holds:

cDα
x xk
� �

=
0; k∈N, k< ⌈α⌉,

Γ k+1ð Þ
Γ k+1− αð Þ x

k− α, x> c, k∈N, k≥ ⌈α⌉;

8
><

>:

where the ceiling function ⌈α⌉ denotes smallest integer greater than or equal to α.
For more details and mathematical properties of fractional calculus, please refer to
[18]. The reminder of this paper is organized into two segments:

the solution function is represented by a truncated power series expansion, and
using the purposed neural network configuration to determine the values of the
series coefficients. Sufficient and necessary conditions for existence and uniqueness
of solutions of the mentioned fractional problems are given in [2].

Fig. 1 Illustration of the
represented neural
architecture

272 A. Jafarian and S. Measoomy Nia

Discretization of the Problem.
The generalized power series expansion is a powerful tool which has been devel-
oped for the numerical solution of different kinds of fractional equations. This
method decomposes the solution u(x) into a rapidly convergent series of solution
components. In our study, we will approximate the solution function u(x) by fol-
lowing series:

u xð Þ= ∑
∞

i=0
aixia, ð1Þ

for fractional order α ∈ (0,1] (see, [11, 15]). Under initial condition, we take a0 = β.
Thus, Eq. (1) is written as:

u xð Þ= β+ ∑
∞

i=1
aixia, ð2Þ

For positive integer m, consider a partition of interval [0,1] with the node points
xj =

j
m , for j=0, . . . ,mð Þ. Now, let us put the collocation point xj into the Eq. (3).

After some simplifications and grouping, we obtain the following relation:

∑
∞

i=1
ai

Γ i+1ð Þ
Γ i+1− að Þ x

i− 1ð Þa
j =ϕ1 xj, β+ ∑

∞

i=1
aixiaj

� 	
+

λ

Z 1

0
ξ xj, t
� �

ϕ2 β+ ∑
∞

i=1
aitia

� 	
dt, j=0, . . . ,m.

ð3Þ

Now, we look at the technique which will allow us to approximate desired
values of the coefficients ai (for i ∈ N).
Proposed Criterion Function.
To achieve a particular goal, only the first (n + 1) terms of defined power series
(8) are used. As a result, if we express the solution function as a truncated gen-
eralized power series, so it can be easily approximated by finding the free
coefficients:

ai, for i=1, 2, . . . , nð Þ.

This means, we intend to approximate solution u(x) by the truncated series:

un xð Þ= β+ ∑n
i=1 aix

ia.

Below, we use the notations:

ui = xi− 1,wi = ai, f xð Þ= xa

An Application of ANNs Method … 273

and b = β. Whit these assumptions, it can easily be argued that the output of the
designed neural network is equivalent to the mentioned truncated generalized
power series.

In order to train this network over the space of connection weights, the parameter
ai must be changed in such a way that the network error is reduced.

Throughout next part, an attempt will be made to see how the defined error
function can be minimized over the set of node points. For this aim, the weights are
to be optimized via a gradient descent optimization process. This supplement,
known as back error propagation in which will be considered in following. Further
details in this respect can be found in [15].
Proposed Learning Algorithm.
Before offering specific learning rule, it should be noted that learning in an artificial
neural network implements a local search mechanism to obtain optimal weight
values which decrease global network error. Now, we try to train the neural
architecture by modifying the connecting weights according to the defined set
points that can be formulated as an learning algorithm. Throughout this part, an
attempt is made to construct an incremental learning process as a self learning
mechanism for minimizing the predefined criterion function. Since, this function is
analytical one, the gradient descent method will naturally lead to a capable learning
rule. We illustrate the above idea by deriving a unsupervised back-propagation
learning algorithm for adjusting the weight parameters such that the above target is
minimized over the space of weight settings. The performance of this algorithm is
well summarized in the following paragraph.

First, he initial weight parameters ai (for i = 1,…, n) are selected randomly to
begin the procedure. Then, the set of node points are used to successively adjust the
connection weights by moving a small step in direction in which correctly optimize
the objective function. To complete the derivation of back-propagation for the
output layer weights, we perform gradient de- scent rule on the criterion function
(11). This standard algorithm works as follows:

ai r+1ð Þ= ai rð Þ+Δai rð Þ, i=1, . . . , n, ð4Þ

Δai rð Þ= − η ⋅
∂Ej

∂ai
+ γ ⋅Δai r− 1ð Þ, ð5Þ

where η and γ are the small constant learning rate and the momentum term constant,
respectively. Due to its gradient descent nature, back propagation is very sensitive
to the values of learning rate and momentum constant. If the choice of these initial
quantities, then the learning convergence will be slow. Here, the index r in
ai(r) refers to the iteration number and the subscript j in xj is the label of the training
node point.

274 A. Jafarian and S. Measoomy Nia

4 Numerical Examples

In order to show the performance of the proposed neural networks approach in
solving fractional integro-differential equation problems, two numerical examples
are carried out in this section A comparison is made between the proposed com-
binative algorithm and other methods presented in []. All calculations are achieved
by using the mathematical software Mat lab v7.10. Below, we use the specifications
as following:

1. Learning rate: η = 0.1,
2. Momentum constant: γ = 0.05.

Also, for better comparison the root mean square error is employed as:

Emid = u− un 2kk =
1

m+1
∑m

j=0 u xj
� �

− un xj
� �� �2

� 	1
2

.

Example 3.1 Consider the following integro-differential equation:

cDa
x u xð Þ½ �+3u xð Þ=ϕ1 x, u xð Þð Þ+ 3π

2

Z 1

0
xt2 sin πu tð Þð Þdt, 0≤ x≤ 1,

Where

ϕ1 x, u xð Þð Þ=3x3 +
Γ 4ð Þ
Γ 7

2

� � x
5
2 − x,

with the initial condition u(0) = 0 and the exact solution u(x) = x3. As indicated, the
solution function can be uniformly approximated on that interval by (8) to any
degree of accuracy. The objective here is to adaptively update the hidden layer
weights ai (for i = 1,…, 10); by attempting to optimize the associated criterion
function over the set of m + 1 training points X = x0, x1, . . . , xmf g. For this aim, the
weights are first normally initialized to small random values and then the learning
rule considered in previous section is employed. The root mean square errors for
different number of iterations and node points are presented in Table 1. Figure 2
shows the cost functions on the different number of iterations. It is noticeable that
by increasing the learning steps, the criterion function goes to zero. The approxi-
mate and exact solutions are plotted and compared in Fig. 3, and also absolute error
are plotted in Fig. 4 for r = 100.

An Application of ANNs Method … 275

Table 1 Numerical results
for Example 3.1

r Emid

m = 10 m = 20 m = 30 m = 40

100 0.0008745 0.0007344 0.0006383 0.0005617
200 0.0006194 0.0004625 0.0003832 0.00003463
300 0.0004083 0.0002940 0.0002334 0.0002172
400 0.0003140 0.0002077 0.0001835 0.0001702
500 0.0002801 0.0001756 0.0001587 0.0001427

Fig. 2 The cost curves with different step sizes for Example 3.1

Fig. 3 The exact and approximate solutions for Example 3.1

276 A. Jafarian and S. Measoomy Nia

Example 3.2 The following fractional equation is considered:

cDa
x u xð Þ½ �=1−

x
4
+

Z 1

0
xt u tð Þ½ �2dt, 0≤ x ≤ 1,

with initial condition u(0) = 0. Note that the exact solution of this problem for
α = 1, is u(x) = x. This equation is studied in [16] by using the rationalized Haar
functions (RHF). The numerical results for m = 10 and r = 1000 with comparison
are presented in Table 2. Based on the results, it can be concluded that our
numerical simulations are in good agreement with the solutions reported in the
literature. Therefore, it easily can be seen the approximate solutions for α = 0.25,
α = 0.5 and α = 0.75 are reliable. Figures 5 and 6 simulate the cost function and
absolute error criterion for α = 1, respectively. Since the exact solution of the above

Fig. 4 The absolute error between exact and approximate solutions for Example 3.1

Table 2 Numerical results
for Example 3.2

x a=0.25 a=0.5
ANN RHF ANN RHF

0.1 0.650960 0.650962 0.362259 0.362260
0.2 0.821677 0.821678 0.525360 0.525361
0.3 0.959522 0.959520 0.657181 0.657181
0.4 1.084528 1.084520 0.774341 0.774336
0.5 1.203268 1.203260 0.883181 0.883175
0.6 1.131835 1.131827 0.986274 0.986267
0.7 1.431320 1.431310 1.085718 1.085710
0.8 1.543181 1.543170 1.182468 1.182460
0.9 1.654432 1.654420 1.277279 1.277270
1.0 1.765433 1.765420 1.370730 1.370720

An Application of ANNs Method … 277

problem is available when α = 1, so we are only able to show the criteria of mean
absolute error for this value. As can be seen, the estimated solution is in high
concurrence with the exact solution.

Fig. 5 The cost curve for Example 4.2

Fig. 6 The absolute error between exact and approximate solutions for Example 3.2

278 A. Jafarian and S. Measoomy Nia

5 Conclusion

Fractional equations have gained increasing importance due to their several
applications in the field of real world problems. As indicated, these kind of equa-
tions are very difficult to handle analytically, so we have to usually get approximate
solutions. This paper explained how a combination of the power series method and
neural networks approach can be developed as an iterative technique for the
numerical solution of a fractional Fredholm type integro-differential equation. From
a practical point of view, tow numerical examples were investigated to demonstrate
the applicability of the presented iterative method. Moreover, the obtained simu-
lation results were compared with exact solutions and also with the solutions
obtained by two another works. For the future works, we are going to develop our
proposed method for solving high order integro-differential equations.

References

1. Anguraj, A., Karthikeyan, P., Rivero, M., Trujillo, J.J.: On new existence results for fractional
integro-differential equations with impulsive and integral conditions 66(12), 2587–2594
(2014)

2. Bandyopadhyay, B., Kamal, S.: Stabilization and Control of Fractional Order Systems:
A Sliding Mode Approach, vol. 317 (2015)

3. Graupe, D.: Principles of Artificial Neural Networks, 2nd edn. World Scientific, River Edge
(2007)

4. Hanss, M.: Applied Fuzzy Arithmetic: An Introduction with Engineering Applications.
Springer, Berlin (2005)

5. Huang, L., Li, X.F., Zhao, Y.L., Duan, X.Y.: Approximate solution of fractional
integro-differential equations by Taylor expansion method. Comput. Math Appl. 62(3),
1127–1134 (2011)

6. Jafarian, A., Measoomy, S., Nia, S.: Abbasbandy, artificial neural networks based modeling
for solving linear Volterra integral equations system. Appl. Soft Comput. 27, 391–395 (2015)

7. Jafarian, A., Measoomy Nia, S.: Artificial neural network approach to the fuzzy Abel integral
equation problem. J. Intell. Fuzzy Syst. doi:10.3233/IFS-130980

8. Jafarian, A., Measoomy Nia, S.: New itrative method for solving linear Fredholm fuzzy
integral equations of the second kined. Int. J. Ind. Math. 5(3), 10 pp (2013)

9. Jafarian, A., Measoomy Nia, S.: Feed-back neural network method for solving linear Volterra
integral equations of the second kind. Int. J. Math. Modell. Numer. Optim. 4(3), 225–237
(2013)

10. Jafarian, A., Measoomy Nia, S.: Utilizing feed-back neural network approach for solving
linear Fredholm integral equations system. Appl. Math. Modell. 37(7), 5027–5038 (2013)

11. Jumarie, G.: Modi_ed Riemann-Liouville derivative and fractional Taylor series of
nondifferentiable functions further results. Comput. Math. Appl. 51 (2006)

12. Momani, S.M., Hadid, S.B.: Some comparison results for integro-fractional differential
inequalities. J. Fract. Calc. 24, 37–44 (2003)

13. Momani, S., Noor, M.: Numerical methods for fourth order fractional integro-differential
equations. Appl. Math. Comput. 182, 754–760 (2006)

14. Nawaz, Y.: Variational iteration method and homotopy perturbation method for fourth-order
fractional integro-differential equations. Comput. Math Appl. 61(8), 2330–2341 (2011)

An Application of ANNs Method … 279

http://dx.doi.org/10.3233/IFS-130980

15. Odibat, Z., Shawagfeh, N.: Generalized Taylors formula. Appl. Math. Comput. 186(1),
286–293 (2007)

16. Ordokhani, Y., Rahimi, N.: Solving fractional nonlinear Fredholm integro-differential
equations via hybrid of rationalized Haar functions. J. Inf. Comput. Sci. 9(3), 169–180 (2014)

17. Ray, S.S.: Analytical solution for the space fractional diffusion equation by two-step Adomian
decomposition method. Commun. Nonlinear. Sci. Numer Simul. 14, 129–306 (2009)

18. Yang, X.J.: Advanced Local Fractional Calculus and Its Applications. World Science
Publisher, New York, USA (2012)

19. Zhanga, L., Ahmadb, B., Wanga, G., Agarwal, R.P.: Nonlinear fractional integro-differential
equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249, 51–56
(2013)

20. Zhu, L., Fan, Q.: Solving fractional nonlinear Fredholm integro-differential equations by the
second kind Chebyshev wavelet. Commun. Nonlinear Sci. Numer. Simul. 17, 2333–2341
(2012)

280 A. Jafarian and S. Measoomy Nia

Solving Circle Packing Problem
by Neural Gas

Jiri Pospichal

Abstract This paper considers the problem of finding the densest packing of
N (N = 1, 2, …) equal non-overlapping circles in a circle. This and similar packing
problems in 2D or 3D space can be considered as a simplified version of various
real world problems as container loading, sensor network layout or placing of
facilities and therefore it has been thoroughly studied by mathematicians, computer
scientists and in operations research. For most problems with smaller N, whether for
packing in a circle, square or a triangle, or packing of spheres into three dimen-
sional objects, there have been found provably optimal solutions, and a fierce
competition exists to find the most effective algorithm and solutions for higher
values of N. In this paper we are not trying to compete with these achievements, but
we are trying to experimentally examine a possibility to use a special type of neural
network, specifically the neural gas method, to solve such a problem. Experiments
show, that the neural gas approach is applicable to this kind of problem and
provides reasonable though slightly suboptimal results.

Keywords Circle packing ⋅ Heuristic ⋅ Optimization ⋅ Neural gas ⋅
Clustering

1 Introduction

A circle packing is an arrangement of circles within a given boundary, where no
two circles overlap. Packing Equal Circles in a Circle (PECC) problem consists in
finding a dense solution which can place all N non-overlapping circles or discs of
unit-diameter into a smallest circle of diameter r, or alternatively, for a given
circumscribing circle of unit-diameter and N equal circles to find the greatest

J. Pospichal (✉)
Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava,
917 01 Trnava, Slovak Republic
e-mail: jiri.pospichal@gmail.com

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_23

281

diameter of the packed circles. Due to the requirement of highest density for a
solution, some (or all) of the packed circles are mutually tangent. Similar packing
problems of equal circles exist for square, rectangle, triangle, semicircle, and cir-
cular quadrant for two-dimensional containers, or e.g. for spheres in a sphere or a
cube. Similarly, unequal circles with integer radii or equivalent unequal spheres are
studied as well.

The problem in unbounded two dimensional Euclidean plane was already
studied by Lagrange, who proved in 1773 that the highest-density arrangement of
circles has the centers of the circles arranged in a hexagonal lattice (like a hon-
eycomb), where each circle is surrounded by 6 other circles. All the mentioned
problems including packing within boundaries are extensively studied by mathe-
maticians for the beauty of the problem in order to find a provable optimum or at
least upper and lower bounds and by computer scientists competing to find the most
efficient heuristic. In operation research they are studied to deal with practical
problems [4] in production and packing for the textile, container loading in naval,
cylinder packing or dashboard layout problems in automobile and aerospace
industries, and cutting and facility dispersion in food industries, and for sensor
network layout or for communication networks data transfer in optimization of
Quadrature amplitude modulation, where a modem transmits data as a series of
points in a 2-dimensional phase-amplitude plane.

All these packing problems are NP hard optimization problems, which have
been tackled using various techniques, from computer-aided optimality proofs to
branch-and-bound procedures, constructive approaches, multi-start non-convex
minimization, billiard simulation, and metaheuristics and multiphase heuristics
including local search optimization, e.g. [18], or more recently [1–3, 6, 9, 13, 18],
based typically on a sort of spring model. Overview of the methods can be found in
[7]. Even monographs have been already devoted to such packing problems [5, 15,
16]. Likely, the most current results can be found in internet resources [14, 17, 19].
Even though neural networks have not been yet used for circle packing, the inverse
is true; circle packing was used for cortical mapping [10].

Circle packing problems are being solved even for thousands of circles, although
improvements were found within last five years also for slightly more than a
hundred circles. Even though the problems are NP hard, the combined heuristics,
analogously to Traveling Salesman Problem, are very fast and very good.

Similarly to the Traveling salesman problem, where Hopfield used his neural
network to solve a 10-city problem [8], the present paper tries to use a neural
network approach to solve a circle packaging problem, although the approach is
substantially slower and results suboptimal compared to specialized heuristics. The
goal here is to prove feasibility of the concept, not its effectiveness. In the further
presented approach there will be therefore provided no comparison of the effec-
tiveness of the proposed algorithm against other techniques; only a very basic
comparison regarding the quality of the results compared with ideal results shall be
provided.

282 J. Pospichal

2 Neural Gas Approach to Circle Packing

Neural gas is an artificial neural network approach, related to self-organizing map
(SOM), which was introduced in 1991 [12]. In a similar way to SOM, it can be used
for clustering or putting together related data. Expressed in another way, it finds
optimal data representations based on feature vectors, and is typically used in
pattern recognition, more specifically in speech recognition or image compression.

Like SOM and some other artificial neural networks, neural gas adaptation
includes two phases - training and mapping. “Training” creates a “map” by a
competitive process called vector quantization from input examples. “Mapping”
classifies a new input vector. Neural gas is composed of N neurons (their number is
fixed in advance), and with each node i there is associated a weight vector wi of the
same dimension as the input data vectors. These weight or feature vectors flit during
the training within data space as gas molecules would in space, therefore the
algorithm was named neural gas.

In our case, each weight vector just corresponds to coordinates of its neuron in
2D space. After the learning, its coordinates should ideally correspond to a centre of
a “packed” circle and, from a user defined number of N neurons we shall have
packing of N circles within the containing circle. The radius of the circles will be
defined as the minimum of either half of the smallest Euclidean distance between all
couples of centers of “packed” circles (i.e. Euclidean distance of weight vectors of
neurons) or the distance of centers of “packed” circles from a boundary of cir-
cumscribing circle. This unfortunately means that only two circles are sure to be
tangent, either two packed circles or a packed circle and the circumscribing circle; if
other circles are close enough to touch, it is due to the quality of optimization.

Initially, each neuron is associated with a random point within a containing
circle. Then a randomly selected point x from within the containing circle is pre-
sented to the neural gas network. (Actually, we generated a 10000 random points
within the circle in advance, and these are then randomly selected one by one and
fed and “clustered” by neural gas; instead of generating 50000 points, we iterated
the 10000 five times). Euclidean distances of the selected point x to all the weight
vectors of neurons, i.e. centers of the embedded circles, are calculated, and these
centers are sorted by their distance from the selected point, from closest i1 to most
distant iN. Then each weight vector of the ordered sequence is adapted by

wnew
i =wold

i + ε ⋅ e− ki/λ x−wold
i

� �
, i=1, . . . ,N ð1Þ

where ki is the number of neurons with weight vector closer to the current point
x than the current weight wi (i.e. index of its vector in ordered sequence, minus 1), ε
is an adaptation step size and λ is neighborhood range. The parameters ε and λ are
reduced with increasing number of presented points by equations

Solving Circle Packing Problem by Neural Gas 283

εiter = εstart ⋅
εfinal
εstart

� � iter
itermaxð Þ

ð2Þ

λiter = λstart ⋅
λfinal
λstart

� � iter
itermaxð Þ

ð3Þ

where iter is number of points presented so far, itermax is total number of presented
points. Initial value of εstart was set to εstart = 0.2, its final value was set to
εfinal = 0.00005, and for λ these parameters were λstart = 10, λfinal = 0.01. The
adaptation steps are actually similar to gradient descent method in classical neural

Fig. 1 Examples of circle packing for 3 up to 11 circles, the small dots represent points, which
neural gas used for adaptation of the centers of circles

284 J. Pospichal

networks, where the more the result differs from the ideal output, the more are the
weights adapted, and to SOM, where not only winning neuron changes its
parameters, but its neighbors change them as well, even though to a lesser extent.

3 Experimental Results

The neural gas was used to pack from 3 up to 20 circles. As an illustrative example,
Fig. 1 shows the results for packing from 3 up to 11 circles. The points within a
circumscribing circle, which were randomly generated and used for adaptation of
the neural gas are marked by their hue as to which of the centers of packed circles

Fig. 2 Examples of circle packing for 12 up to 20 circles, the small dots represent points, which
neural gas used for adaptation of the centers of circles

Solving Circle Packing Problem by Neural Gas 285

they finally belong. The examples for 3–9 circles are highly symmetrical, but it is
not always the case – the symmetrical cases can be usually solved exactly by purely
mathematical approach. As you can see in the last two cases for 10 and 11 packed
circles, these cases are not so much symmetrical and they also show the greatest
deviation from ideal packing. One can see in the example for packing 10 circles,
that the sets of points belonging to the central two circles have pentagonal shapes
(corresponding to Voronoi cells), but the sides of the pentagons are unequal, edges
in the centre are much longer. The points along the longer edges pull the centers of
the central two circles too close; therefore they do not touch the “outer” packed
circles.

Sometimes, there can be two or more solutions of the packing of the same
quality, e.g. 6, 11 and 13 packed circles have 2 possible optimal solutions, and 18
packed circles have even 3 optimal solutions. However, neural gas mostly produces
only one of them, like those shown in Figs. 1 and 2. Basic placements of all the
solutions produced by neural gas roughly corresponds to optimal ones, save for 17
packed circles, where in Fig. 2 the last case in the second row should have 6 inner
packed circles surrounding the central one, not 5. Any solution may also be rotated
or reflected, so there are formally many equivalent optimal solutions, in fact a
continuum of them. In the examples provided in Figs. 1 and 2 the circles do not
always touch their neighbors. In our case those are mostly imperfections of our
method. Even though there can be sometimes circles that do not have to touch their

Fig. 3 Results of neural gas
packing compared to ideal
values

286 J. Pospichal

neighbors, in optimal solutions for N up to 20 circles such cases occur only for one
circle placed in the centre for N = 8, 9 and 20.

In Fig. 3 you can see three graphs, ideal values of radius depending on number
of packed circles N = 3…20, the best of 10 results for each value N found by neural
gas and the averages of those 10 trials.

To provide the neural gas with enough training data, in the previous figures we
used 10000 randomly generated points within the circumscribing circle. To esti-
mate, if such a great number was necessary, we also collected data for number of
randomly generated points ranging from 100 up to 12800, always doubling their
amount. The results from 100 repeated measurements are presented as a box plot
showing interquartile range as a box with median as thick line, whiskers showing
lowest datum still within 1.5 IQR of the lower quartile, and the highest datum still
within 1.5 IQR of the upper quartile, and circles presenting outliers. The Fig. 4
shows that 10000 training points were not an extreme amount, even though a tenth
of this amount would also provide reasonable results.

Fig. 4 Box plot showing the performance against the amount of training data

Solving Circle Packing Problem by Neural Gas 287

4 Conclusions

The neural gas provided acceptable solutions for the packing problem, even though
the method was not designed or ever before used for such a purpose. Although only
packing within a circle was tested, other types of boundaries and packing in 3D
space can be expected to provide acceptable results as well. The method was used
only to prove the possibility of its application. Its effectiveness is far beyond the
many dedicated heuristics, but feasibility of its application may improve, if we
would require packing within less regular boundaries. Future improvements of this
type of algorithm might employ search for an empty space within the containing
boundary, but outside the packed circle, where future points used to shift neural gas
centers should be concentrating. Since such a space would be highly irregular, a
stochastic kind of exploration would be needed; the most promising such method
can be Rapidly Exploring Random Tree method [1, 11].

Acknowledgments This contribution was supported by Grant Agency VEGA SR under the grant
1/0458/13.

References

1. Abbadi, A., Matoušek, R.: RRTs review and statistical analysis. Int. J. Math. Comput. Simul. 6
(1), 1–8 (2012)

2. Al-Modahka, I., Hifi, M., M’Hallah, R.: Packing circles in the smallest circle: an adaptive
hybrid algorithm. J. Oper. Res. Soc. 62(11), 1917–1930 (2011)

3. Carrabs, F., Cerrone, C., Cerulli, R.: A Tabu search approach for the circle packing problem.
In: Network-Based Information Systems (NBiS), pp. 165–171 (2014)

4. Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization:
numerical results and industrial applications. Eur. J. Oper. Res. 191(3), 786–802 (2008)

5. Conway, J.H., Sloane, N.J.: Sphere Packings, Lattices, and Groups. Springer, New York
(1987)

6. Flores, J.J., Martínez, J., Calderón, F.: Evolutionary computation solutions to the circle
packing problem. Soft Comput. (2015). ISSN 1433-7479. doi:10.1007/s00500-015-1603-y

7. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems: models and
methodologies. Adv. Oper. Res. (2009) Article ID 150624, 22 pp. doi:10.1155/2009/150624

8. Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization problems. Biol.
Cybern. 52(3), 141–152 (1985)

9. Huang, W., Fu, Z., Xu, R.: Tabu search algorithm combined with global perturbation for
packing arbitrary sized circles into a circular container. China Inf. Sci. 56(9), 1–14 (2013)

10. Hurdal, K.M., Stephenson, K.: Cortical cartography using the discrete conformal approach of
circle packings. NeuroImage 23(Suppl 1), S119–28 (2004)

11. LaValle, S M., Kuffner. Jr. J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. (IJRR)
20(5) (2001). doi:10.1177/02783640122067453

12. Martinetz, T., Schulten, K.: A “neural gas” network learns topologies. In: Kohonen, T. et al.
(eds): Artificial Neural Networks. Elsevier, Amsterdam, pp. 397–402 (1991)

13. Shi, Y.-J., Liu, Z.-C., Ma, S.: An improved evolution strategy for constrained circle packing
problem. In: Advanced Intelligent Computing Theories and Applications. Springer, Berlin,
pp. 86–93 (2010)

288 J. Pospichal

http://dx.doi.org/10.1007/s00500-015-1603-y
http://dx.doi.org/10.1155/2009/150624
http://dx.doi.org/10.1177/02783640122067453

14. Specht E.: Packomania web site. http://www.packomania.com/, 1999. last visit 2.4.2015
15. Stephenson, K.: Introduction to Circle Packing: The Theory of Discrete Analytic Functions.

Cambridge University Press, Cambridge (2005)
16. Szabó, P.G., Markót, M.C., Csendes, T., Specht, E., Casado, L.G., García, I.: New Approaches

to Circle Packing in a Square: With Program Codes. In: Springer Optimization and Its
Applications, Vol. 6. New York, NY, USA (2007)

17. Weisstein, E.W.: Circle Packing http://mathworld.wolfram.com/CirclePacking.html. Accessed
2 April 2015

18. Yan-Jun, S., Yi-Shou, W., Long, W., Hong-Fei, T.: A layout pattern based particle swarm
optimization for constrained packing problems. Inf. Technol. J. 11, 1722–1729 (2012)

19. Zhang, D.F., Deng, A.S.: An effective hybrid algorithm for the problem of packing circles into
a larger containing circle. Comput. Oper. Res. 32(8), 1941–1951 (2005)

20. Zimmermann, A.: Al Zimmermann’s Programming Contests—Circle Packing, http://recmath.
com/contest/CirclePacking/index.php. Accessed 2 April 2015

Solving Circle Packing Problem by Neural Gas 289

http://www.packomania.com/
http://mathworld.wolfram.com/CirclePacking.html
http://recmath.com/contest/CirclePacking/index.php
http://recmath.com/contest/CirclePacking/index.php

Cost Functions Based on Different Types
of Distance Measurements for Pseudo
Neural Network Synthesis

Zuzana Kominkova Oplatkova and Roman Senkerik

Abstract This research deals with a novel approach to classification. New clas-
sifiers are synthesized as a complex structure via evolutionary symbolic computa-
tion techniques. Compared to previous research, this paper synthesizes
multi-input-multi-output (MIMO) classifiers with different cost function based on
distance measurements. An inspiration for this work came from the field of artificial
neural networks (ANN). The proposed technique creates a relation between inputs
and outputs as a whole structure together with numerical values which could be
observed as weights in ANN. Distances used in cost functions were: Manhattan
(absolute distances of output vectors), Euclidean, Chebyshev (maximum distance
value), Canberra distance, Bray – Curtis. The Analytic Programming (AP) was
utilized as the tool of synthesis by means of the evolutionary symbolic regression.
For experimentation, Differential Evolution for the main procedure and also for
meta-evolution version of analytic programming was used Iris data (a known
benchmark for classifiers) was used for testing of the proposed method.

Keywords Pseudo neural networks ⋅ Symbolic regression ⋅ Classification ⋅
Euclidean distance ⋅ Chebyshev distance ⋅ Manhattan distance

1 Introduction

This paper deals with a novel method for classification problems, which is based on
symbolic regression with evolutionary optimization techniques, namely Analytic
Programming [1–5] and Differential evolution [6]. The symbolic regression is able

Z.K. Oplatkova (✉) ⋅ R. Senkerik
Faculty of Applied Informatics, Tomas Bata University in Zlin,
Nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic
e-mail: oplatkova@fai.utb.cz

R. Senkerik
e-mail: senkerik@fai.utb.cz

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_24

291

to synthesize a complex structure which is optimized by means of evolutionary
computation.

The basic case of symbolic regression in the context of evolutionary computa-
tion represents a process in which the measured data is fitted and a suitable
mathematical formula is synthesized in an analytical way. This process is widely
known for mathematicians. They use this process when a need arises for mathe-
matical model of unknown data, i.e. relation between input and output values. The
proposed technique is similar to synthesis of analytical form of mathematical model
between input and output(s) in training set. Such a structure can be used as a
classifier because it can simulate the behaviour of the Artificial Neural Networks
(ANN) [7–10], where the inspiration for this work came from. The novel method is
called Pseudo neural networks.

Artificial neural networks are based on some relation between inputs and
output(s), which utilizes mathematical transfer functions and optimized weights
from training process. The training process in ANN means to optimize weight
vector for all training patterns to classify correctly according to the required output
value. This means that the output error function based on weights is minimized.
ANN uses Euclidean or Manhattan function as the usual error function. In the case
of Pseudo neural networks, there is no optimization of number of nodes, connec-
tions or transfer function in nodes. The training is done by means of optimization
procedure in evolutionary symbolic regression on the basis of output error function.
The obtained structure is not possible to redraw to a pure ANN structure of nodes
and connections.

The first simulation with Pseudo neural networks worked with Manhattan error
function (absolute value of difference between actual and required values). As
authors have experiences in the field of evolutionary optimization algorithms, they
know that the shape and complexity of the cost function affect the final optimization
process very much. Therefore the research with other distance measurements in the
cost functions were enabled and implemented to observe the speed of convergence
to the optimal solution. The other distances include Euclidean, Chebyshev,
Bray-Curtis and Canberra measurements.

This paper uses Analytic Programming (AP) [1–5] for evolutionary symbolic
regression procedure. Besides AP, other techniques for symbolic regression com-
putation can be found in literature, e.g. Genetic Programming (GP) introduced by
John Koza [14, 15] or Grammatical Evolution (GE) developed by Conor Ryan [16].

The above-described tools were recently commonly used for synthesis of arti-
ficial neural networks but in a different manner than is presented here. One pos-
sibility is the usage of evolutionary algorithms for optimization of weights to obtain
the ANN training process with a small or no training error result. Some other
approaches represent the special ways of encoding the structure of the ANN either
into the individuals of evolutionary algorithms or into the tools like Genetic Pro-
gramming. But all of these methods are still working with the classical terminology
and separation of ANN to neurons and their transfer functions [11].

In this paper, iris plant dataset [17, 18] was used as a benchmark case for
classification, which has been introduced by Fisher [17] for the first time. It is a well

292 Z.K. Oplatkova and R. Senkerik

known dataset with 4 features and 3 classes. The attributes consist of sepal length,
sepal width, petal length and petal width, which divides the plants into iris virgi-
nica, iris versicolor and iris sentosa. The data set was analysed in a lot of papers by
means of supervised and unsupervised neural networks [19–22], variations like
distribution based ANN [23], piecewise linear classifier [24] or rough sets [25]. Not
only pure ANN were used for classification but also evolutionary algorithms
connected with fuzzy theory were employed [26, 27]. The tool from symbolic
regression called Gene expression programming was used for classification too
[28]. The last mentioned tool was used as a classifier, which contain procedures
if-then rules in the evolutionary process. The basic components consist of greater
then, less then, equal to, etc. and pointers to attributes.

The proposed technique in this paper is different. It synthesizes the structure
without a prior knowledge of transfer functions and inner potentials. It synthesizes
the relation between inputs and output of training set items used in neural networks
so that the items of each group are correctly classified according the rules for cost
function value.

This paper uses a MIMO approach (Multi Input Multi Output) and different
kinds of output error based on different distances. It synthesizes more expressions
with relation between input and each output separately. Also in the case of artificial
neural networks, it can be obtained more expressions between inputs and each
output.

Firstly, different distance measurements are depicted in equations and figures.
The following section contains Analytic Programming description. After that a brief
description of artificial neural networks (ANN) continues. The result section and
conclusion finish the paper.

2 Distance Measurements

The paper uses 5 distances which were implemented into the cost function
according to which the Pseudo neural networks are created. The basic cost function
value is given in Eq. (1). This distance is called Manhattan [31].

cv= ∑
n

i=1
Ai −Bij j ð1Þ

where

Ai – required output vector component
Bi – actual current output vector component from the complex structure

Other distance measurements follow in Eq. (2) Euclidean distance, (3) Chebyshev
distance or Maximum value distance, (4) Canberra distance and (5) Bray-Curtis
distance [32]. There are also the other exotic metrics which can be usable [32].

Cost Functions Based on Different Types … 293

cv=

ffi

∑
n

i=1
Ai −Bið Þ2

s

ð2Þ

cv= max
i

Ai −Bij jð Þ ð3Þ

cv= ∑
n

i=1

Ai −Bij j
Aij j+ Bij j ð4Þ

cv=
∑
n

i=1
Ai −Bij j

∑
n

i=1
Ai +Bið Þ

ð5Þ

To have an idea about the complexity and dynamics of the error functions an
artificial case was prepared (Fig. 1). There are 4 points divided into two classes.

If one neuron would be used for classification of all 4 points with sigmoid
function without the bias, the dependences of the error functions on weights are
depicted in following figures (Figs. 2, 3, 4 and 5).

Fig. 1 Artificial classification
data case

a) b)

Fig. 2 Manhattan – classical absolute value of output vector differences (a) 2D function (one
input and one weight) – the red line is for the distance equal to zero, (b) 3D function (two inputs
and two weights) – the blue plane is for the distance equal to zero

294 Z.K. Oplatkova and R. Senkerik

It can be visible from graphs that Euclidean, Manhattan and Bray-Curtis dis-
tances are almost the same shape only the output interval is different. In all cases,
there is visible an area where combinations of weights can be used to approach the
correct training with error equal to zero. Chebyshev and Canberra are different.
Canberra is the most complicated and full of local optimas. It can be believed that
the Canberra will not work satisfactory for Pseudo neural networks and AP. The
Chebyshev distance seems to be good for the purpose of Pseudo neural networks.
Unfortunately, simulations proved the opposite. The reason is caused by the dif-
ferent visualization. The graphs use the dependence of the distance on weights. On
the contrary, Pseudo neural networks have the structure synthesized completely also
with coefficients which are only similar to weights.

)b)a

Fig. 3 (a) Euclidean distance, (b) Bray – Curtis distance – maximal distance value, the blue plane
is for the distance equal to zero

Fig. 4 Chebyshev – the blue plane is for the distance equal to zero

)b)a

Fig. 5 Canberra distance – (a) 2D – the red line is for the distance equal to zero, (b) 3D – the blue
plane is for the distance equal to zero

Cost Functions Based on Different Types … 295

3 Analytic Programming

This tool was used for the synthesis of a complex structure which can serve sim-
ilarly as a supervised ANN and classify items from the training set into specified
groups. Basic principles of the AP were developed in 2001 [1–4]. Together with
genetic programming (GP) [8, 9] and grammatical evolution (GE) [10], AP belongs
to the group of evolutionary symbolic regression tools. GP uses genetic algorithms
while AP can be used with any evolutionary algorithm, independently on individual
representation.

The core of AP is based on a usage of the set of functions, operators and
terminals. This set of variables is usually mixed together and consists of functions
with different number of arguments. The structure of so called General functional
set (GFS) is created by subsets of functions according to the number of their
arguments. For example GFSall is a set of all functions, operators and terminals,
GFS3arg is a subset containing functions with only three arguments, GFS0arg
represents only terminals, etc. The subset structure presence in GFS is important for
AP as it avoids the synthesis of pathological programs, i.e. programs containing
functions without arguments, etc. The content of GFS is dependent only on the user
[1] and the solved problem.

The second part of the AP core is a sequence of mathematical operations, which
are used for the program synthesis. These operations are used to map an individual
of a population into a suitable program, in this case into a suitable complex
structure of mathematical functions and operators (Fig. 6). This transformation or
mapping consists of two main parts. The first part is called discrete set handling
(DSH) [1–5] (Fig. 7) and the second one stands for security procedures which do
not allow synthesizing pathological programs. The method of DSH allows handling
arbitrary objects and defined functions, not only in AP.

AP needs some evolutionary algorithm that consists of population of individuals
for its run. This research used one evolutionary algorithm: Differential Evolution
(DE) [16] for main process and also meta-evolutionary process in AP.

AP exists in 3 versions – basic without constant estimation, APnf – estimation by
means of nonlinear fitting package in Mathematica environment (www.wolfram.
com) and APmeta – constant estimation by means of another evolutionary algorithms;
meta means meta-evolution. APmeta – strategy was used in the case of Pseudo neural
network synthesis. The detailed description of AP can be found in [1, 2].

Individual = {1, 6, 7, 8, 9, 11}

Resulting Function by AP = Sin(Tan(t)) + Cos(t)

GFSall = {+, -, /, *, d / dt, Sin, Cos, Tan, t, C1, Mod,…}

GFS0arg = {1, 2, C1, , t, C2}
Mod(?)

Fig. 6 Main principles of AP

296 Z.K. Oplatkova and R. Senkerik

http://www.wolfram.com
http://www.wolfram.com

4 Artificial Neural Networks

Artificial neural networks are inspired in the biological neural nets and are used for
complex and difficult tasks [7–11]. The most often usage is classification of objects
as also in this case. ANNs are capable of generalization and hence the classification
is natural for them. Some other possibilities are in pattern recognition, control,
filtering of signals and also data approximation and others.

There are several kinds of ANN. Simulations were based on similarity with
feedforward net with supervision. ANN needs a training set of known solutions to
be learned on them. Supervised ANN has to have input(s) and also required output
(s).

The neural network works so that suitable inputs in numbers have to be given on
the input nodes. These inputs are multiplied by weights which are adjusted during
the training. In the neuron the sum of inputs multiplied by weights are transferred
through mathematical function like sigmoid, linear, hyperbolic tangent etc. These
single neuron units (Fig. 3) are connected to different structures to obtain different
structures of ANN (e.g. Fig. 4), where ∑ δ= TF½∑ ðwixi + bwbÞ� and
∑ = TF½∑ ðwixi + bwbÞ�; TF is for example logistic sigmoid function.

The example of relation between inputs and output can be shown as a mathe-
matical form (1). It represents the case of only one neuron and logistic sigmoid
function as a transfer function (Figs. 8 and 9).

{1.1234, - 5.12, 9, 332.11,…..}

{AND, OR, XOR…..}

Individual={1, 2, 3,…..}

CostValue=CostFunction(x1, x2, x3, x4)

{TurnLeft, Move, TurnRight…..}

YES

NO

Integer
index
- alternative
parameter

Discrete set of
parameters

{SelectDE, CrossDE, SelectLeaderSOMA...}

Fig. 7 Discrete set handling

Fig. 8 Neuron model, where TF (transfer function like sigmoid), x1 - xn (inputs to neural
network), b – bias (usually equal to (1), w1 – wn, wb – weights, y – output

Cost Functions Based on Different Types … 297

y=
1

1+ e− x1w1 + x2w2ð Þ , ð6Þ

where

y – output
x1, x2 – inputs
w1, w2 – weights.

The aim of the proposed technique is to find similar relation to (1). This relation
is completely synthesized by evolutionary symbolic regression – Analytic
Programming.

5 Problem and Iris Dataset Description

For this classification problem, iris plant dataset [17, 18] was used as a benchmark
case for classification. It is a well known dataset with 4 features and 3 classes. The
attributes consist of sepal length, sepal width, petal length and petal width, which
divides the plants into iris virginica, iris versicolor and iris sentosa. This set con-
tains 150 instances. Half amount was used as training data and the second half was
used as testing data. The cross validation is planned for future testing. The data set
contains 3 classes of 50 instances each, where each class refers to a type of iris
plant. One class is linearly separable from the other 2; the latter are NOT linearly
separable from each other. The attributes were of real values.

Compared to previous research, this paper uses MIMO approach together with
different type of distance measurements in cost function in AP described in Sect. 2.
An expression for each output node was synthesized. The data for each simulation
was used as follow: first node – data for iris setosa as value higher than 0.5 which
was saturated to 1 and the other two groups as data with saturated zero value. The
second node expression divided similarly data for iris versicolor as saturated value
1 and the other two as value zero. The last node was the same for iris virginica. The
final combination of the output node values gives the same result as in ANN
approach.

Fig. 9 ANN models with one hidden layer

298 Z.K. Oplatkova and R. Senkerik

6 Results

The simulations were carried out with Analytic Programming and Differential
Evolution. Settings of EA parameters for both processes (main and metaevolution)
were based on performed numerous experiments with chaotic systems and simu-
lations with APmeta (Tables 1 and 2), where CFE means cost function evaluations.

The set of elementary functions for AP was inspired in the items used in classical
artificial neural nets. The components of input vector x contain values of each
attribute (x1, x2, x3, x4). Thus AP dataset consists only of simple functions with
two arguments and functions with zero arguments, i.e. terminals. Functions with
one argument, e.g. Sin, Cos, etc., were not applied in the case of this paper.

Basic set of elementary functions for AP:

GFS2arg = + , -, /, *, ^, exp
GFS0arg = x1, x2, x3, x4, K

Total number of cost function evaluations for AP was 1000, for the second EA it
was 6000, together 6 millions per each simulation.

Carried simulations proved that Canberra and Chebyshev distances were not
satisfactory for Pseudo neural nets synthesis with iris data set. The Chebyshev
distance equal to 1 produced structures which had 25 misclassified items which is
unacceptable. The Manhattan, Euclidean and Bray-Curtis were useful but none
improved the speed of convergence. The notations which works with training error
equal to 2 misclassified items (it means 2.66 % error, 97.34 % success from all 75
training patterns) were synthesized for the first and third output node during the first
or second generation, for the second node within 10th generation in average.

The output expression can be mixed. The user can choose the suitable shape
which is less complicated then others. The suitable node output should be selected
also on the basis of the testing error. In some cases the error was equal to 5–7
misclassified items (8 % error, 92 % success).

Table 1 DE settings for main
process of AP

Pop size 40

F 0.8
Cr 0.8
Generations 50
Max. CFE 2000

Table 2 DE settings for
meta-evolution

Pop size 40

F 0.8
Cr 0.8
Generations 150
Max. CFE 6000

Cost Functions Based on Different Types … 299

The obtained training and testing errors are comparable with errors obtained
within other approaches as artificial neural networks and others. But other tests with
other benchmarks are necessary to carry out.

7 Conclusion

This paper deals with a novel approach – pseudo neural networks. Within this
approach, classical optimization of the structure or weights was not performed. The
proposed technique is based on symbolic regression with evolutionary computation.
It synthesizes a whole structure in symbolic form without a prior knowledge of the
ANN structure or transfer functions. It means that the relation between inputs and
output(s) is synthesized which serves as a classifier. In the case of this paper,
expressions for each output node were synthesized separately and independently
based on different types of distance measurement. The simulations showed that
Chebyshev and Canberra distances are not suitable for Pseudo neural network
synthesis. Euclidean, Manhattan and Bray-Curtis are suitable according to these
preliminary results. For further tests some observed critical points have to be taken
into consideration. Huge testing with other benchmarks are also in future plans.

Acknowledgment This work was supported by Grant Agency of the Czech Republic - GACR
P103/15/06700S, further by financial support of research project NPU I No. MSMT-7778/2014 by
the Ministry of Education of the Czech Republic and also by the European Regional Development
Fund under the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.

References

1. Zelinka, et al.: Analytical programming - a novel approach for evolutionary synthesis of
symbolic structures. In: Kita, E. (ed.) Evolutionary Algorithms, InTech (2011)

2. Oplatkova, Z.: Metaevolution: Synthesis of Optimization Algorithms by means of Symbolic
Regression and Evolutionary Algorithms, Lambert Academic Publishing Saarbrücken (2009)

3. Zelinka, I., Varacha, P., Oplatkova, Z.: Evolutionary synthesis of neural network. In:
Proceedings of 12th International Conference on Soft Computing – MENDEL 2006. Mendel
series, vol. 2006, pp. 25 – 31. Brno, Czech Republic (2006). ISSN: 1803- 3814

4. Zelinka, I.,Oplatkova, Z., Nolle, L.: Boolean symmetry function synthesis by means of
arbitrary evolutionary algorithms-comparative study. In: International Journal of Simulation
Systems, Science and Technology, vol. 6, pp. 44–56, 9 Aug 2005. ISSN: 1473-8031

5. Lampinen, J., Zelinka, I.: New Ideas in Optimization—Mechanical Engineering Design
Optimization by Differential Evolution, vol. 1, 20 p. McGraw-hill, London (1999). ISBN
007-709506-5

6. Gurney, K.: An Introduction to Neural Networks. CRC Press (1997). ISBN: 1857285034
7. Hertz, J., Kogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison

– Wesley (1991)
8. Wasserman, P.D.: Neural Computing: Theory and Practice. Coriolis Group (1980). ISBN:

0442207433

300 Z.K. Oplatkova and R. Senkerik

9. Fausett, L.V.: Fundamentals of Neural Networks: Architectures, Algorithms and Applications.
Prentice Hall (1993). ISBN: 9780133341867

10. Volna, E., Kotyrba, M., Jarusek, R.: Multiclassifier based on Elliott wave’s recognition.
Comput. Math. Appl. 66 (2013). doi:10.1016/j.camwa.2013.01.012

11. Fekiac, J., Zelinka, I., Burguillo, J.C.: A Review of Methods for Encoding Neural Network
Topologies in Evolutionary Computation. ECMS 2011, Krakow, Poland. ISBN:
978-0-9564944-3-6

12. Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Algorithms. Oxford
University Press (1997). ISBN 0750303921

13. Koza, J.R., et al.: Genetic Programming III; Darwinian Invention and problem Solving.
Morgan Kaufmann Publisher (1999). ISBN 1-55860-543-6

14. Koza, J.R.: Genetic Programming. MIT Press (1998). ISBN 0-262-11189-6
15. O’Neill, M., Ryan, C.: Grammatical Evolution. Evolutionary Automatic Programming in an

Arbitrary Language. Kluwer Academic Publishers (2003). ISBN 1402074441
16. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2),

179–188 (1936). doi:10.1111/j.1469-1809.1936.tb02137.x
17. Machine learning repository with Iris data set. http://archive.ics.uci.edu/ml/datasets/Iris
18. Swain, M., et al.: An approach for iris plant classification using neural network. Int. J. Soft

Comput. 3(1) (2012). doi:10.5121/ijsc.2012.3107
19. Shekhawat, P., Dhande, S.S.: Building and iris plant data classifier using neural network

associative classification. Int. J. Adv. Technol. 2(4), 491–506 (2011). ISSN: 0976-4860
20. Avci, M., Yildirim, T.: Microcontroller based neural network realization and iris plant

classifier application. In: Proceedings of the Twelfth Turkish Symposium on Artificial
Intelligence and Neural Networks (TAINN’2003), Canakkale, Turkey, 2–4 July 2003

21. Osselaer, S.: Iris data analysis using back propagation neural networks. J. Manufact. Syst. 13
(4), 262 (2003)

22. Chen, S., Fang, Y.: A new approach for handling iris data classification problem. Int. J. Appl.
Sci. Eng. (2005). ISSN: 1727-2394

23. Kostin, A.: A simple and fast multi-class piecewise linear pattern classifier. Pattern Recogn. 39
(11), 1949–1962 (2006). doi:10.1016/j.patcog.2006.04.022. ISSN 0031-3203

24. Kim, D.: Data classification based on tolerant rough set. Pattern Recogn. 34(8), 1613–1624
(2001). doi:10.1016/S0031-3203(00)00057-1. ISSN 0031-3203

25. Agustı´n-Blas, L.E., et al.: A new grouping genetic algorithm for clustering problems. Expert
Syst. Appl. 39(10) 9695–9703 (2012). doi:10.1016/j.eswa.2012.02.149. ISSN 0957-4174

26. Zhou, E., Khotanzad, A. Fuzzy classifier design using genetic algorithms. Pattern Recogn. 40
(12), 3401–3414 (2007). doi:10.1016/j.patcog.2007.03.028. ISSN 0031-3203

27. Ferreira, C.: Gene Expression Programming: Mathematical Modelling by an Artificial
Intelligence. (2006). ISBN: 9729589054

28. Oplatkova, Z., Senkerik, R.: Evolutionary synthesis of complex structures – pseudo neural
networks for the task of iris dataset classification. In: Zelinka, I., Chen, G., Rössler, O.E.,
Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Modeling and Analysis of
Complex Systems, vol 210. Advances in Intelligent Systems and Computing, Springer
International Publishing, pp. 211–220. doi:10.1007/978-3-319-00542-3_22

29. Kominkova Oplatkova, Z., Senkerik, R.: Lenses classification by means of pseudo neural
networks – two approaches. In: MENDEL 2014 - 20th International conference on soft
Computing. Brno, Czech Republic, pp. 397–401. ISSN 1803-3814. (2014)

30. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution : A Practical Approach to
Global Optimization. (Natural Computing Series), Springer; 1 edition (2005)

31. Rohlf, F.J.: Brenner’s Encyclopedia of Genetics (Second Edition) (2013)
32. Matousek, R., Karpisek, Z.: Exotic metrics for function approximation. In: Proceedings of

17th International Conference on Soft Computing – MENDEL 2011. Mendel series vol. 2011,
pp. 560–566, Brno (2011), ISSN: 1803- 3814

Cost Functions Based on Different Types … 301

http://dx.doi.org/10.1016/j.camwa.2013.01.012
http://dx.doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://archive.ics.uci.edu/ml/datasets/Iris
http://dx.doi.org/10.5121/ijsc.2012.3107
http://dx.doi.org/10.1016/j.patcog.2006.04.022
http://dx.doi.org/10.1016/S0031-3203(00)00057-1
http://dx.doi.org/10.1016/j.eswa.2012.02.149
http://dx.doi.org/10.1016/j.patcog.2007.03.028
http://dx.doi.org/10.1007/978-3-319-00542-3_22

Part III
Intelligent Image Processing,

Bio-Inspired Robotics

Labyrinth Arrangement Analysis Based
on Image Processing

Pavel Škrabánek

Abstract The approach described in this paper has been developed as a supporting

tool for practical exercises based on a teaching aid; however, its application is far

from being limited to be used only in the education process. The main task of the

approach is extraction of information about structure of a working environment from

color images and its transformation to an appropriate form suitable for path-planning.

The working environment considered in this paper is a labyrinth. Since the informa-

tion is to be used further by path-planning, its expression in the form of a graph

is required, or, more precisely, the adjacency matrix is required as the output. The

transformation of the real world into a discreet representation is based on the exact

cell decomposition in this approach. The approach employs the well-known image

processing algorithms; however, the procedure of the labyrinth layout analysis as

well as the transformation of the acquired information into the adjacency matrix has

been developed and tested in this work. The approach has been realized and verified

in MATLAB using the Image Processing Toolbox.

Keywords Image processing ⋅ Teaching aid ⋅ Mobile robot ⋅ Path-planning ⋅
Graph ⋅ MATLAB ⋅ Labyrinth building kit

1 Introduction

The artificial intelligence (AI) is growing in importance in the last decade which has

been reflected in education of the undergraduate and graduate students, too. Since

theoretical oriented lectures do not suffice to ensure the required high quality of

education, they are usually complemented by practical exercises.

The practical exercises of AI courses can have many different forms; however,

the use of mobile robots has become to be very trendy, as confirms the number of

P. Škrabánek (✉)
Faculty of Electrical Engineering and Informatics, University of Pardubice,

Studentská 95, 532 10 Pardubice, Czech Republic

e-mail: pavel.skrabanek@upce.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_25

305

306 P. Škrabánek

publications. Commercial products are often used for this purpose. In this context,

the very popular LEGO Mindstorms should be mentioned [1, 2, 6]. Nevertheless,

design of solutions according to the curriculum requirements are not rare [8, 10].

The development of a proper teaching aid is usually time-consuming; however, the

final solution exactly matches with the needs of teaching.

In our case, the teaching requirements were also the main motivation to develop

a proper multi-objective teaching aid for AI courses. The aid consists of differential

wheeled mobile robots, a camera system and a labyrinth building kit, among others.

The aid allows creating of a variety of different practical exercises focused on differ-

ent topics of AI, such as path-planning, heuristic optimization or decision making.

However, the teaching aid cannot be used by students without an appropriate soft-

ware pack.

In the case of path-planning exercises, the software has to provide the informa-

tion about the working area of the mobile robots, among others. The source of the

information is the camera system in this case, thus the analysis of captured images

followed by an appropriate transformation has to be performed. Since the mentioned

tasks are not simple and their solving is time consuming, the developed approach

has been introduced in this paper to be an inspiration for others.

The approach has been developed according to path-planning requirements there-

fore a brief reminder of the path-planning is given in Sect. 1.1. Since the approach

is linked up to the technical solution of the labyrinth building kit and the camera

system, their introduction is outlined in Sect. 1.2. The description of the approach is

in Sect. 2.

1.1 Basis of the Path-Planning

The aim of the path-planning process in mobile robotics is to find a path between an

initial state and a goal state; however, the path should avoid any collision with any

forward known obstacle in the operating area of the robot.

Thus, the path-planning methods require at least a partial knowledge about the

robot’s working space where the knowledge has to be in an appropriate form. Most of

the path-planning algorithms used in mobile robotics are based on the graph theory,

thus the knowledge is usually required to be in the form of the graph.

The transformation of the real world to the graph is realized using some of the

decomposition technics. The technics can be split up to three general groups labeled

as roadmap [11], cell decomposition [11] and potential field [9]. An appropriate

decomposition technic is usually selected according to a particular problem.

1.2 The Labyrinth Building Kit and Camera System

The design of the labyrinth components, as well as the camera system construction,

play significant role in the described approach; however, the methodology of the

labyrinth assembly and the installation of the camera system are equally important.

Labyrinth Arrangement Analysis Based on Image Processing 307

Since the topics are quite extensive, they have been split into two parts. The first

part deals with the labyrinth building kit and related topics while the second one is

dedicated to the camera system and its installation.

The Labyrinth Building Kit In the term of path-planning exercises, a labyrinth is

a working space of mobile robots. Each labyrinth inherently contains many obsta-

cles created by partitions. In the case of the teaching aid, the size of partitions are

standardized, i.e. the length apr is 17 cm, the width bpr is 1 cm and the height cpr is

10 cm.

The color of the partitions is white except one edge (17 cm × 1 cm). This edge is

of black color for most of the partitions except eight pieces of red color. The choice

of the colors was made according to the image processing requirements.

A labyrinth is assembled using the partitions and posts of height 10 cm and of

square ground plan of size 1 cm × 1 cm. The basis of each labyrinth is a floor of

white color. The partitions are placed on the floor using the posts. Each vertical side

of a post contains one track where a partition can be inserted thus a rectangular layout

of the labyrinth is naturally created.

A large number of various labyrinths can be assembled using the kit; however,

several condition are given to be kept, i.e. the outer shape of the labyrinth has to be

rectangular, the labyrinth has to be a closed system (isolated from the surrounding

world), and dimensions of the labyrinth should respect the technical limitations of

the camera system. The labyrinth’s inner layout is not limited but not each possible

configuration makes sense.

The partitions are required to be inserted to posts so that the colored edge is visible

from the top view. The red colored partitions are essential by analysis thus their

placement has to match up to special requirements.

According to dimensions of the labyrinth, one or two red colored partitions are

placed in each outer wall of the labyrinth. At least four red partitions should be used

in the labyrinth to provide sufficient data for a correct analysis. Their placement has

to satisfy two requirements; no two red partitions can be placed side by side, and no

red partition can be placed next to a labyrinth corner. Their placement should be also

irregular but balanced to minimize errors caused by an inaccurate camera placement

and its lens distortion.

Legend

A regular partition
A red partition
A square marker

Fig. 1 An example of a correctly assembled labyrinth

308 P. Škrabánek

Once the labyrinth has been assembled, three yellow square markers of the side

length 3 cm are placed to the labyrinth’s corners: two to the bottom corners and one

to the left top corner. An example of a labyrinth meeting the requirements is in Fig. 1.

The Camera System The camera system consists of a stand arm and camera Log-

itech Webcam C930e. The camera has three bands (RGB) and it allows setting of

several resolutions; however, the highest resolution (1080 × 1920 pixels) is used

with in the exercises.

The camera is fixed on the stand arm and the whole camera system is placed such

that camera is above the labyrinth and the focus of the lens is placed approximately

in its middle. The arm should be parallel with the floor and the alignment of image

edges should be parallel with the outer walls of the labyrinth. The camera’s stand

allows variable adjustment of the height. The altitude of the camera can vary from

1 m to 2 m. The altitude of the camera should be set so that the whole labyrinth is in

the swath; however, minimum of its surrounding should be there. An example of a

correct installation of the camera system is shown in Fig. 2.

1

2

3

Legend

1 Labyrinth
2 Camera
3 Camera’s stand

Camera’s swath

1

2

3

1

1

3

2

Fig. 2 An example of a correctly installed camera’s system

2 The Analysis of a Labyrinth Layout

The required output of the analysis is the graph representation of the inner layout of

an assembled labyrinth. Since a MATLAB version of the A
*

algorithm [12] is used

within the exercises, the output of the analysis is the adjacency matrix [3]. Its input

Labyrinth Arrangement Analysis Based on Image Processing 309

is an image of a completely assembled labyrinth captured by the camera; however,

no other object can be placed in the view.

As was mentioned in Sect. 1.1, the decomposition of the real world to an appropri-

ate discreet representation has to be performed. Considering the standardized dimen-

sions of the partitions and the rectangular layout of labyrinths, the exact cell decom-

position [11] seems to be the best choice. The size of each cell is than given by the

dimensions of the partitions and borders of cells are placed on sites of the partitions.

Thus, the result of the decomposition is a grid of equally sized square cells. The

described decomposition is evident in Fig. 3 where the decomposition of the top left

corner of the exemplary labyrinth is shown.

Fig. 3 The exact cell

decomposition of the top left

corner of the exemplary

labyrinth

apr bpr

Legend

 Post
 Partition
 Cell’s border

Marker

Naturally, the dimensions of the partitions on an image differ from the real one,

thus they have to be determined than ever the decomposition can be performed. How-

ever, it is not the only thing to be solved before the analysis of the labyrinth layout

can be realized.

Firstly, a captured image has to be transformed into a standardized form. This

process is described in Sect. 2.2. The following step is the extraction of auxiliary

information from the transformed image. This task is described in Sect. 2.3. The last

step is the analysis of the labyrinth layout resulting in the adjacency matrix. This

step is described in Sect. 2.4. Since the same image preprocessing has to be exe-

cuted in the first and second steps, it is generally described in Sect. 2.1. The solution

introduced in this section has been created using MATLAB and Image Processing

Toolbox.

2.1 Image Preprocessing

Since the used camera has three bands, a captured image is saved in a three dimen-

sional matrix, say 𝐀, of the size m × n × 3, where each layer contains data from

one band, and n,m are given by the set resolution of the camera. The elements a of

the matrix 𝐀 are the numerical representation of the intensity where the intensity is

expressed by an integer from [0, 255].
The choice of the colors used in the labyrinth building kit was realized according

to the image processing requirements, thus the image preprocessing is very simple.

Its first step is the calculation of a ‘difference’ between two bands, say v and w,

310 P. Škrabánek

where v,w ∈ {1, 2, 3}, and v ≠ w. Strictly speaking, the data in the layer w in the

matrix 𝐀 are subtracted from the data in the layer v; however, the elements of the

resulting matrix must not be less than zero. This operation can be simply realized in

MATLAB using the function imapplymatrix where the result is a two dimensional

matrix, say 𝐁𝐯𝐰
, of the size m × n.

The second step is conversion of the intensity image 𝐁𝐯𝐰
to a binary image, say

𝐂𝐯𝐰
, where the size of the resulting matrix 𝐂𝐯𝐰

is m × n. It is realized using a

threshold function which is represented in MATLAB by the function im2bw where

its input parameter T is the threshold value, and T ∈ [0, 1] (more in [4, 7]). This

step of the image preprocessing is required by the function regionprops used in

Sects. 2.2 and 2.3; however, the right setting of T prevents the resulting image 𝐂𝐯𝐰

from undesirable ‘objects’, too.

2.2 The Image Transformation

Despite all efforts, the installation of the camera system according to all the condi-

tions given in Sect. 1.2 is usually not possible therefore the image transformation has

to be performed before the next steps can be carried out.

The construction of the stand guarantees almost parallel alignment of the arm

with the floor. Also the requirement to place the focus of the camera approximately

into the middle of the labyrinth is usually fulfil. Thus, the stumbling-block is the

parallelism of the labyrinth border with the image border.

The parallelism problem can be solved by rotation of an image; however, the

picture angle 𝜃 has to be known. In the case of the labyrinth’s images, the 𝜃 can be

determined using the yellow square markers placed in the corners of the labyrinth,

thus their positions in the image have to be identify.

This can be easily done in MATLAB using the function regionprops which

can, among others, return coordinates of the centers of mass for each recognized

object (more in [4, 7]). Since the function requires a binary image as the input, the

image preprocessing has to be performed (see Sect. 2.1). Given that the color of the

markers, the ‘difference’ between second and third band seems to be appropriate, i.e.

v = 2 and w = 3, then, the suitable setting of the threshold value has proven to be

T = 0.5.

The only highlighted objects in the resulting binary image 𝐂𝟐𝟑
should be the

markers, thus the function regionprops set to the mode ‘Area’ returns for 𝐂𝟐𝟑
their

coordinates of the centers of gravity

(

xmr
, ymr

)

where r is the index of a marker, and

r ∈ {1, 2, 3} (see Fig. 4).

Once the coordinates

(

xmr
, ymr

)

are known, the picture angle 𝜃 can be determined

as

𝜃 = arctan
dmy
dmx

, (1)

Labyrinth Arrangement Analysis Based on Image Processing 311

Fig. 4 An example of a

resulting binary image with

highlighted markers

including the designation of

the related variables

dmx

dmyθ

x ,y x m3
,ym3

x ,y x ,ym1
,ym1

x ,y x ,ym2
,ym2

where dmy = (ym3
− ym2

), and dmx = (xm3
− xm2

). The picture angle issue might

be more evident in Fig. 4. The figure shows an example of a resulting binary image

where the white squares are the highlighted markers.

Using the picture angle 𝜃, the transformation of the original image 𝐀 can be real-

ized. In this work, the affine transformation with the inverse mapping approach has

been used [5]. To complete the process of transformation, the bilinear interpolation

[5] is applied to the rotated image. This process can be realized in MATLAB using

one function called imrotate [7]. Let us denote the transformed image as �̃� than

the size of the matrix �̃� is m × n × 3.

2.3 Extraction of Auxiliary Information

Before the analysis of the labyrinth layout can be performed, information about its

localization and about its basic proportions has to be known. As the source of the

information the transformed image �̃� is used. The information about the labyrinth

position and its proportions can be determined using the yellow square markers.

Thus, the image preprocessing is realized the same way as is described in Sect. 2;

however, the transformed image �̃� is used this time. The resulting binary image is

saved in the matrix �̃�𝟐𝟑
. The coordinates of the centers of gravity of the markers in

the transformed image (xm̃r
, ym̃r

) are obtained using the function regionprops set

to the mode ‘Area’.

Let us suppose that the origin of the labyrinth is given by its left top corner, than

its coordinates in the transformed image are (xm̃1
, ym̃1

). The length of the labyrinth

in the image in the sense of x axis, lx, and its length in the sense of y axis, ly, are

lx = xm̃3
− xm̃2

, ly = ym̃2
− ym̃1

. (2)

The lengths and the position of the labyrinth origin are not sufficient for the analy-

sis execution. Also the proportions of the partitions in the image have to be known.

For that purpose, the red partitions are included into the labyrinth building kit.

312 P. Škrabánek

The data necessary for determining of the partition’s proportions can be obtained

using the function regionprops set to the mode ‘BoundingBox’ (more in [4, 7]). In

this mode, the function finds the smallest rectangle containing an object in a binary

image. Thus, the transformed image �̃� has to be converted into the binary image

again.

The conversion of �̃� is realized according to Sect. 2.1; however, the ‘difference’

between first and third band is performed in this case, i.e. v = 1, w = 3. The optimal

setting of the threshold T is 0.38. In the resulting binary image �̃�𝟏𝟑
, the red partitions

and the yellow markers are highlighted; however, the markers are undesirable for the

following process. Their elimination can be easily done by a simple matrix operation

�̃�𝐰 = �̃�𝟏𝟑 − �̃�𝟐𝟑
.

Thus, the resulting binary image �̃�𝐰
is used as the input of the function

regionprops set to the mode ‘BoundingBox’. The output of the function consist

of the partition’s dimensions where the greater value is the projection of apr to the

image, say api, while the smaller one is the projection of bpr, say bpi. Since several

red partitions have been used by the labyrinth construction, the length of a cell in the

image wc is determined using their average values āpi, b̄pi, i.e.

wc = ‖āpi + b̄pi‖, (3)

where ‖‖ denotes rounding to the nearest integer. This notation is used also further.

2.4 Analysis of the Labyrinth Layout

The analysis of the labyrinth layout is realized in a loop when a window is stepwise

moved from the left to the right side of an image, line by line, as is in a simplified

form shown in Fig. 5. The step shift of the window corresponds to the length of the

cell wc. Since the initial position of the window is set to the left top corner of the

labyrinth, the k-th cell is processed in the k-th step of the analysis. In each step of

the analysis, the presence of partitions is examined. The acquired information is then

used by the adjacency matrix construction. This description of the analysis process

is, of course, very simplified. Its full description follows below.

Before the process of the analysis can be started, the number of rows, say ny, as

well as the number of columns, say nx, of the grid created by the decomposition (see

Fig. 7) has to be known. Since the dimensions of the labyrinth (2) as well as the size

length of cells (3) are known, the parameters can be determined as

nx =
‖
‖
‖
‖

lx
wc

‖
‖
‖
‖
, ny =

‖
‖
‖
‖
‖

ly
wc

‖
‖
‖
‖
‖

. (4)

As is illustrated in Fig. 5, the analysis is realized using a sliding window. The

window is further represented by a square matrix 𝐖 of the size ww × ww where

Labyrinth Arrangement Analysis Based on Image Processing 313

Legend

 Post
 Black partition
 Red partition
 Marker
 Initial position of the window

Examples of other positions
of the window
Direction of the analysis

Fig. 5 The mechanism of the analysis illustrated on the exemplary labyrinth

ww = ‖𝜆wc‖, (5)

and where 𝜆 is a number from (1, 2], in our case 𝜆 = 1.33.

The analysis is not performed directly on the transformed image �̃�; however, a

binary image is used. Thus, the transformed image �̃� has to be processed by the

function im2bw where the optimum threshold value is T = 0.8. The red and black

partitions should be the only objects remaining in the resulting binary image 𝐂𝐚.

Both type of partitions are represented by 0 in the binary image 𝐂𝐚; however, the

rest of the labyrinth is represented by 1.

Since the analysis is performed on the binary image, the sliding window𝐖 should

be defined using the matrix 𝐂𝐚, i.e. the content of the window in the k-th step of the

analysis is

𝐖(k) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c̃a
x(k)w y(k)w

c̃a(
x(k)w +1

)

y(k)w
⋯ c̃a(

x(k)w +ww

)

y(k)w

c̃a
x(k)w

(

y(k)w +1
) c̃a(

x(k)w +1
)(

y(k)w +1
) ⋯ c̃a(

x(k)w +ww

)(

y(k)w +1
)

⋮ ⋮ ⋱ ⋮
c̃a
x(k)w

(

y(k)w +ww

) c̃a(
x(k)w +1

)(

y(k)w +ww

) ⋯ c̃a(
x(k)w +ww

)(

y(k)w +ww

)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (6)

where c̃a is an element of the matrix �̃�𝐚
, k ∈ {1, 2,… , (nxny−1)}. The origin of the

source of data

(

x(k)w , y(k)w

)

is for k ∈
{
2, 3,… , (nxny − 1)

}
defined as

(
x(k)w , y(k)w

)
=
⎧
⎪
⎨
⎪
⎩

(

x(k−1)w , y(k−1)w

)

+
(
wc, 0

)
k ∉ X,

(

x(k−1)w , y(k−1)w

)

+
(
−nxwc,wc

)
k ∈ X,

(7)

where X =
{
nx, 2nx,… , (ny − 1)nx

}
; however, for k = 1 holds that

314 P. Škrabánek

(
x(1)w , y(1)w

)
=
(

‖xm̃1
‖, ‖ym̃1

‖

)

+
(
xo, yo

)
, (8)

where
(
xo, yo

)
is an offset of the window, where xo, yo ∈ ℤ. In our case, the offset

(
xo, yo

)
= (−5,−5) has been used.

The aim of the analysis is to determine all possibilities of mobile robot’s move-

ment within the labyrinth. Considering that the exact cell decomposition described

on the beginning of Sect. 2 is used in this approach, the analysis problem can be

reduced to detection of partitions.

Since the labyrinth is the closed word system and the initial position of the sliding

window is placed to the left top corner of the labyrinth according to (8), only the

presence of partitions on the right and the bottom sites in 𝐖(k)
has to be verified.

For illustration, an example of a possible content of 𝐖(k)
is given in Fig. 6.

Fig. 6 Example of a

possible content of 𝐖(k)

including auxiliary vectors

𝐫(k) and 𝐜(k)

Presence of a partition on the bottom site is in the k-th step verified using an

auxiliary vector 𝐫(k) of the length ww where its i-th element is

r(k)i =
‖
‖
‖
‖
‖
‖

1
ww

ww∑

j=1
w(k)
ij

‖
‖
‖
‖
‖
‖

, (9)

i.e. the i-th element of the vector 𝐫(k) is the mean value of all elements of the matrix

𝐖(k)
, w(k)

, placed on i-th row round towards the nearest integer.

The presence of a partition is confirmed by at least one zero value in the vector

𝐫(k); however, only a part of the vector should be taken into account. The beginning

of the area of interest is given by 𝜀m where its exact value can be chosen from 𝜀m ∈
{1, 2,… ,ww}. In our case, 𝜀m = ‖0.2ww‖ has been used.

Similarly, presence of a partition on the right site is judged using an auxiliary

vector 𝐜(k) of the length ww in the k-th step of the analysis process. The i-th element

of 𝐜(k) is

c(k)i =
‖
‖
‖
‖
‖
‖

1
ww

ww∑

j=1
w(k)
ji

‖
‖
‖
‖
‖
‖

. (10)

Labyrinth Arrangement Analysis Based on Image Processing 315

Also in this case, only a part of the vector is used by the analysis. The beginning of

the area of interest is given by 𝜀m, too.

As was stated above, the results of the analysis are required to be saved into the

adjacent matrix, say 𝐌. The matrix 𝐌 is created according to the results of the cell

decomposition (see Fig. 7), where each cell represents a vertex of a graph and the

possibility of transition between two adjacent cells is an edge of the graph; conse-

quently, the dimension of 𝐌 is given by the number of created cells, i.e. its size is

nxny × nxny.

Legend

A regular partition
A red partition
A square marker
Cell s border

e en

A regu
A red p
A squa

e ’ s b

 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60

Fig. 7 The cell decomposition of the exemplary labyrinth including indices

The content of the matrix 𝐌 is created according to the results of the analysis, i.e.

using the auxiliary vectors 𝐜(k) and 𝐫(k). In the case, a partition is presented in the right

or in the downwards direction, the transition in this and the reveres direction is not

possible which is expressed by setting of the adequate elements m of the adjacency

matrix 𝐌 to 0, otherwise they are set to 1, i.e.

mk(k+1) = m(k+1),k =

{
0 if ∃c(k)i = 0,
1 otherwise,

(11)

and

mk(k+nx) = m(k+nx)k =

{
0 if ∃r(k)i = 0,
1 otherwise,

(12)

where i ∈
{
𝜀m, 𝜀m + 1,… ,ww

}
.

Since the transition is possible only between two adjacent cells, it is obvious that

the rest of elements of the matrix 𝐌 are zeros.

3 Conclusion

The described approach has been successfully verified on several path-planning tasks

using the A
*

algorithm [12]. Strictly speaking, the introduced approach was used

as the source of information necessary for the solving of path-planning tasks. The

316 P. Škrabánek

transformation of the information from the image into the adjacency matrix was

successful for all five labyrinths which differed in their layout as well as in their

dimensions.

Even though that the introduced approach has been designed for the specific pur-

pose, the technical solutions related to the image processing might be inspiration by

development of similar teaching aids; however, the ideas can be used in many other

applications exceeding the teaching issue.

Acknowledgments I would like to offer my special thanks to the government of India as well as to

the ambassador of India in Czech Republic, mr. Shri Ashok Venkatesan and to the first secretary of

the embassy, mr. Somnath Chatterjee, for the support of my studies about image processing at the

Indian Institute of Remote Sensing in Dehradun via the ITEC scholarship. The knowledge gained

within the studies was very helpful for the solving of the problem described in the paper.

References

1. Cruz-Martín, A., Fernández-Madrigal, J.A., Galindo, C., González-Jiménez, J., Stockmans-

Daou, C., Blanco, J.L.: A LEGO Mindstorms NXT approach for teaching at data acquisi-

tion, control systems engineering and real-time systems undergraduate courses. Comput. Educ.

59(3), 974–988 (2012)

2. Cuéllar, M.P., Pegalajar, M.C.: Design and implementation of intelligent systems with LEGO

Mindstorms for undergraduate computer engineers. Comput. Appl. Eng. Educ. 22(1), 153–166

(2014)

3. Diestel, R.: Graph Theory, Graduate texts in mathematics, vol. 173, 4th edn. Springer (2012)

4. Gonzalez, R., Woods, R.E., Eddins, S.: Digital Image Processing Using MATLAB. Prentice-

Hall, Inc. (2003)

5. Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Pearson Prentice Hall (2009)

6. Inanc, T., Dinh, H.: A low-cost autonomous mobile robotics experiment: control, vision, sonar,

and handy board. Comput. Appl. Eng. Educ. 20(2), 203–213 (2012)

7. Inc., T.M.: Matlab 2013b, Image Processing Toolbox. 3 Apple Hill Drive, Natick (2013). http://

www.mathworks.com/help/images/

8. Jara, C.A., Candelas, F.A., Puente, S.T., Torres, F.: Hands-on experiences of undergraduate

students in automatics and robotics using a virtual and remote laboratory. Comput. Educ. 57(4),

2451–2461 (2011)

9. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot.

Res. 5(1), 90–98 (1986)

10. Kulich, M., Chudoba, J., Košnar, K., Krajník, T., Faigl, J., Přeučil, L.: SyRoTek - distance

teaching of mobile robotics. IEEE Trans. Educ. 56(1), 18–23 (2013)

11. Siegwart, R., Nourbakhsh, I.: Introduction to Autonomous Mobile Robots. Bradford Book

(2004)

12. Škrabánek, P.: Time efficient graph version of the A* algorithm optimized for matlab. In: Pro-

ceedings of Mendel 2014: 20th International Conference on Soft Computing, pp. 299–304

(2014)

http://www.mathworks.com/help/images/
http://www.mathworks.com/help/images/

Neural Network Approach to Image
Steganography Techniques

Robert Jarušek, Eva Volna and Martin Kotyrba

Abstract Steganography is one of the methods used for the hidden exchange of
information and it can be defined as the study of invisible communication that
usually deals with the ways of hiding the existence of the communicated message.
In this way, if successfully it is achieved, the message does not attract attention
from eavesdroppers and attackers. Using steganography, information can be hidden
in different embedding mediums, known as carriers. These carriers can be images,
audio files, video files, and text files. The focus in this paper is on the use of an
image file as a carrier. The proposed approach is based on backpropagation neural
networks. The essential part of this article aims to verify the proposed approach in
an experimental study. Further, contemporary method of application and results are
presented in this paper as an example.

Keywords Steganography ⋅ Steganalysis ⋅ Blum blum shub generator ⋅
Discrete fourier transform (DFT) ⋅ Fast fourier transform (FFT) ⋅ Backpropa-
gation neural networks

R. Jarušek ⋅ E. Volna (✉) ⋅ M. Kotyrba
Department of Informatics and Computers, University of Ostrava, 30 Dubna 22,
70103 Ostrava, Czech Republic
e-mail: eva.volna@osu.cz

R. Jarušek
e-mail: robert.jarusek@osu.cz

M. Kotyrba
e-mail: martin.kotyrba@osu.cz

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_26

317

1 Neural Network Classification Techniques Used
on Steganography

Cryptography method is used to hide secret data by scrambling so that it is
unreadable, but this method does not assure security and robustness as the hacker can
easily guess that there is a confidential message passing on from the source to the
destination [11]. Steganography is known as “covered writing” and the idea of
steganography is hiding the existence of a message [2]. The cover carriers includes
(images, audio, video, text, or other digitally representative code) which will hold the
hidden information. Amessage is the information which is being hidden and it be can
be a plaintext, cipher text, images, or anything that can be embedded into a bit stream.
Cover image is called as carrier image and is the original image in which the secret
data i.e., the payload has embedded. The image that is obtained after embedding the
payload into the cover image is called as stego image. The skill of observing the
invisible embedded messages in images, audio, video, text as multimedia and pro-
tocols called steganalysis. An efficient steganalysis method should determine the
existence of implanted messages and stego digital image and present some results
about the used steganographic algorithm [7]. Steganalysis can be categorized into
two groups: (a) static and (b) dynamic. Guesstimate some parameter(s) of the
embedded algorithm or the secret message is the target of dynamic steganalysis,
identifies the existence/non-existence of a secret message is the aim of static steg-
analysis. Static steganalysis: discovering the existence/non-existence of a concealed
message in a stego file and recognizing the stego embedded algorithm. Dynamic
steganalysis: guesstimating the implanted message length, position(s) of the con-
cealed message, the secret key used in implanting, some parameters of the stego
implanting algorithm and take out the concealed message.

Neural Network classification (NN): One kind of classification techniques is
called a neural network classifier. The important problem in a neural network is that
convergence is not fast. Practically, this is the most important restriction of neural
network applications, because data hiding method is not a linear method, if we only
employ linear classification technique to categorize images. The neural network has
an admirable facility to simulate any nonlinear correlation. Therefore, it has been
used to categorize images. Neural network draws on three levels: input level,
hidden level and output level. In [5], the authors presented actual features through
means of quality analysis from clear images and stego images, after that, applying
neural network approach as a separator to differentiate non-stego-images and
stego-images. Liul and his colleagues utilized backpropagation neural network to
approve their approach. The first phase is to learn and test neural network to acquire
network parameters. In spite these parameters, they could simulate the outcomes. In
neural network, they adjust a number of characteristics of the input layer. In [10],
the authors presented a novel technique based on neural network to get numerical
features of images to detect the essential concealed data. Shaohui and his colleagues
utilize backpropagation neural network to simulate and train images. This technique

318 R. Jarušek et al.

discovers statistically indicates after original images has been concealed message,
then utilizing the ability of estimation of neural network for demonstrating either an
image is non-stego or stego image. A blind image steganalysis scheme is proposed,
in which feature is consists of the numerical moments of characteristic functions of
the test image, the prediction-error image and their wavelet sub bands. The
approach of categorizer is another main factor in steganalysis. In [3], the authors
suggested a blind steganalysis method which depends on a universal neural network
(NN) approach and matches it to Stegdetect – a kind of tool that uses a linear
classification device. More neural network classification techniques used on steg-
analysis is shown in [6].

2 Theoretical Background

In order to show the propose approach dealing with steganography based on neural
networks, it is necessary to explain basic concepts, which are used in the following
text.

2.1 Fourier Transforms for Image Processing

The Fourier Transform is an important image processing tool which is used to
decompose an image into its sine and cosine components. The output of the
transformation represents the image in the Fourier or frequency domain, while the
input image is the spatial domain equivalent. In the Fourier domain image, each
point represents a particular frequency contained in the spatial domain image. The
Fourier Transform is used in a wide range of applications, such as image analysis,
image filtering, image reconstruction [12] and image compression [8].

The Discrete Fourier Transform (DFT) is the sampled Fourier Transform and
therefore does not contain all frequencies forming an image, but only a set of
samples which is large enough to fully describe the spatial domain image. The
number of frequencies corresponds to the number of pixels in the spatial domain
image, i.e. the image in the spatial and Fourier domain are of the same size. For a
square image of size N × N, the two-dimensional DFT is given by (1):

F k, lð Þ= ∑
N − 1

i=0
∑
N − 1

j=0
f i, jð Þe− i2π k ⋅ i

N + l ⋅ j
Nð Þ ð1Þ

where f(a,b) is the image in the spatial domain and the exponential term is the basis
function corresponding to each point F(k,l) in the Fourier space. The equation can
be interpreted as: the value of each point F(k,l) is obtained by multiplying the
spatial image with the corresponding base function and summing the result. The

Neural Network Approach to Image Steganography Techniques 319

basis functions are sine and cosine waves with increasing frequencies, i.e. F(0,0)
represents the DC-component of the image which corresponds to the average
brightness and F(N − 1,N − 1) represents the highest frequency.

In a similar way, the Fourier image can be re-transformed to the spatial domain.
The inverse Fourier transform is given by (2):

f a, bð Þ= 1
N2 ∑

N − 1

k=0
∑
N − 1

l=0
F k, lð Þe− i2π k ⋅ a

N + l ⋅ b
Nð Þ ð2Þ

To obtain the result for the above equations, a double sum has to be calculated
for each image point. However, because the Fourier Transform is separable, it can
be written as (3):

F k, lð Þ= 1
N

∑
N − 1

b=0
P k, bð Þe− i2πi ⋅ bN where P k, bð Þ= 1

N
∑
N − 1

a=0
f a, bð Þe− i2πk ⋅ aN ð3Þ

Using these two formulas, the spatial domain image is first transformed into an
intermediate image using N one-dimensional Fourier Transforms. This intermediate
image is then transformed into the final image, again using N one-dimensional
Fourier Transforms. Expressing the two-dimensional Fourier Transform in terms of a
series of 2N one-dimensional transforms decreases the number of required compu-
tations. Even with these computational savings, the ordinary one-dimensional DFT
has N2 complexity. This can be reduced to N log2 N, if we employ the Fast Fourier
Transform (FFT) to compute the one-dimensional DFTs. This is a significant
improvement, in particular for large images. There are various forms of the FFT and
most of them restrict the size of the input image that may be transformed, often to
N = 2n where n is an integer. The mathematical details are well described in [8].

The Fourier Transform produces a complex number valued output image which
can be displayed with two images, either with the real and imaginary part or with
magnitude and phase. In image processing, often only the magnitude of the Fourier
Transform is displayed, as it contains most of the information of the geometric
structure of the spatial domain image. However, if we want to re-transform the
Fourier image into the correct spatial domain after some processing in the frequency
domain, we must make sure to preserve both magnitude and phase of the Fourier
image.

2.2 Blum Blum Shub Generator

Blum Blum Shub generator (BBS) is a pseudorandom number generator [1].

320 R. Jarušek et al.

DEFINITION [x2 mod N GENERATOR]: Let N = {integers N | N = P*Q, such
that P, Q are equal length (|P| = |Q|) distinct primes 3 mod 4} be the set of
parameter values. For N ∈ N, let XN = x2 mod N x∈Z*

N

��� �
be the quadratic residues

mod N. Let X =disjoint ⋃N ∈NXN be the seed domain.

An interesting characteristic of this generator is that we can directly calculate any
of the x values, i.e. (4):

xi = x 2i mod P− 1ð Þ* Q− 1ð Þð Þð Þð Þ
0

� �
modNð Þ ð4Þ

This means that in applications where many keys are generated in this fashion, it
is not necessary to save them all. Each key can be effectively indexed and recovered
from that small index and the initial x and N.

2.3 Backpropagation Neural Network

Backpropagation algorithm belongs to a group called “gradient descent methods”.
An intuitive definition is that such an algorithm searches for the global minimum of
the weight landscape by descending downhill in the most precipitous direction. The
initial position is set at random selecting the weights of the network from some
range (typically from −1 to 1 or from 0 to 1). Considering the different points, it is
clear, that backpropagation using a fully connected neural network is not a deter-
ministic algorithm. The basic backpropagation algorithm can be summed up in the
following equation (the delta rule) for the change to the weight wji from node i to
node j (5):

weight learning local input signal

change rate gradient to node j

Δwji = η × δj × yj

ð5Þ

where the local gradient δj is defined as follows [9]:

1. If node j is an output node, then δj is the product of φ′(vj) and the error signal ej,
where φ(_) is the logistic function and vj is the total input to node j (i.e. Σi wjiyi),
and ej is the error signal for node j (i.e. the difference between the desired output
and the actual output);

2. If node j is a hidden node, then δj is the product of φ′(vj) and the weighted sum
of the δ′s computed for the nodes in the next hidden or output layer that are
connected to node j.

The actual formula is δj = φ′(vj) & Sigmak δkwkj where k ranges over those nodes
for which wkj is non-zero (i.e. nodes k that actually have connections from

Neural Network Approach to Image Steganography Techniques 321

node j. The δk values have already been computed as they are in the output layer (or
a layer closer to the output layer than node j).

3 The Proposed Steganographic System

The proposed steganographic system is shown in Fig. 1. It works in the following
steps:

1. Let us have an image whose size corresponds to the squares of 2 in pixels (i.e.
2n × 2n, where n is an integer greater than zero). The size of this is important so
that we could use 2D Fast Fourier transform (FFT) without further necessary
adjustments.

2. If we have such an image, we convert it into grey scale, i.e. we extract the
brightness components. We receive the corresponding values of the range 0 to
255 and transform them to <0,1> scale.

3. Then we analyse the image with Fast Fourier Transform (FFT). On the FFT
image, the low frequency area is in the center of the image and the high
frequency areas are at the corners of the image. The result of a Fourier trans-
form is complex - it has both real and imaginary parts. We calculate the
magnitude of the complex number z= a+ bi, which equals a complex number’s
absolute value zj j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b2

p
.

4. We can see such an image as a result of applying FFT (Fig. 2), where the
second quadrant is centrally symmetric with the fourth quadrant and the first
quadrant is centrally symmetric with the third quadrant. Therefore, we will
process data only from the first and the second quadrant.

Color

image of

2n 2n

pixels

B&W

image

image

analysis

using FFT

plot

magnitude

s

(Fig. 2)

extract

weight

initializing

configuration

perform

inverse

2D FFT

transform the

modified abso-

lute values back

to complex

numbers

redistribute

weight

values back

to FFT

image

neural net-

work adapta-

tion

(modified BP

rule)

create a

training set

add colour

components

to the modi-

fied image

Fig. 1 The proposed steganographic system

322 R. Jarušek et al.

5. We extract a weight initialising configuration of (unlearned) neural network
using the proposed algorithm from the resulting data.

6. We adapt the resulting neural network according to the training set using a
modified backpropagation rule.

7. After the adaptation, weight values are redistributed back into the FFT image
using the proposed algorithm.

8. Modified absolute values are transformed back into the real and imaginary
components of the complex numbers.

9. Then we perform the inverse 2D FFT.
10. We add color components into a modified image.

3.1 The Training Set

The proposed steganographic system based on neural networks has used the
training set, which is created in the following way [4].

• BBS generator has worked with the following parameters, see Eq. (4):
P = 1017, Q = 1907, and N = 1939419 (i.e. N = P * Q).

• The seed x0 = 123.
• The “embedded message” was “SECRET”.

Based on the key which is represented by the chain corresponding with the seed
x0, series of random numbers xi is generated according to the formula (4). We have
used the random generator BBS with specific initialization of variables (6).

xi = 123 2i mod 1017− 1ð Þ* 1907− 1ð Þð Þð Þð Þ
� �

mod 1017*1097ð Þð Þ ð6Þ

Next, six consecutive values (e.g. six input vectors) were normalized to the
interval ⟨0, 1⟩. A series of these values was used as input vectors of a given training

)c()b()a(

Fig. 2 (a) Colour image. (b) B&W image. (c) FFT application to image (Colour figure online)

Neural Network Approach to Image Steganography Techniques 323

set representing single character of a given embedded message “SECRET”. The
corresponding output vectors are created by the 7-bit ASCII representation of each
character. Therefore the training set of each neural network includes only one
pattern, e.g. each neural network is learned only on one character of an embedded
message. In other words, we have used so many neural networks how many
characters are included in the message. In our experimental study, we used six
backpropagatin neural networks with topology 1–4–7 (e.g. one input unit, 4 hidden
units and 7 output units). Each single line in Table 1 represents one training pattern
for a given neural network.

3.2 The Modified Backpropagation Rule

The backpropagation network has worked with the following parameters: activation
function was binary sigmoid with slope parameter λ = 1, learning rate α = 0.05–0.1,
a parameter “momentum” was set at 0.

The modified backpropagation rule works in the following steps. The weight
initializing configuration of each used neural network is extracted from FFT so that the
weight value is extracted from each row of a 2D matrix according to the formula (7).

wi = ∑
2n

j=0
zj, ð7Þ

where n is an integer greater than zero corresponding to the size of an image zj is the
magnitude of the j complex number. These pixels are chosen sequentially (other
approaches will be a subject of our further research). In this way, we receive weight
initializing configuration of all neural networks. It means that we extract 43
weight values (e.g. 4 weight values between the input and the hidden layer, 28
weight values between the hidden and the output layer, and 11 biases associated
with hidden and output units) for each neural network, because the used topology is
1–4–7. Since we need 6 neural networks (for each character of the embedded
message one network), the whole number of initial weights is 258 values.

Table 1 Training patterns

Training patterns Input x0 = 123 Embedded message OUTPUT ASCII

1 0.007801 S (1,0,1,0,0,1,1)
2 0.018149 E (1,0,0,0,1,0,1)
3 0.835446 C (1,0,0,0,0,1,1)
4 0.902752 R (1,0,1,0,0,1,0)
5 0.301604 E (1,0,0,0,1,0,1)
6 0.481282 T (1,0,1,0,1,0,0)

324 R. Jarušek et al.

We adapt all neural networks with the received weight configurations according
to the training set using a modified backpropagation rule. The own adaptation of
each neural network runs by backpropagation rule, which was modified in following
way. The proposed algorithm works in two phases. The control phase follows after
each adaptation step. In the course of the adaptation, there is monitored whether
output neuron values corresponding to desired outputs. If the actual value of the
output neuron is larger (smaller) than the threshold b, then the value of the corre-
sponding output neuron holds 1 (0). In our case, the threshold is set to b = 0.5. The
partial adaptation is performed so long as the term is satisfied for all neurons in the
output layer. After that the adaptation is completed. We are compelled to deal with
an optimization problem, where it is both necessary to adapt the whole training set
and to change weights minimally. Here, weight values represent the absolute values
of complex numbers in 2D FFT. Such a obtained configuration of neural network is
decomposed back into the FFT image according to the formula (8).

zji newð Þ= zji oldð Þwi newð Þ
wi oldð Þ , ð8Þ

where image zji is the magnitude of the j complex number (j = 1, …, 2n), wi(new) is
the i-ht weight value after adaptation and wi(old) is the initial i-ht weight value. In
our experimental study i = 1, …, 258.

3.3 Experimental Outcomes

Figures 3 and 4 show the same picture with and without an embedded message and
their histograms. How you can see in both figures, there are minimal differences in
their histograms. Figure 5 shows the difference between Figs. 3(a) and 4(a).

(a) (b)

Fig. 3 The picture without an embedded message (a), a histogram (b)

Neural Network Approach to Image Steganography Techniques 325

4 Conclusions

The focus in this paper is on the use of an image file as a carrier. The proposed
approach is based on backpropagation neural networks. The essential part of this
article aims to verify the proposed approach in an experimental study. In contrast
with standard steganography methods, which try to hide information into the image
regardless of the data representation, the utilization of artificial neural networks for
hiding information is promising especially because the neural network intentionally
uses features of the image (a cover medium) for its adaptation. The stego images
that are produced by using such data hiding techniques are inherently robust against
main geometrical attacks.

Our further work will include the proposal of another way of selecting pixels in
images, which will be applicable for the representation of weight values assigned to
the neural network. These pixels can be generated as the continuing use of Blum
Blum Shub generators operating according to a known secret key or for example to
engage evolutionary techniques for their distribution. Another approach for our
future work could be some proposal of a solution, when an adaptation of neural
networks deals with an optimization problem, where it is both necessary to adapt
the whole training set and to change weights minimally.

(a) (b)

Fig. 4 The picture with an embedded message (a), a histogram (b)

(a) (b)

Fig. 5 The difference (a), a normalized difference (b)

326 R. Jarušek et al.

Acknowledgments The research described here has been financially supported by University of
Ostrava grant SGS17/PřF/2015. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not reflect the views of the sponsors.

References

1. Blum, L., Blum, M., Shub, M.A.: Simple unpredictable pseudo-random number generator.
SIAM J. Comput. 15(2), 364–383 (1986)

2. Dasgupta, K., Mandal, J.K., Dutta, P.: Hash based least significant bit technique for video
steganography (HLSB). Int. J. Secur. Priv. Trust Manage. 2(2) (2012)

3. Holoska, J., Oplatkova, Z., Zelinka, I., Senkerik, R.: Comparison between neural network
steganalysis and linear classification method stegdetect. In: 2010 Second International
Conference on Computational Intelligence, Modeling and Simulation (CIMSiM), vol. 10,
pp. 15–20 (2010)

4. Jarušek, R., Volná, E., Kotyrba, M.: Steganography based on neural networks (a preliminary
study). In: Proceedings of the 20th International Conference on Soft Computing, Mendel
2014, Brno, Czech Republic, pp. 223–228 (2014)

5. Liu, S., Yao, H., Gao, W.: Steganalysis based on wavelet texture analysis and neural network.
In: Fifth World Congress on Intelligent Control and Automation, 2004. WCICA 2004, vol. 5,
pp. 4066–4069 (2004)

6. Mohammadi, F.G., Abadeh, M.S.: A survey of data mining techniques for steganalysis. Recent
Advances in Steganography, pp. 1–25 (2012)

7. Nissar, A., Mir, A.H.: Classification of steganalysis techniques study. Digit. Signal Process. 20
(6), 1758–1770 (2010)

8. Schatzman, J.C.: Accuracy of the discrete Fourier transform and the fast Fourier transform.
SIAM J. Sci. Comput. 17, 1150–1166 (1996). doi:10.1137/s1064827593247023

9. Seung, S.: Multilayer perceptrons and backpropagation learning. 9.641 Lecture 4. 1–6. http://
hebb.mit.edu/courses/9.641/2002/lectures/lecture04.pdf (2002)

10. Shaohui, L., Hongxun, Y., Wen, G.: Neural network based steganalysis in still images. In:
Proceedings of the 2003 International Conference on Multimedia and Expo, ICME’03, vol. 20,
pp. 509–512 (2003)

11. Vani, G.B., Prasad, E.V.: Scalable and highly secured image steganography based on Hopfield
chaotic neural network and wavelet transforms. Int. J. Comput. Sci. Issues 10(3), 1 (2013)

12. Starha, P., Martisek, D., Matousek, R.: Numerical methods of object reconstruction using the
method of moments. In: Proceedings of 20th International Conference on Soft Computing—
Mendel 2014. Mendel series vol. 2014, pp. 241–248, Brno, ISSN: 1803-3814 (2014)

Neural Network Approach to Image Steganography Techniques 327

http://dx.doi.org/10.1137/s1064827593247023
http://hebb.mit.edu/courses/9.641/2002/lectures/lecture04.pdf
http://hebb.mit.edu/courses/9.641/2002/lectures/lecture04.pdf

Rough-Fuzzy Collaborative Multi-level
Image Thresholding: A Differential Evolution
Approach

Sujoy Paul, Shounak Datta and Swagatam Das

Abstract In this article, a granular computing based multi-level gray image

thresholding algorithm is presented. An image is divided into spatial blocks called

granules, and the classes of gray levels are represented using a fuzzy-rough collab-

orative approach, where the measure of roughness of a rough set is also modified

from the classical definition of rough sets. This measure for each rough set is mini-

mized simultaneously to obtain the optimal thresholds. Tchebycheff decomposition

approach is employed to transform this multi-objective optimization problem to a

single objective optimization problem. Differential Evolution (DE), one of the most

efficient evolutionary optimizers of current interest, is used to optimize this single

objective function, thus reducing the execution time. Superiority of the proposed

method is presented by comparing it with some popular image thresholding tech-

niques. MSSIM index and Probabilistic Rand Index (PRI) are used for quantitative

comparison on the Berkley Image Segmentation Data Set (BSDS300).

Keywords Rough sets ⋅ Fuzzy sets ⋅Multi-level image thresholding ⋅ Fuzzy image

thresholding ⋅ Differential evolution ⋅ Tchebycheff approach

1 Introduction

The goal of segmentation is to simplify or change the representation of an image

into something that is more meaningful and easier to analyze for several computer

vision and pattern recognition applications. Over past years popular segmentation

approaches included edge-based methods [13], region-based methods [6], local [4],

S. Paul

Department of Electronics and Telecommunication Engineering,

Jadavpur University, Kolkata 700032, India

S. Datta ⋅ S. Das (✉)
Electronics and Communication Sciences Unit, Indian Statistical Institute,

Kolkata 700108, India

e-mail: swagatamdas19@yahoo.co.in

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_27

329

330 S. Paul et al.

global threshold techniques, and connectivity-preserving relaxation methods [10].

Among global thresholding techniques, entropy based methods like Shannon entropy

[3, 25], Renyi entropy [22], Tsalli entropy [23].

Otsu [18] developed a non-parametric multi-level image segmentation algorithm,

in which the intra class variance of gray levels was minimized to obtain the thresh-

olds. Tizhoosh et al. [29] proposed a fuzzy type II based image segmentation method,

in which they obtained the optimal thresholds by maximization of a measure named

ultra-fuzziness, associated with type II fuzzy sets. Global multi-level thresholding

by unsupervised clustering techniques like K-means or Fuzzy C-means (FCM) [34]

also needs mention. Selection of threshold based on restricted equivalence function

and maximization of measures of similarity has been proposed in [5]. Some recently

proposed image thresholding techniques, which need mention are [2, 33].

Rough set theory [20] has become a popular mathematical framework for granular

computing [1]. The concepts of rough sets coupled with granulation of an image

have been used for image thresholding by [19]. In their work, crisp values are used

for rough set approximations and the rough entropy of the rough sets is maximized to

obtain the optimal thresholds. However, their algorithm lacked an automated process

of choosing the granule size and they provided segmentation results only on a few

images. Also, the algorithm was not generalized for multi-level thresholding.

In this paper, a global thresholding technique is proposed, based on rough sets.

Instead of crisp representation, fuzzy representation is used for lower approximations

of a rough set. Thereafter, the fuzzy roughness measures formulated for these sets

are simultaneously minimized for optimal selection of thresholds, which is a Multi-

objective Optimization Problem (MOP). Unlike [19], we have avoided maximization

of rough entropy to solve this problem due to its drawback, which is explained in

Sect. 4.3. Instead, we have used Tchebycheff approach [16, 17] to convert this MOP

to a Single-objective Optimization Problem (SOP), which is solved using a global

optimizer, Differential Evolution (DE) [7, 26]. In our algorithm, by incorporation of

fuzziness in the representation of lower approximation of the rough sets, the granule

size may be kept constant as discussed in Sect. 4.1. By using DE as an optimizer, the

proposed method becomes computationally efficient and this is illustrated through

comparisons with two other global optimization methods in Sect. 4.4.

2 Image as Rough Sets with Fuzzy Membership Values:
Proposed Method

A Rough set [20, 21] provides the formal approximation of a crisp set in terms of a

pair of sets called the lower and upper approximations of the original set also known

as the B-lower and B-upper approximations and represented as a tuple < BX,BX >.

Extensive description and survey on rough sets as well as fuzzy-rough sets may be

found in [11, 14, 30].

Rough-Fuzzy Collaborative Multi-level Image Thresholding . . . 331

In simple terms, in crisp representation of a rough set, if the features of an element

are a subset of the properties of the object (or target set) which is to be represented,

then it is included in the lower approximation set, else excluded. In such a crisp

scheme, there is a high probability of potentially feasible elements to be discarded

from the lower approximation set. To overcome this problem, a fuzzy membership

value (between 0 and 1) may be used to denote the degree by which this element

belongs to the lower approximation. On the other hand, the upper approximation

set contains all those elements, whose fuzzy membership values are above zero, i.e.

even if a single property of the object which is to be approximated matches with

a property of the element. Figure 1 illustrates this concept using nomenclatures as

discussed next. This concept is applied to extract objects from the background in an

image.

Consider an image I consisting of a collection of pixels having levels in [0,L−1].
Let I be partitioned into non-overlapping windows of sizem× n. Each window can be

considered as a granule. Information within these granules is the basic element that

approximates the object or background of an image. These granules help to represent

the image as rough sets. Let Gi be the set of unique gray levels of pixels present in

the ith granule. If T be the threshold that divides the gray scale into two sets of object

(OT) and background (BT), then,

OT = {0, 1, 2,T − 1,T},BT = {T + 1,T + 2, .,L − 2,L − 1}

where L is the number of levels present in the image. These two sets form the target

set that should be approximated using granules to form the lower and upper approx-

imation sets.

Fig. 1 Rough set

representation of an object

having fuzzy membership

values

The lower and upper approximation sets may be defined as follows:

Lower approximation for object: 𝜇OT
= {𝜇i(d) ∶ d = |OT ∩ Gi|}

Lower approximation for background: 𝜇BT = {𝜇i(d) ∶ d = |BT ∩ Gi|}

332 S. Paul et al.

Upper approximation for object: 𝜇OT
= {xi ∶ xi = 1, if OT ∩ Gi ≠ ∅, xi =

0, otherwise}
Upper approximation for background: 𝜇BT

= {xi ∶ xi = 1, if BT ∩ Gi ≠ ∅, xi =
0, otherwise}
where 𝜇i(d) denote a linear fuzzy membership function as shown in Fig. 2 and i=1

to NG, NG being the number of granules. Let us denote the fuzzy-roughness of the

object by ROT
and that of the background by RBT . They may be defined as:

ROT
= 1 −

∑
𝜇OT

∑
𝜇OT

and RBT = 1 −

∑
𝜇BT

∑
𝜇BT

(1)

It should be noted that the threshold (T) may be s.t.
∑

𝜇OT
=
∑

𝜇OT
= 0, leading to a

0∕0 form of (1). In such cases, ROT
is considered to be 1. This is applicable for RBT as

well. Now, to obtain a good approximation of the image as object and background,

the fuzzy membership values of the granules present in the lower approximation,

should approach unity. Thus, the roughness for each rough set should be minimized

simultaneously by varying the thresholds. Hence, in other words, the optimal thresh-

old T∗
may be expressed as,

T∗ = min
T

[ROT
,RBT] (2)

Fig. 2 Linear fuzzy

membership function for

lower approximation

1 |G_i|
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cardinality (d)

F
uz

zy
 M

em
be

rs
hi

p
V

al
ue

µ i(d
)

The idea for bi-level thresholding presented can be extended to multi-level thresh-

olding. For n-thresholds T = {T1,T2 …Tn}, the gray scale will be divided into

n + 1 regions, given by the set S = {S1, S2 … Sn+1}, where S1 = {0, 1, 2…T1},

S2 = {T1 + 1,T1 + 2, ,T2}… Sn+1 = {Tn + 1,Tn + 2, ,L − 1}. These sets form the

different target sets to be approximated by using the granules of the image to con-

stitute the lower and upper approximation sets. Let us define the fuzzy membership

values to the granules for lower approximations of set Sk as:

𝜇Sk = {𝜇i(d) ∶ d = |Sk ∩ Gi|}

Rough-Fuzzy Collaborative Multi-level Image Thresholding . . . 333

Membership values assigned to the granules for upper approximation for set Sk are

defined as:

𝜇Sk
= {xi ∶ xi = 1, if Sk ∩ Gi ≠ ∅, xi = 0, otherwise}

where k ∈ [1, n+ 1], 𝜇i(d) is a fuzzy membership function as shown in Fig. 2, i = 1
to NG, NG denoting the number of granules. Let us define the fuzzy-roughness for

the set S as:

RSk = 1 −

∑
𝜇Sk

∑
𝜇Sk

(3)

(3) where k ∈ [1, n + 1]. Now in order to get a good approximation of the image as

rough sets, the roughnesses (RSk) should be minimized simultaneously. This may be

achieved by varying the threshold vector T. Hence, the optimal threshold vector T∗

may be expressed as,

T∗ = min
T

[RS1 ,RS2 …RSn+1] (4)

It may be noted that the granules, which approximate the target sets, helps involving

the information about the spatial variations of gray levels of pixels in an image.

Equation 4 is a Multi-objective Optimization Problem (MOP). It is converted to a

single objective by Tchebycheff Approach as discussed next.

3 Optimization

3.1 Tchebycheff Approach

Tchebycheff introduced a decomposition method [16, 17] that converts the problem

of approximating the Pareto front of an MOP into a set of SOPs formed by applying

varying weights to the objective functions. In the present context, equal weights are

applied to all the roughness. The following eqn., known as the augmented weighted

Tchebycheff approach [16], converts the MOP to a SOP.

g(T) = max{Wk ∗ |RSk (T) − z∗k |} + 𝜌

m∑

i=1
(RSi(T) − z∗i)

T∗ = min
T

g(T) (5)

where k ∈ 1, 2,m, m being the number of objectives. z∗ = [z∗1, z
∗
2 … , z∗m] is the ideal

point s.t. z∗k = min{RSk (T)} for all possible decision values and Wk is the weight

value which is considered to be Wk = 1∕m in the present context. g(T) is required to

be minimized in order to get an optimal set of thresholds. 𝜌 is generally considered

334 S. Paul et al.

to have a low value such that it do not overshadow the first term of the equation [27].

𝜌 = 0.01 have been found to produce good appropriate results in the current context,

and this value have been used for all results presented in this article.

3.2 Differential Evolution

DE [7, 26] is a population-based evolutionary algorithm for continuous parameter

spaces. DE starts with a set of candidate solutions sampled from a uniform prob-

ability distribution over the feasible search volume. These candidate solutions then

undergoes Mutation and Crossover on an iterative basis, which evolves them to attain

optima. The iterative process comes to an end on reaching the termination criterion,

which in this article has been considered to be the number of objective function

(g(T)) evaluation. More details regarding DE may be found at [7]. Figure 3 depicts

the computation process of the objective value which is optimized by DE.

4 Experimental Results

The images used in this article are from Berkeley Segmentation Dataset [36] (apart

from a few). The proposed algorithm is compared with the following:

Fig. 3 A flowchart of the objective value computation procedure

– Algorithm 1 (for bi-level) and 4 (multi-level) of [5] (will be referred as A14)

– Otsu’s method ([18], [35])

– Algorithm 3 (for bi-level) and 5 (multi-level) of [5] (will be referred as A35)

– Shannon Entropy (SE) ([3], [28]).

Rough-Fuzzy Collaborative Multi-level Image Thresholding . . . 335

4.1 Choice of Granule Size

Choice of granule size is an important factor in the proposed algorithm. In case of

very large granule, the variation of the pixel gray levels within these granules may be

such that, a high percentage of the granule gray levels may lie in the boundary regions

between the two threshold levels. So the purpose of granulation and representation

of an image, comprising of granules having pixels of almost same gray values would

fail leading to unsuccessful thresholding. Segmentation of the images with varying

granule size led to an observation that the segmented images produced best results

and remained almost insensitive to the change in granule size roughly from 5 × 5 to

less than 15 × 15.

4.2 Visual and Quantitative Comparisons

Visual comparison for bi-level thresholding is presented in Figs. 4, 5 and 6. It may be

observed that the proposed algorithm detects the letter T of Fig. 4a correctly, which

is almost a failure for the other methods. In Fig. 5b, the mushroom is well segmented

from the background, which is not achieved by the other algorithms. Similar expla-

nations may be given for other images. Quantitative comparison is performed by

using the Mean Structural Similarity (MSSIM) index [32]. Comparison is done for

300 images of the BSDS300 database and the success percentage plots for 1, 2, and 3

thresholds is in Fig. 7, which indicate the proposed Rough-Fuzzy scheme to produce

good results. A “success” of a segmented image of a particular original image for a

particular level of thresholding means that the MSSIM value for that segmentation

is best than the other algorithms.

(a) Original (b) Proposed (c) Otsu (d) SE (e) A14 (f) A35

(g) Original (h) Proposed (i) Otsu (j) SE (k) A14 (l) A35

Fig. 4 Visual Comparison of thresholded images for bi-level thresholding

Probabilistic Rand Index (PRI) [31] is used to quantitatively compare the algo-

rithms with respect to the images segmented by human subjects. It counts the fraction

336 S. Paul et al.

(a) Original (b) Proposed (c) Otsu (d) SE (e) A14 (f) A35

(g) Original (h) Proposed (i) Otsu (j) SE (k) A14 (l) A35

Fig. 5 Visual Comparison of thresholded images for tri-level thresholding

(a) Original (b) Proposed (c) Otsu (d) SE (e) A14 (f) A35

(g) Original (h) Proposed (i) Otsu (j) SE (k) A14 (l) A35

Fig. 6 Visual Comparison of thresholded images for 4-level thresholding

Fig. 7 Comparison using

MSSIM values of 300

images in the dataset (in %)

1 2 3
0

5

10

15

20

25

30

35

40

45

50

55

Number of Thresholds

Su
cc

es
s

Pe
rc

en
ta

ge
(C

om
pa

re
d

by
 M

SS
IM

)

Rough−Fuzzy Otsu Shannon A14 A35

Rough-Fuzzy Collaborative Multi-level Image Thresholding . . . 337

of pairs of pixels whose labels are consistent between the human segmentation and

the computed segmentation. An average over the five PRI values corresponding to

5 human segmented images for each test image is taken for comparison. Figure 11

presents an example of human segmentations along with images segmented by other

algorithms. The success percentage with respect to the PRI measure over 300 images

of BSDS300 is shown in Fig. 8.

Fig. 8 Comparison of PRI

values using 300 images of

the dataset (in %)

1 2 3
0

10

20

30

40

50

Number of Thresholds

Su
cc

es
s

Pe
rc

en
ta

ge
(C

om
pa

re
d

by
 P

R
I)

Rough−Fuzzy Shannon Otsu A14 A35

4.3 Advantage of Tchebycheff Approach

Pal et al. [19] defined a measure called rough entropy (for bi-level), which if maxi-

mized, minimizes the roughness, in the following way:

RET = − e
2
[ROT

ln(ROT
) + RET ln(RET)] (6)

Fig. 9 Rough entropy using

gray levels (Darker means

Higher Entropy)

However, the process of optimizing the rough entropy may fail in some cases.

For example, the ideal requirement is to have ROT
= RBT = 0, but RET reaches a

maximum of 1 when ROT
= RBT = 1∕e. This is illustrated in Fig. 9 where point

A has lesser entropy and roughness measures than point B and C. The weighted

338 S. Paul et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Roughness 1

R
o

u
g

h
n

e
s
s
 2

Roughness for Thresholds=0−255

Tchebycheff Method

Rough Entropy Method

Roughness1=Roughness2 Plot

(a) Roughness Plot

(b) Original

(c) RE (d) TCB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Roughness 1

R
o

u
g

h
n

e
s
s
 2

Roughness for Thresholds=0−255

Tchebycheff Method

Rough Entropy Method

Roughness1=Roughness2 Plot

(e) Roughness Plot

(f) Original

(g) RE (h) TCB

Fig. 10 Comparison of Rough Entropy (RE) and Tchebycheff (TCB) approach (i.e. the proposed

method) for bi-level thresholding

Tchebycheff method overcomes this problem. Some examples for illustration of this

fact are given in Fig. 10. In Fig. 10e it can be seen that optimal point determined by

Rough-Entropy maximization lies far away from the origin than the point optimized

by modified Tchebycheff method. In Fig. 10a, it can be seen that the Tchebycheff

method minimizes the object background to a greater extent than the Rough-Entropy

method.

4.4 Advantage of Using Differential Evolution

DE is a powerful evolutionary optimizer. Recently a convergence proof of this algo-

rithm [12] has been reported under minor regularity assumptions. As the dimen-

sion of the search space (i.e. number of thresholds) increases linearly, the number of

objective function evaluations (and hence the execution time) taken increases almost

exponentially for exhaustive search, but almost linearly in case of DE. Some other

well-known global optimization techniques like Particle Swarm Optimization (PSO)

[15] and a real coded Genetic Algorithm (GA) [8] may also be used to optimize the

Rough-Fuzzy Collaborative Multi-level Image Thresholding . . . 339

Table 1 Average computational time (in second)

Number of

thresholds

DE PSO GA Exhaustive search

1 0.1727 0.1880 0.4864 0.0688
2 0.3055 0.3992 1.1870 0.827

3 0.5018 0.6445 2.1472 3.0435

4 0.7535 0.9530 3.4752 647.64

0 100 200 300 400
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Number of Fitness Function Evaluations

G
lo

ba
l F

itn
es

s V
al

ue

DE PSO GA

(a) n=1

0 200 400 600 800
0.175

0.18

0.185

0.19

0.195

Number of Fitness Function Evaluations

G
lo

ba
l F

itn
es

s V
al

ue

DE PSO GA

(b) n=2

0 200 400 600 800 1000 1200

0.15

0.16

0.17

0.18

0.19

0.2

Number of Fitness Function Evaluations

G
lo

ba
l F

itn
es

s V
al

ue

DE PSO GA

(c) n=3

Fig. 11 Examples of convergence plots for 1,2,3 thresholds

proposed objective function of Eq. (5), under homogeneous experimental conditions.

Table 1 presents a comparison w.r.t. computational time (averaged over 300 images

of [36]) with other optimizers. Examples of the convergence plots of these algo-

rithms are provided in Fig. 11 for a single image. It may be observed that DE not

only converges faster, but also attains a better optimal value.

5 Conclusion

On the basis of image granules, a rough-fuzzy scheme is introduced for image thresh-

olding, which uses fuzzy membership values for lower approximation of the rough

sets. Tchebycheff approach is used to transform the problem of simultaneous rough-

ness minimization from a multi-objective to a single objective problem. The advan-

tage of this method over rough entropy is shown by mathematical reasoning and also

with some examples. Along with bi-level segmentation, we have extended the con-

cept to multi-level image thresholding. The superiority of this algorithm is shown

with respect to some popular image segmentation algorithms. Usage of Differential

Evolution, for solving the single objective problem, keeps the computational time

low to a considerable extent.

340 S. Paul et al.

References

1. Bargiela, A., and Pedrycz, W.: Granular Computing - An Introduction. Kluwer Academic Pub-

lishers (2003)

2. Beauchemin, M.: Image thresholding based on semivariance. Pattern Recogn. Lett. 34(5), 456–

462 (2013)

3. Benzid, R., Arar, D., Bentoumi, M.: A fast technique for gray level image thresholding and

quantization based on the entropy maximization. In: 5th International Multi-Conference on

Systems, Signals and Devices, pp. 1–4 (2008)

4. Bourjandi, M.: Image segmentation using thresholding by local fuzzy entropy-based competi-

tive fuzzy edge detection. In: 2nd International Conference on Computer and Electrical Engi-

neering, vol 2, pp. 298–301 (2009)

5. Bustince, H., Barrenechea, E., Pagola, M.: Image thresholding using restricted equivalence

functions and maximizing the measures of similarity. Fuzzy Sets Syst. Elsevier 158, 496–516

(2007)

6. Chen, G., Hu, T., Guo, X., Meng, X.: A fast region-based image segmentation based on least

square method. IEEE Intl. Conf. Syst. Man Cybern. 972–977 (2009)

7. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans.

Evol. Comput. 15(1), 4–31 (2011)

8. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-

parameter optimization. Evo. Comp. 10(4), 371–395 (2002)

9. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. Intell. Decis. Support Theor.

Decis. Libr. 11, 203–232 (1992)

10. Eriksson, A., Barr, O., Astrom, K.: Image segmentation using minimal graph cuts. Intl. J. Eng.

Res. Technol. (IJERT) 1(6) (2012)

11. Feng, F.: Generalized rough fuzzy sets based on soft sets. In:. International Workshop on Intel-

ligence Systems and Applications, pp. 1–4 (2009)

12. Ghosh, S., Das, S., Vasilakos, A.V., Suresh, K.: On convergence of differential evolution over

a class of continuous functions with unique global optimum. IEEE Trans. SMC-B 42(1), 107–

124 (2012)

13. Hsiao, Y.T., Chuang, C.L., Jiang, J.A., Chien, C.C.: A contour based image segmentation algo-

rithm using morphological edge detection. IEEE Int. Conf. Syst. Man Cybern. 3, 2962–2967

(2005)

14. Hu, Q., Zhang, L., An, S., Zhang, D., Yu, D.: On robust fuzzy rough set models. IEEE Trans.

Fuzzy Syst. 20(4), 636–651 (2012)

15. Kennedy, J., Eberhat, R.: Particle swarm optimization. IEEE Int. Conf. Neural Netw. 4, 1942–

1948 (1995)

16. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.

Struct. Multidisc. Optim. 26, 369–395 (2004)

17. Miettinen, K.: Nonlinear Multi-objective Optimization. International Series in Operations

Research & Management Science, vol. 12. Springer, Norwell (1999)

18. Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man

Cybern. 9, 62–66 (1972)

19. Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction.

Pattern Recogn. Lett. 26, 2509–2517 (2005)

20. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Info. Sci. 177, 3–27 (2007)

21. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic,

Dordrecht (1991)

22. Sahoo, P.K., Arora, G.: A thresholding method based on two dimensional Renyis entropy.

Pattern Recogn. 37, 1149–1161 (2004)

23. Sarkar, S., Das, S., Paul, S., Polley, S., Burman, R., Chaudhuri, S.S.: Multi-level image seg-

mentation based on fuzzy - Tsallis entropy and differential evolution. IEEE Int. Conf. Fuzzy

Syst. 1–8 (2013)

Rough-Fuzzy Collaborative Multi-level Image Thresholding . . . 341

24. Sarkar, S., Das, S.: Multi-level image thresholding based on two-dimensional histogram and

maximum Tsallis entropy - a differential evolution approach. IEEE Trans. Image Process.

22(12), 4788–4797 (2013)

25. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379423

(1948)

26. Storn, R., Price, K.: Differential evolution A simple and efficient heuristic for global optimiza-

tion over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

27. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Application. Robert

E. Krieger Publishing, Malabar (1989)

28. Tadaki, K.T.: The Tsallis entropy and Shannon entropy of a universal probability. IEEE Inter-

national Symposium on Information Theory, pp. 2111–2115 (2008)

29. Tizhoosh, H.R.: Image thresholding using type II fuzzy sets. Pattern Recogn. 38, 2363–2372

(2008)

30. Tsang, E.C.C., Wang, C., Chen, C., Wu, C., Hu, Q.: Communication between information

systems using fuzzy rough sets. IEEE Trans. Fuzzy Syst. 21(3), 527–540 (2013)

31. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Towards objective evaluation of image segmen-

tation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)

32. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility

to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

33. Xiao, Y., Cao, Z., Yuan, J.: Entropic image thresholding based on GLGM histogram. Pattern

Recogn. Lett. 40, 47–55 (2014)

34. Xu, Y.: Image decomposition based ultrasound image segmentation by using fuzzy clustering.

IEEE Symp. Ind. Electron. Appl. 1, 6–10 (2009)

35. Xue, J.H., Zhang, Y.J.: Ridler and Calvards, Kittler and Illingworth’s and Otsu’s methods for

image thresholding. Pattern Recogn. Lett. 33(6), 793–797 (2012)

36. The Berkeley Segmentation Dataset and Benchmark. http://www.eecs.berkeley.edu/Research/

Projects/CS/vision/bsds/

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Fusion of 3D Model and Uncalibrated
Stereo Reconstruction

Jan Klecka and Karel Horak

Abstract Paper is focused on fusion of topological 3D model and color pictures of
the same scene. It is describing method designed for such fusion, based on regis-
tration of uncalibrated stereo reconstruction to 3D model. This registration removes
the reconstruction ambiguity, thereby makes possible acquiring projection matrices
of source cameras. Projection matrices are then used for mapping 3D model into
images and coloring its points, during this process has to be checked visibility to
separate points covered from camera viewpoint, which should not be colored. Real
data experiment has been realized and the results are presented at the end of the
paper.

Keywords Data fusion ⋅ Stereo reconstruction ⋅ Data registration

1 Introduction

Fusion of an uncolored 3D data and color images is a process which results into
creation of colored 3D model of the scene is interesting area for research today,
because many different 3D sensors have become publicly available in past few
years and data from this type of sensors may not contain enough information for
further processing or comfortable observing. Our research in this area is specified
on minimal a priory information solution. Examples of possible use of our method
can be more robust localization in SLAM algorithms or just an easy virtualization
of scene.

J. Klecka (✉) ⋅ K. Horak
Department of Control and Instrumentation, Brno University of Technology,
Brno 61600, Czech Republic
e-mail: klecka@feec.vutbr.cz

K. Horak
e-mail: horak@feec.vutbr.cz

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_28

343

Standard way to approach this problem of this type assumes fixed set camera-3D
sensor is available in order to calibration can be find before usage. The calibration is
usually acquired using easy-to-detect object, with well-defined size. The object is
placed, generally for a multiple times, in fields of view of both sensors from which
3D sensor coordinates system to camera coordinates system correspondences are
find. These correspondences are then used to express mathematic formula which
represent relations between their coordinates systems – the calibration. With this
knowledge any point from 3D sensor scan can be mapped into camera image.

2 Algorithm Outline

As proposed before, we wanted to develop method which lowers the standard ways
a priory information assumption, specifically the need of calibration. Our method
consist of three steps: Firstly the scene is reconstructed up to projective ambiguity
from picture pair. Secondly the uncalibrated reconstruction is registered to 3D scan
of the scene, which removes the ambiguity and allows to obtain projection matrices
of both pictures. Finally these matrices are used to projection points of 3D scan into
input pictures in order to acquire information about their color.

An experiment on real data has been performed to verify correctness of proposed
algorithm. The 3D model for the experiment consist of multiple scans of 2D laser
scanner SICK LMS 111 with measurement plane oriented vertically and rotated
around vertical axis in 65° range with 0.5° resolution. Pictures have been captured
by hand held camera (Fig. 1).

3 Uncalibrated Stereo Reconstruction

Every picture taken by any camera is a projection of in general 3D scene into a
plane, so it’s obvious that due to this mechanism is one dimension (usually called
depth) lost. Stereo reconstruction is process of recovering the information about lost
dimension from two pictures of the same scene, taken from slightly different

Fig. 1 Experiment input data: Hand-held camera images (left and center) 3D scan of scene (right)

344 J. Klecka and K. Horak

viewpoints. Principle of this method is based on premise that every point in image
can be present as a ray in the 3D space. So if projection of a 3D point can be
detected in two different images then its space position is found as an intersection of
their respective rays. However for a proper determination of position and orienta-
tion of a ray in space from image coordinates it is necessary to have calibrated
cameras. But, as shown in [1], even without knowledge of calibration, restraints of
epipolar geometry allows to obtain some reconstruction, nevertheless only up to
projective transformation ambiguity. This process consist of three steps: Firstly
must be computed fundamental matrix. Then it is necessary to find as much cor-
respondence points as possible – usually for this step is preferred to use disparity
map. Finally fundamental matrix is used to figure out pair of projection matrices
witch can be used to protectively ambiguous reconstruction of every point corre-
spondence through triangulation.

3.1 Fundamental Matrix

Fundamental matrix is the algebraic representation of the epipolar geometry [1]. If
x= λ xy1ð ÞT and x0 represent positions of corresponding points in homogenous
coordinates then fundamental matrix F for these two images will satisfy equation
for every correspondence:

x′
T
Fx= 0 ð1Þ

Important properties of this matrix are: F is rank two matrix with seven degrees
of freedom – is defined up to scale and detðFÞ=0, any point x in first image defines
on second image so-call epipolar line, on which correspondence to x can be found,
as l0 =Fx, all epipolar lines cross each other in one point called epipole e (or e0 in
second image).

Computing of fundamental matrix can be done by several ways. Our experiment
has been realized using following method: Firstly correspondence point has been
searched using SIFT [2] feature detector and descriptor. Then outliers in found
correspondence has been removed by RANSAC algorithm which periodically
compute F̂ using minimal seven point algorithm. And at last final F has been
computed by linear optimization algorithm using all inliers followed by zeroing
minimal singular value of linear criterion optimal matrix.

3.2 Disparity Map

A disparity map can be presented as result of very dense correspondence search,
usually so dense that disparity map has the same resolution as source images. If x

Fusion of 3D Model and Uncalibrated Stereo Reconstruction 345

and x0 again represent positions of corresponding points, then related point in
disparity map can be described as DðxÞ= x0 − x.

As mentioned before fundamental matrix constrains a correspondence for any x
to be found on epipolar line l0 and to make disparity map computation and repre-
sentation more simple it is usual to rectify input images so their epipolar lines will
become parallel to each other and to one of the axis (generally to the x axis). Then
data in disparity map can be scalar because it represents difference only in one
dimension.

To compute disparity map experiment data has been rectified and then semi
block matching algorithm described in [3] has been used. Rectified images and the
grayscale representation of resulting disparity map is presented in the Fig. 2.

3.3 Triangulation

Triangulation in stereo reconstruction can be presented as a process of searching
space point X from its projections in two different images. These projections can be
found as correspondence pair of image points x and x0.

x=PX x0 =P0X ð2Þ

Because true projection matrices are unknown in our case, we use any canonical
pair instead which fits to fundamental matrix, namely:

P= Ij0½ � P0 = ½e0�xF+ e0vTjλe0� � ð3Þ

where ½e0�x is skew symmetric matrix which satisfy ½e0�xa= e0 × a, v is arbitrary
vector and λ nonzero scalar. The experiment has been done with v= 0 and λ=1.

When projection matrices are defined, there is several way how to solve trian-
gulation in this task. The experiment has been done using linear homogenous
method:

Fig. 2 Rectified images (left and middle), disparity map (right)

346 J. Klecka and K. Horak

xp3T −p1T

yp3T −p2T

x0p03T −p01T

y0p03T −p01T

2

664

3

775X= 0 ð4Þ

where piT is row of P.

4 Data Registration

A purpose of data registration is to transform two data sets in such way that they
will become spatially consistent. In described algorithm we using this concept to
registration the uncalibrated stereo reconstruction to 3D model of reconstructed
scene because of the projective ambiguity is removed from such reconstruction. For
realization of this registration we decided to use idea of ICP (Iterative Closest Point)
algorithm described in [4]. However due to the fact that the ICP is a numerical
method a guess of the solution has to be done at first.

The initial guess H0 of searched projection transformation H has been got
through several handpick reconstruction to 3D model correspondences. Transfor-
mation is then derived from these correspondences using homogenous method of
least squares.

Then the found transformation is gradually getting precision by periodical
appliance of following algorithm: Firstly the closest point in 3D model is find for
every point of stereo reconstruction. Secondly some of the worst (the most distant)
closest points correspondences are rejected as outliers. Then from remaining cor-
respondences is randomly picked subset, because it turned out that full set of
correspondences inliers is usually too large for effective processing. Finally trans-
formation step Hi is calculated from correspondence subset and is added to so far
found transformation.

In our implementation, six correspondences have been handpicked for initial
guess calculation. For outliers removal 25 % of most distant correspondence has
been rejected. And 5000 samples has been randomly picked for transformation step
calculation from inliers (Fig. 3).

5 Coloring 3D Model

Registration stereo reconstruction to 3D model is informational equivalent of a
priory camera pair calibration, so relations between images and 3D model coor-
dinates systems are known now and the last problem, which we dealt in this section,
is how this knowledge can be used to merge information in images and 3D model.
However, because following approach is greatly dependent on format of 3D model

Fusion of 3D Model and Uncalibrated Stereo Reconstruction 347

it is multiple ways to solve this problem. We describe method of our implemen-
tation used in our experiment. This part of algorithm is dividable to three parts:
Firstly we acquire ‘true’ projection matrices. Secondly every point of 3D model is
check if it’s visible on images. And finally to every point which is visible at least in
one image is assigned color.

5.1 Projection Matrices

For proper explaining process of recovering ‘true’ projection matrices let us define:
canonical projection matrix pair P,P0 used to obtain uncalibrated reconstruction X
from images x, x0, projection transformation H acquired by registration part, ‘true’
stereo reconstruction Xt =HX and ‘true’ projection matrix pair Pt,P0

t.
Relation between ‘true’ and canonical projection matrices is then mathematically

defined as:

x=PtXt =PX
Xt =HX

�
Pt =PH− 1 ð5Þ

Similar equation can be derive for P0
t.

We verified correctness of acquired matrices by projecting every point of 3D
model into both images, thereby we can assigned color to this points by interpo-
lation and after that visually check alignment. One of this way colored model can be
seen in Fig. 4 – cause of illustration purposes presented model has been generated
from 10 times denser 3D model (obtained by linear interpolation).

Fig. 3 Registration after 15 iterations

348 J. Klecka and K. Horak

5.2 Visibility Check

Because 3D sensor and source camera of input images have generally different
fields of view, 3D model contains some points which should not be projected into
image. This points can be categorized into two groups: points which are projected
outside the borders of image and points which would be projected into image but
from camera viewpoint are covered behind some closer surface.

Dealing with first group is very easy – it is sufficient to check if coordinates of
projected point are inside image borders, but dealing with second group desire more
complex approach: Firstly surfaces have to be defined, because we had no infor-
mation which scanned points form surface we assumed that every neighboring
points creating surface. Then we created depth map by interpolating distance from
center of projection of projected 3D points into pixels of image. During this process
we segmenting points by checking if respective pixels aren’t occupied by closer
surface (Fig. 5).

5.3 Color Fusion

After visibility check 3D points can be classified into three groups: Points which are
not visible in any image, points which are visible only in one image and points
which are visible in both images. Dealing with first two groups is very strait
forward – to the first group is not assigned any color and to the second group is
assigned color from respective image. However, to the points from the last group
can be assigned color from both images. Generally it is possible to use this fact for
noise reduction through the use of appropriate combination colors from both

Fig. 4 Texturized 3D model using one image

Fusion of 3D Model and Uncalibrated Stereo Reconstruction 349

images. Because in our experiment we dealt with static scene we assigning to this
group mean from two respective colors. Results of this process can be seen in
Fig. 6.

6 Conclusion

In this paper we describe method for coloring 3D model without need of a priory
calibration. Main idea of our method lies in registration stereo reconstruction to
colored model. From experiments result we can see that method algorithm is in
general correct but alignment of data 3D profile and assigned texture is not perfect
(focus e.g. on the chair in Fig. 6). The misalignment is cause by imperfect regis-
tration and by nonlinear distortion of the image source camera, which is not
compensated in any step. Subject of our further research will be improvement of

Fig. 5 Depth maps of input images

Fig. 6 The resulting fusion
of input data

350 J. Klecka and K. Horak

registration part of algorithm, especially initial guess part, because for usefulness in
applications like e.g. SLAM should this part be automated.

Acknowledgments The completion of this paper was made possible by grant No. FEKT-S-14-
2429 - “The research of new control methods, measurement procedures and intelligent instruments in
automation”, and the related financial assistance was provided from the internal science fund of Brno
University of Technology and also with assistance Competence Center realized by TACR (reg.
number TE01020197).

References

1. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision, 2nd edn. Cambridge
University Press, Cambridge (2003). ISBN:05-215-4051-8

2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.
60(2), 91–110 (2004)

3. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE
Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

4. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal.
Mach. Intell. 14(2), 239–256 (1992)

Fusion of 3D Model and Uncalibrated Stereo Reconstruction 351

Visual SLAM Based on Phase Correlation
and Particle Filters

Michal Růžička and Petr Mašek

Abstract This paper deals with design of visual SLAM method, which is based on
phase correlation and particle filters. This method can be used for localization of
autonomous mobile robots inside of buildings. The method contains two parts. The
first one is mapping of environment, where the mobile robot operates. For this
purpose was used phase correlation and images stitching method. The second one is
localization problem, which was solved by particle filters, where a particles weights
re-sampling was realized by phase correlation image processing method as well.
Localization uses the map, which was created by phase correlation and stitching
method.

Keywords Phase correlation ⋅ Particle filters ⋅ Visual SLAM ⋅ Localization ⋅
Mapping ⋅ Stitching ⋅ Computer vision ⋅ Image processing ⋅ Mobile robot ⋅
Discrete fourier transform ⋅ Inverse discrete fourier transform ⋅ Hanning window

1 Introduction

This paper deals with design of visual SLAM method, which combines phase
correlation and particle filters methods to reach SLAM functionality. Method uses
one cam-era only, which is located perpendicular to the ceiling. During the mobile
robot movement is continuously creating ceiling map by phase correlation and
stitching method, where phase correlation method is able to register affine trans-
formations between two similar images. This means translation, rotation and scale.
Created map of ceiling is used for localization. Particle filters were used for

M. Růžička (✉) ⋅ P. Mašek
Faculty of Mechanical Engineering: Institute of Automation and Computer Science,
Brno University of Technology, Technická 2896/2616 69, Brno, Czech Republic
e-mail: y110384@stud.fme.vutbr.cz

P. Mašek
e-mail: y70232@stud.fme.vutbr.cz

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8_29

353

localization problem. Particle filters contain mobile robot motion model and par-
ticles re-sampling specific rules to compute weights of each particle, which are
based on phase correlation as well.

This paper is organized as follows. The Sect. 2 contains environment mapping
description, which is based on the phase correlation. The Sect. 3 deals with
local-ization part, which uses particle filters with Ackerman’s chassis motion
model. Practical experiments are described in the Sect. 4. Section 5 is reserved for
conclusions and future works.

2 Mapping

This section deals with environmental mapping problem. The visual SLAM was
designed for environment inside of buildings, where the mobile robot operates. The
ceiling represents mobile robot map in this case. Visual SLAM uses single camera
only with low frame resolution 320 × 240. Frames are sequentially taken and
processed by phase correlation method, during the mapping task.

The next subsection explains the concept of phase correlation. In the next step
are images stitched together into a big single frame, which represents the mobile
robot map. Previously mentioned step is described in Sect. 2.2.

2.1 Phase Correlation

The phase correlation is able to register changes between two similar signals. The
camera frame is represented by two dimensional matrix of pixels, which can be
considered as signal. This means the phase correlation can be used for image
processing purpose. Image processing version of phase correlation is method for
register of affine transformation between two similar images. Translation, rotation
and scale are considered to image affine transformations. Phase correlation uses
discrete Fourier transformation (1) [6, 7, 11], inverse discrete Fourier transforma-
tion (2) [6, 7, 11] and correlation formula (3) [1–4, 11, 12]. These three methods are
base of phase correlation. It is worth mentioning constants in correlation formula
(3). If variables p and q converge to zero, than we are talking about phase corre-
lation. On the other side when variables p and q converge to one, we are talking
about cross correlation.

The main advantage of phase correlation, against to cross correlation, is sharpen
global peak. This means the global peak is easier to locate against to peak of cross
correlation. Ideal case for phase correlation would be, than variable p and q equal
zero, but convergence to zero arranges invariance against to division by zero.
Table 1 contains simplified algorithm of phase correlation.

354 M. Růžička and P. Mašek

Fðξ, ηÞ= ∑
N − 1

x=0
∑
N − 1

y=0
f ðx, yÞe− 2πi

N ðxξ+yηÞ ð1Þ

D− 1fFgðx, yÞ= 1
N2 ∑

N − 1

ξ=0
∑
N − 1

η=0
Fðξ, ηÞe2πi

N ðxξ+yηÞ ð2Þ

Pp, q
f1, f1ðx, yÞ=D− 1 F1ðξ, ηÞ ⋅F*

2ðξ, ηÞ
F1ðξ, ηÞj j+ pð Þ ⋅ F2ðξ, ηÞj j+ qð Þ

� �
ð3Þ

This algorithm is able to get translation with sub-pixel accuracy in hundredths.
The estimation of rotation accuracy is approximately in tenths. The estimation
accuracy of scale is in hundredths. This is valid for high resolution frames. The
accuracy for low resolution frames, which visual SLAM uses, is worse but it still
acceptable. Couple of images, to be registered, have to be overlapped to each other.
The higher the image resolution can thus be smaller overlap.

Table 1 Phase correlation algorithm [1–4, 11]

1. Load two images in gray scale f1 and f2

2. Put each image to square image with size N, and centre this to obtain two images fb1, fb2
3. Multiply fb1 and fb2 by Hanning window image to obtain images fw1, fw2
4. Apply discrete Fourier transform to fw1 and fw2. Compute the magnitude and switch to

logarithmic scale to obtain specters Al1 and Al2

5. Convert Al1 and Al2 from Cartesian coordinate system to Logarithmic-polar coordinate
system to obtain spectres Alpl1 and Alpl2

6. Compute correlation for Alpl1 and Alpl2 to obtain spectre C
7. Apply inverse discrete Fourier transform to obtain F image
8. Locate global peak in F image
9. Apply weighted centroid to get global peak in sub-pixel phase correlation accuracy
10. Get scale and rotation from global peak point. Scale: lnðξÞ. Rotation: η
11. Apply affine transformation (rotation and scale) to image f2 to get image f2rs

12. Put f2rs to square image with size N, and centre this to obtain two images fb2rs
13. Multiply fb2rs by Hanning window image to obtain images fw2rs
14. Apply discrete Fourier transform to fw2rs. Compute the magnitude and switch to

logarithmic scale to obtain specters Al2rs
15. Compute correlation for Al1 and Al2rs to obtain spectre C

16. Apply inverse discrete Fourier transform to obtain F image
17. Locate global peak in F image
18. Apply weighted centroid to get global peak in sub-pixel phase correlation accuracy [5]
19. Get shift from global peak

Visual SLAM Based on Phase Correlation and Particle Filters 355

2.2 Map Stitching

In previous section was described phase correlation method, the output is rotated
and scaled image into another, where the shift between two images is known.

Map stitching method works as follows. Sequentially taken output frames, from
phase correlation method are stitched into one image by known shift between
current and previous image frame, which was stitched to the map previously. The
map dynamically rises during stitching process. You should be aware of one the
problem. The shift is real number, due to phase correlation sub-pixel accuracy in
hundredths, but image columns and rows are inherently natural numbers. It is
evident, that images cannot be stitched with sub-pixel accuracy. Algorithm resizes
map and image to be stitch by chosen constant. The shift is multiplied by this
constant as well. After that images can be stitched with considerable accuracy. Map
is resized by the same constant at the end. It is still important to mention that the
image was not stitched cells but only the right half. This method is computational
demanding, due to this fact currently used method will be replaced by more efficient
method. Table 2 contains stitching algorithm overview.

3 Localization

Localization is the next part of visual SLAM method. Localization is based on
particle filters, which contain Ackerman’s chassis motion model (4) (5) [8–10].

x= d ⋅ cosðφÞ ð4Þ

y= d ⋅ sinðφÞ ð5Þ

The motion model variable φ represents mobile robot orientation, d is travelled
distance and variables x, y represents mobile robot location. Particle generator is
described by expressions (6) and (7) [10].

Table 2 Stitching algorithm

1. Get rotated and scaled image f2RS and shift s from phase correlation
2. Get sub-mat of f2RS O,T To obtain f2RSRH O,P, where P∈ < T

2 ,T >

3. Resize Map by constant r. MapM,N → MapY,Z, where Y = r ⋅M,Z = r ⋅N
4. Resize f2RSRH by constant r. f2RSRH O,P → f2RSRH O*r,P*r

5. Multiply s by r

6. Stitch f2RSRH to Map

7. Resize Map by constant r. MapY,Z → MapM/r,N/r, where M = Y r̸,N = Z r̸

356 M. Růžička and P. Mašek

xi = dN ⋅ cosðφNÞ ð6Þ

yi = dN ⋅ sinðφNÞ ð7Þ

Where dN was randomly generated by distribution function with parameters: μ = d,
σd = 10 and φN for μ = φ, σφ = 5. Index i represents particle index. Nowadays
algorithm uses 25 particles on the algorithm start and after re-sampling, which uses
weight for each particle. Weights evaluation is based on the phase correlation for
shift registration only. Idea is as follows. What would be seen on camera frame if
the robot was located at the place where this particle is located? We create image by
this idea from the map. Basically cut of part the map image, where a new image
centre represents particles location. This image is compared with real camera image
to get shift be-tween both of them. The smaller the Euclidean distance between
these images, the higher the weight of particles will be evaluated. After re-sampling
are left just 25 particles. The robot location is evaluated as weighted mean of
re-sampled particles locations. Table 3 contains more detailed, but even so sim-
plified applied particle filters algorithm in pseudo code [10].

Fig. 1 Particle filters algorithm after two steps

Visual SLAM Based on Phase Correlation and Particle Filters 357

Figure 1 shows two steps of presented particle filter algorithm implementation.
Start mobile robot position is sign by blue circle. Algorithm starts just in this state.
25 particles were generated. Weighted mean of particles locations gets mobile
robots position. This represents green circle. The next 25 particles are generated for
each particle from previously generated particles in this step. Red particles were
rejected from algorithm solution. Green particles will be used for next position
estimation. The green circle represents mobile robot position as in previous step.

Table 3 Particle filters algorithm [10]

358 M. Růžička and P. Mašek

4 Practical Experiments

This section contains three practical experiments. The first one shows result of two
image stitching. The second one shows result of map stitching and the last one
shows visual SLAM sample image.

Source video was captured by front camera of LG G2 device, which was
attached to mobile robot. There is evident high noise level. The source video was
compressed. This means the source video has a poor quality and resolution is
320 × 240 per frame. It is worth mentioning that the camera was not calibrated.
Despite these facts we can demonstrate good functionality of mapping method.

4.1 Two Frames Stitching Experiment

This practical experiment demonstrates result of stitching two images from source
video. The result is shown in Fig. 2. Boundary between these images shows white
line. Boundary is not evident by human eye. When you analyze the image closely
then can be found inaccuracy in the lower part of image. This inaccuracy was
caused by un-calibrated camera mainly.

Fig. 2 Two stitched images.
White line shows boundary
between these images

Visual SLAM Based on Phase Correlation and Particle Filters 359

4.2 Map Stitching Experiment

This practical experiment demonstrates result the stitched map from many frames.
Result is shown in the Fig. 3. There are evident a very significant boundary between
stitched images in the map. This was caused by non-homogenous light condition by
fluorescent bulb during mobile robots movement.

4.3 Localization Experiment

The last practical experiment demonstrates full visual SLAM functionality. Result
is shown in Fig. 4. Blue circle represents mobile robots start position. Green circles
equal estimated mobile robots locations. Red points mean particles, which were
rejected from calculation during re-sampling process. Finally green points serve
particles, which were selected for next computation during re-sampling process.

Fig. 3 Sample of stitched map

Fig. 4 Visual SLAM sample

360 M. Růžička and P. Mašek

5 Conclusions

This paper deals with design of visual SLAM method, which is based on phase
correlation and particle filters. The mapping algorithm was described in the Sect. 2.
Localization method was described in Sect. 3. Practical experiments, which confirm
function of proposal visual SLAM was described in Sect. 4.

This is a new method for mobile robot localization and development will con-
tinue. Proposal method was implemented by C++ programming language, but is
still computer demanding. Particle filters will be modified for CUDA technology
[13] and stitching method will be replaced by more efficient method. The final
visual SLAM method should be run on low cost power devices in the real time.

Acknowledgments This research was supported by grant of BUT IGA No. FSI-S-14-2533:
“Applied Computer Science and Control”.

References

1. Druckmüller, M.: Phase correlation method for the alignment of total solar eclipse images.
Astrophys. J. 2(706), 1605–1608 (2009) ISSN:0004- 637X

2. Berjak, J., Druckmüller, M.: Automatic analysis and recognition of moving objects in the
picture by method of phase correlation, pp. 35 (2004)

3. Konecny, Z., Druckmüllerová, H.: Improvement of time-periodical production schedule of the
group of products in the group of workplaces through the lot sizes alteration. In: Matousek, R.
(ed.) Proceedings of 19th International Conference on Soft Computing—MENDEL 2013,
Mendel Journal series vol. 2013, pp. 331–336, Brno (2013)

4. Druckmüllerová, H.: Registration of real images by means of phase correlation. In: Matousek,
R. (ed.) Proceedings of Mendel 16th International Conference on Soft Computing—MENDEL
2010, Mendel Journal series vol. 2010, pp. 578–583, Brno (2010). ISSN:1803- 3814

5. Argyriou, V., Vlachos, T.: A study of sub-pixel motion estimation using phase correlation. In:
BMVC, pp. 387–396 (2006)

6. Bracewell, R.N.: Affine theorem for two-dimensional fourier transform. Electron. Lett. 29(3),
304 (1993)

7. De Castro, E., Morandi, C.: Registration of translated and rotated images using finite fourier
transforms. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-9(5), 700–703 (1987)

8. Vechet, S., Ondrousek, V.: Motion planning of autonomous mobile robot in highly populated
dynamic environment. In: 9th International Conference on Mechatronics, no. 9, pp. 453–461,
Warsaw (2011)

9. Vechet, S.: The rule based path planner for autonomous mobile robot. In: Matousek, R. (ed.)
Proceedings of 17th International Conference on Soft Computing—MENDEL 2011, Mendel
Journal series vol. 2011, pp. 546–551, Brno University of Technology, Brno (2011)

10. Krejsa, J., Vechet, S.: Infrared beacons based localization of mobile robot. In: Elektronika ir
Elektrotechnika, pp. 17–22, Kaunas (2012). doi:10.5755/j01.eee.117.1.1046

11. Druckmüllerová, H.: Phase-correlation based image registration. Supervisor Mgr. Jana
Procházková, PhD, Faculty of Mechanical Engineering, Brno University of Technology, Brno
(100 pages) (2010)

Visual SLAM Based on Phase Correlation and Particle Filters 361

http://dx.doi.org/10.5755/j01.eee.117.1.1046

12. Starha, P., Martisek, D., Matousek, R.: Numerical methods of object reconstruction using the
method of moments. In: Proceedings of 20th International Conference on Soft Computing—
MENDEL 2014. Mendel series vol. 2014, pp. 241–248, Brno (2014). ISSN:1803- 3814

13. Matousek, R.: HC12: The principle of CUDA implementation. In: Proceedings of 16th
International Conference on Soft Computing—MENDEL 2010, Mendel series vol. 2010,
pp. 303–308, Brno (2010). ISSN:1803- 3814

362 M. Růžička and P. Mašek

Notes on Differential Kinematics
in Conformal Geometric Algebra Approach

Jaroslav Hrdina and Petr Vašík

Abstract We consider different elements of a 5D conformal geometric algebra

(CGA) as moving geometric objects whose final position is given by a specific kine-

matic chain. We show the form of the differential kinematics equations for different

CGA elements, in particular point pairs, spheres and their centres.

1 Introduction

In robotics, kinematics is the task of determining the robot’s precise position and ori-

entation in relation to the controlling parameters given by the robot’s construction.

If we consider not only the position but also the velocity at which the robot moves,

we have to solve so–called differential kinematics, see e.g. [5]. Note that generally

the velocity concerned can be both linear and angular or both at the same time. In

this paper we show the way to translate the classical differential kinematics notions

into the language of conformal geometric algebra. The contribution of the confor-

mal geometric algebra to the kinematics solution is quite straightforward and well

described, see e.g. [2] with the application for a robotic snake. The benefit of this

is twofold: simplification of the kinematic equations and reduction of the number

of operations, which decreases the computational time and thus the complexity of

the robot control. We provide the preliminaries about general Clifford (geometric)

algebras and conformal geometric algebras (referred to as CGA) particularly in order

to apply the algebra operations on the differential kinematics calculation. We show

that the form of the differential kinematics equations for different CGA elements, in

particular point pairs, spheres and their centres, respectively, is quite analogous.

J. Hrdina (✉) ⋅ P. Vašík

Department of Algebra and Discrete Mathematics, Brno University of Technology, Faculty

of Mechanical Engineering, Technick á 2896/2, 616 69 Brno, Czech Republic

e-mail: hrdina@fme.vutbr.cz

P. Vašík

e-mail: vasik@fme.vutbr.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_30

363

364 J. Hrdina and P. Vašík

2 Conformal Geometric Algebra

Note that the term geometric algebra is used for the real Clifford algebra if the geo-

metric representation of all objects is needed. Thus, in the sequel, we do not distin-

guish these two notions yet the basic definitions are valid for the Clifford algebras in

general.

The pair (𝕍 ,Q), where 𝕍 is a vector space of dimension n and Q is a quadratic

form, is called a quadratic vector space. To define Clifford algebras in coordinates,

we start by choosing a basis ei, i = 1,… , n of 𝕍 and by Ii, i = 1,… , n we denote

the image of ei under the inclusion 𝕍 ↪ l(𝕍 ,Q). Then the elements Ii satisfy the

relation

IjIk + IkIj = 2Bjk1,

where 1 is the unit element in the Clifford algebra and B is a bilinear form obtained

from Q by polarization. In a quadratic finite dimensional real vector space it is always

possible to choose a basis ei for which the matrix of the bilinear form B has the form

⎛
⎜
⎜
⎝

Or
Es

−Et

⎞
⎟
⎟
⎠

, r + s + t = n,

where Ek denotes the k×k identity matrix and Ok the k×k zero matrix. Let us restrict

to the case r = 0, whence B is non-degenerate. Then B defines the inner product

of signature (s, t) and we denote the corresponding Clifford algebra by l(s, t). For

example, l(0, 2) is generated by I1, I2, satisfying I21 = I22 = −E with I1I2 = −I2I1,

i.e. l(0, 2) is isomorphic to the quaternions ℍ. Now, let ℝ4,1
be a vector space ℝ5

equipped with scalar product of signature (4, 1), i.e. the bilinear form B is of the form

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎠

(1)

and let us consider the corresponding Clifford algebra l(4, 1) with the basis

{e1, e2, e3, e+, e−}. Note that this space satisfies the definition of the conformal geo-

metric algebra, which in general is a projective embedding of the Euclidean space

ℝp,q
into ℝp+1,q+1

and in our particular case it is a space widely studied in robotics,

precisely a projective embedding of ℝ3
into ℝ4,1

.

To describe the elements of ∶= l(4, 1) we have to compute free, associative,

distributive algebra over the set {e1, e2, e3, e+, e−} such that the following identities

are satisfied:

e21 = e22 = e23 = e2+ = 1, e2− = −1,

Notes on Differential Kinematics . . . 365

Table 1 Basis of l(4, 1)
scalars 1
vectors e1, e2, e3, e+, e−
bivectors e1e2, e1e3, e1e+, e1e−,

e2e3, e2e+, e2e−, e3e+,
e3e−, e+e−

trivectors e1e2e3, e1e2e+, e1e2e−, e1e3e+, e1e3e−, e1e+e−,
e2e3e+, e2e3e−, e2e+e−, e3e+e−

4-vectors e1e2e3e+, e1e2e3e−, e1e2e+e−, e1e3e+e−, e2e3e+e−
pseudoscalar e1e2e3e+e−

eiej = −ejei, i ≠ j, i, j ∈ {1, 2, 3,+,−}.

In this case we get 25 = 32 dimensional vector space, see Table 1.

Let us note that the geometric product on ℝ4,1
coincides with the scalar product:

(x1e1 + x2e2 + x3e3 + x+e+ + x−e−)(y1e1 + y2e2 + y3e3 + y+e+ + y−e−)
= x1y1e21 + x2y2e22 + x3y3e23 + x+y+e2+ + x−y−e2−
= x1y1 + x2y2 + x3y3 + x+y+ − x−y−

and the norm on ℝ4,1
can be understood as the vector square: x2 = ||x||2, x ∈ ℝ4,1

.

Now, we define two additional products based on the geometric one for any u, v,∈
ℝ4,1

, dot product and wedge product, respectively:

u ⋅ v = 1
2
(uv + vu),

u ∧ v = 1
2
(uv − vu)

and consequently the geometric product formula:

uv = u ⋅ v + u ∧ v.

To work with the CGA effectively, we have to define a new basis of ℝ4,1
as the

set {e1, e2, e3, e0, e∞} such that e0 =
1
2 (e− + e+) and e∞ = (e− − e+). Note that the

matrix of the appropriate bilinear form in this basis changes from (1) to

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

⎞
⎟
⎟
⎟
⎟
⎠

.

366 J. Hrdina and P. Vašík

Then the following properties hold:

e20 =
1
4
(e2− − e−e+ − e+e− + e2+) = 1 − 0 − 1 = 0,

e2∞ = 1
4
(e2− + e−e+ + e+e− + e2+) = 1 + 0 − 1 = 0,

e∞e0 =
1
2
(e− + e+)(e− − e+) = −1

2
− 1

2
e−e+ + 1

2
e+e− − 1

2
= −1 − (e− ∧ e+),

e0e∞ = 1
2
(e− − e+)(e− + e+)=−1

2
+ 1

2
e−e+ − 1

2
e+e− − 1

2
=−1 + (e− ∧ e+),

i.e. finally

e∞e0 = −e0e∞ − 2.

In CGA, the fundamental geometric objects are represented as follows. The point x
with the coordinates (x1, x2, x3) in ℝ3

is represented as an element P of l(4, 1) by

P = x + 1
2

x2e∞ + e0.

The sphere S with the centre x = x1e1 + x2e2 + x3e3 and the radius r is given by

S = x1e1 + x2e2 + x3e3 −
1
2

r2e∞.

A new geometric object appears referred to as a point pair P given by the wedge of

two points P1,P2:

P = P1 ∧ P2.

Note that for some of the robots description, e.g. for the robotic snakes, this particular

object is of high importance, see [2].

3 Point Pair Computations

We present the CGA operations of translation and rotation applied on a pair point

in order to show the important properties and the compliance with the classical geo-

metric understanding.

Let P1 = [0, 1, 0] and P2 = [0,−1, 0] be two points in ℝ3
, then P1 = e2+

1
2e∞+e0

and P2 = −e2 +
1
2e∞ + e0 are the corresponding vectors in CGA. The point pair

P = P1 ∧ P2 is given by the following computations:

Notes on Differential Kinematics . . . 367

P = P1 ∧ P2 =
1
2

e2 ∧ e∞ + e2 ∧ e0 −
1
2

e∞ ∧ e2 +
1
2

e∞ ∧ e0 − e0 ∧ e2 (2)

+ 1
2

e0 ∧ e2e∞ = e2 ∧ e∞ + 2e2 ∧ e0

= e2e∞ + 2e2e0. (3)

On the other hand, geometrically the points P1 and P2 are the intersections of the

following three spheres in ℝ3
:

S1 ∶ (x − 1)2 + y2 + z2 = 2,
S2 ∶ (x + 1)2 + y2 + z2 = 2,
S3 ∶ x2 + y2 + (z − 1)2 = 2

and consequently

S1 = e1 +
1
2

e∞ + e0 − e∞ = e1 −
1
2

e∞ + e0,

S2 = −e1 +
1
2

e∞ + e0 − e∞ = −e1 −
1
2

e∞ + e0 and

S3 = e3 +
1
2

e∞ + e0 − e∞ = e3 −
1
2

e∞ + e0

are the corresponding vectors in CGA. The intersections of geometric objects A and

B in CGA are given as the wedge product A ∧ B (or dually by A∗ ⋅ B), where the

operations ∧ and ⋅ are extended on all elements of CGA. Consequently, the following

property for wedge product of a vector P and an arbitrary r–vector Q holds:

P ∧ Q = 1
2
(PQ + (−1)rQP)

and similarly for a dot product we have

P ⋅ Q = 1
2
(
PQ + (−1)r+1QP

)
.

Now we calculate:

S1 ∧ S2 ∧ S3 = (−1
2

e1 ∧ e∞ + e1 ∧ e0 +
1
2

e∞ ∧ e1 −
1
2

e∞ ∧ e0 − e0 ∧ e1

− e0 ∧
1
2

e∞) ∧ S3 = (−e1 ∧ e∞ + 2e1 ∧ e0) ∧ (e3 −
1
2

e∞ + e0)

= −e1 ∧ e∞ ∧ e3 + 2e1 ∧ e0 ∧ e3 − 2e1 ∧ e0 ∧
1
2

e∞ − e1 ∧ e∞ ∧ e0

= −e1e∞e3 + 2e1e0e3.

368 J. Hrdina and P. Vašík

To obtain the same expression as in (2), we have to compute (S1 ∧ S2 ∧ S3)∗, where

A∗ = −Ae−e+e3e2e1 denotes the dual to A in CGA and the operation A ↦ A∗
is

realized by the multiplication of the inverse unit pseudoscalar. Note that the duality

is just an algebraic operation and does not affect the object geometrically, it is indeed

just a transformation between the so–called IPNS and OPNS representation, see e.g.

[9]. The result is the following:

(S1 ∧ S2 ∧ S3)∗ = −(−e1e∞e3 + 2e1e0e3)e−e+e3e2e1
= e1e∞e3e−e+e3e2e1 − 2e1e0e3e−e+e3e2e1
= e∞e2e−e+ + 2e0e2e−e+
= e∞e2e−e+ + 2e0e2e−e+ = −e∞e2 − 2e0e2 = P.

In CGA (in GA generally), rotations and translations are realized by conjugation

O ↦ TOT̃ ,

where T is the appropriate multi-vector from and T̃ denotes so–called reverse,

i.e. it is an operation that reverses the order of the basis vectors in the coordinate

expression of the elements of T . For instance, the translation in the direction t =
t1e1 + t2e2 + t3e3 is realized by the multi-vector

T = 1 − 1
2

te∞.

To translate the point pair P = e∞e2+2e0e2 in the direction of e1 we have to calculate

TPT̃ = (1 − 1
2

e1e∞)(e2e∞ + 2e2e0)(1 +
1
2

e1e∞)

= (e2e∞ + 2e2e0 − e1e∞e2e0)(1 +
1
2

e1e∞)

= e2e∞ + 2e2e0 − e1e∞e2e0 + e2e0e1e∞ − 1
2

e1e∞e2e0e1e∞

= e2e∞ + 2e2e0 + e1e2e∞e0 + e1e2e0e∞ + 1
2

e∞e2e0e∞

= e2e∞ + 2e2e0 + e1e2(−e0a∞ − 2) + e1e2e0e∞ + 1
2

e∞e2(−e∞e0 − 2)

= e2e∞ + 2e2e0 − e1e2e0e∞ + e1e2e0e∞ − 2e1e2 − e∞e2
= 2e2e∞ + 2e2e0 − 2e1e2.

In fact, we move the points [0, 1, 0] and [0,−1, 0] to the points [1, 1, 0] and

[1,−1, 0], i.e. we move the point pair P to the point pair

(e1 + e2 + e∞ + e0) ∧ (e1 − e2 + e∞ + e0)

Notes on Differential Kinematics . . . 369

but after the evaluation we get

(e1 + e2 + e∞ + e0) ∧ (e1 − e2 + e∞ + e0)
= e2 ∧ e1 + e∞ ∧ e1 + e0 ∧ e1 − e1 ∧ e2 − e∞ ∧ e2 − e0 ∧ e2
+ e1 ∧ e∞ + e2 ∧ e∞ + e0 ∧ e∞ + e1 ∧ e0 + e2 ∧ e0 + e∞ ∧ e0

= −2e1e2 + 2e2e∞ + 2e2e0,

which is the same multi-vector.

Let us now focus on the rotation. As mentioned above, such transformation is

again represented by conjugation of a particular element denoted by R. More pre-

cisely, if we consider L = a1e2e3 + a2e1e3 + a3e1e2 to be an axis, then the multi-

vector

R = cos 𝜑
2
− L sin 𝜑

2

represents the rotation around the axis L by the angle𝜑. For instance, the multi-vector

R = cos 𝜑
2
− sin 𝜑

2
e1e2

represents the rotation around “e3”. Thus to rotate the point pair P around e3 by the

angle 𝜑 we have to compute

RPR̃ = (cos 𝜑
2
− sin 𝜑

2
e1e2)(e2e∞ + 2e2e0)(cos

𝜑

2
+ sin 𝜑

2
e1e2)

= (cos 𝜑
2

e2e∞ − sin 𝜑

2
e1e∞ + 2 cos 𝜑

2
e2e0 − 2 sin 𝜑

2
e1e0)

(cos 𝜑
2
+ sin 𝜑

2
e1e2)

= cos2 𝜑
2

e2e∞ − sin 𝜑

2
cos 𝜑

2
e1e∞ + 2 cos2 𝜑

2
e2e0 − 2 sin 𝜑

2
cos 𝜑

2
e1e0

+ cos 𝜑
2
sin 𝜑

2
e∞e1 + sin2 𝜑

2
e∞e2 + 2 cos 𝜑

2
sin 𝜑

2
e0e1 + 2 sin2 𝜑

2
e0e2

= (cos2 𝜑
2
− sin2 𝜑

2
)e2e∞ + 2(cos2 𝜑

2
− sin2 𝜑

2
)e2e0 − 2 sin 𝜑

2
cos 𝜑

2
e1e∞

− 4 sin 𝜑

2
cos 𝜑

2
e1e0

= (cos𝜑)e2e∞ + 2(cos𝜑)e2e0 − (sin𝜑)e1e∞ − 2(sin𝜑)e1e0.

In the same way, we can rotate the points [0, 1, 0] and [0,−1, 0] and obtain new

pair of points with coordinates [− sin𝜑, cos𝜑, 0] and [sin𝜑,−cos𝜑, 0], respec-

tively, i.e. if the resulting couple is understood as the point pair in CGA, it is

realized as:

(−(sin𝜑)e1 + (cos𝜑)e2 +
1
2

e∞ + e0) ∧ ((sin𝜑)e1 − (cos𝜑)e2 +
1
2

e∞ + e0).

370 J. Hrdina and P. Vašík

Let us now verify this fact by evaluating the above wedge product:

(−(sin𝜑)e1 + (cos𝜑)e2 +
1
2

e∞ + e0) ∧ ((sin𝜑)e1 − (cos𝜑)e2 +
1
2

e∞ + e0)

= (cos𝜑)(sin𝜑)e2e1 +
1
2
(sin𝜑)e∞e1 + (sin𝜑)e0e1 + (sin𝜑)(cos𝜑)e1e2

− 1
2
(cos𝜑)e∞e2 − (cos𝜑)e0e2 − (sin𝜑)1

2
e1e∞ + (cos𝜑)1

2
e2e∞ + 1

2
e0 ∧ e∞

− (sin𝜑)e1e0 + (cos𝜑)e2e0 +
1
2

e∞ ∧ e0 =
1
2
(sin𝜑)e∞e1 + (sin𝜑)e0e1

− 1
2
(cos𝜑)e∞e2 − (cos𝜑)e0e2 − (sin𝜑)1

2
e1e∞ + (cos𝜑)1

2
e2e∞

− (sin𝜑)e1e0 + (cos𝜑)e2e0
= (sin𝜑)e∞e1 + 2(sin𝜑)e0e1 − (cos𝜑)e∞e2 − 2(cos𝜑)e0e2.

As we received the same multi-vector, this example shows the compliance of the

CGA operations with the classical geometric objects manipulation.

4 Differential Kinematics

By differential kinematics we understand the description of a motion not by the coor-

dinates in the final state but by means of the velocity, i.e. by the length and the direc-

tion of the velocity vector. As we consider both translations and rotations both linear

and angular velocities are involved. If we consider a robot whose final position is

given by a kinematic chain (i.e. by the system of kinematic equations), the formu-

lae for the differential kinematics are obtained simply as its total derivative. Let us

consider the following kinematic chain in CGA:

MnMn−1⋯M1PM̃1⋯ M̃n−1M̃n, (4)

where Mi denotes the so–called motor (the abbreviation of “moment and vector,”

i.e. the element performing a screw motion). Note that denoting the translation and

rotation elements by T and R, respectively, the motor M can be expressed as

M = TRT̃ ,

and consequently for a rotation by a particular angle 𝜃 we have

Notes on Differential Kinematics . . . 371

M
𝜃
= TRT̃ = cos 𝜃

2
− sin 𝜃

2
L = e−

𝜃

2 L
,

where L denotes the appropriate rotation axis, see [5]. Thus, in the sequel, we con-

sider the motors in the kinematic chain to be of the form

Mi = e−
1
2 qiLi .

At this point, by differentiation of the kinematic chain (4) we obtain [5, 9]

Ṗ =
n∑

j=1
[P ⋅ L′

j]dqj, (5)

where

L′
j =

j−1∏

i=1
MiLj

j−1∏

i=1
M̃j−i

and

[P ⋅ L′
j] =

1
2
(PL′

j − L′
jP).

Note that (5) represents the point P motion. In the rest of the paper we shall derive

similar equations for other geometric objects.

Lemma 1 Let P1 and P2 be two moving points and let their final position be deter-
mined the same kinematic chain (4). Then the differential kinematics of the point pair
Pp = P1 ∧ P2 is given by

Ṗp =
n∑

j=1
[Pp ⋅ L′

j]dqj.

Proof Let us consider trajectory of a point pair Pp = P1 ∧ P2 motion, i.e. a cou-

ple of curves containing the points P1 and P2, respectively. Then the derivative of

a point pair Pp = P1 ∧ P2 can be understood as a derivative with respect to the

trajectory parameter, i.e. time, which is denoted by t. By direct differentiation of a

multiplication we obtain:

𝜕t(Pp) = 𝜕t(P1 ∧ P2) = 𝜕t(
1
2
(P1P2 − (−1)1P2P1)) =

1
2
(Ṗ1P2 + P1Ṗ2)

− 1
2
(−1)1(Ṗ2P1 + P2Ṗ1) = Ṗ1 ∧ P2 + P1 ∧ Ṗ2.

(6)

If we substitute (5) into (6) we get

372 J. Hrdina and P. Vašík

𝜕t(Pp) = Ṗ1 ∧ P2 + P1 ∧ Ṗ2 =
n∑

j=1
[P1 ⋅ L′

j]dqj ∧ P2 + P1 ∧
n∑

j=1
[P2 ⋅ L′

j]dqj

=
n∑

j=1

1
2
(P1L′

j − L′
jP1) ∧ P2dqj + P1 ∧

n∑

j=1

1
2
(P2L′

j − L′
jP2)dqj

= 1
4

n∑

j=1
(P1L′

jP2 − L′
jP1P2 − P2P1L′

j + P2L′
jP1)dqj

+ 1
4

n∑

j=1
(P1P2L′

j − P1L′
jP2 − P2L′

jP1 + L′
jP2P1)dqj

= 1
4

n∑

j=1
(−L′

jP1P2 − P2P1L′
j + P1P2L′

j + L′
jP2P1)dqj

= 1
2

n∑

j=1
((P1 ∧ P2)L′

j − L′
j(P1 ∧ P2))dqj =

n∑

j=1
[(P1 ∧ P2) ⋅ L′

j]dqj,

which completes the proof.

Theorem 1 Let P1, P2, P3 and P4 be four moving points whose final position is
obtained by means of the same kinematic chain (4). Then the differential kinematics
of a 1D–sphere S1 = P1 ∧ P2 ∧ P3 and a 2D–sphere S2 = P1 ∧ P2 ∧ P3 ∧ P4 are
given by:

Ṡ1 =
n∑

j=1
[S1 ⋅ L′

j]dqj,

Ṡ2 =
n∑

j=1
[S2 ⋅ L′

j]dqj.

Proof We use the same calculations as in the proof of Lemma 1 with P2 ∧ P3 and

P2 ∧ P3 ∧ P4 instead of P2, respectively.

Theorem 2 Let P be a moving CGA geometric object, particularly a point, line,
plane, point pair or a sphere of dimension 1 or 2, respectively. If the final position
of P is determined by the kinematic chain (4), then the differential kinematics of P is
given by the equations (5).

The proof is a direct consequence of Lemma 1 and Theorem 1. The key fact is

that a line is just a 1D–sphere S1, where P3 = e∞ and a plane is a 2D–sphere S2,

where P4 = e∞.

The last object whose differential kinematics equations are useful for a robotic

snake motion description is a sphere centre.

Notes on Differential Kinematics . . . 373

Theorem 3 Let c be a centre of a sphere S (including a point pair as a 0D–sphere)
whose final position is given by the kinematic chain (4). Then the differential kine-
matics of c is given by

ċ =
n∑

j=1
[c ⋅ L′

j]dqj.

Proof The centre c of a sphere S is in CGA expressed as c = Se∞S̃. If we move a

particular axis

L0 = ue2e3 + ve1e3 + we1e2

to a general point (x, y, z), the shifted line L will be of the form

L = (1 − 1
2
(xe1 + ye2 + ze3)e∞)L0(1 +

1
2
(xe1 + ye2 + ze3)e∞)

= L0 −
1
2
(xe1 + ye2 + ze3)e∞L0 +

1
2

L0(xe1 + ye2 + ze3)e∞.

In addition, one can easily see that

Le∞ = L0e∞ = e∞L0 = e∞L,

and generally for a particular axis L′
j

L′
j e∞ = e∞L′

j .

Finally, we conclude the proof by the following direct evaluation:

ċ = 𝜕t(Se∞S̃) = Ṡe∞S̃ + Se∞ ̇̃S

=
n∑

j=1
[S ⋅ L′

j]e∞S̃dqj + Se∞
n∑

j=1
[S̃ ⋅ L′

j]dqj

= 1
2

n∑

j=1
[SL′

j − L′
j S]e∞S̃dqj + Se∞

1
2

n∑

j=1
[S̃L′

j − L′
j S̃]dqj

=
n∑

j=1

1
2
[SL′

j e∞S̃ − L′
j Se∞S̃]dqj +

n∑

j=1

1
2
[Se∞S̃L′

j − Se∞L′
j S̃]dqj

=
n∑

j=1

1
2
[SL′

j e∞S̃ − SL′
j e∞S̃]dqj +

n∑

j=1

1
2
[Se∞S̃L′

j − L′
j Se∞S̃]dqj

= 0 +
n∑

j=1

1
2
[cL′

j − L′
j c]dqj =

n∑

j=1
[c ⋅ L′

j]dqj.

374 J. Hrdina and P. Vašík

Acknowledgments The research was supported by the project NETME CENTRE PLUS (LO1202).

The results of the project NETME CENTRE PLUS (LO1202) were co-funded by the Ministry of

Education, Youth and Sports within the support programme “National Sustainability Programme”.

References

1. Hildenbrand, D.: Foundations of Geometric Algebra Computing. Geometry and Computing,

vol. 8. Springer, Berlin (2013)

2. Hrdina, J., Návrat, A., Vašík, P.: 3-link robotic snake control based on CGA. In: Advances in

Applied Clifford Algebras (2015)

3. Návrat, A., Matousek, R.: Trident snake control based on CGA. In: Matousek, R. (ed.) Mendel

2015: Recent Advance in Computer Science. AISC, vol. 378, pp. 375–385. Springer, Heidelberg

(2015)

4. Perwass, C.: Geometric Algebra with Applications in Engineering. Geometry and Computing,

vol. 4. Springer, Berlin (2009)

5. Zamora-Esquivel, J., Bayro-Corrochano, E.: Kinematics and diferential kinematics of binocular

robot heads. In: Robotics and Automation, ICRA (2006)

6. Selig, J.M.: Geometric Fundamentals of Robotics. Monographs in Computer Science. Springer,

New York (2004)

7. Murray, R.M., Zexiang, L., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation.

CRC Press, Boca Raton (1994)

8. Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: Snake Robots, Modelling, Mecha-

tronics, and Control. Advances in Industrial Control. Springer, London (2013)

9. González-Jiménez, L., Carbajal-Espinosa, O., Loukianov, A., Bayro-Corrochano, E.: Robust

pose control of robot manipulators using conformal geometric algebra. Adv. Appl. Clifford Al.

24(2), 533–552 (2014)

Trident Snake Control Based on Conformal
Geometric Algebra

Aleš Návrat and Radomil Matoušek

Abstract Local controllability of a trident snake robot is solved by means of 5D

conformal geometric algebra. The non–holonomic kinematic equations are assem-

bled, their property to be a Pfaff system is discussed and the solution is found. The

functionality is demonstrated on a virtual model in CLUCalc programme.

Keywords Conformal geometric algebra ⋅Clifford algebra ⋅Mathematics robotic ⋅
Nonholonomic mechanics ⋅ Snake robots ⋅ Local controllability ⋅ Bionics

Mathematics Subject Classification (2010): 93C10 ⋅ 15A66

1 Introduction

Within this paper, we consider a trident snake robot, see [8–10], moving on a planar

surface. More precisely, it is a robot with a triangular body with three legs when to

each leg a pair of wheels is attached and thus the possible movement directions are

determined uniquely. The aim is to find the complete local controllability solution

in a new geometric form. In terms of generalized coordinates, the non–holonomic

forward kinematics equations can be understood as a Pfaff system and its solution

as a distribution in the configuration space. Rachevsky–Chow Theorem implies that

the appropriate non–holonomic system is locally controllable if the corresponding

distribution is not integrable and the span of the Lie algebra generated by the con-

trolling distribution has to be of the same dimension as the configuration space. The

A. Návrat (✉)

Faculty of Mechanical Engineering, Department of Algebra and Discrete Mathematics,

Brno University of Technology,

Technická 2896/2, 616 69 Brno, Czech Republic

e-mail: navrat.a@fme.vutbr.cz

R. Matoušek

Faculty of Mechanical Engineering, Department of Applied Computer Science,

Brno University of Technology,

Technická 2896/2, 616 69 Brno, Czech Republic

e-mail: matousek@fme.vutbr.cz

© Springer International Publishing Switzerland 2015

R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems

and Computing 378, DOI 10.1007/978-3-319-19824-8_31

375

376 A. Návrat and R. Matoušek

spanned Lie algebra is then naturally endowed by a filtration which shows the way

to realize the movements by means of the vector field brackets [4, 5]. In our case,

the system is locally controllable and the filtration is (3, 6).
The classical approach composes the kinematic chain of homogeneous matrices

using the moving frame methods and Euler angles [6]. Instead of this, our aim is to

use the notions of conformal geometric algebra (CGA), i.e. the subset of a Clifford

algebra l(4, 1) where the Euclidean space 𝔼3 is included by a mapping x ↦ x +
x2e∞ + e0. In this geometric setting, we can easily handle both linear objects and

spheres of dimensions 2, 1 and 0, see [1–3].

In particular, the 0–dimensional sphere, referred to as a point pair, is used to derive

the kinematic equations and for the control of the non–holonomic robotic snake,

consequently. More precisely, to any link of a snake a single point pair is assigned

and the mechanism is transformed by rotations and translations. We introduce the

forward kinematic equations (1), the differential kinematic equations (2), as well as

the non–holonomic conditions (4). We demonstrate the functionality in the CLUCalc

software designed for the computations in Clifford algebra, particularly in conformal

geometric algebra.

2 Conformal Geometric Algebra – CGA

The classical approach composes the kinematic chain of homogeneous matrices us-

ing the moving frame methods and Euler angles, or in advance using the quaternion

algebra ℍ by conjugation x ↦ q−1xq, where we view an Euclidean point x as a

quaternion

x = (x1, x2, x3) ⇌ x1i + x2j + x3k.

and q is a quaternion given by

q = cos 𝜃
2
+ u sin 𝜃

2
,

where u is a axis of rotation u1i + u2j + u3k. Instead of this, we use the notions of

conformal geometric algebra, i.e. the Clifford algebra l(4, 1) where the Euclidean

space 𝔼3 is included by a mapping x ↦ x + x2e∞ + e0. In this geometric setting, we

can easily handle both linear objects and spheres of dimensions 2, 1 and 0. Namely,

these objects are simply elements of the algebra and can be transformed and in-

tersected with ease. In addition, rotations, translation, dilations and inversions all

become rotations in our 5-dimensional space, see [1–3].

More precisely, letℝ4,1
denote a vector spaceℝ5

equipped with the scalar product

of signature (4, 1) and let {e1, e2, e3, e+, e−} be a basis. The Clifford algebra l(4, 1)
can be described as a free, associative and distributive algebra such that the following

identities are satisfied:

{e21 = e22 = e23 = e2+ = 1, e2− = −1},

Trident Snake Control Based on Conformal Geometric Algebra 377

eiej = −ejei, i ≠ j, i, j ∈ {1, 2, 3,+,−}.

Hence we get 25 = 32–dimensional vector space. Let us note that the geometric
product in the algebra restricted to ℝ4,1

coincides with the scalar product and the

norm in ℝ4,1
can be understood as a vector square x2 = ‖x‖2. Next to the geometric

product, we define two additional products on ℝ4,1
based on the geometric one for

any u, v,∈ , dot product and wedge product, respectively:

u ⋅ v = 1
2
(uv + vu), u ∧ v = 1

2
(uv − vu)

and thus the basis elements are derived as uv = u ⋅ v + u ∧ v. The definition of

these product extends to the whole algebra. Namely, given two basis blades Ei =
ea1 ∧⋯∧ eak and Ej = ea1 ∧⋯∧ eal of grades k and l respectively the wedge (outer)

product is defined as

Ei ∧ Ej ∶= ⟨EiEj⟩k+l

while the dot (inner) product is defined as

Ei ⋅ Ej ∶= ⟨EiEj⟩|k−l|, i, j, > 0
∶= 0, i = 0 or j = 0,

where ⟨ ⟩k is the grade projection into grade k. These products can be used effectively

to compute an intersection of geometric objects and distances respectively.

To work with CGA effectively, one defines e0 =
1
2 (e− + e+) and e∞ = (e− − e+).

Consequently, the following properties hold:

e20 = 0, e2∞ = 0, e∞e0 + e0e∞ = −2.

Then we can represent the basis geometric elements by the following multi–vectors

from l(4, 1):

Fig. 1 Elements of (4, 1)
Point Q = x+ 1

2x
2e∞ + e0

Sphere of radius r and center C S = C − 1
2r

2e∞

Point pair Q1, Q2 P = Q1 ∧ Q2.

Each geometric transformation (rotation, translation, dilation, inversion) of a

geometric object represented by an algebra element O is realized by conjugation

O ↦ MOM̃, where M is an appropriate multi–vector. For instance, the translation in

the direction t = t1e1 + t2e2 + t3e3 is realized by conjugation by the multi–vector

378 A. Návrat and R. Matoušek

T = 1 − 1
2
te∞,

which can be written as e−
1
2 te∞ and the rotation around the axis L by angle 𝜙 is

realized by conjugation by the multi–vector

R = cos 𝜙
2
− L sin 𝜙

2

where L = a1e2e3 + a2e1e3 + a3e1e2. The rotation can be also written as e−
1
2𝜙L.

3 Control Theory

The locomotion analysis, control and development of the trident snake robot has

been described in [8–10]. The robot consists of a body in the shape of an equilat-

eral triangle with circumscribed circle of radius r and three rigid links (also called

legs) of constant length l connected to the vertices of the triangular body by three

motorised joints. In this paper, we consider r = 1 and l = 1 . To each free link end

a pair of passive wheels is attached to provide an important snake-like property that

the ground friction in the direction perpendicular to the link is considerably higher

than the friction of a simple forward move. In particular, this prevents the slipping

sideways. To describe the actual position of a trident snake robot we need the set of

6 generalized coordinates

q = (x, y, 𝜃, 𝜙1, 𝜙2, 𝜙3)

as shown in Fig. 1. Hence the configuration space is (a subspace of) ℝ2 × S1 × (S1)3.

Note that a fixed coordinate system (x, y) is attached.

To describe our robotic trident snake via CGA we use as a central object the set

of three point pairs representing the robot’s legs

(P1,P2,P3).

These point pairs are computed in terms of the wedge product in CGA as Pi = pbi ∧pi
for i = 1, 2, 3, where pbi are the joints between body and legs and pi are the ends of

legs. On the other hand, the end points pi and pbi respectively of Pi are extracted from

the pair point by projections

±
√
Pi ⋅ Pi + Pi

e∞ ⋅ Pi
.

Trident Snake Control Based on Conformal Geometric Algebra 379

Fig. 2 Trident snake robot

model

φ1

φ2

φ3

θ

x

y

S[x, y]

pb
1

p1

pb
2

p2

pb
3

p3

P1

P2

P3

Consequently, we may freely switch between point pairs and points defining their

ends. Of course, not all triples of pair points define a state of the robot. In terms

of the CGA inner product, the consistency relations between the point pairs read

pbi ⋅ p
b
j = −3

2 for i ≠ j and pi ⋅ pbi = −1
2 . These equations tell that the joints have

constant distance

√
3 and the length of links is 1 (Fig. 2).

Now to each admissible state (P1,P2,P3) we can assess the kinematic equations.

For the trident zero position q = 0, three appropriate point pairs are established as

P1(0) = (e1 +
1
2e∞ + e0) ∧ (2e1 + 2e∞ + e0) = e1∞ − e10 −

3
2e∞0

P2,3(0) = (−1
2e1 ±

√
3
2 e2 +

1
2e∞ + e0) ∧ (−e1 ±

√
3e2 + 2e∞ + e0)

= −1
2e1∞ + 1

2e10 ±
√
3
2 e2∞ ∓

√
3
2 e20 −

3
2e∞0,

where we have used a shortened notation e1∞ = e1 ∧ e∞ etc. The particular pair

points in a general position q = (x, y, 𝜃, 𝜙1, 𝜙2, 𝜙3) are obtained by a translation to

[x, y] composed by a trident body rotation 𝜃 and a rotation of the corresponding leg

𝜙i. In CGA, it is expressed for each i = 1, 2, 3 as

Pi = R
𝜙i
R
𝜃
Tx,yPi(0)T̃x,yR̃𝜃

R̃
𝜙i
, (1)

380 A. Návrat and R. Matoušek

where

Tx,y = 1 − 1
2 (xe1 + ye2)e∞,

R
𝜃
= cos 𝜃

2 − L0 sin
𝜃

2 ,

R
𝜙i

= cos 𝜙i
2 − Li sin

𝜙i
2 ,

and where the axes of rotations are given by

L0 = Tx,ye12T̃x,y,

Li = Tie12T̃i, where Ti = 1 − 1
2p

b
i e∞.

Note that the same kinematic chain holds for the end points of point pairs.

The CGA approach is convenient also for solving problems of the inverse kine-

matics. In CGA, it can be done in a geometrically very intuitive way due to its easy

handling of intersections of geometric objects like spheres, circles, planes. A basic

problem is finding the generalized coordinates in terms of a robot position. In our

case, having a state (P1,P2,P3) obtained by (1), we first form the circumscribed cir-

cle C = pb1 ∧ pb2 ∧ pb3, its center S = Ce∞C̃, and for each i = 1, 2, 3 we form a line

through the center and the corresponding joint lbi = S ∧ pbi ∧ e∞ and a line through

the corresponding leg li = pbi ∧ pi ∧ e∞. Then we compute the coordinates via the

inner product as

x = S ⋅ e1
y = S ⋅ e2

cos 𝜃 = lb1 ⋅ e1∞0

cos𝜙i = lbi ⋅ li

Let us now compute the velocity of the direct kinematics, which is obtained by

differentiating (1). It is proved in [3] that the total differential of a general kinematic

chain

P = R1 …RnP(0)R̃n…R1

containing rotations R1,…Rn is equal to

dP =
n∑

j=1
[P ⋅ Lj]dqj,

where [P ⋅ Lj] is the inner product of the geometric object (in the actual position)

and the axis of the rotation Rj. This formula follows basically from the fact that each

rotation can be expressed es an exponential. But the same is true for translations. We

may view each translation as a degenerate rotation, with an ‘axis‘ containing e∞.

Trident Snake Control Based on Conformal Geometric Algebra 381

Hence the formula above holds true also if we allow Ri to be a translation. In our

case, the differentiation of kinematic chains (1) for point pi, i = 1, 2, 3, then yields

the following expressions:

ṗi = [pi ⋅ e1∞]ẋ + [pi ⋅ e2∞]ẏ + [pi ⋅ L0]�̇� + [pi ⋅ Li]�̇�i (2)

i.e. we have matrix system ṗ = Jq̇, where

J =
⎛
⎜
⎜
⎝

p1 ⋅ e1∞ p1 ⋅ e2∞ p1 ⋅ L0 p1 ⋅ L1 0 0
p2 ⋅ e1∞ p2 ⋅ e2∞ p2 ⋅ L0 0 p2 ⋅ L2 0
p3 ⋅ e1∞ p3 ⋅ e2∞ p3 ⋅ L0 0 0 p3 ⋅ L3

⎞
⎟
⎟
⎠

(3)

Note that we get exactly the same formulas for the differential kinematics of point

pairs Pi but we rather compute the end points pi where the wheels are located.

Then, as the wheels do not slip to the side direction, the velocity constraint con-

dition is satisfied and can be written as

ṗi ∧ Pi ∧ e∞ = 0. (4)

Thus if we substitute (2) in (4), we obtain a system of linear ODEs, which can be

written in a form Aq̇ = 0, where the Pfaff matrix A is given by

Aij = Jij ∧ Pi ∧ e∞,

where J is the ‘Jacobian’ (3). It is easy to see that each Aij is a multiple of (e3)∗. Thus

the Pfaff equation Aq̇ = 0 can be solved for A considered as a matrix over the field

of functions. The solution gives a control system q̇ = G𝜇, where the control matrix

G is a 6 × 3 matrix spanned by vector fields g1, g2, g3, where

g1 = cos 𝜃𝜕x + sin 𝜃𝜕y + sin𝜙1𝜕𝜙1
+ sin(𝜙2 +

2𝜋
3)𝜕

𝜙2
+ sin(𝜙3 +

4𝜋
3)𝜕

𝜙3
,

g2 = sin 𝜃𝜕x + cos 𝜃𝜕y − cos𝜙1𝜕𝜙1
− cos(𝜙2 +

2𝜋
3)𝜕

𝜙2
− cos(𝜙3 +

4𝜋
3)𝜕

𝜙3
,

g3 = 𝜕
𝜃
− (1 + cos𝜙1)𝜕𝜙1

− (1 + cos𝜙2)𝜕𝜙2
− (1 + cos𝜙3)𝜕𝜙3

.

It is easy to check that in regular points these vector fields define a (bracket gener-

ating) distribution with growth vector (3, 6). It means that in each regular point the

vectors g1, g2, g3 together with their Lie brackets span the whole tangent space. Con-

sequently, the system is controllable by Chow–Rashevsky theorem. For instance, in

the initial position q = 0 the robot is controllable since we compute

382 A. Návrat and R. Matoušek

span

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 0
0 −1 −2 1 0 −2
√
3
2

1
2 −2 1

√
3 1

−
√
3
2

1
2 −2 1 −

√
3 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≅ ℝ6
.

By [8], the singular points for the trident snake robot, i.e. where the robot is not

controllable, correspond to such positions that either the legs are parallel or the wheel

axles intersect in an instantaneous center of rotation. Obviously, the former singular

positions coincide with the latter if the center of rotation is in infinity. An exam-

ple of a typical singular position is shown in Fig. 3. We have not found any for-

mula for singular points in CGA that would be as simple as in the case of the 3–link

snake [11].

Fig. 3 A singular position

of the robot

Let us remark at the end of this section that the results obtained above using CGA

computation can directly be used to obtain the trident snake dynamics. Namely,

the equations of motion are obtained as Euler–Lagrange equations, where the La-

grangian consists of the kinetic energy only since the robot is planar. Thus we only

need to specify the translational and angular velocities. But the velocity of the body

and angular velocities of body and wheels are obtained straight as derivatives of

generalized coordinates and equation (2) gives the velocity of wheels. Note that al-

though ṗi is a vector in CGA, its square, which appears in the expression for the

kinetic energy, is a number that gives the square of the real (physical) velocity.

4 CLUCalc Implementation

The proposed trident snake control was tested in CLUCalc software [1, 2], which

is designed exactly for calculations in arbitrary predefined geometric algebra. The

following code piece contains the definition of the initial position:

Trident Snake Control Based on Conformal Geometric Algebra 383

// INITIAL POSITION
S0=VecN3(0,0,0);
LB0=VecN3(0,0,1);
R=RotorN3(0,0,1,2*Pi/3);
// Joints
pb10=VecN3(1,0,0);
pb20=R*pb10*~R;
pb30=R*pb20*~R;
// Axes
L10=TranslatorN3(pb10)*LB0*TranslatorN3(-pb10);
L20=R*L10*~R;
L30=R*L20*~R;
// Ends of legs
p10=VecN3(2,0,0);
p20=R*p10*~R;
p30=R*p20*~R;

The initial position is thus recalculated with respect to the controlling parameters

change to get a current position. The code we demonstrate corresponds to the body

and the first leg of the trident snake robot. The other legs are computed in the same

way.

T=TranslatorN3(x,y,0);
// BODY
// Center
S=T*S0*~T;
// Axis
LB=T*LB0*~T;
// Motor
MB=TranslatorN3(LB)*RotorN3(0,0,1,d)*~TranslatorN3(LB);

// FIRST LEG
// Joint
:Blue;
:pb1=MB*T*pb10*~T*~MB;
// Axis
L1=MB*T*L10*~T*~MB;
// Motor
M1=TranslatorN3(L1)*RotorN3(0,0,1,a)*TranslatorN3(-L1);
// End
:Black;
:p1=M1*MB*T*p10*~T*~MB*~M1;

The following three sets of pictures demonstrate the evolution from 0 in the di-

rection of g1, g2 and g3 vector fields.

384 A. Návrat and R. Matoušek

Fig. 4 g1 direction (pictured by CLUCalc)

Fig. 5 g2 direction (pictured by CLUCalc)

Fig. 6 g3 direction (pictured by CLUCalc)

The last picture shows the motion corresponding to the bracket [g1, g2] which is

realized by means of a periodic transformation of the generators g1 a g2:

v(t) = − ε𝜔 sin(𝜔t)g1 + ε𝜔 cos(𝜔t)g2,

where ε = 0.3, 𝜔 = 0.9 and t ∈ ⟨0, 2𝜋∕𝜔⟩ (Figs. 4, 5, 6 and 7).

Fig. 7 [g1, g2] direction

(pictured by CLUCalc)

Trident Snake Control Based on Conformal Geometric Algebra 385

References

1. Hildenbrand, D.: Foundations of geometric algebra computing. Geometry and Computing, vol.

8. Springer, Berlin (2013)

2. Perwass, Ch.: Geometric algebra with applications in engineering. Geometry and Computing,

vol. 4. Springer, Berlin (2009)

3. Zamora-Esquivel, J., Bayro-Corrochano, E.: Kinematics and diferential kinematics of binocu-

lar robot heads. In: Robotics and Automation, ICRA (2006)

4. Selig, J.M.: Geometric fundamentals of robotics. Monographs in Computer Science. Springer,

Berlin (2004)

5. Murray, R.M., Zexiang, L., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation.

CRC Press, Florida (1994)

6. Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: Snake Robots, Modelling, Mecha-

tronics, and Control. Advances in Industrial Control. Springer, Berlin (2013)

7. Gonzlez-Jimnez, L., Carbajal-Espinosa, O., Loukianov, A., Bayro-Corrochano, E.: Robust

pose control of robot manipulators using conformal geometric algebra. Adv. Appl. Clifford

Algebras 24(2), 533–552 (2014)

8. Ishikawa, M.: Trident snake robot: locomotion analysis and control, In: Proceedings IFAC

NOLCOS, pp. 11691174. Stuttgart, Germany (2004)

9. Ishikawa, M., Minami, Y., Sugie, T.: Development and control experiment of the trident snake

robot. In: Proceedings 45th IEEE CDC, pp. 64506455. San Diego, California (2006)

10. Ishikawa, M., Minami, Y., Sugie, T.: Development and control experiment of the trident snake

robot. IEEE/ASME Trans. Mechatron. 15, 915 (2010)

11. Hrdina, J., Návrat, A., Vašík, P.: Control of 3-link robotic snake based on Conformal geometric

algebra preprint (2015)

Author Index

B
Brandejsky, Tomas, 53
Brest, Janez, 77
Burianek, Tomas, 63, 235

C
Canberk, Berk, 27

D
Dalecky, Stepan, 195
Das, Swagatam, 39, 103, 329
Datta, Shounak, 329
Davendra, Donald, 149

E
Etaner-Uyar, A. Sima, 27

F
Fister, Iztok, 77

G
Gazioglu, Emrullah, 27
George, Nithin V., 137
Ghosh, Arka, 103
Gopych, Ivan, 207
Gopych, Petro, 207

H
Hochreiter, Ronald, 181
Horak, Karel, 343
Howley, Enda, 3
Hrabec, Dušan, 17
Hrdina, Jaroslav, 363

J
Jafarian, Ahmad, 269
Jana, Nanda Dulal, 39
Janostik, Jakub, 149
Jariwala, Rushi, 137
Jarušek, Robert, 317

K
Klecka, Jan, 343
Kojecky, Lumir, 171
Kotyrba, Martin, 317

M
Mašek, Petr, 353
Mason, Karl, 3
Matoušek, Radomil, 375
Mazal, Jan, 17
Measoomy Nia, S., 269
Misak, Stanislav, 63, 235
Mullick, Sankha Subhra, 103

N
Návrat, Aleš, 375

O
Oplatkova, Zuzana Kominkova, 149, 291

P
Patidar, Rohan, 137
Paul, Sujoy, 329
Pluhacek, Michal, 127, 149
Poláková, Radka, 89
Popa, Călin-Adrian, 221, 245
Popela, Pavel, 17
Pospichal, Jiri, 281

© Springer International Publishing Switzerland 2015
R. Matoušek (ed.), Mendel 2015, Advances in Intelligent Systems
and Computing 378, DOI 10.1007/978-3-319-19824-8

387

R
Roupec, Jan, 17
Růžička, Michal, 353

S
Šeda, Miloš, 159
Šeda, Pavel, 159
Senkerik, Roman, 127, 149, 291
Sil, Jaya, 39
Singh, Elijah Blessing, 257
Škrabánek, Pavel, 305
Srinivasan, R., 257
Stodola, Petr, 17
Stuchly, Jindrich, 63, 235

T
Tepeh, Aleksandra, 77
Tvrdík, Josef, 89

V
Vantuch, Tomas, 63, 235
Vašík, Petr, 363
VinayKumar, Kotte, 257
Volna, Eva, 317

Z
Zboril, Frantisek V., 195
Zelinka, Ivan, 127, 149, 171

388 Author Index

	Preface
	Organization
	Contents
	Part IEvolutionary Computing,Swarm Intelligence
	Avoidance Strategies in Particle Swarm Optimisation
	1 Introduction
	2 Background
	2.1 Standard Particle Swarm Optimisation
	2.2 PSO and Worst Locations

	3 PSO with Avoidance of Worst Locations
	3.1 Proposed Equation
	3.2 Selection of Acceleration Coefficients
	3.3 Selection of Constriction Value
	3.4 Evaluation

	4 Results
	4.1 Parameter Selection
	4.2 PSO AWL Vs Standard PSO
	4.3 PSO AWL Vs Previous Implementations

	5 Discussion
	5.1 Parameter Selection
	5.2 PSO AWL Vs Standard PSO
	5.3 Function Type Performance
	5.4 PSO AWL Vs Previous Implementations

	6 Conclusion
	References

	Two-Stage Stochastic Programming for Transportation Network Design Problem
	1 Introduction
	2 Two-Stage Stochastic Transportation Network Design Model
	3 Computational Example
	3.1 Hybrid Algorithm
	3.2 Results
	3.3 Conclusions and Further Research

	References

	A Novel Hyper-Heuristic Approach for Channel Assignment in Cognitive Radio Networks
	1 Introduction
	2 Background
	2.1 Hyper-Heuristics
	2.2 Adaptive Iterated Construction Search

	3 The Channel Assignment Problem
	3.1 Problem Definition
	3.2 Solution Approach
	3.3 Proposed Algorithm

	4 Experiments
	4.1 Experiment Design
	4.2 Results and Discussions

	5 Conclusion and Future Work
	References

	Improved Bees Algorithm for Protein Structure Prediction Using AB Off-Lattice Model
	1 Introduction
	2 AB Off-Lattice Model
	3 Bees Algorithm (BA)
	3.1 Waggle Dance
	3.2 Local Search
	3.3 Global Search
	3.4 Population Update

	4 Adaptive Polynomial Mutation Based BA (APM-BA)
	4.1 Adaptive Polynomial Mutation (APM)

	5 Experiments and Results
	5.1 Artificial Protein Sequence
	5.2 Real Protein Sequence
	5.3 Parameter Settings and Initialization
	5.4 Results for Artificial Protein Sequences
	5.5 Results for Real Protein Sequence

	6 Conclusions
	References

	5 Limited Randomness Evolutionary Strategy Algorithm
	Abstract
	1 Introduction
	2 Used Evolutionary Strategy Algorithm
	3 Replacement of Random Number Generator by Non Periodic or Long-Periodic Functions
	4 Identification of Lorenz Attractor Equations Parameters
	5 Identification of Rabinovich-Fabrikant System Attractor Parameters
	6 Conclusion
	References

	Data Mining Application on Complex Dataset from the Off-Grid Systems
	1 Introduction
	2 Experiment Design
	2.1 Feature's Subset Selection
	2.2 C4.5 Decision Tree
	2.3 Genetic Programming

	3 Adjustments and Results
	4 Conclusions
	References

	Population Size Reduction in Particle Swarm Optimization Using Product Graphs
	1 Introduction
	2 Product Graphs
	3 The Particle Swarm Optimization
	4 The Proposed PSOPG Algorithm
	5 Experiments
	5.1 Benchmark Function Suite
	5.2 Results
	5.3 Discussion

	6 Conclusion
	References

	Cooperation of Evolutionary Algorithms: A Comparison of Several Hierarchical Models
	1 Introduction
	2 Model of Cooperation
	3 Description of Algorithm Selected to Cooperation
	3.1 CDE Algorithm, Version B6e6rl
	3.2 SHADE
	3.3 L-SHADE
	3.4 CMA-ES

	4 Experiments
	5 Results
	6 Conclusion
	References

	9 A Switched Parameter Differential Evolution for Large Scale Global Optimization -- Simpler May Be Better
	Abstract
	1 Introduction
	2 The DE Algorithm
	2.1 Initialization
	2.2 Mutation
	2.3 Crossover
	2.4 Selection

	3 The Proposed Method
	4 Experiments and Results
	5 Conclusion
	References

	10 The Initial Study on the Potential of Super-Sized Swarm in PSO
	Abstract
	1 Introduction
	2 Particle Swarm Optimization Algorithm and Population Size
	3 Experiment Setup
	4 Results
	5 Results Discussion
	6 Conclusion
	Acknowledgments
	References

	A Levy Interior Search Algorithm for Chaotic System Identification
	1 Introduction
	2 Levy Interior Search Algorithm
	3 Simulation Study
	3.1 Case A: Benchmark Test Functions
	3.2 Case B: Parameter Identification in Chaotic Systems

	4 Conclusions
	References

	12 Hybridization of Adaptivity and Chaotic Dynamics for Differential Evolution
	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Differential Evolution
	4 The Concept of Chaotic jDE
	5 Chaotic Maps
	6 Results
	7 Conclusion
	Acknowledgements
	References

	13 A Minimisation of Network Covering Services in a Threshold Distance
	Abstract
	1 Introduction
	2 Problem Formulation
	2.1 Special Cases

	3 Computational Results
	3.1 Genetic Algorithm
	3.2 Simulated Annealing

	4 Practical Aspects
	5 Conclusions
	References

	CUDA-based Analytic Programming by Means of SOMA Algorithm
	1 Introduction
	2 Experiment Design
	2.1 NVIDIA CUDA
	2.2 Code Design on the GPU

	3 Simulations and Results
	4 Conclusion
	References

	Computing Trading Strategies Based on Financial Sentiment Data Using Evolutionary Optimization
	1 Introduction
	2 Financial Sentiments
	3 Evolutionary Investment Strategy Generation
	4 Numerical Results
	4.1 Data
	4.2 Results of the Evolutionary Optimization
	4.3 Classical Portfolio Optimization
	4.4 Performance Comparison

	5 Conclusion
	References

	Part IINeural Networks, Self-organization,Machine Learning
	An Approach to ANFIS Performance
	1 Introduction
	2 ANFIS
	2.1 Description of Layers
	2.2 Parameters and Learning

	3 Proposed Modifications of ANFIS
	3.1 Different Number of Fuzzy Sets for Each Input
	3.2 Data Normalization
	3.3 Fuzzy Sets Initialization
	3.4 Changing Learning Rate κ

	4 Experiments
	4.1 Function Approximation
	4.2 Controlling Discrete System

	5 Conclusion
	References

	17 Values and Bayesian Probabilities of Mental States from BSDT PL Analysis of Memory ROCs
	Abstract
	1 Introduction
	2 BSDT PL and Phenomenology Formalization
	3 Elements of BSDT PL Epistemology
	3.1 BSDT PL Things, Living Organisms, Objects, and Their Features
	3.2 BSDT PL Semi-representational Memory and First-Person Knowledge
	3.3 Symbols, Knowledge Understanding, and Third-Person Knowledge
	3.4 Knowledge Conditioning, Legacies of Evolution and Development
	3.5 The Significance of First-Person Knowledge and the Probability of Its Use

	4 Numerical Validation of BSDT PL Epistemology
	4.1 First-Person Knowledge Manifestation in BSDT PL ROCs and BDPs
	4.2 Values and Bayesian Probabilities of Mental States Found from ROCs
	4.3 BSDT PL Measure of Subjectivity

	5 Conclusions
	References

	Scaled Conjugate Gradient Learning for Complex-Valued Neural Networks
	1 Introduction
	2 Conjugate Gradient Algorithms
	3 Scaled Conjugate Gradient Algorithm
	4 Experimental Results
	4.1 Fully Complex Synthetic Function I
	4.2 Fully Complex Synthetic Function II
	4.3 Split Complex Synthetic Function I
	4.4 Nonlinear Time Series Prediction

	5 Conclusions
	References

	Off-Grid Parameters Analysis Method Based on Dimensionality Reduction and Self-organizing Map
	1 Introduction
	2 Dimensionality Reduction
	2.1 Principal Component Analysis

	3 Self Organizing Map
	4 SOM Clustering Using K-Means Algorithm
	5 Proposed Off-Grid Parameters Analysis Method
	6 Experiments and Results
	7 Conclusion and Future Work
	References

	Matrix-Valued Neural Networks
	1 Introduction
	2 Matrix-Valued Neural Networks
	3 Experimental Results
	3.1 Synthetic Function Approximation 1
	3.2 Synthetic Function Approximation 2
	3.3 Synthetic Function Approximation 3

	4 Conclusions
	References

	A Feature Clustering Approach for Dimensionality Reduction and Classification
	1 Introduction
	2 Research Challenges in Handling High Dimensional Data
	2.1 Handling Noise in High Dimensional Data
	2.2 Identifying Representatives for Clusters
	2.3 Reduce Dimensionality to Handle High Dimensional Data
	2.4 Individuate Clusters and Noise to Handle Outliers
	2.5 Defining Suitable Distance Measure

	3 Proposed Approach
	3.1 Feature Clustering Algorithm for Dimensionality Reduction Algorithm 1
	3.2 Case Study

	4 Classification - Case Study
	4.1 Classification Approach Using Feature Cluster Matrix - Algorithm2
	4.2 Classification of a New Transaction or Document

	5 Conclusions
	References

	22 An Application of ANNs Method for Solving Fractional Fredholm Equations
	Abstract
	1 Introduction
	2 Illustration of the Method
	2.1 A Brief Introduction to ANNs

	3 Solving the F-FIDE Problem
	4 Numerical Examples
	5 Conclusion
	References

	23 Solving Circle Packing Problem by Neural Gas
	Abstract
	1 Introduction
	2 Neural Gas Approach to Circle Packing
	3 Experimental Results
	4 Conclusions
	Acknowledgments
	References

	24 Cost Functions Based on Different Types of Distance Measurements for Pseudo Neural Network Synthesis
	Abstract
	1 Introduction
	2 Distance Measurements
	3 Analytic Programming
	4 Artificial Neural Networks
	5 Problem and Iris Dataset Description
	6 Results
	7 Conclusion
	Acknowledgment
	References

	Part IIIIntelligent Image Processing,Bio-Inspired Robotics
	Labyrinth Arrangement Analysis Based on Image Processing
	1 Introduction
	1.1 Basis of the Path-Planning
	1.2 The Labyrinth Building Kit and Camera System

	2 The Analysis of a Labyrinth Layout
	2.1 Image Preprocessing
	2.2 The Image Transformation
	2.3 Extraction of Auxiliary Information
	2.4 Analysis of the Labyrinth Layout

	3 Conclusion
	References

	26 Neural Network Approach to Image Steganography Techniques
	Abstract
	1 Neural Network Classification Techniques Used on Steganography
	2 Theoretical Background
	2.1 Fourier Transforms for Image Processing
	2.2 Blum Blum Shub Generator
	2.3 Backpropagation Neural Network

	3 The Proposed Steganographic System
	3.1 The Training Set
	3.2 The Modified Backpropagation Rule
	3.3 Experimental Outcomes

	4 Conclusions
	Acknowledgments
	References

	Rough-Fuzzy Collaborative Multi-level Image Thresholding: A Differential Evolution Approach
	1 Introduction
	2 Image as Rough Sets with Fuzzy Membership Values: Proposed Method
	3 Optimization
	3.1 Tchebycheff Approach
	3.2 Differential Evolution

	4 Experimental Results
	4.1 Choice of Granule Size
	4.2 Visual and Quantitative Comparisons
	4.3 Advantage of Tchebycheff Approach
	4.4 Advantage of Using Differential Evolution

	5 Conclusion
	References

	28 Fusion of 3D Model and Uncalibrated Stereo Reconstruction
	Abstract
	1 Introduction
	2 Algorithm Outline
	3 Uncalibrated Stereo Reconstruction
	3.1 Fundamental Matrix
	3.2 Disparity Map
	3.3 Triangulation

	4 Data Registration
	5 Coloring 3D Model
	5.1 Projection Matrices
	5.2 Visibility Check
	5.3 Color Fusion

	6 Conclusion
	Acknowledgments
	References

	29 Visual SLAM Based on Phase Correlation and Particle Filters
	Abstract
	1 Introduction
	2 Mapping
	2.1 Phase Correlation
	2.2 Map Stitching

	3 Localization
	4 Practical Experiments
	4.1 Two Frames Stitching Experiment
	4.2 Map Stitching Experiment
	4.3 Localization Experiment

	5 Conclusions
	Acknowledgments
	References

	Notes on Differential Kinematics in Conformal Geometric Algebra Approach
	1 Introduction
	2 Conformal Geometric Algebra
	3 Point Pair Computations
	4 Differential Kinematics
	References

	Trident Snake Control Based on Conformal Geometric Algebra
	1 Introduction
	2 Conformal Geometric Algebra -- CGA
	3 Control Theory
	4 CLUCalc Implementation
	References

	Author Index

