
Standardization of Generic Architecture
for Autonomous Driving: A Reality Check

C. Guettier, B. Bradai, F. Hochart, P. Resende, J. Yelloz
and A. Garnault

Abstract Autonomous driving requirements regarding safety, redundancy and
performance lead to an increasing number of on-board heterogeneous equipments
(sensors, actuators and processing units). Systems with the highest levels of
autonomy must handle a large number of real-life situations, some of them being
quite challenging. Interactions between sensors, perception, planning, control and
actuators are fundamental to ensure operational efficiency while providing both
proactive safety and timeliness execution. To address these constraints, appropriate
design patterns are required to implement complex and robust decisional archi-
tectures. As a matter of fact, current system vehicle standards do not address these
design neither patterns nor their underlying complexity. Based on various experi-
ences in defense and civilian domains, we will present a critical review of ongoing
standard developments and propose a generic design pattern to qualify autonomous
vehicles architectures.

Keywords Autonomous architecture � Layered planning � Standardisation �
Safety

Glossary

ADAS Advanced Driver Assistance System
ADL Architecture Description Language
AUTOSAR Automotrive Open System Architecture
DDS Data Distribution Service
GVA Generic Vehicle Architecture
ISO26262 Road Vehicles—Functional Safety
JAUS Joint Architecture for Unmanned System
PLEVID Platform Level Extended Video Standard

C. Guettier (&) � F. Hochart � J. Yelloz
SAFRAN—Sagem, 100 Avenue de Paris, Massy, France
e-mail: christophe.guettier@sagem.com

B. Bradai � P. Resende � A. Garnault
Valeo Driving Assistance, 34, Rue Saint André, 93012 Bobigny, France

© Springer International Publishing Switzerland 2016
J. Langheim (ed.), Energy Consumption and Autonomous Driving,
Lecture Notes in Mobility, DOI 10.1007/978-3-319-19818-7_7

57



ROS Robot Operating System
UGV Unmanned Ground Vehicle
US NREC US National Robotic Engineering Center

1 Introduction

An autonomous car, also known as a driverless car, self-driving car, or robotic car is
an autonomous road vehicle capable of fulfilling the transportation capabilities of a
traditional car with minimal human input [1]. As an autonomous vehicle, it is
capable of sensing its environment, and to perform navigation, guidance and
control. Autonomous cars technology can improve our life with reducing both car
accidents and traffic congestion. It can also discharge the driver from the monot-
onous daily driving, during which he can perform more productive tasks or just
relax. From market point of view and end user acceptance, after automated parking
manoeuvres and autonomous emergency braking, the next ADAS (Advanced
Driver Assistance System) functions go one step further toward the automated
driving vehicle (see Fig. 1).

Similar functionalities are expected for first responders, civilian security and
defense autonomous vehicles. In those areas, Unmanned Ground Vehicles
(UGV) must fulfill complex missions in spite of an unknown environment, resource
constraints and with limited human interventions.

These autonomous systems must strongly adapt to their environment, whatever
the circumstances are. The architecture design has to deal with perception, data
fusion, mission planning and control. It must also scale up according to time frames
and environment complexity. Minimizing human intervention in the system loop
exacerbates the classical requirements of safety and availability. Also, such systems
need close loop interleaving between embedded operation, situation awareness,
planning and decision with finer grain real time control and command.

Various architectures have been developed by research teams in the framework
of the DARPA Grand Challenges (2004–2007) [3] and in many European funded
projects like HAVE-It [4] and V-Charge [5]. In Defense and Aerospace, many
relevant architectures have been also proposed by NASA (see Remote Agent

Emergency 
Braking

Automated 
Parking

Traffic Jam
Pilot

Low acceptance High acceptance

Fig. 1 End user acceptance of new functions

58 C. Guettier et al.



Architecture [9]) or ESA [10], and the US NREC, and through the UGV Demo
I/II/III.

After presenting a classical decisional architecture in Sect. 2, the paper proposes
to review existing standards in both civilian and defense automation in Sect. 3. The
existing standards regarding land vehicles automation may be fundamentally
divided in two types: architecture driven (AUTOSAR, GVA, JAUS, ROS) or
functional safety requirements (ISO26262, or its counterpart in aerospace, the
DO178). The impact of a decisional architecture for autonomous driven is discussed
throughout a critical analysis in Sect. 4.

2 Layered Decision Making

2.1 Motivation

Automated driving is a global target, gathering different functional levels (see
Fig. 2), that should be introduced step by step, according to the current legal
framework, market and technology maturity [2].

Currently the most advanced automated driving level allowed by legal frame-
work is Level 2. It includes temporary longitudinal and lateral control of the vehicle
based on sensors and software logic. Although the vehicle is driven automatically
the driver shall permanently supervise the good operation of the system and be in
position to take immediate control if required [2].

Higher level of automation (Level 3 of automation or Conditional Automation)
is currently being developed in order to further improve road safety, and driving
comfort. For instance, in some situations, the automation can help the driving in
demanding tasks like in a traffic jam or in monotonous tasks like in a long journey
drive in a motorway. These functions are highly expected by end user.

Fig. 2 Automated driving levels

Standardization of Generic Architecture … 59



For the highest levels of Automation (Levels 4/5 or High/Full Automation),
vehicle management needs to tackle different levels of situational awareness. At one
extreme, localisation and real-time mapping of the proximal environment is
required for fine manoeuvre. At the other extreme, the global traffic conditions are
required to assess mission or journey feasibility. This enables a complete awareness
of the situation that can be provided to other decision making and control
components.

Most of the technologies are available to construct a situational awareness either
for the proximal environment or for the global mission. Indeed, the vehicle and
driver have access today to networking resources that enhance the knowledge about
events (e.g. road blocks) that may affect the global mission.

2.2 Layered Planning Architecture

Due to the different problem scales, multiple planning levels are necessary to
guarantee a consistent autonomous behaviour. The upper level of the planning deals
with long term environment conditions and mission objectives. The lower level
manages short term contingencies and local driving objectives (See [10, 11] for
applications in aerospace autonomy). An intermediate level deals with routes and
navigability. In this approach, each level has the ability to solve a planning problem
at a given scale.

3 Standardization Efforts

3.1 Generic Vehicle Architecture (GVA)

GVA is an initiative from the UK MoD to standardize the architecture of military
vehicles in order to reduce the total cost of ownership of a vehicle [12]. It includes
maintenance, vehicle upgrades and evolutions, in order to take into account the
vehicle heterogeneity. The key main principles or properties of the architecture are
the following:

• Architecture is open, and can use of third-party software
• Scalability: considering the number and variety of equipment’s connected to the

vehicle bus
• Modularity: new sensors or even new services shall be easily added
• Reduction of integrations costs

The scope of the GVA is to standardize electrical; mechanical; human-machine
and software interfaces. The overall architecture is structured around an indepen-
dent communication bus for meta-information. The modularity of the architecture is

60 C. Guettier et al.



based on a Service Oriented Architecture (SOA) approach. The architecture consists
of several communication buses off different levels:

• 802.3 Ethernet bus for best effort traffic
• Time trigger Ethernet for deterministic traffic,
• MILCAN bus
• Energy bus
• Software bus based on the Data Distribution Service middleware (DDS) and the

GVA data model (Land data model)
• Video bus based the PLEVID standard (video over IP)

End users equipment can also be connected through USB.
The middleware DDS is based on the Publish/Subscribe paradigm. Compared to

others middleware, there is no point of failure and the transport layer is highly
configurable. The weakness of DDS is that it covers only the transport layer.

There is no dedicated document to describe Safety requirements, but this class of
properties is addressed in the system engineering method. Nevertheless, Health and
Usage Monitoring of automation System techniques contribute to the safety of the
overall system.

3.2 JAUS Standardisation

The Joint Architecture for Unmanned Systems (JAUS) standardisation process
comprises a set of standards focusing on both system and operational independence
of the robot [8]. JAUS comprises different sets of models, architecture designs,
requirements and interfaces at vehicle, mission and systems levels. JAUS can be
seen as a layered standard:

• Capabilities from the mission/user: JAUS SAE AIR 5665 provides an
Architecture Framework for Unmanned Systems,

• Application level interfaces: SAE AS 5710 and SAE AS 6009 define those
interfaces with unmanned system components.

• The JAUS Service Interface Definition Language (JSIDL, SAE AS 5684).
• The Link Layer level, JAUS Transport Specification (SAE AS 5669) defines

transmission protocol over standard networks.
• Other JAUS standardisation processes define ontologies for architecture design

(JAUS Service Interface Definition Language) and components as well as ref-
erence architecture (SAE Aerospace Information Report AIR5315—Generic
Open Architecture GOA).

In JAUS, both safety and decision making requirements are not fully addressed
and it is not possible to guarantee the vehicle autonomy behaviour. The JAUS
standardisation process is not very active.

Standardization of Generic Architecture … 61



3.3 AUTOSAR

The increasing evolution of the vehicle applications leads automotive systems to a
high level of complexity. In order to manage this issue, a development partnership
of automotive manufacturers, suppliers and tool vendors has been organised to
develop the Automotive Open System Architecture [6]. AUTOSAR objective is to
create and establish an open and standardized automotive software architecture
whose main goals are:

• Scalability to different vehicle and platform variants
• Transferability of software throughout network
• Support of different functional domains
• Increased use of COTS products
• Integration of different modules from multiple suppliers
• Support of applicable automotive international standards and state-of-the-art

technologies
• Safety mechanisms considerations as well as dependability

To improve cost-efficiency and reusability, AUTOSAR separates application
software from the associated hardware.

To achieve the technical goals of modularity, scalability, transferability and
re-usability of functions, AUTOSAR provides a common software infrastructure for
automotive systems of all vehicle domains based on standardized interfaces for the
different layers as shown in the Fig. 3.

AUTOSAR basic concepts are:

• Standardization of the interfaces, application software components description,
basic software and hardware abstraction layers

• Description of system and processing constraints
• Virtual functional bus which contains all communication mechanism and

interfaces
• Functional mapping over processing resources and generation of their associated

runtime environment and basic software configuration

AUTOSAR supports ISO 26262 standard and offers various safety mechanisms
such as:

• End to end protection to ensure integrity of data transmitted through commu-
nication links

• Memory partitioning to prevent software components from interferences
between them

• Basic software module defense behaviour to prevent from unauthorized service
calls

• On-line Program flow monitoring to check correct software execution sequences
• Timing determinism/protection
• Dual microcontroller architecture

62 C. Guettier et al.



AUTOSAR combines the interest of an architecture description language
(ADL) with partition-based execution, such as the ARINC 653 in aeronautic.

3.4 ROS

The Robot Operating System (ROS) is an open source distributed robotics platform
designed to accelerate robotics research and development, including commercial
application development. ROS is a high-quality, actively maintained,
well-documented software platform intended to support the academic and industrial
robotics communities. ROS includes reusable components that implement a variety
of low- and high-level functionality, such as base navigation, mapping, visual
odometry, arm planning and control, data visualization, object recognition, and
task-level execution. ROS supports a number of research robots and common robot
simulators.

Fig. 3 AUTOSAR architecture

Standardization of Generic Architecture … 63



All ROS software is released under an Open Source license, and the great
majority of it is licensed under a BSD-style license that allows users and companies
to build applications on top without licensing constraints.

ROS has three levels of concepts: the Filesystem level, the Computation Graph
level, and the Community level.

The Filesystem level concepts are ROS resources that you encounter on disk,
such as Packages, Manifests, Stacks, Stack Manifests, Message Types and Service
Types.

The Computation Graph is the peer-to-peer network of ROS processes that are
processing data together. The basic Computation Graph concepts of ROS are
Nodes, Master, Parameter Server, Messages, Services, Topics, and Bags, all of
which provide data to the Graph in different ways. These concepts are implemented
in the ros_comm stack.

Example of an “images” topic publisher/subscriber procedure using the ROS
Master registration.

The ROS Community Level concepts are ROS resources that enable separate
communities to exchange software and knowledge. These resources include
Distributions, Repositories, ROS Wiki, Bug Ticket System, Mailing Lists, ROS
Answers, and Blog.

Open topics like the support for fail-operational execution with dependable
communication and firm real-time execution, model-driven development, quality
management, safety qualification, cross-platform portability, and joint industrial

64 C. Guettier et al.



roadmap for development are already being addressed by the large ROS commu-
nity, ROS for Products and Industrial ROS.

The following Fig. 4 by BMW Car IT GmbH shows the architectural building
blocks for autonomous driving and how they could be distributed among the two
frameworks, AUTOSAR and ROS.

4 Critical Analysis

4.1 Towards a Decisional Architecture Standard?

Several architectures have been specially designed and implemented to control
autonomous road vehicles. A huge variety of functional decisional components has
been proposed and demonstrated. Many of these architectures are often associated
to a given development platform, lack maintenance and have little or no contri-
bution to existing standards.

Indeed very few architectures have reached an industrial stage and no common
design patterns for both functions and interfaces were established as an undeniable
standard.

Fig. 4 BMW architectural building blocks for autonomous driving

Standardization of Generic Architecture … 65



4.2 System Properties and Problems

The vehicle middleware has to guarantee the following properties:

• The safety property corresponds to the expectation that a system does not, under
defined conditions, lead to a state in which human life or the environment is
endangered

• The liveness property ensures that at some time the execution of a given tasks
starts, progresses or ends

• The timeliness property adds timing requirements to the delivery of messages
(latencies, delays, deadlines)

Today, most middleware, including DDS, do not address all these properties in a
certifiable manner. Other drawback is that middleware’s focus only on one layer
(transport or just over the transport layer), the links with the lower layers are not
specified (for instance MAC Layer or Service Admission). The list of problems to
be resolved and for which it is necessary to prove the behaviour according to
properties includes:

• Concurrency control algorithms, designed so as to run asynchronously over any
number of processors; in spite of occurrence of partial failures at run-time.

• Synchronization of replicated processes whenever some failure occurs.
• Real-time process scheduling, where tasks that are subject to activation models

and worst case execution time must fulfill deadlines.

These problems are amplified by decision making tasks (situation awareness,
planning), which involve asynchronous data accesses and for which execution time
are difficult to predict.

Not too surprisingly, current standardization of the state-of-the-art regarding
these issues is limited. In most of autonomous architectures, these problems are
related and addressed at the application layer and no generic design patterns have
been proposed.

Concerning the ISO26262, the certification process can impose these properties.
In general, those properties are defined by the client, which is validated using
compliance tests. Some solutions are already proposed by providers, in general
following AUTOSAR architecture standards.

4.3 Algorithm Complexity, Completeness and Determinism

One of the major problems is to bound execution time of the various tasks running
in the systems. This is required for schedulability analysis such with ADL, or in
some case to prove other system properties. Introducing situation awareness and
planning algorithms lead to Non-Polynomial complexity. The designer must face
the following paradigm:

66 C. Guettier et al.



• Non complete polynomial heuristic may be proposed, but the system may not
provide a solution corresponding to the operational situation.

• Complete algorithms are proposed, but since they process tree search, it is
difficult to provide deterministic delays (although, in some case, the operational
semantic of the algorithm can be deterministic).

These problems have never been addressed in any standards able to deal with
autonomous systems.

4.4 A New Systems Engineering Domain?

Each standard has its own scope and drawbacks and evolves in its own direction.
No standard completely covers the domain. For an architecture driven approach, the
standardization process must consider all relevant design patterns from the state of
art in autonomous systems, for example the ones quoted in the paper. For a
requirement driven approach; Safety Integrity Level (SIL) should include the for-
mulation of new properties as well as assumptions that are specific to decision
making tasks.

Current standardisation approaches can be positioned in the Table 1.

5 Conclusion

This paper has provided an overview of the ability of current standards to take into
account decision making architectures such as layered planning for autonomous
systems (levels 4 and 5 of automation).

It seems that autonomous systems must integrate a distributed executive that
would contain some of the algorithms and protocols which solve problems briefly
introduced in the above. This should yield to new practices to guarantee safety of
autonomous functionalities.

Acknowledgments The authors acknowledge Safran and Valeo and their management for their
full support in conducting this work.

Table 1 Standards comparison

Type Difficulties

GVA /DDS Architecture driven Autonomy/safety

JAUS Architecture driven Decision making/safety; deprecated

AUTOSAR Architecture driven Decision making

ROS Middleware Safety/portability

ISO 26262 Requirements driven Autonomous systems complexity

Standardization of Generic Architecture … 67



References

1. http://en.wikipedia.org/wiki/Autonomous_car
2. Groult X, Picron V, Vejarano C, Barth H (2014) Active safety for the mass market.

SIA VISION 2014
3. Seetharaman G, Lakhotia A, Blasch E (2006) Unmanned vehicles come of age: the darpa

grand challenge. Computer 39(12):26–29
4. http://www.haveit-eu.org/
5. http://www.v-charge.eu/
6. http://www.autosar.org/
7. Heinecke H et al (2006) AUTOSAR—Current results and preparations for exploitation. In:

Euroforum conference May 3, 2006
8. Rowe S, Wagner R (2008) An introduction to the joint architecture for unmanned systems

(JAUS). Cybernet technical reports
9. http://ti.arc.nasa.gov/tech/asr/planning-and-scheduling/remote-agent/experiment/
10. Bornschlegl E, Guettier C, Poncet J-C (2000) Automatic planning for autonomous spacecraft

constellations. In: Proceedings of the 2nd international NASA workshop on planning and
scheduling for space, San Francisco, California, March 2000

11. Guettier C, Poncet J-C (2001) Multi-levels planning for spacecraft autonomy. In: Proceedings
of the international symposium on artificial intelligence, robotics and automation, Montreal,
Canada, June 2001

12. UK Ministry of Defence, “Generic Vehicle Architecture”, NATO Defence Standard 23–09,
Issue 1 Publication Date: 20 August 2010

68 C. Guettier et al.

http://en.wikipedia.org/wiki/Autonomous_car
http://www.haveit-eu.org/
http://www.v-charge.eu/
http://www.autosar.org/
http://ti.arc.nasa.gov/tech/asr/planning-and-scheduling/remote-agent/experiment/

	7 Standardization of Generic Architecture for Autonomous Driving: A Reality Check
	Abstract
	1 Introduction
	2 Layered Decision Making
	2.1 Motivation
	2.2 Layered Planning Architecture

	3 Standardization Efforts
	3.1 Generic Vehicle Architecture (GVA)
	3.2 JAUS Standardisation
	3.3 AUTOSAR
	3.4 ROS

	4 Critical Analysis
	4.1 Towards a Decisional Architecture Standard?
	4.2 System Properties and Problems
	4.3 Algorithm Complexity, Completeness and Determinism
	4.4 A New Systems Engineering Domain?

	5 Conclusion
	Acknowledgments
	References


