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10.1 Introduction

Although much effort has been devoted to simulating disturbance processes (see
Chaps. 2-7) and their interactions (Chaps. 8 and 9), less attention has been paid
to the simulation of forest recovery immediately following disturbance(s). Forest
recovery is the process of re-establishment of tree cover (aka stand re-initiation)
and associated ecological functions on disturbed sites and is therefore a direct con-
nection between disturbance and resultant stand development. “Forest recovery”
can be a value-laden term as “recovery” implies greater benefit accrued from a
return to a tree-dominated forest condition. However, recent work on early seral
forest ecosystems (commonly defined as the period between a substantial dis-
turbance causing >50 % canopy mortality and canopy closure) has called atten-
tion to the special values associated with this stage (King et al. 2011; Swanson
et al. 2011). Although often regarded as fleeting or transient—often to the point
of exclusion within forest simulations—forest recovery can be protracted (Poage
et al. 2009; Freund et al. 2014) due to a variety of factors often ignored within
the context of modeling forested systems. Regardless of implicit values or dura-
tion, understanding the process of forest recovery is critical to forecasting forested
landscapes and disturbance dynamics because long-term successional trajectories
depend on this period of regeneration and altered biogeochemical fluxes.

The duration of forest recovery may determine population dynamics of spe-
cies that require mature stands. Large areas in early succession may fragment
landscapes, especially when few biological legacies remain, a high contrast with
adjacent mature forest is created, and/or high interspersion with the mature for-
est matrix is created (Franklin and Forman 1987; Bailey 2007). In landscapes or
regions where late seral habitats are considered limiting, it has been proposed that
early seral systems be aggressively reforested to facilitate a return to closed-can-
opy conditions (Sessions et al. 2004).

Early seral habitat is itself critical for many species and is subject to frag-
mentation as a result of land use changes and alterations to disturbance regimes
(Litvaitis 1993; Miller and Hammond 2007). A complete review is beyond the
scope of this chapter, but some examples of the characteristics and importance of
early seral habitat include:

e Dominance of broadleaf vegetation, including forb, shrub, and tree forms (espe-
cially important in conifer-dominated zones; Hagar 2007).

e Forage for several ungulate species (Miller 1970; Irwin and Peek 1983; Nyberg
and Janz 1990; Alldredge et al. 2001; Kie et al. 2003).

e Habitat for moths and butterflies (Pyle 2002; James and Nunnallee 2011),
including many species of conservation concern (Miller and Hammond 2007).

e Structural and trophic resources for many bird species (Meslow 1978;
Fontaine et al. 2009; Betts et al. 2010), including in forest industry landscapes
(Bosakowski 1997; Keller et al. 2003) or landscapes with clearcuts (Vitz and
Rodewald 2006). Woodpeckers and their allies (family Picidae) frequently


http://dx.doi.org/10.1007/978-3-319-19809-5_2
http://dx.doi.org/10.1007/978-3-319-19809-5_7
http://dx.doi.org/10.1007/978-3-319-19809-5_8
http://dx.doi.org/10.1007/978-3-319-19809-5_9

10 Simulating Forest Recovery Following Disturbances ... 265

benefit during the early stage, as their insect prey increases dramatically with
the abundance of snags and down woody debris (Hutto 1995).

e Abundance of fruiting and flowering vegetation, creating improved forage for
many vertebrates and invertebrates, for example bears and their seasonal use of
fruiting shrubs (such as Vaccinium and Shepherdia) in disturbed areas (Zager
et al. 1983; Hamer 1996; Samson and Huot 1998; McLellan and Hovey 2001).

Early seral forests often exhibit a high degree of complexity whereby there is
sensitivity to initial conditions that magnifies long-term uncertainty (Fig. 10.1).
Such complexity is generated by several factors, including the spatial hetero-
geneity associated with the original disturbance (Foster et al. 1998), size of the
disturbance event (Turner et al. 1997; Sturtevant et al. 2014), the behaviors of col-
onizing organisms (Halpern 1989), the characteristics and spatial pattern of bio-
logical legacies of the pre-disturbance forest ecosystem (Franklin et al. 2000), and
smaller-scale disturbance processes during the forest recovery period itself (Lutz
and Halpern 2006) (Fig. 10.2). Critically, post-disturbance management typically
reduces ecological complexity with consequences for the pace of forest recov-
ery. As a result of these factors and their interactions—each operating at unique
scales—uncertainty is high with the potential for divergent future stand trajectories
(Frelich 2002).

The net outcome is that forest recovery presents numerous challenges to accu-
rately simulating the relevant processes and their consequences at appropriate
scales. Many important drivers (e.g., high live canopy fuel density, animal den-
sity and herbivory) are widely ignored when modeling forest development. In
this chapter, we first review the critical drivers of early succession and attendant
processes. Next we review the modeling approaches to forest recovery applied to
date. Then we provide two examples of forest disturbance and recovery simula-
tions, each emphasizing a unique but critical perspective on the topic. Finally, we
assess the challenges for improving simulation efforts and provide our thoughts on
necessary steps forward.
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Fig. 10.1 A forest stand may follow one of many possible trajectories depending on initial con-
ditions, disturbance (type, intensity, size, and heterogeneity), biological legacies, recolonization,
and management. Sensitivity to initial conditions and long-term uncertainty defines a complex
process. The y-axis may represent many defining characteristics of closed-canopy forests. The
blue line represents delayed recovery which may favor early successional wildlife
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Fig. 10.2 The composition, structure, and function of early seral pre-forest ecosystems depend
on the combination of processes associated with behavior of the generating disturbance (red
arrows) and processes that occur subsequent to the disturbance (green arrows)

10.2 Drivers of Forest Recovery

Any attempt to simulate forest disturbance and subsequent recovery must begin
with an assessment of the primary processes that determine the eventual out-
come—the status of the forest following recovery. We provide examples of four
drivers that have a large net effect on forest recovery: biological legacies (presence,
amount, and types), altered forest nutrient and water fluxes, regeneration, and man-
agement activities. These four drivers—and the examples given below—reflect our
own research in central and western United States but are broadly applicable.

10.2.1 Biological Legacies

Biological legacies are living and dead elements of the pre-disturbance ecosystem
that persist into early succession (Franklin et al. 2000; Perera and Buse 2014). The
amount, type, and spatial arrangement of biological legacies vary widely depend-
ing on the disturbance, the susceptibility of trees and shrubs to the disturbance,
and any subsequent management actions. The large variety of possible outcomes
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highlights the ecological complexity inherent to forest recovery. The notable
exception to this variation is salvage logging (see below) that reduces biological
legacies.

Biological legacies have ramifications that extend throughout succession
(Franklin et al. 2000). As an example, the localized rate of stand development fol-
lowing broad-scale stand-replacing wildfire in the Cascades Range of Oregon and
Washington depends on proximity to areas that served as partial or complete fire
refugia for late-succession tree species (Keeton and Franklin 2005). In the boreal
forest, proximity to live residuals following fire has a similar effect on tree regen-
eration (Greene and Johnson 2000). Large diameter snags may crush young trees
as they fall in the early seral period, creating spatial heterogeneity in regenerat-
ing tree cohorts (Lutz and Halpern 2006). Snags and downed woody material also
reduce erosion and provide partial shelter, increasing soil moisture (see below),
which is critical for the regeneration of many tree and shrub species. Biological
legacies may also enhance connectivity (Greene and Johnson 2000; Lindenmayer
and Franklin 2002; Lindenmayer and Fischer 2006). Individual legacy trees scat-
tered throughout a young forest matrix offer many values, including enhanced
wildlife use (Irwin et al. 2000; Mazurek and Zielinski 2004; Lindenmayer and
Possingham 1995), and maintenance of mycorrhizal communities (Cline et al.
2005).

10.2.2 Altered Forest Fluxes: Carbon, Nitrogen, Water

Early succession is a time of substantially modified fluxes of energy and mate-
rial in the forested landscape. Many fluxes are magnified, as the moderating and
stabilizing influence of mature forest is removed, and the rate of many ecosystem
processes accelerates (Klinger et al. 1994). Nutrient availability may be enhanced
due to higher mineralization rates (McClain et al. 1998; Neary et al. 1999) and
successional influences on species composition (Brais et al. 1995). At the same
time, many fluxes are diminished. Due to the loss of canopy, photosynthesis and
evapotranspiration, litter fall and internal nutrient cycling, latent heat, and gross
carbon (C) assimilation are all retarded (Leuschner and Rode 1999).

The classic watershed studies at Hubbard Brook (Bormann et al. 1968) demon-
strated the flux of nitrogen following clearcut harvesting and herbicide application,
revealing the importance of early seral vegetation in capturing nutrients mobilized
by decomposition. More recent research has highlighted how post-disturbance
conditions (higher temperatures, increased solar radiation) can accelerate hetero-
trophic respiration, causing a relatively rapid loss of C from the system, above
and beyond C lost immediately during the original disturbance(s) (Janisch and
Harmon 2002; Campbell et al. 2007). This net flux can vary as a function of dis-
turbance type and variable dead wood legacies and other factors (Mkhabela et al.
2009). Magnified forest fluxes also include more rapid water loss (and the risk of
floods as seen in Colorado, USA, in 2013) and more rapid leaching and flow of
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nitrogen (N) and other nutrients (Vitousek et al. 1979; Boerner 1982; Neary et al.
1999), often affecting neighboring surface waters, e.g., Lake Tahoe (Karam et al.
2013). The net effect of such rapid fluxes may include erosion and loss of top soil
(DeBano et al. 2005), reduced regeneration due to low available nitrogen (Beatty
1984), and reduced water retention that disadvantages many small-seeded trees,
such as hemlock (e.g., Tsuga spp.).

10.2.3 Regeneration

The density, composition, and multi-scale pattern of tree regeneration is deter-
mined by many factors (Turner et al. 1998), such as disturbance type (Foster et al.
1998), topographic position and site quality within the disturbed area (Host et al.
1987; Larson and Franklin 2005), distance to seed sources (McClanahan 1986),
reproductive strategies of dominant tree species (e.g., serotiny; Turner et al. 1997),
micro-topographic features of the disturbed area (Birchfield 2011), and ungu-
late browsing (Rooney and Waller 2003; Weisberg and Bugmann 2003; Cavieres
and Fajardo 2005). The interaction among these factors may be of great signifi-
cance for regeneration. As an example, if a good seed mast year coincides with
a disturbance, regeneration may be significantly enhanced (Vernon et al. 2005).
The seasonality of the disturbance may also determine the rate of tree establish-
ment. Examples include fires that occur late in the growing season permitting
abundant regeneration from mature canopy seed banks, as observed in Douglas-fir
(Pseudotsuga menziesii) forests (Larson and Franklin 2005) or survival, as in the
snow bank refugia for true fir (Abies spp.) associated with the spring eruption of
Mt. St. Helens (Washington State, USA) in 1980 (Crisafulli et al. 2005).

Regeneration largely determines the duration of the forest recovery period and
the subsequent successional trajectory. Frelich (2002) outlined alternate stable
states for boreal forests dependent on seed sources and the time between wildfires.
If the time since the last wildfire was relatively brief, jack pine (Pinus banksiana)
seed sources may not be mature (“immaturity risk”; Zedler 1995) and quaking
aspen (Populus tremuloides) will be favored with a long delay until the emergence
of late-successional species (Frelich 2002). If ungulate populations are high, as is
common in the eastern United States, ungulate browsing of regeneration can radi-
cally alter the successional trajectory following disturbance (Hobbs 1996; Putman
1996; Rooney and Waller 2003). Artificial regeneration efforts may set a disturbed
area on a very different developmental trajectory than that associated with natu-
ral regeneration. Again, Mt. St. Helens provides an example, with salvage-logged
areas dominated by replanted Douglas-fir and noble fir (Abies procera) in the
western part of the blast zone contrasting sharply with naturally regenerating areas
on federal lands (Titus and Householder 2007).
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10.2.4 Management Actions

Management actions are often the largest determinant of forest recovery outcomes,
depending on the effort and expense invested. Management actions vary widely
and may include post-disturbance replanting, removal of “hazard snags,” or some
combination thereof. Forest recovery can be accelerated by, for example, planting
trees and controlling competing shrubs (Swanson et al. 2011) or retarded through
such activities as aggressive salvage logging (Donato et al. 2006). In landscapes
where timber revenue is a primary objective (e.g., industrial forest lands) and the
generating disturbance is of a natural mechanism (wildfire, wind, avalanche), sal-
vage logging may be performed, followed by reforestation. More recently, some
have advocated for using disturbances (including logging) as opportunities to
promote ecosystem resilience to climatic change via facilitated migration (Millar
et al. 2007; Duveneck and Scheller 2015). Facilitated migration following distur-
bance is an active intervention in biogeographic shift, whereby managers attempt
to pre-emptively assist species in their dispersal along expected migration trajecto-
ries, either across elevation or across geographic distances.

Timber managers typically seek a relatively quick recovery of closed-canopy
conditions (Oliver and Larson 1996; Smith et al. 1997) and this is frequently
accomplished via aggressive application of herbicide and relatively dense plant-
ing of seedling stock (Nyland 2002). Salvage logging curtails the early seral stage
and reduces its structural complexity (Lindenmayer and Noss 2006; Lindenmayer
et al. 2008; Swanson et al. 2011). Titus and Householder (2007) used the case of
forest industry lands and National Forest lands within the Mt. St. Helens blast
zone as examples of differing successional trajectories resulting from management
actions: the establishment of a productive (but low diversity) conifer plantation
following salvage and replanting, and the development of diverse early seral habi-
tats where these activities were not conducted.

10.3 Review of Approaches

The range of modeling approaches used to simulate forest recovery and the model
choice for a particular application is largely driven by the emphasis given to the
drivers reviewed above and the choice of scale. If forest recovery is strongly dic-
tated by management actions that prescribe a narrow range of possible succes-
sional trajectories, a relatively simple model of forest recovery will suffice. On the
contrary, if the application requires consideration of the full suite of drivers and
potential tree diversity (particularly functional diversity) is high, a more nuanced
modeling approach will be necessary.

When considering broader scales (>1000 ha), estimates of the rate and trajec-
tory of forest recovery should take into account spatial processes and landscape
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context and therefore the choice of scale is critical. Spatial processes include the
dispersal of vegetative propagules (in addition to those present within the seed
bank) and disturbances that depend to some degree on the biotic substrate (e.g.,
fires and fuel; insect and preferred hosts). Spatial context determines the proba-
bility of any given spatial process intersecting with any given location; no forests
operate as islands distinct from the broader landscape matrix although the degree
of connectivity varies widely. Similarly, models represent spatial context and pro-
cesses using a wide diversity of approaches. However, simulations of relatively
small extents (<10 ha) necessarily exclude multiple interacting disturbances by
design.

Here we review modeling approaches that are specifically focused on two
primary outcomes of forest recovery: vegetation and biogeochemistry (specifi-
cally the magnitudes and rates of change of C and N). Most models have focused
on either vegetation or biogeochemistry although hybrid approaches are now
emerging.

10.3.1 Vegetation

Forests models may be highly deterministic in regard to vegetation where stand
type (inclusive of the characteristic tree species) is immutable. Many early forest
models were deterministic “growth and yield” models and did not simulate vegeta-
tive change; it was assumed that management controlled the general stand type.
Immediately following any major disturbance or management activity the stand
would essentially be reset to a younger version of itself after which the size classes
(e.g., Landscape Age-Class Dynamics Simulator; Wimberly 2002) increment over
time or the size of individual trees (e.g., Forest Vegetation Simulator; Robinson
and Monserud 2003) increase over time or the amount of biomass (e.g., BIOME-
BGC; Running and Hunt 1993) increases over time. Succession in BIOME-BGC
is determined by the dominant vegetation or potential vegetation type (PVT) (e.g.,
Neilson 1995) which reflects broad climatic and edaphic gradients. In landscapes
with steep topography (and strong abiotic sorting), these models continue to be
applied. Simulated PVTs—and particularly associated fuel types—typically inter-
act with simulated wildfire although the period of forest recovery is often treated
as inflammable and therefore forest recovery serves primarily to reduce fuel conti-
nuity across the landscape (e.g., Kennedy and Wimberly 2009).

In contrast, many models add a level of stochastic behavior to forest recovery:
the infinite vagaries of vegetative establishment and competition are simplified to
a tractable set of outcomes via probability distribution functions. In the simplest
case, the stand type or initial community is randomly chosen from a fixed suite of
potential types or communities; the probability of a given type is usually inferred
from historic patterns. After this stochastic assignment, the stand follows a succes-
sional pathway as described above. And again, in such models the period of for-
est recovery typically has little interaction with the broader landscape aside from
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its effect on wildfire spread. An example of a model with stochastic types is the
Vegetation Dynamics Development Tool (VDDT) (Klenner et al. 2000) wherein
multiple initial states or types may each be associated with a probability following
specific disturbance types.

A more mechanistic (an abstraction of the ecological process or mechanism)
approach is to simulate establishment during forest recovery as a function of dis-
persal from neighboring areas and germination from the seed bank or other on-
site propagules (e.g., resprouting from root collars). Dispersal is highly stochastic,
depending on spatial context and the life history characteristics of individual
tree species. For example, aspens and other ruderal species typically have small,
wind-blown seeds with long dispersal distances (aka “leptokurtotic”’; Clark et al.
1998). In contrast, acorns typically have short dispersal distances except when or
where dispersal is facilitated by vertebrates. Seed source strength is also impor-
tant (Iverson et al. 2004). If the area undergoing forest recovery is relatively large,
establishment at the center, farthest from potential seed sources, may be delayed
by years or decades. Implementing seed dispersal within a model requires a dis-
persal algorithm (either away from seed sources or into potential sites) and esti-
mates of the dispersal distributions (Clark et al. 1998). Although the necessary
algorithms deploy relatively simple trigonometry, the large area of potential
sources (dependent upon maximum seed dispersal distance) requires recursive
computational searches for sources across larger landscapes. And data to param-
eterize dispersal distributions are typically lacking. The net effect is large uncer-
tainty when simulating the establishment of vegetation during forest recovery,
including the potential for delayed recovery. In contrast to such mechanistic
regeneration approaches, the PVT approach (both deterministic and stochastic)
described above encompasses all community components, including grasses,
forbs, mosses, lichens, etc. Despite the computational cost, mechanistic disper-
sal simulation forges a much stronger link between forest recovery and landscape
processes.

10.3.2 Biogeochemistry

Similar to vegetation dynamics, the biogeochemistry of forest recovery can be
modeled as deterministic or stochastic processes. In general, simulated biochemi-
cal modeling has few feedbacks to the larger landscape; they are typically treated
as vertical processes, mediating only the interactions among atmosphere, soil, and
biotic components. The exception is watershed models that project water qual-
ity and quantity, e.g., the Soil and Water Assessment Tool (SWAT; Srinivasan and
Arnold 1994). These models typically include information about the amount and
location of early seral forests (if not the vegetation type) as they have large effects
on water flow and timing. To our knowledge, these effects on water cycling have
not been directly incorporated (although a loose coupling is common) into models
designed primarily to project forest change.
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In the deterministic approach, live and dead C (and less frequently N) pools
change through time as a function of growth (net primary productivity), mortality,
and decay (heterotrophic respiration, Rh) (Janisch and Harmon 2002; Scheller and
Mladenoff 2004). Disturbance may occur at any time along these C trajectories
therefore generating novel live, dead, and soil C pools at the onset of forest recov-
ery. However, the rates of growth, mortality, and Rh are fixed for a given vegeta-
tion type or climate-vegetation combination. Examples of such models include the
Carbon Budget Model-Canadian Forest Sector (CBM-CFS; Li et al. 2002) and
LandCarb (Mitchell et al. 2012).

Stochastic biogeochemical models of forest recovery incorporate the effects of
dynamic climate (e.g., PnET; Pan et al. 2009), dynamic soils (e.g., CENTURY;
Smithwick et al. 2009), and/or dynamic vegetation (e.g., LANDIS-II with the
Century extension; Scheller et al. 2011) on C and N cycles. Most of these mod-
els are dynamic in multiple dimensions although no model is fully dynamic: every
model has some fixed parameters dependent upon the goals and temporal scales
considered. For example, soil clay, sand, and loam percentages are typically fixed.

10.3.3 Disturbance Feedbacks

How simulated forest recovery feeds back to disturbance regimes typically mir-
rors the effect of spatial context on forest recovery. However, within models
the strength of this feedback is often underrepresented—early seral stands are
often assigned relatively static properties whereby they do not contribute veg-
etative propagules and have reduced (or no) probability of fire spread (as noted),
reduced insect host preference, and reduced vulnerability to wind mortality. The
opposite may be true. Birds that favor edges, e.g., jays, may facilitate seed dis-
persal, or snags may concentrate seed fall from animal dispersers (McClanahan
and Wolfe 1987). Clearcuts can create wind “fetches” that increase wind speed at
forest edges. Young conifer forests are often highly flammable (high live canopy
fuel density) and experience higher wind speeds—and therefore higher fire sever-
ity—than mature forests. This is reflected in the occurrence of “reburn” events
that occur during the early seral period (Gray and Franklin 1997; Thompson
et al. 2008; Fontaine et al. 2009). Finally, early seral shrubs can harbor diseases
that affect surrounding mature forests. White pine blister rust is the best known
example; shade intolerant gooseberry (Ribes spp.) is the host for this fungal patho-
gen and was widely distributed following the “great cutover” in the U.S. Midwest
(Hunt and Pandalai 2003). Although some models provide the flexibility to accom-
modate early seral fuel types (e.g., Sturtevant et al. 2009), to our knowledge few
models capture these other important effects on landscape disturbances.
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10.4 Case Studies: Forest Recovery in Two Forests

To illustrate how the drivers of forest recovery have been modeled and applied,
we chose two examples with similar approaches but divergent purposes. For
both examples the LANDIS-II modeling framework was used (Scheller et al.
2007). This model emphasizes spatial interactions, such as seed dispersal and fire
spread, and tracks the location of age-defined cohorts of individual tree or shrub
species through time. It also offers a large degree of flexibility, allowing differ-
ent processes to be emphasized depending on the question and application. For
each example, we also highlight unique challenges and opportunities for future
research.

10.4.1 Harvest Regeneration and Carbon in Chile

Our first example is of modeling Nothofagus forests in Tierra del Fuego, Chile
(Swanson 2009). In this region, the effects of harvesting on forest regeneration are
of particular concern and a simulation modeling approach was chosen to exam-
ine the consequences and trade-offs of harvesting at broad scales. Regeneration
is particularly sensitive to harvesting because many of the tree/shrub species have
low or mid shade tolerance and many management regimes incorporate planting,
limiting the range of successional trajectories. The simulations conducted suggest
that regeneration affects long-term C storage and planting, if successful, can sub-
stantially increase C storage as compared to natural regeneration alone (Swanson
2009).

The focus on regeneration during forest recovery as a driver of long-term
C storage highlighted numerous opportunities for further research. First, how
important is disturbance size? There may be critical size thresholds at which
regeneration becomes much more limiting, dependent in part on the seed dis-
persal capacities of trees found in neighboring forests. And what determines the
success of artificial planting? Many models, including LANDIS-II, assume that
any planting is successful. However, planting success is always less than 100 %
and is highly dependent upon microclimatic conditions and seasonal patterns of
precipitation.

The motivating questions included: Can the artificial regeneration failure rate
be incorporated into broad-scale models and what information is necessary? The
parameterization of LANDIS-II in this case included a higher rate of regeneration
under a residual live forest canopy, such as may be created in the natural partial-
wave wind disturbance regime (whereby wind events over decadal time scales
blow down portions of a stand progressively in the prevalent down-wind direction,
resulting in a spatially diverse uneven-aged stand condition) in the actual land-
scape (Rebertus and Veblen 1993; Rebertus et al. 1997) or in shelterwood harvest-
ing (Schmidt and Urzida 1982; Rosenfeld et al. 2006).
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This application revealed areas where model refinement was needed to rep-
resent early seral dynamics. Improved accuracy requires better accounting of
the spatial variability of regeneration (i.e., assessment of founder effects, where
long-term dispersal may influence available genotypes) obtained under a residual
canopy, especially as a function of soil moisture availability. In the drier eastern
portions of Tierra del Fuego, heterogeneity of moisture availability, especially
as a function of location in gaps and substrate type (e.g., woody debris acting as
a moisture reservoir) has significant implications for density and pattern of tree
establishment. On the other extreme, wet soils can inhibit regeneration or favor
more hydrophytic vegetation. Shrub competition (especially from Berberis spp.)
was also not modeled, and this can be a significant factor in delaying return to a
closed-canopy forest structure, especially along the immediate coast in Tierra del
Fuego.

In summary, even sophisticated models that incorporate disturbance intensity
and size and specific variation in seed rain density may not capture local substrate
variability and competition that is critical to estimating regeneration dynamics.
To obtain the information needed to populate more detailed models, resampling
post-disturbance plots at a high frequency will be required, similar to approaches
used to generate the data necessary to fit statistically rigorous trend models (e.g.,
Huisman et al. 1993).

10.4.2 Biogeochemical Cycling in the Lake Tahoe Basin

Our second example is from the Lake Tahoe Basin in California and Nevada,
United States (Loudermilk et al. 2013, 2014). In this landscape, forest harvesting
for timber is generally excluded and wildfire and thinning to prevent or ameliorate
wildfire effects are important drivers of forest change. Loudermilk et al. (2013)
focused on the effects of disturbance on net biogeochemical cycling, specifically
the response of C pools to the long-term effects of wildfire and thinning. Although
the emphasis was on long-term forest change, the Century extension used within
the LANDIS-II framework allows for a finer-scale temporal analysis of C and N
responses immediately post-disturbance.

We averaged the response of multiple ecosystem biochemical attributes to
simulated wildfires separated in space and time, focusing on the 15 years imme-
diately following a wildfire (Fig. 10.3). Of the six attributes highlighted, one
simulated attribute was relatively stable (soil organic nitrogen), three changed
linearly (aboveground net primary productivity, soil organic carbon, aboveground
biomass), and two were nonlinear [net ecosystem exchange (NEE), heterotrophic
respiration (Rh)] over this relatively short period. The initial decline of NEE and
Rh was caused by the rapid decay of large amounts of organic material immedi-
ately after fire (e.g., Janisch and Harmon 2002). For all six metrics, the rate of
change exceeded the average rate of change over 100 years by at least an order of
magnitude.
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Fig. 10.3 Temporal Trajectories of ecosystem attributes post-disturbance
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The substantial decay immediately post-fire highlights the need to consider rel-
atively short-term and transient dynamics when simulating C trajectories. Longer
time steps could potentially “average out” this period of heightened heterotrophic
respiration and thereby could overestimate both coarse woody debris remaining on
site and landscape-scale C in woody detritus.

This example highlights a substantial challenge: frequent (weekly or monthly)
measurements are rarely collected immediately following disturbance and model
calibration and validation generally depend on landscape-scale and longer-term
empirical data. The result may be a broadly accurate forecast of landscape-scale
dynamics with poorly measured or understood local accuracy. A common compro-
mise becomes apparent: principles and algorithms derived from landscape-scale
data may have poor predictive capacity at local scales where management poli-
cies are implemented. The alternative is a highly parameterized local-scale model
that cannot incorporate disturbance regimes and interactions among disturbances.
Therefore a broader understanding (derived from empirical and modeling studies)
of the circumstances under which the various drivers of forest recovery need to be
included is required.
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10.5 Future Challenges and Opportunities

10.5.1 Process Uncertainty

There are many domains within which models and data about processes critical
to understanding forest recovery are inadequate. This is not to say that complete
knowledge or information about other processes or stages exists, but rather that
some processes have proven more difficult to translate into suitable modeling
approaches. This reflects the increasing recognition of the ecological complex-
ity of forest recovery. The net result is the need to become more mechanistic
(Gustafson 2013). However, the mechanistic simulation of all processes acting
during early succession is generally not feasible. We focus on two related domains
that particularly merit further investment in data collection and modeling: the role
of biological legacies and the role of partial disturbances.

Biological legacies in particular remain poorly understood or modeled for most
systems. To what degree do they influence successional trajectories? To what
degree do they ameliorate the effects of disturbance? Keeton and Franklin (2005)
describe a negative exponential distribution of regeneration density with distance
from old-growth shade-tolerant trees that survived stand-replacing wildfire in the
south Washington Cascades, creating gradients of composition strongly related to
topographic features. Topographically driven patterns of fire survival combined
with seed dispersal patterns created heterogeneous successional states as a func-
tion of distance from refugial watercourses and/or fuel-limitations. However,
changing disturbance regimes can alter the influence of living or dead biologi-
cal legacies, such as when higher fire severity reduces seed source and changes
the post-disturbance substrate (Johnstone et al. 2010). Although progress has
been made in quantifying dispersal over large distances (McLachlan et al. 2005),
much uncertainty remains in how far seeds travel over annual or decadal scales
and under what conditions. Seed dispersal has large implications for simulating
the effects of disturbances and successful colonization often depends on sufficient
disturbance severity and the removal of competitive barriers (Iverson et al. 2004).

Many landscape models now simulate variable severity disturbances, which
affects the distribution and density of live residuals, thus incorporating some of
the complexity associated with partial disturbance. Often, however, less data is
available from which to estimate the survival of individual shrub and tree spe-
cies. This is due in part to a focus on catastrophic disturbances. The most severe
disturbances attract the most media attention and this translates into management
pressure and research agendas. However, low and moderate/mixed severity dis-
turbances are generally more common and have a more nuanced effect on forest
landscapes (Perry et al. 2011). The effects of variable fire regimes and timber har-
vest have been simulated in a spatially explicit manner at stand scales (e.g., Miller
and Urban 2000). However, modeling mixed-severity fire regimes, and their spa-
tially explicit outcomes, at the landscape scale is a greater challenge, especially
due to the interaction of terrain, fuel beds, and climate drivers at multiple temporal
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scales. The resulting complexity leads to the realization of nonequilibrium dynam-
ics at landscape scales, such as in the mixed-conifer forests of eastern Washington
State (Hessburg et al. 2007). Adding a further layer of uncertainty to the template
established by a disturbance regime is the variable response of tree regeneration
as determined by climate (Brown and Wu 2005) or the interaction of disturbance
and climate (North et al. 2005). This makes the modeling of forest dynamics more
challenging and “data-hungry” in these areas than in forest regions where few top-
ographic and interannual climatic constraints on tree regeneration exist.

10.5.2 Linking Community Dynamics with Biogeochemistry

Improved model representation of forest recovery will require tighter integration
of community dynamics and biogeochemistry. For example, it is not clear what
effect detrital inputs following disturbance have on long-term heterotrophic res-
piration (Schmidt et al. 2011). In part, this is because few biogeochemical data
are collected during or immediately following (within weeks) disturbance events
(Lindenmayer et al. 2010). Biogeochemical data is typically expensive and is col-
lected at fine scales and the imputation of these data to the landscape-scale of for-
est models is difficult. For example, flux tower measurements are rarely paired
with localized disturbances (although see Clark et al. 2012).

10.5.3 Model Formulation

Most models are sequential: events happen in a given (either specified or ran-
dom) order. Many of the processes outlined above, however, happen simultane-
ously, e.g., seed dispersal and ungulate browsing are continuous and overlapping
processes. One solution is to increase the spatiotemporal resolution and use
increasingly finer increments of time and distance in simulation models. The rep-
resentation of forest recovery at a high spatial and temporal resolution is at odds
with the need to be computationally efficient when simulating large landscapes
over long durations. In particular, the expectation of a changing climate necessi-
tates the incorporation of temperature and precipitation variables into the simula-
tion of forest recovery (Dale et al. 2001), especially when the model time horizons
are many decades (He et al. 2002). These changes are actively being developed
and the next substantial hurdle will be integration of forest recovery processes into
dynamic global vegetation models and global circulation models. Currently such
models generally only consider mature forests. However, if increased extreme
weather events (Collins 2014) and forest disturbances (Hicke et al. 2013) push a
substantial portion of forested landscapes into early seral stages, the integration
of forest recovery processes will be necessary to accurately capture global carbon
budgets.
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10.6 Conclusions

Models that incorporate forest recovery and the duration and character of early
seral forest conditions, although imperfect, can aid in the assessment of potential
landscape trajectories and associated values over time. If landscape management
objectives are dominated by timber production or the maintenance of mature for-
est habitat, then such models can help assess the rate of recovery of closed forest
conditions. Another value of these models is for representing early seral habitat
and requires understanding the spatial characteristics, compositional traits, and
duration of early seral pre-forest conditions. As the understanding develops of
the value of early seral habitat for the maintenance of rare or threatened species
(Swanson et al. 2014), models of forest recovery may become crucial tools for
predicting the stability and connectivity of such habitats (e.g., Severns et al. 2013).

However, successful representation of forest recovery and early seral forests
requires that forest ecologists (and their modeling efforts) embrace the ecologi-
cal complexity inherent to the forest recovery process (Green and Sadedin 2005;
Puettmann et al. 2013). The rates of key fluxes change quickly immediately fol-
lowing a disturbance and sensitivity to initial conditions and circumstance (e.g.,
disturbance severity) become more prominent. Emergent behaviors are produced
that increase the uncertainty of the forest recovery process and have the potential
to produce divergent long-term outcomes (Fig. 10.1). Unfortunately, the ecological
complexity of early seral stages is often grossly simplified within models.

Success will also require improved data sources. Understanding the emergent
outcomes of disturbance regimes over relatively long temporal scales will require
landscape models in both reconstructive and predictive applications. An important
opportunity to test models of forest recovery would be reconstruction of the long-
term effects of large disturbances on the biota at regional scales (e.g., Crisafulli
et al. 2005; Swanson et al. 2013). The benefits of large disturbances are their vari-
able intensity across large scales, diversity of biological legacies, temporal syn-
chrony, and their “charismatic” nature that often promotes long-term funding for
monitoring. Simultaneously, remote sensing can serve as the long-term (multi-dec-
adal) and large-scale window for validating models of forest recovery following
mixed-severity disturbances (Sturtevant et al. 2014). Finally, “citizen scientists”
could be trained to collect data about establishment following disturbances. The
technology now available to the average person with a mobile phone represents
a unique opportunity to engage recreational forest users in monitoring forests to
inform ecological forecasts (e.g., LeafSnap: Kumar et al. 2012). These data could
augment existing inventory data that are typically sparse, infrequent, and not
designed to capture the period immediately after disturbance. Such data could
also capture finer-scale regeneration and substrate variability than is typically cap-
tured by inventory data. We can imagine future cell phone applications that would
inform a recreational hiker when they are approaching a recent disturbance and
prompt them to collect regeneration or snag data via a simple interface.
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Finally, disruptive or sudden climate change and associated increases in dis-
turbances may necessitate a much more active role for management during for-
est recovery, e.g., immediately planting tree species not currently extant within
the broader landscape (Duveneck and Scheller 2015). Therefore, disturbances
can serve as important windows of innovation and experimentation that enable us
to test and explore novel manipulations of the recovery process. Such radical (or
“transformative”; Puettmann et al. 2013) management actions likely will only be
acceptable if models can quickly and convincingly demonstrate the net benefits of
such actions to forest recovery and the forest beyond.

In summary:

e Forest recovery may be the most complex stage of succession, with high varia-
bility in terms of outcomes, due to the multitude of drivers and scales that influ-
ence regeneration and biogeochemical cycling.

e To date, simulations of forest dynamics have largely focused on the dynamics
of the resulting overstory and subsequent disturbances. More attention must
be paid to the forest recovery stage that determines long-term successional
trajectories.

e Further empirical research is necessary to improve model formulation and per-
formance for the period of recovery following forest disturbance.

e Opportunities for data collection and scientific inquiry exist following “charis-
matic” or well-publicized disturbance events that are synchronized in time and
with large area of variable disturbance intensity. Remote sensing is also rapidly
emerging as a coarse-scale data source for model calibration and validation.

e Continued research is urgently necessary to help develop novel strategies for
manipulating forest recovery to rapidly adapt to climate change disruptions.
Improved modeling approaches are a key component of addressing this need.
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