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v

Simulation models of landscape disturbances have proliferated and matured. They 
are now applied to an extent that would have not been conceivable a few decades 
ago, when we began to perceive the processes that “disturb” or disrupt ecosys-
tems as integral mechanisms that shape the spatial patterns of forest landscapes. 
A large proportion of the scientific papers on landscape ecology are dedicated 
to this topic, as are many graduate theses and dissertations. In this context, it is 
timely that we explore efforts to model forest landscape disturbances so that we 
can capture the current state of knowledge and ponder future directions. In this 
book, we have sought the insights of a group of ecologists who focus on a range 
of  forest landscape disturbances and develop simulation models to study those dis-
turbances. The topics they address include a wide variety of disturbance processes: 
physical disturbances such as drought, wind, and fire; biological disturbances such 
as defoliating insects, bark beetles, and tree pathogens; anthropogenic influences; 
the interactions among disturbances and climate change; and the recovery of forest 
landscapes from disturbances—all from a simulation modeling perspective. Their 
discussions and examples offer a broad synopsis of the state of this rapidly evolv-
ing subject.

This book will be relevant to those who develop and apply models or who are 
interested in understanding and exploring forest landscape disturbances using sim-
ulation models. As such, it will appeal to academics, researchers, and graduate stu-
dents, as well as to advanced users of models in applications related to managing 
forest landscapes. We hope that readers will benefit from the authors’ explorations 
of the current state of modeling of forest landscape disturbances and their insights 
into where these efforts should be heading. Readers should not expect this com-
pilation to be a comprehensive treatise on specific models, an enumeration of the 
available models, or an exhaustive review of the literature. Nor will they find a 
user manual that defines when or how to use individual models. Rather, our intent 
is to provide general insights into current approaches and, in doing so, highlight 
the gaps in knowledge to help focus future efforts to advance the modeling of for-
est landscape disturbances in natural ecosystems as well as in increasingly anthro-
pogenically influenced ecosystems.
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1.1  Background

Quantification of ecological processes and formulation of the mathematical 
expressions that describe those processes in computer models has been a cor-
nerstone of landscape ecology research and its application. Consequently, the 
body of publications on simulation models in landscape ecology has grown 
rapidly in recent decades. This trend is also evident in the subfield of for-
est landscape ecology, particularly in relation to the topic of disturbance.  

Chapter 1
Simulation Modeling of Forest Landscape 
Disturbances: An Overview
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Broad-scale disturbances are prevalent in forest landscapes, and sometimes they 
are inherent to the evolution of those systems: disturbances create patterns and 
heterogeneity, which in turn influence ecological processes and flows (Turner 
2010). The broad spatial and temporal scales of disturbance processes substan-
tially limit our ability to perform the kinds of manipulative experiments neces-
sary to understand the underlying mechanisms of these processes and the spatial 
patterns they create in forest landscapes. Instead, we can use simulation mod-
els as a fundamental vehicle to explore and understand disturbance processes, 
impacts, and patterns.

As with all ecological models, the simulation models developed for forest 
landscape disturbances are approximations of nature; that is, they are a simpli-
fied portrayal of vastly complex biological, physical, and chemical processes 
that interact with each other and among scales. Such models are founded on 
scientific knowledge, logic, and assumptions, and typically require large arrays 
of spatially explicit input data. The expanding knowledge base and data avail-
able to support these models also necessitate their continuous testing, study, 
and improvement. Simulation modeling of some disturbance types in forest 
landscapes is relatively mature, whereas for others it remains in the very early 
stages. Still other disturbances have not yet even begun to be formulated as sim-
ulation models.

Simulation modeling of forest landscape disturbances is not only a burgeoning 
field of research and academic pursuit. This research effort has also led to wide-
spread application of the resulting understanding of forest landscape disturbances 
in management efforts: It is becoming increasingly common to consider applica-
tions of forest landscape disturbance models in exploring and devising land man-
agement policies and strategies.

It is in this context that we explore simulation modeling of forest landscape dis-
turbances in this book. Specifically, we examine the present state of knowledge 
and explore future possibilities for quantifying forest landscape disturbances at 
broad spatial and temporal scales. This first chapter provides an overview of the 
topic and a general guide to the scope and contents of the book.

1.2  The Topic

To frame the topic, it is necessary to describe, if not define, what is meant by the 
three major terms that form the book’s title: (a) forest landscapes, (b) disturbances, 
and (c) simulation modeling. However, we do not intend to embark on an exhaus-
tive review and a critique of the very large body of literature on these topics or to 
compare and contrast the range of terms and views therein. Such a task is beyond 
the scope of this chapter. Therefore, while acknowledging that there will be a 
diversity of views and preferences about these terms, we briefly describe them in 
the context of the contents of this volume.
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1.2.1  Forest Landscapes

By forest landscapes, we mean large areas of land dominated by forest cover. 
From an academic viewpoint, the scale of a “landscape” is best defined from the 
perspective of the organisms that interact with that landscape (Allen and Hoekstra 
1992). More pragmatically, landscape can be defined from the human perspective 
to provide insights into the processes that affect the system’s dynamics at scales 
relevant to human decision-making. As a working definition, we adopt the descrip-
tion by Perera et al. (2000): a forest landscape is a large geographical unit domi-
nated by a mosaic of forest cover types, sometimes interspersed with non-forest 
cover types, including those that have been altered by anthropogenic activities. 
In North America, the source of most of the examples in this book, such milieus 
include expanses of forest in boreal plains, forests in both western and eastern 
mountain ranges, and pine-dominated southern forests. In practice, a forest land-
scape is a unit of land demarcated by a specific research question and method or 
by a specific management goal—an ecological system that is dominated by spa-
tially interspersed tree communities of different ages and species, and that encom-
passes other vegetation communities and bodies of water.

1.2.2  Disturbances

By disturbances, we propose a description based on those of Rykiel (1985) and 
Pickett and White (1985): events that cause drastic changes in the state of an eco-
logical system (for our purposes, a forest landscape) in response to a physical or 
biological cause. Often, the causal agent originates outside the boundaries of the 
ecological system of interest and results in a perturbation of the minimal structure, 
and therefore the function, of the system (Pickett et al. 1989).

Most such disturbances are considered to be discrete events (Rykiel 1985). 
Given the short duration of these events, some authors describe them as “pulse” 
disturbances (Bender et al. 1984). In contrast, continuous and slow disruptive 
forces can also result in perturbations that create a stress on the system (Rykiel 
1985). These have been referred to as “press” disturbances (Bender et al. 1984). 
Descriptions and definitions of these terms are summarized in Table 1.1. A contin-
uous period of stress can also eventually result in perturbation of the forest land-
scape’s state and of its minimal structure. Perturbations are also scale-related: a 
disturbance can cause perturbation of an individual system’s subcomponents or of 
the whole system (Pickett et al. 1989). Extreme but rare disturbances represent a 
distinct category, as they destroy an entire forest landscape system and its struc-
ture. These catastrophes are termed “LIDS”—large and infrequent disturbances 
(Foster et al. 1998).

Regardless of the temporal aspects of a disturbance event, perturbations caused 
by external disturbance agents markedly exceed the ranges of fluctuations in 
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structure and function that are characteristic of the ecological system (Coulson and 
Tchakerian 2010). Disturbances inherent to ecological systems are termed auto-
genic, whereas those that arise outside the system are referred to as allogenic, even 
though such classifications, as is the case with the terms endogenous or exogenous, 

Table 1.1  Common terms used to define, describe, and categorize ecological disturbances

Term Definition and descriptions Source

Event Any relatively temporally discrete 
occurrence that disrupts an eco-
system, community, or population 
structure and changes the resources, 
substrate availability, or physical 
environment

White and Pickett (1985)

A physical force, agent, or process, 
either abiotic or biotic, which causes 
a perturbation (an effect or change in 
the system’s state) of an ecological 
component or system

Rykiel (1985)

A change in the minimal structure 
caused by a factor external to the 
level of interest

Pickett et al. (1989)

The cause of a perturbation Glasby and Underwood 
(1996)

An initiating cause (a physical force, 
process, or event) that produces an 
effect (a consequence) that is greater 
than average, normal, or expected

Coulson and Tchakerian 
(2010)

Type Abiotic Events in the physical environment 
that cause an abrupt change. (White 
does not use the term “abiotic”, but 
separates physical from biotic effects)

White (1979)

Biotic The effects of biological agents such 
as insect and disease outbreaks

Origin Autogenic The change is driven by biological 
properties of the system

White and Pickett (1985)

Allogenic The change is driven by an external 
environmental “forcing” function

Duration Pulse A relatively instantaneous alteration 
of some aspect of the system, such as 
the number of species (i.e., a sudden 
and short-term event)

Bender et al. (1984)

A short-term, high-magnitude change 
in the ecological environment

Glasby and Underwood 
(1996)

Press A sustained alteration of some aspect 
of the system, such as species densi-
ties (ongoing or long-term)

Bender et al. (1984)

A long-term, low-magnitude, change 
in the ecological environment

Glasby and Underwood 
(1996)
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are arbitrary because disturbances are a continuum (Pickett and White 1985) and 
are highly dependent on the spatial and temporal scales that define the system. 
Given the ever-increasing extent, intensity, and variety of anthropogenic impacts 
on forest landscapes, it has become common to separate them from non-anthro-
pogenic disturbances, and refer to the latter category as “natural”. Not only is 
that distinction sometimes arbitrary, the term natural could also mean typical (as 
opposed to atypical), normal (vs. abnormal), and inherent (vs. exogenous), and 
may therefore be misleading (Suffling and Perera 2004). Forest landscape sys-
tems may be perturbed by a single disturbance agent or by several agents acting 
independently or interactively. Multiple serial disturbances could result in cumula-
tive effects in forest landscapes, leading to nonlinear or unanticipated responses. 
Furthermore, with respect to disturbance, the line between “anthropogenic” and 
“natural” is inherently fuzzy, since humans modify disturbances both directly and 
indirectly through their actions. However, human actions are also strongly affected 
by social, political, and economic forces operating at scales much larger than land-
scapes. Within the context of this book, we acknowledge that these forces shape 
nearly all forest landscapes, but we do not examine these dimensions in any mean-
ingful way (i.e., from the perspective of disturbance modeling). For this reason, 
we distinguish between ecological disturbances that occur with or without human 
influence, and anthropogenic disturbances that are the direct result of human 
actions.

All ecological disturbances in forest landscapes can be categorized in the con-
text of the terms described in Table 1.1. Some examples of abiotic and biotic dis-
turbances (White 1979) distinguished by the duration of the disturbance event 
(Bender et al. 1984) are provided in Table 1.2. Anthropogenic disturbances can be 
viewed as a third type, with their own duration: pulse (e.g., clearing of land, clear-
cut harvesting) or press (e.g., pollution, recreational use).

When aggregated in space and time, various aspects of disturbance events, 
such as their intensity, extent, and spatial and temporal probability of occur-
rence, can be characteristic of certain ecological systems. These synoptic prop-
erties are termed a disturbance regime, which has been variously described and 
defined (Table 1.3) and which has been assigned a range of attributes (Table 1.4). 
Some reserve this term for the population characteristics of one disturbance type, 
whereas others include a suite of different types within a disturbance regime 
(Suffling and Perera 2004; Coulson and Tchakerian 2010). Individual disturbance 

Table 1.2  Examples of forest landscape disturbances based on their type (sensu White 1979) 
and duration (sensu Bender et al. 1984)

Forest landscape 
disturbance trait

Duration

Pulse Press

Type Abiotic Earthquake, lava flow, landslide, 
flood, windstorm, ice storm, 
wildfire

Drought, water table fluctuation, tem-
perature fluctuation, soil freeze–thaw 
cycles, soil erosion and deposition

Biotic Pest outbreaks, clearing of land, 
flooding by beavers

Disease, low-intensity harvesting, 
grazing
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events that exceed the expected characteristics of a disturbance regime are termed 
extreme events (Alvarado et al. 1998).

Figure 1.1 illustrates the concept of ecological disturbance and the associated 
terms as they are applied within the context of this book. We identify three major 
components associated with the entire sequence, which we call the disturbance 
process: the cause(s), effect(s), and result(s) of a disturbance event. These compo-
nents comprise the intrinsic characteristics of the disturbance agent(s), the interac-
tions among disturbance agents and the forest landscape in time and space, and the 
resulting altered state of the forest landscape. These are the main domains of study 
in disturbance ecology, and are the focus of efforts to simulate forest landscape 
disturbances.

Perturbed forest landscapes recover over time, with changes occurring in land-
scape composition, patterns, and processes. The landscape will eventually reach a 
state similar to its pre-disturbance condition or, in some cases, achieve an entirely 
different state. The nature of the recovery process is the focus of forest succession 
research, whether the system characteristic being tracked is a process, a pattern, or 
landscape composition.

1.2.3  Simulation Modeling

By a simulation model, we mean (sensu Hall and Day 1977; Rosen 1991; Oreskes 
2003) a mathematical simplification of an ecological system and its processes 
(here, a forest landscape and the associated disturbance processes) for the pur-
poses of exploration, scenario-building, projection, prediction, and forecasting. 
By simulation modeling, we mean the acts of developing or applying a simula-
tion model. Developing a simulation model involves describing the system from a 

Table 1.3  Common terms used to describe and define disturbance regimes

Descriptions and definitions Source

Disturbance regime depends on the particular disruptive 
force and responses being studied; descriptors include the 
spatial extent, magnitude (intensity or severity), frequency, 
predictability, turnover rate, and rotation period

Sousa (1984)

Disturbance regime is described by distribution, frequency, 
return interval, rotation period, predictability, magnitude 
(intensity or severity), and synergistic effects

White and Pickett (1985)

Disturbance regimes are characterized by all natural and 
human-caused disturbance drivers that are present, their 
stochastic and regular spatial and temporal distributions, 
their intensities, and the severities of their effects on the 
landscape’s component ecosystems, including interactions 
between different disturbance agents

Suffling and Perera (2004)

Disturbance regime represents the ensemble of disturbance 
types associated with a specific landscape environment

Coulson and Tchakerian (2010)
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reductionist perspective and including only those processes we can readily inves-
tigate and quantify. Equations that describe these processes are then encoded in 
computer algorithms to facilitate efficient computation, graphical visualization, 
and analyses of the simulated results. The degree of simplification that needs to 
be attained, and how and what processes are reduced to mathematical expres-
sions, are points that are strongly debated among ecologists: some prefer simple 

Fig. 1.1  A conceptual illustration of the major components and steps in a forest landscape dis-
turbance process. a characteristics of the disturbance agent (the cause), b interactions between 
the forest landscape and the disturbance agent (the effect), and c characteristics of the perturbed 
forest landscape (the result)
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and parsimonious models, whereas others argue for complex and detailed ones 
(e.g., Logan 1994; Canham et al. 2003; Evans et al. 2013). Landscape simulation 
models not only address broader-scale phenomena (i.e., at scales above those of 
individual trees and communities), they are also spatially explicit (i.e., location-
specific and account for neighborhood effects). Simulating forest landscape dis-
turbance with a model entails quantifying the characteristics and behavior of the 
disturbance agents, their interactions with the forest landscape (the perturbation), 
and the characteristics (perturbed state) of the resulting forest landscape (i.e., a, b, 
and c in Fig. 1.1).

Such a model expression will include the characteristics of the perturbed forest 
landscape as variables that are not directly measured (Z), the pre-disturbance state 
of the forest landscape (X) and the characteristics of the disturbance (Y) that are 
directly measured, their interaction as an estimated relationship (f), and sources of 
variability (ε). Because all forest landscape simulation models are expected to be 
spatially explicit, a spatial interaction term (g) is also included (Fig. 1.2).

There are two major approaches to development of a simulation model, which 
differ both in concept and in intent and produce models that differ in their applica-
tions: the mechanistic and empirical approaches (Korzukhin et al. 1996; Suffling 
and Perera 2004; Gustafson 2013). The mechanistic approach leads to process-
based simulation models, commonly termed mechanistic models, a term we will 
use in this volume. This approach requires a thorough understanding of the fun-
damental mechanisms of disturbance and response processes, as suggested by 
Running and Coughlin (1988), who simulated primary physiological and hydro-
logical processes at a landscape scale more than 25 years ago. In the context of 
this book, the mechanistic approach describes the physics, chemistry, and biology 
of disturbance agents, as well as their interactions with the forest landscape (the 
terms Y and f, respectively, in Fig. 1.2). Therefore, mechanistic models draw heav-
ily on scientific knowledge developed through observations and experiments, and 
this knowledge forms the foundation for reducing disturbance processes to equa-
tions that include spatial interactions and temporal trajectories.

Ideally, all such equations would be based on first principles (Gustafson 2013). 
In practice, when we lack, or have only partial knowledge, of some aspects of the 
biological, physical, or chemical properties, various model assumptions are used 

Fig. 1.2  Basic components of a forest landscape disturbance simulation model: Z = the per-
turbed forest landscape state, X = pre-disturbance forest landscape state, Y = characteristics 
of the disturbance, f = interaction between the forest landscape and disturbance, and ε = the 
sources of variability. A spatially explicit expression includes spatial interactions (g), a two-
dimensional index of spatial variability in model components (ij), and the influence of spatial 
proximity (kl). Modified from King and Perera (2006)
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to replace more definitive descriptions of the interaction term f and the sources-of-
variability term ε (Fig. 1.2). Even though the individual steps, namely the distur-
bance (Y) and its interactions with the forest landscape (f), are known or assumed, 
the overall outcome of the model (Z) cannot be readily known given the numerous 
factors that influence the interactions (Y and X) and the myriad interacting steps. 
Thus, the outcomes of process-based simulation models are an emergent property 
that cannot be predicted a priori from the individual components of that model 
(Hall and Day 1977). When such simulations are conducted repeatedly under dif-
ferent conditions, with varying values for the disturbance processes (Y) and forest 
landscape characteristics (X), a range of outcome states (Z) may emerge. Thus, the 
modeled characteristics of a perturbed state of a forest landscape will be a prob-
ability distribution instead of a single value. This insight into the emergent sto-
chasticity of the disturbance outcome helps modelers to understand the natural 
heterogeneity associated with disturbance regimes in forest landscapes, and to iso-
late three key aspects of that variability: its temporal, spatial, and stochastic char-
acteristics (Lertzman et al. 1998).

The other simulation modeling method is the empirical approach, which 
leads to phenomenological models, commonly termed empirical models, a term 
we will use in this volume. This approach involves generalizing ecological phe-
nomena, as illustrated by Usher’s (1992) pioneering demonstration of modeling 
vegetation succession across a landscape. In the context of this book, empirical 
modeling involves quantitative descriptions of forest landscape disturbance events 
and regimes through empirical observations. These models draw heavily on sta-
tistical analyses of data from past disturbance events to define their effects on the 
processes and (mostly) on the outcomes. Here, the interaction between the forest 
landscape and disturbance (f), and the sources of variability (ε), are derived sta-
tistically from past empirical observations of Z, Y, and X. Here too, the simulated 
characteristics of a perturbed state of a forest landscape will be a probability dis-
tribution instead of a single value. However, unlike their mechanistic counterparts, 
empirical models do not have emergent properties with respect to model outcomes 
or associated heterogeneity.

Despite the conceptual dichotomy between mechanistic and empirical models, 
almost all mechanistic models of forest landscape disturbances are, in practice, 
hybrids. They contain many empirical assumptions and modules that fill gaps in 
the scientific knowledge of ecological processes. Another important point is that all 
models are provisional in their logic, structure, and components. Over time, models 
should change to incorporate advances in scientific knowledge. With advances in 
understanding, model development and applications should evolve toward mecha-
nistic ecological models that are based on first principles of biology, physics, and 
chemistry (Gustafson 2013). In addition, because models are but hypotheses of 
numerical implications for ecological systems, continuous testing with data should 
lead to rejection or modification of some assumptions and model functions, and the 
development of new ones (Hilborn and Mangel 1997; Evans et al. 2014).

Models also differ in their applications. For example, they differ with respect 
to why and how they are used for varying purposes such as exploring and 
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understanding ecological systems, developing and testing hypotheses about sys-
tem behavior, and supporting strategies for ecosystem management and decision-
making. During the early stages of the evolution of a subfield in ecology, models 
are typically developed and used for descriptive purposes to increase knowledge 
of ecological phenomena, to support hypothesis development, and to discover a 
system’s behavior. Later, as the knowledge advances and understanding matures, 
models become useful for predictive purposes (Korzukhin et al. 1996).

Even with advances in knowledge, expecting a high predictive ability from for-
est landscape disturbance models is perhaps not realistic. To elucidate this point, 
and following Bugmann (2003), we further divide “predictive” applications of 
forest landscape disturbance models into four broad categories (Table 1.5). The 
differences among these categories extend beyond semantics; they are impor-
tant distinctions that both model developers and model users must understand. 
The degree of certainty required for the predictive and forecast categories to sup-
port tactical applications may not be realistic for models of ecological systems 
(Bugmann 2003), and may be almost impossible to achieve with forest landscape 
disturbance models. Conversely, examining synoptic possibilities for future states 
of forest landscapes under what-if disturbance scenarios to support strategic appli-
cations is a more relevant and plausible pursuit (Perera and Cui 2010). Fortunately, 

Table 1.5  Possible applications of forest landscape ecological disturbance models, based on the 
categories and definitions of Bugmann (2003)

Application 
category

Definition Goal of application Example

Prediction Commonly denotes 
inference from facts or 
accepted laws of nature, 
and implies certainty

Tactical: to precisely 
know the occurrence 
and characteristics of a 
disturbance event

Spatially or temporally pre-
cise prediction of a wildfire 
event; that is, of the ignition, 
extinguishment, extent, dura-
tion, intensity, and severity

Forecast Adds the implication of 
anticipating eventualities 
and differs from predic-
tion in being concerned 
with probabilities

Spatially and temporally 
precise prediction of the 
likelihood of a wildfire event 
and of its characteristics

Projection An estimate of future 
possibilities

Strategic: to discover 
what is possible and 
the probabilities of 
disturbance events and 
their characteristics

Spatially and temporally 
explicit portrayal of a single 
probability distribution for 
future wildfire events and 
their characteristics under 
one set of assumptions

Scenario An account or synopsis 
of a possible course of 
action or events

Spatially and temporally 
explicit scenarios of multi-
ple probability distributions 
for future wildfire events 
and their characteristics 
under varying sets of 
assumptions
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it is this goal of discovery (i.e., simulation of scenarios for the possible future 
states of ecological systems) that appears to be gaining momentum in applications 
in forest landscape disturbance modeling, with an emphasis on mechanistic mod-
els (Gustafson 2013).

1.3  The Contents of the Book

Included in this book are efforts to model an array of forest landscape distur-
bance types, ranging from physical to biological and from single to multiple. 
Also included are attempts to model interactions among disturbances by natural 
agents and anthropogenic effects, and the simulation of forest landscape recov-
ery from disturbance (Table 1.6). The intent of these discourses is to illustrate the 
diversity of forest disturbance types that occur on landscapes, and approaches to 
their modeling. As well, these reviews of the various modeling approaches show 

Table 1.6  An overview of the chapter contents: intent, disturbance attributes, and the modeling 
focus and approach

aBased on the terminology used by the chapter author

Chapter 
number and 
lead author

Intent Disturbance Distur-
bance type

Distur-
bance 
duration

Modeling 
focus

Modeling 
approacha

2. Mitchell Review Windthrow Abiotic Pulse Response Empirical and 
hybrid-mecha-
nistic

3. Gustafson Case study 
and review

Drought Press Distur-
bance and 
response

Empirical, 
mechanistic

4. McKenzie Synthesis Wildfire 
regimes

Pulse Process, 
empirical, and 
hybrid

5. Sturtevant Review 
and
synthesis

Spruce 
budworm

Biotic Empirical, 
mechanistic

6. Regnière Case study Mountain 
pine beetle

Distur-
bance

Mechanistic 
individual-
based

7. Birt Review Southern 
pine beetle

Distur-
bance and 
response

Mechanistic

8. Keane Case study Disturbance 
interactions

Integrated Pulse/
press

9. Wimberly Review Coupled 
human and 
natural 
systems

Press

10. Scheller Case study 
and review

Forest 
recovery

– – Recovery Moving to 
mechanistic
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the different stages of maturity in model development. Given the authors’ back-
grounds, the implicit bias is toward North American forest landscapes, although 
the many case studies capture the geographical diversity within this continent. 
The chapters written specifically on simulation modeling topics provide a litera-
ture review that is not exhaustive, but that is sufficient to summarize the state of 
knowledge on that topic. They also address topics related to disturbance modeling 
as syntheses and provide a visionary perspective for conceptual advances. When 

Fig. 1.3  The organizational structure of the chapters
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a specific example of model use is described, it is meant only as a case study to 
illustrate and support a broader argument. Thus, we expect the relevance of the 
points made in this book to last well beyond the lifespan of typical research papers 
on model development and applications.

The book begins with the present overview chapter, followed by a series of 
chapters that focus on modeling of a specific disturbance type. We have organ-
ized these into broad groups (abiotic, biotic, and integrated disturbances), with the 
final chapter addressing the recovery of forest landscapes (Fig. 1.3). The chapters 
on modeling abiotic disturbance include windthrow in forest landscapes (Chap. 
2: Mitchell and Ruel), drought-induced forest mortality (Chap. 3: Gustafson and 
Shinneman), and wildfire regimes (Chap. 4: McKenzie and Perera). The group 
of chapters on biotic disturbances addresses forest-dwelling insects that peri-
odically create epidemic-level disturbances: spruce budworm defoliation (Chap. 
5: Sturtevant et al.), the response of the mountain pine beetle to climate change 
(Chap. 6: Regnière et al.), and disturbance by the southern pine beetle (Chap. 7: 
Birt and Coulson). The two chapters on integrated disturbances focus on interac-
tions between biotic and abiotic disturbance agents under climate change (Chap. 
8: Keane et al.) and under coupled natural and anthropogenic disturbance in forest 
landscapes (Chap. 9: Wimberly et al.). The next chapter, on simulating the recov-
ery of a forest landscape, addresses the dynamics of vegetation and biogeochem-
istry soon after disturbance (Chap. 10: Scheller and Swanson). We conclude with 
a summary and a synthesis of the book’s contents, as well as insights into future 
simulation modeling of forest landscape disturbances and their application (Chap. 
11: Perera et al.).
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2.1  Introduction

Wind damage to trees and stands has ecological and management implications. 
The spectrum of damage can range from creation of canopy gaps and development 
of multi-cohort (uneven-aged) stands, to whole-stand replacement and initiation 
of single-cohort (even-aged) stands (e.g., Kramer et al. 2001; Busby et al. 2008; 
Bouchard et al. 2009). Individual trees can be broken or uprooted. Soil inversion 
by overturned rootwads leads to complex microtopography, improves soil fertil-
ity (Schaetzl et al. 1989; Kramer et al. 2004), and creates a regeneration niche 
for many tree and understory plant species (Ulanova 2000). On steep slopes, the 
disturbance contributes to downslope movement of soil (Gallaway et al. 2009). In 
managed forests, as well as rural and urban landscapes, windthrow damages crop 
and amenity trees, affects conservation and recreation values, and poses a threat 
to human life and built structures (Fig. 2.1a; Schmidlin 2009). Rather than being 
viewed as individual catastrophic events, windthrow is more realistically viewed 
as a recurrent disturbance process, with an inverse relationship between event fre-
quency and severity. At a given location, the likelihood and severity result from 

Fig. 2.1  a Aftermath of the December 15, 2006 windstorm in Stanley Park, Vancouver, British 
Columbia, Canada (photo credit S.J. Mitchell). b Stand-replacing windthrow from an extra-tropi-
cal cyclone in coastal British Columbia, Canada (photo credit S.J. Mitchell). c Partial-windthrow 
from an extra-tropical cyclone, coastal British Columbia, Canada (photo credit S.J. Mitchell). 
d Stand-replacing windthrow from a convective downburst—boreal forest in Ontario, Canada 
(photo credit A. Perera)
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interactions among regional wind climate and local terrain, vegetation, and man-
agement regime (Mitchell 2013). Scientists use models to improve their under-
standing of the processes underlying forest disturbances and to integrate results 
of empirical, biomechanical, and numerical investigations. Ideally, the models or 
the results of modeling are presented in the form of decision support tools (e.g., 
Hanewinkel et al. 2011) that can be used by resource and conservation manag-
ers as well as those responsible for public utilities to evaluate windthrow risk and 
develop mitigative responses in a wide range of forest conditions.

In this chapter, we review the factors that contribute to windthrow frequency 
and severity within stands and across landscapes, summarize current approaches 
used to model windthrow, identify and discuss the gaps in existing mod-
eling approaches, and outline strategies to improve modeling and application of 
windthrow models for decision support.

2.2  Overview of Factors that Contribute to Windthrow

A turning moment is the tendency of a force to rotate an object around its 
axis, and is calculated by multiplying the force by the length of the lever arm. 
Windthrow results when wind-induced turning moments exceed root anchorage 
or stem strength and trees uproot or break. The level of damage in forest stands 
ranges from partial to stand-replacing, depending on wind speed and the suscep-
tibility of trees that make up the stand (Fig. 2.1 b, c). In temperate climates, most 
windthrow occurs during extreme weather associated with extra-tropical cyclones 
or remnant tropical cyclones. These systems produce sustained high winds over 
wide areas and are often accompanied by heavy rainfall that reduces anchorage. 
Regional-scale airflow is modified by local terrain, leading to areas of higher or 
lower topographic exposure to wind (Ruel et al. 2002). Downbursts or tornados 
associated with convective storms cause severe, localized windthrow along the 
track of the storm (Fig. 2.1d; Peterson 2007). In tropical climates, windthrow 
is caused by cyclones (e.g., Lugo 2008) and convective downbursts (Garstang 
et al. 1998).

The mechanical stability of individual trees reflects their long-term exposure 
to wind and the effects of inter-tree competition. Open-grown trees maintain long 
live crowns, and acclimate to local wind regimes by developing thick stems and 
structural roots. In locations with prevailing winds, their crowns are often wind-
shaped or flagged, and stems and roots thicken asymmetrically (Telewski 1995; 
Fig. 2.2). Stand-grown trees are partially sheltered by neighboring trees, and com-
pete with them for light and soil resources. Here, height growth, maintenance of 
sun exposed foliage, and fine root production take priority over stem and root 
thickening, leading to slender trees with lower mechanical stability (Mitchell 
2000). Dense, uniform stands can grow into a condition where the whole stand 
becomes unstable as it reaches some critical height. This phenomenon has been 
reported for single-cohort stands in temperate forests around the world, and 
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motivated the original windthrow hazard classification system developed for the 
United Kingdom (Miller 1985). Management activities such as patch cutting, 
heavy thinning, or retaining isolated stems within harvested areas, which produce 
sudden increases in wind exposure, can lead to windthrow during routine winds. 
In contrast, planting trees at wide spacing, or gradually thinning stands, can lead to 
trees that are well acclimated to the local wind climate and therefore less suscepti-
ble to windthrow (Albrecht et al. 2012).

The influence of soils on tree and stand stability is complex. Open-grown trees 
may form stable anchorage on a wide variety of soils. Shallow or poorly drained 
soils can restrict anchorage; however, landscape-scale studies of windthrow often 
reveal that stands on deep soils are more susceptible (Dobbertin 2002; Bouchard 
et al. 2009). This apparent paradox may be explained by the fact that stands grow 
taller and trees compete more for light on sites with deeper, more fertile soils, 
making them more susceptible to windthrow.

Observations of the recurrent nature of wind damage and the role of compo-
nent factors, have informed the development of classification schemes based on 
local expert knowledge (e.g., Miller 1985; Mitchell 1998; Wood et al. 2008), and 
have led to two broad approaches to windthrow modeling: empirical and hybrid 
empirical-mechanistic.

2.3  Empirical Modeling

2.3.1  Approaches to Empirical Modeling

The aims of empirical windthrow modeling are diagnostic, i.e., to identify the 
factors associated with windthrow, and predictive, i.e., to improve our capac-
ity to predict where and how much damage is likely within forested landscapes. 

Fig. 2.2  Wind shaped tree 
crowns in an area of strong 
prevailing winds (photo 
credit J.-C. Ruel)
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Empirical modeling can be undertaken at spatial scales ranging from national 
through regional to local, and incorporate landscape-, stand-, and tree-scale data. 
Temporally, models can address damage from a single event or class of similar 
events, or cumulative damage that occurs over a fixed time interval. Wind dam-
age estimates can be obtained via classification of aerial or satellite images (Ruel 
and Benoit 1999; Mitchell et al. 2001), establishment of temporary plots (Scott 
and Mitchell 2005), or from periodic re-measurement of permanent sample plots 
(Valinger and Fridman 1999). Predictor variables can be obtained via field meas-
urement or from spatial data layers (e.g., topography, vegetation, soils, and man-
agement history maps). Wind exposure is often represented using topographic 
exposure indices but potential sources of wind data are many, including local cli-
mate stations, broad-scale regional wind atlases, and mesoscale modeling (Ruel 
et al. 1997, 2002).

In empirical modeling, local outcomes can be examined at the stand (plot) or 
individual tree scale. At stand scale, the response variable can be the percentage of 
stems or canopy area affected, but since it is common for the majority of plots or 
trees in a given study area not to be affected, the outcome is often represented as 
binary, i.e., above or below some damage threshold. Classification and Regression 
Trees (CART) can be used to identify damage thresholds and predictor variables 
(e.g., Kamimura et al. 2008). Tree-scale outcomes are dichotomous (trees fail, 
meaning they break or uproot, or remain standing), so logistic regression mod-
els are typically used to predict the probability of individual tree failure, and can 
also be used to determine the probability of damage within plots exceeding some 
threshold level of damage severity (Table 2.1).

Table 2.1  Examples of empirical windthrow models

Author Location Temporal 
scale

Spatial 
scale

Sample point Other 
information 
sources

Analytical 
approach

Albrecht  
et al. (2012)

Germany Multiple 
events

Tree and 
stand

Permanent 
sample plots

Tree, 
stand, site, 
 management

GLMM

Dobbertin (2002) Europe Two events Stand Permanent 
sample plots

Stand, site CART

Kamimura  
et al. (2008)

Japan Multiple 
events

Stand Temporary 
sample plots

Site, 
 management

CART

Lavoie  
et al. (2012)

Canada 
(Québec)

Multiple 
events

Tree and 
stand

Temporary 
sample plots

Site, 
 management

Logistic 
 regression, 
mixed models

Mitchell and  
Lanquaye- 
Opoku (2005)

Canada 
(British 
Columbia)

Multiple 
events

Stand Cutblock edge 
segments

Stand, site, 
management

Logistic 
 regression

Moore  
et al. (2013)

New  Zealand Multiple 
events

National 
and 
regional

Regional sum-
maries of area 
damaged

Wind speed Generalized  
Pareto 
 distribution

Scott and Mitchell 
(2005)

Canada 
(British 
Columbia)

Multiple 
events

Tree Temporary 
sample plots

Tree, 
stand, site, 
 management

Logistic 
 regression

Valinger  
and Fridman (2011)

Sweden Single 
event

Stand Permanent 
sample plots

Stand, 
 management

Logistic 
 regression
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One of the considerations in the use of logistic regression for developing 
windthrow prediction models is the potential for lack of spatial independence 
between observations used for model fitting. Spatial independence will differ 
among tree-, stand-, and landscape-scale variables, and will depend on the extent 
of the study area. Spatial independence can be tested using semivariance tech-
niques (Carr 1995). The spatial independence of topographic and wind variables 
will depend on topographic heterogeneity and the grid resolution at which these 
variables are characterized. Another way to account for the lack of spatial inde-
pendence at different scales is through the use of mixed models. For instance, ran-
dom effects can be associated with plots and with harvest blocks to account for the 
fact that trees within a given plot and plots within the same harvest block are not 
independent (e.g., Lavoie et al. 2012).

In addition to ensuring adequate distances between sample points to reduce 
spatial correlation, it is good practice to reserve a portion of the data set for model 
testing. The portability of empirical models in space or time can be examined by 
testing their goodness-of-fit for observations collected in different locations, and 
over different time periods. Mitchell and Lanquaye-Opoku (2005) found consist-
ency in variables among models fit for coastal and continental regions in British 
Columbia, Canada, and that models from one region gave good predictions of rela-
tive windthrow likelihood in other regions.

In their review of natural hazards modeling, Hanewinkel et al. (2011) identify 
as problematic the relatively high rates of misclassification for individual cases 
when the number of observations differs substantially between categories, as is 
often the case for wind damaged versus undamaged trees and stands. They pro-
vide examples of some alternative approaches including the generalized additive 
mixed model (GAMM) used by Schmidt et al. (2010) to explore damage caused 
by Storm Lothar, which affected Europe in 1999. Albrecht et al. (2012) used gen-
eralized linear mixed modeling (GLMM) to explore factors contributing to winter 
storm damage in southwest Germany. Described as very powerful tools, GLMMs 
are challenging to use even for statisticians, which can lead to inappropriate appli-
cations (Bolker et al. 2008). For nonspatial national or regional analyses of area 
damaged, extreme value approaches are useful. Moore et al. (2013) used gener-
alized Pareto distributions to (i) examine the probability that the total area wind 
damaged in any year exceeded a threshold level, and (ii) predict the level of dam-
age associated with a given return period, both for forested areas of New Zealand.

The results of empirical modeling have been incorporated into decision support 
tools. Kamimura et al. (2008) used the CART approach to create a decision sup-
port tool for windthrow in sugi (Cryptomeria japonica) forests in Japan. Regional 
stand-level logistic regression models have been incorporated into the growth and 
yield model TIPSY in British Columbia, Canada (Di Lucca et al. 2006). Where 
attributes such as stand, soil, topographic, or wind variables derived from exist-
ing spatial inventories are used for model fitting, the data sets can be compiled 
using geographic information system (GIS) software, with custom scripts for 
characterizing topographic exposure, drainage, and land management variables. 
The resulting predictive models can be entered into map-calculators (tools with a 
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GIS that enable users to combine values from different map layers via algebraic or 
logical expressions) to produce maps of stand vulnerability across the landscape 
(Fig. 2.3). These maps promote understanding of wind disturbance regimes and 
assist with the location and design of harvesting/thinning areas in order to reduce 
windthrow losses, or to better emulate natural disturbance patterns (e.g., Mitchell 
et al. 2001).

2.3.2  Advantages and Disadvantages of Empirical Models

Although they may have some shortcomings, empirical windthrow models have 
several advantages over existing mechanistic models. The full range of current 
ecological and management complexity can be accounted for in the data sets used 
for model fitting, including representation of multi-species, multi-aged stands with 
senescing and partially decayed trees. Harvest designs ranging from simple geo-
metric clear-cuts to complex selection or variable retention harvests can be sam-
pled and represented. While empirical models may not provide direct evidence of 
the mechanisms that lead to windthrow, they can be used to identify key factors to 

Fig. 2.3  Local windthrow probability maps produced using an empirical model with stand-
level data, coastal British Columbia, Canada. Shading indicates probability of wind damage to 
forested edges of new, windward-facing clearcut boundaries due to routine winter winds (photo 
credit S.J. Mitchell)
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be evaluated in field-level diagnosis of its likelihood (e.g., Mitchell 1998). They 
also provide insights into how to represent climatic, geographic, and stand vari-
ables in mechanistic models. Furthermore, the data sets needed for empirical mod-
els can be assembled rapidly, particularly when windthrow is mapped via remote 
sensing, and are useful for testing and validating mechanistic models.

Regardless of the analytical framework or model form, empirical models are 
based on past or current outcomes. Changes in storm, temperature, or precipitation 
regimes, whether due to short-term climate cycles or longer-term climate change, 
and changes in the composition and arrangement of stands as land use and man-
agement practices change will influence the validity of these models. Other disad-
vantages of empirical models of windthrow include the typically coarse resolution 
of topographic (spatial) and wind (spatial and temporal) variables, and the diffi-
culty in identifying the underlying biological or mechanical processes from the 
resulting models.

2.4  Hybrid-Mechanistic-Empirical Models

2.4.1  Windthrow Mechanics as Represented  
in Hybrid-Mechanistic Models

Windthrow mechanics are reviewed by Mayer (1989) and Wood (1995), both 
of whom identify static and dynamic aspects of wind loading and tree response. 
Windthrow occurs when the turning moments produced by wind acting on the 
crown of a tree exceed the capacity of the stem to resist the bending stresses—lead-
ing to stem breakage, or the capacity of the root-soil system to resist overturning. 
In purely mechanistic windthrow modeling, it would be possible to link a series of 
calculations of the applied and resistive moments for an individual tree at a given 
above-canopy wind speed, estimate the critical above-canopy wind speed at which 
the tree will fail, and apply these calculations to all of the trees that make up a 
given stand, while accounting for the dynamic aspects of tree motion and wind tur-
bulence (e.g., Wood 1995). In reality, trees and stands are mechanically and archi-
tecturally complex and heterogeneous, as are wind patterns during wind storms, 
terrain and soil properties. In developing windthrow process models, researchers 
make several conceptual simplifications, including applying expert judgement 
about the value or range of key parameters and incorporating empirically-derived 
equations to simplify model construction (Fig. 2.4). The resulting products are best 
described as hybrid mechanistic–empirical models. The ultimate motivation for 
developing these models is to improve prediction of potential damage, and allow 
users to explore how different ecological and management scenarios would affect 
the likelihood and severity of damage. Development and validation of these models 
also focuses attention on the key component processes and relationships that drive 
this complex natural phenomenon. The following summary introduces key termi-
nology, approaches, and information sources used in the major windthrow models, 
wherein windthrow is treated primarily as a static problem (e.g., Peltola 2006).
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In the simplest models, the stand is assumed to comprise identical trees, and 
when the representative tree fails, so does the entire stand. With this simplification, 
it is possible to estimate wind loading on trees within the stand using the “rough-
ness” approach. In this approach, the shear stress that develops across the forest 
canopy as a function of the above-canopy wind speed and the canopy surface 
roughness is evenly distributed among the trees within a given area and is assumed 
to act at approximately two-thirds of the stand height (Gardiner et al. 2000, 2008). 

Fig. 2.4  The key inputs, relationships, calculations and outputs of the hybrid-mechanistic 
windthrow risk model HWIND (from Peltola et al. 1999)
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The resulting equations for critical above-canopy wind speed that would lead to 
breakage (Uhbreak) or uprooting (Uhover) become (Table 2.2):

The modulus of rupture (MOR) for sound green wood obtained from standard 
wood properties tables (e.g., Alden 1997) is modified to represent living tree stems 
by including a reduction in strength due to knots (fknot) obtained from three-point 
bending tests with recently harvested logs. Ruel et al. (2010) demonstrated this 
process for balsam fir (Abies balsamea (L) Mill.) and expanded it by estimating 
the decay factor for logs with heart rot (Fig. 2.5).

Trees may be windthrown as a result of stem or root system failure. Critical 
resistance to uprooting is tested experimentally via tree-pulling (Fig. 2.6). This 
technique has been standardized, and very strong linear relationships are typi-
cally found between critical turning moment and stem mass (Creg, SW) in conifers 
(Nicoll et al. 2006). These regressions are applicable across fairly large geo-
graphic regions (Bergeron et al. 2009). However, when wind climate varies across 
a region, regressions may need to be adjusted to reflect acclimation to the local 
climate (Nicoll et al. 2008). Stem and crown attributes are typically estimated 
from tree diameter and height via dendrometric (or biomass) equations developed 
via destructive analysis of felled or pulled trees. During tree-pulling studies, most 
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Table 2.2  Description of terms used in Eqs. 2.1 and 2.2

Symbol Description Units

k von Karman’s constant Dimensionless

d Zero plane displacement m

z0 Aerodynamic roughness m

D Average spacing between trees m

G Gust factor Dimensionless

h Mean tree height m

ρ Air density kg/m3

d.b.h. Diameter at breast height (1.3 m above ground) m

fknot Knot factor—reduction of wood strength due to knots Dimensionless

fedge Increase in load due to proximity of tree to forest edge Dimensionless

fcw Increase in load due to stem and crown displacement under wind 
load

Dimensionless

MOR Modulus of rupture for sound green wood Pa

SW Stem mass kg

Creg Regression constant that relates critical turning moment to stem 
mass

Dimensionless



272 Modeling Windthrow at Stand and Landscape Scales

trees uproot, but a proportion of sound trees experience stem failure. In some stud-
ies, critical moments for stem-failed trees were comparable to those of uprooted 
trees of similar size (e.g., Achim et al. 2005; Byrne and Mitchell 2007), while 
in other studies stem failure occurred at higher bending moments than uprooting 
(e.g., Moore 2000; Bergeron et al. 2009).

While it is the standard approach for measuring tree resistance to wind loads, 
tree-pulling has limitations. Any structure is most likely to fail at the weakest 
point, and while trees may not universally do so, they can theoretically maintain 
optimum stability while remaining competitive with other trees by allocating pho-
tosynthate in the most structurally efficient manner. This is known as the uniform 
stress hypothesis (e.g., Morgan and Cannell 1994). In the standard tree-pulling 
technique, cables are often attached below the crown for practical and safety 
reasons, and this is lower than would be required to generate a uniform stress in 
the outer stem fibers (e.g., Wood 1995). Furthermore, pulling is “static”, i.e., is 
a straight pull with gradually increasing cable tension) and does not emulate tree 
motion during storms and the potential for gradual loss of root-soil cohesion.

Fig. 2.5  Three-point 
bending tests of stem with 
heart rot (photo credit  
J.-C. Ruel)

Fig. 2.6  Static tree-pulling 
with motorized winch to 
determine critical turning 
moment (photo credit  
J.-C. Ruel)
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The roughness method of calculating critical wind speed applies to conditions 
well downwind of any gaps or stand edges. The effect of the width of an opening 
on wind loading at the stand edge and with distance into the downwind stand has 
been tested empirically in wind tunnel studies with turbulent airflow and model 
stands made up of flexible “trees” (Gardiner et al. 1997). The ratio of peak to 
mean applied moments at the base of individual trees is referred to as the gust fac-
tor (G), while the effect of upwind gaps, referred to as fetch, is accounted for with 
a gap factor and distance from stand edge. An alternate method of estimating wind 
loading, which is better suited to stand edges, is the “profile” method (e.g., Smith 
et al. 1987; Peltola et al. 1999). The latter method is also more suitable for eval-
uating loads on individual trees in nonuniform and mixed species stands. In the 
profile method, the wind load on an individual tree is calculated from the within-
canopy wind speed profile, the crown frontal area, and the drag coefficient, using 
the classical drag equation (Eq. 2.3):

where Fd is the drag force acting on the tree crown, ρ is air density, Cd is the drag 
coefficient, A is the frontal area of the tree crown in still air and U is the horizon-
tal wind speed. In reality, tree branches and foliage are not rigid. Branches taper 
toward the tip, similar to fishing rods, leading to increasing flexibility at the periph-
ery of the crown. Branches and foliage reconfigure and realign as wind speeds 
increase (Fig. 2.7), streamlining drag elements and reducing frontal area. Where the 
classical drag equation is used with a fixed drag coefficient, it is necessary to adjust 
the crown frontal area measured in still air (As) using a streamlining coefficient (S):

where the parameters c and n are species specific and represent the rate of crown 
frontal area reduction with increasing wind speed. Drag and streamlining coef-
ficients have been determined experimentally for several conifer and broadleaf 
species, by placing the crowns of small trees in wind tunnels (Mayhead 1973; 

(2.3)Fd = 0.5 ρ ∗ Cd ∗ A ∗ U2

(2.4)S = c ∗ U−n

Fig. 2.7  Side view of 
western redcedar (Thuja 
plicata Donn ex D. Don) 
tree crown in a wind tunnel 
in horizontal airflow (photo 
credit S.J. Mitchell)
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Rudnicki et al. 2004; Vollsinger et al. 2005) or by mounting them on vehicles that 
are driven at a succession of higher wind speeds through calm air (e.g., Kane et al. 
2008). However, experimentally determined drag coefficients are not available for 
many species, and whether the behavior of small crowns is representative of large 
tree crowns remains an open question.

Combining Eqs. 2.3 and 2.4 leads to:

Drag can be calculated for whole crowns and applied at the height of center of 
pressure to calculate applied turning moment, or it can be calculated for successive 
vertical segments of the crown. When vertical segmenting is used, differing verti-
cal wind profiles can be applied at stand edges and within the stand. The attenu-
ation of the wind profile within forest canopies depends on canopy density (e.g., 
Cionco 1972; Shaw et al. 1988).

Horizontal wind loads deflect the tree stem from vertical, and an additional 
applied moment is created from the displaced stem and crown mass. This addi-
tional bending moment is estimated by assuming that the tree stem behaves like 
a tapered cantilever beam, anchored at the base, and is normally calculated iter-
atively since the displaced mass leads to further displacement until the resistive 
moment balances the applied and self-loading moments.

Once the critical wind speed has been estimated using either the roughness or 
profile methods, the probability of a wind of this speed occurring at a given site 
can be estimated. Since long-term weather stations tend to be concentrated near 
urbanized areas rather than distributed through forested landscapes, a variety of 
approaches are used. The UK Forestry Commission used tatter flags located across 
open moorland as a direct measure of wind exposure, and related this to a vari-
ety of indices of topographic exposure to wind and to regional windiness (Hannah 
et al. 1995). The underlying assumption in these approaches is that a relation-
ship exists between general windiness at a location and the recurrence of extreme 
winds. Physical airflow models and numerical weather prediction models can be 
used to represent the effect of complex terrain on local wind speed and direction 
(Ruel et al. 1997). Numerical weather prediction models have the advantage of 
allowing for reconstruction of specific weather events, and can be used to predict 
wind, temperature, and precipitation. As well, they can be used to produce gridded 
maps of mean and extreme wind and precipitation conditions (e.g., Guthrie et al. 
2010). Goodrick and Stanturf (2010) refer to this as “event risk”, and describe a 
process for producing gridded maps from climatological models.

2.4.2  Overview of Hybrid-Mechanistic Models

Several hybrid-mechanistic windthrow models incorporate some or all of the 
components described above (Table 2.3). The most broadly applied model, 
ForestGALES, was initially developed by the UK Forestry Commission to predict 

(2.5)Fd = 0.5 ρ ∗ S ∗ Cd ∗ As ∗ U
2
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failure of Sitka spruce (Picea sitchensis) plantations in Britain (Gardiner et al. 
2006). It can be run using either the roughness or profile method to calculate criti-
cal wind speeds (however, the profile method is not included in the public version), 
and can be used to simulate outcomes for even-aged plantations of major commer-
cial conifer species for uniform thinning or strip cutting scenarios. Regional windi-
ness is modified via a topographic exposure score to estimate the probability of a 
critical wind speed occurring at the target location. Topographic exposure accounts 
for elevation, local topography, the direction of prevailing winds, and the funneling 
effect of valleys (Quine and White 1993). In the public version, the stand is treated 
as completely uniform and if the critical wind speed for the representative tree is 
exceeded the entire stand will fail. The effects of upwind gaps and uniform thin-
ning can be evaluated. Soil type and drainage are used to modify critical turning 
moments using adjustment factors derived from tree-pulling studies on a range of 
soil types. The model has been coupled with data from growth and yield tables to 
project the age at which stands will reach critical height. The ForestGALES model 
has been adapted by research groups in New Zealand (Moore and Quine 2000), 
France (Cucchi et al. 2005), Japan (Kamimura et al. 2008), and Canada (Québec—
Ruel et al. 2000; British Columbia—Byrne and Mitchell 2013) by adding tree-
pulling and dendrometric data for local species (primarily conifers), use of local 
wind climate data, and local stand growth models.

The model HWIND was developed in Finland to predict the risk of wind or 
snow damage via uprooting or stem breakage along recently exposed stand 
edges (Peltola et al. 1999), and incorporates the profile method to calculate criti-
cal wind speed. Stands are assumed to be uniform and edge trees will fail if the 
critical wind speed is reached at a newly exposed edge. The model includes the 
effect of distance from the stand edge and it is possible to calculate critical wind 
speeds separately at one, two, or more tree heights from the edge. Wind loading, 
deflection, and resistance are calculated for representative trees for successive 
vertical stem/crown sections. The other major difference between HWIND and 
ForestGALES is that the critical moment for uprooting is calculated from root 
system dimensions (root system mass) rather than estimated based on stem mass 
using empirical relationships from tree-pulling studies. Schelhaas et al. (2007) 
have adapted HWIND in their model ForGEM-W to include spatial mapping of 
trees and tree-to-tree shelter and collision effects.

Table 2.3  Examples of hybrid-mechanistic models for predicting windthrow

Author Origin Base model Adaptations

Gardiner et al. (2000, 
2006)

United 
 Kingdom

ForestGALES France Cucchi et al. (2005), 
New Zealand Moore and Quine 
(2000), Japan Kamimura et al. 
(2008),  Canada—Québec Ruel 
et al. (2000), British Columbia 
Byrne and Mitchell (2013)

Peltola et al. (1999) Finland HWIND Sweden Blennow and Sallnäs 
(2004), The Netherlands Schelhaas 
et al. (2007)

Ancelin et al. (2004) France FOREOLE –
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Ancelin et al. (2004) developed FOREOLE, an individual tree model in which 
the profile method is used to calculate wind loading and resistance for successive 
vertical stem/crown sections. Loads are calculated assuming static loading and are 
adjusted for turbulent wind effects using a gust factor. The principle departure from 
ForestGALES in the wind loading and resistance calculations is in the improved 
representation of stem taper and the use of the transfer matrix method for stepwise 
calculation of loads, displacement, and resistance within stem segments. This model 
has been linked with an individual-tree-based growth and yield model (Courbaud 
et al. 2001) within the Computer Aided Projection of Strategies in Silviculture 
(CAPSIS) platform (e.g., Dufour-Kowalski et al. 2012) and allows windthrow 
to be simulated for populations of trees at any point in the growth of uniform or 
nonuniform stands. While CAPSIS allows for the spatial representation of modeled 
trees, Ancelin et al. (2004) did not incorporate iterative processing in FOREOLE to 
account for the effect of damage propagation during a given wind event.

ForestGALES_BC/WindFIRM extends the capacity of ForestGALES to model 
damage propagation in nonuniform, mixed species stands under complex partial 
harvesting scenarios (Byrne and Mitchell 2013). The model has two modules. The 
first, WindFIRM, assembles spatial information from input GIS layers and spa-
tially explicit tree lists, calculates stand attributes for 25 m × 25 m grid cells, and 
passes the stand- and tree-scale data to the second, ForestGALES_BC, for calcula-
tion of the critical and applied wind speeds for each tree in the area under investi-
gation. Rather than using a representative tree, the model uses an input table that 
lists each tree in the stand, with its species, diameter at breast height, height, and 
location (x, y coordinate). These “tree lists” can be derived from field measure-
ments, growth and yield models, or other sources, including LIDAR. Using the 
spatially explicit tree list, the critical wind speed for each tree in the stand is cal-
culated using the profile method. The within-canopy wind profile acting on each 
tree is calculated by modifying the user-specified above-canopy wind speed based 
on the canopy density in upwind grid cells. To better represent damage propaga-
tion, any trees that would fail for the user-specified above-canopy wind speed are 
deleted from the tree list. The resulting tree list is passed from the ForestGALES_
BC module back to the WindFIRM module for recalculation of stand attributes 
within each 25 m × 25 m grid cell, and then passed back to ForestGALES_BC 
to recalculate tree-level wind loading for the remaining trees. These calculations 
are repeated until no additional trees in the stand would fail for the user-specified 
above-canopy wind speed (Fig. 2.8).

2.4.3  Integration of Hybrid-Mechanistic Models  
into Spatial Decision Support Models

Both ForestGALES and HWIND have been integrated with other models and 
information layers within GIS to expand their capacity for decision support at 
stand and landscape scales. For example, HWIND has been integrated with the 
European Wind Atlas Analysis and Application Program (WASP) within a GIS 
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in the predictive framework WINDA to examine the probability of wind dam-
age across landscapes where stand edges are exposed following forest harvesting 
(Blennow and Sallnäs 2004). It has also been integrated with forest growth mod-
els and forest cover data to examine windthrow potential across landscapes under 
various growth and management regimes (Zeng et al. 2007a, b), and with current 
and future wind climate simulations to explore the implications of climate change 
(Blennow et al. 2010; Peltola et al. 2010).

2.4.4  Advantages and Disadvantages of Hybrid-Mechanistic 
Modeling

Researchers have examined and characterized several of the biological, ecological, 
and physical processes that contribute to windthrow at individual tree to landscape 
scales (Mitchell 2013). Hybrid-mechanistic windthrow models provide concep-
tual and computational vehicles to link knowledge on component processes, allow 
input information to be scaled appropriately, and produce tabular or graphical 
outputs. Representing the process of windthrow via a series of linked algorithms 

Fig. 2.8  Integration of ForestGALES_BC and WindFIRM, spatial decision support system for 
windthrow likelihood modeling (from Gardiner et al. 2008)
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helps researchers to generate hypotheses and identify knowledge gaps. Model 
predictions can be tested for individual components or the whole model, using 
independent data. As forest management decision support tools, hybrid mecha-
nistic models are useful for examining and contrasting management scenarios, 
albeit with full regard for the inherent limitations in how these models represent 
reality. Ideally, prior to their application in a new location, models are adapted to 
include parameters for local conditions, and model outputs are compared to local 
observations. In contrast to empirical models, hybrid-mechanistic models allow 
exploration of management or climate scenarios that have not yet occurred or 
are not documented in observational data sets of wind damage. In these simula-
tions however, it is important to keep in mind that these models contain empirical 
components.

The empirical equations included in the calculation of applied and resistive 
moments are based on a limited number of tree-pulling and wind tunnel studies. 
For example, in the base ForestGALES, FOREOLE, and HWIND models, the 
drag coefficients are estimated based on the work of Mayhead (1973) who tested 
small numbers of sapling-sized specimens of commercial conifers in the United 
Kingdom, at speeds under 30 m s−1. Additional studies have been conducted in 
recent years (e.g., Rudnicki et al. 2004; Vollsinger et al. 2005; Kane et al. 2008) 
and new parameters could easily be added to the models. Similarly, in each of 
these models, the gust factors are derived from the wind tunnel work of Gardiner 
et al. (1997, 2000) with model trees, but could be updated with results from 
field studies and numerical simulations. The representation of stands by an aver-
age or typical tree is clearly a simplification, even for the most uniform planta-
tions. Using the profile method to calculate wind loading provides the potential to 
incorporate tree lists and simulate outcomes for mixed species, multi-storied, and 
partially harvested stands. However, to properly represent the windthrow process 
for stands in which tree stability varies, it is necessary to represent the process of 
damage propagation during storm events. At this point, only ForestGALES_BC/
WindFIRM is designed to account for progressive loss of upwind trees and dam-
age propagation (Byrne and Mitchell 2013). The iterative approach used in this 
model is computationally intensive, which limits the speed at which a user can 
compare scenarios if the area under study extends beyond a few tens of hectares. 
However, since computational speed is constantly increasing, this problem will 
resolve itself in time.

The veracity of the major models and decision support systems has been exam-
ined using sensitivity analysis and by comparing results with observational data 
sets of stand- or landscape-scale windthrow outcomes (Gardiner et al. 2008; Byrne 
and Mitchell 2013). The tendency in these validation exercises, however, is to find 
real-world situations where the simplicity of stand, landform, and management 
matches the level of sophistication of the model. Plenty of opportunity remains 
to improve representation of the windthrow process and the heterogeneity of tree, 
stand, landscape, and climatological conditions.
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2.5  Discussion of Modeling Gaps and Potential Approaches

2.5.1  Representation of Spatial Variability  
in Factors Contributing to Windthrow

Hybrid-mechanistic windthrow models can be broadly viewed as stand-scale mod-
els such as ForestGALES (UK model, roughness-approach), and tree-scale models 
such as FOREOLE, ForestGALES_BC, and ForGEM-W. For stand-scale models, 
the outcome is total damage or no damage for a given above-canopy wind speed. 
Tree-scale models can be used to identify which trees in the stand are vulnerable 
at a given above-canopy wind speed. Outcomes for individual trees can be aggre-
gated to outcomes for cells or polygons, giving stand-scale outcomes as the num-
ber or percentage of tree loss. In ForestGALES_BC/WindFIRM, the individual 
tree outcomes are aggregated into 25 m × 25 m cells and the tree loss in one cell 
affects wind exposure of downwind cells. Where tree- and stand-scale models are 
incorporated in a decision support system that is integrated with a GIS, outcomes 
can be examined and represented across the landscape (e.g., Zeng et al. 2007a; 
Blennow et al. 2010).

The cellular approach used in ForestGALES_BC/WindFIRM suggests how 
the resolution of stand-level prediction models could be improved by better repre-
senting the variability in above-canopy wind speed, stand, or soil attributes across 
landscapes. Improving the resolution of wind loading and resistance components 
of tree-scale models depends on the resolution of the input spatial layers. With 
spatial tree lists, it is easy to represent loss of upwind trees via clear-cut, partial 
harvesting, or wind damage, by removing trees from the tree-list. Where upwind 
stand density is variable due to irregular thinning or variable retention harvest-
ing, empirically derived fetch indices such as VRFetch (Scott and Mitchell 2005) 
can be used, but these only crudely represent the effects of canopy heterogeneity 
on wind flow. Schelhaas et al. (2007) used the height and crown dimensions of 
upwind trees to calculate their sheltering effect on the subject tree and used this 
to modify the gust factor. Hale et al. (2012) have found a relationship between 
the applied turning moment experienced by individual trees and competition indi-
ces that represent their immediate growing environments, suggesting an alternative 
way to represent wind loading in heterogeneous stands. Computational techniques 
such as large eddy simulation (LES) allow for the three-dimensional simulation of 
airflow over and through canopies with varying porosity and gaps (e.g., Clark and 
Mitchell 2007; Dupont and Brunet 2008). Although LES is computationally inten-
sive, as processors improve it may be possible to couple LES simulation directly 
with windthrow prediction models to evaluate partial harvesting and thinning sce-
narios. Landscape-scale variability in wind speed can be represented via gridded 
data sets derived from numerical weather prediction or climatological modeling 
(e.g., Goodrick and Stanturf 2010; Guthrie et al. 2010).

Soil conditions affect windfirmness, and vary in space and time. Peltola et al. 
(2000) have examined the effects of soil freezing on tree resistance to uprooting, 
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and trees have been pulled on sites across a gradient of soil drainage (Nicoll 
et al. 2006). Kamimura et al. (2012) have explored the effect of intense precipita-
tion and soil saturation on critical turning moments, but these ephemeral effects 
have not been incorporated into windthrow models. Some sites are more prone 
to soil moisture accumulation during storms. Information on soil drainage is usu-
ally coarsely mapped, and representation of spatial and temporal patterns of soil 
moisture could be improved using higher resolution ground surface maps derived 
from field mapping or LIDAR, integrated with water flow models (e.g., Murphy 
et al. 2009).

Rudnicki et al. (2001) have documented tree collisions, and their effect on tree 
motion at sub-lethal wind speeds. Schelhaas et al. (2007) have taken the first steps 
to integrate tree collisions into ForGEM-W. They use the overlap in crown area 
between the subject tree and downwind neighbors to reduce the applied turning 
moment. They partially account for tree collisions once critical wind speeds are 
exceeded by adding a moment derived from the mass and contact height of failed 
trees to the self-loading moments of downwind neighbors that they contact as 
they fall. However, ForGEM-W does not simulate damage propagation via itera-
tive calculations, momentum transfer during multiple tree cascades, nor directional 
effects. Alternative approaches to modeling wind damage propagation within and 
between stands include cellular automata models used in slope failure or wildfire 
modeling (e.g., Malamud and Turcotte 2000).

2.5.2  Representation of Temporal Variability  
in Factors Contributing to Windthrow

Each of the major windthrow models has been coupled with stand growth mod-
els, including ForestGALES with the UK Forestry Commission Yield Models 
(Gardiner et al. 2006), ForestGALES and FOREOLE within CAPSIS (Ancelin 
et al. 2004; Cucchi et al. 2005), and HWIND with SIMA (Zeng et al. 2007b). 
With this coupling, information on stand growth over time is used in windthrow 
models to estimate the age and height at which the stand will reach the point 
where annually recurring peak winds exceed critical wind speeds (critical height) 
for a site with a particular wind exposure and soil type. Tree-scale windthrow 
models can be linked with spatially explicit stand growth models. For example, 
ForestGALES_BC uses tree lists from, and can be directly coupled with, the Tree 
and Stand Simulator (TASS) growth model (Byrne 2011). At a given time step, 
TASS provides a tree list to ForestGALES_BC for calculation of whether the tree 
would fail for a given above-canopy wind speed. Once a high wind event has been 
simulated, the resulting list of surviving trees can be re-entered into TASS for 
further growth simulation. In this way, the short- and long-term growth and yield 
implications of a given harvesting or thinning prescription can be represented, 
with windthrow losses accounted for.



36 S.J. Mitchell and J.-C. Ruel

Stand growth models account for the effect of growing space on tree size, 
height, and diameter for the average tree, or for spatially explicit tree lists, depend-
ing on the sophistication of the model. Growing space depends on the number 
of stems per ha at the time of regeneration (initial stand density), and changes 
through the life of a stand as the number of stems decreases due to competition-
induced mortality or planned thinning treatments. Reduced growing space typi-
cally leads to greater stem slenderness for a given height and shorter live-crown 
length. When coupled with stand growth models, windthrow models can be used 
to explore the implications of initial spacing for stand stability—in particular, the 
trade-off between reduced stem slenderness (and therefore stem and root resist-
ance) and increased wind loading due to increased wind penetration into the 
canopy and larger crown sizes. In general, model simulations reveal that stands 
planted at wider initial spacings are more stable for a given tree or stand height, 
and this is consistent with field observations (e.g., Schelhaas et al. 2007). Thinning 
leads to more growing space for individual trees, but also increases canopy poros-
ity and wind loading. Healthy, vigorous trees gradually respond to increased grow-
ing space by a general increase in crown volume and diameter increment, but also 
acclimate via preferential thickening of the lower stem and temporary reduction 
in height increment, leading to rapid reductions in stem slenderness (Mitchell 
2000; Ruel et al. 2003). The representation of stand and tree growth following 
thinning varies among growth models. Stand-scale models can represent immedi-
ate changes in average tree diameter due to the removal of smaller trees during 
thinning. They can also represent the increase in radial growth due to increased 
growing space in the years following thinning. Post-thinning acclimative growth 
patterns are not represented, even in spatially explicit tree-scale models such as 
TASS. Such growth pattern changes could be represented in growth and yield and 
windthrow prediction models by linking with functional-structural plant growth 
models (e.g., Fourcaud et al. 2008).

In addition to projected changes due to stand growth, natural and human-
caused disturbances will occur. These can be tracked via change-detection tech-
niques using high or moderate resolution satellite imagery (e.g., Rossi et al. 2013). 
Climate change is expected to affect the frequency, intensity, and timing of severe 
weather events, as well as forest growth (Dale et al. 2001). Hybrid-mechanistic 
windthrow risk models have been used to explore the implications of climate 
change scenarios in storm-prone landscapes (e.g., Blennow et al. 2010; Peltola 
et al. 2010).

2.5.3  Improving Windthrow Modeling  
at the Landscape-Scale

Empirical windthrow models have been fit for landscape-scale data sets, and can 
be used to predict damage from routine winds to stand edges recently exposed by 
harvesting (“endemic damage”, e.g., Mitchell and Lanquaye-Opoku 2005) and 
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to examine risk factors for stand-replacing damage from infrequently occurring 
extreme winds (“catastrophic damage”; Ruel and Benoit 1999). However, empiri-
cal models have been fit for only a few forest types or regions. Representation of 
gap or stand-replacing windthrow across landscapes via hybrid-mechanistic mod-
els remains simplistic, particularly for the effects of upwind canopy properties 
and propagation of damage. Many of the required elements are in place for rapid 
expansion of coverage by empirical windthrow models to more forest types and 
regions, and refinement of hybrid-mechanistic models to support landscape-scale 
prediction of windthrow.

Using successive moderate to high-resolution satellite images (e.g., MODUS, 
IKONOS) enables detection and mapping of gap or stand-replacing damage across 
landscapes shortly after damage occurs. The same data sets could be used to detect 
thinning or harvesting activities that expose trees or stand edges to higher within-
canopy wind loads (e.g., Coops et al. 2009). Change-detection results could be 
linked with gridded wind and precipitation climatologies derived from weather 
data or from numerical weather predictions (e.g., Goodrick and Stanturf 2010; 
Guthrie et al. 2010), and with spatial data sets of terrain, soil, and stand attributes. 
Regional LiDAR data sets are becoming available, and LiDAR has improved the 
resolution of terrain mapping, the evaluation of soil drainage, and the characteri-
zation of stand structure (e.g., White et al. 2012; Wulder et al. 2012). Significant 
computational capacity would be needed to iteratively run tree-scale damage 
propagation calculations for large landscapes, but computational efficiency of 
hybrid-mechanistic models could be improved by aggregating trees into cells and 
examining cell-to-cell interactions.

2.5.3.1  Integrating Model Predictions with Consequences 
and Responses

An ideal decision support tool for windthrow management would provide forest 
managers with the capacity to predict the probability of wind damage in a par-
ticular site and stand, and explore how alternate growing, tending, and harvest-
ing regimes, and climate change scenarios, would affect this probability. Ideally, 
the results could be represented spatially within a GIS so that both stand- and 
landscape-scale outcomes could be examined relative to other resource values and 
management objectives. Hanewinkel et al. (2011) identify the following sequen-
tial steps for integrating risk of natural hazards into forest management decision-
making, in the context of changing climates: (i) create analysis framework, which 
includes choosing climate scenarios, downscaling a global climate model to a 
regional climate model, and determining storm recurrence intervals; (ii) evaluate 
probabilities of hazards; (iii) estimate costs of acting versus not acting to reduce 
hazards; and (iv) choose action. Steps (iii) and (iv) of Hanewinkel et al.’s frame-
work link the likelihood of a damaging event to its consequences and choice of 
action. The consequences of windthrow extend from benign ecological impacts, 
such as soil turnover and acceleration of stand development in natural stands 
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(e.g., Schaetzl et al. 1989), to human injury or death (Schmidlin 2009). In loca-
tions with recurrent wind storms, it makes sense to consider the potential conse-
quences, determine the acceptable level of loss and impact, and act when predicted 
losses and impacts exceed acceptable levels. Actions can include acceptance 
of loss, insurance to minimize severe financial losses, and modification of man-
agement regimes to reduce loss (Gardiner and Quine 2000; Fig. 2.9). Mickovski 
et al. (2005) demonstrate how windthrow susceptibility can be incorporated into a 

Fig. 2.9  Elements of a risk management framework (from Gardiner and Quine 2000)
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generic tree- and stand-scale decision support system. von Gadow (2000) suggests 
an approach to integrating risk from windthrow and other hazards into forest-level 
planning, via examination of alternate management scenarios using age depend-
ent cumulative survival rates at the stand scale, and optimizing harvest schedul-
ing at the forest scale. At this point no windthrow risk decision support systems 
integrate all of these components. Only ForestGALES version 2.1 (Gardiner et al. 
2006), which enables users to examine stand-scale outcomes, nonspatially, using 
the roughness method, is available in a format and with supporting documentation 
that allow practitioners to easily input data and examine their own scenarios using 
a stand-alone computer or the internet.

2.6  Conclusions

Empirical windthrow models capture the range of variability in natural and man-
aged stands. The relative portability of empirical models points to consistency 
in underlying processes over large geographic areas, but provides only limited 
insights into the biomechanics of windthrow. Hybrid-mechanistic windthrow mod-
els have allowed for the integration of expert knowledge and research results from 
forestry, atmospheric sciences, engineering, biology, and ecology, but many func-
tions remain empirical surrogates for, or simplified versions of, component pro-
cesses and some key processes (soil saturation during storms, for example) are 
not represented in any current models. New techniques and information sources 
are available to improve representation of many of these processes. Both empiri-
cal and hybrid-mechanistic models are useful in decision support, and have been 
used by researchers to explore stand- and landscape-scale implications of climate 
change. GISs-based decision support systems that integrate tree-based windthrow 
modeling with stand- and landscape-scale scenario analysis and optimization have 
been developed by researchers, but are not yet available in formats and with sup-
porting documentation that enable easy use by practitioners.
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3.1  Introduction

Global changes, including climate change, are rapidly creating new environmental 
conditions and stressors for forests around the world. Climate change may have 
modest direct effects, at least initially, but indirect effects and interactions with 
disturbances can produce important changes in forest composition and landscape 
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pattern (Dale et al. 2001; Gustafson et al. 2010), with consequences for ecologi-
cal function and ecosystem services. Global Circulation Models generate varied 
predictions of future climate in any given part of the globe, and precipitation pro-
jections are usually much more uncertain than those for temperature (IPCC 2007). 
Nevertheless, almost all forested regions are expected to be subject to warming 
trends throughout the current century, with warming already pronounced at high 
latitudes (IPCC 2007). While precipitation projections are variable and less cer-
tain, in very few locations do confidence intervals indicate that precipitation will 
increase sufficiently to compensate higher evapotranspiration rates caused by 
increased temperature and, in some locations, precipitation may actually decrease 
(IPCC 2007). Consequently, drought stress of vegetation is expected to become 
more common in many parts of the world and this will have consequences for tree 
establishment, survival, and growth. Because species differ in their ability to toler-
ate moisture deficits, long-term consequences will be significant for forest compo-
sition and landscape pattern through the processes of competition, succession, and 
altered disturbance regimes. In this chapter, we review how drought affects forest 
ecosystems and the different ways these effects have been modeled (both spatially 
and aspatially). Building on those efforts, we describe several approaches to mod-
eling drought effects in Landscape Disturbance and Succession Models (LDSMs), 
discuss advantages and shortcomings of each, and include two case studies for 
illustration.

Researchers and forest managers often use LDSMs to project the interacting 
effects of succession and disturbance at broad spatial and temporal scales and to 
compare the outcomes of alternative scenarios or management options. These 
models are unique in that they explicitly account for spatial relationships and pro-
cesses, and provide answers about ecosystem dynamics and function at ecological 
time scales. They provide exceptional power to explore the efficacy of proposed 
management actions to mitigate the negative consequences of global change on 
biodiversity and ecosystem services. Not surprisingly, they are becoming widely 
used to project the impacts of multiple global changes and their interactions with 
natural and anthropogenic disturbances.

Although in some LDSMs variability in precipitation is used to affect fire 
regimes and tree growth rates, surprisingly few include this approach to simulate 
drought as a disturbance that kills trees. Gustafson and Sturtevant (2013) devel-
oped a drought disturbance extension for the LANDIS-II LDSM, and their results 
suggested that drought-induced mortality alone can indeed change forest com-
position and affect carbon storage. However, in most LDSMs direct interactions 
between drought and other disturbance and succession processes (establishment, 
growth, and competition) are not yet explicitly simulated, although explora-
tory modeling exercises and other research suggest that such effects should be 
accounted for in studies of global change effects on forest ecosystems. For exam-
ple, because tree species thrive in different climate envelopes a persistent change 
in climate should result in altered establishment and competitive relationships 
(Allen et al. 2010). Additionally, drought-induced changes in vegetation composi-
tion can lead to changes in disturbance regimes (e.g., fire), which in turn are also 
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directly modified by climate. The generally weak capability of LDSMs to include 
these types of drought effects and their interactions is a significant gap that reduces 
our ability to accurately project forest dynamics under future climate conditions.

3.2  Effects of Drought on Forest Landscapes

The physiological mechanisms behind drought-associated tree mortality are gen-
erally attributed either to direct water stress or to contributing factors that are 
exacerbated by drought, such as insects and pathogens (Mattson and Haack 1987; 
Manion 1991). McDowell et al. (2008) described three primary interacting mecha-
nisms that can lead to tree mortality under drought conditions: hydraulic failure, 
carbon starvation, and biological agents. Hydraulic failure results when soil water 
decreases and evaporative demand increases, leading to cavitation (formation of 
air pockets) in xylem conduits that prevents movement of water to plant tissue. 
Carbon starvation occurs when plants use stomatal closure to avoid hydraulic fail-
ure, and respiration subsequently depletes carbohydrate reserves. Biological dis-
turbance agents (e.g., insects, fungal pathogens) often respond positively to the 
physiological stress of drought-affected trees through population irruptions and 
enhanced rates of attack, leading to further stress and damage to trees, and higher 
rates of mortality (Mattson and Haack 1987). The relative contribution of each 
mechanism depends on species physiological traits, environmental conditions, and 
the duration and magnitude of water stress (McDowell 2011).

Drought can affect forest ecosystems at multiple spatial scales. At the indi-
vidual tree level, vulnerability to drought varies with factors such as age, species, 
environmental setting, and interactions with other disturbance agents. Isohydric 
tree species are more likely to maintain xylem water potential during drought via 
stomatal closure, avoiding hydraulic failure but risking eventual carbon starvation, 
while anisohydric species better tolerate drought by maintaining continued gas 
exchange, but risk hydraulic failure (Adams et al. 2009). Tree age is also a fac-
tor, with older individuals often more vulnerable to drought-induced disturbance 
agents (Mueller et al. 2005; Ganey and Vojta 2011), and younger trees susceptible 
to direct mortality due to moisture stress (Ogle et al. 2000; Suarez et al. 2004). 
Environmental settings that affect climatic water deficits also play a role, including 
influence of soil texture and depth on hydraulic conductivity and water storage, 
and influence of topographic position on incident solar radiation and air temper-
ature (Stephenson 1998). However, the precise physiological mechanism behind 
drought-related mortality or survival of trees is not always clear (Sala et al. 2010; 
McDowell 2011). For instance, knowledge of the differential role of non-structural 
carbon reserves required to maintain hydraulic conductivity during periods of 
stress is lacking for many species (Sala et al. 2012).

Drought-induced mortality events can substantially change forest composi-
tion within stands, across landscapes, and at regional-scales. For instance, in for-
ests of the Great Lakes region, historic declines in beech (Fagus grandifolia) 
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populations were likely caused by multi-decadal droughts during the Medieval 
Climate Anomaly (Booth et al. 2012). In northern Patagonia, massive drought-
induced overstory and sapling mortality in southern beech (Nothofagus spp.) forests 
during 1998–1999 favored advanced regeneration of Chilean cedar (Austrocedrus 
chilensis) over coigüe (Nothofagus dombeyi), potentially leading to long-term shifts 
in forest composition (Suarez et al. 2004). Severe and persistent droughts over the 
last several hundred years in the southwestern United States contributed to intermit-
tent dominance of junipers (Juniperus spp.) over less drought-tolerant piñon pines 
(Pinus spp.), while periods of above-average moisture, including during the early 
A.D. 1900s, contributed to increased piñon pine populations (Shinneman and Baker 
2009). The severe drought of the A.D. late 1990s to mid-2000s in the US south-
west, and associated wildfire activity and bark beetle outbreaks, have since caused 
massive piñon pine die-off events (Mueller et al. 2005; Breshears et al. 2005).

Drought also alters forest structure across broad scales, including the distribu-
tions and densities of forest patches, tree size and age classes, and live and dead 
biomass (Hogg et al. 2008; Anderegg et al. 2013). Drought-induced changes in 
forest composition and structure in turn influence forest function, including nutri-
ent cycling and carbon, water, and energy fluxes (Dale et al. 2001; McDowell 
et al. 2008; Anderegg et al. 2013). In the short-term, drought-induced losses of 
leaf area decrease gross primary productivity in a forest stand and recent droughts 
have been shown to reduce terrestrial net primary production at a global scale 
(Zhao and Running 2010). Drought-associated mortality can also potentially result 
in bioregional forest carbon sinks becoming carbon sources (Ma et al. 2012). 
Drought is a key driver of the occurrence and magnitude of other natural distur-
bance events such as wildfire. Drought increases fire weather indices, decreases 
fuel moisture, and increases fuel loads (through mortality), and in many forest 
landscapes the area burned by wildfire is highly correlated with spatial and tem-
poral patterns of dry versus wet periods (Westerling and Swetnam 2003; Girardin 
et al. 2006; Heyerdahl et al. 2008). Depending on ecosystem resilience, extreme 
drought and associated disturbance may alter succession and as result convert eco-
systems from one type to another, especially under climate regime shifts (Burkett 
et al. 2005).

3.2.1  Drought Dynamics

Drought has long been a significant source of natural disturbance in forest eco-
systems worldwide (Allen et al. 2010) and in many regions drought events of the 
last 150 years far exceed the severity and duration of earlier droughts. In North 
America, reconstructions of the Palmer Drought Severity Index (PDSI), derived 
from tree rings as proxies for climate variability, reveal that severe droughts of the 
twentieth century, such as the 1930s Dust Bowl drought, were relatively minor 
compared to several, multi-decadal “mega-droughts” that occurred over the past 
1200 years, typically centered over western North America (Cook et al. 2004; 
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Stahle et al. 2007). These extreme climate events likely caused substantial mor-
tality of some tree species and altered forest composition (Grissino-Mayer and 
Swetnam 2000).

The frequency, extent, duration, and intensity of drought are primarily driven 
by global-scale interactions (teleconnections) between anomalous sea surface 
temperatures (SSTs) and atmospheric conditions, further modified by land sur-
face conditions. The SST anomalies in the eastern tropical Pacific Ocean drive the 
El Nino-Southern Oscillation (ENSO), of which the cool (La Niña) phase has been 
recognized as a primary driver of severe droughts in southwestern and southeastern 
North America (Cook et al. 2011). Other SST anomalies, such as the warm phase 
of the Atlantic Multi-decadal Oscillation (AMO) and the cool phase of the Pacific 
Decadal Oscillation (PDO), may enhance ENSO events and are also considered 
major contributors of drought and pluvial events throughout North America (McCabe 
et al. 2004). Although drought events are less frequent in mesic forest regions com-
pared to more arid regions, oceanic–atmospheric fluctuations have been linked to 
severe droughts that have occurred in eastern temperate forests (Seager et al. 2009), 
forests of the Pacific Northwest (Nelson et al. 2011), boreal forests (Fauria and 
Johnson 2008), and other forest regions worldwide (e.g., Hendon et al. 2007).

Anthropogenic global climate change will likely substantially alter the intensity, 
frequency, location, spatial extent, timing, and duration of future droughts, as well 
as associated effects on forest ecosystems. Recent assessments indicate that overall 
aridity, as well as the area affected by droughts, has increased during the twen-
tieth century, at regional to global scales (Dai 2011). Based on projections from 
global climate models (GCMs), researchers predict that in the twenty-first century 
droughts will intensify in some regions, including southwestern North America 
(Seager et al. 2007) and southern Europe (Beniston 2009). A key challenge to fore-
casting drought under climate change is to reliably transform projected changes 
in atmospheric conditions into dynamic physical processes that account for inter-
actions with ecological processes. Generating robust predictions of future drought 
trends and effects will therefore not only require downscaling GCM-projected 
climate variables to generate indices of drought (e.g., PDSI) applicable across 
temporal and spatial scales (Wehner et al. 2011), but also developing more effec-
tive models of the dynamic role of tropical SSTs to shape future regional drought 
patterns and behavior (Dai 2010). Moreover, to project future effects of drought, 
researchers must consider how climate variability affects vegetation conditions 
(e.g., mortality, fuel moisture) that drive drought-induced disturbance events such 
as wildfire (Westerling and Swetnam 2003) or that induce feedbacks to tempera-
ture and precipitation (Wang et al. 2012; Anderegg et al. 2013).

3.3  Approaches to Modeling Drought

Models that simulate forest landscape ecosystem processes can provide a compre-
hensive understanding of the many complex relationships among climate, vegeta-
tion, and biogeochemical dynamics, including how forest diversity, productivity, 
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and mortality respond to drought under different environmental settings. In this 
section, we provide a brief overview of drought applications within four broadly 
defined ecosystem model categories: forest gap models, ecosystem process models, 
LDSMs, and dynamic global vegetation models (DGVMs). This is not an exhaus-
tive review of such models and their functionality, nor do we attempt to address 
all varieties, hybrids, or similar models. Detailed classifications and assessments 
of forest ecosystem models and their uses have been provided in numerous com-
prehensive reviews (e.g., Mladenoff and Baker 1999; Bugmann 2001; Keane et al. 
2004; Scheller and Mladenoff 2007; He et al. 2008; Medlyn et al. 2011). Here we 
provide a brief overview of the functionality of basic forest ecosystem models that 
can be used to simulate the effects of drought and associated disturbances, and how 
such models simulate spatial interactions among these dynamics at broad scales.

3.3.1  Past and Developing Approaches

Early forest gap models, such as JABOWA, were developed to simulate the 
effects of physiological drivers on the rates of establishment, growth, and mortal-
ity among competing species of trees within a relatively homogenous forest stand 
or patch (Botkin et al. 1972; Shugart 1984). Early gap models were not spatially 
explicit, but some later gap models were developed to simulate spatial interac-
tions among trees at fine scales (Pacala et al. 1993: SORTIE; Miller and Urban 
2000: FM), and to specifically address the influence of environmental gradients 
(e.g., Bugmann et al. 1996: FORCLIM). Gap models typically require input 
parameters for mean precipitation rates, temperature, soil attributes, and species 
tolerance to drought stress to calculate the effect of soil moisture deficits on tree 
productivity (e.g., Pastor and Post 1986: LINKAGES). Despite this, most early 
gap models did not simulate realistic disturbance-induced tree mortality (Keane 
et al. 2001), prompting researchers to design alternatives that could be used to 
simulate the effects of specific disturbance types, including drought, on for-
est ecosystems across a range of environmental conditions (Prentice et al. 1993: 
FORSKA; Bugmann and Cramer 1998: FORCLIM). These advancements have 
further evolved into spatially explicit applications of gap-based models that simu-
late mortality events and project forest composition, structure, and productivity at 
landscape scales (e.g., Busing et al. 2007: FORCLIM), though such models still 
do not account for interactions among landscape-scale processes.

Ecosystem process models are similar to forest gap models in that they simu-
late the effects of biogeochemical processes (e.g., fluxes of energy and mass) on 
ecological dynamics (e.g., forest growth rate, carbon accumulation). Unlike gap 
models, ecosystem process models emphasize biogeochemical dynamics for 
potential vegetation types rather than individual trees or species (Cushman et al. 
2007). Ecosystem process models generally incorporate water availability, plant 
water use, and evapotranspiration at forest sites to calculate water balance and 
determine water stress, permitting investigations of drought influence on forest 



513 Approaches to Modeling Landscape-Scale Drought-Induced Forest Mortality

ecosystem productivity (Aber and Federer 1992: PnET; Running and Gower 1991: 
Forest-BGC). However, only a few such models have specifically included the 
effects of drought-induced mortality (e.g., Grant et al. 2006: Ecosys). Ecosystem 
process models have been applied at broad scales, typically using land cover 
data sets from remotely sensed imagery, with each pixel representing a site. For 
instance, Aber et al. (1995: PnET-II) estimated the effects of water stress on eco-
system productivity in the northeastern U.S., and Turner et al. (2007: BIOME-
BGC) examined the influence of wildfire and logging disturbance on carbon 
dynamics in Oregon. However, similar to forest gap models, spatially explicit 
interactions among landscape-scale processes are not generally simulated in such 
models (Scheller and Mladenoff 2007).

Here, LDSMs are distinguished from gap and ecosystem process models in that 
they are primarily intended to simulate forest disturbance and successional pro-
cesses, as well as their interactions, across broad spatial and temporal scales (He 
et al. 2008). These models also generally provide spatially continuous projections 
of disturbance and vegetation dynamics (Cushman et al. 2007) that are valuable 
for determining key drivers of landscape-level forest composition or structure (e.g., 
Shinneman et al. 2010: LANDIS-II) or disturbance behavior (e.g., Keane et al. 
2011: Fire-BGCv2). Within this framework, the diverse LDSM family of models 
can be further classified based on whether they can be used to simulate multiple 
processes or operate at fine temporal resolutions (He et al. 2008), and whether 
community change is static or dynamic, with the former determined by a priori 
successional stages and the latter by the life history attributes, behavior (e.g., seed 
dispersal), and physiological requirements of individual species (Scheller and 
Mladenoff 2007). Some LDSMs directly or indirectly incorporate the influence 
of biogeochemical process on forest productivity (Scheller and Mladenoff 2004: 
LANDIS-II; Keane et al. 2011: Fire-BGCv2), and can be coupled with gap or 
ecosystem process models to derive inputs representing climate effects on species 
establishment probabilities or productivity (e.g., Xu et al. 2009: LANDIS-II and 
PnET-II). Unlike DGVMs (discussed below), LDSMs do not incorporate feedback 
loops with GCMs and they cannot yet be applied at continental to global scales.

Dynamic global vegetation models are similar to terrestrial biogeochemi-
cal models, but additionally simulate competition among vegetation types (but 
not individual species) and are coupled to GCMs, allowing feedbacks to climate 
at regional to global scales (Medlyn et al. 2011). Thus, DGVMs can be used to 
simulate climate change effects on tree establishment and mortality via mecha-
nistic plant responses to biogeochemical and hydrological dynamics (e.g., Sato 
et al. 2007: SEIB–DGVM). Moreover, DGVMs are useful for simulating interac-
tions among disturbance, vegetation conditions, and climatological processes. For 
instance, Lenihan et al. (2008: MC1) simulated interactions between climate, veg-
etation, and wildfire to predict altered patterns of plant community and biomass 
distribution due to increased area burned under warmer and drier climate projected 
for California, USA. However, specific drought mortality mechanisms for differ-
ent vegetation types or species have generally not been incorporated in DVGMs 
(Wang et al. 2012).
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The focus of this chapter is LDSMs. Though direct simulation of drought 
dynamics using LDSMs is reported in remarkably few published studies, these 
models have tremendous potential for effectively projecting drought impacts on 
forest composition, structure, and function at landscape scales, in part by including 
spatially and temporally explicit interactions with other disturbance agents, such as 
wildfire (Cushman et al. 2007). For example, LDSMs that include individual spe-
cies response to climate variability are also well-suited for projecting the effects of 
future climate change (including increasing aridity) on forest ecosystem composi-
tion and productivity (Scheller and Mladenoff 2007; Gustafson 2013). Moreover, 
drought effects in process-based LDSMs can be derived using either empirical or 
mechanistic approaches. An empirical approach assumes that historical relationships 
between measures of drought and tree mortality of the past can be used to predict 
drought effects in the future. A mechanistic approach directly links climate drivers 
to mechanistic tree responses; for instance, projecting tree growth and productivity 
under variable soil water conditions. Alternatively, drought events and their effects 
can be simulated using relatively stochastic or deterministic modeling approaches. 
Below, we present case studies to illustrate how these various general approaches 
to ecosystem modeling can be incorporated in LDSMs, often in combination, to 
simulate drought effects through development of new model extensions, coupling of 
complimentary models, and integration of empirically derived relationships.

3.3.2  Empirical Approach

The empirical approach involves estimating statistical models to predict drought-
induced tree mortality as a function of a measure of drought using long-term tree 
inventory records, which are then applied within an LDSM to simulate mortal-
ity at each time step. A recent example of this approach used the extensive US 
Forest Service Forest Inventory and Analysis (FIA) database to estimate empiri-
cal models for the upper Midwest (Gustafson and Sturtevant 2013) and northeast 
United States (Gustafson 2014). The major difficulty of this approach is detect-
ing the drought-induced mortality signal in a data set amidst the mortality caused 
by all other factors. Drought is seldom noted as the cause of death in inventory 
records, yet drought stress often increases the susceptibility of trees to death by 
other factors. The approach also requires observations from a variety of wet and 
dry periods to provide a useful range of values of the predictor (drought) variable, 
which means that a fairly long (>40 years) inventory record may be required. The 
large number of observations in the FIA data set allows the drought signal to be 
detected.

Gustafson and Sturtevant (2013) implemented this empirical approach as an 
extension to LANDIS-II (Scheller et al. 2007), which is a grid-cell forest LDSM 
that simulates the forest development processes of establishment, growth, and 
competition, and the forest degenerative processes of senescence and disturbances 
such as wildfire, wind, insect outbreaks, and timber harvesting at large spatial 
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(>100,000 ha) and long temporal (centuries) scales. In the model, living and dead 
biomass (rather than stem density) are tracked within cohorts of species on each 
cell, and several parameters are included that represent aboveground productivity 
and mortality. LANDIS-II is a primarily process-based model that encapsulates 
distinct ecological or physical processes as independent extensions that act on the 
biomass of cohorts within cells on the landscape. The independent operation of 
each extension on the extant biomass of each species cohort on each landscape cell 
produces forest dynamics that are an emergent property of the interacting exten-
sions. The drought extension as implemented by Gustafson and Sturtevant (2013) 
modeled drought using empirical relationships, while the other extensions (e.g., 
succession, timber harvest) used a process-based approach.

To estimate empirical drought models for the upper Midwest U.S., Gustafson 
and Sturtevant (2013) constructed a data set containing records of percent biomass 
lost to mortality (pm) by species on each FIA plot in each inventory and a measure 
of drought stress (PDSI) during each inventory period obtained from the National 
Climate Data Center (URL: http://www1.ncdc.noaa.gov/pub/data/cirs/). The FIA 
inventory records covered the period 1965 to 2010 (varied by state), with inven-
tories at approximately 13 year intervals. Mixed linear models were estimated for 
four categories of species drought sensitivity and tested against a 30 % random 
sample of observations that were not used in developing the estimates. They found 
that, in the U.S. Midwest, drought length was a better predictor of mortality than 
drought severity.

A LANDIS-II drought extension was constructed to use the empirical models 
to simulate drought-induced biomass loss to mortality. At each time step, a meas-
ure of drought is drawn from a user-specified distribution and the regression coef-
ficients are used to calculate the 95 % confidence interval (CI) of pm. For each 
cell on the landscape, and for each species in the cell, a value of pm is selected 
from the CI such that older cohorts will have a pm value found in the upper part 
of the CI and younger cohorts in the lower portions, consistent with other empiri-
cal observations (Allen et al. 2010; Ganey and Vojta 2011). Biomass is removed 
from species cohorts (beginning with oldest cohort) until the selected pm value 
has been reached. To simulate loss of seedlings to drought stress, the probability 
of establishment (Pest) for the species is modified (for the current time step only) 
to 0.0 if its seedlings are relatively sensitive to drought, and by half if seedlings 
are moderately sensitive to drought (Hanson and Weltzin 2000). For species rela-
tively insensitive to drought Pest is unchanged. After simulating drought, normal 
establishment processes of sprouting and seed dispersal/germination are simulated 
using the succession extension. Additional details of the empirical models and the 
extension can be found in Gustafson and Sturtevant (2013).

3.3.2.1  Case Study 1—Oconto County, Wisconsin

To provide a heuristic example of studying the effect of drought on forest com-
position, we used the LANDIS-II drought extension of Gustafson and Sturtevant 

http://www1.ncdc.noaa.gov/pub/data/cirs/
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(2013) to explore the effect of increasing drought length. We simulated three 
scenarios of mean drought length (years): no droughts, the current drought 
regime as simulated by Gustafson and Sturtevant (2013) (lognormal distribution 
of drought length with μ = 0.3, σ = 0.7), and a drought regime with markedly 
longer droughts (μ = 1.2, σ = 0.7). We conducted simulations on a 65,733 ha 
landscape on the Chequamegon-Nicolet National Forest in northeastern 
Wisconsin, USA (Fig. 3.1). We used the initial conditions map and LANDIS-II 
parameters described by Gustafson and Sturtevant (2013) that reflect current for-
est conditions and tree species vital attributes on each of the landforms. Because 
shade-intolerant species disappear without disturbance we also simulated each 
drought scenario with stand-replacing harvests on 5 % of the landscape per dec-
ade, with aspen (Populus spp.) and birch (Betula spp.) cut on an 80 year rotation 
and all other species on a 320 year rotation. We used version 6.0 (Scheller et al. 
2007) of LANDIS-II with the Biomass Succession v3 (Scheller and Mladenoff 
2004) and Biomass Harvest (Gustafson et al. 2000) extensions. Simulations 
were run for 300 years with three replicates and all extensions used a 10-year 
timestep. We evaluated the effect of increased drought on the amount of bio-
mass killed by drought and on living biomass, by drought-susceptibility class 
(Table 3.1).

We found that, regardless of drought scenario, without harvesting the 
drought-susceptible pioneer species disappeared from the landscape by year 150 
(Fig. 3.2a). As droughts lengthened, the total living biomass on the landscape 
declined modestly, and the relative abundance of somewhat drought-intolerant 
species decreased while that of the drought-tolerant class increased modestly 

Fig. 3.1  Map of simulation study area in Oconto County, Wisconsin (USA)
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(Fig. 3.2a). The amount of biomass lost to drought remained at equilibrium under 
the current drought regime, although the proportion lost by more drought-tolerant 
classes increased as the drought-intolerant class disappeared (Fig. 3.2b). Under the 
longer drought regime the total biomass lost to drought was higher than that under 
the current regime but also decreased over time as the drought-susceptible class 
disappeared.

When harvests were included, the drought-intolerant class actually increased 
through time (Fig. 3.3a) because that class is composed primarily of shade-
intolerant species that require disturbance to persist (Table 3.1). As the length 
of droughts increased, the total living biomass decreased, with the somewhat 
drought-intolerant class losing relatively more biomass through time. The 
drought-intolerant class seemed to flourish under long droughts because with the 
addition of harvesting disturbance tolerant, single species stands were retained, 
resulting in vigorous regeneration and high rates of growth even after drought 
disturbance. This contrasts with observations in Alberta, Canada, where mature 
aspen dieback was related to drought severity and interactions with logging were 
not considered (Hogg et al. 2008). The amount of biomass lost to drought was 
higher when harvests occurred, with extremely high losses under the long drought 
scenario (note y-axis scaling in Fig. 3.3b). These losses were almost entirely 
from the drought-intolerant class, which became very abundant on the landscape 
because of harvesting and was especially susceptible to long droughts. It is inter-
esting to note that this class maintained its presence on the landscape under both 
drought scenarios, and continued to increase in relative abundance through year 
300. This example is quite simple, but it nonetheless provides insight into inter-
actions between drought and harvest in the context of empirical studies (e.g., 
D’Amato et al. 2013).

Table 3.1  Species assignments to the four drought sensitivity classes (reproduced from Gustaf-
son and Sturtevant 2013)

Drought sensitivity 
class

Common name Scientific name

Intolerant Quaking aspen, big-toothed 
aspen, paper birch, black ash

Populus tremuloides, P. gran-
didentata, Betula papyrifera, 
Fraxinus nigra

Somewhat intolerant Eastern hemlock, White spruce, 
Northern white cedar, yellow 
birch, balsam fir

Tsuga canadensis, Picea glauca, 
Thuja occidentalis, Betula allegh-
aniensis, Abies balsamea

Somewhat tolerant Red maple, sugar maple, black 
cherry, white ash, basswood, 
American larch, black spruce

Acer rubrum, A. saccharum, Pru-
nus serotinus, Fraxinus ameri-
cana, Tilia americana, Larix 
laricina, Picea mariana

Tolerant Red pine, white pine, jack pine, 
red oak, white oak

Pinus rubra, P. strobus, P. banksi-
ana, Quercus rubra, Q. alba
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3.3.2.2  Critique of the Empirical Approach

The empirical approach has two major advantages. First, empirical relationships 
are conceptually simple and are therefore relatively easy to build and test given 
an adequate data set. Second, relative to a mechanistic approach few parameters 
are needed to simulate drought mortality, reducing both the effort needed to esti-
mate parameters and the cumulative error associated with additional parameters. 
Furthermore, the algorithms are simple, resulting in faster computation.

Fig. 3.2  Living (a) and killed (b) biomass by drought susceptibility class (Table 3.1) in simu-
lated drought scenarios without timber harvesting for Oconto County, Wisconsin (USA)
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On the other hand, the empirical approach has several shortcomings. The most 
important is the increasing evidence that the known (past) relationships between 
drought and mortality are very unlikely to be valid into the future. If only the dis-
tribution of measures of drought varied under climate change, then the empirical 
approach might remain valid. But the increased evapotranspirative demand caused 
by concomitant higher temperatures indicates that moisture stress will increase 

Fig. 3.3  Living (a) and killed (b) biomass by drought susceptibility class (Table 3.1) in simu-
lated drought scenarios with timber harvesting for Oconto County, Wisconsin (USA). Note y-axis 
scaling differences in the right-hand plots
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in a way that is not linearly related to precipitation (Dale et al. 2001). And even 
when a drought index is used that better accounts for both temperature and pre-
cipitation (e.g., the moisture index of Thornthwaite (1948) that calculates moisture 
stress as a function of potential evapotranspiration and precipitation), the poten-
tial shuffling of community assemblies will likely change competitive dynamics. 
We expect that species will not shift their ranges in unison and therefore com-
munities will re-assemble (Iverson et al. 2008). This change in competitive inter-
actions coupled with increasing drought stress may alter species susceptibility to 
mortality.

There are also other disadvantages: (1) Because the estimation of empiri-
cal models usually requires records that span long time periods, few suitable 
data sets are available for estimating the statistical models. Even the long-term 
FIA database may not always be adequate for building empirical models (e.g., 
Gustafson 2014). (2) Relationships between measures of drought and tree mortal-
ity may be only weakly significant, likely because of statistical noise (Gustafson 
and Sturtevant 2013). This results in uncertainty that may be unacceptably high, 
especially when coupled with the uncertainty inherent in other components of the 
LDSM (Xu et al. 2009). (3) The general applicability of empirical models has yet 
to be established. Gustafson (2014) attempted to use empirical models constructed 
in the U.S. Midwest in the U.S. northeast. However, it was difficult to verify that 
their validity, because droughts were rare in that region during the period for 
which records were available. Moreover, empirical models for northeast species 
not found in the Midwest did not exist. (4) Moisture stress reduces growth rates 
and can ultimately lead to mortality by several associated causes (Bréda et al. 
2006), but growth rates and mortality are not coupled in the empirical approach. 
Thus, the LDSM will simulate normal growth during a drought, even though some 
portion of cohort biomass is lost to mortality. In reality, the effects of drought on 
growth varies among species (Bréda et al. 2006), which may affect competition 
and ultimately successional outcomes, apart from the mortality effects of drought.

3.3.3  Deterministic Approach

Ideally, projections of future drought frequency, severity, and extent should incor-
porate the influence of enhanced evaporative demand under climate change using 
GCM-derived projections and temperature-sensitive drought indices (Dai 2010; 
Wehner et al. 2011). However, such climate variables are not typically incorpo-
rated directly into process-based LDSMs, and thus drought projections may need 
to be deterministically integrated, such that simulations of future drought effects 
on forest ecosystems can include temporally and spatially synchronized interac-
tions with climate change effects on species establishment and productivity, as 
well as other disturbance events (e.g., wildfire).
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3.3.3.1  Case Study 2—Voyageurs National Park

To illustrate, we projected future drought occurrences using GCM outputs for the 
period 2000–2099 and simulated potential drought effects on a 157,000 ha south-
ern boreal forest landscape (52 % forested, 48 % lakes/wetlands) in Voyageurs 
National Park (VNP) and vicinity in northern Minnesota, USA (Fig. 3.4). We 
used an established model to generate a self-calibrating drought index (SC-PDSI) 
compatible with climatological regions (Wells et al. 2004), that requires inputs 
for monthly average temperature, monthly total precipitation, normal mean tem-
perature and precipitation, latitude, and available soil water holding capacity 
(AWHC). We derived future monthly climate values from the Canadian Centre 
for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model 
(www.cccsn.ec.gc.ca) under the SRES-A2 emissions scenario (IPCC 2007), used 
1961–1990 climate means as normals, and derived AWHC values from the State 
Soil Geographic (STATSGO2) database (http://websoilsurvey.nrcs.usda.gov/). 
Compared to the normal period, the A2 climate scenario predicts a nearly 6°C 
increase in mean annual temperature and a ≈90 mm increase in annual precipita-
tion (and with greater variability) by the end of the twenty-first century.

Species establishment, growth, and mortality were simulated using LANDIS-II 
with the biomass succession, base fire, and wind disturbance extensions (Scheller 
et al. 2007; and as described in the case study in Sect. 3.3.2.1). Species life his-
tory traits and disturbance parameterization largely followed Shinneman et al. 
(2010). Species probability of establishment (Pest) and maximum aboveground 
net primary productivity (ANPP) inputs for the biomass succession extension 
(Scheller and Mladenoff 2004) were calculated under contemporary and future 
climate scenarios using PnET for LANDIS (Xu et al. 2009). The PnET exten-
sion for LANDIS uses equations from the PnET-II (Aber et al. 1995) ecosystem 
process model to generate estimates of maximum ANPP, and equations from the 
LINKAGES (Pastor and Post 1986) forest gap model to estimate species estab-
lishment probabilities, under different climate conditions. Input values for spe-
cies ecophysiological parameters were obtained from relevant sources (e.g., Reich 
et al. 1999; Peters et al. 2013), and key site and climate parameters (and sources) 
are nearly identical to those for the drought model described above. Thus, Pest 
and maximum ANPP values for each tree species in the VNP landscape were esti-
mated annually using climate parameters that temporally and spatially correspond 
to those used for annual drought projections. Inputs were calculated for three pri-
mary ecoregion types (two upland types, one wet forest type), delineated using 
soil (STATSGO2) and recent forest classification maps (http://www1.usgs.gov/
vip/voya/voya.zip).

Drought effects were simulated in LANDIS-II using a recently developed 
empirical stress-mortality extension that simulates the effects of stress events on 
tree mortality and biomass at predetermined time steps (Shinneman et al. in prep). 
Specifically, future drought events were simulated via the extension for each year 
in which projected growing-season (March–August) cumulative PDSI values sum 
to −12 or lower (capturing moderate to extreme droughts). Each occurrence of a 

http://www.cccsn.ec.gc.ca
http://websoilsurvey.nrcs.usda.gov/
http://www1.usgs.gov/vip/voya/voya.zip
http://www1.usgs.gov/vip/voya/voya.zip
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Fig. 3.4  Forest composition and aboveground biomass over time for Voyageurs National 
Park and vicinity, relative to the contemporary (i.e., recently mapped and classified, not mod-
eled) landscape (a) and four modeled future scenarios: contemporary climate, contemporary fire 
regime, and no drought (b); future climate, contemporary fire regime, and no drought (c); future 
climate, contemporary fire regime, and climate change-induced drought (d); and future climate, 
future fire regime, and climate change-induced drought (e)
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drought event triggered predetermined amounts of biomass reduction from mor-
tality for selected species-age cohorts, ranging from 5 to 33 % for older cohorts 
across the drought-intolerant to tolerant species groups (refer to Table 3.1), respec-
tively, and with generally lower mortality rates for younger cohorts (Gustafson 
and Sturtevant 2013). Although drought mortality rates associated with each spe-
cies were not available for the study area, a simulated maximum rate of 33 % for 
oldest cohorts of drought-sensitive species is comparable to extensive drought-
induced mortality documented for similar forests nearby (e.g., Jones et al. 1993; 
Michaelian et al. 2011). Finally, if consecutive drought years resulted in >90 % 
biomass reduction for any species-age cohort, complete cohort mortality was 
triggered.

Here we present model output for the VNP landscape, as a prototype for a 
regional model currently in development (Shinneman et al. in prep.) that dem-
onstrates potential interactions among drought mortality, wildfire, and climate 
change effects on species establishment, growth, and productivity. Spatial reso-
lution for forest conditions was 1 ha, and temporal resolution varied depending 
on the process simulated, but drought inputs were at annual resolution, while 
most output was reported for 10-year time steps. We present results at the end 
of a 100-year period (2000–2100) under four successively altered scenarios:  
(1) contemporary climate, contemporary fire regime, and no drought, (2) future 
climate, contemporary fire regime, and no drought; (3) future climate, contem-
porary fire regime, and climate change-induced drought; and (4) future climate, 
future fire regime, and climate change-induced drought. Thus, in all scenarios, for-
est composition and biomass were affected by both fire and climate-driven species 
establishment probabilities, and two scenarios additionally simulated mortality 
from drought. All scenarios also included modest amounts of wind disturbance 
(Shinneman et al. 2010). Contemporary fire regimes for VNP were simulated to 
achieve an approximately 400 year mean fire rotation, based on recent fire records 
for the region, while future fire rotation was reduced to about 200 years, based 
on fire rotations projected under climate change (Flannigan et al. 2005). Biomass 
output results are limited here to the dominant upland forest ecoregion type in 
VNP, which is characterized by generally shallow, nutrient-poor, coarse-textured 
soils with low water holding capacity. Projected SC-PDSI values derived from the 
CGCM-A2 climate scenario indicate that moderate to severe drought will be com-
mon across the three land types in the latter half of the twenty-first century, occur-
ring in 35 to 65 % of the growing seasons between 2060 and 2099, with the upland 
forest ecoregion type most vulnerable.

Results show that under the current climate scenario, with a contemporary fire 
regime and no drought mortality (Scenario 1), regional forest composition tran-
sitioned from primarily aspen-dominated (due to past timber harvest and wildfire) 
in the contemporary landscape (Fig. 3.4a) to large expanses of late-successional 
boreal conifers, especially shade-tolerant, fire-sensitive balsam fir (Abies balsamea) 
(Fig. 3.4b). Similar projections have been made for the region using other models 
(Shinneman et al. 2010). Accordingly, biomass of shade-tolerant and fire-intolerant 
species increased over time, while biomass decreased for most early successional 
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and fire-dependent species, especially white pine (Pinus strobus)/red pine  
(Pinus resinosa), and aspen (Fig. 3.4b). With warmer temperatures and no drought 
(Scenario 2), the shift in composition toward boreal conifers was less pronounced, as 
spruce (Picea spp.)-fir biomass declined substantially after 2060 under less favora-
ble climate, while white pine and hardwood species biomass increased (Fig. 3.4c), 
similar to other LDSM projections for the region (Ravenscroft et al. 2010). However, 
when drought effects were simulated under climate change (Scenario 3), oak 
(Quercus spp.) and white pine biomass and cover increased more substantially, 
while boreal species biomass declined more precipitously after 2060 (Fig. 3.4d). 
Under drought, climate change and more frequent wildfire (Scenario 4), forest com-
position was similar to Scenario 3, but with more even proportions of forest cover 
types at the landscape scale, and a substantial decline in mean forest biomass (75 % 
of the mean forest biomass of Scenario 3 at year 2100; 57 % of that in Scenario 2).

Thus, scenarios in which the effects of warmer temperatures and associated 
drought were simulated shifted the landscape away from dominance by boreal 
forest species—spruce, jack pine (Pinus banksiana), and aspen—which declined 
from about 78 % of the forest landscape area at model year 2000 to less than 
50 % at model year 2100, and from 75 % of mean upland forest biomass at year 
2000 to only about 5 % in 2100. In contrast, temperate forest species increased 
under these scenarios, with more oak, white pine, maple (Acer spp.), and ash 
(Fraxinus spp.). When fire frequency increased under warmer, drought-filled 
climate conditions, the forest landscape shifted further toward temperate spe-
cies and overall upland forest biomass declined substantially, suggesting a shift 
toward open forest structures dominated by early successional, drought-tolerant, 
and fire-tolerant (or resprouting) species, and representing the effects of recently 
burned forest (about 10 % of the initial forest area). Boreal spruce-fir cover types 
mostly remained dominant in ecoregions with higher soil water content (e.g., 
wetland-forest and clay soil ecoregions, Fig. 3.4a-e maps; biomass output not 
shown). Warmer temperatures without drought (Scenario 2) did not have these 
dramatic effects, as more of the upland forest area and biomass was represented 
by boreal species, although the area covered by these species still diminished 
steadily after 2060.

3.3.3.2  Critique of the Deterministic Approach

The primary advantage of incorporating a relatively deterministic approach 
within an otherwise stochastic LDSM is that climate effects on species establish-
ment/growth and drought-induced mortality are more directly linked in time and 
space. Although the fire events simulated in the above example were not directly 
linked to climate-induced drought events, advanced fire and fuel extensions have 
been developed that do allow climate to directly influence fuel conditions and fire 
occurrence (Sturtevant et al. 2009). However, a more seamless approach would 
be to develop the ability to directly integrate user-provided climate inputs among 
all relevant processes and their extensions in LANDIS-II (and similar LDSMs), 
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further unifying the influence of climate on ecological processes and disturbance 
interactions across time and space. Indeed, if such climate-input functionality used 
a random weather generator approach (e.g., LARS-WG), stochasticity inherent in 
many LDSMs (providing estimates of variation in future forest conditions) would 
be preserved. A climate library extension for LANDIS-II that will provide much of 
this capability is nearing completion (Robert Scheller, pers. comm.)

A potential disadvantage to modeling drought using a deterministic approach 
is that predetermined drought events of a minimum intensity trigger a uniform 
rate of mortality for each species-age cohort. Moreover, the data and empirically 
derived relationships needed to parameterize drought-induced mortality for spe-
cies-age cohorts in many forest ecosystems are likely to be insufficient, primar-
ily due to a lack of long-term, tree mortality data that can be directly attributable 
to the effects of drought (Gustafson and Sturtevant 2013), but also due to uncer-
tainty about changing ecosystem responses under future climate conditions. Thus, 
further development of the stress-mortality extension used in the above example 
might include the ability to represent a continuum of drought intensity, with mor-
tality rates determined by integration with mechanistic, process-based models (dis-
cussed below).

Finally, when projecting future drought under climate change, careful con-
sideration should be given to selecting appropriate drought indices, GCMs, and 
downscaling methods. Precipitation projections in particular can vary substantially 
among GCMs and may be more difficult to effectively downscale from global to 
landscape scales (IPCC 2007). Although use of a multi-model ensemble approach 
could reduce the uncertainty among models, ensemble climate models may also 
unrealistically reduce the variability of drought intensity predicted by the more 
reliable individual GCMs (Wehner et al. 2011).

3.3.4  Process-Based (Mechanistic) Approach

In many cases using a direct, mechanistic approach to model drought effects on 
forests may be advantageous as it allows explicit simulation of the physiological 
processes that induce drought stress and lead to altered rates of cohort establish-
ment, growth, and mortality in response to changes in water and light availabil-
ity. Although LDSMs can be externally coupled with ecosystem process models 
(e.g., to define species growth and establishment input parameters, as in our case 
studies), such an approach limits the direct response of key processes to drought 
stress. Incorporating changing water and light availability directly into an LDSM 
not only permits ready simulations of drought-enhanced rates of biomass loss 
and mortality among species as a stochastic and spatially explicit process, but 
the effects of specific drought events can be incorporated into the model, affect-
ing future competitive interactions and disturbance events, including the effect of 
future drought.
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Such a mechanistic approach may become feasible with the development of 
a new LANDIS-II succession extension that includes moisture and light as lim-
ited resources to simulate competition among tree cohorts. The new extension 
(PnET-Succession) incorporates elements of the PnET-II biogeochemical model 
(Aber et al. 1995; Ollinger et al. 1998) into an extension based on the Biomass 
Succession extension (Scheller and Mladenoff 2004) to calculate growth as a func-
tion of limited light and soil water resources. This new capability allows growth 
rates to vary at each time step in response to competition for light, and more 
importantly for this discussion, for water.

A full description of the PnET-Succession extension is well beyond the 
scope of this chapter, but can be found in De Bruijn et al. (2014). However, a 
few key elements will illuminate how the extension can facilitate the simula-
tion of drought mortality as a process. First, species cohort growth rates are cal-
culated as a function of photosynthesis, which depends fundamentally on soil 
water availability, defined as the ratio of transpiration and potential transpiration. 
Soil water is tracked at the grid-cell level using a bulk hydrology model based 
on precipitation, air temperature, and consumption by species cohorts. Cohorts 
compete for water and light in each cell, and cohort biomass determines the pri-
ority of access to radiation and soil moisture, with the largest cohorts having 
first access to both resources. When water is adequate, the rate of photosynthesis 
(leaf area index) for a given species cohort increases with light that is available 
to the cohort (dependent on canopy position and leaf area), atmospheric carbon 
dioxide (CO2) concentration and foliar nitrogen (N), and decreases with age and 
departure from optimal temperature. As soil water availability decreases, pho-
tosynthesis also decreases. The PnET-Succession extension accounts for reduc-
tions in photosynthesis by respiration such that foliar respiration rate depends 
on temperature and moisture, while maintenance respiration depends only on 
temperature.

Thus, in the PnET-Succession extension, photosynthetic rates (and therefore 
growth rates) vary by species and cohorts monthly as a function of precipitation 
and temperature (among other factors), which directly affects competition and ulti-
mately successional outcomes. Capitalizing on this approach of simulating growth 
via the process of photosynthesis, drought-induced mortality would result when 
carbon reserves are depleted by respiration. Such mortality may further depend on 
the length of time that water limitations occur, based on the drought-tolerance of 
species. For studies of the effects of climate change on forest successional dynam-
ics, a “weather stream” of temperature, precipitation, and radiation from down-
scaled global circulation models would allow growth and establishment rates to 
vary at each time step in response to temperature and precipitation, and drought-
induced mortality would be simulated when moisture stress depresses growth 
rates below respiration levels for a prolonged period. An initial test of the ability 
of PnET-Succession to simulate drought effects compared empirical physiologi-
cal measurements from a precipitation manipulation experiment in a piñon-juniper 
ecosystem (Pangle et al. 2012) with values predicted by PnET-Succession. For the 
purposes of landscape modeling of forest growth and succession over long time 
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periods, net photosynthesis is the key output of the model, and it responded simi-
lar to the empirical measures under both precipitation diversion and irrigation 
treatments (Gustafson et al. 2015). Modeled carbon reserves also varied consist-
ently with empirical measures under drought and wet conditions, and modeled car-
bon reserves for experimental plots were well correlated with observed mortality 
rates. These results suggest that this simple physiological approach holds promise 
to mechanistically simulate drought effects under climate change at broad tempo-
ral and spatial scales. Additional testing is ongoing.

3.3.4.1  Critique of the Mechanistic Approach

The primary advantage of the mechanistic approach is that it is built on first prin-
ciples. The physiology of tree water use in response to availability is well studied 
and relationships between water availability and growth rates are well established. 
Mortality becomes deterministic as a consequence of physiological moisture stress 
and carbon balance, rather than the outcome of a probability density function. The 
sophistication of the modeling of those processes can be small or great, depending 
on the research or management question. De Bruijn et al. (2014) added elements 
of the PnET-II model into LANDIS-II, but other physiology models could be used 
instead. Additionally, mechanistic approaches to simulate direct drought-induced 
mortality are almost certainly more robust under climate change scenarios than 
empirical approaches (Keane et al. 2001), but indirect mortality (e.g., by insects) 
may also need to be explicitly simulated. Robustness under novel conditions is one 
of the key criteria for assessing the utility of models to forecast forest dynamics as 
a consequence of global changes (Gustafson 2013). Another advantage is that the 
mechanistic approach is general and can be applied in any system for which the 
physiological relationships of water stress and photosynthesis are known. Finally, 
a mechanistic, process-based approach overcomes the decoupling of moisture 
stress and growth rates that is inherent in the empirical approach.

One important disadvantage is that process-based models are more complex, 
requiring more parameters that increase uncertainty and potentially requiring more 
time for computation. Validation of performance under future conditions that do 
not yet exist (e.g., increased atmospheric CO2 concentrations) also remains a chal-
lenge. Model users must rely on validation of the process model under the range of 
historical conditions or from experimental studies, and assume that the physiologi-
cal processes of growth and death will not fundamentally change in the future.

3.4  Future Prospects

Modeling drought effects in LDSMs is still in its infancy, and no current approach 
is clearly robust. In part, this is related to the newness of the modeling attempts, 
but is also the result of lingering ambiguity about the physiology of tree mortality 
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from moisture stress (Sala et al. 2010), as well as challenges inherent in project-
ing future drought events under climate change (Dai 2010). It is very likely that 
new and innovative techniques will be developed, perhaps involving a combina-
tion of empirical and process-based approaches. In the face of climate change, the 
key to achieving robust capabilities is to model the links between the important 
factors that determine moisture stress (e.g., precipitation, temperature, and other 
biotic and abiotic factors) and tree mortality. Somewhat robust tree- and site-scale 
models already exist, but innovations are needed to successfully implement such 
approaches at broader temporal and spatial scales.

Although many aspects of the physiology of photosynthesis, growth, water 
use, and carbon allocation within trees are well known, the fundamental mech-
anisms determining tree survival or mortality during drought remain poorly 
understood despite decades of research (Bréda et al. 2006; Allen et al. 2010; 
Sala et al. 2010). Manion’s (1991) decline spiral model posits that drought 
triggers mortality of trees that are already under stress by factors such as old 
age, poor site conditions, and air pollution, allowing them to be killed by tis-
sue damage or biotic agents such as wood-boring insects and fungal pathogens. 
McDowell et al. (2008) suggest three mutually non-exclusive mechanisms by 
which drought could lead to forest mortality: (1) extreme drought kills trees 
through cavitation of water columns within the xylem, (2) long-term water stress 
produces plant carbon deficits that lead to death or reduced ability to defend 
against biotic agents such as insects or pathogens, and (3) extended warmth dur-
ing droughts can result in increased populations of biotic agents, allowing them 
to overwhelm their already stressed tree hosts. Although these hypotheses have 
growing support, the physiology of tree death by moisture stress is not unam-
biguous (Bréda et al. 2006; Sala et al. 2010), and the process is to some extent 
still simulated by proxy. Moreover, drought effects may be offset or vary unpre-
dictably among species due to increasing atmospheric CO2 concentrations and 
N deposition, which affect plant water use and photosynthetic efficiency (Wang 
et al. 2012).

We have alluded to several knowledge gaps that hinder our ability to model 
drought effects on forested landscapes, not the least of which includes critical 
uncertainties related to the physiology of drought-induced mortality for most tree 
species. Although long-term empirical and experimental climate change stud-
ies are few, their findings should be incorporated into LDSMs, as should remote 
sensing data that provide additional information about the relationships between 
drought and tree response (e.g., Breshears et al. 2005). There may also be value in 
combining existing models that use different approaches and operate at different 
scales, as demonstrated by the joining of the LANDIS-II and PnET-II models (as 
described in Sect. 3.3). Ultimately, advances are needed to allow modelers to link 
changes in fundamental environmental drivers to their differential effects on tree 
species as well as their interactions with growth, competition, mortality, and vari-
ous natural and anthropogenic disturbances.
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3.5  Conclusions

Based on our review of the literature and experience, as well as results from the 
relatively heuristic case studies provided here, we can draw some general con-
clusions: (1) Because of changing climate, drought stress will increasingly affect 
the dynamics of forested landscapes, resulting in altered ecosystem composition, 
structure, and function. (2) Because climate change will produce new environmen-
tal conditions and stressors (including drought) that will interact in complex ways 
with forest growth, succession, and disturbance, to reliably project future forest 
dynamics LDSMs must better link the variability in climate with that inherent in 
the fundamental drivers of ecosystems. (3) Inclusion of drought as a process that 
alters forests in LDSMs is in its infancy but, because of the increasing importance 
of drought, these capabilities must be rapidly advanced.
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4.1  Introduction

Fire is a natural disturbance that is nearly ubiquitous in terrestrial ecosystems. The 
capacity to burn exists virtually wherever vegetation grows. In some forested land-
scapes, fire is a principal driver of rapid ecosystem change, resetting  succession 
(McKenzie et al. 1996a) and changing wildlife habitat (Cushman et al. 2011), 
hydrology (Feikema et al. 2013), element cycles (Smithwick 2011), and even 
landforms (Pierce et al. 2004). In boreal forests, for example, recurring  wildfires 
are the main cause of compositional and spatial patterns (Wein and MacLean 
1983), where a fire-induced “shifting spatial mosaic” governs the heterogeneity 
in  ecosystem patterns and processes on the landscape (Goldammer and Furyaev 
1996). In forest ecosystems where dominant species are long-lived, mature trees 
may  provide a buffer against extreme weather such as drought or heat waves, but 
fires and other disturbances such as insect outbreaks eliminate the buffering of the 
 canopy, leaving a hotter and drier microclimate conducive to the establishment 
of new species. In a warming climate, fire is expected to amplify and accelerate 
changes in forest composition, spatial pattern, and structure (Littell et al. 2010; 
Loehman and Keane 2012; Raymond and McKenzie 2012; Cansler and McKenzie 
2014). Anticipating these changes will be a key to successful forest management 
and conservation.

The value that land managers place on wildfires varies widely, as do strate-
gies for their management (Bowman et al. 2011). In some parts of the world (e.g., 
Mediterranean), wildfires are seen as a natural hazard to human settlements, and 
attempts are made to reduce or eliminate their occurrence (Rego and Silva 2014). 
In other regions (e.g., Fennoscandia) wildfires have been virtually eliminated by 
centuries of aggressive fire suppression, and now are being re-introduced to restore 
biodiversity patterns and ecosystem processes (Wallenius 2011). Analogously, 
in North America, emulating natural disturbances such as fire is a growing 
 forest-management paradigm, mostly where spatial and temporal patterns of wild-
fires are used as templates for silvicultural prescriptions (Perera et al. 2004). All 
these approaches to management demand spatially reliable and spatio-temporally 
explicit knowledge of wildfires in forest landscapes.

Fire is a dynamic stochastic process. Observed fires and time series of fire 
events can be seen as single realizations of that process (Lertzman et al. 1998; 
McKenzie et al. 2011). Rarely will two fire events be the same, because each event 
includes unique instances of fire ignition, spread, and extinguishment. The array of 
geo-environmental factors that control these three steps (in the case of wildfires), 
and social factors that modify their effects (in the case of man-made and managed 
fires), make each fire event different. Climate and weather, vegetation (fuel) com-
position and spatial arrangement, and topography interact to produce fire regimes 
with aggregate properties that reflect these drivers. We define fire regimes broadly, 
sensu Krebs et al. (2010), as characteristic combinations of antecedent condi-
tions (i.e., climate, fuels, topography), fire attributes, and fire effects. For example, 
topographic complexity engenders characteristic fire shapes and sizes over time, 
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even though individual fire perimeters and areas are generally not well predicted 
(Kennedy and McKenzie 2010; McKenzie and Kennedy 2012). Similarly, fire and 
climate interact with vegetation across multiple spatial and temporal scales, pro-
ducing characteristic fire patterns at broad scales (Higuera et al. 2009; Gedalof 
2011). Understanding fire regimes comprehensively, especially broader charac-
teristics such as fire-return intervals, fire-size distributions, spatial probabilities of 
occurrence, and spatial patterns of severity, is the primary value to the aforemen-
tioned management interests (Krebs et al. 2010; Table 4.1).

To understand wildfire regimes in forest landscapes, we seek a level of general-
ity that is different from what is required for the behavior of individual fires and 
cannot be achieved by simply “summing over” fire events and their effects. For 
example, fire-scarred trees provide a temporally accurate record of historical fires, 
but a spatially imperfect one because the extent and perimeters of fire events are 
known only imprecisely, even when sophisticated interpolations are applied (Falk 
et al. 2011; Swetnam et al. 2011). Interpolation errors accumulate such that aggre-
gate statistics and general characteristics of the fire history are biased or unaccept-
ably inaccurate.

Unlike historical fire regimes for which we have incomplete records, contem-
porary wildfires take place within a rich data matrix: fire weather and fuels may 

Table 4.1  Properties of wildfire regimes versus individual wildfires

Lists are meant to be representative but not exhaustive

Individual fire Fire regime

Temporal properties Fire date(s) Fire frequency (fire return interval 
or fire cycle), fire season

Cause Specific ignition source (e.g., light-
ning, arson, fireworks, smoldering)

Characteristic ignition (lightning or 
human)

Process Fire behavior: fireline intensity, 
flame length, spread rate, torching, 
crowning
Fire effects: consumption, emis-
sions, plant mortality

Productivity, fuel build-up, 
 succession, leaf phenology, 
 disturbance interactions  
(e.g., insects, pathogens, 
windthrow)

Material Fuel loading, fuel connectivity 
(horizontal and vertical)

Species composition, biomass

Climate and weather Wind, humidity, temperature, fuel 
moisture

Water balance deficit, summer 
temperature, winter precipita-
tion, drought frequency, El Niño 
 Southern Oscillation

Extent Fire size, fire perimeter Annual area burned (mean and 
 variance), fire-size distribution

Spatial pattern Simple versus complex, fire 
progression, fire severity classes or 
spatial variability

Spatial pattern of landscape fuel 
types (fuel mosaic), patch size 
distributions (fire area and fire 
severity)

Management Initial attack, suppression, backfires, 
evacuations

Fuel treatments, let burn versus 
suppression, demographic planning, 
education
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be known with greater accuracy. With sufficient input data, at appropriate tem-
poral and spatial resolutions, individual fires can be simulated reasonably well, 
particularly with “full-physics” models (Linn et al. 2002; Mell et al. 2007), but 
sensitivity to initial conditions, especially with extreme events that involve con-
vective fire plumes and long-distance spotting, still leads to considerable uncer-
tainty in outcomes (Werth et al. 2011). Furthermore, full-physics models are 
currently impractical at the scale of forest landscapes, in that their grid spacing 
is on the order of centimeters. This may always be the case, because not only 
is their execution at the scales required computationally infeasible, but also they 
will encounter the so-called “middle-number” problem (McKenzie et al. 2011): 
a combinatorial explosion of spatial variation in parameters across their domain 
that cannot be compensated by judicious choices of averages or other summary 
statistics.

In this chapter, we confront a conceptual issue in modeling whose clarifica-
tion should enhance the appropriate use of simulation models that focus on 
wildfire regimes (hereafter “WRSMs,” as distinct from finer-scale models that 
focus on individual fires) in forest landscapes. Many good overviews of land-
scape fire models are available (e.g., Keane et al. 2004; Cary et al. 2006, 2009; 
Scheller and Mladenoff 2007) and we eschew more coverage of the same terri-
tory. Instead, we examine what (and how) we abstract by WRSMs and how the 
level of abstraction characteristic of a WRSM depends on the resources available 
to initialize, compute, inform, and evaluate the model (Kennedy and McKenzie 
2012). We provide an analogous overview of model complexity, drawing on 
Keane et al. (2004), and show how models fall along an orthogonal (to abstrac-
tion) gradient of complexity. We focus on aspects of WRSMs that deal explicitly 
with fire, acknowledging that the fire regime is only one component of landscape 
forest dynamics.

We draw on a decades-long history of addressing issues of complexity and 
abstraction in ecological models (Levins 1966; Scheffer and Beets 1993; Logan 
1994; Cale 1995; Jackson et al. 2000), which provides much useful discussion 
but understates the independence of the two concepts or does not explicitly con-
trast them. For example, Levins (1966) emphasizes tradeoffs among generality, 
realism, and precision, each of which overlaps both complexity and abstraction. 
Jackson et al. (2000) equate abstraction and complexity, setting the stage for us 
to propose that these concepts are as likely to be orthogonal as to be parallel. We 
build on this earlier work with a conceptual model that maps the WRSM “land-
scape” onto a two-dimensional space of abstraction and complexity. We provide 
three contrasting examples of working models and their levels of complexity and 
abstraction, and suggest that relevant information available to the modeler will 
guide the model’s “position” in that space. We conclude with recommendations for 
making explicit choices about what to include in WRSMs in forests, guided not 
only by the ideas of complexity, abstraction, and available information, but also by 
more general considerations.
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4.2  Abstracting Reality and Defining Complexity

Science builds models of reality. In contrast to other disciplines such as history 
or fiction-writing, however, scientific models must be continually confronted with 
data (Hilborn and Mangel 1997). All models of reality entail a degree of abstrac-
tion; otherwise they would be mere replicates. In this chapter we adopt the idea 
that abstractions of reality may be “formed by reducing the information content of 
a concept or an observable phenomenon, typically to retain only information that 
is relevant for a particular purpose.” (https://en.wikipedia.org/wiki/Abstraction). 
Consequently, the level of abstraction of a WRSM reflects how much its informa-
tion content is reduced and generalized to inform the model’s objectives (Kennedy 
and McKenzie 2012). Depending on these objectives, processes modeled at differ-
ent scales will be subject to more or less abstraction.

Some models have lower bounds on their level of abstraction than do WRSMs. 
For example, the aim of weather-forecast models would appear to be to mimic 
reality as closely as possible, because they have no other purpose. In contrast, 
the purpose of most WRSMs is to ask scientific questions whose answers will be 
models of reality (accepting that reality can never be known perfectly) rather than 
explicit predictions of future conditions.

In landscape ecology, the complexity of models is more common parlance 
than their abstraction. For example, a detailed comparison of the complexity of 
WRSMs, with respect to several metrics, is in Keane et al. (2004). While acknowl-
edging the value of this work, we take a more generic view of complexity as 
associated with the amount of information required to describe the regularities or 
patterns in a system (Gell-Mann 1994). As such, complexity is defined quantita-
tively (Gell-Mann and Lloyd 1996), while being distinguishable from both purely 
information-theoretic definitions and subjectively chosen metrics. Abstraction and 
complexity are both properties of models, but the opposite of “abstract” is “con-
crete,” not “simple,” whereas both “complex” and “complicated” are opposites of 
simple. We further propose that complexity and abstraction can be viewed orthog-
onally, such that models, both existing and possible, live in a two-dimensional 
space bounded by limits on four edges (Fig. 4.1).

In modeling wildfire regimes, we seek to match the levels of abstraction and 
complexity with (1) the resources available to initialize, compute, inform, and 
evaluate the model, and (2) the specific objectives of the model. For example, if 
we have no fuels data to validate model inputs, does it even make sense to spec-
ify fuel loadings, even though fuels are a critical driver of the size and severity 
of fires. These data are typically lacking for both historical and future fires. Two 
alternatives are (1) [increase complexity—yes, by introducing more state vari-
ables] to estimate fuels allometrically from other variables, sensu Loehman and 
Keane (2012) and many other studies, or (2) [increase abstraction while reducing 
complexity] to replicate fuel-dependent dynamics via a more abstract representa-
tion of fire (Kennedy and McKenzie 2010).

A useful corollary to level of abstraction in a WRSM is the level of aggrega-
tion, both in model dynamics and model outcomes. At the most concrete level, 

https://en.wikipedia.org/wiki/Abstraction
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individual fires are simulated (Keane and Finney 2003). Such models are appro-
priate when fire perimeters and fire progression need explicit representation. In 
contrast, if aggregate properties of the fire regime, such as annual area burned or 
spatial patterns of fire severity, are the key outcomes, explicit simulation of fire 
behavior and fire spread may introduce unneeded precision, and with it the poten-
tial for cumulative errors (McKenzie et al. 1996b, 2014).

Besides informing model objectives, model abstraction, or aggregation, should 
match available information. Within the realistic complexity bounds defined heu-
ristically in Fig. 4.1, available information corresponds to the optimal position a 
model can occupy along gradients from abstract to concrete and from simple to 
complex (Fig. 4.2). Models simulating time-specific outcomes, such as past fire 
regimes or the future, will be compromised in different ways. For example, a 
model of Holocene fire may use sediment charcoal data that are spatially resolved 
to 1 km or finer, but have no better temporal resolution of fire, climate, or vegeta-
tion than centuries. A model of future fire regimes may have finely resolved down-
scaled climate, but essentially no data for evaluation. Note that Fig. 4.2 represents 
available information for the present as informing a model at a level of detail that 
exceeds the middle-number threshold. This figure reiterates how either complexity 
or available information can be a limiting factor for model concreteness.

Fig. 4.1  Qualitative positions of different ecological models in the two-dimensional space 
of complexity and level of abstraction. Wildfire regime simulation models (WRSMs) are gen-
erally complex, but a heuristic “error bar” is placed around the associated processes on the 
abstraction axis, because they often vary more in this dimension than in complexity. In prac-
tice, the domain is bounded by the dotted lines, beyond which models would be either infeasible 
(beyond data limits or the middle-number threshold) or not useful (inadequate or unrealistic). 
DGVM = Dynamic Global Vegetation Model. See text for further explanation
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An obvious goal for modeling is to find optima along the continua of abstrac-
tion and complexity. At least two distinct efforts are required to achieve this. First, 
model content and structure must be ecologically informed in a way specific to the 
model objectives (Keane et al. 2015). Whereas it is a truism to claim that ecologi-
cal models should be ecologically informed, here we mean that processes should 
be simulated at scales that match the questions being asked. For example, return-
ing to the aggregate properties of fire regimes, suppose we want to estimate patch-
size distributions of high-severity fire in a warmer climate, and contrast those 
with current observations. A model that simulates individual fires, capturing their 
perimeters and spatial patterns of severity, will accumulate errors (and false preci-
sion) by misplaced concreteness (i.e., we seek patch structure, not the shape of any 
individual fire), no matter how ecologically sophisticated (Kennedy and McKenzie 
2010; Swetnam et al. 2011). In contrast, a more abstract and less complex model, 
still ecologically informed, has fewer calculations and parameters, and one could 
argue that if each parameter has uncertainty associated with it the reduced cumu-
lative error of this type offsets errors of omission associated with aggregating 
key processes, particularly if the characteristic scales of these processes are not 
violated.

Second, all models must be “confronted with data” (Hilborn and Mangel 1997). 
This confrontation should be “unguarded,” so that any discrepancies that are 
revealed will be informative (see Sect. 4.4.4 below). At an early stage in model 
development, attention to discrepancies can inform not only model structure and 

Fig. 4.2  The level of detail in a model is constrained by available information, e.g., input data, 
calibration data, and robustness of algorithms. Points on the information axis in this figure refer 
to data, specifically: vegetation, fuels, weather or climate, land use, etc. Available information 
provides a constraint on both concreteness and complexity, and ideally helps to identify an opti-
mum (see text) on both axes. Landscape fire models are also constrained by the middle-number 
threshold of complexity (Fig. 4.1), such that whereas they can, for example, simulate individual 
fires in the present, inferences must be restricted to more aggregate properties, even if informa-
tion is rich. This is because of the cumulative error associated with representing too many pro-
cesses explicitly (see text)
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algorithms, but also levels of abstraction and complexity that are manageable; only 
later will the data confrontation be used to tune model parameters (Kennedy and 
Ford 2011). In our example of patch-size distributions, confronting a model with 
explicit polygons and dates would fail globally, because to achieve this level of 
concreteness would exceed the middle-number threshold (Fig. 4.1). Confronting it 
with aggregate properties of patches is manageable, and therefore informative.

We emphasize that optimal abstraction and complexity are not necessarily to be 
found at the high ends of what is possible. Indeed they are closely tied to available 
information, though not strictly parallel or correlated (Fig. 4.2), and coupled to 
model objectives, as many have observed (Keane et al. 2015). Below we provide 
three examples of different solutions to the questions “how abstract” and “how 
complex.” Differences among the models are outlined in Table 4.2.

4.3  Example Modeling Approaches

4.3.1  FireBGCv2: Complex, Concrete

A detailed description of FireBGCv2 is given in Chap. 8. Here we highlight briefly 
the aspects of the model that are germane to our discussion. The FireBGC models 
have evolved over 15+ years under the guidance of Robert Keane (Keane et al. 
1996, 2011), and simulate fire and succession on Rocky Mountain landscapes. 

Table 4.2  Contrasting elements of the three example models, drawing from properties in Table 4.1

FireBGCv2 WMFire BFOLDS

Fire time step Sequential not linked  
to vegetation

Sequential not linked 
to vegetation

Hourly linked to 
weather

Cause Random ignition  
based on fire-return 
interval

Random ignition Random ignition 
associated with 
weather

Process Mainly mechanistic,  
partly stochastic

Stochastic Mainly mechanistic, 
partly stochastic

Material Fuel loading, fuel  
connectivity (horizontal 
and vertical)

Fuel loading (from 
RHESSys vegetation)

Forest cover, fuel

Climate and weather Wind, humidity,  
temperature, fuel  
moisture, foliar moisture

Wind, fuel moisture as 
surrogate

Wind, humidity, 
temperature, fuel 
moisture, moisture

Extent Fire size, fire perimeter, 
max extent prescribed

Fire size, fire  
perimeter, max  
extent emergent

Fire size, fire 
perimeter

Spatial pattern Generated by rule-based 
percolation

Generated by  
probabilistic fire 
spread

Generated by 
mechanistic fire 
behavior

Management Implemented in scenarios Not implemented Not implemented

http://dx.doi.org/10.1007/978-3-319-19809-5_8


814 Modeling Wildfire Regimes in Forest Landscapes …

The model is standalone and includes detailed biogeochemistry (the BGC part) 
coupled with a gap-like model to represent individual-tree-based succession. 
The current version operates at five distinct spatial scales, from individual tree to 
“landscape.” Finer scales are used for physiological processes such as photosyn-
thesis, respiration, and decomposition, whereas fire is implemented stochastically 
at the landscape scale at which its explicit spatial nature can be represented. Finer-
scale processes are made as mechanistic as possible, combining theoretical models 
from the literature with parameters calibrated to specific ecosystem types.

FireBGCv2 operates at the high end of complexity and concreteness for exist-
ing landscape fire models (Keane et al. 2004). Indeed it may be at the high end of 
what is feasible (Keane et al. 2015; Fig. 4.3). As such, it could be said that no key 
ecological process is left unrepresented, to be a source of unexplained variability. 
A key strength of the model is that not only are all these processes included, but 
they are also modeled as mechanistically as possible instead of arising from purely 
empirical approaches, particularly those that are so much in vogue in the era of 
“big data.” Because of their emphasis on pattern-matching, empirical approaches 
can be very suspect when extrapolated outside their original domain (Cushman 
et al. 2007).

A model this complex is subject to several limitations, as acknowledged by 
Keane et al. (2011). With literally hundreds of parameters, model behavior can 
be unstable and highly nonlinear. Fire-return interval, which may interact with 

Fig. 4.3  Domain of landscape fire models on two axis (see Fig. 4.1), with positions of models 
discussed in the text. Reality is more concrete, and more complex, than any existing model or 
the “über-model” envisioned by Keane et al. (2015). The concreteness of FireBGCv2 approaches 
the limit of feasibility and desirability, whereas its complexity is still less than what might be 
desired. See text for further explanation



82 D. McKenzie and A.H. Perera

individual species dynamics to produce unrealistic outcomes (Keane et al. 2011), 
is a key source of model sensitivity. The developers recommend frequent and thor-
ough comparisons of model output with observations (good advice when build-
ing any model). A difficulty with this for a complex model is that comparisons 
can lack transparency because of the high-dimensional space (many simultane-
ous comparisons), or lack validity simply because of the dearth of historical data 
for comparison. A further limitation is the cumulative uncertainty from multiple 
approximations in complex processes. For example, the developers found that 
coarse-graining of spatial processes from 30 to 100 m, when simulating large 
landscapes, preserved most of the important details in the outcome. This likely 
illustrates a “balance” of errors between loss of resolution and the multiplicative 
errors associated with detailed process-based modeling replicated at many sites 
over many years.

4.3.2  WMFire: Less Complex, Abstract

WMFire arose from a need to incorporate fire into a process-based ecohydrological 
model, RHESSys (Regional HydroEcological Simulation System; Tague and Band 
2004), which simulates the effects of climate change on forested watersheds of the 
western United States. WMFire’s design and structure were motivated by the suc-
cessful reconstruction of the spatial properties of historical fire regimes by inverse 
modeling that combined probabilistic fire spread and Monte Carlo methods to fit 
fire-spread parameters to historical fire-scar records (Kennedy and McKenzie 2010; 
McKenzie and Kennedy 2012). WMFire receives an input watershed-scale database 
from RHESSys and a weather stream, spreads fire stochastically following a prod-
uct of probabilities, each associated with a weather, fuel, or topographic variable 
(Fig. 4.4), and passes the record of burned cells back to RHESSys. Fire severity and 
fire effects are then computed within RHESSys by coupling an index of fire weather 
with a western United States-wide database of fire effects (Ghimire et al. 2012).

Simulation of both fire itself and vegetation dynamics and succession are sub-
stantially less complex, and more abstract (especially fire) in the WMFire-RHESSys 
combination than in FireBGCv2, except that RHESSys has hydrological routing, 
absent in FireBGCv2. In comparison, the WMFire approach has advantages and 
disadvantages. Its key advantage (over most landscape fire models, including many 
that are less complex than FireBGCv2) is that its relative simplicity permits a formal 
optimization procedure to fit parameters in such a way that output can be compared 
to observations robustly. Multi-criteria optimization (Kennedy and Ford 2011) quan-
tifies (and therefore can minimize) the multivariate distance between model output 
and a comparison data set. This optimization is possible only if a model is simple 
enough that evaluation does not become a middle-number problem (see text above 
and Fig. 4.1), and is not feasible for a complex mechanistic model.

Two key limitations are associated with a model as simple as WMFire (this 
propagates to the WMFire-RHESSys combination). First, some potentially 
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important questions cannot be answered because the relevant processes are not 
simulated. For example, exact times and places of individual fire events, with 
simulated fire behavior that replicates these events as accurately as possible, will 
not be represented by simulating fire spread stochastically, because this method 
focuses on aggregate properties of fire regimes. Similarly, individual species 
responses to climate change cannot be projected, because tree species composition 
is ignored in RHESSys.

A second more subtle limitation is associated with the problem of attribution. 
With a simple model that produces aggregate properties of systems, a many-to-one 
relationship exists between drivers and outcomes. We suggest below (Sect. 4.4.4) 
that transparency of outcomes is an important property of a simulation model. A 
model that is too simple or too abstract may have reduced transparency in that 
the sensitivity to initial conditions (i.e., previous time steps or inputs) is muted 
by a model algorithm to the point that many starting points may produce the same 
outcome. Differences in dynamics represented in a complex model, important for 
future projections, may collapse when abstracted or aggregated.

4.3.3  BFOLDS: Intermediate Complexity and Abstraction

BFOLDS (Perera et al. 2008) was designed to explore Ontario’s boreal forest fire 
regime. By mechanistic and spatial simulation of fire, this model overcomes the 

Fig. 4.4  Pixel-to-pixel fire spread (here from cell j to cell z) forms the core of WMFire. Fire 
spread depends nonlinearly on fuel abundance (load), fire weather (moisture and wind), and 
topography (slope). The shape of the response of the fire-spread probability (pspread) depends on 
two parameters (k) associated with each variable. Monte Carlo analysis on multiple fires in mod-
eled watersheds is used to fit the parameters such that fire regimes emerge from combinations of 
the biophysical variables. See text for further explanation
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limitations of reliance on fire-history information (Li et al. 1997), temporal-only 
projections (Boychuk and Perera 1997), and includes spatio-temporal changes in 
vegetation cover explicitly (Yemshanov and Perera 2002). It is a hybrid model that 
simulates individual fires mechanistically and forest cover transitions empirically. 
Each fire event is modeled as a result of spatially explicit placement of ignitions 
on a forest landscape, with its realization determined by spatially explicit fire-
weather patterns and fuel conditions at that point. If ignited, the fire spreads on a 
raster grid based on the rates of fire spread computed from input of fire weather, 
fuel patterns, and topography. Extinguishment is also mechanistic—based on fuel 
patterns and fire weather. Parameter choices use the principles of the Canadian 
Fire Behavior Prediction system (Forestry Canada Fire Danger Group 1992). 
The forest cover changes are temporally discrete, governed by a time-dependent 
Markov chain model populated with probabilities of state transitions (Yemshanov 
and Perera 2002) with spatially explicit interactions with geo-environment 
(Weaver and Perera 2004). Vegetation cover generates the fuel-pattern grids for 
fire-event simulations.

In the model multiple fire events are simulated daily during a fire season 
guided by fire weather, fuel, and topography information for a given area. As 
such, no presumptions are made of the number of fires, sizes of fires, or their 
locations during the simulations; the ensuing fire regime is an emergent prop-
erty of the model function (logic, assumptions, and data). By replicated simula-
tions, BFOLDS constructs probability distributions of aggregate properties of fire 
regimes: fire-size distribution, fire-return interval, fire severity, as well as spatial 
biases in these properties. Therefore, BFOLDS is typically applied to explore, 
discover, and understand regional-scale fire regimes (>10 million ha, >100 years) 
and inform forest policy development and analysis (Rempel et al. 2007; Perera 
and Cui 2010).

Although fires are simulated far less intensively than in a physical model, and 
the types of input data required are fewer, BFOLDS is still data- and information-
hungry. This is mostly true for weather data (wind, precipitation, temperature). 
The resolution and extent of data demand (1 ha) and periods (hourly over a fire 
season) exceed what is typically collected. Therefore, the model relies on inter-
polation and extrapolation to produce continuous surfaces and temporal series. 
This is an abstraction of input data that may not be evident to model users, and 
may lead to false expectations of model precision. Another source of false preci-
sion is in fixing model parameters. Simulation steps of some physical processes, 
for example, fire extinguishment and smoldering, require an understanding of fine-
scale dynamics that exceeds the present state of knowledge. This leads to model 
assumptions, though explicit, that contribute to false precision. Most such limita-
tions should be overcome in time as data resolutions, extents, and scientific knowl-
edge improve. In the short term, clear communication of model limitations and 
the degree of abstraction is essential to avoid misinterpretation of accuracy and 
precision.
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4.4  Some Criteria for Developing and Applying WRSMs

We have framed fire-regime models in terms of gradients of abstraction and com-
plexity, and given three examples that occupy distinct positions along those gra-
dients. We now turn to more general criteria for building models that we believe 
should apply at most levels of abstraction and complexity. We draw heavily on 
the discussion in McKenzie et al. (2014), while noting that those authors were 
addressing regional-scale models of climate change, whereas we focus on forest 
landscapes, with their own characteristic key processes, such as contagious distur-
bance. For each criterion, we suggest how consideration of the polarities simple–
complex and concrete–abstract is germane. Our hope is that the modeling criteria 
that follow are robust across spatial and temporal domains, and across a wide 
range of objectives in ecological modeling.

4.4.1  Be Clear with Scale and Goal

As computing power and empirical knowledge of fire science improves, wildfire 
regime modelers will find it difficult to resist the temptation to simulate every detail 
of fire process possible. This is a futile pursuit since the accuracy of input data at 
regional scales, where fire regimes are modeled, will never match those accuracies 
expected by modelers. Instead, they must pursue improving robustness of models at 
the correct scale. It also behooves the modelers to stress the goals of simulations: is 
it the past (backcasting), future (forecasting), or what could be (what-if potential) 
that they seek? Model applications commonly overlook that the first two are subsets 
of the last (Fig. 4.5; Perera and Cui 2010). A model must be complex enough to 
capture fire process (but no more complex), but abstract enough to be robust, i.e., 
not tied to particulars that will not be stationary in new regimes.

4.4.2  Wildfire Regimes Should Be Emergent Rather than 
Prescribed

A potential critique of all simulation models is that by their very nature they repro-
duce the expectations of modelers. Clearly this is an inferior situation to repro-
ducing reality, at whatever level of abstraction is optimal in the context. With 
fire regimes, aggregate properties are often specified in simulation models, with 
individual fire events remaining stochastic (see Sect. 4.3). For example, a mean 
fire-return interval (FRI) may be associated with each of the different vegetation 
types but individual fires depend on suitable weather and fuel condition and abun-
dance (Lenihan et al. 2008). If conditions repeatedly do not favor a fire, fire extent 
when it does occur can be adjusted to match the prespecified FRI, particularly 



86 D. McKenzie and A.H. Perera

in the case where fire frequency is area-based, e.g., via a natural fire rotation or 
fire cycle. A limitation of this approach, even (or especially) if it calibrates well 
to observations, is that in a non-stationary climate, FRIs can change more rapidly 
than vegetation types, making this model with a prescribed FRI less robust for 
future projections. Such a model is too simple and too concrete.

Alternatively, one can build a model that also generates fire events from first 
principles, such as thresholds of fire weather and fuel moisture, but lets the aggre-
gate fire-regime properties emerge from the cumulative effects of individual events 
(Perera and Cui 2010). In this paradigm, future or potential fire regimes are less 
constrained to predetermined values, and projections should be more robust to a 
changing climate, but evaluating the model with current observations will be more 
challenging because of the lack of simple metrics such as FRIs for comparison 
(see also Sect. 4.4.4). We note that this particular criterion does not apply univer-
sally to all modeling objectives. For example, if we seek to understand vegetation 
response to wildfire scenarios we have identified explicitly, they are best specified 
in advance.

4.4.3  Distributions Are Better than Points

The Climate Model Intercomparison Project (CMIP5; Taylor et al. 2012) evinces 
the value of ensemble simulations rather than individual model runs. Stochastic 

Fig. 4.5  A Venn diagram of the conceptual domains of wildfire modeling goals. Forecasting and 
backcasting are nested subsets of the potential wildfire regimes—what could happen. The broad 
goal of wildfire regime modeling, given that future conditions are uncertain, must be simulat-
ing what-if scenarios, i.e., to expand the smaller domain by improving robustness of models, but 
narrowing the larger domain (green circle) to what is plausible given all uncertainties associated 
with the future drivers of fire (adapted from Perera and Cui 2010)



874 Modeling Wildfire Regimes in Forest Landscapes …

variation within the same model can produce very different and sometimes con-
tradictory outcomes (Deser et al. 2012). Whereas running multiple models in the 
same project may be infeasible to forest landscape modelers, sensitivity to a rea-
sonable amount of stochastic variation in the model of choice can reveal weak-
nesses or uncertainties in both model structure and inferences about results. 
Because fire itself is a realization of a stochastic process, multiple instances are 
needed to capture fire-regime properties, from annual area burned to fire-size dis-
tributions or proportions of area in different severity classes. As Perera and Cui 
(2010) showed, each of these properties has characteristic variability, in current 
and potential conditions. Here the complexity associated with ensembles is irre-
ducible, but necessary. In such ensembles, complexity may be traded for abstrac-
tion, e.g., the concreteness of a model such as FireBGCv2 may make an ensemble 
approach prohibitive.

A caveat to the call for looking at ensemble projections is associated with 
understanding extreme events (McKenzie et al. 2014). The “regression to the 
mean” that occurs when focusing on distributions and ranges of variation should 
be balanced by a vigilance toward outliers that may inform the answers to research 
questions. For example, what is the future likelihood of what is now a 95th- 
percentile event (Stavros et al. 2014)?

4.4.4  Methods Must Be Transparent

Different replications from one model may give qualitatively different results. It is 
important to understand why the results differed. Did you get the right answer for 
the wrong reasons (Dennis et al. 2010)? Sensitivity analysis provides quantitative 
transparency, along with an understanding of model variation, but just as impor-
tant are semantic and logical transparency. Can you explain, for example, why the 
one realization that is an outlier gave you the outcome it did? For landscape fire 
models, a particularly useful time for model transparency is when extreme events 
(see Sect. 4.4.2) occur in some realizations but not others. Did these fires emerge 
realistically from their precursors, or are they artifacts of some coincidence 
in parameter space that is opaque to evaluation? This need for transparency, for 
developers and for users, limits how complex and how abstract a model can be.

4.4.5  Aim for Progressive Improvements

This criterion is general and is difficult to associate directly with complexity and 
abstraction, except that it is clearly linked to model transparency (Sect. 4.4.4). 
Observations, and “validation,” are important for simulation modeling, but bring-
ing them in too soon and tuning the model to fit them will be counter-productive: 
it may camouflage basic errors in model content or not account for feedbacks that 
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are present in observations (Ford 2000). Being “wildly wrong” at some stage may 
be the most informative thing that could happen. Maximizing the concurrence of a 
model with observations by uncritically adding predictor variables and statistical 
interactions (in an empirical model), or finding the most parsimonious calibration 
to match “reality” (in a simulation model) makes a model less robust to predic-
tions outside its domain (Cushman et al. 2007).

On the other hand, it is possible to start out with faulty assumptions that ensure 
the inevitability, rather than the chance, of being wrong. For example, as discussed 
in Sect. 4.4.2, a potential pitfall is assuming that the natural fire regimes for par-
ticular vegetation types are stationary. Such a model is very likely wrong from the 
outset, and correspondence with the real future will be coincidental.

4.4.6  Implications for Model Development and Use

As all models are abstractions of reality, how much detail can be subsumed into 
thoughtful parameter choices, aggregated in some other way to produce emergent 
properties of the system faithfully, or even simply ignored? The expression “as 
simple as possible, but no simpler” is attributed to Einstein, and can be a useful 
heuristic along both our axes: complexity and abstraction (Fig. 4.1). Ecological 
science, and with it ecological modeling, is of course filled with contingencies and 
“unsimple truths” (Mitchell 2009). This limits our ability to generalize about opti-
mal levels of abstraction or complexity, as does the universal need for models to 
be designed and run with research objectives in mind.

Given this contingent optimality, and the other criteria we have proposed above 
(Sect. 4.4), we suggest three further considerations for abstraction and complexity. 
First, there will always be tradeoffs between model complexity and the feasible 
amount of replication. There may be cases in which a refined algorithm should 
be sacrificed for a parallel but cruder one that admits to an ensemble approach 
wherein multiple realizations “solve” the original algorithm without introducing 
false precision. A higher level of abstraction (in which a totally different algorithm 
is used) may also give a more realistic outcome, even if less precise.

Second, what are the limits on information available for evaluating increased 
complexity? For example, our best measurements of landscape fire are for the con-
temporary period. For the historical period (roughly pre-1900) we have no fuels 
data, no fire-start dates, and usually only a rough idea of fire perimeters. Historical 
fire spread must be reconstructed indirectly, and with necessarily simpler models 
(Kennedy and McKenzie 2010). For the future, no measurements are available 
other than the range of possibilities starting at the present, which we can only sim-
ulate. The many complexities in those simulations, though manageable for the pre-
sent for which we have observations, constitute false precision when applied to the 
future, especially for fire (Kennedy and McKenzie 2012).

Third, decide which uncertainties you can live with for your objectives. At what 
level of abstraction do you need outcomes? For example, if you need fire sizes and 
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shapes to predict landscape connectivity and distance to seed source in the interior 
of high-severity patches, you will need different precision (and will need to accept 
different levels of uncertainty, proportionally) than if you are projecting the likeli-
hood of extreme fires in future decades.

4.5  Conclusion

We have offered a conceptual framework for WRSMs in the hope of providing 
modelers with a different view, and different filters, for developing and using these 
tools for simulating forest landscapes. In doing so, we step back from the many 
valid day-to-day concerns of modelers to a level of abstraction that may be useful 
particularly when modelers encounter obstacles that are ill-defined or embedded in 
layers of processes that are hard to separate. We believe that re-assessing the levels 
of abstraction and complexity in a model, and how they depend on available infor-
mation, can be a useful reflective pause at any stage in the modeling process.
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5.1  Introduction

Insects are important disturbance agents affecting temperate and boreal biomes 
(Wermelinger 2004; Johnson et al. 2005; Cooke et al. 2007; Raffa et al. 2008). 
Defoliating insects in particular have historically affected a staggering area of North 
American forests, particularly across the boreal biome (Fig. 5.1). Principal among 
these boreal forest defoliators is the spruce budworm (Choristoneura fumiferana 
Clemens) that in the 1970s affected over 50 million hectares of fir (Abies spp.) 
and spruce (Picea spp.) forests at its peak in Eastern Canada and the Northeastern 
United States, making it among the most economically and ecologically important 
forest insects on the continent. Its significance is reflected in an extensive history 
of research to support modeling and management activities (e.g., Morris 1963a; 
Greenbank et al. 1980; Royama 1984; Sanders et al. 1985). The most recent review 
of spruce budworm modeling was by Régnière and Lysyk (1995, but see also 
Cooke et al. 2007). Since 1995 (when spruce budworm became primarily endemic), 
1103 papers were published with the keyword C. fumiferana (Web of Science, 
accessed December 2014), indicating a strong need for new synthesis.

Modeling insect outbreak dynamics requires understanding of the insect’s pop-
ulation dynamics, phenology, host preferences (i.e., species, size), feeding dynam-
ics, and factors affecting outbreak severity in time and space. Spruce budworm 
defoliates balsam fir (A. balsamea) and spruce species, emerging from winter 
hibernacula as tiny second instars that bore into emerging buds and then feed on 

Fig. 5.1  Comparative 
disturbance statistics for 
major insect species in the 
contiguous 48 states of the 
United States (inset) versus 
the Canadian provinces 
(Canadian Council of Forest 
Ministers 2013; http://nfdp
.ccfm.org National forestry 
database program. Canadian 
Forest Service, Ottawa, 
Ontario, Canada)
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the new foliage as shoots expand. Its population cycles are longer than most other 
defoliating species, both in terms of time between outbreaks and their duration 
(Cooke et al. 2007; Myers and Cory 2013). Mortality generally begins after 5 to 
6 consecutive years of heavy defoliation (MacLean 1980) in balsam fir, followed 
by white spruce (P. glauca) and then red spruce (P. rubens) and black spruce (P. 
mariana) (Erdle and MacLean 1999). Adult budworm moths are strong fliers that 
actively use wind currents to facilitate long-distance dispersal (Greenbank et al. 
1980; Anderson and Sturtevant 2011; Sturtevant et al. 2013).

The most commonly reported outbreak interval is on the order of 30–40 years 
(e.g. Jardon et al. 2003), and the species is best known for regionally synchro-
nized outbreaks (Royama 1984; Peltonen et al. 2002) that cause widespread 
forest decline over broad areas (MacLean 1984). However, a wide range of out-
break frequencies and spatial scales of synchronization have been observed in 
different parts of the insect’s extensive range (e.g., Williams and Liebhold 2000; 
Robert et al. 2012). Despite its apparent “destructive” nature and economic 
impacts (Chang et al. 2012a, b), the spruce budworm is an integral part of boreal 
forest ecology, with extensive outbreaks observed over several centuries within 
the dendroecological record (Boulanger and Arseneault 2004; Boulanger et al. 
2012) and over several millennia within the paleoecological record (Simard 
et al. 2006).

Current understanding of budworm disturbance ecology comes from two diver-
gent areas of research, both with extensive histories and both involving modeling 
of budworm disturbance. The first group of researchers sought empirical solutions 
to assess risk and effects of defoliation, primarily by building defoliation-growth 
reduction and defoliation-mortality relationships into stand growth models, as 
a means of prioritizing individual stands for either aerial spraying or preemptive 
salvage logging or for estimating effects of budworm outbreaks on timber supply 
(e.g., Baskerville and Kleinschmidt 1981; Erdle and MacLean 1999; MacLean 
et al. 2001). The second group researched the details of the budworm’s popula-
tion biology and dynamics to develop simulation models for evaluating feedback 
between forest conditions and budworm populations, and to inform population 
management (e.g., Morris 1963b; Jones 1977; Ludwig et al. 1978; Royama 1984). 
The two approaches have not been well integrated, in part because they derive 
from different disciplines, objectives, and traditions with respect to modeling 
uncertainty. However, an early and effective example of integration is reflected in 
the Holling–Baskerville efforts to use the Jones (1977) defoliation effects model 
in the Report of the Task Force for Budworm Control Alternatives (Baskerville 
1976). This work also inspired defoliation impact field work (e.g., Erdle and 
MacLean 1999) by exposing key information gaps related to tree growth-defolia-
tion and tree survival-defoliation relationships.

More recently, we have observed parallel developments in modeling of bud-
worm disturbance at landscape scales. The first development involves applying 
budworm defoliation effects on forest stands at landscape-scale within a timber 
supply and scheduling framework (MacLean et al. 2001; Hennigar et al. 2007). 
This strategy is generally used as decision support for tactical planning of forest 
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resources during a given outbreak. The second development is the integration of 
budworm defoliation disturbance within landscape disturbance and succession 
models (e.g., Sturtevant et al. 2004; James et al. 2011; Sturtevant et al. 2012). 
This strategy is applied for ecological insights, strategic planning, and devel-
opment of broad-scale policy over longer time periods (e.g., centuries). As of 
the writing of this chapter, these divergent areas of research and parallel land-
scape modeling strategies have not been integrated. Recent advancements in 
the understanding of budworm population biology and ecology (Régnière and 
Nealis 2007; Eveleigh et al. 2007; Régnière et al. 2012, 2013), in combina-
tion with the recent increase in budworm outbreak activity in Eastern Canada 
(Canadian Council of Forest Ministers 2013) warrant a fresh synthesis of bud-
worm science and modeling approaches to inform the next generation of bud-
worm disturbance models.

In this chapter, we examine the history of spruce budworm disturbance mode-
ling to provide insights into landscape insect disturbance modeling more generally. 
We do so by first outlining the evolution of competing approaches to budworm 
population modeling, illustrating the interplay of models and data, and highlight-
ing key insights (including failures and advances) into the roles of reciprocal feed-
backs among trophic levels (i.e., budworm, its forest host, and its natural enemies), 
and broader-scale processes (i.e., dispersal, synchronization, climatic variation and 
change). Second, we overview studies relating budworm defoliation to its effects 
on forests, culminating in spruce budworm decision support tools designed for 
forest operations planning. Third, we summarize more recent contributions using 
landscape disturbance and succession models focused on long-term responses 
of forested landscapes to a given budworm disturbance regime, and examine the 
opportunities for synthesis provided by this modeling framework. We conclude 
with our recommendations for a modern synthesis based on lessons learned from 
over five decades of research and modeling in the budworm-forest system, and 
its implications for the modeling of analogous defoliator-forest systems in North 
America and elsewhere.

5.2  Population Dynamics

Authoritative reviews have been written on the biology and dynamics of 
Choristoneura species (Volney 1985), including the comparative dynamics of the 
spruce budworm relative to other closely related defoliator species (Cooke et al. 
2007). The spruce budworm is an early season herbivore whose dynamics are 
influenced by a large array of agents, operating at a range of spatial scales, includ-
ing many species of vertebrate and invertebrate natural enemies, various host plant 
effects, a range of weather effects, and dispersal. With so many agents contributing 
to the system’s dynamics it is perhaps not surprising that no fewer than 15 bud-
worm models have been published over the last five decades (Table 5.1).
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Table 5.1  A contrast of classes (eruptive, cyclic, and gradient) of whole-system models of 
spruce budworm disturbance dynamics illustrating major model advances and limitations

Class Description Emphasis Limitations Source

Erup-
tive

Eruptive Predation on large 
larvae

Space Watt (1963)

Population 
collapse

Epidemic  behavior; 
host foliage 
limitation

Endemic phase 
processes and 
dynamics

Morris 1963b

Budworm site 
model

Host foliage 
energetics and 
productivity

Space; delayed 
density-
dependent 
predation

Jones (1977)

Spatialization  
of Jones 1977

Dispersal Delayed density-
dependent 
predation

Clark et al. (1979)

Analytical 
abstraction  
of Jones 1977

Outbreak as 
slow–fast cusp 
catastrophe

Delayed density-
dependent 
predation

Ludwig et al. (1978)

Re-parameteriza-
tion of Jones 
1977

Reduced role of 
bird predation 
interaction 
with host size; 
opportunity for 
aggressive sup-
pression given 
local extinction

Delayed density–
dependent 
predation

Stedinger (1984)

Re-abstraction of 
Jones 1977

Overriding influ-
ence of generic 
host effects

Delayed density–
dependent 
predation

Hassell et al. (1999)

Cyclic Time series 2nd order density-
dependence 
effect on 
cycling

Space; degrada-
tion of host 
forest

Royama (1984)

Time series param-
eterization and 
scaling

2nd order density-
dependence; 
spatial variation 
and scaling

Dispersal through 
space

Fleming et al. 
(1999; 2002)

Cycle synchroni-
zation

Role of dispersal in 
homogenizing 
spatial differ-
ences in cycle 
frequency

Degradation of 
host forest

Régnière and Lysyk 
(1995)

Dispersal mortality Role of host 
degradation 
in promoting 
risky dispersal 
of herbivores

Landscape scale; 
space

Régnière and Nealis 
(2007)

Tri-trophic 
interaction

Multifrequen-
tial cycling 
behavior and 
synchronization

Positive density 
dependence of 
mate finding

Cooke et al. (2007)

(continued)
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5.2.1  Data Sources and Modeling Challenges

To understand the evolution in the thought behind model development it helps 
to first understand (1) how the data sources developed over time, and (2) how 
improvements in computational tools and technologies facilitated the develop-
ment of ever more powerful methods of hypothesis testing. Over the course of 
the last century, three major phases in data acquisition, analysis, and modeling 
may be discerned (Fig. 5.2). The earliest studies of spruce budworm ecology and 
population dynamics indicated that researchers were well aware of the recurring 
nature of budworm outbreaks (Blackman 1919), and of the roles of multiple fac-
tors in influencing the rising and declining phases of population change (Swaine 
and Craighead 1924). Analytical tools at this time were limited to graphical and 
conceptual models. During a second phase of discovery through the 1950s to 
the early 1980s, studies became more comprehensive and methods became more 
quantitative. Intensive data collection from the Green River Watershed in New 
Brunswick, Canada (Morris 1963a; Fig. 5.2) led to the simple (yet formal and 
mathematical) multiple equilibrium model of Watt (1963), followed by the more 
complex budworm site model of Jones (1977) and its elegant mathematical simpli-
fication, which resulted in the cross-scale manifold model of Ludwig et al. (1978) 
(Table 5.1). A third phase of synthesis centers intellectually around the publication 
by Royama (1984), in which he offered an alternative interpretation of the Morris 
(1963a) database via time series analyses, and that by Royama (1992), in which 
he attempted to place the spruce budworm system in a broader ecological content 
by comparing it with other animal systems with cyclical population dynamics. 
Consequently, more intensive studies necessary to accurately distinguish among 
factors regulating budworm populations over time were established in the 1980s, 

Table 5.1  (continued)

Class Description Emphasis Limitations Source

Gradi-
ent

Phenological syn-
chrony across 
trophic levels

Extreme weather; 
transients 
under climate 
change; genetic 
capacity for 
adaptation to 
climate change

Spatial disequilib-
rium caused by 
dispersal lags

Fleming and Volney 
(1995), Volney 
and Fleming 
(2000)

Phenology Climate warming 
on develop-
ment times and 
survival rates

Dispersal through 
space

Fleming (1996)

Climate change Belt-shaped 
outbreak 
distribution and 
climate-driven 
range shift

Fast temporal 
dynamics

Régnière et al. 
(2012)
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while the availability of geographic information system (GIS) technology and 
spatial data sets in the 1990s provided opportunity to quantify factors affecting 
outbreak synchronization and dynamics in space (Fig. 5.2). Advanced statistical 
methods in both time series and spatial analysis methods are leading to increas-
ingly nuanced characterizations of system behavior that require a revised under-
standing of the budworm–forest system.

Clearly, the time scale of observation influences one’s ability to infer cyclic 
behavior. The earliest quantitative models (listed in Table 5.1) were developed on 
the empirical basis of just one cycle from the 1950s. For example, Turchin (1990) 
concluded that budworm populations were nonstationary (i.e., insufficient data 
to declare the trend-like pattern cyclic) based on plot-level population data from 
across New Brunswick available from 1945 to 1972 (Fig. 5.3). Similarly, Williams 
and Liebhold (2000) concluded that budworm populations were not regulated by 
density-dependent feedback based on 1945–1988 aerial survey data from across 
Eastern North America. The later models benefitted from two cycles of observa-
tions and insights garnered through the 1970s and 1980s. As the length of the time 
series increases the evidence in favor of cyclic dynamics increases (Fig. 5.3). Data 
limitations help to explain in part some of the evolution in modeling behavior, i.e., 

Fig. 5.2  The evolution of data sources describing spruce budworm system behavior. Scientific 
advances have followed concurrent methodological improvements in data collection, data analy-
sis, and simulation modeling
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the emphasis on eruptive behavior in the early phase of modeling and on cyclical 
behavior in the more recent phase.

Authors of the earliest models were nonetheless aware of the recurrent nature 
of budworm outbreaks, due to numerous tree-ring studies by Blais (1954, 1961, 
1965, 1968). As groundbreaking as these early studies were, Blais did not explic-
itly recognize the role of scale in interpreting the tree-ring data. The relevance of 
scale is exemplified by, for example, Boulanger et al. (2012) in a locally inten-
sive study that illustrated the remarkable stability of the budworm outbreak cycle 
through multiple centuries, while Jardon et al. (2003), using dendroecologi-
cal studies placed on a systematic spatial grid across much of Quebec, Canada, 
emphasized the complexity in patterns of recurrence and a lack of repetition in 
the spatial pattern of outbreak progression. Apparently, just as the temporal scale 
of observation may influence the perception of cyclicity, so may the spatial scale 
of observation influence the perception of outbreak cycle homogeneity and syn-
chrony, as budworm populations do not behave identically everywhere.

Fig. 5.3  The history of spruce budworm area defoliated in Quebec, Canada 1938–2001. The 
province-wide time series in the far right column has been divided to create two additional, 
shorter series, and all three subjected to autocorrelation analysis (bottom row; ACF = autocorre-
lation function). The shorter time frames were chosen to match those used in time series studies 
by Turchin (1990) and Williams and Liebhold (2000) (see text)
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BOX 5.1

Two elegant mathematical models represent alternative paradigms of the 
fundamental processes underlying budworm population dynamics. In the 
Ludwig-Jones-Holling model (LJH; Ludwig et al. 1978) budworm dynamics 
were assumed to be fundamentally eruptive, owing to positive and nonlinear 
feedbacks between budworms and forest and the effect of predators on bud-
worms, which was thought to vary as a function of tree size. Royama (1992), 
in contrast, emphasized the role of delayed feedback from natural enemies 
in a generic predator-prey model (which Royama (1984) and Fleming et al. 
(2002) implemented in a univariate autoregressive form, as in our Fig. 5.4) 
that induced a periodic harmonic oscillation. In each case, a factor viewed 
as critical in one model was downplayed in the other. Specifically, Ludwig 
et al. (1978) represented the effect of predation as being conditional on bud-
worm populations and tree size, where predator density was not modeled 
explicitly, and used two nonlinear feedback equations to describe vegetation 
dynamics. In contrast, Royama (1992) largely ignored vegetation dynamics 
by treating food resource competition as a fixed effect, and represented pre-
dation as a delayed reciprocal feedback process.

Although Ludwig et al. (1978) contended that their model was an accu-
rate abstraction of the dynamics of the original Jones budworm site model 
(Jones 1977), Hassell et al. (1999) showed that Ludwig et al. (1978) actu-
ally mischaracterized the Jones model by including the predation saturation 
effect (i.e., the second term in the budworm (B) equation; Fig. B5.1), which 
in addition to the nonlinear foliage equation (E) (Fig. B5.1) contributed to 
the relaxed oscillation dynamic that produces the same effect. In contrast, 
in the Jones model the oscillation dynamics are driven by nonlinear foliage 
dynamics alone. This finding only serves to strengthen the degree of con-
trast between eruptive and forest-dominated versus non-eruptive/cyclic and 
predator-dominated modeling paradigms.

Notably, Royama never actually suggested that the budworm could be 
adequately represented by any univariate, or even predator-prey, model. 

5.2.2  Competing Hypotheses and Modeling Paradigms

Two major paradigms underlie budworm outbreak models (Table 5.1). The first par-
adigm, peaking in the 1970s, focused on the role of the forest in precipitating and 
terminating devastating budworm outbreaks (i.e., multiple equilibrium “eruptive” 
models). The second paradigm emphasized the role of natural enemies in generating 
periodic outbreaks that do not necessarily result in host forest collapse (i.e., cyclic 
predator–prey models). These paradigms differ in two primary areas. The first is the 
relative strength of top-down versus bottom-up effects (Box 5.1). The second is the 
relative significance of dispersal in generating complex dynamic behavior and spa-
tial patterning. Both paradigms persist in the literature to the present day.
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Indeed, his use of the second-order autoregressive model in his 1984 mon-
ograph was for ancillary demonstrative purposes only. Moreover, in the 
synthesis to his Chap. 9 on spruce budworm, Royama (1992) specifically 
referred to budworm oscillating about a single, conditional equilibrium state, 
which would vary as a function of forest conditions and natural enemy com-
munity composition. Rather than ignoring vegetation dynamics per se, it is 
more accurate to state that Royama (1992) chose not to attempt to summa-
rize the effect of forest conditions in quantitative terms

.

Clearly, although the two models (and modeling paradigms) differ starkly 
in terms of which trophic level is emphasized, such a difference could be 
reconciled through the development of a hybrid model that allows for either 
fixed or dynamical effects of both trophic layers below and above the bud-
worm (i.e., predators, forest). To examine the effect of ancillary factors, such 
as weather or dispersal, on budworm tritrophic interactions, a hybrid model 
(see Fig. 5.8 in text) might be considered that would allow for altering criti-
cal assumptions about the nature of the feedbacks occurring among trophic 
levels.

Fig. B5.1  Tri-trophic interactions in the spruce budworm system as depicted by two simple 
models from the metastable eruptive (left) versus harmonic oscillation (right) paradigms, in 
two common modeling frameworks. The center panel highlights congruencies and differ-
ences in the two system models, color-coded to link variable or mathematical expressions to 
each of the three dominant trophic levels (predators, herbivores, foliage). Solid circles indi-
cate trophic levels represented by dynamic state variables and double arrows indicate inter-
trophic relationships that are characterized by reciprocal feedback. In the Ludwig-Jones-
Holling model predation is a variable effect; there is no equation for predator population rate 
of change. In the Royama model the intensity of feeding competition for foliage is a fixed 
effect; there is no equation for forest foliage dynamics
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5.2.2.1  Multi-equilibrium Model

The suite of models produced under the eruptive outbreak paradigm, summarized 
previously (Cuff and Baskerville 1983; Fisher 1983), emphasized a critical role 
for tree size, and hence forest age, in shaping the budworm’s ability to acquire 
food and shelter and to evade natural enemies. Large amounts of host foliar bio-
mass were assumed to be a necessary condition for budworm outbreaks, and sharp 
declines in available host foliar biomass were assumed to be a necessary condition 
for population collapse. Consequently, these models shared a “relaxed oscillation” 
dynamic characterized by alternating host depletion and regrowth. This depend-
ence on bottom-up constraints was thought to explain why the duration between 
outbreaks was so long in relation to other periodic defoliators, which tend to erupt 
at roughly decadal intervals (Myers and Cory 2013). The primary differences 
between alternative models developed under the eruptive outbreak paradigm are 
reflected in different hypotheses about the relative importance of factors trigger-
ing population eruption (Fisher 1983): temperature (e.g., Watt 1964), sufficiently 
large quantities of host to overcome low-density predator regulation or a so-called 
predator pit (e.g., Jones 1977; Ludwig et al. 1978), and external invasion by adult 
moths (e.g., Stedinger 1984). All shared the assumption that forest collapse was 
responsible for outbreak decline.

The evolution of budworm models under the eruptive paradigm led to semi-
nal insights into insect disturbance modeling. The first computer simulation 
model (Watt 1963) was characterized by “bistability,” referring to the simultane-
ous existence of two distinct alternative stable equilibrium states (i.e., endemic 
and epidemic), both of which are accessible at any moment in time, and neither 
of whose existence is “conditional” on varying environmental conditions. The 
Jones (1977) model and the Ludwig et al. (1978) abstraction were characterized 
by “metastability,” which refers to the temporary existence, and conditional sta-
bility, of multiple equilibrium states that arise through dynamic interplay among 
multiple regulatory processes operating at distinct timescales. The interaction 
between fast and slow consumptive and regenerative processes gives rise to a 
“manifold” characterized by a cusp, or critical bifurcation point, which sepa-
rates two flexible domains of attraction, and a “hysteresis” effect of irreversibil-
ity, where return to a basal equilibrium state is inevitable, but requires the slow 
passage of time to precipitate a critical change in environmental circumstances. 
Berryman et al. (1984) used the term “metastable” to refer to the forest–insect 
limit cycle (i.e., also termed a “relaxation oscillation”) that results from the inev-
itability of a “slow” forest regeneration cycle after a fast process of insect popu-
lation eruption and forest collapse.

Authors of early budworm models were also pioneers in the simulation of spatial 
dynamics of outbreaks (e.g., Clark et al. 1979). Spatial processes were  recognized 
as important because budworm densities “were not solely determined by local fac-
tors, but remain at least partially synchronized with neighboring areas” (Fisher 
1983, p. 107). Under the eruptive model paradigm, adult dispersal was a key  factor 
underlying the radial expansion of outbreaks from so-called “epicenters” (Hardy 
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et al. 1983), analogous to how we currently understand the spread of bark beetle 
epidemics (Powell et al. 1998). The primacy of wind-mediated dispersal of bud-
worm moths underlying the spatial spread of outbreaks under the eruptive para-
digm––and the implications for budworm suppression programs––was underscored 
by an unprecedented research program to investigate the aerobiology of spruce bud-
worm dispersal (Greenbank et al. 1980) (Fig. 5.2).

5.2.2.2  Harmonic Oscillation Model

Despite the obviously destructive nature of budworm outbreaks, several wide-
spread observations were inconsistent with the multi-equilibrium models (Royama 
1992). First, budworm outbreaks frequently end before host foliar biomass is 
fully depleted. Second, these outbreaks occur at fairly regular intervals ranging 
between 20 and 40 years between peaks (Burleigh et al. 2002; Jardon et al. 2003; 
Boulanger et al. 2012) that are less than even the “pathological rotation age” of 
balsam fir (70 years; Burns and Honkala 1990). While the eruptive models of this 
era (Table 5.1) were not scale-specific, they were typically applied at the resolu-
tion of a “forest block” (e.g., Clark et al. 1979; 170 km2). If budworm outbreaks 
resulted in forest collapse at this scale every three to four decades then very rarely 
would forests have the opportunity to develop into the mature and overmature 
age classes that are frequently observed in the boreal forest. Likewise, immature 
and mixed species stands generally show only partial stand mortality (MacLean 
1980; Su et al. 1996). Finally, cyclic budworm outbreaks are often synchronized 
at regional scales, despite high spatial variability in forest conditions, suggesting 
broad-scale population fluctuations are governed by more than just local forest 
conditions.

An alternative paradigm, elaborated most forcefully by Royama (1984), is 
that something other than forest age and abundance––such as natural enemies––
restricts generation recruitment of budworm. By acting in a delayed density-
dependent manner, these agents induce a harmonic (i.e., sinusoidal) oscillation, 
much like a predator–prey cycle (Box 5.1), resulting in a system that is statisti-
cally “stationary” in its cycling (i.e., autoregressive) properties, including time 
series mean and variance. According to Royama’s model no upper (or lower) sta-
ble state is ever realized; the unique equilibrium state is never achieved because 
of an unending regime of stochastic perturbations that continually force the sys-
tem away from its globally stable single-point attractor. Royama (1984) noted 
that, according to this theory, some population cycles may not rise to a level where 
defoliation becomes observable. This, he suggested, might explain the occasional 
missing cycle in long time series records––defoliation events that could not easily 
be detected by aerial surveys and tree-ring analysis.

The paradigm is parsimoniously expressed in a model phase space diagram 
(Fig. 5.4a). Using a second-order density-dependent approach that is essentially 
a phenomenological predator–prey model, one can produce long cycle lengths 
by careful selection of an appropriate parameter space. Zone IV of the parameter 
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space (Fig. 5.4a) produces slow-damping cyclical behavior consistent with the 
idea of “phase-forgetting quasi-cycles” (Nisbet and Gurney 1982). Royama 
(1984) illustrated parameter combinations in Zone IV that generate low-frequency, 
high-amplitude cycling, and Fleming et al. (2002) discussed these parameteriza-
tions in the context of the spruce budworm. Figure 5.4a illustrates two contrasting 
parameterizations that lead to robust 36- and 24-year cycling behavior (stochastic 

Fig. 5.4  a The parameter space of a delayed feedback time series model 
(Rt = Φ0Nt + Φ1Nt-1 + et) overlaid on a phase plane diagram representing different zones 
of model behavior (Royama 1992; see inset), where Zone IV parameter space generates low-
frequency dampening oscillations. Tiny variations in the delayed feedback parameter (Φ0) are 
sufficient to generate large difference in cycle frequency, as indicated by the parameter sets (Φ0, 
Φ1) required to generate sustained oscillations of 36- and 24-year periodicity. b The effect of 
coupling via reciprocal dispersal on two populations cycling at differing frequencies. Even when 
the strength of dispersal coupling is low (exchange rate = 0.01 % amongst populations), the 36- 
and 24-year cycling populations (top left) converge on a phase-synchronized 29-year cycle (bot-
tom left), as demonstrated by corresponding spectral peaks in the respective time series (right), 
with correlations (r) rising from ~ 0 to ~1



106 B.R. Sturtevant et al.

realizations illustrated in Fig. 5.4b). A 36-year outbreak cycle (i.e., time between 
peaks) is indicative of budworm outbreak dynamics in the northeastern boreal 
forest (e.g., Jardon et al. 2003), while a 24-year cycle is more common to the 
Appalachian region (Cooke et al. in prep.), to Western Canada (Burleigh et al. 
2002), and also to western spruce budworm, C. occidentalis Freeman (Alfaro et al. 
2014). Clearly, a 24-year outbreak cycle is not sufficiently long for forest regrowth, 
particularly in Northwestern Canada where balsam fir is absent, and the dominant 
conifer is the relatively long-lived white spruce. Notably, very small differences in 
parameter values may result in significantly different cycle lengths (Fig. 5.4).

Trophic interactions affecting budworm populations were recently documented 
to show a complex food web involving at least 56 different species, including 
alternative parasitoid hosts, predators, and hyperparasitoids (Eveleigh et al. 2007). 
One might ask how a 56-dimensional trophic interaction could possibly be rep-
resented in a simple two-dimensional autoregressive model. The answer lies in 
Royama (1971, 2001). The competitive interaction between parasitoid species 
that occurs with multiparasitism may serve a compensatory mechanism whereby 
a reduction in one parasitoid species is readily offset by compensatory gains in 
another parasitoid species with a similar attack phenology. Trophic redundancy 
thus may result in a relatively stable predator–prey multispecies complex that 
behaves more or less as a pure two-species predator–prey system.

In theory, a more rapid response of predators translates into lower amplitude, 
higher frequency predator–prey cycles. With a very large food web, relatively 
small changes to just a few key budworm parasitoid species might produce such 
differences. In this way, interaction between forest composition and the spruce 
budworm natural enemy complex may help to explain the lower amplitude and 
higher frequency cycle more typical of the floristically diverse Laurentian forests 
relative to the higher amplitude, lower frequency cycle more typical of the less 
diverse boreal forest (Cooke, unpublished manuscript). Indeed, it is interesting to 
speculate on the potential role of the closely related hardwood defoliators in the 
Choristoneura genus (e.g., C. conflictana and C. rosaceana), whose presence or 
absence would serve to perturb the natural enemy communities that surround the 
spruce budworm (see Sect. 5.3 for discussion on reduced budworm defoliation in 
hardwood-rich stands and forests of New Brunswick).

Analyses of recent data that included high-frequency sampling of parasitoids 
(Nealis and Régnière 2004a, b; Régnière and Nealis 2007) support Royama’s 
assertion that “the primary oscillation is governed by lagged, negative feedbacks 
between budworm density and generational survival as influenced by the impact 
of natural enemies on late-feeding stages of the insect” (Régnière and Nealis 
2007, p. 14). Yet host mortality was also clearly documented as contributing to the 
decline––just not consistently across study sites. Among the strongest sources of 
bottom-up feedbacks are dispersal mortality within young instars when seeking 
food resources in heavily defoliated stands (Nealis and Régnière 2004a). In short, 
substantial losses in host foliar biomass can certainly contribute to––but is not a 
requirement for––outbreak decline.
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5.2.2.3  Upscaling Local Dynamics to Landscapes and Regions

As indicated previously, the champions of each model paradigm further differed 
in the relative significance of dispersal in generating complex dynamic behavior 
and spatial patterning of budworm outbreaks. While Royama (1980, 1984, 1992)  
acknowledged that dispersal by both larvae and adults was an integral part of bud-
worm life history, he invoked Moran’s (1953) theorem to argue that synchronized pat-
terns of outbreaks are primarily caused by weather-driven (i.e., density- independent) 
fluctuations in recruitment between the adult and egg stage, where egg-laden female 
moths are prone to dispersal within and between forest stands. Under Moran’s theo-
rem, modest environmental perturbations that are regionally autocorrelated in space 
can synchronize independently oscillating populations, even when the environmental 
factor is independent of the cause of the population oscillation. This “Moran Effect” 
has since been identified as an important factor contributing to the regional outbreak 
synchrony for a wide range of Lepidopteran species (Ranta et al. 1997; Myers 1998; 
Bjørnstad et al. 1999; Myers and Cory 2013), including two species of lymantrids 
with females that cannot fly (Mason 1996; Bjørnstad et al. 2008).

The interaction between dispersal and spatiotemporal dynamics of outbreaks 
depends in part on how immigration affects local population dynamics, i.e., the 
underlying population model, or harmonic oscillation versus metastable eruption. 
For the latter, dispersal acts as successive triggering of eruptions through a spatial 
chain reaction, similar to a “domino-effect” (Clark et al. 1979) also known as a 
traveling wave (Bjørnstad et al. 2002). This so-called “epicenter hypothesis” fell 
out of favor with the advent of the harmonic oscillation paradigm that emphasized 
the Moran effect (Royama 1984). Régnière and Lysyk (1995) later proposed a 
high-resolution spatial model that illustrated how dispersal may act as a signifi-
cantly more robust synchronization process that forces independently oscillating 
systems to converge to a common cycling frequency even if their intrinsic cycling 
frequencies differ (as illustrated in Fig. 5.4b). Régnière and Lysyk (1995) funda-
mentally changed the nature of the discussion of cycle synchronization to place 
equal emphasis on weather and dispersal as potential synchronizing forces (e.g., 
Peltonen et al. 2002). More recently, Régnière et al. (2013) empirically docu-
mented an “Allee effect” (Allee 1931) within low-density budworm populations––
not in the form of a predator pit as proposed by Holling and colleagues (Ludwig 
et al. 1978), but due to low mate-finding success at very low densities. This Allee 
effect, i.e., the positive dependence of population growth rates on population den-
sities when densities are low, suggests that a low endemic state can be overcome 
via immigration. If dispersal can produce both kinds of effects, i.e., synchroniza-
tion and traveling waves, then hybrid models that include both effects may be nec-
essary to fully capture the relevant dynamics.

The recent data and syntheses suggest that neither of the supposedly compet-
ing paradigms (i.e., host abundance vs. natural enemies, and Moran Effect vs dis-
persal) is sufficient to characterize the full range of budworm outbreak behavior 
in time and space. Insights from landscape ecology, including recognition of the 
critical role of neighborhood effects, spatial heterogeneity, and the appropriate 
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scaling of ecological processes (Addicott et al. 1987) suggests that the discrepancy 
between paradigms might be related to the spatial and temporal scale of observa-
tion and empirical data. This perspective is supported by the multiscale modeling 
efforts of Fleming et al. (1999, 2002) who showed that finely resolved gridded 
data differ qualitatively in behavior from models parameterized using coarsely 
gridded data. More specifically, whereas local dynamics appear to conform to an 
eruptive hypothesis, the landscape scale dynamics appear to conform to a cyclic 
hypothesis. Although the models used were purely phenomenological and univari-
ate, the results are consistent with Holling’s idea of “cross-scale drivers” (Holling 
1973, 1986), with eruptive behavior emerging locally as the result of a fast process 
(in this case positively density-dependent mating success or predator escape), and 
cyclic behavior emerging at the landscape scale as the result of some slow pro-
cess (in this case delayed density-dependent parasitism and dispersal-driven cycle 
synchronization, as illustrated in Fig. 5.4b). The spruce budworm thus appears to 
behave as hybrid cyclic-eruptive, with the characteristic oscillatory and eruptive 
relaxation behaviors emerging at distinct, well-separated spatial scales of land-
scapes versus stands.

5.2.3  Gradient Models and Climate Drivers

In his synthesis of the spruce budworm system, Royama (1992) emphasized the 
conditional nature of its equilibrium state, with cycle frequency, amplitude, and 
time series mean and variance all potentially varying depending on environmen-
tal factors, effectively serving as “gradients” in space and time. He suggested 
these environmental factors might include forest composition, food web compo-
sition, and climate. Recognition of gradients affecting insect population dynam-
ics (Table 5.1) derives from the notion that population densities are controlled by 
environmental carrying capacities (Andrewartha and Birch 1954). Indeed, as early 
as the 1950s, spruce budworm “outbreaks” were occasionally referred to as “gra-
dations” (Morris et al. 1958). Very early “hazard-rating” models were built on this 
same premise of the outbreak as a spatial gradient, substituting the forest resource 
for the environment (e.g., Webb et al. 1956). Hazard modeling has become 
increasingly sophisticated with time and is elaborated in Sect. 5.3. However, the 
concept of environmental gradients––and more specifically climate––as a key fac-
tor contributing to nonstationary budworm outbreak dynamics in time and space 
both transcends the two modeling paradigms summarized above and has emerged 
most recently as fundamental to the understanding of outbreak behavior (Fleming 
and Candau 1998).

There are two fundamental approaches to understanding the climate–budworm 
outbreak interaction. The first approach relates to processes underlying budworm 
outbreak response to climate: investigations of the underlying process and empiri-
cal pattern analysis of past outbreaks using climate variables as covariates. Results 
from models used to investigate the process suggest climate and weather interact 
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with budworm on multiple levels, i.e., growth, survival, and movements of both 
the budworms and their natural enemy complex (Fleming 1996). Gray (2008) 
argued that it is challenging to understand the cumulative effects of these multi-
ple interacting processes. Pattern analyses of broad-scale aerial surveys clearly 
indicate an overall climatic signal affecting the budworm outbreak dynamic, but 
to date these types of analyses have been limited to a single outbreak cycle (e.g., 
Candau and Fleming 2005; Gray 2008, 2013). Régnière et al. (2012) simplified 
the processes to two dominant temperature-dependent limitations on population 
dynamics: development rate (Régnière and You 1991) and consumption of energy 
reserves over winter during diapause (Han and Bauce 1997, 2000). Consequently, 
budworm outbreaks become limited by the budworm’s ability to complete its phe-
nological life cycle at the northern (or altitudinal) extent of its range, and by the 
exhaustion of energy reserves due to higher metabolism at the southern extent of 
its range. The key insight from this combined body of modeling (i.e., process- 
and pattern-based) is that climate is an influential environmental factor. Climate 
change is anticipated to significantly affect future outbreak dynamics, with a 
northward shift in periodic outbreak behavior (much as predicted by Fleming 
and Volney 1995), a reduction in outbreak cycle amplitude in regions that have 
historically seen the most regular oscillations, and the elimination of detectable 
defoliation at the southern range limit (Régnière et al. 2012). Indeed evidence is 
mounting that northward range shift of spruce budworm may be attributable to cli-
mate warming, and that climate and forest composition both influence outbreak 
dynamics (Gray 2013).

5.2.4  Insights Following Five Decades of Research  
and Modeling

The evolution of thought and the interplay of data and modeling over time can 
be described by five phases of model development (observational, formal, digi-
tal, empirical, spatial), punctuated by the publication of four revolutionary papers 
(Fig. 5.5) (Watt 1963; Ludwig et al. 1978; Royama 1984; Régnière and Lysyk 
1995). As the data accumulate over time, and as the methods evolve, we see that 
the prevailing paradigm oscillates from cyclic to eruptive to cyclic and is currently 
settling on a hybrid between these extremes. A unifying theme that emerged in 
the background of these opposing paradigms was the idea of population regula-
tion by environmental factors such as forest and climate. One is led to conclude 
that this system may exhibit all three features of cyclic, gradient, and eruptive 
behavior (Table 5.1). Ideas that were once dismissed as unimportant or improbable 
(e.g., epicenter theory; anthropogenic forcing) come back into vogue as new data 
emerge, as the role of heterogeneity and scale become increasingly explicit, and as 
the demands of operational management force modelers to consider the full array 
of actual dynamic behavior across multiple spatial scales.
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Fig. 5.5  Evolution in thinking on the nature of spruce budworm outbreaks, marked by distinct 
phases where key papers had a lasting influence
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5.3  Budworm Risk, Impacts, and Decision Support

5.3.1  Empirical Understanding

The historical spruce budworm modeling of Holling and colleagues (Jones 1977; 
Clark et al. 1979), in collaboration with Baskerville, directly contributed to for-
est policy discussions (Baskerville 1976) and considerations of timber supply and 
effects of defoliation on provincial economy and employment (e.g., Baskerville 
1982). It also contributed to broader development of timber supply modeling 
and forest management decision-making frameworks in New Brunswick (e.g., 
Baskerville and Kleinschmidt 1981; Hall 1981), and was the precursor of stand- 
and forest-level modeling inherent in the modern spruce budworm decision sup-
port system (SBWDSS). Here we (1) review empirical relationships between 
defoliation levels and reductions in stand growth and survival, and the factors that 
influence them; (2) relate the population processes from Sect. 5.2 to the impacts 
measured at tree-, stand-, and neighborhood scales; and (3) describe the founda-
tion and functioning of the SBWDSS.

Defoliation links insect budworm population factors to stand responses 
(MacLean 1980; Erdle and MacLean 1999). Current defoliation is directly corre-
lated with late larval stage population density, so current and cumulative defolia-
tion link budworm population dynamics to stand responses. From the standpoint 
of predicting or inferring effects of budworm outbreaks on growth and yield or 
timber supply, defoliation is easier to assess at the branch-, tree-, stand-, or land-
scape scale than are budworm population levels. Current defoliation sampling 
methods include manually assessing percentage defoliation by foliage age class, 
on shoots, branches, or trees (e.g., Fettes 1950; Sanders 1980; MacLean and 
Lidstone 1982) and also well-developed aerial survey techniques (e.g., Dorais and 
Kettela 1982; MacLean and MacKinnon 1996) that rely on the reddish coloration 
of foliage resulting from budworm larvae severing and webbing together needles 
as they feed. Repeated annual measurement of current and cumulative defoliation 
on individual trees in permanent sample plots, and relating cumulative defoliation 
to growth and survival of those trees over time, is the basis for much of our empir-
ical understanding of budworm impacts.

So what do we know about budworm defoliation, impact relationships, and 
effects on trees and stands? First, budworm population density is the main driver 
of annual current defoliation (e.g., Figure 5.3), and several factors influence bud-
worm population trends. But host tree species also influence current defoliation, 
with an extensive permanent sample plot data set (>27000 tree and 1117 stand 
measurements from 1984 to 1992) revealing a clear and consistent hierarchy 
of host species defoliation. Regardless of budworm population density (defo-
liation severity) and various stand variables tested, white, red, and black spruce 
had approximately 72, 41, and 28 % as much current defoliation as balsam fir, 
respectively. Phenology of host bud burst and budworm larval development may 
be the leading cause of reduced defoliation on red and black spruce compared 
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with balsam fir and white spruce. Red and black spruce bud burst occurs on aver-
age 2 weeks later than on balsam fir (Greenbank 1963), causing lower early instar 
larvae survival on red-black spruce and lower percent defoliation relative to other 
host species (Lawrence et al. 1997; MacLean and MacKinnon 1997).

Second, host tree defoliation and tree growth reduction and mortality are con-
sistently reduced when host trees are mixed with deciduous trees not just within 
stands, but also in relation to surrounding stands (Bergeron et al. 1995; Su et al. 
1996; Campbell et al. 2008). Reduced budworm impacts within mixed forests may 
be attributed at least in part to the effect of hardwood species on the abundance 
and composition of budworm natural enemy communities. Tachinid parasitism of 
larvae and ichneumonid parasitism of pupae were elevated in stands mixed with or 
surrounded by deciduous species (Cappuccino et al. 1998), and a similar response 
was observed for egg parasitism by a hymenopteran species (Quayle et al. 2003). 
Importantly, stands with a hardwood tree species component contain many alterna-
tive host Lepidoptera species for multivoltine parasitoids that parasitize budworm. 
This can be critical as multivoltine parasitoids need to subsist on an alternate host 
in the late summer and autumn to continue their life cycle (Maltais et al. 1989). 
High levels of non-host deciduous species could also contribute to significant 
losses of first- and second-instar larvae during dispersal to other hosts (Kemp 
and Simmons 1978). The effects outlined here refer to factors affecting levels of 
defoliation at the plot to neighborhood scale (e.g., 1 km radius; Campbell et al. 
2008). We speculate that the feedback between forest composition and budworm 
population dynamics may scale up to influence regional differences in outbreak 
frequency (Fig. 5.4) and intensity (Cooke, unpublished manuscript).

Third, growth reduction and mortality impacts at the tree- and stand scale are 
strongly related to cumulative defoliation over successive years (e.g., Erdle and 
MacLean 1999; Ostaff and MacLean 1995). Tree mortality rates are also a func-
tion of species and age class, whereas growth reduction has been observed to 
be similar, for a given level of 5-year cumulative defoliation among balsam fir, 
white spruce, and red–black spruce (Erdle and MacLean 1999). The relationships 
between growth, survival, and cumulative annual defoliation, by species, appear 
to be robust among differing outbreaks and studies, and can largely be consid-
ered deterministic. Outbreak severity and duration largely determines the amount 
of cumulative defoliation. However, real-world defoliation patterns are gener-
ated by the multiscaled interaction among forest conditions, nonlinear budworm 
population dynamics, complex trophic interactions, and the climatic and weather 
drivers affecting the predator–prey interaction (Sect. 5.2). For example, recent 
cluster analysis of aerial survey data for the last major outbreak in New Brunswick 
shows spatially aggregated regions with current defoliation ranging between 1 
and 16 years (Zhao et al. 2014; Fig. 5.6). Other authors have identified analogous 
spatial heterogeneity in defoliation within an outbreak cycle across much of the 
boreal forest (Candau and Fleming 2005; Gray 2008). Such variability in cur-
rent and cumulative defoliation underscores the importance of drawing together 
budworm population modeling and impact/decision support system modeling 
approaches.
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Fig. 5.6  Cluster analysis of spruce budworm defoliation in New Brunswick, Canada, from 1966 
to 1993 resulted in 28 representative defoliation patterns, which were grouped into five categories 
(a–e) with divergent defoliation duration (ranging from 1 to 16 years; Yrs. defol.) and amounts 
(equivalent to removal of 2 to 10 age classes of foliage; Sum defol. %) (Zhao et al. 2014). Duration 
and severity of spruce budworm defoliation determines the resulting magnitude of impacts
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Fourth, stand and site characteristics, and tree vigor, have been observed to 
influence current defoliation, growth reduction, and survival in some studies (e.g., 
Lynch and Witter 1985; Hix et al. 1987; Osawa 1989; Archambault et al. 1990; 
Dupont et al. 1991; MacKinnon and MacLean 2003) but not in others (Bergeron 
et al. 1995; MacLean and MacKinnon 1997). These appear to be weaker relation-
ships, which break down during severe defoliation episodes.

5.3.2  Spruce Budworm Decision Support System (SBWDSS)

Advances in computer and information gathering technology have made the eval-
uation of alternative management practices through model simulation a feasible 
and valuable tool for forest managers (MacLean 1996). The SBWDSS, originally 
developed conceptually by Erdle (1989) and refined into a software application by 
Canadian Forest Service researchers (MacLean et al. 2001), was developed to pro-
ject effects of budworm outbreaks on tree growth, mortality, and timber supply, 
and to incorporate potential management actions into a decision-making frame-
work. It is built on the empirical impact relationships described in the previous 
subsection. Annual defoliation data obtained from aerial surveys and various user-
defined defoliation scenarios are converted into cumulative 5-year defoliation. The 
model is deterministic and thus multiple defoliation scenarios are used but could 
eventually be coupled to population dynamic models as these improve. Estimates 
for the different scenarios are used to model tree growth reduction and stand mor-
tality in a GIS forest inventory database (MacLean et al. 2001). Hennigar et al. 
(2007) improved the SBWDSS modeling framework by integrating stand-level 
budworm volume impacts into a forest estate model (Remsoft Spatial Planning 
System 2010), allowing pest management decisions such as foliage protection, 
harvest rescheduling, and salvage to be considered when maximizing timber flows 
during a budworm outbreak (MacLean et al. 2000, 2002).

The latest iteration of the SBWDSS allows integration between forest manage-
ment planning and optimization models and underlying tree impact information 
derived from pest management decision support tools (McLeod et al. 2012). This 
tool can assist land managers in quantifying marginal benefits of protecting forest 
stands against insect defoliation (e.g., in terms of timber volume in m3 ha−1 or 
value as $ ha−1). Protection cost: benefit analyses can be conducted using existing 
forest inventory and insect monitoring data in combination with forest manage-
ment planning models to project the effects of foliage protection strategies on for-
est development and forest values.

This decision support system (DSS) comprises several specialized tools that 
allow users to simulate insect impacts on trees, stands, and forests (McLeod 
et al. 2012). These tools leverage stand growth modeling capabilities (FORUS 
Research, Fredericton, NB) and allow forest impact analyses to be conducted 
with existing strategic forest management optimization models (Remsoft 
Spatial Planning System 2010). These capabilities permit efficient exploration 
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of cost-effective foliage protection or wood salvage scenarios. The tools can be 
divided into those used in estimating stand effects for strategic forest impact anal-
ysis (nonspatial tools) and those used for optimal spatial design of operational 
spray blocks (spatial tools). Nonspatial tools can be used to calibrate and imple-
ment the SBWDSS.

Strengths of the SBWDSS approach include robust stand-scale relationships, 
integration with existing forestry modeling tools, and use in tactical decision-mak-
ing. Limitations of empirical DSS are that outbreak severity (number of years of 
>30 % annual defoliation) varies considerably and is scale- and context-depend-
ent; studies are underway to better understand spatial and temporal variabil-
ity of historic defoliation patterns in New Brunswick and Maine, United States, 
and to relate variability to budworm sample numbers. Since the SBWDSS stand 
impact matrix includes effects of all possible combination of cumulative defolia-
tion on volume production, analyses can be scaled to differing outbreak severities. 
Nonetheless, until population modeling can actually project outbreak severity in 
time and space several years into the future, the stand growth/DSS approach will 
likely continue to use “what if,” user-specified defoliation scenarios that are typi-
cally based on previous outbreak patterns, as well as monitoring and annual updat-
ing of stand-scale defoliation conditions during outbreaks using aerial survey or 
potentially remote sensing.

5.3.3  Transcending Traditional Disciplines

A commonality between the budworm population modeling and hazard modeling 
implied by Fig. 5.5 is the predominant absence of spatial context, particularly with 
respect to supporting data collected at plot (e.g., Royama 1984) and stand (e.g., 
MacLean 1980) scales. Analogous to insights described in the previous section 
(Fleming et al. 1999, 2002), landscape ecology left its mark on traditional impact 
studies starting with the recognition by Bergeron et al. (1995) that neighborhood 
and spatial context had implications for budworm damage, including the commu-
nity composition and abundance of natural enemies (Cappuccino et al. 1998). The 
fact that both budworm and its natural enemy complex are mobile and therefore 
sensitive to spatial context could no longer be ignored.

An important consideration is that the vegetation equations underlying the 
eruptive class of models (Table 5.1) were not developed from data and have never 
been validated. The vegetation equations, which Hassell et al. (1999) showed to 
exhibit intrinsically explosive dynamics, were derived from Jones (1974, 1977), 
which in turn were supposedly inherited from an unpublished 1973 M.Sc thesis 
by a J.M. Stander at the University of British Columbia, Canada. Given the criti-
cal dependency of the eruptive models on vegetation dynamics, and the absence 
of vegetation dynamics in Royama’s framework (Box 5.1), any modern hybrid 
modeling approach should revisit the question of how foliar biomass changes as 
trees and forests grow and prune themselves, and how this variable responds to 
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budworm defoliation. Forest empiricists may be well-positioned to address this 
question, and in so doing, greatly inform the scaling of budworm populations to 
stands and landscapes. Likewise, budworm disturbance scenarios projected by the 
SBWDSS generally operate on the premise that budworm population dynamics 
are not affected by slower dynamics such as changes in forest conditions and cli-
mate—in other words, past dynamics are reasonable indicators of future outbreak 
behavior. We suggest that SBWDSS projections could be improved by incorporat-
ing feedback between forest and budworm defoliation scenarios in a way that is 
consistent with a modern synthesis of past modeling paradigms.

To fully understand critical feedbacks between forests and budworm dynam-
ics relevant to both populations and their effects, we need to understand both tree 
losses (growth reduction and tree mortality) and tree response, i.e., regeneration 
and infilling of small or large gaps by surrounding trees (e.g., Spence and MacLean 
2012). The former represents short-term hazard analysis, that is, within the realm of 
the current DSS. The latter represents long-term risk to timber supply and implica-
tions for future forest conditions, and requires a process-based modeling approach 
such as is embedded in landscape disturbance and succession models.

5.4  Landscape Disturbance and Succession Models

Landscape disturbance and succession (LDSM) models form a subset of forest 
landscape simulation models, identified by their explicit simulation of dynamic 
interactions between vegetation and disturbances in both space and time, and thus 
address the need to evaluate long-term risk by modeling long-term forest dynam-
ics (Scheller and Mladenoff 2007). These LDSMs share a set of common traits, 
albeit with differing levels of sophistication, process, and complexity. Each sim-
ulates vegetation change in response to one or more disturbances and over time 
in the absence of disturbance. Each includes some environmental representation 
of the biophysical template (sensu Urban 2005) that affects the growing environ-
ment. While these processes generally operate and manifest locally at the level of 
a grid cell or polygon, they may be affected by neighborhood processes (e.g., seed 
source), environmental change (e.g., climate change), or vegetation–environment 
interactions (e.g., nutrient cycling). Simulated disturbance processes also vary 
in their respective degree of sophistication and coupling with other model pro-
cesses. Unlike the deterministic optimization approach characteristic of the cou-
pled SBWDSS and timber scheduling software described in the previous section, 
LDSMs explicitly incorporate the stochastic nature of disturbance and vegetative 
processes that reflects their intended purpose—to project future landscape condi-
tions over comparatively longer timescales (e.g., centuries to millennia compared 
with DSS projections of years to decades). Spatial interactions among processes 
are fundamental to the approach because they “produce emergent behavior that 
contributes to the evolution of landscape pattern and changes in spatial heteroge-
neity at multiple scales” (Scheller and Mladenoff 2007, p. 493–494).
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Implementation of defoliator disturbance regimes within the LDSM framework 
requires methods to (1) define outbreak dynamics in time and space, (2) define the 
spatial distribution of resulting impacts, and (3) implement the vegetation response 
to those impacts (Sturtevant et al. 2004). As should be apparent from the previ-
ous sections, predicting outbreak severity and duration across a complex landscape 
cannot be done with any certainty (e.g., Figure 5.6). Uncertainty is factored into 
LDSMs by applying disturbance processes according to stochastic functions. To 
date these functions have been defined simply, where outbreak periodicity and 
extent may be derived empirically from either dendrochronological studies (e.g., 
Jardon et al. 2003; Bouchard et al. 2006) or aerial survey data (e.g., Peltonen et al. 
2002; Gray and MacKinnon 2006, 2007).

Simulating the characteristic spatial patterns of budworm-related mortal-
ity within a given outbreak (i.e., aggregation, severity, etc.) requires scaling the 
plot- and stand-scale impact relationships defined in the previous section to het-
erogeneous landscapes. Section 5.3 describes how forest composition, age, and 
growing environments can contribute to heterogeneity in defoliation impacts. 
The consequence of these combined relationships is that, in pure fir stands, mor-
tality can be stand replacing, i.e., coarse scale, large opening (e.g., Baskerville 
1975; MacLean 1980) but in mixed species stands overstory mortality is partial, 
forming small canopy gaps (e.g., Kneeshaw and Bergeron 1998; D’Aoust et al. 
2004; Kneeshaw et al. 2008). Sturtevant et al. (2012) therefore scaled plot-level 
relationships between host abundance and disturbance impacts to landscapes as 
disturbance probabilities, resulting in a gradient of patchy “gaps” (i.e., isolated 
disturbed cells) where hosts were rare to more continuous mortality where hosts 
were dominant (Fig. 5.7). Neighborhood effects, such as reduced impacts within 
forests dominated by hardwoods (Su et al. 1996; Cappuccino et al. 1998), may be 
similarly approximated by adjusting disturbance probabilities based on neighbor-
hood context (James et al. 2011). Nonetheless, considerable variability remains in 
defoliation impacts that both overlay and interact with the landscape structure and 
composition (e.g., Belle-Isle and Kneeshaw 2007). Such methods can be further 
refined by quantifying spatial patterns of defoliation mapped using remote sensing 
(e.g., Foster 2011).

Forecasting forest dynamics following spruce budworm outbreaks requires that 
tree species recruitment is understood as a function of overstory mortality. One of 
the simplest conceptual models of budworm-related forest succession is the cycli-
cal model of balsam fir replacing itself in fir-dominated stands (Baskerville 1975; 
MacLean 1980). This model is based on the high shade tolerance of balsam fir 
(Kneeshaw et al. 2006) and its ability to form dense seedling banks that are released 
following overstory mortality (Morin et al. 2009). As suggested by Baskerville 
(1975), this model becomes more complex as forest structure and composition 
increase in complexity. For example, Kneeshaw and Bergeron (1998) show that 
budworm-caused mortality can lead to both the maintenance of shade intoler-
ant hardwoods and the increase of non-host shade tolerant species such as eastern 
white cedar (Thuja occidentalis) in mixed species stands. Others have shown that 
outbreak periods are associated with recruitment peaks of many companion species 
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in addition to balsam fir (Bouchard et al. 2006). An increase in the presence of com-
peting shrub species has also been linked to budworm outbreaks (Batzer and Popp 
1985; Kneeshaw and Bergeron 1999; Kneeshaw and Prevost 2007).

Modeling of post-outbreak forest dynamics will be improved by a better under-
standing of understory seedling dynamics and their interactions with overstory 
composition and spruce budworm populations. For example, in some cases the 
forest may be too young or dominated by mixed species such that advance balsam 
fir regeneration banks are sparse. In other cases, as budworm populations increase 
and exhaust food resources in the overstory, the larvae may disperse downward 
(“down-spinning”) and defoliate the understory regeneration layer (Ruel and Huot 
1993). This can then lead to a patchy forest structure and permit the recruitment of 
species other than balsam fir. However, knowledge of the effects of larvae down-
spinning and defoliation of the understory seedling bank is lacking limiting our 
ability to establish the budworm population densities at which this process occurs.

The above elements are sufficient to examine budworm–forest interactions, 
with useful insights. For example, emergent behavior, such as alternating low 
severity and high severity outbreaks (Blais 1981; Bouchard et al. 2006), may be 
observed due to the inertia of host recovery following severe outbreaks (Fig. 5.7). 
Interactions between budworm, forest composition, and other disturbance regimes 
including fire and harvesting have also been investigated using LDSMs (James 
et al. 2011; Sturtevant et al. 2012). Nonetheless the current “state of the art” in 
insect modeling within LDSMs lags somewhat behind that of some other distur-
bances, such as fire. For example, nonstationary fire “regimes” may be derived 
from the emergent behavior of the underlying processes affecting fire ignition, 
spread and extinguishment, and the interactions of these processes with forest 
conditions, weather, and climate (McKenzie and Perera, in this volume). Coupled 
forest–budworm feedbacks have not yet been attempted within the LDSM frame-
work, despite empirical evidence for such feedbacks at the landscape scale (as 
described above) (Candau and Fleming 2005; Bellier et al. 2007; Robert et al. 
2012). Including such feedbacks could generate additional complexity in outbreak 
patterning, such as alternating patterns in per capita impact on host trees (i.e., high 
intensity in one outbreak, low intensity in the next), as reported by Bouchard et al. 
(2006). This alternating pattern in outbreak intensity would constitute a multiplica-
tive effect over and above the far more intuitive pattern of outbreaks that vary in 
extent in proportion to host cover. Such scenarios can then serve as the basis for 
sensitivity analysis and scenario testing within the SBWDSS framework.

Fig. 5.7  Simulated budworm disturbance within a landscape disturbance and succession model 
(Sturtevant et al. 2012), illustrating realistic simulation of budworm defoliation disturbance in 
both time (e.g., alternating moderate and severe outbreaks) and space (i.e., diffuse mortality 
moderated by spatial heterogeneity in host tree species). Large patches where budworm damage 
is absent reflects absence of host due to recent fires. Importantly, outbreaks were predefined to 
occur every 33.5 ± 10.6 years (mean ± SD) constrained to a 10-year time step. Alternating mod-
erate and severe outbreaks emerged from the lagged response of regenerating host species
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Landscape applications of the eruptive era models (i.e., Clark et al. 1979; 
Stedinger 1984; Fleming and Shoemaker 1992) used very coarse resolution forest 
compartments, with dispersal between them. Environmental factors have consid-
erable influence on local dynamics (Gray 2013), such that spatial heterogeneity 
in landscapes is an important consideration. LDSMs can supply the more realistic 
forest responses that include spatial heterogeneity, although this opportunity for 
scaling has yet to be taken advantage of. Yet other processes—in particular the 
multiple scales and magnitudes of movements by both budworm and their natural 
enemies—remain unresolved. Computational demands of such multiscaled move-
ments may also restrict their practical application within LDSMs, despite expo-
nentially increasing computing technologies. Consequently, the same fundamental 
problem limiting SBWDSS also limits LDSMs, albeit at a different temporal scale 
(i.e., decade vs. century).

The development of such coupled modeling will also be critical for evaluat-
ing the effect of climate change on budworm–tree dynamics. LDSMs are already 
commonly applied to investigate the effects of climatic change on vegetation 
dynamics, typically by using climate–envelope relationships to define vegetation 
response to changing environments (e.g., Scheller and Mladenoff 2005; Keane 
et al. 2008; Ravenscroft et al. 2010). Among the many insights from these investi-
gations is that spatial heterogeneity can influence vegetation response to environ-
mental change (Scheller and Mladenoff 2008) and that indirect consequences of 
climate change, particularly consequent changes to disturbance regimes, can have 
larger consequences than the direct effects of environmental change on vegetation 
(Gustafson et al. 2010).

While LDSMs provide opportunity to investigate climate–budworm–landscape 
interactions, the science of climate–insect interactions has not yet been integrated 
into this framework. The regional empirical analyses of Gray (2008) and Candau 
and Fleming (2011) provide some guidance for how to parameterize future out-
break patterns under a warming climate. Alternatively, the processes underlying 
climatic constraints on population dynamics may include the ability of budworm 
to complete its life cycle based on cold temperature constraints on growth at high 
latitudes, and energetic constraints on survival of overwintering larvae at low lati-
tudes (Régnière et al. 2012). Fleming (1996) suggested temperature-dependent 
predation or parasitism rates may also be involved, and as yet no evidence sug-
gests these processes are not operating simultaneously. Other authors suggest 
that differences in weather variability across the same latitudinal gradient may 
also affect budworm population dynamics (Cooke et al. 2007; Dukes et al. 2009; 
Cooke, unpublished manuscript). To date, conceptual insights and advances have 
not been integrated into a single modeling framework.

The strength of the LDSM approach lies in its integration of processes occur-
ring at different spatial and temporal scales, with both direct and indirect feedback 
between vegetation, multiple disturbances, and environment in time and space. 
The degree of complexity in the way these processes are represented can range 
from purely empirical functions based on past observations to theoretical relation-
ships grounded in first principles. Stochasticity is fundamental to the approach to 
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account for what we can and cannot project reliably. With respect to insect distur-
bance in general, and budworm disturbance in particular, applications have been 
weighted more toward empirically derived functions with associated probabilistic 
uncertainty.

The extensive research and modeling of budworm population and disturbance 
processes summarized in the previous two sections provides a rigorous basis for 
incorporating additional insect disturbance processes into the LDSM approach. 
In essence, the LDSM provides dynamics of critical vegetation and environmen-
tal gradients in time and space that could determine the “conditional equilibrium 
state” affecting harmonic oscillations of budworm populations (sensu Royama 
1992). To simulate the disturbance process more precisely, empirical relationships 
underlying the SBWDSS could be adapted into impact functions. Insect movement 
could be simulated to interact with spatial heterogeneity of vegetation and envi-
ronment to account for neighborhood and synchronization processes, while the 
flexible architecture of the LSDM may allow evaluation of competing hypotheses 
in a way that remains sensitive to scale. Integration of these processes with climate 
drivers affecting population dynamics provides opportunity for a “whole-system” 
approach to the question of climate change effects that may be compared directly 
for consistency with empirical study (e.g., Gray 2013).

Equally important is clear recognition of the appropriate domain of appli-
cability for the LDSM approach. It is intended to capture spatial patterns at the 
landscape scale and temporal patterns on the order of a century or longer. This 
approach is therefore more amenable to strategic questions such as evaluation and 
consequences of alternative future scenarios at the above spatial and temporal time 
scales. It is not well-suited to address tactical decisions such as the specific place-
ment of forest treatments in time and space, nor short-term projections of impacts 
and system response.

5.5  Opportunities for Synthesis

5.5.1  Model Integration

It is not surprising that multiple modeling paradigms have persisted over time: the 
data, as good as they are, have been insufficient to fully parameterize or refute any 
one model. Data uncertainties and model uncertainties were such that conjectures 
went unrefuted for long periods. Hypotheses that fell out of favor were revisited as 
new data, new methods, and new operational needs emerged (Figs. 5.2 and 5.5).

Consequences of the modeling paradigm for using insecticides for population 
control were particularly acute. For example, logical consequences of the cyclic 
model by Royama (1984) suggested local-scale foliage protection could be pur-
sued without any threat of prolonging the region-wide cycle due to the role of 
natural enemies in promoting cyclic behavior (Royama et al. 2005), while the 
eruptive model by Ludwig et al. (1978) that minimized the role of natural enemies 
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indicated foliage protection would necessarily prolong the outbreak. Similarly, 
Stedinger (1984) suggested that spruce budworm populations could be driven 
to local extinction if intense insecticide spraying occurred early enough in the 
growth phase of the outbreak cycle, while Royama (1984) contended that very 
little could be done to manage area-wide outbreaks, and that epicenter suppres-
sion would always end in futility when landscape-wide cycles proceeded to rapid 
synchronization via the Moran effect (Moran 1953; Royama 1984, 1997, 2005; 
Régnière and Lysyk 1995; Cooke et al. 2007). The most recent documentation 
of Allee effects (Régnière et al. 2013) and the renewed interest in dispersal as a 
synchronizing agent affecting the spatial scale of outbreaks (Régnière and Lysyk 
1995; Sturtevant et al. 2013) has revitalized the debate about the efficacy of early 
intervention programs to manage outbreaks versus simply protecting foliage. 
Such divergent policy implications underscore the importance of clarifying model 
assumptions and of the role of science in reducing the most critical uncertainties. 
Meanwhile, recent warming of the North American boreal forest is changing the 
rules under which outbreaks have historically developed (Gray 2013).

As illustrated repeatedly by the spruce budworm modeling history, there is a 
natural tension between the inclusion of detail (model specificity) versus keeping 
models simple (model generality). This tension cuts across the contrasting para-
digms outlined here, in that Ludwig et al. (1978) and Royama (1984) both advo-
cated parsimonious models of minimal complexity (see Box 5.1), whereas Jones’s 
original (1974) site model is aptly described as a “big, ugly model” (sensu Logan 
1994) with a high degree of complexity. We suggest that a middle ground is neces-
sary to attain a qualitatively well-specified model of the feedback couplings that 
give rise to the major features of budworm disturbance regimes. The opportunity 
for a modern synthesis can be represented by a hybrid model involving two lev-
els of reciprocal feedback, one for the herbivore and its host tree, and one for the 
herbivore and its parasites, each contained within the larger context of dynamic 
climate gradients (Fig. 5.8). While simple in concept, model behavior will be com-
plicated by the movement of budworm and their natural enemies, by coupled non-
linear relationships among trophic levels, and by cross-scale interactions among 
processes occurring at different temporal rates and spatial scales. Such complexi-
ties were well-recognized by budworm modelers as far back as the 1970s (e.g., 
Ludwig et al. 1978). What was underappreciated by followers of either paradigm 
was the combination of major features of outbreak behavior necessary to mini-
mally characterize its dynamics in time and space, i.e.:

•	 Synchronizable (phase-forgetting), low-frequency oscillations that are more fre-
quent (every 20–40 years) than the average rate of stand replacement

•	 High-frequency sawtooth oscillations (every 4–7 years), associated with fluctua-
tions in fecundity and dispersal propensity

•	 Eruptive epicenters that serve as early sources for area-wide outbreaks
•	 Outbreak cycles that tend to alternate between non-stand replacing and stand 

replacing (i.e., not all outbreaks rising to the same level of devastating impact)
•	 Climatic gradients that track northward with climate warming
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Likewise, decades of empirical study of budworm impacts on forests (Sect. 5.3) 
suggest the following common response, in decreasing order of strength and con-
sistency of relationships:

•	 Host species composition and age determine mortality
•	 Outbreak severity and duration determine the magnitude of impacts
•	 Host species influences defoliation
•	 Deciduous content within stands and neighborhoods reduces host defoliation
•	 Stand and site characteristics and tree vigor show influence under some circum-

stances but are the weakest effect

Of these five drivers of budworm impacts, outbreak severity and duration are noto-
riously variable (Fig. 5.6) with major implications for projecting effects on forest. 
Accurate modeling of spruce budworm population trajectories may never be use-
ful for precise predictions at an operational scale. Yet we expect consistent, high-
resolution monitoring of forest conditions will improve the utility of the SBWDSS 
approach for decision-making. In addition, insights from complementary mod-
eling (e.g., climate drivers, LSDMs) may improve the current approach (i.e., using 
past behavior to predict the future) by developing more plausible and informative 
alternative outbreak scenarios. For example, one might expect a light or moderate 
outbreak to follow a severe one, but what is the relative plausibility of such a sce-
nario? Likewise, how might current climate affect the severity of the next outbreak 
cycle?

Fig. 5.8  Multiple equilibrium models championed by Holling and colleagues (Ludwig et al. 
1978; blue) included predation; however, strong reciprocal feedback centers on the budworm–
forest interaction. In contrast, the harmonic oscillation model championed by Royama (1992; 
red) emphasized strong reciprocal feedback in the higher trophic levels, with budworm–forest 
interactions as a secondary consideration. A modern synthesis (black) would consider both levels 
jointly, including the potential for eruptive and cyclic behavior, as well as the broader-scale con-
text of climate
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Integration of coupled landscape–climate–insect feedbacks—using insights and 
relationships from population and impact modeling approaches, respectively—
within an LDSM framework can address many pressing issues facing land manag-
ers today. These include the cumulative effects of land management activities on 
insect disturbance frequency and intensity (Miller and Rusnock 1993), the direct 
influence of climate change on outbreak dynamics (Régnière et al. 2012; Gray 
2013), and the interactions between these factors as they affect forest resilience to 
novel anthropogenic change. Among the key uncertainties are:

•	 Multiscaled insect movement as mediated by heterogeneity in resources and 
weather patterns

•	 Adaptive response of budworm to novel climates
•	 Defoliation effects on advance fir regeneration and subsequent successional 

pathways
•	 Responses of parasitoids to new habitats, landscape configuration, and climate

5.5.2  Transferability of Insights Among Defoliator Systems

Spruce budworm is arguably one of the most studied insects on the planet. Spruce 
budworm share many elements of system behavior with other important forest-
defoliator systems (Cooke et al. 2007), and many of the lessons learned under the 
extensive budworm research programs may be transferable to modeling these sys-
tems. Features common among many forest defoliator systems include the near 
universal role of the Moran effect as a regional synchronization factor (Bjørnstad 
et al. 2008), prevalence of simultaneous top-down and bottom-up drivers affect-
ing population cycling behavior (Myers and Cory 2013), and the importance of 
climate drivers affecting system behavior—including outbreak dynamics and 
range expansion (Jepsen et al. 2008; Bentz et al. 2010; Zografou et al. 2014) and 
the robust empirical relationships between defoliation and growth reduction and 
mortality (e.g., Osawa 1989; Erdle and MacLean 1999). Indeed, the generalized 
framework of the SBWDSS has also been applied to insects other than spruce bud-
worm. It has been used to calibrate and predict timber supply impacts of balsam 
fir sawfly (Neodiprion abietis) and eastern hemlock looper (Lambdina fiscellaria) 
defoliation scenarios in Newfoundland, Canada (Iqbal et al. 2012). It also includes 
defoliation impact modeling data for jack pine budworm (C. pinus). Likewise, a 
generic insect disturbance approach for LDSMs used budworm as a demonstra-
tion (Sturtevant et al. 2004) and has since been applied to defoliation disturbance 
in China (Chen et al. 2011) and Siberia (Gustafson et al. 2010), and enhanced to 
simulate effects of defoliation on carbon cycling within eastern deciduous forests 
of North America (Foster 2011; Kretchun et al. 2014).

Berryman (1986) proposed that individual forest insect pest systems could 
be classified into discrete categories “eruptive,” “cyclical,” “gradient,” “pulse,” 
and “sustained” according to the dominant pattern of fluctuation in space and time. 
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After five decades of research on a cross-scale system such as spruce budworm it 
is apparent that the system exhibits a broad array of complex dynamics, any facet 
of which may be observed, depending on the spatial and temporal scale of obser-
vation. There is little reason to suspect that other cross-scale systems, being regu-
lated both from above and below and by weather and climate, should behave any 
more simply. For example, the forest tent caterpillar (Malacosoma disstria) system 
has also been approached from two divergent perspectives: the eruptive paradigm 
(Rose and Harmsen 1981) versus that of the harmonic oscillation (Cooke et al. 
2012). Although evidence is mounting that the effect of specialist and general-
ist parasitism is strong enough to induce a predator–prey oscillation in this sys-
tem (Roland and Taylor 1997; Roland 2005), there is also evidence of traveling 
waves of eruption (Cooke et al. 2009), which may be a result of the positive den-
sity dependence of mating success on population density at low population den-
sities (Sjostrom and Roland, unpublished data), as reported for spruce budworm 
(Régnière et al. 2013). Indeed, it is increasingly clear that the forest tent caterpil-
lar also responds strongly to spatial and temporal gradients in both climate condi-
tions (Daniel and Myers 1995) and landscape structure (Roland et al. 1998; Cooke 
and Roland 2000, Wood et al. 2010), suggesting a remarkable parallel with spruce 
budworm. We suggest that the most fruitful modern avenue of research in forest–
insect–climate interactions is in testing inclusive hypotheses that allow for multi-
ple processes acting simultaneously using integrative, multiscale landscape models 
that embrace the possible existence of a range of dynamical behaviors.

Research and modeling of other defoliator systems can likewise inform mod-
eling of spruce budworm. One of the major limiting factors restricting under-
standing of budworm cycling dynamics is its unusually long cycle length that 
exceeds most scientific careers. Other systems that cycle more frequently are 
more amenable to both statistical modeling and model validation, providing valu-
able insights into the processes underlying outbreak dynamics in time and space 
(e.g., larch bud moth (Zeiraphera diniana): Johnson et al. 2006, forest tent cat-
erpillar: Cobbold et al. 2005; Hughes 2012; Robert 2014; European gypsy moth 
(Lymantria dispar): Haynes et al. 2009). Similarly, the detailed study of the inva-
sion by the gypsy moth in North America offers unique insights into processes 
such as Allee effects in time and space, while multiscaled and multi-trophic level 
study of the forest tent caterpillar offers unique insights into scale-specific factors 
affecting host–parasitoid dynamics (Roland and Taylor 1997; Roth et al. 2006). 
Insights from these other systems suggest fruitful areas of research within the 
spruce budworm system.

5.6  Concluding Remarks

The spruce budworm case study is a dramatic illustration of the interplay between 
data and modeling, the broader challenge of simulating insect–forest interactions 
in time and space, and the conflicting management guidance that can emerge from 
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such activities. Indeed, foundational concepts such as cross-scale theory (Holling 
1992), adaptive cycles and ecological resilience (Gunderson and Holling 2002), 
spatial population dynamics (Bjørnstad et al. 1999), and aerobiology (Gage et al. 
1999) can all trace pivotal roots to the collective spruce budworm research pro-
gram. Such broad influence speaks to the power of modeling on the scientific 
enterprise and its interaction with land management and policy. While not empha-
sized here, there is an undeniable human dimension to the artistic and nonscien-
tific aspects of model development that are apparent in the divergent perspectives 
applied to the problem (Table 5.1; Box 5.1; Fig. 5.5). The budworm case study 
illustrates how insights from each perspective can be complimentary, and how 
conflict and debate among these perspectives provided deeper insights that ulti-
mately led to more complete understanding of the system. It also illustrates how 
aspatial perspectives can lead to conflict in data interpretation, and how apprecia-
tion of scale, spatial heterogeneity, and movement can help reconcile seemingly 
disparate schools of thought. Such lessons and insights have clear implications not 
only for budworm as the latest widespread outbreak to hit North America develops 
(i.e., 3.2 million ha of moderate-to-severe defoliation in Quebec in 2013; QMRNF 
2013), but also insect disturbance modeling more generally.
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6.1  Introduction

Over the past decades, as significant advances were made in the availability and 
accessibility of computing power, individual-based models (IBM) have become 
increasingly appealing to ecologists (Grimm 1999). The individual-based mod-
eling approach provides a convenient framework to incorporate detailed knowl-
edge of individuals and of their interactions within populations (Lomnicki 1999). 
Variability among individuals is essential to the success of populations that are 
exposed to changing environments, and because natural selection acts on this vari-
ability, it is an essential component of population performance.

Initially viewed simply as an alternative modeling technique to classical dif-
ferential- or difference-based deterministic models of theoretical ecology, IBMs 
are in fact fundamentally different (De Angelis and Mooij 2005). These models 
have four essential characteristics: (1) an organism’s life cycle can be depicted 
in full detail (e.g., thermal responses, behavior, fecundity); (2) variability among 
individuals of the same life stage, be it caused by genetic or environmental dif-
ferences, is accounted for; (3) resources exploited by the modeled organisms are 
explicitly accounted for; and (4) population sizes are represented by integer num-
bers because they are composed of individuals (Uchmanski and Grimm 1996). An 
IBM focuses on the fates of individuals with explicitly different traits, and on the 
biotic and abiotic circumstances to which each responds. The full complexity of an 
organism’s life cycle can therefore be described and modeled. Such models pro-
vide a helpful framework within which to conceptualize and interconnect natural 
processes, design research, analyze results, and synergistically combine empirical 
studies and modeling (Van Winkle et al. 1993).

Dealing with individuals simplifies the mathematical formulation of rules and 
relationships that dictate their responses to environmental conditions or to each 
other. Individuals can thus differ in many ways, either genetically or because of 
their environmental context, and it is these differences and their consequences that 
determine the behavior and the effects of populations on their environment. The 
object-oriented programming techniques upon which IBMs rest are particularly 
well suited to discuss adaptation of organisms to varying environmental condi-
tions, because of the property of inheritance from parents and to progeny (Warren 
and Topping 2001). As is true of all objects in this programming paradigm, spe-
cific traits of parents can be passed on, intact or modified, to progeny (children). 
In a biological context, this occurs when individuals are “copied” at reproduction. 
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Adaptive characteristics that allowed the survival of parents are thus inherited 
by their progeny, modifying the relative frequencies of various individual traits 
according to their survival and fecundity (fitness) under current environmental 
conditions. Thus, the frequency distributions of various traits can change in simu-
lated populations much as they do in nature.

IBMs are well suited to describing the temperature-dependent processes of 
organisms sensitive to varying environmental conditions, and can help to model 
the responses of populations to a changing climate. Many insect species, including 
those deemed pests due to their significant ecological and economic impact, have 
been influenced by a changing climate (Bale et al. 2002). Prime examples are bark 
beetles in the genus Dendroctonus for which a clear connection between weather 
and population irruptions and subsequent landscape-scale tree mortality has been 
shown (Hansen et al. 2001; Berg et al. 2006; Aukema et al. 2008; Chapman et al. 
2012; Preisler et al. 2012; Hart et al. 2014). Changing climatic conditions are 
also responsible for a range shift in at least one species, Dendroctonus pondero-
sae, the mountain pine beetle (MPB). This irruptive species attacks and kills most 
Pinus species in western North America (Wood 1982). Genetic data suggest that 
MPB migrated north following the postglacial Holocene recolonization of British 
Columbia by several Pinus species (Richardson et al. 2002; Mock et al. 2007; 
Godbout et al. 2008; Samarasekera et al. 2012). Recent warming has increased 
the speed of this MPB migration into new regions in Alberta, British Columbia, 
the Yukon, and Northwest Territories, Canada (Bentz et al. 2010; Safranyik et al. 
2010; Cudmore et al. 2010; de la Giroday et al. 2012), with exposure to at least 
one new host tree species, jack pine (Pinus banksiana) (Cullingham et al. 2011, 
2012). Jack pine extends across the boreal forest of Canada and into the northern 
part of the mid-western United States, and there is concern about the potential for 
MPB to invade eastward across Canada and into central and eastern states (Nealis 
and Cooke 2014). Long-lived high-elevation pines (e.g., P. albicaulis) with life 
history strategies not suited for large-scale disturbance events may also be at risk 
(Logan et al. 2010; Tomback and Achuff 2010). Sustained MPB outbreaks are now 
occurring in high elevation forests where persistent activity was previously con-
strained by cold temperatures (Amman 1973; Logan and Powell 2001; Bentz et al. 
2011a). The capacity of MPB to continue expanding into new thermal habitats, 
however, remains unclear.

Issues surrounding the effects of climate on the distribution and performance 
of species have been investigated by a range of methods, including correlative 
approaches such as climate matching or species distribution modeling (Elith and 
Leathwick 2009) that correlate presence/absence observations with climatic and 
geographic variables and extrapolate the results to novel regimes. Mechanistic 
approaches include more detailed (if less comprehensive) process modeling 
(Sutherst and Bourne 2009; Régnière et al. 2012a). In this chapter, we present a 
prototype mechanistic IBM that describes in detail the fitness (population growth 
rate) responses of MPB to temperature, based on understanding of the insect’s 
developmental and survival responses to temperature, and on the resulting conse-
quences through its interactions with host trees. We realize that many aspects of 
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MPB life history and the role of hosts at tree and stand scales are not accounted 
for within this prototype. However, this “working” model allows us to investigate 
climate change effects on the invasiveness of MPB and provides a useful dem-
onstration for the general application of an IBM approach to insect disturbance 
modeling.

6.2  The Insect

The behavior and ecology of MPB have been extensively studied (see Safranyik 
and Carroll 2006). Most populations across the insect’s range are univoltine (one 
generation per year) although 2–3 years can be required in colder environments 
or years (Amman 1973; Bentz et al. 2014). Bivoltinism (i.e., two generations in 
1 year) appears to currently be limited in MPB due to evolved developmental 
thresholds that serve to reduce cold-induced pupal mortality (Bentz and Powell 
2014). MPBs develop through four larval instars before pupating and becom-
ing adults. Except for a brief adult flight period, the entire lifecycle is spent in 
the phloem, and the host tree is typically killed as part of successful offspring 
production. Adults emerge from trees in the summer months to attack new hosts 
using a coordinated attack mediated by beetle-produced pheromones. A well-
synchronized adult emergence facilitates mass attack, and is important in the 
development of MPB outbreaks because the insects must overcome host defenses 
to successfully colonize healthy trees (Raffa et al. 2008). Temperature directly 
influences MPB development rate (Bentz et al. 1991; Régnière et al. 2012b), and 
stage-specific development thresholds help synchronize adult emergence (Powell 
and Logan 2005). Mortality due to extreme cold also conditions MPB population 
success (Safranyik and Linton 1998). Cues of declining temperature initiate glyc-
erol synthesis and lower supercooling points (SCP), increasing MPB larval cold 
tolerance (Bentz and Mullins 1999). Before this acclimation occurs or when it 
is disrupted by warm periods, significant mortality can occur during cold snaps. 
Reproductively active MPB adults also supercool to some extent (Lester and Irwin 
2012). In areas where MPB population growth has historically been limited by 
cold mortality, warm temperatures associated with climate change have increased 
population success and may allow continued population expansion (Stahl et al. 
2006; Sambaraju et al. 2012).

6.3  The Model

The influence of climate on MPB population success has been the subject of 
considerable modeling attention. Empirically driven, statistical approaches have 
been proposed (Safranyik et al. 1975; Aukema et al. 2008; Preisler et al. 2012; 
Reyes et al. 2012), and mechanistic models have also been developed (Bentz et al. 
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1991; Gilbert et al. 2004; Régnière and Bentz 2007; Powell and Bentz 2009), to 
analyze the role of temperature in MPB population outbreaks using historic and 
future climate data (Logan and Bentz 1999; Logan and Powell 2001; Hicke et al. 
2006; Bentz et al. 2010; Safranyik et al. 2010). While empirical models have 
good descriptive power for the range of conditions for which they were derived, 
they need to be used with caution under unobserved multivariate contexts such 
as encountered when crossing ecoregional boundaries. In contrast, mechanistic 
models are more suitable for predicting MPB population success in novel climate 
regimes. Previous mechanistic model development, however, has used frameworks 
that do not allow inclusion of processes other than the influence of temperature 
on insect development time. For example, Powell and Bentz (2009) were success-
ful in linking phenology, temperature, and population growth rates; although their 
approach is based on cohorts, it is unsuited to linking with other aspects of MPB 
life history such as cold tolerance (Régnière and Bentz 2007). MPB has no obli-
gate diapause stage. The age distribution of overwintering populations, and there-
fore winter survival, are thus largely determined by summer phenology. Modeling 
cold tolerance requires an individual beetle’s history of cold exposure. An IBM 
can potentially succeed where other modeling approaches have failed because it 
allows life history traits relevant to beetle success to be projected onto individu-
als (i.e., age-specific development time, exposure to cold, fecundity), and collabo-
ration among individuals to overwhelm host responses can be incorporated. We 
develop an IBM that integrates the influence of temperature on insect development 
time and cold mortality, and their consequences on the interaction between MPB 
and its host trees.

Our model allows two operating modes: incipient or outbreak. In the outbreak 
mode, attacking brood adults lay eggs in successfully attacked trees, and their 
progeny are allowed to produce successive generations. Only in the first year is 
an input initial attack pattern provided; subsequent timing and intensity of attacks 
are determined by the timing of brood adult emergence. This can lead to over-
lapping generations (e.g., when the semivoltine descendents of year n−1 and 
univoltine descendents of year n overlap to attack trees in year n + 1). As in a 
real-world outbreak, very rapidly so many beetle objects are available that brood 
trees are overwhelmed almost with impunity as only a small proportion of attacks 
are warded off by tree defenses. In incipient mode, new attacks in a single focus 
tree are initiated each year, and the number of successful attacks generated by the 
progeny of this initial attack in the subsequent year or two (depending on voltin-
ism) is recorded. Thus, each initial attack is allowed only a single generation. The 
incipient mode thus describes the process whereby an incipient population subsists 
on limited, ephemeral resources, and is unable to develop to the outbreak phase 
by mass attacking new hosts. This mode predicts the circumstances under which 
incipient populations can become outbreak populations, while the outbreak mode 
describes the effect of temperature on the natural course of an outbreak. In both 
cases, population growth rate (R) is expressed as the ratio of successful attacks in 
successive years or generations.



140 J. Régnière et al.

6.3.1  Objects

This IBM is nonspatial, in the sense that trees and insects do not have specific 
locations in space, and movement is assumed to occur throughout (and only 
within) the modeled forest. The model contains four kinds of objects: a forest, two 
kinds of host trees, and beetles.

The forest is a “container object” that tracks the number and states of tree and 
beetle individuals. The forest has a total size, Fs (km2), with tree density Fd (trees 
km−2) used solely to determine the number of available host trees. There are two 
types of trees: focus and brood, all the same size, differing only in their defen-
sive capability. An area, F0 (km2), of forest containing defenseless focus trees 
receives initial beetle attacks. Brood trees are attacked by adults emerging from 
these focus trees, and from previously attacked brood trees. Brood trees can ward 
off attacks at a constant daily rate of a0 (beetles m−2 of bark per day), and support 
a maximum number of attacks amax (beetles m−2 of bark), reflecting maximum 
colonization density of individual trees. Brood trees whose defense capacity (a0) is 
exceeded are killed, and their numbers Fk accumulate Fk over time t (years). Insect 
objects are contained either in focus or brood trees. In this model, only females are 
modeled. In MPB, sex ratio varies systematically over the course of an outbreak 
(Amman and Cole 1983). While this would be an interesting parameter to explore 
because of possible sex-differential mortality and maternal choice of sex ratios, we 
chose to use a constant 60 % female sex ratio to create female eggs.

Each insect object is distinct in three characteristics, expressed relative to the 
population mean: eight uncorrelated stage-specific development rates, potential 
fecundity, and larval cold tolerance. Individuals develop, reproduce, and survive 
independent of one another, except when the newly emerged adults attack new 
hosts. At that time, the number of adults attacking on a given day determines the 
probability of survival given host tree defenses. Because the number of individual 
beetles becomes very large, especially when the model runs in outbreak mode, a 
“super-individual” approach (Scheffer et al. 1995) is used in which beetle objects 
represent several individuals with the same characteristics (development rates, age, 
potential, and realized fecundity).

6.3.2  Development, Reproduction, Variability

Descriptions of MPB thermal responses in development and oviposition were 
taken from Régnière et al. (2012b). Development and oviposition are simulated 
by a unimodal rate equation with a distinct set of parameters for each life stage 
and for egg laying. At creation, each individual is assigned relative development 
rates in each of the seven life stages and relative fecundity, represented by eight 
random numbers that are drawn from lognormal distributions with means of 1. 
Development in successive life stages and oviposition are summed at each time 
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step (4 h). Individuals change stages when their physiological age (starting at 0 for 
eggs) reaches a new unit (1: instar 1, 2: instar 2, 3: instar 3, 4: instar 4; 5: pupae, 6: 
teneral (unemerged) adult, 7: ovipositing adult) with two exceptions. Teneral adult 
emergence can be delayed without further aging if temperature remains below 
an emergence threshold, Te = 18 ℃ (Safranyik and Carroll 2006). Adults emerg-
ing on any given day collectively attack new trees and become ovipositing adults. 
Ovipositing adults die once they have laid 95 % of their potential fecundity (aver-
age 82 eggs/female), which simulates old age mortality.

6.3.3  Survival

A constant “attrition” rate s, representing all mortality not specifically described, 
is applied at the creation of new eggs. The main cause of dynamic mortality in the 
model is exposure to cold. All eggs, pupae, and teneral adults are assumed to be 
killed as soon as temperature drops below −18 ℃. Larval cold tolerance is mod-
eled following Régnière and Bentz (2007). The probability distribution of cold tol-
erance is a population trait that varies over time in response to temperature. The 
proportion of the larval population in one of three states, each with its SCP distri-
bution, is calculated from the daily series of minimum/maximum temperatures. A 
composite distribution of SCP is compiled each day. Probability of cold mortality 
is based on this distribution and daily minimum temperature. The maximum mor-
tality rate experienced by larvae is applied to each super-individual at the end of 
larval development.

In ovipositing adults, cold tolerance varies seasonally and is modeled in rela-
tion to time of year, independent of temperature. For this purpose we fitted a 
cosine function of calendar date to the observations of Lester and Irwin (2012, 
their Fig. 5a; SCPa = −20.2− 6.09 cos

[

2π
(

t
/

365
)1.365

]

; R2 = 0.946). Adults 

exposed to a temperature ≤SCPa die immediately.

6.3.4  Attack

The beetle population is initialized using a Gaussian distribution of attacks over 
time on the forest’s defenseless focus trees. Mean date (t0) and standard deviation 
(σ0) of the initial attacks are specified as inputs. The number of females per m2 of 
bark in this initial attack is n0 + amax(F0 × Fd − 1), so that when a single focus 
tree (F0 = 1/Fd) is used, the model simulates an incipient outbreak with an initial 
density of n0 females m−2 of bark. Females in the initial attack lay eggs, generat-
ing the brood adults that will attack new host trees at emergence.

When an adult emerges from a tree, it joins the day’s collection of emerging 
adults (ne) that generate that day’s new attack on surviving host trees in the stand. 
All successfully attacked trees are killed. To limit population growth, a proportion 

http://dx.doi.org/10.1007/978-3-319-19809-5_5
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Sl of emerging beetles succeeds at finding live hosts to attack while the remainder 
is lost. This loss is a function of the proportion of the trees in the forest that have 
already been attacked and killed:

where Fk is the number of trees in the forest that have already been attacked, and 
Fs × Fd is the total number of trees in the forest. The exponent α ≥ 1 specifies 
how rapidly resource depletion inhibits host encounter. We use Sl = 40, large 
enough so that the effect of resource exhaustion occurs abruptly as tree mortality 
approaches 100 %. Thus, in the simulations produced here, α is used only to pro-
duce a sudden limit to growth.

Total emerging adults attacking new hosts is na = Slne. Our model assumes that 
beetles are perfect host finders, consistently aggregating on available hosts and 
reaching maximum attack density on those trees before switching. The number of 
trees attacked is determined by:

The daily number of attacking beetles killed by tree defenses is

In an incipient outbreak, where beetles emerge from a single focus tree, the pro-
portion of attacking beetles killed by host defenses can be fairly high, as A can 
easily exceed na on any given day. But once Fa becomes large enough in a devel-
oping outbreak, survival from host defenses Sh is determined solely by the ratio 
a0/amax.

6.4  Calibration/Validation

6.4.1  Seasonality of Adult Emergence

We compared output of our model with field observations to verify that the sea-
sonality it predicted was close to reality. Beetle development time and associated 
phloem temperatures were monitored in the field at a range of latitudes and eleva-
tions (Fig. 6.1; Bentz et al. 2014). Beetle attacks and the subsequent emergence 
of brood adults were monitored on individual host trees every 1–4 days during the 
entire attack period. Hourly phloem temperature records were obtained from the 
north and south aspects of tree boles, just under the outer bark, 1.8 m above ground. 
Hourly mean air temperature was recorded at each site. These measurements were 
made continuously from initiation of attacks to adult emergence 1 or 2 years later.

(6.1)Sl = 1−

(

Fk

Fs × Fd

)α

(6.2)Fa = max

(

1,
na

amax

)

(6.3)A = a0Fa
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Our model requires as input daily minimum and maximum temperatures, and 
these were extracted from the observed hourly temperature records. We calcu-
lated bark temperatures by averaging north- and south-aspect daily minimum and 
maximum observations and developed a phloem microclimate filter to transform 
daily minimum and maximum air temperature (Tn, Tx) into phloem temperature 
(T ′

n, T
′

x). Because phloem temperatures are not usually available, and air tempera-
tures modified with the microclimate filter will be used in model application, we 
present model test results obtained with this input, except when otherwise men-
tioned. For each set of MPB attack and emergence observations (i.e., location 
and year), the attack data were summarized by calculating the mean and standard 
deviation of attack dates, used as model inputs. The model interpolates between 
successive minima and maxima and runs on a 4-hr time step (Allen 1976).

Fig. 6.1  Map of western 
North America illustrating 
sampling locations for 
validation of adult emergence 
phenology (circles, Table 2; 
Bentz et al. 2014) and 
simulation of population 
growth rates between 1950 
and 2012 (squares, sizes 
proportional to elevation)
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The dates when 10, 50, and 90 % emergence were observed in the field were 
compared to model-predicted dates. Because an IBM is inherently stochastic, 
each simulation was replicated 30 times and results averaged. The dates predicted 
by the model, using the published parameters for development rates, variability, 
and fecundity (Régnière et al. 2012b), were well-correlated with observations 
(r = 0.87), but the model predicted events an average of 12.0 days later than 
observed, and the observed–predicted regression line had a slope of 0.76 (sig-
nificantly less than 1; Fig. 6.2a). Based on these results, we made two modifi-
cations to the model. To restrict the duration of the oviposition period, the total 
number of eggs laid was limited to 50 % of individuals’ potential fecundity, set 
to Ē0 = 82 eggs per female (Régnière et al. 2012b). This reduction was obtained 
by trial and error, and may reflect adult mortality not otherwise explicitly consid-
ered in the model. To better represent the observed variability of the adult emer-
gence period, we also reduced the variability of development rates of all immature 
stages by half, again by trial and error. It is quite possible that the methods used 
to determine insect development rates under laboratory conditions (see Régnière 
et al. 2012b) exaggerated their normal variability. These changes increased the 
observed–predicted correlation (r = 0.94), made the bias nonsignificant (aver-
age 1.2 days), and increased the observed–predicted regression slope to 0.8 (still 
significantly less than 1). Given the input initial attack patterns (left column of 
Fig. 6.3) and observed air temperatures modified for bark microclimate, modeled 

Fig. 6.2  Relationship 
between observed and 
simulated dates of 10, 50, and 
90 % cumulative emergence 
of univoltine adults in 8 
site-years in the western 
United States between 2002 
and 2012. a Unmodified 
model; b modified model; 
parameters that describe 
fecundity and development 
time variance were altered. 
Solid lines equality; dotted 
lines regression
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Fig. 6.3  Comparison of observed and simulated mountain pine beetle emergence in seven locations 
and years. The figure is divided in three columns. On the left are the observed (white circle) and 
Gaussian (dotted line) attack patterns (model input) for each plot-year. In the center are the observed 
(black circle all orientations; black triangle south bole; white triangle north bole) and simulated 
(dash line) univoltine adult emergence patterns in the following summer. On the right, in the case 
of sites CA2 and UT1, are semivoltine adult emergence patterns 2 years after the initial attack. The 
dashed line in the right panel for UT1 was generated using north bole temperatures as model input



146 J. Régnière et al.

univoltine adult emergence patterns generally agree well with observations (center 
and right columns in Fig. 6.3), although emergence timing of semivoltine adults 
was less accurate (Fig. 6.3k). The need to reduce developmental variability and 
oviposition period to obtain a better fit with field observations suggests that 
important development and mortality processes may be missing in our model. 
Nevertheless, observed and simulated development times ranged from 400 to 
800 days; a precision of <15 days over such a long simulation period is sufficient 
to predict climate impacts on MPB seasonality and performance.

6.4.2  Fitting to Observed Annual Growth Rates

Estimates of observed MPB outbreak growth rates obtained from aerial detec-
tion surveys conducted by United States Forest Service for the Sawtooth National 
Recreation Area (SNRA), Idaho, were described in Powell and Bentz (2009). 
We collected MPB-infested tree phloem and air temperature data at multiple 
sites between 18 July 1992 and 15 October 2004, using the methods described in 
Sect. 6.4.1, from four sites in the SNRA, forming a continuous thermal record of 
daily minimum and maximum temperatures. Assuming that the density of trees is 
relatively constant, the area growth rate (calculated as the ratio of area affected 
in year n + 1/area affected in year n) approximates the growth rate in number of 
MPB-infested trees.

Additional daily minimum and maximum air temperature data for the period 
lacking phloem temperature observations between 1986 and 2010 were obtained 
from the nearest weather stations in the National Climatic Data Center daily obser-
vations databases, using the distance-weighted averaging and thermal gradient 
approach of BioSIM (Régnière et al. 2014). These records were then transformed 
with a multiple regression relating daily air temperature minima and maxima to 
observed 1992 phloem temperatures:

This provided a means to complete our time series of daily minimum and maxi-
mum phloem temperature to cover the period 1986–2010.

Using this daily minimum and maximum phloem temperature time series as 
input, the model was run in outbreak mode, using a simulated annealing algo-
rithm to estimate the value of the attrition survival parameter (s = 0.43) and ini-
tial infestation size in 1986 (F0 = 0.03 km2) on the basis of minimum sum of 
squared deviations between observed and simulated total forest area killed over 
time. Other parameter values were fixed (Fs = 2800 km2; Fd = 75,000 trees km−2; 
a0 = 5 attacks day−1 m−2; amax = 120 attacks m−2; Te = 18 ℃; N0 = 60 attacks; 
t0 = 200, σ0 = 5 days, and α = 40).

(6.4)
T ′

n = 2.55+ 1.00Tn + 0.298(Tx − Tn)

T ′

x = 1.88+ 1.04Tx + 0.080(Tx − Tn)
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The resulting predicted and observed cumulative forest mortality (km2) were 
highly correlated (r = 0.997; Fig. 6.4a). The annual outbreak area growth rates 
(Fig. 6.4b), however, were not significantly correlated with the simulated annual 
growth rates of successful attacks (r = 0.12, P = 0.67; Fig. 6.4b), although aver-
age observed (1.733 ± 1.014) and simulated (1.757 ± 1.006) growth rates were 
nearly identical (P = 0.95). The model is set up to assume an exact correspond-
ence between the number of successful MPB attacks and tree mortality because 
the density of successful attacks per tree is constant, all trees are equally likely to 
be attacked and killed, and there is no spatial variation in tree density. In nature, 
none of these are constant, and deviations between beetle population performance 
and tree mortality rates may vary accordingly. Growth rates were significantly 
reduced by resource-loss in the last 2 years of the simulated outbreak through Eq. 
(6.1), as the total area killed (Fk) approached total forest size, estimated here at 
Fs = 2800 km2 (black triangle line in Fig. 6.4a). Model results indicate that most 
individuals in the SNRA during the study period spent winter as larvae (Fig. 6.4c). 

Fig. 6.4  Observed (white circle) and simulated (black circle). a Infestation size (also, value of 
survival from resource-loss Sl black triangle); b annual infestation growth rates; c proportion of 
overwintering individuals in larval stages (black circle) or as ovipositing adults (white circle);  
d proportion of adults emerging in the year of attack (black circle) or in the following year (white 
circle); e winter mortality rate of ovipositing adults (black circle) and average realized fecun-
dity (white circle); f winter mortality of immature stages (eggs: white circle; larvae: black circle; 
pupae: white triangle; teneral adults: black triangle). Year is the year of attack. Generation 5 was 
produced in 1990, with univoltine adults emerging in 1991
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Years with a large proportion of individuals spending winter as ovipositing adults 
corresponded to those with a higher proportion of individuals emerging as adults 
in the same summer as they were oviposited (Fig. 6.4d; r = .86). Winter mortality 
among overwintering adults was the main source of variation in realized fecun-
dity (Fig. 6.4e; r = −0.96). Winter mortality of eggs and pupae was very low 
(Fig. 6.4f) because very few individuals were predicted to spend winter in those 
stages. Larval winter mortality averaged only 20 %, but mortality in the teneral 
adult stage was highly variable, with high mortality rates associated with years 
when a high proportion of individuals reached the ovipositing adult stage in the 
summer of attack (r = 0.66), as many individuals were unable to emerge prior to 
winter. Because in these simulations the initial population was already in outbreak 
mode (0.03 km2 × 75,000 trees km−2 = 2250 trees), the number of MPB attack-
ing was well beyond a tree’s defensive capacity, and the proportion of attacks 
warded off by trees is near constant at 4 % (a0/amax = 5/120).

6.5  Model Behavior

6.5.1  Seasonality and Elevation

We ran the model at three elevations near Jasper, Alberta, where MPB is well 
established: one point at Jasper (1062 m), two at the same latitude and longitude 
but at fictional elevations: low (400 m) and high (1500 m). Actual weather obser-
vations for the period 2007–2010 were used as input. The nearest Environment 
Canada weather station was chosen for each simulation point using BioSIM 
(Régnière et al. 2014), compensating for differences in coordinates with regional 
latitude, longitude, and elevation thermal gradients.

We ran the model in incipient mode using (1) 60 females/m2 in the initial 
attack, with t0 = 200 (17 July) and σ0 = 5, (2) attrition survival s = 1, and (3) 
adult emergence threshold Te = 18 ℃. Two different simulations were run: (a) no 
winter mortality and (b) winter mortality in all life stages. The distribution of life 
stages and adult emergence over time resulting from these simulations are illus-
trated in Fig. 6.5.

At the fictional low elevation site, ignoring winter mortality, a very small pro-
portion of adults emerged in October of the initial attack year. The majority of 
brood adults emerged the following summer (i.e., univoltine). Some individuals 
developed to the teneral adult stage prior to winter, and the predicted emergence 
of these individuals was as early as April when temperatures exceeded 18 ℃. 
However, most individuals spent the winter in the larval and pupal stages and 
emerged in July. When cold mortality was applied, overwintering eggs, pupae, and 
teneral adults were killed, along with a portion of overwintering larvae. As a result 
of this mortality, the relative importance of the first summer’s late (October) flight 
was inflated. As none of the eggs laid by those late-summer attackers would have 
survived winter, their contribution to the population would be null. Mortality of 
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pupae and teneral adults also eliminated the brood adults that would have emerged 
in early spring, leaving only the individuals that spent winter in the larval stages to 
contribute to the next summer’s brood adult flight in June and July.

Fig. 6.5  Predicted life stage frequencies and attack timing following a Gaussian initial attack 
centered on July 17 (day 200 ± 5 days). Temperature was estimated for three elevations at the 
latitude and longitude of Jasper, Alberta, Canada (52.88°N, −118.07°E): 1500 m (top row of 4 
panels), 1062 m (actual elevation, center row) and 400 m (bottom row). Left column: simulations 
with no winter mortality. Right column: winter mortality in all life stages
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At the middle elevation (actual elevation of Jasper), all individuals spent win-
ter as larvae, mostly in the 4th instar. Brood adult emergence occurred in July of 
the following summer (univoltine). Mortality due to cold did not change the tim-
ing of adult emergence, although the total number of emerging brood adults was 
reduced. At the highest elevation, the population also overwintered as larvae, and a 
high proportion of individuals emerged in August to October of the following year 
(univoltine). The remaining individuals spent the second winter as teneral adults 
and emerged 2 years after the initial attack (semivoltine). Many of the univoltine 
adults would have overwintered as ovipositing adults. When cold-induced mortal-
ity is added, teneral adults are predicted to die during the second winter, resulting 
in emergence of univoltine beetles only.

These simulations illustrate important consequences of climate on MPB 
dynamics. First, at low elevation locations where summer development is accel-
erated, but with sufficient cold to kill the most sensitive life stages, brood adults 
emerging in late summer of the year of initial attack may not reproduce success-
fully due to mortality of eggs during winter. Ovipositing adults are also likely to 
be killed overwinter. Thus, warmer climates can lead to lower overall population 
fitness as a result of poor synchrony between winter cold and the most cold-hardy 
life stages (larvae). However, in still warmer conditions where winters are not 
cold, this effect would disappear. In colder climates with slower summer devel-
opment and a mix of univoltine and semivoltine beetles, winter mortality in the 
teneral and ovipositing adult stages can also result in high mortality during the 
second winter. These results confirm previous research suggesting that climates 
leading to well-synchronized, strictly univoltine phenology are the most adap-
tive for the insect (Amman 1973; Safranyik 1978). As winter temperatures warm, 
however, complete univoltinism does not appear to be mandatory for population 
growth as long as adult emergence remains synchronous (Bentz et al. 2014).

6.5.2  Latitudinal Gradient

We ran the model over the period 1951–2010 at 15 locations along a latitudinal 
gradient within the geographical range of lodgepole pine (P. contorta), between 
Strawberry Point, Utah, USA (37.45°N, −112.34°E, 2695 m) and Fort Nelson, 
British Columbia (58.78°N, −122.73¨E, 395 m). There was a strong negative 
correlation between elevation and latitude among the sites (r = −0.90; squares, 
Fig. 6.1). The model was run in incipient as well as outbreak mode. Weather 
inputs were provided by BioSIM, from the two daily NCDC weather stations near-
est to each simulation point, compensating for differences in latitude, longitude, 
and elevation with local thermal gradients derived from several nearest normals-
generating weather stations. We provided the same Gaussian initial attack pattern 
(mean: 17 July, standard deviation: 5 days) as input. Each simulation was rep-
licated 30 times and results were averaged to reduce stochastic effects. General 
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Linear Models were used to relate several key output variables (single-generation 
population growth rates R, winter survival Sw, voltinism, fecundity, and attacking 
adult survival from host defenses Sh) to year, latitude L, and elevation E. For this 
analysis, latitude and elevation were combined into a single variable that we called 
“effective latitude” (LE = L + kE) where k transforms elevation into degrees lati-
tude. The value of k was chosen to maximize the correlation between average 
growth rate and LE (1°N per 165 m elevation). This value is similar to that esti-
mated by Bentz et al. (2014) using degree hours >15 ℃ required for completion of 
a generation.

Simulated growth rates increased significantly between the 1950–1959 and 
2010–2012 time periods. In both incipient and outbreak modes, effective lati-
tude negatively affected growth rates, and the increase of population growth rates 
through time was most pronounced at the highest effective latitudes (time × lati-
tude interactions highly significant in both modes; Fig. 6.6a, f). Winter survival 
also increased significantly over time and decreased significantly with effective 
latitude (Fig. 6.6b, g). However, no significant interaction was apparent between 
effective latitude and time period in either incipient or outbreak mode in the effect 
on winter survival. These effects were identical in incipient and outbreak modes. 
Year, effective latitude, and their interaction also significantly affected voltinism in 
the two simulation modes (Fig. 6.6c, h). These results suggest that MPB popula-
tions across the 15 sites in this latitudinal/elevational gradient have been mostly 
univoltine, and increasingly so over the period 1950–2012. This strong tendency 
to univoltinism reflects the choice of our simulation locations, all situated within 
the main distribution of lodgepole pine. The exceptions to univoltinism occurred 
mostly between 1950 and 1980, with 30 % of adults emerging in less than a year 
in Cassia, Idaho, USA (42.1°N, −114.1°E, 1965 m), and 20 % as semivoltine in 
Vernon, British Columbia (50.35°N, −119.11°E, 1452 m). Realized fecundity did 
not change significantly over the simulation period, but dropped significantly with 
effective latitude (Fig. 6.6d, i).

Fecundity was more variable in incipient mode, probably as a result of the 
smaller number of adults surviving host defenses (Fig. 6.6e, j). In incipient mode, 
this factor increased significantly over time and declined with effective latitude, 
with a significant interaction. However, as expected, outbreak-mode survival from 
host defenses was very high and essentially constant. To summarize these results, 
a regression model using log Sw (winter survival), and log Sh (attacking adult sur-
vival from host defenses) as predictors explained 98.6 % of the variation in log R 
between years, locations, and simulation modes.

The modeled changes in MPB survival and recruitment rates over time and space 
described here were caused by corresponding changes in observed thermal regimes, 
in particular extreme minimum and mean annual temperatures (Fig. 6.6k, l), and to 
a lesser extent mean maximum temperatures (Fig. 6.6m). There was also a slight 
increase in precipitation over the years (Fig. 6.6n), but because of a gradual increase 
in mean annual temperature this did not translate to a change of aridity, calculated 
as the annual sum of monthly differences between potential evapotranspiration and 
precipitation (Fig. 6.6o).
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6.6  Climate Change

Simulated past and future (1961–2100) daily minimum and maximum tempera-
tures on a 201 × 193 grid over North America were obtained from the Canadian 
Regional Climate Model (CRCM) version 4.2.0 runs ADJ and ADL (Music and 
Caya 2007). These runs are based on the Intergovernmental Panel on Climate 
Change (IPCC) A2 emissions scenario  (IPCC 2007), which has been realistic thus 
far given actual emissions estimates (Raupach et al. 2007). The IPCC A2 is inter-
mediate between Representative Concentration Pathway RCP6 and RPC8.5 sce-
narios (IPCC 2013).

Fig. 6.6  Decadal average model inputs and outputs in incipient and outbreak modes for an array 
of 15 locations in western North America over the period 1951–2012. Sites grouped into five 
effective latitude classes of 2° (number of sites per class in parentheses). Left column incipient 
mode. Center column outbreak mode. Right column weather statistics. a, f Generation growth 
rate; b, g winter survival (all stages); c, h mean number of years to complete a generation 
(development in 1 year is univoltine); d, i realized fecundity; e, j survival from host defenses; k 
extreme annual minimum, l mean annual and m mean maximum air temperature; n annual pre-
cipitation; and o aridity index
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From these data, 30-year normals were computed for several decades in the 
interval 1961–2050, and the “delta” method (differences between modeled decadal 
normals and the reference 1981–2000) was used to generate unbiased decadal sets 
of 30-year normals into the future. We used as model input 10 years of observed 
daily minimum and maximum temperatures for the decades 1961–1970, 1981–
1990, 2001–2010, and 10 years of daily values generated stochastically from 
climate-changed normals (Régnière and St-Amant 2007) for decades 2021–2030 
(normals 2011–2040) and 2041–2050 (normals 2031–2060).

Two sets of model output maps were prepared, one for western North America, 
and one for the whole continent, north of Mexico. The model was run in incipi-
ent and outbreak modes for 10,000 simulation points located randomly across 
western North America, and 30,000 points across the whole of North America 
north of Mexico, with increased point density in mountainous areas. Elevations 
were obtained from digital elevation models (DEM) at 30 arc-second resolution 
obtained from Shuttle Radar Topography Mission SRTM 30 (http://dds.cr.usgs.
gov/srtm/version2_1/SRTM30/; Accessed 6 January 2015). Because of the sto-
chastic nature of the model and of weather inputs when generated from normals, 
each model run was replicated 10 times, and model output was averaged over rep-
licates and years. From these averaged outputs, maps were generated by universal 
kriging with elevation provided by the input DEM as external drift variable. Log 
population growth rates were used for interpolation. Model output was masked 
using polygons that estimate the twentieth century distributions of pine habitat in 
the United States and Canada (all Pinus species mapped by Little 1971; refer to 
United States Geological Survey 1999).

Predicted MPB population growth rates over the distribution of western pine 
species increased considerably in every decade between 1961–1970 and 2001–
2010, and are predicted to continue increasing under climate change (Fig. 6.7). 
Over the historical period (1961–1970 to 2001–2010), these changes coincided 
with changes in the thermal regime (Fig. 6.6). The maps suggest that numerous 
forested areas, particularly in south-central British Columbia, coastal regions and 
low latitudes and elevations in the United States, have historically had high proba-
bility of MPB outbreak development. Periodic MPB outbreaks have been observed 
in these areas (Preisler et al. 2012). However, factors other than temperature 
that are not accounted for in our model affect MPB population dynamics. These 
include stand density, host tree age and size (Fettig et al. 2007), and moisture con-
ditions that can influence fungal symbionts (Rice et al. 2007), tree defense capac-
ity, and phloem drying. The latter factor is a major cause of mortality among MPB 
immature stages (Cole 1981; Safranyik and Carroll 2006). Along our latitudinal 
gradient, annual precipitation (Fig. 6.6n) and mean temperature combined to gen-
erate a strong aridity gradient, undoubtedly a factor involved in limiting MPB pop-
ulation growth rates in the southern proportion of the insect’s range. Also, MPB 
developmental responses to temperature in the southwest United States differ from 
those in the northern part of the insect’s range (Bentz et al. 2011b) from which our 
model parameters were obtained. Therefore, model predictions are less reliable 
in these areas. Western pine forests at higher elevations in the United States and 

http://dds.cr.usgs.gov/srtm/version2_1/SRTM30/
http://dds.cr.usgs.gov/srtm/version2_1/SRTM30/
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Canada, and at higher latitudes in British Columbia and Alberta historically had a 
low probability of MPB outbreaks. These areas are predicted to become increas-
ingly suitable to MPB with climate change. Many of these areas are currently 
experiencing widespread MPB outbreaks (Safranyik et al. 2010; Meddens et al. 
2012; Fig. 6.7i), and the climate change scenario maps (Fig. 6.7d, h) show that this 
trend can be expected to continue, with increasing risk in the Yukon, Northwest 
Territories, and Alberta.

In 2006, MPB populations were observed infesting jack pine in central Alberta 
(Cullingham et al. 2011). This population expansion was aided by long-distance 
dispersal of beetles from epidemic populations west of the Rocky Mountains (de 
la Giroday et al. 2012), and possibly by high reproductive success in naïve hosts 
(Cudmore et al. 2010). The current distribution of MPB-caused tree mortality in 
Alberta (Fig. 6.7i) corresponds well with predicted population growth rates in out-
break mode, for the period 2001–2010 (Fig. 6.7g). By the middle of this century, 
predicted population growth rates will be moderate to high in most of Alberta, 
although moderate to low in the northern and eastern Canadian Provinces where 
it is actually predicted to decline slightly in the future. These results highlight 

Fig. 6.7  Incipient (a–d) and outbreak (e–h) population growth rates during 1961–1970 (a, e), 
1981–1990 (b, f), 2001–2010 (c, g), and expected in 2021–2030 (d, h). i Map overlaying areas 
affected by mountain pine beetle in western North America, 1997–2011 (red) on the twenti-
eth century distribution of western pines not including jack pine (data compiled by G. Thandi, 
Natural Resources Canada, and provided by: BC Ministry of Forests, Alberta Environment and 
Sustainable Resource Development, USDA Forest Service, Natural Resources Canada). Western 
pine species distribution compiled from U.S. Geological Survey 1999
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the differential effect of temperature on MPB cold tolerance and population syn-
chrony. Increasing minimum temperatures may result in higher overwinter sur-
vival, but univoltinism will be disrupted when temperatures are too warm (Bentz 
et al. 2010; Sambaraju et al. 2012; Bentz and Powell 2014). MPB outbreak poten-
tial and population growth is also influenced by stand conditions, measured using 
indices of stand structure, volume, density and composition. Safranyik et al. 
(2010) found that stands east of Alberta generally have low suitability, and when 
combined with our model results suggest that future population growth across the 
boreal forest will be less than that recently observed in British Columbia.

Incipient model results indicate areas where thermal conditions are highly 
conducive to the transition between incipient and outbreak populations, although 
population growth is artificially halted in the model. By the middle of this cen-
tury, model predictions suggest that thermal conditions in much of Alberta and 
northwestern British Columbia will become more suitable for transition from the 
incipient phase, without the need for large surrounding populations. The Canadian 
boreal forest and some high elevations areas in the western United States, how-
ever, will not necessarily be suitable for this transition (Fig. 6.8b), although if 
population growth is unconstrained due to other factors, populations will be 

Fig. 6.8  Incipient (a, b) and outbreak (c, d) MPB population growth rates during 1981–1990 
and expected in 2041–2050 in North America north of Mexico. Model output is masked with the 
twentieth century distribution of all pine species (U.S. Geological Survey 1999)
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moderately successful (Fig. 6.8d). Pine forests in the eastern United States are also 
predicted to have high population growth potential by the middle of this century. 
Suitability of eastern pines for MPB reproduction is unknown, however, and our 
process models of development and cold tolerance are not parameterized for these 
regions.

6.7  Modeling Conclusions

Our integrated model of phenology and cold tolerance provides a tool to evaluate 
climate influences on the invasiveness of MPB, a native insect limited in distribu-
tion by climate. Simulations illustrate important consequences of climate on MPB 
dynamics. When run across a latitudinal gradient, winter survival and the abil-
ity of adults to overcome host defenses, a consequence of developmental timing, 
explained 98.6 % of the variation in population growth between years, locations, 
and simulation modes. Winter survival and population growth rates increased sig-
nificantly between 1950 and 2012, particularly at the highest effective latitudes. 
When run across an elevation gradient, thermal regimes that resulted in univol-
tinism and larval overwintering were optimal. Warm summers at the lowest ele-
vation accelerated development, resulting in adult emergence the year of attack. 
Oviposition was late enough in the fall, however, that a high proportion of the life 
stages most sensitive to cold were killed during winter, emphasizing the low over-
all population fitness resulting from poor phenological synchrony between win-
ter cold and the most cold-hardy life stages at warmer temperature. Using climate 
projections, simulations suggest that much of the central Canadian boreal for-
est fits this scenario. Future environmental suitability for population growth and 
expansion, as measured by the influence of temperature on MPB physiological 
processes, will lie between the relatively low suitability values predicted by the 
incipient mode simulations (where host tree defenses play a large role) and the 
higher values predicted in outbreak mode (where host defenses are negligible).

This prototype mechanistic model illustrates the importance of accounting for 
both cold mortality and life-stage-specific phenological details, in full interaction. 
This is a benefit of this IBM that an aggregated modeling approach could not have 
provided. We acknowledge gaps in our understanding of these processes, includ-
ing cold tolerance of life stages other than larvae, and constraints on fecundity. 
Moreover, host tree abundance and connectivity that affect the beetle’s host-find-
ing and mass attack abilities, and important indirect effects of climate on host trees 
and MPB community associates, are not currently incorporated in the model.

The MPB has been migrating for the past 8000 years, following a northerly 
expansion of its host tree species. As temperature increased, expansion has been 
extraordinarily rapid in the past few decades, so rapid that no loss of genetic vari-
ability was detected in expanding populations (Samarasekera et al. 2012). Our 
model explains the role of weather in this expansion, and predicts that the pace 
of population growth in Alberta and northern British Columbia will continue to 
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increase. Thermal conditions across the boreal forest into eastern Canada will not 
be as favorable for population growth. Adaptation in thermally dependent MPB 
life history traits to rapid warming could alter this prediction, and should be a high 
priority topic for future research. Moreover, IBMs provide an excellent frame-
work for including adaptive potential. In addition to expansion north and east in 
Canada, MPB could extend its range south into pine forests of Mexico. The MPB 
is currently active in high elevation pine forests of southern Arizona. Genetic dif-
ferences in developmental parameters between northern and southern populations 
(Bentz et al. 2011b; Bracewell et al. 2010), however, limit using the current model 
to predict MPB invasiveness in the south. Additional processes such as phloem 
drying in response to aridity (Cole 1981), and developmental parameters specific 
to southern MPB populations, will allow for a comprehensive tool to predict MPB 
invasiveness across the range of pines.

6.8  IBM as Generalized Modeling Approach for Insect 
Disturbance Modeling

An ongoing argument in ecological literature relates to the generality and utility of 
simple versus complex models. Evans et al. (2013) wrote “Modellers of biological, 
ecological, and environmental systems cannot take for granted the maxim ‘sim-
ple means general means good’. We argue here that viewing simple models as the 
main way to achieve generality may be an obstacle to the progress of ecological 
research. We show how complex models can be both desirable and general, and 
how simple and complex models can be linked together to produce broad-scale 
and predictive understanding of biological systems”. The data requirements of 
complex models also are a topic of controversy in the literature (e.g., Lonergan 
et al. 2014; Evans et al. 2014). We do not intend to answer these issues in detail 
here.

We believe that the choice of approach to model insect disturbance is dictated 
by several criteria: the objectives, the prediction precision and extent of specificity 
sought, the level of detail and specificity available in our understanding of a spe-
cies’ behavior, and the availability of data. While IBMs such as the one developed 
here may seem complex, they are in fact relatively simple because they make ref-
erence to few abstract concepts or theoretical constructs that can be very difficult 
to parameterize. They rely on adequate understanding of just what data are needed 
to capture the essential behavior we need to mimic of nature. As such they are 
data hungry, but only to the extent that the demands placed on their specificity and 
precision are high. In our individual-based modeling of the responses of the spruce 
budworm (Choristoneura fumiferana Clem.; Cooke and Régnière 1996; Régnière 
et al. 2012a), and its congener the western spruce budworm (C. occidentalis), to 
climate (Nealis and Régnière 2014), we used an amount of data very similar to 
that required for the present MPB IBM. As has been the case here, we achieved 
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fairly high precision in predictions, as well as a good level of understanding of 
the fundamental interactions between positive and negative influences of climate 
in their ecology. But perhaps the greatest achievement of these models is that they 
allow us to identify areas where we do not know enough or where the most press-
ing data needs exist. They are also easy to expand to include new processes and 
behaviors, because of their object-oriented nature.

For most pests that have significant economic or ecological impact, basic data 
are available for the elaboration of IBMs. The great advantage of insect IBM is 
that their structure is generalizable. Descriptions of thermal responses (devel-
opment of the various life stages, reproduction), of movement, of interactions 
between individuals in competition for resources, and other key processes are 
common to most species. The details (life history strategies, number of life stages, 
developmental parameters, the most influential factors) vary between species. The 
object-oriented programming paradigm underlying IBMs allows for re-use and 
straightforward modification of model structures.

But the IBM approach to disturbance ecology is far more broadly generaliz-
able. Our model deals with individual insects and trees. In the same manner, a dis-
turbance model can focus on forests as collections of individual stands, each with 
its specific traits (size, composition, age, damage level, treatment history, spatial 
location). In the end, no matter the modeling approach used, the requirements for 
detail and data are directly proportional to the specificity of the questions being 
asked, and the degree of precision required of the answers.

6.9  IBM as a Scaling Strategy for Insect Disturbance 
Modeling

The IBM approach used here provided a simple framework for integration across 
temporal and mechanistic scales. It allowed us to predict MPB population growth 
rates, which depend on extreme cold temperatures (at the hourly/daily scale), 
nonlinear developmental responses to temperature (at the weekly/monthly scale), 
effects of developmental variability (at the seasonal scale) and accumulation 
of population momentum to become a full outbreak (at the multi-yearly scale). 
Description of processes at the scale of individual beetles allowed us to model 
emergent properties at broader scales resulting from superposition of individuals, 
without pre-ordained or coerced aggregative effects.

Our IBM is nonspatial. It operates at the scale of a forest. Individual trees 
within the forest are represented however, and the model could therefore include 
tree-level effects such as individual host demography, stress history, and moisture 
availability. It may be possible to combine the developmental, survival, and repro-
ductive processes included in our model with those describing the kairomonal 
interactions underlying the swarming behavior of adult MPB in another IBM 
developed by Perez and Dragicevik (2011). However, as pointed out by Powell 
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and Bentz (2014), spatially explicit prediction at the tree scale is unrealistic. Data 
demands that would allow for accurate predictions from mechanistic models 
increase exponentially as the scale of prediction decreases. These data demands 
include a complete demography and stress status for all trees across a landscape, 
and microclimate variables that dictate the shape and directions of odor plumes 
from individual host trees. Assuming that pattern prediction at the tree scale is not 
required, the IBM approach provides an efficient way to assess the impact of host 
demography and stress on MPB outbreaks at stand scale.

At a broader scale, the IBM presented here could easily be adapted to include 
dispersal of MPB in a matrix of stands comprising a forest or landscape. The cur-
rent limitation on numbers of successful attacks, Eq. (6.3), would need replac-
ing, because it is the spatially implicit resolution of a spatially explicit process 
(searching for new hosts). The situation is analogous to the relationship between 
an earlier stand-level outbreak model (Powell and Bentz 2009) and a more recent 
spatially explicit outbreak model (Powell and Bentz 2014). Rather than predict a 
successful search probability within the stand using Eq. (6.3), MPB in a spatial 
model must be allowed to disperse from their source stands, whereupon their suc-
cess in exceeding attack thresholds can be assessed.

The question of how to disperse beetles accurately is not straight forward. In 
a simple cellular automaton setting, a constant fraction of beetles can be allowed 
to move between adjacent cells. In fact, some large-scale regression approaches 
(e.g., Aukema et al. 2008) include the impact of nearby cells and could be used 
to parameterize a cellular dispersal model. A more complicated approach would 
be to disperse individual beetles in the IBM according to a dispersal kernel, as 
was parameterized by Heavilin and Powell (2008). Individual dispersal distances 
are generated as samples from the dispersal kernel, which allows for accurate res-
olution of dispersal independent of model structure. This differs from a cellular 
automaton, which inflicts its gridded structure on model results. A more nuanced 
dispersal approach is based on ecological diffusion (Powell and Bentz 2014) and 
includes the effects of available hosts, which serves to slow down beetle move-
ment in some patches, and presence of non-host areas through which beetles dis-
perse much more rapidly. Regardless of dispersal specifics, spatial waves of killed 
trees will progress from patch to patch as local susceptible hosts are exhausted and 
locally produced brood are exported to nearby cells. Exact rates of dispersal will 
depend on the precise details of the dispersal mechanism and density of suscepti-
ble host trees, similar to other epidemiology models (Heavilin et al. 2007).

At still larger scales, IBMs offer an opportunity for resolving unlikely disper-
sal events with potentially large consequences, as in the dispersal episode that led 
to MPB crossing the Rockies from British Columbia to Alberta (de la Giroday 
et al. 2012). In deterministic spatial modeling approaches it is very difficult to 
resolve a low-probability event such as long-distance dispersal via storm cells. 
In a deterministic model of outbreak progression, low-probability events would 
become small magnitude certainties driving unrealistically rapid outbreak propa-
gation. However, in an IBM, low-probability events are resolved as infrequent 
samples of individuals. Low-probability events appear as tails in a distribution in 
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deterministic models, but in an IBM low-probability events are samples of mostly 
zero. When an event that could trigger an outbreak occurs however, individual 
beetles could be dispersed realistically to distant locations, allowing an IBM to 
simulate continental-scale events.

The drawback of IBMs in space is the sheer computational scale of keeping 
track of individuals. IBMs lend themselves to parallel approaches, particularly for 
a system such as MPB where the critical effects of temperature on the popula-
tion are all projected onto individuals independently, and relevant calculations can 
occur in parallel. However, continental landscapes involve millions of hosts that 
produce tens of thousands of beetles. Even with a “super-individual” approach, an 
overwhelming number of objects must be tracked. The continental-scale maps that 
we prepared here do not constitute a true scaling-up of the MPB outbreak process, 
as model runs were completely independent of one another from location to loca-
tion. At least for the near future, explicit spatial modeling of MPB outbreaks with 
IBMs is likely to be restricted to forest scales.
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7.1  Introduction

The southern pine beetle (Dendroctonus frontalis Zimmermann; herein referred to 
as SPB) is the most destructive pest of pine forests in the southern United States 
(U.S.). To reproduce, adult SPBs must find, attack, and kill a suitable host tree 
(i.e., pine species; Pinus spp.). Across most of the beetle’s range (Fig. 7.1), it 
kills trees grown for commercial timber, recreation, or other ecosystem services, 
placing SPB in direct conflict with those who manage the forests. The dam-
age it causes occurs in large, unpredictable pulses in space and time. Most years, 
populations occur at low densities and are almost undetectable within a forest. 
Periodically, populations undergo rapid growth, leading to regional outbreaks. 
During outbreaks, spatially discrete aggregations of dead and infested trees occur 
across a broader forest landscape of healthy trees (Fig. 7.2). Regional outbreaks 
may last for several years before population densities return to endemic levels.

In the U.S., SPB damage is estimated to cost timber producers approximately 
$43 million per year (Pye et al. 2011). But SPB’s unpredictability creates an added 
dimension to its pestilence. First, the periodic nature of outbreaks and the speed 
with which they develop, make it difficult to plan and mobilize resources for man-
agement. Second, the southeastern U.S. forest is managed by a mix of private 

Fig. 7.1  The distribution of southern pine beetle in North and Central America. The large con-
tiguous region in the southeastern United States marks the approximate boundary of what we 
refer to in this chapter as the southern forest (from Clarke and Nowak 2009)
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landowners, commercial foresters, and state and federal entities. The occurrence 
of damage into spatially discrete and largely unpredictable infestations leads 
to equally unpredictable impacts that are unevenly distributed amongst forest 
stakeholders.

Fig. 7.2  Examples of tree 
mortality caused by southern 
pine beetle. Top A large 
active infestation. Middle A 
typical expanding infestation 
showing trees with red 
(dead) and yellowing crowns 
(infested). Bottom Spatially 
discrete dormant infestations. 
Photographs reproduced 
with permission from Ron 
Billings, Texas Forest Service
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This chapter deals with SPB populations, and their impact on forests and for-
est managers. The central thesis is that modeling is essential to understand SPB, 
and consequently, to effectively manage its impacts. First, we outline the ecol-
ogy of SPB and the forest system it inhabits. Our intent is to illustrate the scale of 
the problem, and the importance of thinking about SPB as a complex system that 
involves three interacting components: SPB populations, host pines, and humans 
that manage the forest. We build on this viewpoint by introducing our concept of 
an ecological disturbance, and suggest how this provides a useful way of looking 
at the SPB problem. Finally, we discuss why modeling is important for SPB, and 
how it can be used to organize and communicate ideas and data to help solve the 
SPB problem. We take the view that modeling should be a creative, iterative pro-
cess where a variety of approaches are used to add value to current SPB data and 
knowledge.

7.2  Biology of the Southern Pine Beetle  
and Southern Forests

7.2.1  Southern Pine Beetle Population Ecology

The SPB is a small insect, approximately 3 mm in length that infests pine trees. To 
reproduce and complete a generation, adult beetles kill their host tree. The cycle 
of infestation begins with one or more pioneer adult beetles landing on the bole 
of a suitable host. Beetles usually select trees older than 10 years, with diameters 
greater than 15 cm, although the suitability of hosts (host selection) varies consid-
erably depending on the abundance of SPB. Adult beetles attack potential hosts 
by chewing through the outer bark of the tree. The primary defense mechanism of 
host pines is to exude resin that engulfs or entraps (pitches out) beetles, restrict-
ing further attacks and often killing them. To increase the probability of a suc-
cessful attack, beetles release pheromones that attract conspecifics to the potential 
host. If the tree becomes sufficiently weakened by attacks, adults bore into the 
phloem, and construct galleries (ca 10–20 cm long) into which eggs are deposited. 
Depending on the number of attacking beetles, gallery construction may extend 
from a height of 1 m above the ground to the live crown. Many of SPB’s key life 
history rates such as egg production and development are driven by tempera-
ture and other site specific factors (e.g., population density, host susceptibility). 
Under favorable environmental conditions, females typically excavate galleries 
for 7–14 days and deposit approximately 1–3 eggs per day (Wagner et al. 1981), 
before reemerging to initiate attacks on new hosts. Eggs develop within the galler-
ies through 4 larval instars that feed on phloem, and a pupal stage. After approxi-
mately 30–90 days, second generation adults emerge from the natal tree to repeat 
the cycle.



1697 Southern Pine Beetle Herbivory in the Southern United States …

The main factor that makes SPB populations important to humans is that tree 
mortality damage is concentrated within outbreaks. Outbreaks are time periods 
and spatial areas delimited by a phase of rapid population growth and subsequent 
population decline. In turn, outbreaks comprise one or many infestations—spa-
tially discrete areas of the forest that comprise trees that are currently infested, or 
have been infested by SPB (examples of which are shown in Fig. 7.2). The change 
in population size that is associated with outbreaks occurs over large forested 
areas or regions, typically between two and 100 counties (across most of its range 
a county area is approximately 2500 km2). These elevated (epidemic or outbreak) 
populations may persist for 1–5 years before returning to endemic population 
levels. Figure 7.3 illustrates contrasting spatial patterns of SPB outbreaks across 
the United States for two different years (Birt 2011b). Figure 7.4 illustrates the 
frequency of outbreaks across the southern U.S. Since records began (ca 1960), 
at least one outbreak has occurred every year in the U.S. An outbreak is defined 
by the USDA Forest Service as greater than 1 infestation per 1000 ha of host per 
year; and an infestation by a group of greater than 10 dead or infested trees. A key 
characteristic of both outbreaks and infestations is that they occur unpredictably in 
space and time.

Fig. 7.3  An example of two contrasting annual patterns of southern pine beetle outbreaks across 
the southeastern United States. Counties considered to be in outbreak (>1 infestation per 1000 ha 
of host tree species) are shown in red
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Within active infestations (Fig. 7.2), trees can be categorized as being: dead 
(no longer colonized), colonized (or infested), in the process of colonization, or 
under attack. Large infestations can contain many hundreds of dead trees, and 
often comprise one or more discrete aggregations of colonized trees—called an 
active head. At the periphery of a head, emerging and reemerging beetles initiate 
pheromone coordinated attacks on healthy hosts. These “mass attacks” increase 
the probability of successful colonization. In younger infestations, the availability 
of “attacking” adults may occur in pulses because the emergence of each genera-
tion of adults is synchronized by the timing of colonization and the development 
rates of the insect. As an infestation matures reemergence behavior and overlap-
ping generations (caused by differences in the development times of egg cohorts), 
leads to a steady stream of attacking adults, and therefore increased tree mortal-
ity. Under these conditions, tree mortality, SPB population growth, and the growth 
rates of infestations can become very high.

Outbreaks and infestations present highly visible evidence of SPB populations. 
However, most of the time, SPB is almost undetectable in a forest landscape. As 
Fig. 7.4 illustrates, although some counties have experienced outbreaks 25 times 
in 40 years, this frequency is somewhat misleading because outbreaks tend to 
persist in a region for multiple years. In reality, outbreaks are interspersed with 
relatively long periods during which SPB populations are either present at low 
densities (herein endemic population phase), or not at all. For example, east Texas, 
historically an area of high concentration of SPB activity, has not experienced an 
outbreak for 16 years. During endemic population phases, mass attacking of trees 

Fig. 7.4  Map of southern pine beetle (SPB) outbreaks, by county, between 1960 and 2000. The 
map effectively illustrates the frequency of outbreaks but does not provide information for other 
important aspects of SPB disturbance, most notably the number of infestations per outbreak and 
characterizations of the size of each outbreak
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is probably prevented by low densities of adult beetles. Instead, SPB probably 
search for and colonize highly susceptible trees that have been weakened by other 
biotic or biotic processes such as lightning strikes, or other bark beetles (Coulson 
et al. 1986).

A central challenge for SPB research is to understand how the ecological pro-
cesses that drive colonization of an individual tree can also lead to the complex 
patterns of outbreak and endemic populations in space and time. To understand 
the entire SPB population cycle parsimoniously, the same biological and ecologi-
cal processes that explain outbreak population dynamics must also be capable of 
explaining low density endemic population dynamics. Additionally, these pro-
cesses, driven by key environmental variables, must also explain the differences 
in SPB dynamics across the wide range of environmental conditions it inhabits. 
In other words, variations in population dynamics during outbreak and endemic 
phases, and across its broad geographic range, must be explainable by a fixed and 
parsimonious set of life history constraints and ecological processes. Despite a 
large body of research into the fine-scale ecology of SPB (see Hain et al. 2011; 
Stephen 2011; Sullivan 2011; Ayres et al. 2011; Birt 2011a, b for reviews), the 
ecological or environmental processes that drive shifts in populations from 
endemic to epidemic and the spatio-temporal pattern of infestations are not fully 
understood.

7.2.2  Impacts of Southern Pine Beetle Damage

7.2.2.1  Socioeconomic Impacts

Although SPB is an interesting ecological problem in its own right, research is 
largely driven by the impact of its damage on humans. These impacts are most 
often described in terms of economic loss to forest managers, often reported as 
reduction in timber value, and costs associated with remediating (clearing and 
replanting) damaged areas. When outbreaks occur they cause large-scale tree mor-
tality within a region. Landowners scramble to harvest dead and infested trees, or 
even to harvest noninfested trees in an attempt to offset the risk of future damage. 
Regionally, these activities cause an excess of harvested trees that local sawmills 
are unable to process, and which are prohibitively expensive to transport to other 
areas. Although SPB outbreaks do cause a considerable net loss to regional econo-
mies, the real economic impacts of an SPB outbreak are actually more complex, 
and involve the redistribution of monetary value from individual landowners (los-
ers) to timber processing operations (winners) (Pye et al. 2011).

The regional cost of SPB damage is just one way of measuring its impacts. At 
a finer scale, SPB affects organizations and individuals. In the southern U.S., for-
est lands are managed by a variety of stakeholders including independent private 
foresters, large-scale commercial timber companies, and federal or state agencies 
(e.g., USDA Forest Service). For individuals and organizations, the unpredictability 
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of outbreaks is possibly the biggest impediment for efficient management. This 
unpredictability leads to difficulty allocating and maintaining resources between 
outbreaks. One of the key resources for dealing with outbreaks is the experience, 
knowledge, and skills of forestry workers involved in SPB decision-making activi-
ties (identifying, documenting, and remediating), including trained forestry tech-
nicians and the landowners themselves. Although certain characteristics of forest 
stands predispose them to infestation, the ability to predict whether a particular 
stand will become infested is relatively low (Birt 2011c). Proactive management of 
trees, such as prescribed thinning, is currently seen as the best way to prevent SPB 
infestations, but involves cost to the landowner. And SPB’s unpredictability means 
that, potentially, an individual forest manager could still incur an infestation even if 
they follow all “best practice” guidelines for stand management.

When infestations do occur on a landowner’s property, questions arise as to 
how to manage them to prevent further damage. Clearly, the growth of an infesta-
tion is driven by the dynamics of the beetle population and currently we do not 
understand enough about SPB population dynamics to be able to accurately pre-
dict how much damage an infestation will ultimately cause. Even if we did, uncer-
tainties in the future weather patterns that drive much of SPB’s ecology would 
naturally affect the confidence placed in any prediction. Affected landowners 
often face an agonizing wait to find out how much damage will occur, and how 
much this damage will ultimately cost them. In most cases, pesticides are not a 
viable treatment option because of environmental risk, expense, and poor efficacy. 
Instead, recommended treatments most often involve cutting trees at and around 
the active head of an infestation (buffer strips). Cut trees may then be left in situ, 
removed, or burned. In all cases, management is expensive, offers no guarantee of 
efficacy, and is usually required during times when forest management resources 
are under severe strain.

7.2.2.2  Positive Impacts

Several authors have investigated the role of SPB in structuring forest landscapes 
and maintaining ecosystem function such as forest productivity, biodiversity, and 
hydrological function. Tchakerian and Coulson (2011) provide a comprehensive 
review of this research. Damage caused by SPB can facilitate primary production 
by releasing resources (sunlight and nutrients) from “mature stands” dominated 
by older, less productive trees. Under natural (non-managed) conditions, these 
releases are relatively slow and begin a few months after infestation with leaf fall; 
followed by destruction of woody debris from the crown; breakdown and modifi-
cation of standing dead wood; and culminating in fallen, rotting trunks on the for-
est floor. Following SPB damage, gaps in the forest canopy also lead to a change 
in plant species composition towards herb and shrub species, and favor the growth 
of juvenile pine and hardwood species. Leuschner and Maine (1980) estimated an 
increase in herbage production beneath loblolly pine (Pinus taeda L.) stands fol-
lowing tree mortality caused by SPB. One consequence of this restructuring is that 
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damaged areas may provide increased resources for wildlife. Maine et al. (1980) 
estimated increased food availability following SPB damage and suggested a posi-
tive effect for several other species (e.g., quail, woodpeckers, turkey, deer, and 
small mammals).

Historically, the southern pine region comprised three fairly distinct forest sys-
tems: the Coastal Plain; the southern Appalachian Mountains; and the Piedmont. 
On the flat, poorly drained Coastal Plain, loblolly pines and hardwoods were the 
dominant species. In mountainous regions, changes in elevation drive a heteroge-
neous and species rich pattern of vegetation cover, with relatively small patches 
of white pines (Pinus strobus L.) interspersed among mixed hardwood and hard-
wood stands. But within the Piedmont region, longleaf pine (Pinus palustris Mill.) 
was the dominant forest type (Schowalter 2012). Longleaf pine is more resistant 
to SPB damage (Schowalter et al. 1981a) and once occupied an estimated 38 of 
142 million hectares of the total forest area of the southeastern U.S. (Croker 1968; 
Frost 2006; Hanson 2010). It is thought that fire and SPB were responsible for 
the successional dynamics of these longleaf pine forests, leading to open, mono-
specific forests with an understory of grasses and herbaceous vegetation that sup-
ported considerable game (Franklin 1997). In the late nineteenth century, longleaf 
pine forests were heavily exploited for timber and naval stores (tar, turpentine, 
rosin). As stocks of red pine (Pinus resinosa Ait.) and white pine in the northeast-
ern U.S. declined, the south also became the U.S.’s principal supplier of timber 
(especially the products from the longleaf pine forest), with production reaching a 
peak in 1909. Although the precise impact of SPB on the successional dynamics of 
pre-settlement forests are unknown, SPB may once have been an integral compo-
nent of productive, pre-settlement forest systems.

7.2.3  The Current Southern Forest

Although the SPB is native to the southeastern U.S., the southern forest has 
changed considerably over the past 100 years. The exploitation of pine forests in 
the early twentieth century has led to considerable changes in the SPB’s environ-
ment. Following the first wave of human exploitation, the area of the southern for-
est has declined to 60 % of its original area, and has also become fragmented. This 
fragmentation has been driven by conversion of forest to agriculture and urban 
land uses. Additionally, much of the forest has been managed to maximize tim-
ber production, often by planting genetically selected loblolly pine and slash pine 
(Pinus elliottii Engelm.) in large, even aged stands.

Another way of looking at the current state of the forest is by who owns it, 
and how they manage it. Ownership of the southern forest is split into three broad 
groups: private individuals (56 % by area), commercial timber companies (30 %), 
and public forest (14 %) (Zhang et al. 2012). The objectives of forest management 
in each ownership category (and the effects of this management on forest struc-
ture) may be very different. While the industrial forestry sector and many private 
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commercial landowners are necessarily driven by economic factors, the USDA 
Forest Service’s current management objective emphasizes the diverse values of 
forest landscapes to communities and individuals.

Generally, public land holdings occur in fairly large contiguous areas that can 
be managed according to well-defined and fairly consistent objectives. However, 
forest tracts owned by the industrial forestry sector and private individuals are 
currently undergoing considerable change. Historically, most commercial land-
holdings were owned and managed by large industrial timber companies. These 
were companies that owned and managed both the land (forest), and the pro-
cessing mills. The rationale was that, by owning both, the company had control 
over both the supply and condition of its raw materials (i.e., the forest). More 
recently, this type of commercial ownership has been replaced by entities called 
Real Estate Investment Trusts (REITS) and Timberland Investment Management 
Organizations (TIMOS). Between 1980 and 2007, REITS and TIMOS have taken 
over two thirds of the forest area once owned by industrial timber companies 
(Coulson and Meeker 2011). Although TIMOs and REITs employ professional 
foresters, uncertainty surrounds how different management objectives of these 
organizations (driven by changes in their financial objectives) may affect the com-
position and structure of the forest over the long term.

By area, private individuals (i.e., families) own and manage most of the south-
ern forest. This group contains the most diverse range of management plans span-
ning economic timber production, hunting, aesthetics, or even no management. In 
the current southern forest, the average size of a holding is approximately 12 ha. 
However, 59 % of family owners have small areas of forest, ranging in size from 
<1 to 4 ha. This results in a fragmented forest landscape that has and continues to 
be driven by estate disposal and urbanization (Butler and Wear 2012). For small 
private owners, management plans are likely to be driven by a broad range of fac-
tors that include resource constraints; whether a tract of land remains large enough 
for commercial harvest; and education or forestry knowledge, including whether 
an individual is suitably informed of “best” management practices.

7.2.3.1  Reciprocal Interactions Between Southern Pine Beetles  
and Humans

Most researchers agree that SPB damage is to some extent driven by the com-
position and structure of the forest. The scientific basis for these beliefs come 
largely from stand risk modeling (or other correlative models), which has repeat-
edly shown that certain factors (e.g., high basal area, drought, damage) predispose 
stands to infestations. Many foresters proactively manage stands in an attempt to 
prevent SPB damage, for example, through selective thinning, uneven aged silvi-
culture, or planting more resistant species (e.g., longleaf pine). The importance of 
collective forest stewardship is widely recognized by state and local forestry agen-
cies, which often provide subsidies to offset some of the expense of this manage-
ment. Even at a federal level, the Healthy Forests Restoration Act (2003) provides 
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legislation that attempts to reduce large-scale disturbance events (including SPB) 
through proactive forest management.

The SPB has the potential to change the structure and composition of the forest 
both directly through tree mortality; and indirectly when landowners are forced to 
modify management plans following SPB damage on their own land or within the 
surrounding forest landscape. If the science behind forest management incentives 
is correct, management before and after SPB damage should reduce the impacts of 
SPB, and consequently improve the net productivity of forests. However, a multi-
tude of factors drive changes in the way forests are managed. These include other 
disturbances (e.g., fire, drought, hurricanes), the demand for timber products, and 
changes in the “values” landowners attach to their forest.

The relationship between SPB damage, forest management, and forest dynam-
ics suggest that the forest landscape might be best conceptualized as a coupled 
socio-economic and ecological system. Intuitively, patterns of SPB damage are 
driven by the current structure and composition of the forest, which in turn is a 
consequence of the collective decision-making of forest managers. It is also prob-
able that SPB damage has a reciprocal effect on how individuals and organiza-
tions manage the forest in the future. For example, one could imagine that changes 
in management plans could be influenced by factors such as an individual’s past 
exposure to damage, whether the forest is a primary income source, how long they 
have been involved in forestry (experience), the values they attach to the forest 
(why they own forest), and their willingness to adopt experiential knowledge ver-
sus scientific knowledge to solve problems.

Modeling the southern forest as a coupled socioeconomic–ecological system 
has the potential to address a broad range of questions about its sustainability and 
future productivity. For example, it is possible that both the short- and long-term 
impacts of SPB disturbance “naturally” drive forest management towards reduc-
tions in future damage (i.e., ecosystem resilience), thereby maintaining socio-
economic productivity. Alternatively, short- and long-term impacts of SPB may 
drive changes in forest dynamics that reduce the productivity and stability of this 
system.

7.3  What Is an Ecological Disturbance?

Despite its widespread use in ecology, no single and unambiguous definition 
exists for ecological disturbance (Coulson and Tchakerian 2010) and terms such 
as perturbation and stress have often been used synonymously, inconsistently, and 
ambiguously to describe ecological damage (Rykiel 1985). Furthermore, ecolo-
gists have classified different kinds of disturbances, for example, the terms “press” 
and “pulse” are often used to describe changes in the ecological environment that 
are either long term and low magnitude (presses), or short-term and high magni-
tude (pulses) (e.g., Glasby and Underwood 1996).
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Any general definition of disturbance should help ecologists understand eco-
logical systems. Intuitively, these systems are dynamic and undergo constant 
change in both their abiotic and biotic components. Changes in any measured 
entity within the ecosystem can be characterized in several ways, for example, by 
magnitude, frequency, or predictability. Given that change is a fundamental com-
ponent of all ecosystems, the central problem of defining disturbance lies in why 
certain measurable changes in an ecosystem should be classified as a disturbance, 
and why others should not.

The concept of ecological disturbance is intricately tied to the way ecologists 
view the dynamics of natural and modified ecosystems (Wu and Loucks 1995). 
The adaptive cycle (Fig. 7.5; Gunderson and Holling 2001) illustrates a contempo-
rary view of ecological stability and succession in a spatially defined ecosystem. 
In the adaptive cycle, an exploitation phase is characterized by changing (succes-
sional) communities of r-strategy organisms exhibiting high growth and repro-
duction rates; the conservation phase (K) represents a relatively stable, organized 
ecological state dominated by K-strategy organisms. The K and r phases of the 
adaptive cycle are linked by release (Ω) and reorganization phases (α). These are 
characterized by episodic events of sufficient energy to “release” the matter stored 
(conserved) in the K phase (e.g., wind, floods, drought, fire, herbivory), followed 

Fig. 7.5  The adaptive cycle of ecosystem succession. The cycle comprises four phases of suc-
cession: growth or exploitation (r); conservation (K); collapse or release (Ω); and reorganization 
(α). The arrows indicate the speed of flow in the cycle: short and closely spaced arrows indicate 
slow and gradual changes and long arrows represent a rapidly changing situation. In our defini-
tion of disturbance we suggest that, intuitively, disturbances involve forces that affect the release 
phase (pulses) and r phase (presses) of the cycle and reduce the connectedness or order (x-axis) 
of the system
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by a more gradual release and reorganization of these materials. In some cases, 
release and reorganization may lead to considerable changes in the trajectory of 
ecological succession, and to a different K-state. This conceptual model of eco-
system dynamics illustrates two types of ecological change: increases in system 
order (connectivity in Fig. 7.5) that occur during the exploitation and conserva-
tion phases and decreases in order that occur during the release and reorganization 
phases. We propose that, scientifically and intuitively, disturbance usually involves 
processes that decrease the order of a system.

The adaptive cycle provides a conceptual model of ecosystem change, impor-
tant for addressing fundamental societal issues such as the sustainability, resil-
ience, and productivity of artificial and natural ecosystems. However, as Figs. 7.6 
and 7.7 illustrate, the interpretation of disturbance within the adaptive cycle 
depends a great deal on how a focal ecosystem is defined spatially, temporally, 
and by the ecological entities of interest. For convenience, we will call this a 
bounded system. Defining a system in this way simplifies the problem of under-
standing its dynamics because it allows processes that occur within the system 
(endogenous) to be studied, described, and understood in detail. The trade-off is 
that processes and interactions external to the focal system (exogenous) must be 
represented implicitly, and with less detail. Examples of processes that are endog-
enous to a bounded system include the vital rates and competitive interactions of 
focal organisms. Conversely, weather is often viewed as an exogenous process in 
many bounded systems because, although it can be affected by the state of a sys-
tem, these processes are complex, and usually occur at broader scales than can be 
represented in useful conceptual and mathematical models.

A number of authors have attempted to define disturbance. For example, Rykiel 
(1985) defines disturbance as a physical force, agent, or process, either abiotic or 

Fig. 7.6  Illustration of the relationship between spatial scale and disturbance magnitude.  
The left panel shows two ecosystems subject to several disturbance events (circles labeled D1–
D5). The right panel shows the temporal pattern and magnitude of these disturbances relative 
to Ecosystem 1 (solid line) and Ecosystem 2 (dashed line). Event D4 represents a much larger 
proportional disturbance to Ecosystem 2 relative to Ecosystem 1, highlighting the difficulty of 
characterizing a disturbance by the magnitude of its effect alone
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biotic, causing a perturbation (an effect or change in system state) in an ecolog-
ical component or system, relative to a specific reference state and system, and 
defined by specific characteristics. A simpler, more practical definition is provided 
by Coulson and Tchakerian (2010), who define disturbance as an initiating cause 
(physical force, process, or event) that produces an effect (consequence) that is 
greater than average, normal, or expected. In this chapter, we view a disturbance 
as an event that originates outside of a bounded system that is delimited by time, 
space, and explicit ecological processes and which causes a change in the dynam-
ics of the focal system. This concept of disturbance (as an external process) is 

Fig. 7.7  Illustration of how a disturbance may be redefined depending on the spatial and tempo-
ral scale and the entities and processes of interest in a bounded system. The top panel illustrates 
a case where the bounded system is defined so that southern pine beetle (SPB) is an exogenous 
disturbance (the initiation of the disturbance event is not driven by processes within the bounded 
system). In the middle panel, understanding the relationships between forest dynamics and SPB 
populations may shift the initiating cause of a disturbance to a different exogenous event, for 
example, weather. The bottom panel illustrates reciprocal relationships between forest dynamics, 
humans, and SPB populations that could further redefine the nature of disturbance in relation to 
human activities such as urbanization or landscape domestication
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clearly dependent on an a priori definition of the bounded system of interest. As 
such, our intent is not to definitively classify whether a particular driver of eco-
system change always or never constitutes a disturbance, or to replace the col-
loquial use of the word. Instead, it is to facilitate how the term can be used to 
more explicitly model (whether conceptually or mathematically), and therefore 
understand, the dynamics of ecological systems. In many cases, the use of the 
term ecological disturbance represents a paradox: at some scales the effect of a 
disturbance is to reduce system order; but when viewed at broader scales, or using 
a different set of system entities, the same “disturbance” may actually have the 
effect of maintaining a dynamic equilibrium. Examples of disturbance events 
might include hurricanes or other extreme weather; fire, environmental pollutants; 
invasive or irruptive species; and human activities because they can be conceptual-
ized as a force with the potential to reduce system order and change the dynamics 
of a bounded system. However, in our view, the key to them being a disturbance 
depends on a specific context—the definition of the bounded system in question. 
Specifically, whether the event can be wholly explained or modeled using explicit 
endogenous processes of the system, or whether it cannot and therefore must be 
represented by exogenous processes described by fixed, immutable patterns (e.g., 
frequency, regularity, location, intensity) of the event in space and time.

7.3.1  Why Is This Concept of Disturbance Important  
to the Southern Pine Beetle Problem?

In our working definition, the magnitude of a disturbance event, and descriptions 
and explanations of its causes and effects, are intrinsically linked to the spatial and 
temporal scale and the entities represented in a bounded system (i.e., Fig. 7.6). 
The impacts of SPB damage are most often defined from the viewpoint of humans 
that manage the forest. For example, individual forest stands are disturbed by dis-
crete infestations and larger forest landscapes are disturbed by regional outbreaks. 
Therefore, to individuals that manage the forest, SPB damage is most naturally 
viewed as an exogenous disturbance. Currently, we are unable to predict when and 
where damage will occur through an understanding of SPB’s broad scale popu-
lation dynamics. Instead, predictions about damage rely on characterizations of 
the frequency, severity, and location of historical outbreaks and infestations. This 
entirely exogenous view of SPB damage has important implications for effectively 
managing the southern forest because, as Sect. 7.2.3 illustrates, the composition 
and configuration of the southern forest has and continues to undergo considerable 
change. Consequently the historic patterns of SPB disturbance may not be relevant 
to the current or future states of the forest.

Southern pine beetle damage is therefore most naturally thought of as an exog-
enous disturbance because of the limited spatial and temporal scales at which 
we conventionally view the problem. These scales are (understandably) driven 
by its impacts on those who manage the forest. However, SPB has always been 
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a component of the southern forest landscape and, therefore, has likely always 
caused periodic and spatially aggregated tree mortality. If the SPB has always 
been an integral, endogenous component of the southern pine forest, should it be 
viewed as a disturbance? Our view is that it could be, but that a more productive 
way of looking at the problem is to view SPB as an endogenous component of the 
forest system whose dynamics are driven by other, exogenous factors. These may 
include short-term weather events, climate change, or human–forest interactions. 
The major questions that arise from this viewpoint are: what are the real distur-
bances that change the frequency and magnitude of SPB damage? How do they 
affect the long-term dynamics of southern pine forests? And how do changes in 
these dynamics of the forest affect their utility to the humans who manage them?

Obtaining parsimonious explanations of an ecological system such as SPB 
requires models that describe the system using as many endogenous, and as few 
exogenous, processes as possible. The SPB has a complex ecology (including 
many interactions with hosts, other biota, and probably even humans), and occu-
pies a broad range of environmental conditions. Developing a better understanding 
of SPB dynamics will require an iterative, exploratory process of defining many 
conceptual bounded systems (defined by different spatial and temporal limits, abi-
otic and biotic entities, and processes) and comparing their dynamics with those of 
observed ecosystems (pattern). Figure 7.7 illustrates that throughout this explora-
tory process, it may be possible to replace events that were previously considered 
exogenous with explicitly described endogenous processes. As Rykiel (1985) sug-
gests: “a disturbance at any level can be absorbed by moving up the hierarchy (of 
linked ecosystems), in effect, placing the disturbance within a new and larger sys-
tem… This larger system has properties different from the former system and the 
disturbance now appears to be part of the internal workings of the system rather 
than a disturbance to the system”.

7.4  Modeling Southern Pine Beetle Damage

7.4.1  Why Model Southern Pine Beetle Populations?

Models are used in conjunction with observation, experience, and experimenta-
tion to understand which components are most important for developing a greater 
understanding of a system. Models can take the form of diagrammatic representa-
tions of concepts, graphical summaries, statistical summaries, mathematical equa-
tions, or computer simulation models. As such, models have always been used in 
ecology. Even heavily designed (manipulated) experiments require models to sum-
marize results and test hypotheses (e.g., statistical models such as t-test, ANOVA, 
linear regressions). Generally speaking, as a system becomes less amenable to 
experimentation or direct observation, increasingly complex, nonstandard models 
are needed to make sense of observations and data. This is the case with the SPB 
system. Many of the questions important for understanding the causes and impacts 
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of SPB damage cannot be investigated by experimentation or observations alone. 
Instead, the dynamics of the southern forest system are only amenable to investi-
gation by integrating patterns and processes that can be measured directly.

7.4.2  Data Constraints for Modeling Southern Pine Beetle 
Populations

Models (whether conceptual or mathematical) that describe SPB populations must 
be formulated using ideas and parameters that are based on observations or data 
from the “real world”. In the following section, we describe the challenges associ-
ated with observing and collecting SPB data, and how this constrains our under-
standing of (1) the spatio-temporal pattern of SPB damage and (2) the population 
ecology and dynamics that drive SPB damage.

7.4.2.1  Characterizing Historical Patterns of Southern Pine Beetle 
Damage

The factors that trigger SPB populations to transition from low density to high 
density phases are unknown and highly debated within the scientific community. 
As such, historic data provides an essential starting point for understanding higher 
level impacts of SPB damage on forest systems, for detecting cause and effect 
relationships between SPB damage and environmental factors, and for developing 
and validating a mechanistic understanding of broad scale SPB population dynam-
ics. Figure 7.4 shows the outbreak frequency of SPB across the southern forest 
between 1960 and 2000. However, one of the key problems of characterizing SPB 
damage lies in the complexity of its pattern. Although these maps present a use-
ful view of a single dimension of disturbance (the frequency of outbreaks at an 
approximate spatial scale of a U.S. county), in reality SPB damage is character-
ized by more detailed temporal and spatial dimensions. For example, the initia-
tion of outbreaks usually occurs in spring or summer when a number of discrete 
infestations first appear across a regional landscape (e.g., a 1000–5000 km2 area), 
which then become epicenters of SPB population growth and tree mortality. 
Throughout the course of an outbreak, each of these infestations will grow to dif-
ferent sizes (and shapes) and may also lead to the initiation of new infestations on 
the landscape. This spatio-temporal pattern is essential for developing and validat-
ing SPB models, but it is difficult data to collect, store, and communicate.

The principal source of data detailing the broad scale patterns of SPB damage 
comes from monitoring surveys conducted by agencies responsible for manag-
ing forests. Aerial surveys are used to detect the initiation of outbreaks and moni-
tor their progression. Surveyors look for groups of trees with red crowns (dead 
and vacated trees), surrounded by other trees with yellow or fading foliage (trees 
likely to contain active populations). Flights occur on flight lines approximately 
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1.5–8.0 km apart, and may cover many hundreds of km2 of forest in a day, includ-
ing private and public lands. Modern techniques use digital sketch maps to record 
the location and size of infestations. Following aerial detection, ground crews are 
used to find the exact location of an infestation, identify and notify the landowner, 
verify SPB as the causal agent of the damage, survey the status of the population 
(number of dead trees and infested trees), and estimate rate of infestation growth 
(Billings 2011). Although aerial surveys and associated ground surveys are impor-
tant for monitoring and managing outbreaks, they are designed primarily for oper-
ational control of SPB and not scientific enquiry. As Sect. 7.2 illustrates, when 
outbreaks occur in a region, forestry professionals often become overwhelmed 
to the extent that ground sampling of infestations needs to be prioritized. In most 
cases, this limits repeated sampling at the same site, which in turn limits the avail-
ability of infestation growth and decline data. In some cases, data may be dif-
ficult to collect because of the local terrain (e.g., mountainous areas), or access 
(e.g., infestation on private property). Additionally, the range of SPB also includes 
regions in Central America, where damage is rarely documented or reported.

The difficulty and cost of measuring SPB damage therefore affects the avail-
ability and quality of data for modeling. These data constraints are exacerbated 
by the rarity and unpredictability of SPB. As Fig. 7.4 shows, outbreaks are actu-
ally relatively infrequent in most regions and highly unpredictable in space and 
time. Because of this unpredictability, large amounts of data, collected over long 
time periods, and over broad spatial scales are required to provide accurate statis-
tical summaries of actual patterns—an enterprise that involves considerable col-
lective effort and organization by SPB stakeholders. Even more data is required 
to develop statistical models to detect the initiating cause of outbreaks. To detect 
causal relationships, data that describes potential causes (e.g., conditional state of 
the forest) must be recorded alongside damage information (effects). Most obvi-
ously, it is important to know the characteristics of forested areas that are affected 
by SPB, but less intuitively, to analyze the spatial and temporal pattern of damage 
relative to the underlying structure and composition of the forest, it is essential to 
know the characteristics of areas that did not incur damage. This requires ongo-
ing maintenance of accurate forest inventories (at scales appropriate to SPB), a 
task that requires a long-term collective effort, and specialist skills (e.g., remote 
sensing).

7.4.2.2  Constraints for Understanding Southern Pine Beetle 
Population Dynamics and Life History

Certain characteristics of SPB ecology make the development of population mod-
els difficult. For example, broad scale population dynamics of SPB are difficult 
to measure directly and completely. While broad scale patterns of tree mortality 
(discussed above) are the best indicators of population dynamics, these two meas-
ures are not directly equivalent for several reasons. Factors such as the number of 
beetles that occupied each dead tree, the success rate of attacking beetles, and the 
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time delay between observed tree mortality (indicated by a fading, or reddening 
crown) and actual tree mortality all conspire to influence the relationship between 
measurements of tree mortality and population levels. In fact, direct observations 
of population dynamics and ecology are restricted to relatively small spatial and 
temporal scales (e.g., within individual trees or infestations). This highlights the 
importance of models for integrating “observable” pieces of information into more 
complete descriptions of population dynamics. At the same time, issues surround-
ing the availability of data, and the difficulties associated with collecting them, 
are essential for understanding the amount of interpretation that is necessary to 
integrate SPB ecology into population models, and therefore, for interpreting their 
results.

One natural bias in SPB data is caused by the difficulty of observing low den-
sity populations in the field (i.e., those occurring between less frequent regional 
outbreaks). During the endemic population phase, SPB completes generations in 
isolated trees weakened by other environmental forces (e.g., lightning). Ordinarily, 
healthy host trees are able to repel attacking SPB individuals by exuding sticky 
resin that prevents adults from constructing galleries and laying eggs. The theory 
is that dispersing SPB locate weakened trees relatively efficiently within the for-
est (aided by host volatiles), but do not grow to high enough population densities 
to allow the successful attack of neighboring, healthy hosts. Several explanations 
for the regulation of endemic populations are offered, including the importance of 
predators and parasites, the mortality costs associated with dispersal in search of 
weakened trees, and the local and regional strength of host defenses. The difficulty 
of measuring endemic populations is driven by the extensive forest landscape, 
and the rarity of SPB infested trees. Because it is difficult for humans to perceive 
exactly what a weakened tree looks like (except for those with lightning damage), 
searching for these trees in forested areas, and investigating colonization rates is 
difficult. To overcome these measurement difficulties, Coulson et al. (1986) used 
an alternative approach to measuring colonization rates by experimentally manipu-
lating (i.e., weakening) hosts by simulating lightning struck trees using explosives. 
Manipulations occurred in an area with no visible beetle activity within 5 km. 
Despite the low apparent beetle density, colonization occurred within only a few 
days following summer treatments, and approximately 133 days following win-
ter treatments, illustrating that beetles readily find and colonize weakened trees. 
However, the precise mechanisms by which they do this, where the beetles come 
from, and how many of all the dispersing adults in the forest actually located the 
weakened trees are unknown.

Because of the difficulties involved in locating SPB populations during 
endemic phases, much of our ecological knowledge of SPB comes from studies 
of active infestations. During outbreaks, many active infestations appear across a 
regional landscape making the beetle much easier to study. Within active infes-
tations, high densities of beetles lead to the mass attack of potential hosts. Mass 
attack behavior occurs as beetles emerge from their natal tree and attack in high 
enough numbers to overcome the natural defenses of the host (oleoresin produc-
tion). Although many adult beetles may die during a mass attack, once a host’s 



184 A.G. Birt and R.N. Coulson

defense has been overcome by attacking beetles, it is readily colonized by other 
beetles in the local population or by beetles immigrating from adjacent popula-
tions. The tree may remain as a viable resource for a period of time that depends 
on the colonization rate of the tree (the phloem of each tree has limited space) or 
on the natural deterioration of the phloem driven by environmental factors. When 
population densities are high, and colonization of trees rapid, female beetles may 
attack one host, lay a complement of eggs, then re-emerge to attack another host. 
This complex mass attack behavior is driven by pheromones and host volatiles 
(Sullivan 2011). These compounds facilitate communication between individ-
ual beetles, structuring the population to maximize population growth by focus-
ing attacks on particular hosts, affecting reemergence rates, and possibly driving 
dispersal from an infestation to new locations within the forest. Although these 
pheromones have been extensively studied in the laboratory, they are much more 
difficult to measure in the field.

Despite the visibility of SPB damage in infestations, many of the detailed 
ecological processes that affect population growth are hidden to observers. For 
example, most SPB activity occurs under the surface of the bark, and at heights 
between 1 and 20 m from the ground. Under these conditions, estimates of popula-
tion size in a single tree require climbing equipment, skilled technicians, and sta-
tistical methods to accurately sample the population in a single tree (e.g., Pulley 
et al. 1977; Rain et al. 1978). Sampling methods may include destructive sampling 
(removing samples of bark) or nondestructive sampling (estimating populations 
using entry holes and emergence holes). Some of the most valuable information 
for understanding SPB ecology has been evaluated from meticulous laboratory 
studies. For example, development, survival, and reemergence rates have been 
measured under different constant temperature regimes (e.g., Gagne 1980) using 
noninvasive X-ray photography, providing much of the necessary life history ecol-
ogy required to develop models driven by environmental temperature.

Infested trees may also be colonized by predators, parasites, or symbionts, all 
of which are potentially important for understanding SPB population dynamics 
(Klepzig and Hofstetter 2011). Recording this information for a single tree, over 
the generational time of the insect presents a considerable challenge. As infesta-
tions grow, the number of affected trees, and therefore the size and complexity of 
data for the “within tree” population quickly becomes overwhelming. Although 
it is possible to construct spatiotemporal maps of infested trees (e.g., Schowalter 
et al. 1981b), measuring and recording all of the information that may be rele-
vant to understanding life history such that the data can be easily understood and 
reused by other researchers is logistically difficult.

Given the difficulty of observing SPB directly, several authors have experimen-
tally manipulated populations within infestations to focus on particular ecological 
processes. For example, manipulations of attack density have shown that intraspe-
cific competition may be an important regulator of population growth rates within 
a single tree (Reeve et al. 1998); predator exclusion experiments have been used 
to measure the effect of predators on survival and therefore population growth rate 
(e.g., Turchin et al. 1999); and mark–recapture experiments, linked to diffusion 
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models, have been used to estimate SPB dispersal distances from active infesta-
tions (Turchin and Thoeny 1993). Less directly, Schrey et al. (2008) attempted to 
evaluate dispersal among populations using genetic techniques. They found only 
very small genetic distances among beetles sampled within five National Forests 
in Mississippi during a 2004–2005 outbreak. These locations span the entire area 
of the state (approximately 480 km × 240 km), and suggest that either the out-
break consists of a single interbreeding (and therefore highly mobile) population 
or that it comprises several non-mixing meta-populations originated from a single 
relatively undifferentiated source population.

7.4.3  Types of Models

Southern pine beetle ecology is complex, and involves many processes that are 
difficult to observe directly. In the absence of a complete understanding of SPB 
ecology, our view is that effective SPB modeling requires a broad range of mod-
els that help ecologists organize, integrate, communicate, and understand the large 
body of research that has been undertaken on ecological process and patterns of 
damage.

All models are designed to represent a complex real-world phenomenon in a 
simpler form (abstraction). Abstraction occurs whenever a complex system is 
represented by a simpler conceptual, pictorial, or mathematical representation. 
For example, population growth rate could be used to represent complex interac-
tions among multiple finer scale processes (rates of development, survival, and 
reproduction), making the model easier to express mathematically and easier to 
interpret. On the other hand, if the real world is simplified too much, then mod-
els are often criticized as being unrepresentative. For example, although popula-
tion growth rate may be an effective abstract parameter for a model of population 
dynamics; a life history theorist might argue that population growth rate is actually 
a product of the way in which an organism allocates “energy” between growth, 
reproduction, and dispersal and is driven by evolutionary processes that maximize 
an organism’s fitness. At an even finer scale, physiologists might argue that devel-
opment (i.e., cell division and organism growth) is driven by biochemical pro-
cesses driven by chemical energy.

By definition, abstraction ensures that no model can or should represent 
all processes that occur within a system. Instead, it is the role of the modeler to 
decide which are most important based on the ecological questions that are to be 
addressed. For statistical approaches, a large body of research exists that helps 
to objectively guide the complexity of models relative to their predictive power. 
However, we argue that not all models in ecology need to be statistical or predic-
tive. In fact, ecological research and researchers would benefit from broadening 
the remit of modeling away from trying to develop, or expecting, purely statistical, 
or predictive models. As Sect. 7.4.2 illustrates, data associated with SPB are diffi-
cult to measure, often incomplete, and highly interpretable. Therefore, models are 
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also essential for summarizing and communicating complex and valuable data and 
expressing ideas for how different ecological processes, often measured indepen-
dently, integrate to influence higher level behavior of a system. Given the philo-
sophical implications of abstraction, we also suggest that searching for a single 
model of a system is futile. Instead, especially in a system as complex as SPB, 
multiple working models are required to develop the depth of understanding nec-
essary to confidently use model “results” to understand the frequency, magnitude, 
and effects of populations and damage: “The multiplicity of models is imposed 
by the contradictory demands of a complex, heterogeneous nature and a mind that 
can only cope with a few variables at a time; by the contradictory desiderata of 
generality, realism and precision; by the need to understand and also to control” 
(Levins 1966).

A common way of expressing the level of abstraction in an ecological model 
is on a gradient of mechanistic to nonmechanistic. In the former, model processes 
are represented in ways that explicitly conform to underlying theories or processes 
for how a system works (i.e., less abstract). In contrast, nonmechanistic models 
often use parameters and functions that represent underlying processes less explic-
itly, if at all. For ecological applications, mechanistic models are often considered 
especially useful. For example, Bolker (2008) suggests: “All other things being 
equal, mechanistic models are more powerful since they tell you about the under-
lying processes driving patterns. They are more likely to work correctly when 
extrapolating beyond the observed conditions.” The rationale for this viewpoint 
is intuitive and persuasive. First, ecology is subject to general, scientific theo-
ries that, logically, should be the starting point for developing models. Second, 
for most ecological problems (especially complex ones), a great deal of data and 
information (i.e., prior knowledge) already exist that partially explain how a par-
ticular system works. Much of this theory and prior information is wasted unless it 
can be usefully integrated to provide a higher level view of a system.

Although we agree with the potential advantages of mechanistic models, we 
also argue that mechanistic versus nonmechanistic characterizations can be mis-
leading. Models are constructed to represent a designed and simplified view of a 
system so interpreting the results of the model in relation to the “real world” is 
essential but often overlooked. Interpretation of model outputs or of fitted param-
eters is a human-centric activity that ensures that modeling is a useful way of com-
municating knowledge about a system. With careful interpretation, mechanistic 
models can be statistical, and statistical models can also be mechanistic. In the 
former case, statistical methods exist to evaluate how well a mechanistic model 
represents observed data and these can even be extended to objectively include 
the influence of prior knowledge. However, if the stated goal of the modeler is to 
develop a highly integrative mechanistic model, the consumer of the model should 
also be prepared to see the value of the model beyond a strict, statistical analy-
sis of the model outputs (prediction). Equally, standard statistical models (e.g., 
linear regression) or heavily abstracted models (e.g., those that use population 
growth rate) can be useful in understanding finer scale processes that lead to an 
observed phenomenon. This is especially true if some time is taken to interpret the 
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abstractions and reimagine them as more complex mechanistic processes that have 
been simplified for mathematical convenience.

We suggest that there are considerable and necessary advantages of broaden-
ing and defining the utility of different types of ecological models, especially for 
a problem as large and complex as SPB. Instead of focusing on what models can 
predict, our view is that ecological models would be more usefully classified into 
the categories based on how they add value to data to help understand specific 
problems:

(1) Descriptive: Models that summarize complex data, and present them in a way 
that enhances communication of data, information, or knowledge (Fig. 7.8).

(2) Integrative, exploratory, or a priori: Models that integrate known ecological 
processes and are used to generate outputs that provide insights into a more 
complete system (Fig. 7.9).

(3) Inferential or statistical: Models that are used to statistically estimate (infer) 
unknown processes using measurements from a higher level view of a system 
(Fig. 7.10).

In the next sections we describe each approach in more detail and provide exam-
ples from the SPB literature.

Fig. 7.8  Diagram illustrating 
the components of descriptive 
ecological models. These 
models serve to simplify 
raw observations and data 
to enhance understanding 
and communicate ideas. 
Descriptive models may 
consist of data summaries 
(e.g., statistical summaries 
or annotated diagrams) or 
graphical representations of 
conceptual ideas
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Fig. 7.9  Diagram illustrating 
the components of integrative 
models. These models 
integrate known processes 
and can be used to generate 
output that represents 
a higher order process. 
Model output depends on 
the assumptions used to 
drive the interaction among 
components. Interpretation of 
model outputs is based on the 
data used in its construction. 
The model can be used 
to develop understanding 
by manipulating these 
assumptions and observing 
their effects on model output 
(e.g., sensitivity analysis, 
scenario testing)

Fig. 7.10  Diagram 
illustrating the components 
of inferential models. 
Models are constructed and 
statistically tested against 
data, often representing a 
higher level process. The 
goal is to infer statistical 
support for a model based 
on well-defined data sets. 
Dashed lines show optional 
processes: for example, 
information, knowledge, 
and data may guide some 
development of the model; 
multiple models may be 
constructed and selected 
to best fit the data; and 
prediction may occur 
following interpretation of 
model results
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7.4.3.1  Descriptive Models

Figure 7.8 provides a diagrammatic view of the role of descriptive models. 
Analogous to descriptive statistics, their main objective is to simplify complex data 
and observations into a form that improves the understanding of these processes 
and aids communication. Examples from the SPB literature include the fine-scale 
behavior of adult beetle host finding (Fig. 7.11; Bunt et al. 1980) and models of 
the essential stages of tree utilization (Fig. 7.12; Payne 1980). Another important 
example is the Southern Pine Beetle Information System (SPBIS): a USDA Forest 
Service program designed to collect and disseminate historical and current infes-
tation data. It comprises a spatial database of SPB damage assessed using aerial 
detection and ground surveys (Peacher 2011). The database is used primarily to 
aid decision-making during regional outbreaks, and contains information on infes-
tation growth and suppression treatments. It is included here because potentially 
this data is important for researchers who wish to first understand the spatial and 

Fig. 7.11  Example of a descriptive model illustrating the processes involved in host selection by 
southern pine beetle (SPB). Activities of beetles landing on a host tree were divided into 12 cate-
gories. Arrows show the percentage of beetles within a behavior category that proceed to another 
category. The diagram begins with 154 beetles observed from after an initial landing event on 
the tree (LAND box). The categories of on-bark behavior are landing (LAND), walking (WALK), 
searching (SEARCH), investigating an entrance hole (PITCH), encountering another SPB (SPB), 
encountering a predator (PRED), and fighting with another SPB (FIGHT). Termination behavior 
is divided into flew from the tree (FLY), dropped from the tree (DROP), captured by a predator 
(EATEN), bored a gallery (BORE), and entered entrance hole (ENTER). Data from Bunt et al. 
(1980), redrawn in Sullivan (2011)
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temporal pattern of SPB infestations during an outbreak. In this case, we would 
argue that the database itself is not the ecologically relevant model. Instead, SPBIS 
provides a useful, ecological model to the extent that it is able to deliver this com-
plex information to an individual in a simple, descriptive way.

Descriptive models attempt to fill a large knowledge gap, and are the first 
step before developing more complex models. Their practical use requires much 

Fig. 7.12  Example of a descriptive model illustrating the various stages of southern pine beetle 
host utilization. Even simple drawings of life cycles can be efficient and powerful tools for com-
municating information and knowledge. Reproduced from Payne (1980) and Hain et al. (2011)
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interpretation, which may take the form of conducting further research or utilizing 
their data in other types of models. This interpretation is most likely to enhance 
understanding rather than allowing prediction.

7.4.3.2  Integrative, Exploratory, or a Priori Models

The main objective of this type of modeling approach is to integrate disparate life 
history processes to deduce a higher level view of a system (Fig. 7.9). Often, this 
higher level view is not obvious by observing each component of the system inde-
pendently. In this approach, the modeler uses knowledge of observable phenome-
non, and orders and interprets them deciding (a priori or up front) those which are/
are not important to the system. The result is a mathematical or simulation model 
that produces output that represents a higher level view of the system, based on 
the assumptions that have been made about how these processes interact (model 
parameters and functional relationships).

Examples from the SPB literature include the use of LANDIS (a landscape 
simulation model) to understand the impacts of SPB herbivory (disturbance) on 
forest succession (e.g., Cairns et al. 2008). LANDIS is a modeling framework that 
can be parameterized using simple assumptions about the environmental charac-
teristics of a landscape (i.e., spatial pattern of ecological zones), life history char-
acteristics of relevant tree species (e.g., seed dispersal, tree establishment rates, 
mortality, and shade tolerance), and disturbance (e.g., exogenous patterns of SPB 
damage). Using these parameters it then simulates the change in the composition 
of tree species (forest communities) over long timeframes (100–1000 years), pro-
viding a higher level view of forest succession (emergent property of the system) 
that is not possible to measure directly. Another example is provided by Fig. 7.13. 
Here we have used the development rates of SPB (Wagner et al. 1984) and spa-
tially interpolated temperature data (Thornton et al. 1997) to calculate the potential 
number of generations that could be achieved by SPB across its range (again, an 
emergent property that is not directly obvious from the input parameters and data). 
Further examples include TAMBEETLE (Coulson et al. 1989; Feldman et al. 
1981) and HOGModel (Salom et al. 2001; Satterlee 2002), both simulation models 
that represent the growth of an infestation under different stand conditions (basal 
area, DBH, and temperature) using temperature-driven life history parameters 
(e.g., survival, development, reproduction) collected under laboratory conditions.

In this category of models, the outputs do not necessarily require explicit statisti-
cal validation (although this could and should be done if appropriate measurements 
exist). Rather, the models serve to explore “what if?” scenarios. As such, experimen-
tation is important for achieving a better understanding of the system. This involves 
manipulating parameters to explore how they affect the behavior of the system. For 
example, in the LANDIS model, simulations are created to explore different sce-
narios (manipulations of parameters) that investigate the state of the system under 
different levels of disturbance by SPB and fire. Equally, parameters and processes 
could be excluded or included in a model to explore how these affect model output.
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7.4.3.3  Inferential Models

Inferential models use explicit statistical methods to guide and challenge model 
development (Fig. 7.10). In this category, data must be available in a highly organ-
ized form that is amenable to statistical analysis. Here, the goal is to infer one or 
more unknown parameters from a set of known data. This can be done by creating 
one model (a priori), and then comparing its output to some real-world data. Or 
by developing “competing” models (each representing different processes), then 
statistically determining which provides the most parsimonious explanation of an 
observed phenomenon. Hilborn and Mangel (1997) provide an excellent text that 
deals with inferential modeling in ecology. Logistic regression is an example of 
a statistical model that has been used to understand the risk of stands becoming 
infested by SPB (e.g., Daniels et al. 1979; Zarnoch et al. 1984). Here, the depend-
ent variable (whether a given stand has been infested or not) is compared to sev-
eral independent variables (measurable properties of the stand such as the size and 

Fig. 7.13  Example of an integrative model estimating the number of generations of southern 
pine beetle across the southern United States. The number of generations is estimated using 
temperature-driven development rates model (illustrated in the graph) derived from laboratory 
experiments, and spatially interpolated temperature data
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density of trees) to understand the relative importance of each of these factors in 
driving infestation probability.

Another example is provided by Turchin et al. (1991). Here, a data set illustrat-
ing the number of infestations in east Texas between 1958 and 1990 was used to 
infer the ecological processes most likely to have driven these patterns. Two com-
peting models were proposed: SPB damage driven by weather and SPB driven by 

Fig. 7.14  The top graph shows the number of southern pine beetle (SPB) infestations per year 
between 1958 and 1988 as measured by the Texas Forest Service. The bottom graph shows the 
simulated number of infestations over the same time period based only on a model of delayed 
density dependence. In the bottom graph, solid lines show deterministic outputs of the model, 
dashed lines show a model with some error added to the process. The model is derived from a 
statistical analysis (inferential) of real-world data
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changes in predation. Statistical methods were then used to infer which model was 
best supported by the data, leading to the conclusion that the cycles of SPB activ-
ity are most likely driven by delayed density effect occurring between SPB and its 
predators. Figure 7.14 shows the outputs from the model inferred from this study, 
compared to observations. This example is important for the SPB literature for 
several reasons. First, it provides the only existing mathematically plausible expla-
nation for endogenous cycles of SPB damage (outbreaks). Second, their results 
have led to considerable and productive research (and a more detailed understand-
ing) of the role of predators on SPB based on experimentation and observation 
at the scale of a single tree (e.g., Reeve 1997; Turchin et al. 1999), and on the 
behavior of potential predators. Finally, when retested with new data, the original 
conclusions of delayed density dependence did not hold (Friedenberg et al. 2008). 
This illustrates that the insights that can be gained from models come from care-
fully interpreting their results, even if they have been statistically validated.

Inferential modeling provides the highest level of scientific objectivity when 
determining causal relationships. Out of necessity, the examples above use rela-
tively simple models to describe a higher level process. However, in theory, com-
plex models can be fit to ecological data either by increasing the availability of 
data, or by constructing models where some of the processes are assumed to be 
known, and the unknowns (knowledge gaps) are estimated using statistical tech-
niques. In practice, the limitations of inferential models are that data may not be 
available either in a format, or quantities, that allow vigorous statistical analysis.

7.5  Conclusions

The SPB has been studied intensively for nearly 100 years (St. George and Beal 
1929). Despite this effort, we still do not fully understand the population dynamics 
of the insect, and therefore are unable to accurately predict when and where the 
damage resulting from infestations will occur. Put another way; although we know 
a lot about the fine-scale ecology of SPB, we do not yet understand how these pro-
cesses interact to drive SPB population change. Although this statement could be 
true for almost any species, several factors make it especially relevant to the SPB. 
First, SPB populations fluctuate greatly in space and time. These fluctuations are 
difficult to explain mathematically based on our current knowledge of SPB ecol-
ogy. Second, SPB population dynamics are almost impossible to observe directly, 
or to manipulate experimentally. Finally, because SPB significantly affects indi-
viduals and communities, our inability to understand when and where damage 
will occur has a significant cost to society. These characteristics define the specific 
nature of the SPB problem. Table 7.1 provides an interpretative overview of the 
SPB system, and how our concept of ecological disturbance, and classification of 
ecological models, could be used to address specific characteristics of the problem.

The most pressing research need for SPB is to develop models that are capa-
ble of explaining the initiation and decline of outbreaks, and within them, realistic 
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patterns of the initiation and decline of infestations. Given our concept of dis-
turbance, these models should represent SPB damage as an innate (endogenous) 
property of a system that is driven by relatively few exogenous driving variables 
(see Fig. 7.7). So far, delayed density dependence is the only plausible ecological 
mechanism that has been shown to be mathematically capable of driving the char-
acteristic oscillations of SPB populations (Turchin et al. 1991; Friedenberg et al. 
2008). Even so, this model describes only temporal changes in population size and 
questions remain whether, or under what conditions, these same processes could 
drive the characteristic spatial pattern of infestations during outbreaks. In the con-
text of disturbance, it is also interesting to note that the delayed density depend-
ence model is capable of describing the occurrence of irruptive outbreaks without 
any external forces (disturbances) to the system. However, under these conditions 
it describes outbreaks that are regular and periodic, and therefore not represent-
ative of real SPB outbreak dynamics. However, when a stochastic term is intro-
duced to the model (one interpretation of which is a representation of an external 
disturbance such as weather variation), it produces irregular dynamics much more 
similar to actual SPB outbreak patterns.

Our conceptual view of ecological disturbance provides a useful way of think-
ing about models of SPB. Currently, SPB damage is often viewed as a “distur-
bance” because the spatial and temporal scales that humans use to interpret and 
manage forest landscapes are relatively small compared to the ecological com-
plexity and the broad temporal and spatial scales that drive SPB populations. 
However, SPB has always been an integral component of southern pine forests. 
Conceptualizing SPB as an endogenous property of a broader forest system may 
lead to new ideas about the factors that actually drive SPB damage, which may in 
turn lead to more effective forms of management. In other words, we can use the 
dual concepts of a bounded system and disturbance to think critically about what 
actually constitutes a disturbance to SPB populations and the forest landscape, 
defined by different spatial and temporal scales and entities. It is axiomatic that 
SPB causes periodic damage to the forest. But what external factors (disturbances) 
if any are actually driving this damage, and how do they affect the dynamics of 
the system and our ability to manage it? For example, do irregularities in weather 
patterns cause outbreaks, and if so, how large must these disturbances be to initi-
ate an effect? Are changes in forestry practices or land use affecting the frequency 
and severity of outbreaks, and therefore the long-term persistence and resilience of 
the system? Exploring these questions will require considerable experimentation 
into how different “bounded systems” (e.g., spatial and temporal scale and pro-
cesses of interest) and endogenous and exogenous processes affect system dynam-
ics (Fig. 7.7).

Given past and future changes in the structure and composition of the south-
ern forest, we suggest that a useful way of looking at the southern forest would 
be as a coupled socio-economic and ecological system. In other words, human 
management should increasingly be considered as a potential driver of SPB dam-
age; and certainly one of the biggest factors likely to influence the long-term 
dynamics of the southern forest system. According to our working definition of 
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disturbance, reciprocal links between human management, forest structure, and 
SPB damage would usefully redefine the nature of SPB disturbance. Instead of 
being viewed as an exogenous disturbance (i.e., the result of an unexplained SPB 
outbreak or infestation), SPB damage could be better described as the visible 
ecological effect of an exogenous human disturbance. Reframing models of the 
system in this way may lead to pragmatic but effective ways of managing SPB 
centered on human activities that are, by definition, within some control of forest 
managers.

Successfully modeling SPB damage as an endogenous property of the system 
will require a change in the way models are used and interpreted among SPB 
practitioners (see Sect. 7.4.3). Many of the ecological processes that are impor-
tant to understanding broad scale population dynamics are difficult to observe 
directly or measure unequivocally. The life history of SPB is complex and intri-
cately linked to other biotic (e.g., hosts, predators, parasites) and abiotic enti-
ties (e.g., pheromones and wind, temperature). Most often these processes are 
described qualitatively (for example in this chapter and in other referenced texts). 
However, quantitative approaches are also required to integrate this information 
into progressively more complete, unambiguous, and accurate descriptions of SPB 
populations. All types of models are important to this process. Descriptive mod-
els help summarize complex data (patterns of damage and ecological processes) 
to improve its clarity and accessibility to other scientists. Integrative models can 
be used to test ideas about how different ecological processes (defined by differ-
ent bounded systems) interact to generate higher order properties of a system. And 
inferential models provide the means to rigorously test or compare hypotheses. 
Adopting this viewpoint, an enlightened view of the value of modeling is that it 
should allow different views of how a system works to be more formally docu-
mented, communicated, and tested. For SPB, this has special importance given 
the multidisciplinary nature of research, the ecological and sociological complex-
ity of the problem, and because the periodic and transient nature of SPB damage 
requires information to be well organized, rapidly available, and easy to under-
stand. As such, we should not expect any model to be correct. Instead, model 
building should be a creative, iterative, and exploratory process where competing 
or complementary models contribute collectively to an improved understanding of 
the SPB and how to manage its pestilence.
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8.1  Introduction

Global climate varies naturally at millennial time scales, but humans, primarily 
through combustion of fossil fuels, have now added sufficient greenhouse gases to 
the atmosphere to cause rapid climate warming at a rate unprecedented in the last 
10,000 years (IPCC 2007). In light of its potential adverse effects on natural, polit-
ical, social, and economic systems, ecologists have been called upon to investi-
gate the consequences of anthropogenic climate change on the world’s ecosystems 
(Bachelet et al. 2001; Schneider et al. 2007). However, questions pertaining to the 
numerous, complex, and multi-scale interactions among ecological processes, dis-
turbance agents, and climate drivers present intractable challenges with respect 
to scientific exploration, as traditional field methods used to explore ecosystem 
responses to environmental change are inadequate to capture complex interactions 
that occur across large areas and long time periods (Fig. 8.1). Multi-scale ecologi-
cal interactions often result in nonlinear feedbacks that produce novel and unantic-
ipated landscape responses to changing climates (Lauenroth et al. 1993; Temperli 
et al. 2013). These can be explored using simulation modeling, in which computer 
programs are developed to quantitatively simulate complex ecological processes 
and their interactions over decades or centuries (McKenzie et al. 2014).

In our opinion, most ecological responses to climate change are best evalu-
ated and simulated at landscape scales using landscape models (LMs). Because of 
their limited spatial extent, finer-scale stand models cannot fully incorporate spa-
tial aspects of disturbance regimes (Bugmann 2001), and coarser-scale Dynamic 
Global Vegetation Models (DGVMs) are not designed to simulate important spe-
cies- and plant-level disturbance effects such as successional trajectories and dis-
turbance survival (Flannigan et al. 2009). Spatially explicit simulations using LMs 

Fig. 8.1  The direct and 
indirect interactions among 
disturbances and vegetation 
that dictate landscape 
dynamics. Shown are 
four of the most common 
disturbances currently 
affecting landscapes around 
the world: wildland fire, 
insects, pathogens (disease), 
and grazing by native and 
exotic ungulates
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have greatly improved our ability to explore and understand complex interactions 
(Scheller and Mladenoff 2007; Perry and Millington 2008). Several sources pro-
vide details on landscape change modeling (Mladenoff and Baker 1999), ecosys-
tem dynamics (Canham et al. 2004), and spatial fire spread and effects (Gardner 
et al. 1999). In various reviews, LMs are classified based on their design, structure, 
detail, resolution, and geographical area (see Keane et al. 2004; He 2008; Baker 
1989; Moran and Corcoran 2012; Scheller and Mladenoff 2007, respectively). To 
realistically predict climate change effects, LMs must be structured to simulate 
disturbance processes, vegetation growth and mortality, and species composition 
and distribution as well as their interactions across multiple scales (Bachelet et al. 
2000; Purves and Pacala 2008). However, the level of mechanistic detail needed to 
realistically simulate important interactions among these processes and variables 
remains a central challenge in landscape modeling (Gustafson 2013).

In this chapter, we explore a unique subset of the many ecological interactions 
that occur at landscape scales—the interactions among disturbances (Fig. 8.1). 
Disturbances influence vegetation distribution, structure, and composition, and 
may indirectly and directly interact with one another and with changing climate to 
create novel landscapes (Kitzberger et al. 2012). Warming climates have already 
altered interactions among disturbance regimes resulting in highly visible and 
rapidly occurring changes in landscape composition and structure, and the impor-
tance of these interactions have been shown in studies across the world (Green 
and Saladin 2005; Parker et al. 2006). In the United States, Bachelet et al. (2000) 
documented the interactive effects of fire and grazing on vegetation conditions 
in South Dakota pine forests, while Buma and Wessman (2011) showed that fire, 
windthrow, and salvage logging interactions dictated vegetation response. Allen 
(2007) attributed the cause of forest dieback in New Mexico to the interactions of 
fire, grazing, erosion, and severe drought, and Beh et al. (2014) found that unique 
interactions between sudden oak death (Phytophthora ramorum) and wildfire con-
tributed to the intensity of ambrosia beetle species attacks in California tanoak 
(Notholithocarpus densiflorus) forests. In South America, Matson and Bart (2013) 
showed that the interaction of fire and grazing dictate shrub encroachment in the 
Andes mountains. Lewis and Lindgren (2002) found that interactions between 
tomentosus root disease (Inonotus tomentosus) and spruce beetle (Dendroctonus 
rufipennis) controlled tree mortality and wood volume lost in boreal forests of 
British Columbia, Canada, while the importance of drought, grazing, and fire 
interactions to the structure and composition of grasslands was documented by 
Koerner and Collins (2014) in South Africa and Hobbs et al. (2003) in Australia.

To demonstrate the importance of effects of single and interacting disturbances 
on landscapes, we focused this chapter on a subset of disturbances that are common 
across many US Rocky Mountain landscapes: wildland fire (any fire that occurs in 
a non-developed or sparsely developed area), mountain pine beetle (Dendroctonus 
ponderosae), and white pine blister rust (Cronartium ribicola). Based on a review 
of the literature, we discuss the mechanisms of each disturbance type, including 
possible interactions from each combination of the three disturbances. We then use 
a landscape simulation model to evaluate how single and interacting disturbances 
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respond to changes in climate and influence landscapes. Because the magnitude, 
trend, and type of disturbance interactions differ across ecosystems, our simula-
tion results cannot be wholly extrapolated to other landscapes; however, our goal in 
this chapter is to demonstrate the general importance of disturbance interactions in 
influencing future landscape composition and structure.

8.2  The Simulation Model and Application

FireBGCv2 (Fire BioGeoChemical model Version 2) is a bottom-up, mecha-
nistic, individual tree, forest succession model containing stochastic properties 
implemented in a spatial domain (see Keane et al. 2011 for complete model doc-
umentation). It can be categorized as a landscape fire succession model (Keane 
et al. 2004), a forest landscape model (He 2008), or a landscape dynamics model 
(Mladenoff and Baker 1999). Versions of the model have been used to address a 
wide variety of research questions including climate change effects on stream tem-
peratures, wildlife, and vegetation composition (Loehman et al. 2011a); manage-
ment effectiveness; grazing interactions with fire; landscape structure; fuel-snag 
dynamics; and carbon emissions (Keane et al. 1997). FireBGCv2 contains five hier-
archical levels of spatial organization from coarse, fixed-boundary sites defined by 
similar topography, weather, soils, and potential vegetation to dynamically created 
stands that differ by existing vegetation composition and structure; simulation plots 
on which ecosystem processes are modeled for computational efficiency; species 
with well-defined physiological parameters; and individual trees, each of which is 
explicitly represented with attributes, such as age, height, diameter at breast height 
(DBH), and height to live crown. FireBGCv2 simulates basic processes such as tree 
growth, organic matter decomposition, and litterfall using detailed physical and 
biogeochemical relationships (Keane et al. 2011). Long-term daily weather streams 
drive primary canopy processes (e.g., transpiration, photosynthesis, and respira-
tion), vegetation phenology (e.g., curing, leaf fall), and fire dynamics (e.g., ignition, 
fuel moisture, spread, intensity) within the simulation landscape.

Weather, tree species and structural traits, and landscape composition determine 
fire, mountain pine beetle, and white pine blister rust activity within a simulation 
(Fig. 8.2). In the simulations presented here, fire ignition was based on historical 
distribution of the Keetch Byram Drought Index, fuel loading, and fuel moisture, 
while fire spread was modeled on slope and wind vectors, fuel characteristics, and 
fuel moisture. Blister rust infections for five-needle pines were simulated when 
site daily relative humidity was above 90 % and daily mean temperature was above 
10 °C (Loehman et al. 2011a); and mountain pine beetle epidemics were initiated 
in the model when lethal temperature thresholds (below −40 °C for a single day, 
or below −20 °C for 2 weeks) were not met for 40 years, and host pine species 
comprised more than 30 % of the simulation landscape (Keane et al. 2011).

We simulated all combinations of wildland fire, mountain pine beetle, and 
white pine blister rust for two forested landscapes that comprise a range of 
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climate, vegetation, and fire regime types common to the US Rocky Mountain 
region (Fig. 8.3):

•	 East Fork of the Bitterroot River (EFBR): A 128,000 ha dry mixed-conifer 
ecosystem in western Montana, USA, with an historical low- to high-frequency, 
mixed-severity fire regime. Lower-elevation stands comprise primarily pon-
derosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii), and 
higher elevation stands are dominated by lodgepole pine (Pinus contorta var. 
latifolia), whitebark pine (Pinus albicaulis), subalpine fir (Abies lasiocarpa), 
and Engelmann spruce (Picea engelmannii).

•	 Yellowstone Central Plateau (YCP): An 80,000 ha, high-elevation lodgepole 
pine ecosystem in Yellowstone National Park, USA, with an historical low-fre-
quency, high-severity fire regime. Stands contain minor amounts of Douglas-fir, 
whitebark pine, subalpine fir, and Engelmann spruce.

We simulated disturbance interactions under two climate scenarios:

•	 Current climate: The recorded daily weather for the last 50+ years collected 
within or near each of the simulation landscapes, compiled by the National 
Climatic Data Center. Weather years were used in sequence, repeated for multi-
ple cycles over a 250-year simulation period.

Fig. 8.2  An illustration of the complex linkages among disturbances (bottom) and the ecologi-
cal processes and components with which they interact to drive landscape behavior. This dia-
gram depicts the interacting ecological processes simulated by the FireBGCv2 landscape model 
(Keane et al. 2011)
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•	 Warmer climate: A climate change scenario in which temperatures increase by 
an average of 2.8 °C relative to historical weather. Climate offsets for each land-
scape represent an ensemble average of climate model projections for the A2 
emissions scenario (IPCC 2007) downscaled to 12 km for the period 2070 to 
2099 (Girvetz et al. 2009).

FireBGCv2 simulations are usually performed with multiple replicates to account 
for stochastic model elements (e.g., Loehman et al. 2011a), but we did only one 
run per scenario for the purposes of illustration. For each 250-year simulation, dis-
turbances were implemented beginning in the initial simulation year. We report 
two response variables sensitive to disturbance interaction effects: species compo-
sition (dominant species of each modeled stand) and tree basal area (m2 ha−1).

8.3  Disturbances

In an ecological context it is not particularly informative to talk about disturbance 
in terms of a single event because it is the pattern of disturbances through time 
that shapes ecosystems. A disturbance regime defines the spatial arrangement, 
frequency, intensity, and ecological consequences of disturbance events repeated 

Fig. 8.3  FireBGCv2 simulation landscapes: the East Fork Bitterroot River (EFBR) and Yellow-
stone Central Plateau (YCP), both within the northern Rocky Mountains, USA
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over space and time. Assessments of a disturbance regime must encompass an area 
of land that is large enough that the full range of disturbance sizes are manifest, 
and long enough so that the full range of disturbance characteristics are captured. 
Disturbance regimes are generally described by 11 characteristics (Table 8.1; 
Simard 1991; Agee 1993; Skinner and Chang 1996; Keane 2013). These charac-
teristics illustrate the great complexity that confounds any simplistic representa-
tion of interacting disturbance regimes in land management. The following is a 
description of three important disturbances, and their interactions within the US 
northern Rocky Mountains.

Table 8.1  Glossary of terms often used to describe disturbance regimes

Disturbance 
characteristic

Description Example

Agent Factor causing the disturbance Mountain pine beetle is an agent 
that kills trees

Source, cause Origin of the agent Lightning is a source for wildland 
fire

Frequency How often the disturbance occurs  
or its return time

Years since last fire or beetle out-
break (scale dependent)

Intensity A description of the magnitude  
of the disturbance agent

Mountain pine beetle population 
levels; wildland fire heat output

Severity The level of impact of the disturbance  
on the environment

Percent tree mortality resulting 
from mountain pine beetle infesta-
tion; fuel consumption in wildland 
fires

Size Spatial extent of the disturbance Mountain pine beetles can kill trees 
in small patches or across entire 
landscapes

Pattern Patch size distribution of disturbance 
effects; spatial heterogeneity  
of disturbance effects

Fire can burn large areas but 
weather and fuels can influence fire 
intensity and therefore the patch-
work of tree mortality

Seasonality Time of year when disturbance occurs Species phenology can influence 
wildland fire effects; spring burns 
when plants are growing can be 
more damaging than fall burns 
when plants are dormant

Duration Length of time that disturbances  
occur

Mountain pine beetle outbreaks 
usually last 3–8 years; fires can 
burn for a day or for an entire 
summer

Interactions Disturbances interact with one  
another, as well as climate, vegetation 
and other landscape characteristics

Mountain pine beetles can create 
fuel complexes that facilitate or 
exclude wildland fire

Variability The spatial and temporal variability  
of the disturbance characteristics  
listed above

Highly variable weather and moun-
tain pine beetle mortality can cause 
highly variable burn conditions 
resulting in patchy burns of various 
sizes
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8.3.1  Wildland Fire

Wildland fire is ubiquitous throughout forest ecosystems of the northern Rockies 
and is arguably the most dominant landscape disturbance in the region. Wildland 
fire is very responsive to variability in environmental conditions on the landscape, 
including vegetation type and distribution, climate, weather, and topography. 
Where rates of vegetation production outpace decomposition, sufficient biomass 
is available to support fires. Wildland fuels lose moisture and become flammable 
in the region’s typically warm and dry summers, during which there are ample 
sources of ignition from lightning strikes and humans. Therefore, the active fire 
season (period conducive to active burning) is in the summer, typically from late 
June through October, with shorter seasons at higher elevation sites where snow-
pack can persist well into July. Regionally, widespread fire years are correlated 
with drought (Heyerdahl et al. 2008; Morgan et al. 2008). At landscape scales, 
topography can influence the spatial pattern of fire spread. In dissected mountain-
ous areas, topographic features (e.g., barren slopes) can form barriers to fire spread 
(Grissino-Mayer et al. 2004), but where drainages are aligned with prevailing 
winds, topography can facilitate the spread of large fires (Sharples 2009).

The composition and structure of forests in the northern Rockies is strongly 
determined by climate, elevation, topographic position, and fire history. In general, 
fire regimes vary along environmental gradients, with fire frequency decreasing 
and fire severity increasing with elevation. For example, at the lowest and driest 
elevations where forests are dominated by ponderosa pine, frequent surface fires 
historically consumed litter and dead wood, and killed seedlings and smaller trees. 
Adaptive traits such as thick bark allowed mature ponderosa pines to survive many 
repeated fires over time and tree densities were kept low.

Fire exclusion since the 1920s has increased surface fuel loads, tree densities, 
and ladder fuels, especially in low-elevation, dry conifer forests (Schoennagel 
et al. 2004). As a result, fires in these forests may be larger and more intense, and 
may cause higher rates of tree mortality than historical fires. In higher elevation 
forests, however, where fires were historically infrequent, fire exclusion has not 
affected the fire regimes (Romme and Despain 1989; Schoennagel et al. 2004). 
For example, lodgepole pine forests in Yellowstone National Park historically were 
subject to large, stand-replacing fires (Romme 1982), and lodgepole pine has the 
unique ability to regenerate prolifically after these severe fires from seeds released 
from the tree’s serotinous cones (Turner et al. 2003).

Future climate projections for the northern Rocky Mountains have dramatic 
implications for fire regimes. The fire season is expected to grow longer, allow-
ing more fires to occur and those fires to burn for longer periods and across larger 
areas (Westerling et al. 2006). Earlier onset of snow melt will reduce fuel mois-
ture during the fire season, making a larger portion of the landscape flammable for 
longer periods of time (Miller et al. 2011).
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8.3.2  Mountain Pine Beetle (MPB)

The principal agent of insect-caused mortality in northern Rocky Mountain pine for-
ests is mountain pine beetle (MPB). The MPB is a native, cambial-feeding bark beetle 
of several western pines, including ponderosa pine, western white pine (Pinus monti-
cola), whitebark pine, limber pine (Pinus flexilus), and lodgepole pine (Safranyik and 
Carroll 2006; Gibson et al. 2009). The entire life cycle is spent beneath the bark of 
host trees, except when adults emerge from brood trees and fly in search of new host 
trees. Tree defense against MPB is complex, including both physical (e.g., resin flow) 
and chemical (e.g., terpenoid compounds) defenses, but these match-head-size beetles 
can overwhelm host defenses through sheer numbers with a mass attack strategy. The 
MPB is an integral component of forest ecosystem processes because of its role in 
stand thinning and redistribution of resources and nutrients important for tree regener-
ation. It is also recognized as an aggressive and economically important forest insect 
responsible for tree mortality across large areas (Gibson et al. 2009). Beetle-induced 
tree mortality influences biogeochemical processes with effects that are nonlinear in 
time and space and depend on the stage of beetle infestation and rate of ecosystem 
recovery (Griffin et al. 2011; Edburg et al. 2012). For example, Edburg et al. (2012) 
found that the timing and amount of snow melt, as well as the quality of water, may 
be substantially modified following bark beetle outbreaks, and Kurz et al. (2008) 
report that widespread tree mortality during MPB outbreaks greatly reduced forest 
carbon uptake and increased carbon emissions from decay of killed trees.

Mountain pine beetle populations are typically innocuous, infesting a few dam-
aged or suppressed trees scattered throughout the forest. However, populations 
periodically erupt into large-scale outbreaks (Safranyik and Carroll 2006). Such 
outbreaks can cause dramatic tree mortality over extensive areas in only a few 
years, often killing the largest host trees in high-density stands. Although some 
stands may sustain nearly complete mortality (Amman 1977), average mortality in 
mature lodgepole pine stands across the landscape is usually 30–45 % (Safranyik 
and Carroll 2006). Mortality of reproductive whitebark pine can exceed 95 % 
(Schwandt 2006; Logan et al. 2010).

Periodic MPB outbreaks have occurred for millennia (Brunelle et al. 2008) 
with, for example, pre-twentieth century dates of MPB-caused mortality inferred 
from whitebark pine tree-ring records (Perkins and Swetnam 1996). From 1990 to 
2014, 6.6 million ha of forest in the western United States have been infested by 
MPB (Jenkins et al. 2012), and the MPB outbreak that has been ongoing in British 
Columbia over the past decade is the largest recorded in the twentieth century 
(Sambaraju et al. 2012). Moreover, evidence suggests that the suitable climatic 
window for MPB is expanding to encompass additional territory, and outbreaks 
are occurring further north, further south, and at higher elevations than occurred 
previously (Safranyik et al. 2010; Cullingham et al. 2011; Lynch and O’Connor 
2013). For example, MPBs are now found in hybrid lodgepole pine/jack pine 
(Pinus banksiana) stands and are able to infest natural jack pine stands at the lead-
ing edge of the Canadian front, which could facilitate a host-range expansion into 
areas of the boreal forest (Cullingham et al. 2011).
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An important focus of current research is the degree to which changes in cli-
mate are likely to affect tree host populations and beetle dynamics. Climate is 
known to govern beetle survival and growth because beetle development and dis-
persal are sensitive to temperature (Bentz et al. 2010). Recent evidence confirms 
that MPB activity has been influenced by changes in climate. For example, MPB 
flight season in the Colorado Front Range now occurs at least one month ear-
lier and for twice as long as recorded historically (Mitton and Ferrenberg 2012). 
Statistical models based on historical climate and beetle distributions demonstrate 
that minimum winter temperatures and drought conditions in current and preceding 
years influence outbreak size (Preisler et al. 2012). Coops et al. (2012) modeled 
areas of vulnerable host trees and areas of potential beetle expansion under future 
climate and suggested that timing and location of future outbreaks will depend on 
complex interactions among climate-driven effects on tree distributions and tree 
stress, as well as independent effects on MPB phenology and outbreak dynamics.

8.3.3  White Pine Blister Rust (WPBR)

White pine blister rust (WPBR) is an exotic fungus, inadvertently introduced into 
the United States from Europe around 1910 (Bingham 1983; Tomback and Achuff 
2011). Its complex life cycle requires two hosts, with two spore-producing stages 
on white pine and three separate spore-producing stages on the alternate hosts, 
Ribes spp. The WPBR is a fungus that infects only five-needle pine species, and 
all nine North American five-needle pine species are susceptible. Infection begins 
when basidiospores, produced on Ribes leaves in late summer, are wind dispersed 
to pines in the vicinity. The basidiospores germinate on the pine needles and 
hyphae grow through the stomata into the cell tissues, needles, and stem (Patton 
and Johnson 1970). Cankers form when the fungus reaches large branches and the 
main stem, and canker formation and colonization of the phloem by the hyphae, 
which initially cause branch dieback and top kill, eventually kill the tree. Cankers 
form blisters that erupt through the bark, releasing aeciospores, the spore stage that 
infects Ribes (see Schwandt et al. (2013) for a detailed description of the WPBR 
life cycle). Basidiospores are short-lived and disperse relatively short distances, but 
aeciospores are hardy and can disperse long distances (>100 km; Frank et al. 2008). 
Basidiospores have a narrow window for production and successful infection of 
pine needles, requiring warm temperatures (>20 °C) and high humidities (>98 %) 
(McDonald et al. 1981). The time required for WPBR to kill its host varies by spe-
cies (5–10 years for western white pine and over 20 years for whitebark pine) (Hoff 
and Hagle 1990). Native pine populations show some heritable resistance to WPBR 
but frequency of resistance is low; often less than 1 % of trees show resistant traits 
(Hoff et al. 1980). Tree mortality affects stand structure and species composition, 
but the most serious impact of WPBR is long-term effects to white pine regenera-
tion capacity, with direct mortality of the more susceptible seedlings and saplings 
and the loss of cone and seed production following branch dieback and top kill.
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8.4  Disturbance Interactions

8.4.1  Wildland Fire and Mountain Pine Beetle

Wildland fires and insect outbreaks are the two primary natural disturbance pro-
cesses in conifer forests of western North America (Hicke et al. 2012; Jenkins 
et al. 2012). How wildland fire and bark beetles interact has been an important 
research topic since the early twentieth century (Miller and Patterson 1927; 
Evenden and Gibson 1940; Weaver 1943) with research primarily focused on the 
potential for increased fire hazard following outbreaks. Results of multiple studies 
have indicated changes in fire behavior, extent, and severity result from bark bee-
tle-caused mortality in pine forests, with variability in fire patterns heavily influ-
enced by climate, weather, topography, forest type, and disturbance history (see 
Hicke et al. 2012 for a summary). Fewer studies have addressed the influence of 
wildland fires on bark beetle disturbance regimes, and fewer still have examined 
the reciprocal interactions of beetles and fire through several disturbance cycles 
(but see Parker et al. 2006). Climate factors, in particular drought and increased 
temperatures, are recognized as key drivers of both wildland fires and bark bee-
tle outbreaks (Hicke et al. 2012). Anthropogenic climate change has been rec-
ognized as a causal factor in recent increases in annual area burned by wildfires 
(Littell et al. 2009) and area affected by bark beetle outbreaks (Bentz et al. 2010). 
Predictions of warmer temperatures and increased drought stress suggest that the 
total area susceptible to or affected by beetle outbreaks and large or severe fires 
may increase in the coming decades (Williams et al. 2013). Acting independently 
or synchronously in space and time, wildland fires, and MPB outbreaks can sub-
stantially influence forest structure, composition, and function; abruptly reorgan-
ize landscapes; and alter biogeochemical processes such as carbon cycling, water 
supply, and nutrient cycles (Fettig et al. 2007; Kurz et al. 2008; Edburg et al. 2012; 
Falk 2013; Hansen 2014).

Though MPB can be found in fire-damaged trees (McHugh et al. 2003; 
Schwilk et al. 2006; Six and Skov 2009), it is only weakly attracted to fire-
scorched trees (Geiszler et al. 1984; Davis et al. 2012). MPBs rarely contribute 
significantly to post-fire tree mortality (Geiszler et al. 1984; Powell et al. 2012; 
Jenkins et al. 2014), and beetle-caused mortality is usually limited to the imme-
diate vicinity of the fire (Ryan and Amman 1996). However, it has been shown 
that fire injury can increase tree susceptibility to MPB attack, and MPB can kill 
fire-damaged trees (McHugh et al. 2003; Davis et al. 2012; Jenkins et al. 2014). 
Although fires can contribute to maintaining local MPB populations (Elkin and 
Reid 2004; Davis et al. 2012; Powell et al. 2012), fires are not known to initiate 
MPB outbreaks (Mitchell and Sartwell 1974; Powell et al. 2012).

Fire effects on MPB populations are time-dependent. For example, fire-weak-
ened trees are colonized only when fire occurs near the time when beetles are 
searching for new host trees, so that beetles encounter the trees before phloem 
resources become unsuitable (Parker et al. 2006). Although MPB reproduce in 
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fire-damaged trees, this resource benefit lasts only a few months or years after a 
fire (Davis et al. 2012; Powell et al. 2012). Wildland fires can affect beetle activity 
indirectly over longer time periods by altering species composition and structure 
of forests (e.g., removing fire-intolerant species) and providing increased water, 
light, and nutrients for surviving trees (i.e., growth release), thus influencing the 
availability and vigor of suitable host trees (Hessburg et al. 2005; Fettig et al. 
2007; Keeling and Sala 2012). In addition, stand-replacing fires can reduce the 
likelihood of MBP attack until regenerating forests have attained a threshold diam-
eter sufficient to attract beetles, especially when beetle populations are relatively 
low (Kulakowski et al. 2012).

Mountain pine beetle activity influences wildland fire by altering the quantity, 
type, vertical and horizontal arrangement, and chemical and moisture properties of 
dead and live vegetative biomass (fuel) available to burn (Hicke et al. 2012). Thus, 
a MPB outbreak has the potential to change the probability of fire occurrence, 
potential for crown fire, rate of fire spread, and burn severity patterns and vari-
ability (Table 8.1). Beetle-caused tree mortality can also influence the balance of 
light, water, and nutrients available for growth of overstory and understory plants, 
thereby altering species composition and stand structure (i.e., fuel characteristics) 
for years after an outbreak (Hansen 2014).

Mountain pine beetle impacts in forests occur in three phases important for fire 
behavior: the endemic phase, in which beetles are restricted to stressed or dam-
aged trees; the epidemic phase, in which large beetle populations attack and kill 
as many as 80–95 % of susceptible host trees within stands; and the post-epidemic 
phase, which lasts for approximately five years after an epidemic (Jenkins et al. 
2008; Safranyik et al. 2010; Hansen 2014). During the endemic phase, beetle influ-
ence on fuels and subsequent fire behavior is fairly limited, as few trees are affected 
(Page and Jenkins 2007). In the epidemic and post-epidemic phases, fuel and fire 
characteristics depend on time since attack (Hicke et al. 2012). One to three years 
after initial attack, when needles are yellowing or red but still attached to branches, 
attacked trees have lower foliar moisture content, and therefore higher flammability 
and torching potential, than green trees. Because aerial fuel continuity is maintained, 
active crown fire potential is high (Page et al. 2012; Jenkins et al. 2014). Four to 
ten years after attack, standing dead trees have lost their needles and small branches, 
making active crown fire potential lower than in non-attacked stands, but increased 
fine surface fuel loads result in higher surface fire rates of spread, flame lengths, and 
torching potential (Hicke et al. 2012; Schoennagel et al. 2012). The highest fire haz-
ard is assumed to occur in the post-epidemic phase, decades after attack, as a result 
of accumulation of heavy, large-diameter fuels (snags and large branches), regenera-
tion, and increased wind speeds and drying of fuels resulting from the loss of shel-
tering vegetation (Jenkins et al. 2008). Fire behaviors and fire effects associated 
with post-epidemic stands include increased duration of flaming and smoldering, 
increased fireline intensity, increased potential for crown fire initiation, and increased 
fire severity (Jenkins et al. 2008; Hicke et al. 2012; Schoennagel et al. 2012).

Consistent with the interactions described above, our modeling results indi-
cate that interactions of wildland fire and MPB activity influence the abundance 
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of individual species on the landscape (Figs. 8.4 and 8.6). Species responses are 
directly linked to the physiological and life history characteristics that control 
response to fire and suitability as host species for MPB. As a result of differences 
in species composition and landscape configuration in each of our simulation land-
scapes, climate (current vs. projected future) influences fire and beetle interactions 
in different ways. For example, the EFBR landscape is dominated by low-elevation 
conifers that are adapted to relatively frequent fire and are MPB hosts, with smaller 
components of high-elevation, fire-intolerant, and non-host species (Fig. 8.4a). 
Under current climate and without additional MPB or WPBR disturbance, 

Fig. 8.4  Landscape composition of species cover types mapped using the plurality of basal 
area for current climate (CC) for the East Fork of the Bitterroot River (EFBR) landscape with 
all combinations of fire, white pine blister rust (WPBR), and mountain pine beetle (MPB): a fire, 
WPBR, and MPB, b no fire, WPBR, MPB, c fire and MPB, d MPB only, e fire and WPBR, f 
WPBR only, g fire only, and h no disturbances. Species PIAL-whitebark pine, PIEN-Engelmann 
spruce, PICO-lodgepole pine, PSME-Douglas-fir, and PIPO-ponderosa pine
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simulated fires limit the basal area of fire-intolerant whitebark pine, Engelmann 
spruce, and subalpine fir and, where their distributions overlap, favor lodgepole pine 
over Douglas-fir (Fig. 8.4g). Simulated MPB activity in the absence of fire substan-
tially decreases the basal area of host species (lodgepole pine, ponderosa pine, and 
whitebark pine), allowing for an increase in non-host species such as Douglas-fir, 
Engelmann spruce, and subalpine fir (Fig. 8.4d). The interaction of MPB and fire 
produces some of the lowest landscape basal areas. Significantly, we found that fire-
mediated MPB effects at the individual species level restrict the abundance of sub-
alpine fir and Engelmann spruce at higher elevations and maintain small but viable 
populations of lodgepole pine and ponderosa pine at lower elevations. Compared 
to current climate, the simulated warmer climate has little effect on total basal 
area in the absence of disturbance, but increases the basal area of Douglas-fir at 
the expense of lodgepole pine (Fig. 8.5h). Similar to current climate scenarios, in a 
warmer climate fire reduces the basal area of fire-intolerant trees (Fig. 8.5a, c, e, g), 
and the interaction of fire and MBP decreases basal area of MPB host tree species 
and high-elevation conifers, with or without the influence of WPBR (Fig. 8.5a, c). 
However, the warmer climate decreases fire rotation, increases annual average area 
burned, and increases the percent of high severity fires for all disturbance scenarios, 
but these results are more variable across time (Table 8.2).

The vast majority of the YCP landscape is dominated by lodgepole pine, a fire-
sensitive and MPB host species, with lesser amounts of high-elevation, non-host 
species (Engelmann spruce, subalpine fir), and minor populations of Douglas-fir 
and whitebark pine (Fig. 8.6). Under current climate, simulated wildland fires 
exert minor and short-term control over species basal area (Fig. 8.6c). Simulated 
MPB activity, one of the dominant disturbance processes on the YCP landscape, 
causes periodic and substantial declines in lodgepole pine, allowing for a persis-
tent increase in subalpine fir and Engelmann spruce over initial levels (Fig. 8.6a, b, 
c, d). The interaction of MPB and fire nearly doubles the percent of high-severity 
fire as the result of increased surface fuels from MPB-killed trees (Table 8.2) and 
limits subalpine fir and Engelmann spruce growth, but does not mediate beetle 
effects on lodgepole pine (Fig. 8.6c, g). Simulated climate change is not a strong 
enough stressor to alter species or landscape basal area in the absence of distur-
bance; however, under a warmer climate fires increase in severity and reduce spe-
cies basal area (Fig. 8.7; Table 8.2). Fires also facilitate increased Douglas-fir 
representation by freeing resource space previously occupied by lodgepole pine, 
allowing for the expansion of this more fire-tolerant species, but Douglas-fir repre-
sentation is also driven by seed source limitations (Fig. 8.7a, c, g).

8.4.2  Wildland Fire and White Pine Blister Rust

Effects of wildland fire on WPBR are minor and primarily indirect, with the 
exception of the possibility that smoke may kill rust spores produced at the time 
of the fire (Parmeter and Uhrenholdt 1975). Fire indirectly affects WPBR by 
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changing the size, distribution, and abundance of its two hosts—five-needle pines 
and Ribes spp. Most five-needle pines of the western United States are somewhat 
(whitebark pine, limber pine) to highly (western white pine) fire-adapted, with 
thick bark, high canopies, and deep roots (Ryan and Reinhardt 1988). Mixed and 
high severity fires are common in forests where WPBR is present (Arno et al. 
2000; Murray 2007). These fires can create favorable conditions for pine regenera-
tion because most five-needle pine seeds are rodent- and bird-dispersed and thus 
better adapted to spread into post-fire landscapes than seeds of their tree competi-
tors (Lanner 1989; Morgan et al. 1994). Severe fires that kill rust-resistant pine 

Fig. 8.5  Landscape composition of species cover types mapped using the plurality of basal area 
for a warmer climate (A2) for the East Fork of the Bitterroot River (EFBR) landscape with all 
combinations of fire, white pine blister rust (WPBR), and mountain pine beetle (MPB): a fire, 
WPBR, and MPB, b no fire, WPBR, MPB, c fire and MPB, d MPB only, e fire and WPBR, 
f WPBR only, g fire only, and h no disturbances. Species: PIAL-whitebark pine, PIEN-Engel-
mann spruce, PICO-lodgepole pine, PSME-Douglas-fir, and PIPO-ponderosa pine
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trees ensure continued high rust infection rates and mortality (Keane et al. 2012), 
however, where rust-resistant five-needle pines survive fire they can provide the 
seeds for populating future landscapes resilient to both rust infection and fire mor-
tality (Keane et al. 2012). Finally, studies have indicated that fire exclusion has 
increased competition stress, weakening pine trees and perhaps facilitating rust 
infection (Parker et al. 2006; Heward et al. 2013).

Stands that are both burned and rust-infected have a higher overall potential 
for tree mortality. Trees infected with WPBR are weakened, and may be more 
susceptible to fire-caused damage and mortality (Stephens and Finney 2002). As 
WPBR kills pine trees slowly, dead foliage and wood added to the fuelbed may 
increase fire intensity. As occurs after MPB outbreaks, WPBR infection results in 

Table 8.2  Summaries of wildland fire characteristics from the FireBGCv2 model for two simulation 
landscapes: The East Fork Bitterroot River and Yellowstone Central Plateau for current climate 
and warmer climate scenarios

Disturbance types implemented are white pine blister rust (WPBR), mountain pine beetle (MPB), 
and wildland fire (Fire). Results are annual values averaged over the 250-year simulation period, 
with standard deviations in parentheses

Scenario Fire return 
interval (years)

Fire rotation 
(years)

Annual 
average area 
burned (%)

High severity 
fires (%)

Average tree 
mortality (%)

East Fork Bitterroot River (EFBR)—current climate (CC)

Fire only 107 (41.64) 119 1.51 4.6 26.8 (0.10)

Fire, WPBR 96 (45.30) 110 1.72 3.9 27.0 (0.08)

Fire, MPB 109 (36.45) 112 1.37 8.6 31.3 (0.13)

Fire, 
MPB,WPBR

89 (62.06) 98 1.64 3.9 27.7 (0.12)

East Fork Bitterroot River (EFBR)—warmer climate (A2)

Fire only 31 (30.77) 47 3.22 6.2 24.6 (0.08)

Fire, WPBR 43 (40.88) 56 3.09 6.4 22.3 (0.08)

Fire, MPB 48 (43.73) 36 2.90 5.3 27.1 (0.10)

Fire, 
MPB,WPBR

89 (61.56) 62 2.81 9.1 27.4 (0.10)

Yellowstone Central Plateau (YCP)—current climate (CC)

Fire only 145 (43.46) 284 0.47 40.1 46.1 (0.32)

Fire, WPBR 259 (33.95) 310 0.24 52.4 38.6 (0.36)

Fire, MPB 254 (27.34) 518 0.23 77.3 75.1 (0.30)

Fire, 
MPB,WPBR

238 (32.07) 387 0.33 81.9 58.3 (0.39)

Yellowstone Central Plateau (YCP)—warmer climate (A2)

Fire only 132 (59.14) 98 0.93 57.9 62.5 (0.22)

Fire, WPBR 215 (13.03) 204 0.48 52.0 58.8 (0.25)

Fire, MPB 214 (12.75) 239 0.46 75.9 64.6 (0.38)

Fire, 
MPB,WPBR

116 (73.50) 131 0.92 65.9 63.9 (0.33)
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elimination of the shade-intolerant pine overstory, allowing shade-tolerant com-
petitors to occupy the openings. This creates substantially different canopy fuel 
conditions, such as lower canopy base heights, higher canopy bulk densities, and 
greater canopy cover, which facilitate crown fires (Keane et al. 2002; Reinhardt 
et al. 2010). Shade-tolerant competitors are also more susceptible to fire damage, 
resulting in high post-fire tree mortality in rust-infected landscapes.

Three five-needle pine species are present on our simulation landscapes: west-
ern white pine, whitebark pine, and limber pine. The FireBGCv2 simulations indi-
cate that interactions between fire and rust have a minor influence on landscape 

Fig. 8.6  Landscape composition of species cover types mapped using the plurality of basal area 
for current climate (CC) for the Yellowstone Central Plateau (YCP) landscape with all combina-
tions of fire, white pine blister rust (WPBR), and mountain pine beetle (MPB): a fire, WPBR, 
and MPB, b no fire, WPBR, MPB, c fire and MPB, d MPB only, e fire and WPBR, f WPBR 
only, g fire only, and h no disturbances. Species: PIAL-whitebark pine, PIEN-Engelmann spruce, 
PICO-lodgepole pine, PSME-Douglas-fir, and PIPO-ponderosa pine
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composition of host species because our landscapes contain relatively few of these 
trees. For example, whitebark pine represents only 3.7 % of the EFBR landscape 
basal area in the absence of simulated WPBR infection, and limber pine is so rare 
that it is not shown in our modeling results. In WPBR-only simulations, whitebark 
pine is replaced over time by subalpine fir (Fig. 8.4f), but when fire disturbance is 
included, whitebark pine remains on the landscape at low levels (1.23 % of land-
scape basal area; Fig. 8.4e; Table 8.3). In contrast, fire does not buffer WPBR infec-
tion effects on whitebark pine at YCP, where it comprises about 2 % of the landscape 
basal area in simulations with fire and without rust (Fig. 8.6g), but decreases to less 
than 1 % of basal area when rust is simulated with or without fire (Fig. 8.6e, f).

Fig. 8.7  Landscape composition of species cover types mapped using the plurality of basal area 
for a warmer climate (A2) for the Yellowstone Central Plateau (YCP) landscape with all combi-
nations of fire, white pine blister rust (WPBR), and mountain pine beetle (MPB): a fire, WPBR, 
and MPB, b no fire, WPBR, MPB, c fire and MPB, d MPB only, e fire and WPBR, f WPBR 
only, g fire only, and h no disturbances. Species PIAL-whitebark pine, PIEN-Engelmann spruce, 
PICO-lodgepole pine, PSME-Douglas-fir, and PIPO-ponderosa pine
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Although the combination of fire and WPBR implemented for EFBR and YCP 
affect percent of fires that are high-severity and landscape fire rotation differently 
than fire-only scenarios, these differences are relatively minor because whitebark 
pine is a small component of the landscape (Table 8.2). However, as mentioned 
previously, for both simulation landscapes the warmer climate scenario substan-
tially alters fire rotations, average annual area burned, and percent of fires that are 
high severity (Table 8.2).

8.4.3  Mountain Pine Beetle and Blister Rust

Few researchers have investigated the interactions between the native MPB and 
exotic white pine blister rust. In their endemic phase, MPB populations may weaken 
five-needle pines and facilitate infection by WPBR, but these interactions are 
strongly governed by climate and biophysical environment (Tomback and Achuff 
2011). However, the ubiquitous presence of WPBR spores and low resistance to the 
disease ensures that most five-needle pines will eventually become infected and die 
from WPBR, regardless of MPB endemic levels (Hoff et al. 2001). More impor-
tantly, MPB influences WPBR through regulation of the tree species that are host to 
both disturbance agents (Campbell and Antos 2000). For example, although white-
bark pine stands in the Greater Yellowstone Ecosystem show little WPBR-related 
mortality, levels of MPB-related mortality are high (Kendall and Keane 2001). 
Many stands of healthy five-needle pines in Yellowstone have been subjected to a 
major MPB outbreak over the last decade as a result of high densities of large-diam-
eter trees coupled with prolonged warm, dry conditions. These outbreaks resulted in 
substantial mortality of rust-resistant whitebark pine trees (Logan et al. 2009).

Effects of WPBR on MPB infestations are also highly variable and subtle. 
Archibald et al. (2013) found less MPB activity in trees that had high WPBR dam-
age, whereas Bockino and Tinker (2012) found that whitebark pine selected as 
hosts for MPB had significantly higher WPBR infection, but this varied by tree 
size (diameter), stand type, and disturbance pattern (Larson 2011). Kulhavy et al. 
(1984) found that over 90 % of western white pine trees infected by bark beetles 
had either WPBR or some type of root disease, whereas Six and Adams (2007) 
found little evidence of interaction effects between MPB and WPBR.

The FireBGCv2 simulations validate the importance of species composition in 
relation to disturbance interactions, even though effects of MPB and WPBR inter-
actions are minimal because of the scarcity of WPBR host species in our study 
areas. The EFBR simulations of MPB disturbance under current climate result 
in a decline in both lodgepole and whitebark pine, with a corresponding increase 
in subalpine fir and Douglas-fir (Fig. 8.4d; Table 8.3), with little change from 
the addition of WPBR (Fig. 8.4b). The WPBR-only EFBR simulation (Fig. 8.4f) 
shows little difference in species composition compared to the no-disturbance sce-
nario (Fig. 8.4h). Similar results are seen for the YCP landscape, except that the 
decline in lodgepole pine is not countered by increases in subalpine fir because of 
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dry site conditions (Fig. 8.6b, d, f, h). These trends are enhanced under a warmer 
climate, where lodgepole pine declines are greater and stands are mainly replaced 
by Douglas-fir (Fig. 8.7a, g), but WPBR interaction has minor effects on species 
composition (Fig. 8.7b, d).

8.4.4  Fires, Beetles, and Rust

Real-world studies of the complex interactions among fire, beetles, and rust are 
rare, but in our simulations the presence of MPB and WPBR reduces the basal 
area of pine species. Fire, while reducing pines in the short term, appears to 
ensure their long-term persistence by eliminating competitors, as noted by Keane 
and Morgan (1994). In previous modeling efforts, decades or centuries were 
required to re-establish populations of rust–resistant pines after die-off (such as 
would occur with MPB). Simulated wildland fires killed some trees, but prevented 
encroachment by shade-tolerant non-pine species and maintained five-needle pines 
on the landscape (Loehman et al. 2011b). Observationally, the greatest decline in 
whitebark pine has been found in those areas affected by both WPBR and MPB 
but not fire (Campbell and Antos 2000).

Interactions among fire, MPB, and WPBR can only occur in areas that have the 
potential to support five-needle pines, which are rare in our simulation landscapes. 
However, we found that fire rotations in EFBR and YCP under current climate are 
about 10 % lower when all three disturbances are allowed to interact, and average 
landscape tree mortality is also lower (Table 8.2). Under a warmer climate, fire rota-
tion decreases (from 98 to 62 years for EFBR, and from 387 to 131 years for YCP), 
and the percent of high severity fires increases for both landscapes. Landscape basal 
areas are lower when all three disturbances are included, and the basal area of pines 
is significantly lower for multiple disturbance scenarios than other disturbance com-
binations, for both current and warmer climates (Table 8.3). Douglas-fir and subal-
pine fir dominate the EFBR landscape when all three disturbances are active under 
current climate without fire (Fig. 8.4a); however, when fires are included, pines 
are maintained on the simulation landscape (Fig. 8.4b). With a warmer climate 
Douglas-fir dominates both the EFBR (Fig. 8.5a) and YCP (Fig. 8.7a) landscapes, 
but both whitebark and lodgepole pines are still present because of continued fire. 
Thus, interactions among disturbances create different landscapes than when each 
disturbance acts separately, or in the absence of disturbance.

8.5  Discussion

Interactions among disturbance agents can dramatically influence ecosystems. 
Our literature review and simulation modeling experiments demonstrate that 
interactions among various disturbance types may cause easily detectable, direct, 
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and immediate effects such as differential tree mortality, but at landscape scales, 
effects of long-term and coupled disturbance regimes can lead to complex feed-
backs and nonlinear behaviors causing landscape trajectories to differ significantly 
(Figs. 8.4, 8.5, 8.6 and 8.7; Tables 8.2 and 8.3). Another finding from this effort is 
that most of the interaction effects are mediated through vegetation response rather 
than direct interactions between disturbances, such as a fire killing beetles and 
fungi. More importantly, we found that the effects of climate change on landscape 
conditions result mainly from the effects of disturbances and their interactions on 
vegetation; direct vegetation response to climate change rarely causes significant 
landscape change.

Many factors determine the magnitude, trend, and direction of interacting dis-
turbance effects. The physical environment is perhaps the most important factor: 
as shown by our simulations, climate has enormous influence (Figs. 8.4, 8.5, 8.6 
and 8.7; Tables 8.2 and 8.3), with a warmer climate allowing for greater MPB 
activity and more wildland fire, altered landscape composition and structure, and 
changes in WPBR infection and mortality rates. Topography is also an important 
influence affecting rate of fire spread, water and radiation balance, and microcli-
matic conditions that in turn may influence potential for rust infection and host 
vulnerability. Species composition also influences disturbance interactions. For 
example, the abundance of host species for both MPB and WPBR may dictate 
the intensity and magnitude of interactions between these two disturbances, and 
resulting tree mortality patterns dictate wildland fuel dynamics that then influ-
ence fire regimes. The current climate-mediated MPB outbreak in North America 
might have been less intense and more localized if wildland fires had not been 
suppressed over the last century, since fire exclusion has increased the abundance 
of host species of sufficient size and distribution for insect and disease epidemics 
(Catchpole et al. 2001; Carroll et al. 2003).

Comprehensive simulations of multiple disturbance interactions demand a 
mechanistic, process-based approach to ensure most effects are appropriately 
represented (Gustafson 2013). Direct links from climate to both disturbance and 
vegetation processes are needed to simulate those important ecophysiological 
interactions that dictate ecosystem response (Keane et al. 2015). In our simula-
tions, for example, wildland fire often killed trees, which increased water availa-
bility because of decreased leaf area and evapotranspiration, resulting in increased 
fitness of surviving trees thereby reducing insect and disease mortality. This 
result is possible because the model simulated daily the effects of rainfall, snow 
dynamics, and temperature on soil water, plant phenology, evapotranspiration, 
photosynthesis, and respiration across an entire landscape (Keane et al. 2011). 
Phenomenological approaches, such as statistical analysis and modeling, do not 
incorporate the full suite of ecophysiological responses to climate change into 
model structure (Gustafson 2013; Keane et al. 2015).

Incorporating the complexity of mechanistic biophysical and biotic drivers for 
multiple disturbances at landscape scales across decades of simulation is a chal-
lenge for even the most comprehensive LMs (Keane et al. 2015). Ecological sur-
prises may emerge due to inadequate model predictive power, particularly for 
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understanding spatially heterogeneous, scaled, and nonlinear interactions of cou-
pled disturbance processes. Moreover, as disturbance regimes increasingly move 
beyond historical observations (Westerling et al. 2011), interactions with other dis-
turbance agents become less predictable because modeled relationships cannot be 
based on observed data. Feedbacks of disturbance-caused ecosystem changes to 
subsequent disturbance susceptibility are also likely to confound predictive mod-
els; for example, MPB epidemics can decrease or increase modeled crown fire sus-
ceptibility depending on assumptions about ecosystem productivity and the rate of 
canopy recovery, which may depend on biophysical setting as well as the severity 
of the outbreak. Considering that changes in climate can alter disturbance regimes 
and host vulnerability as well as determine trajectories of ecosystem recovery, 
potential ecological surprises seem to inhabit an infinite state space.

We must recognize the great need for models that represent coupled systems (e.g., 
disease and host) to realistically represent complex forest ecosystem dynamics across 
multiple scales of space and time. In a recent review of climate change effects on plant 
diseases, Pautasso et al. (2012) identified several key research gaps including the need 
to (1) focus on mountain and boreal ecosystems, (2) integrate climate drivers other 
than temperature (e.g., precipitation), and (3) couple long-term observational data sets 
with climate change scenarios to predict impacts on plant pathogens and their hosts. 
As in studies of human health, an understanding of coupled systems is needed to fully 
recognize system vulnerability, resistance, and resilience (Hausermann et al. 2012). 
Development of such models requires theoretical, field, and modeling work to identify 
key processes, interactions, and ecological thresholds that cause cascading and nonlin-
ear ecosystem responses. Although there is still a long way to go to represent distur-
bance interactions in LMs (Keane et al. 2015), newer efforts to couple niche models 
with more complex ecosystem, population, and disturbance models are promising (see 
Iverson et al. 2011; Fordham et al. 2013; Tanentzap et al. 2013).
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9.1  Introduction

The global human population is projected to increase from 7.2 billion in 2013 to 
9.6 billion in 2050 (United Nations Department of Economic and Social Affairs 
2013). Increasing numbers of people and households are placing escalating pres-
sure on global forests through demand for wood and other forest resources. In 
addition, the geographic expansion of human populations results in deforestation 
and subsequent conversion of forested areas to agricultural and developed land 
uses. These human impacts interact with changing climate and natural forest dis-
turbances such as wildfires and insect outbreaks to create a complex system of 
interacting processes that drive forest dynamics and affect ecosystem services such 
as timber production, wildlife habitat, water quality, and carbon sequestration. 
Spatial simulation modeling of forest landscape change is an important technique 
for exploring the potential outcomes of these interactions over large areas and long 
time periods. Landscape simulation models are widely used for reconstructing his-
torical landscape patterns driven by natural disturbance regimes, projecting future 
landscape trajectories under alternative forest management scenarios, and conduct-
ing simulation experiments to examine how multiple processes and their interac-
tions affect landscape patterns and trajectories of change (Wimberly et al. 2012).

Human activities affect forest landscapes over a range of spatial and tempo-
ral scales, with diverse influences on forest vegetation patterns and dynamics. 
Conversion of forests to agricultural and developed land uses has the most signifi-
cant ecological impact because the affected areas are removed from the forested land 
base. The replacement of forests with developed land uses is effectively a perma-
nent change over the time scale of common planning horizons. Agricultural conver-
sion is also frequently viewed as a persistent long-term change. However, there are 
many historical examples of broad-scale agricultural abandonment and forest recov-
ery (Foster 1992), and afforestation is occurring in many areas around the globe 
(Stanturf et al. 1998). Although land use conversions occur at the individual parcel 
level as a result of landowner decisions, broader patterns of change are driven by 
regional and global economic and demographic forces. These trends include urban 
sprawl resulting from the growth of large metropolitan areas as well as cropland 
expansion driven by increasing global demand for agricultural commodities. Land 
use changes often exhibit distinctive patterns that influence fragmentation of the 
remaining natural vegetation (Fig. 9.1). For example, forms of urban growth range 
from the gradual expansion of urban centers to “leapfrog” patterns of more dispersed 
development (Herold et al. 2003), and patterns of agricultural conversion can be 
influenced by transportation networks and infrastructure (Geist and Lambin 2002).

In forests where timber production is a primary land use, silvicultural activi-
ties modify stand structure through the removal of trees, and the resulting changes 
in density, species composition, and tree size distribution influence the develop-
ment of the residual stand. In wildfire-prone forest landscapes, a variety of fuel 
management activities such as thinning, prescribed burning, mastication, and 
mechanical removal can be applied to reduce wildfire severity and improve the 
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effectiveness of fire suppression activities (Agee and Skinner 2005). The sizes 
and shapes of the harvest units, along with their spatial arrangement, determine 
forest patterns and influence habitat fragmentation in managed forest landscapes 
(Fig. 9.2). The persistence of these changes depends on the specific management 
practices being applied. An old-growth stand will take centuries to recover its late-
successional habitat characteristics following clearcutting (Franklin et al. 2002), 
whereas surface fuel loads may recover to pre-treatment levels within a few years 
after prescribed burning (Fernandes and Botelho 2003). The cumulative effects of 
the frequency of harvesting, the degree to which the stand structure is modified, 
and the rate of vegetation recovery create a continually shifting forest mosaic and 
determine critical ecosystem functions such as the amount of carbon storage in 
dynamic landscapes (Smithwick et al. 2007).

Roads are another pervasive human influence on forest landscapes; they facili-
tate forest conversion to other land uses and provide access for forest management 

Fig. 9.1  Expansion of developed land in the vicinity of Birmingham, Alabama from 2001 to 
2011 illustrating expansion of existing developed patches as well as “leapfrog” growth along 
transportation corridors. Land cover data are from the National Land Cover Database
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activities such as timber harvesting and fuel treatments. In addition, forest roads 
affect disturbance regimes and habitat characteristics. For example, in a dry for-
est landscape in the western United States, the frequency of human-ignited fires 
increased with road density (Narayanaraj and Wimberly 2012). Fire boundaries 
were also spatially associated with roads, reflecting their functions as fuel breaks 
and transportation corridors that facilitate fire suppression (Narayanaraj and 
Wimberly 2011). In addition, roads affect the structure and composition of road-
side forests (Watkins et al. 2003), facilitate the spread of invasive species (Parendes 
and Jones 2000), and increase the risk of disturbances such as floods and landslides 
(Jones et al. 2000). Direct effects of roads on adjacent forest environments are gen-
erally limited to a relatively narrow zone of influence (often <50 m from roadside). 
However, the pervasiveness of forest road networks across large areas greatly mag-
nifies their effects across broader landscapes (McGarigal et al. 2001).

These human disturbances do not occur independently of one another. In par-
ticular, broader patterns of land use can affect forest dynamics through their inter-
actions with forest management practices and natural disturbance. These types of 

Fig. 9.2  Landscape patterns of human disturbance resulting from timber harvesting in the Tilla-
mook State Forest, Oregon. Land cover data are from the National Land Cover Database
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interactions frequently occur in the transition zone between natural forest and devel-
oped areas, referred to as the wildland–urban interface (WUI), which has resulted 
from the expansion of human populations into forests and other wildland areas (Mell 
et al. 2010). The permanent presence of low-density settlements in fire-prone ecosys-
tems increases the probability of human-ignited wildfires (Syphard et al. 2007b), but 
also reduces the frequency of forest management activities and increases the costs 
associated with treating hazardous fuels (Wear et al. 1999; Berry and Hesseln 2004; 
Kline et al. 2004). Human land use also influences fire regimes in tropical forests in 
developing countries through the expansion of agricultural land, resulting in defor-
estation and fragmentation of the remaining forests, and increased use of fire for 
land clearing and agriculture (Nepstad et al. 2008). In particular, the spread of fire 
from human-dominated areas into the edges of remaining forests can lead to further 
deforestation through a positive feedback loop of fire, tree mortality, and increased 
susceptibility to fire because of increased fuel loads and modified understory micro-
climate (Cochrane et al. 1999). Thus, agricultural expansion can ultimately lead to 
deforestation even in protected areas where direct land use conversion is prohibited.

The human disturbance processes and interactions discussed thus far fall within 
the scope of coupled human and natural systems (CHANS). Such systems have 
emerged as an important basis for understanding the reciprocal interactions and 
feedbacks that connect human activities and ecosystem responses through cou-
plings that occur at multiple spatial and temporal scales (Liu et al. 2007a, b, 2013). 
By exploring such linkages over a broad range of scales from local interactions to 
global telecoupling, research on CHANS aims to disentangle these complex rela-
tionships and has the potential to generate new insights that are highly relevant to 
environmental policy. As a result, the CHANS approach has been widely applied 
as a framework for studying a variety of human–environment interactions includ-
ing wildlife habitat relationships and conservation in human-dominated landscapes 
(Carter et al. 2012); the interactions of fire management, air quality, and human 
health in fire-prone ecosystems (Johnston and Bowman 2014); complex inter-
actions of multiple drivers of land cover and land use change (López-Carr et al. 
2012); and the emergence of infectious disease outbreaks as a result of human 
influences on the ecologies of pathogens, vectors, hosts, and the landscapes they 
inhabit (Meentemeyer et al. 2012).

The CHANS framework is also highly applicable to the study of human 
interactions with disturbance-driven forest ecosystems. In particular, the inter-
relationships between anthropogenic disturbance and natural processes in forest 
landscapes can generate a variety of emergent behaviors, including self-reinforc-
ing feedback loops (Cochrane et al. 1999; Lindenmayer et al. 2011), threshold 
effects (Bodin et al. 2006; de Filho and Metzger 2006), and alternative stable 
states (Hirota et al. 2011). These effects cannot be fully understood or predicted 
without considering the interactions of multiple processes across large areas and 
long time periods. Therefore, spatial simulation models are important tools for 
understanding the effects of coupled human and natural processes in forest land-
scapes and for developing appropriate management strategies to sustain forests 
and the ecosystem services that they provide.
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In this chapter, we review the current capabilities for simulating interactions 
between human activities and forest landscape dynamics by grouping models into 
two main categories: forest landscape models (FLMs), which focus on landscapes 
where forests are the dominant land cover, and land change models (LCMs), which 
encompass mosaics of different land cover and land use classes that include forests in 
addition to other land uses such as developed areas and agricultural lands. Dynamic 
Global Vegetation Models (DVGMs) and similar coarse-grained ecological models 
that do not directly incorporate two-dimensional spatial representations of landscape 
patch structure and associated ecological processes (Fisher et al. 2010) are outside the 
scope of this review. Our synthesis highlights the strengths and limitations of existing 
models for simulating human disturbances and offers suggestions for future develop-
ment of integrated models that can more effectively simulate forests as CHANS.

9.2  Forest Landscape Models

9.2.1  Background

During the late 1980s, the emergence of landscape ecology offered new perspec-
tives for understanding ecological dynamics and addressing forest management 
issues at broad spatiotemporal scales encompassing thousands of hectares and 
extending from decades to centuries. At these scales, natural and anthropogenic 
disturbances such as wildfire, windthrow, insect outbreaks, and timber harvesting 
emerge as important drivers of landscape pattern and dynamics. Forest landscape 
models were developed to study the effects of these disturbance processes on for-
est landscapes. Most early FLMs were designed to simulate a single disturbance 
type, such as fire (Li et al. 1997) or timber harvesting (Gustafson and Crow 1996). 
More recently, FLMs have benefited from a variety of technological advances, 
including increased computing capacity, widespread adoption of geographic infor-
mation systems (GIS), increased utilization of satellite remote sensing for map-
ping large forest landscapes, and advanced software engineering techniques. The 
models are usually designed to simulate multiple processes and their interactions 
in a spatially explicit manner, although individual models vary considerably in 
their representation of forest landscapes, level of spatial interaction, and overall 
complexity (Scheller and Mladenoff 2007; He 2008; Xi et al. 2009).

A distinctive characteristic of FLMs is that they track spatially explicit details 
about tree species, ages, sizes, and/or biomass as state variables (Fig. 9.3a). As 
a result, the simulation of site-level succession is a core process that is mod-
eled using a variety of approaches, ranging from simple methods that use stand 
age as a proxy for even-aged stand development (Boychuk and Perera 1997; Li 
et al. 1997) to more sophisticated techniques that model transitions among dis-
crete successional stages as a function of time and multiple types and severities of 
disturbance (Keane et al. 2002; Chew et al. 2004; Wimberly and Kennedy 2008). 
Alternatively succession can be simulated as a competitive process driven by 
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species characteristics such as longevity, fire and shade tolerance, maturity, regen-
eration niche, and growth rate (He and Mladenoff 1999) or using a meta-modeling 
approach that derives successional trajectories from more detailed, individual-tree 
based models of stand development (Bettinger et al. 2005; Lischke et al. 2006; 

Fig. 9.3  Examples of land cover representations for the same landscape in forest landscape 
models (FLMs) versus land change models (LCMs): a FLMs are used to simulate forest succes-
sion and species characteristics, but not to evaluate non-forest land cover, b in LCMs all forests 
are often aggregated into a single cover class, but multiple categories of land cover and land use 
are simulated in non-forested areas
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Seidl et al. 2012). Natural disturbances such as wildfire, windthrow, and insect 
outbreaks are simulated using algorithms that model disturbance initiation and 
spread based on top-down drivers such as climatic variation, and local susceptibil-
ity as a function of vegetation, topography, and other environmental characteristics 
(Keane et al. 2006; Wimberly and Kennedy 2008). More recent development of 
FLMs such as LANDIS-II has allowed the simulation of ecosystem processes such 
as nutrient cycling and their interactions with forest succession, environmental 
conditions, and fire and biomass harvesting regimes (Scheller et al. 2011; Karam 
et al. 2013). Other important FLM developments include adding functionality to 
project climate change impacts (Gustafson et al. 2010; Gustafson and Sturtevant 
2013), and utilizing large forest inventory databases to simulate and validate forest 
landscape change over very large spatial extents (Wang et al. 2013b, 2014).

9.2.2  Simulating Forest Management Activities

Many FLMs can be used to simulate the effects of silvicultural practices on for-
est landscape patterns and ecosystem dynamics over large spatial and temporal 
scales. In the early stages of development, the use of FLMs was often focused on 
understanding the effects of alternative timber harvesting strategies (e.g., aggrega-
tion versus dispersion of harvest units) on landscape patterns and forest fragmenta-
tion (Li et al. 1993; Gustafson and Crow 1996; Baskent 1997). Results from these 
studies highlighted the fact that harvesting pattern is a key driver of the spatial 
pattern of managed landscapes, with aggregated harvest areas creating less frag-
mentation and producing more interior forest area than dispersed harvest areas 
(Baskent 1997). Within the past two decades, FLMs have been further developed 
to simulate a wide range of forest management practices, such as thinning, sin-
gle tree removal, group selection, clearcutting, and reforestation (Gustafson et al. 
2000; Fraser et al. 2013). These developments have paralleled the implementa-
tion of more detailed and realistic approaches for characterizing and simulat-
ing successional changes in forest composition and structure. For example, only 
clearcutting can be simulated with a model that uses a single stand age variable as 
a proxy for stand development, whereas other activities such as thinning and sin-
gle tree removal can be incorporated into more complex successional models that 
track multiple cohorts of trees, simulate biomass dynamics, or model transitions 
between various forest structure classes.

Forest harvesting disturbances are modeled based on a set of rules and param-
eters that define the spatial pattern, temporal frequency, and stand-level effects of 
harvests (Gustafson et al. 2000; Bettinger et al. 2005; Fraser et al. 2013). The users 
typically provide spatial data layers that determine the boundaries of individual har-
vest areas and broader management areas for which harvesting regimes are speci-
fied. The management areas can be defined to exclude riparian buffers, conservation 
areas, and other locations where timber is not harvested. The rate of harvesting is 
typically specified either as a desired rotation length or as an area to be harvested 
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or treated within each time step of the simulation. Specific stands are selected 
for treatment based on a priority ranking algorithm that can be based on stand 
age, stand composition and structure, economic value, or other factors that deter-
mine the stand’s suitability for treatment. Spatial constraints can also be applied 
to either disperse treated harvest units across the landscape or aggregate them into 
larger harvest blocks. At the stand level, a set of rules are applied to determine how 
stand characteristics are modified by harvesting. Depending on the methods used 
to model vegetation succession, harvests may remove cohorts of trees, reduce live 
stand biomass, or trigger a transition to a different stand structure class.

Wildfire is a key natural disturbance process that has been incorporated in most 
FLMs, and many of these models also include the capability to simulate the effects 
of fire management activities. Fire suppression can be simulated mechanistically 
at the level of the individual fire (Loepfe et al. 2011), or statistically at the fire 
regime level by manipulating parameters such as frequency and size distribu-
tion (Shang et al. 2007). Fuel management aimed at preventing the occurrence of 
uncharacteristically large, high-severity wildfires is currently an important man-
agement practice in the United States and in other temperate forest ecosystems 
around the world (Agee and Skinner 2005). As a result, modules for simulating 
fuels and responses to fuel treatment activities such as thinning, mastication, and 
prescribed burning have been incorporated into some FLMs (He et al. 2004; Ryu 
et al. 2006; Sturtevant et al. 2009a). Fuel loads can be modeled as a simple func-
tion of time, reflecting gradual accumulation since the last fire (He et al. 2004), 
or using more sophisticated ecosystem models that track the accumulation, mor-
tality, and decomposition of various categories of live and dead fuels (Ryu et al. 
2006). Within the FLM simulation framework, fuel treatments can alter the effects 
of subsequent wildfire by modifying the amounts of available fuels, and by alter-
ing stand structure and species composition in ways that affect the probability of 
wildfire-induced mortality. Forest landscape models can then be applied to assess 
how different strategies for implementing multiple fuel treatments over large areas 
and long time periods influence the fire regime and the resulting patterns of forest 
vegetation (He et al. 2004; Sturtevant et al. 2009b). However, to date relatively 
few studies have examined the effects of different fuel treatment strategies on pro-
cesses such as carbon sequestration, nutrient cycling, and emissions.

FLMs have been used to assess the effects of alternative forest management 
practices on ecological responses such as reduction of fire risk, climate change 
adaptation, shifts in species abundance and distribution, changes in wildlife habi-
tat, carbon sequestration, and nutrient cycling. For example, Shang et al. (2004) 
concluded that mechanical treatment (thinning and coarse woody debris removal) 
coupled with prescribed fire effectively controlled fuel loads and reduced potential 
fire risk in Central Hardwood Forests of the United States. In the same forests, 
Wang et al. (2013a) reported that group selection and clearcutting were the most 
effective management alternatives for mitigating oak (Quercus spp.) decline over 
short and medium time frames. Bu et al. (2008) found that certain harvesting and 
planting strategies can delay the northern migration of warming-adaptable species 
in a temperate forest of northeastern China. Scheller et al. (2011) found that forest 
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harvesting reduced carbon storage in U.S. Lake States Mesic Forests, with whole-
tree removal resulting in a greater loss of carbon storage than standard harvest-
ing practices such as delimbing on site. A modeling study by Karam et al. (2013) 
assessed the relative influences of fire exclusion and multiple harvesting strategies 
on nutrient pools in the Lake Tahoe Basin, United States. This variety of studies 
highlights the breadth of forest ecosystems in which FLMs can be applied as well 
as the some of the wide range of interactions between management activities and 
natural processes that can be explored.

9.3  Land Change Models

9.3.1  Background

In contrast to FLMs, LCMs encompass land cover types beyond forests, but the 
land surface is typically classified into relatively few discrete land cover types that 
may include one or more forest classes in addition to other natural and anthropo-
genic classes such as developed, agricultural, non-vegetated, grassland and shrub-
land (Fig. 9.3b). In this review, we generically refer to LCMs as “land use change 
models” because their underlying processes typically reflect changes in land use 
such as urban growth, agricultural expansion, agricultural land abandonment, and 
afforestation. However, most spatially explicit LCMs do not actually model changes 
among different land use categories, but instead simulate transitions between land 
cover types such as forest, developed, cropland, and grassland. LCMs typically use 
these broad land cover classes as state variables because they can be readily mapped 
using satellite remote sensing, whereas land use cannot always be directly inferred 
from land cover. A variety of different approaches can be used to model transitions 
among these states (Table 9.1); some of the most common LCM methodologies and 
examples of where and how they have been applied are summarized below.

9.3.2  Markov Chain and Cellular Automata Models

Land cover change through time can be measured over large areas using multi-date 
satellite imagery, and the resulting data used to derive empirical transition prob-
abilities among land cover classes. These probabilities can then be applied to pro-
ject change using Markov chain models, which are stochastic models in which 
the current state of a grid cell determines conditional probabilities for future state 
changes. Markov chain frameworks have been used to model land use change (Bell 
1974) as well as other processes such as gap dynamics and succession in forested 
lands (Shugart et al. 1973; Horn 1975) since at least the 1970s, and these tech-
niques remain in use worldwide. For example, Brown et al. (2000) used multi-date 
Landsat imagery to parameterize a Markov chain model for projecting forest cover 
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change in the Upper Midwest of the United States. Guan et al. (2008) used four 
dates of Landsat imagery to determine transition probabilities between six land use 
classes (including “forestland”), using a Markov chain model to project change 
from 2010 to 2050 in Kitakyushu, Japan. Petit et al. (2001) used multi-date SPOT 
imagery to parameterize a Markov chain model for southeastern Zambia, project-
ing rapid forest decline due to conversion to cultivated land. In all these examples 
Markov chain models were used to project changes in forested area, but did not 
explicitly address the effects of disturbance or management within these forests.

Cellular automata (CA) models build on the concept of Markov chain models 
by utilizing transition rules that are not only dependent on a cell’s current state, 
but also on the state of adjacent or neighboring grid cells. These models can be 
used to represent complex, nonlinear relationships among processes affecting land 
use change, with landscape patterns resulting from interactions among processes 
such as self-organization, emergence, and path dependence (Walsh et al. 2006; 
Liu et al. 2008; Stanilov and Batty 2011). CA models have been widely applied 
to model landscape change, and especially to simulate patterns of urban growth. 
The Slope, Land Cover, Exclusion, Urbanization, Transportation, and Hillshade 
(SLEUTH) model (Clarke et al. 1997) has been used since the 1990s for a multi-
tude of urban modeling projects (Claggett et al. 2004; Jantz et al. 2010; Liu et al. 
2012). The Spatially Explicit Regional Growth Model (SERGoM) (Theobald 
2005; Bierwagen et al. 2010) and Metronamica model (Stanilov and Batty 2011) 
have similarly been used to model urban growth. In such models, change in for-
est land cover or land use is usually not explicitly modeled but arises as a conse-
quence of the expansion of urban development into forested areas.

Less frequently, CA models have been used to simulate transitions among mul-
tiple vegetation and land cover classes, including forested lands. Ozah et al. (2012) 
used a deterministic CA model to simulate changes between seven land use and 
land cover classes, including forest, in the Lake Chad basin in Africa. Walsh et al. 
(2006) modeled cassava, forest, and rice for northeastern Thailand using a CA 
modeling framework, including deforestation that occurred as a result of cropland 
expansion. Yang et al. (2012) linked CA and Markov chain models to project land 
use near Beijing, China, and forest was one of the five explicitly modeled classes. 
The LandShift model was designed to simulate anthropogenic land use change at 
national to global scales, and an application of the model in India simulated for-
ested land as part of a study of demand for human settlement, biofuel production, 
and food production (Schaldach et al. 2011). In all of these examples, forest was 
treated as a land cover or land use class, and forest disturbance, other than direct 
conversion of forest to other land use classes, was not explicitly modeled.

9.3.3  Demand-Allocation Models

One of the significant challenges in modeling land cover and land use change is 
that underlying processes operate over an array of spatial scales, ranging from 
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broad macroeconomic and demographic drivers to local constraints that affect land 
use within individual parcels. To account for processes at multiple scales and to 
incorporate both spatial and non-spatial data, many LCMs use separate modules 
to model the “demand” and “allocation” of land change. Demand provides aggre-
gate land use proportions at the regional level (quantity of land use change), and 
is generally driven by “top-down” drivers that affect demand for land-based com-
modities, such as population growth, commodity prices, or global trade. The allo-
cation component ingests the amount of change from the demand component and 
produces spatially explicit maps of the locations of land cover or land use change. 
Allocation is dependent on site-level, spatially explicit data such as elevation, 
slope, soil attributes, climate, and access to transportation networks, all factors that 
affect the ability of a land parcel to support a given type of land use. The con-
cepts of “demand” and “allocation” modules were established during the develop-
ment of the Conversion of Land Use and its Effects (CLUE) model (Veldkamp and 
Fresco 1996; Verburg et al. 2002), but have since been widely adapted for use in 
other modeling frameworks.

Demand-allocation models have been used to explore land use at a variety of 
spatial and thematic scales. Unlike many CA models that are focused on urban 
change, demand-allocation models have typically been used to project changes 
among multiple land use categories, including forest. Wassenaar et al. (2007) used 
the CLUE framework to model cropland and pasture expansion into forested areas 
of the tropics in Central and South America, while more recently Barreto et al. 
(2013) used CLUE to model soybean expansion into forested areas of Brazil. In 
these applications, forest was treated as one of several land use classes, with no 
explicit representation of forest disturbance or management. Pontius et al. (2001) 
used GEOMOD to model land use change in Costa Rica, emphasizing forest dis-
turbance. However, they simply modeled the locations of recently disturbed (cut) 
forest lands, assuming no regrowth, and did not consider other land use changes 
such as afforestation due to agricultural land abandonment. Of the commonly used 
demand-allocation modeling frameworks, the Forecasting Scenarios (FORE-SCE) 
of land use change model has treated forested lands and forest disturbance with 
the most detail. FORE-SCE has been used to model up to 18 land cover classes, 
including three classes of forested land (deciduous, mixed, and evergreen) and can 
also be used to simulate land cover transitions resulting from forest clearcutting 
(Sohl and Sayler 2008; Sohl et al. 2012). However, FORE-SCE does not represent 
other forms of disturbance (e.g., fire, insects) or other forest management activities 
(e.g., thinning, fuel treatments). The modeling of natural vegetation succession has 
not been incorporated into any of these demand-allocation frameworks.

9.3.4  Agent-Based Models

Agent-based models (ABMs) are process-oriented frameworks that simulate the 
decision-making processes of “agents”, individuals, groups, or entities responsible 
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for land management decisions. Other modeling frameworks that aggregate the 
collective behavior of agents may miss important aspects of decision-making 
(Manson and Evans 2007). The decision-making process is often represented 
by a series of decision rules, with an individual agent’s land use decision based 
on expected response to a set of prescribed input conditions. Landscape patterns 
emerge from the aggregate interaction among individual agents with heteroge-
neous behaviors; the agents can interact both with each other and their environ-
ment. ABMs have a shorter history of application in land use modeling than the 
approaches outlined in the previous sections. The most common use of ABMs to 
date has been by the research community to explore interactions among drivers of 
land use change, rather than for practical application or policy-making (Matthews 
et al. 2007). Agent behavior is often modeled at the individual or household level, 
with model parameter data gathered through household surveys or interviews; as a 
result, many applications of ABMs have been at a local scale.

As with other types of LCMs, ABMs often focus on modeling changes 
in agricultural or developed land uses, with changes to forests occurring as an 
indirect result of agricultural and urban expansion. Castella et al. (2005) used a 
role-playing game to inform an ABM for simulating land use decisions of farm-
ers in northern Vietnam, with changes in forest area resulting from decisions 
to plant upland crops or rice. Robinson and Brown (2009) examined potential 
impacts of land use development policies on forest cover for a township in south-
eastern Michigan, United States. These studies all occurred on relatively small 
geographic areas, a common trait for ABM applications because of the compu-
tational cost of modeling the interactions of multiple agents across broad geo-
graphic regions. Valbuena et al. (2010) described a conceptual framework for 
applying ABMs to regional settings that uses an agent typology and a probabil-
istic decision-making approach to represent the variability of agent behavior in a 
population. ABMs have also been used to represent forest management decisions 
by agents. For example, Leahy and Gorczyca (2013) developed an agent-based 
model to represent forest harvest decisions by small-scale forest landowners in 
Maine, United States. Perez and Dragicevic (2010) modeled insect infestations 
in British Columbia, Canada, in which the agents were the mountain pine beetle 
(Dendroctonus ponderosae) and lodgepole pine (Pinus contorta) trees, along with 
a forest management agent.

9.4  Coupled Models of Land Change and Forest Dynamics

Traditionally, FLMs have been applied to forest-dominated landscapes with other 
land cover and land use classes treated as a generic “background” for which 
change is not explicitly modeled. In contrast, LCMs have been applied to transi-
tions between forests and other broad classes such as croplands and urbanized 
areas, but have not been used to explicitly simulate changes in forest struc-
ture and composition within the forested areas. However, several examples of 
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modeling efforts bridge the gap between these two approaches. In the Coastal 
Landscape Modeling and Assessment (CLAMS) project, an FLM that simulated 
forest management activities and the resulting changes in stand structure and 
landscape patterns was coupled with an LCM that predicted changes in building 
densities as a result of human population expansion into forested areas (Johnson 
et al. 2007; Spies et al. 2007). The FLM was the Landscape Management Policy 
Simulator (LAMPS), which was designed to simulate forest dynamics over 
extremely large areas (millions of ha) while providing detailed information about 
the distribution of tree species and sizes within each stand (Bettinger et al. 2005). 
This FLM was used to simulate the spatial pattern of forest management activi-
ties by modeling the interaction of forest landowner behavior with the constraints 
imposed by various forest policies (Bettinger and Johnson 2003). The LCM was 
used to simulate increases in building densities using an empirical model driven 
by historical building densities, topography, land use zoning, and a gravity index 
that quantified developed pressure as a function of distance from cities (Kline 
et al. 2003).

The FLM and LCM were combined to project future trends in forest composi-
tion and structure across the Coast Range of western Oregon, United States. The 
two models were coupled via a spatial overlay approach, in which a set of rules 
was used to modify forest management and forest cover at a given location based 
on building density at the same location (Fig. 9.4a). Timber harvesting was halted 
and forest cover was maintained at locations that reached a minimum rural resi-
dential building density, and locations were eliminated from the forested land base 
once they reached a minimum urban building density. Overall, expanding develop-
ment resulted in a 6 % reduction in private industrial forests and a 36 % reduction 
in private nonindustrial forests available for timber production over the 100-year 
simulation period (Johnson et al. 2007). This application was an example of loose 
coupling, in which the LCM was run first and the time series of land use change 
was then used to constrain the projections of management activities and for-
est structure change made by the FLM. No reciprocal effects of forest vegetation 
characteristics on land use change were modeled.

In the preceding example, changes in land use interacted with forest landscape 
dynamics via the influence of housing density and timber harvesting, and ulti-
mately through the conversion of forests to urban areas. Another important pro-
cess linking human land use and forest dynamics is fire, and several integrated 
modeling projects have focused on this linkage. Syphard et al. (2007a) projected 
future patterns of WUI expansion, wildfire, and vegetation dynamics in southern 
California, United States, by coupling an FLM (LANDIS) with an LCM that pre-
dicted urban expansion using a CA framework. Vegetated areas were eliminated 
by urban growth, and the influences of urbanization on forests were captured via 
a spatial interaction approach where fire frequency was increased within a 90 m 
WUI buffer surrounding roads and urbanized areas (Fig. 9.4b). Two types of 
model coupling were implemented: a loose coupling in which the urban growth 
model first projected WUI change through 2050 and then incorporated the future 
land use pattern into LANDIS simulations, and a tight coupling in which both the 
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land use pattern and the vegetation map were updated after each 1-year time step. 
Incorporating the effects of urban growth did not have a large effect on total area 
burned, but did influence the spatial and temporal patterns of vegetation and fire 
because of shifts in ignition locations over time as a result of changes in the loca-
tion of the WUI.

Thompson et al. (2011) coupled a FLM (LANDIS-II) with a land use change 
model in a way that combined the spatial overlay and spatial interaction 
approaches. The LCM simulated forest conversion to developed areas over a range 
of patch sizes and development intensities. As in the previous CLAMS exam-
ple, forest composition and structure was still modeled in these converted areas. 
Development was effectively treated as a disturbance, where species composition 
and age structure were modified and future regeneration was suppressed. Both for-
est conversion and the spatial pattern of timber harvesting were sensitive to spa-
tial interactions with socio-economic characteristics in the surrounding landscape, 
including population density, home values, and road density. The coupled model 
was used to simulate future scenarios of regional forest change in Massachusetts, 

Fig. 9.4  Examples of two general approaches to coupling land change models (LCMs) and for-
est landscape models (FLMs): a In the spatial overlay approach, forests are eliminated by urban 
residential development, but are retained and influenced by human activity in areas of rural res-
idential development (pixels outlined in red). b In the spatial interaction approach, forests are 
eliminated by urban residential development, and the remaining forests are influenced by human 
activity within a buffer surrounding developed areas (pixels outlined in red)
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United States. Based on these simulations, it was shown that potential increases 
in aboveground biomass resulting from climate change were more than offset 
by decreases in aboveground biomass caused by forest conversion and timber 
harvesting.

Other research efforts have focused on the effects of deforestation and fires 
resulting from anthropogenic ignitions in tropical forest landscapes. Silvestrini 
et al. (2011) conducted a simulation experiment across the Amazon basin in which 
the projected land use changes from the SimAmazonia model (Soares-Filho et al. 
2006) were used as inputs to a spatial simulation model of fire that incorporated 
the effects of deforestation and distance to roads on anthropogenic ignitions. They 
projected that burned area outside of protected areas would increase in the future, 
with land use change having a stronger influence on fire patterns than climate 
change. However, land use change and climate change also had synergistic influ-
ences on fires; their combined effects increased the projections of area burned by 
an amount that was greater than the sum of their individual effects. Soares-Filho 
et al. (2012) expanded on this approach by developing the Fire Ignition, Spread, 
and Carbon (FISC) model, which integrated simulation models of land use change 
and fire with the Carbon and Land Use Change (CARLUC) model, a stand-level 
simulator of tree growth, mortality, and carbon dynamics. They used the FISC 
model to conduct simulation experiments under various land use change, climate 
change, and forest restoration scenarios for the Xingu region of the Amazon. Their 
results showed that the major driver of fire was forest fragmentation resulting from 
land use change, and that forest restoration had the potential to limit the amount of 
understory fires in the region by reducing forest fragmentation. They also found 
that land use change had a stronger influence on projected carbon balance than cli-
mate change, shifting the Xingu region from a net carbon sink to a carbon source 
in the absence of forest restoration activities.

Another coupled FLM and LCM simulation application has been developed by 
integrating the demand-allocation land cover and land use change algorithms from 
the FORE-SCE model (Sohl and Sayler 2008; Sohl et al. 2012) into the Landscape 
Dynamics Simulator (LADS) model of natural disturbance and forest succession 
(Wimberly 2002; Wimberly and Kennedy 2008). The new model, entitled the 
Coupled Human and Natural Geospatial Environments (CHANGE) simulator, uses 
the FORE-SCE algorithms to control transitions among a set of land cover and 
land use classes, and then applies the LADS algorithms to simulate natural vegeta-
tion dynamics within the land cover classes that are dominated by natural vegeta-
tion (Lamsal et al. 2014). The integrated model can also be used to simulate the 
growth of the WUI, which includes areas of low-density human development that 
are dominated by natural vegetation. The WUI is modeled using a spatial overlay 
approach in which the land use change models growth and tracks the location of 
WUI areas, but forest succession and natural disturbances such as fire are still sim-
ulated in these areas. The CHANGE model has been applied in central Colorado 
to explore the interaction of WUI growth and changing fire regimes under alterna-
tive future climate scenarios (Liu et al. 2014).
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9.5  Synthesis and Perspectives

To date, the development of FLMs and LCMs has mostly occurred along parallel 
tracks, with relatively few examples of simulation models that have bridged the 
gap between these two modeling frameworks. However, both FLMs and LCMs 
have been coupled with other types of models to address broader questions about 
the interaction of landscape dynamics with biophysical processes. Forest land-
scape models have been linked with metapopulation models to explore the influ-
ences of disturbance regimes on species abundance and population viability in 
dynamic landscapes (Akcakaya et al. 2004; Wimberly 2006). Land change models 
have been coupled with spatial models of hydrology (Tang et al. 2005; Wijesekara 
et al. 2012), erosion and sedimentation (Verburg 2006), and even with other LCMs 
operating at different spatial scales and levels of complexity (Moreira et al. 2009). 
In some cases, these linkages highlighted important feedback loops that constrain 
the process of land use change. For example, agricultural land use influences ero-
sion and sedimentation, and the resulting redistribution of soils across the land-
scape affects local suitability for agriculture and the spatial distribution of future 
land use transitions (Claessens et al. 2009). Integrated modeling efforts that link 
simulations of anthropogenically driven land use change with timber harvesting, 
natural disturbances, and forest succession have the potential to highlight similar 
feedback loops and other complex CHANS behaviors. Developing new concep-
tual frameworks and technological tools to more effectively link FLMs and LCMs 
will be a critical step toward understanding the dynamics of CHANS in forested 
landscapes.

The differences between existing FLMs and LCMs partially reflect the different 
domains of scale at which these types of models operate (Table 9.2). FLMs have 
historically been applied to smaller landscapes (103–106 ha) at finer spatial resolu-
tions (0.1–10 ha), whereas LCMs have often been applied across larger regions 
(105–108 ha) at coarser spatial resolutions (1–100 ha). However, this distinction is 
not absolute and there is considerable overlap in both the grain and extent of these 
two classes of models. Both FLMs and LCMs are generally applied at similar 

Table 9.2  Main characteristics of forest landscape models (FLMs) compared to those of land 
change models (LCMs)

Model characteristics Forest landscape models Land change models

Spatial grain 0.1–10 ha 1–100 ha

Spatial extent 103–106 ha 105–108 ha

Time step 1–10 years 1–10 years

Simulation length 10–104 years 10–100 years

Attribute detail Tree species, cohort ages, suc-
cessional stages, biomass

Forests represented by one or a 
few discrete cover classes

Anthropogenic  
activities

Clearcutting, partial harvest-
ing, thinning, fuel treatments, 
planting

Development, agricultural expan-
sion, agricultural land abandon-
ment, afforestation
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temporal resolutions (1–10 years) and projected over similar time frames (decades 
to centuries). In some applications, FLMs have been run for much longer time 
periods (thousands of years or longer) to simulate historical disturbance regimes 
and estimate the historical amounts and spatial patterns of forest seral stages (e.g., 
Wimberly et al. 2000; Karau and Keane 2007).

Perhaps a more important difference is that these types of models have histori-
cally been developed by scientists from different disciplines and applied to address 
problems in different types of landscapes. As a result, FLMs and LCMs have 
evolved distinctive approaches to landscape characterization and process represen-
tation. In the United States, for example, FLMs have been primarily developed by 
ecologists and foresters and have often been used to evaluate the effects of alter-
native forest management strategies in National Forests and in other areas dom-
inated by publically owned forest land. In contrast, LCMs have been developed 
by geographers and planners and have been applied across more heterogeneous 
regions with multiple land uses to project and analyze the outcomes of processes 
such as urban sprawl, agricultural land abandonment, and agricultural expan-
sion. As a result, new interdisciplinary initiatives will be an important step toward 
effectively integrating these two classes of models within a CHANS framework  
(Roy et al. 2013).

Despite these differences in spatial scale and disciplinary scope, many com-
monalities in model design emphasize underlying similarities between FLMs and 
LCMs. At the most basic level, almost all of these models run on gridded land-
scapes in which multiple categorical (e.g., land use classes, species) or quantita-
tive (e.g., stand age, biomass, tree size) state variables are tracked within each grid 
cell. The underlying spatial algorithms used to model change are often generic 
enough to be extended to different processes. For example, the FORE-SCE model 
adapted the demand-allocation algorithms originally developed for land use 
change modeling to simulate timber harvesting (Sohl and Sayler 2008; Sohl et al. 
2012). This modification was accomplished by including separate land use classes 
to represent clear-cut forest, specifying the amount of clearcutting that occurs via 
the demand module, modeling the location of clear-cuts via the allocation module, 
and tracking forest stand age to ensure representation of realistic cutting cycles 
and regrowth of clear-cut areas. More generally, the approach used by many FLMs 
to simulate timber harvesting, as described in Sect. 9.2.2, can be conceptualized as 
a type of demand-allocation algorithm in which a desired volume or area of har-
vests is allocated spatially depending on management unit locations, forest vegeta-
tion characteristics, accessibility limitations, and adjacency constraints.

Several other spatial modeling approaches have been implemented in both 
FLMs and LCMs. CA algorithms, similar to those used to simulate urban sprawl, 
have also been used to model various aspects of forest disturbance. The ABMs 
used to simulate social systems and land use change are closely connected with 
the individual-based models that have been used to simulate many ecological 
systems, including forest dynamics. Perez and Dragicevic (2012) used an ABM 
in combination with CA to model tree mortality patterns resulting from insect 
infestation. Cellular automata models have also been widely applied to model fire 
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spread in forested environments (Karafyllidis and Thanailakis 1997; Hernández 
Encinas et al. 2007; Vahidnia et al. 2013). These and other similarities in model 
structure and algorithms between FLMs and LCMs suggest strong potential for 
developing integrated modeling platforms that can utilize the same model structure 
and basic algorithms to simulate land use change, forest management activities, 
natural disturbances, and forest vegetation dynamics within a tightly coupled mod-
eling framework.

This type of integrated modeling approach will be needed to address many 
of the complex forest management issues that arise from increasing interactions 
between humans and natural systems. In the western United States, for example, 
the continued expansion of the WUI creates in a variety of subtle yet significant 
feedbacks between low-density residential land use, forest management and fuel 
treatment activities, and the risk of insect outbreaks, wildfires, and other large 
disturbances. Modeling studies have been carried out to explore various aspects 
of the WUI in the United States, including projections of future changes in hous-
ing density in the vicinity of protected areas across the United States (Radeloff 
et al. 2010), modeling experiments to explore the effects of fuel treatments on fire 
regimes and landscape structure (Ager et al. 2010), and assessment of the potential 
effects of wildfire on housing loss under different future development scenarios 
(Syphard et al. 2013). However, no model currently exists that combines all of 
these processes and their potential interactions into a unified framework. Such a 
model would be useful to project how expanding human populations will interact 
with changing climate and wildfire in future landscapes (Wimberly and Liu 2014). 
Strategic implementation of fuel treatments could help to reduce housing loss, but 
increasing population densities may also create a feedback loop that limits the 
potential for implementing fuel treatments in areas with high rural population den-
sities and small ownership parcels (Fig. 9.5). The integration of FLMs and LCMs 
is thus a critical research need for projecting future change scenarios in the WUI.

From a broader global perspective, continued population growth is resulting in 
increased pressure on protected areas and other zones of high conservation value 
worldwide (Cincotta et al. 2000; Wittemyer et al. 2008). In many parts of the 
developing world, human land use affects disturbance and succession in adjacent 
forests through fire spread (Cochrane and Barber 2009), illegal logging (Curran 
et al. 2004), and edge effects resulting from forest fragmentation (Laurance et al. 
1998). Protection of forests and other natural resources may also affect population 
growth and socio-economic characteristics in surrounding communities through 
associated infrastructure development, employment opportunities, and provision 
of ecosystem services (McDonald et al. 2007; Andam et al. 2010; Naughton-
Treves et al. 2011). These types of interactions are highly sensitive to the spatial 
patterns and dynamics of human populations and land use (Cincotta et al. 2000). 
Thus, integrated modeling of land use change, anthropogenic and natural forest 
disturbances, and resulting effects on forest ecosystems has the potential to aid 
in the development of conservation strategies that protect biodiversity while sus-
taining local communities (Fig. 9.6). Further development of integrated landscape 
modeling approaches is needed to increase the capacity to simulate a variety of 
human–natural synergies across a broad range of geographic settings.
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9.6  Conclusions

Existing landscape models simulate a wide range of human disturbances. Forest 
landscape models typically focus on timber harvesting and fuel treatments as the 
primary human impacts on forests without considering the broader landscape con-
text, whereas LCMs usually simulate transitions between forests and other land 

Fig. 9.5  Flowchart illustrating hypothetical interactions of expanded development in the wild-
land–urban interface (WUI) with forest management activities, ecosystem processes, and natural 
disturbances. Blue boxes indicate processes represented in land change models; green boxes are 
those represented in forest landscape models; the red box highlights potential outcomes

Fig. 9.6  Flowchart illustrating hypothetical interactions of population growth in tropical land-
scapes with deforestation, degradation, and fire. Blue boxes indicate processes represented in 
land change models; green boxes are those represented in forest landscape models; the red box 
highlights potential outcomes



254 M.C. Wimberly et al.

cover types without explicitly modeling succession and disturbance within for-
ested areas. Although roads are often used as a driving variable in simulations of 
land cover land use change or fire ignitions, most current FLMs and LCMs do not 
explicitly model the expansion of road networks or consider other influences of 
roads on adjacent forests. Further development of integrated models that consider 
the interactions of land use and land cover change with forest management and 
natural disturbance regimes are needed to more effectively conduct large-scale 
assessments of future change scenarios in regions where an expanding human foot-
print is both causing deforestation and altering ecosystem processes in the remain-
ing forests. In future, additional work is needed to more clearly elucidate the 
processes that connect forest disturbances and succession with broader patterns of 
land use change, and to develop new modeling tools for assessing future scenarios 
of forest disturbance and succession in an increasingly human-dominated world.

The similarities of landscape representation and spatial algorithms in FLMs 
and LCMs provide a framework upon which to build coupled models. As a result, 
the technical barriers to this type of integration are now relatively low. For exam-
ple, both agent-based and cellular automata modeling techniques have been used 
to implement FLMs as well as LCMs, and thus either of these approaches could 
provide a strong foundation for implementing a coupled model. There is also a 
strong potential to add functionality for land cover and land use change modeling 
to existing FLMs (e.g., Thompson et al. 2011), and to incorporate processes such 
as forest succession, natural disturbances, and forest management activities into 
existing LCMs (e.g., Sohl and Sayler 2008). However, these types of coupled 
models will add an additional layer of complexity to the underlying FLM or LCM. 
As a result, there will be greater demands for data for model initiation and param-
eterization, and greater challenges in specifying and parameterizing a wider array 
of function to drive the simulation of forest dynamics, land change processes, and 
their interactions. To address these challenges, ecologists and foresters will need 
to work more closely with other disciplines such as geography, planning, and eco-
nomics. The ultimate goal will be to implement forest landscape disturbance mod-
eling in a CHANS framework that recognizes the contextual effects of regional 
land use and other human activities on the forest ecosystem while capturing the 
reciprocal influences of forests and their disturbances on the broader land use 
mosaic.
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10.1  Introduction

Although much effort has been devoted to simulating disturbance processes (see 
Chaps. 2–7) and their interactions (Chaps. 8 and 9), less attention has been paid 
to the simulation of forest recovery immediately following disturbance(s). Forest 
recovery is the process of re-establishment of tree cover (aka stand re-initiation) 
and associated ecological functions on disturbed sites and is therefore a direct con-
nection between disturbance and resultant stand development. “Forest recovery” 
can be a value-laden term as “recovery” implies greater benefit accrued from a 
return to a tree-dominated forest condition. However, recent work on early seral 
forest ecosystems (commonly defined as the period between a substantial dis-
turbance causing >50 % canopy mortality and canopy closure) has called atten-
tion to the special values associated with this stage (King et al. 2011; Swanson 
et al. 2011). Although often regarded as fleeting or transient—often to the point 
of exclusion within forest simulations—forest recovery can be protracted (Poage 
et al. 2009; Freund et al. 2014) due to a variety of factors often ignored within 
the context of modeling forested systems. Regardless of implicit values or dura-
tion, understanding the process of forest recovery is critical to forecasting forested 
landscapes and disturbance dynamics because long-term successional trajectories 
depend on this period of regeneration and altered biogeochemical fluxes.

The duration of forest recovery may determine population dynamics of spe-
cies that require mature stands. Large areas in early succession may fragment 
landscapes, especially when few biological legacies remain, a high contrast with 
adjacent mature forest is created, and/or high interspersion with the mature for-
est matrix is created (Franklin and Forman 1987; Bailey 2007). In landscapes or 
regions where late seral habitats are considered limiting, it has been proposed that 
early seral systems be aggressively reforested to facilitate a return to closed-can-
opy conditions (Sessions et al. 2004).

Early seral habitat is itself critical for many species and is subject to frag-
mentation as a result of land use changes and alterations to disturbance regimes 
(Litvaitis 1993; Miller and Hammond 2007). A complete review is beyond the 
scope of this chapter, but some examples of the characteristics and importance of 
early seral habitat include:

•	 Dominance of broadleaf vegetation, including forb, shrub, and tree forms (espe-
cially important in conifer-dominated zones; Hagar 2007).

•	 Forage for several ungulate species (Miller 1970; Irwin and Peek 1983; Nyberg 
and Janz 1990; Alldredge et al. 2001; Kie et al. 2003).

•	 Habitat for moths and butterflies (Pyle 2002; James and Nunnallee 2011), 
including many species of conservation concern (Miller and Hammond 2007).

•	 Structural and trophic resources for many bird species (Meslow 1978; 
Fontaine et al. 2009; Betts et al. 2010), including in forest industry landscapes 
(Bosakowski 1997; Keller et al. 2003) or landscapes with clearcuts (Vitz and 
Rodewald 2006). Woodpeckers and their allies (family Picidae) frequently 

http://dx.doi.org/10.1007/978-3-319-19809-5_2
http://dx.doi.org/10.1007/978-3-319-19809-5_7
http://dx.doi.org/10.1007/978-3-319-19809-5_8
http://dx.doi.org/10.1007/978-3-319-19809-5_9
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benefit during the early stage, as their insect prey increases dramatically with 
the abundance of snags and down woody debris (Hutto 1995).

•	 Abundance of fruiting and flowering vegetation, creating improved forage for 
many vertebrates and invertebrates, for example bears and their seasonal use of 
fruiting shrubs (such as Vaccinium and Shepherdia) in disturbed areas (Zager 
et al. 1983; Hamer 1996; Samson and Huot 1998; McLellan and Hovey 2001).

Early seral forests often exhibit a high degree of complexity whereby there is 
sensitivity to initial conditions that magnifies long-term uncertainty (Fig. 10.1). 
Such complexity is generated by several factors, including the spatial hetero-
geneity associated with the original disturbance (Foster et al. 1998), size of the 
disturbance event (Turner et al. 1997; Sturtevant et al. 2014), the behaviors of col-
onizing organisms (Halpern 1989), the characteristics and spatial pattern of bio-
logical legacies of the pre-disturbance forest ecosystem (Franklin et al. 2000), and 
smaller-scale disturbance processes during the forest recovery period itself (Lutz 
and Halpern 2006) (Fig. 10.2). Critically, post-disturbance management typically 
reduces ecological complexity with consequences for the pace of forest recov-
ery. As a result of these factors and their interactions—each operating at unique 
scales—uncertainty is high with the potential for divergent future stand trajectories 
(Frelich 2002).

The net outcome is that forest recovery presents numerous challenges to accu-
rately simulating the relevant processes and their consequences at appropriate 
scales. Many important drivers (e.g., high live canopy fuel density, animal den-
sity and herbivory) are widely ignored when modeling forest development. In 
this chapter, we first review the critical drivers of early succession and attendant 
processes. Next we review the modeling approaches to forest recovery applied to 
date. Then we provide two examples of forest disturbance and recovery simula-
tions, each emphasizing a unique but critical perspective on the topic. Finally, we 
assess the challenges for improving simulation efforts and provide our thoughts on 
necessary steps forward.

Fig. 10.1  A forest stand may follow one of many possible trajectories depending on initial con-
ditions, disturbance (type, intensity, size, and heterogeneity), biological legacies, recolonization, 
and management. Sensitivity to initial conditions and long-term uncertainty defines a complex 
process. The y-axis may represent many defining characteristics of closed-canopy forests. The 
blue line represents delayed recovery which may favor early successional wildlife
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10.2  Drivers of Forest Recovery

Any attempt to simulate forest disturbance and subsequent recovery must begin 
with an assessment of the primary processes that determine the eventual out-
come—the status of the forest following recovery. We provide examples of four 
drivers that have a large net effect on forest recovery: biological legacies (presence, 
amount, and types), altered forest nutrient and water fluxes, regeneration, and man-
agement activities. These four drivers—and the examples given below—reflect our 
own research in central and western United States but are broadly applicable.

10.2.1  Biological Legacies

Biological legacies are living and dead elements of the pre-disturbance ecosystem 
that persist into early succession (Franklin et al. 2000; Perera and Buse 2014). The 
amount, type, and spatial arrangement of biological legacies vary widely depend-
ing on the disturbance, the susceptibility of trees and shrubs to the disturbance, 
and any subsequent management actions. The large variety of possible outcomes 

Fig. 10.2  The composition, structure, and function of early seral pre-forest ecosystems depend 
on the combination of processes associated with behavior of the generating disturbance (red 
arrows) and processes that occur subsequent to the disturbance (green arrows)
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highlights the ecological complexity inherent to forest recovery. The notable 
exception to this variation is salvage logging (see below) that reduces biological 
legacies.

Biological legacies have ramifications that extend throughout succession 
(Franklin et al. 2000). As an example, the localized rate of stand development fol-
lowing broad-scale stand-replacing wildfire in the Cascades Range of Oregon and 
Washington depends on proximity to areas that served as partial or complete fire 
refugia for late-succession tree species (Keeton and Franklin 2005). In the boreal 
forest, proximity to live residuals following fire has a similar effect on tree regen-
eration (Greene and Johnson 2000). Large diameter snags may crush young trees 
as they fall in the early seral period, creating spatial heterogeneity in regenerat-
ing tree cohorts (Lutz and Halpern 2006). Snags and downed woody material also 
reduce erosion and provide partial shelter, increasing soil moisture (see below), 
which is critical for the regeneration of many tree and shrub species. Biological 
legacies may also enhance connectivity (Greene and Johnson 2000; Lindenmayer 
and Franklin 2002; Lindenmayer and Fischer 2006). Individual legacy trees scat-
tered throughout a young forest matrix offer many values, including enhanced 
wildlife use (Irwin et al. 2000; Mazurek and Zielinski 2004; Lindenmayer and 
Possingham 1995), and maintenance of mycorrhizal communities (Cline et al. 
2005).

10.2.2  Altered Forest Fluxes: Carbon, Nitrogen, Water

Early succession is a time of substantially modified fluxes of energy and mate-
rial in the forested landscape. Many fluxes are magnified, as the moderating and 
stabilizing influence of mature forest is removed, and the rate of many ecosystem 
processes accelerates (Klinger et al. 1994). Nutrient availability may be enhanced 
due to higher mineralization rates (McClain et al. 1998; Neary et al. 1999) and 
successional influences on species composition (Brais et al. 1995). At the same 
time, many fluxes are diminished. Due to the loss of canopy, photosynthesis and 
evapotranspiration, litter fall and internal nutrient cycling, latent heat, and gross 
carbon (C) assimilation are all retarded (Leuschner and Rode 1999).

The classic watershed studies at Hubbard Brook (Bormann et al. 1968) demon-
strated the flux of nitrogen following clearcut harvesting and herbicide application, 
revealing the importance of early seral vegetation in capturing nutrients mobilized 
by decomposition. More recent research has highlighted how post-disturbance 
conditions (higher temperatures, increased solar radiation) can accelerate hetero-
trophic respiration, causing a relatively rapid loss of C from the system, above 
and beyond C lost immediately during the original disturbance(s) (Janisch and 
Harmon 2002; Campbell et al. 2007). This net flux can vary as a function of dis-
turbance type and variable dead wood legacies and other factors (Mkhabela et al. 
2009). Magnified forest fluxes also include more rapid water loss (and the risk of 
floods as seen in Colorado, USA, in 2013) and more rapid leaching and flow of 
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nitrogen (N) and other nutrients (Vitousek et al. 1979; Boerner 1982; Neary et al. 
1999), often affecting neighboring surface waters, e.g., Lake Tahoe (Karam et al. 
2013). The net effect of such rapid fluxes may include erosion and loss of top soil 
(DeBano et al. 2005), reduced regeneration due to low available nitrogen (Beatty 
1984), and reduced water retention that disadvantages many small-seeded trees, 
such as hemlock (e.g., Tsuga spp.).

10.2.3  Regeneration

The density, composition, and multi-scale pattern of tree regeneration is deter-
mined by many factors (Turner et al. 1998), such as disturbance type (Foster et al. 
1998), topographic position and site quality within the disturbed area (Host et al. 
1987; Larson and Franklin 2005), distance to seed sources (McClanahan 1986), 
reproductive strategies of dominant tree species (e.g., serotiny; Turner et al. 1997), 
micro-topographic features of the disturbed area (Birchfield 2011), and ungu-
late browsing (Rooney and Waller 2003; Weisberg and Bugmann 2003; Cavieres 
and Fajardo 2005). The interaction among these factors may be of great signifi-
cance for regeneration. As an example, if a good seed mast year coincides with 
a disturbance, regeneration may be significantly enhanced (Vernon et al. 2005). 
The seasonality of the disturbance may also determine the rate of tree establish-
ment. Examples include fires that occur late in the growing season permitting 
abundant regeneration from mature canopy seed banks, as observed in Douglas-fir 
(Pseudotsuga menziesii) forests (Larson and Franklin 2005) or survival, as in the 
snow bank refugia for true fir (Abies spp.) associated with the spring eruption of 
Mt. St. Helens (Washington State, USA) in 1980 (Crisafulli et al. 2005).

Regeneration largely determines the duration of the forest recovery period and 
the subsequent successional trajectory. Frelich (2002) outlined alternate stable 
states for boreal forests dependent on seed sources and the time between wildfires. 
If the time since the last wildfire was relatively brief, jack pine (Pinus banksiana) 
seed sources may not be mature (“immaturity risk”; Zedler 1995) and quaking 
aspen (Populus tremuloides) will be favored with a long delay until the emergence 
of late-successional species (Frelich 2002). If ungulate populations are high, as is 
common in the eastern United States, ungulate browsing of regeneration can radi-
cally alter the successional trajectory following disturbance (Hobbs 1996; Putman 
1996; Rooney and Waller 2003). Artificial regeneration efforts may set a disturbed 
area on a very different developmental trajectory than that associated with natu-
ral regeneration. Again, Mt. St. Helens provides an example, with salvage-logged 
areas dominated by replanted Douglas-fir and noble fir (Abies procera) in the 
western part of the blast zone contrasting sharply with naturally regenerating areas 
on federal lands (Titus and Householder 2007).
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10.2.4  Management Actions

Management actions are often the largest determinant of forest recovery outcomes, 
depending on the effort and expense invested. Management actions vary widely 
and may include post-disturbance replanting, removal of “hazard snags,” or some 
combination thereof. Forest recovery can be accelerated by, for example, planting 
trees and controlling competing shrubs (Swanson et al. 2011) or retarded through 
such activities as aggressive salvage logging (Donato et al. 2006). In landscapes 
where timber revenue is a primary objective (e.g., industrial forest lands) and the 
generating disturbance is of a natural mechanism (wildfire, wind, avalanche), sal-
vage logging may be performed, followed by reforestation. More recently, some 
have advocated for using disturbances (including logging) as opportunities to 
promote ecosystem resilience to climatic change via facilitated migration (Millar 
et al. 2007; Duveneck and Scheller 2015). Facilitated migration following distur-
bance is an active intervention in biogeographic shift, whereby managers attempt 
to pre-emptively assist species in their dispersal along expected migration trajecto-
ries, either across elevation or across geographic distances.

Timber managers typically seek a relatively quick recovery of closed-canopy 
conditions (Oliver and Larson 1996; Smith et al. 1997) and this is frequently 
accomplished via aggressive application of herbicide and relatively dense plant-
ing of seedling stock (Nyland 2002). Salvage logging curtails the early seral stage 
and reduces its structural complexity (Lindenmayer and Noss 2006; Lindenmayer 
et al. 2008; Swanson et al. 2011). Titus and Householder (2007) used the case of 
forest industry lands and National Forest lands within the Mt. St. Helens blast 
zone as examples of differing successional trajectories resulting from management 
actions: the establishment of a productive (but low diversity) conifer plantation 
following salvage and replanting, and the development of diverse early seral habi-
tats where these activities were not conducted.

10.3  Review of Approaches

The range of modeling approaches used to simulate forest recovery and the model 
choice for a particular application is largely driven by the emphasis given to the 
drivers reviewed above and the choice of scale. If forest recovery is strongly dic-
tated by management actions that prescribe a narrow range of possible succes-
sional trajectories, a relatively simple model of forest recovery will suffice. On the 
contrary, if the application requires consideration of the full suite of drivers and 
potential tree diversity (particularly functional diversity) is high, a more nuanced 
modeling approach will be necessary.

When considering broader scales (>1000 ha), estimates of the rate and trajec-
tory of forest recovery should take into account spatial processes and landscape 



270 R.M. Scheller and M.E. Swanson

context and therefore the choice of scale is critical. Spatial processes include the 
dispersal of vegetative propagules (in addition to those present within the seed 
bank) and disturbances that depend to some degree on the biotic substrate (e.g., 
fires and fuel; insect and preferred hosts). Spatial context determines the proba-
bility of any given spatial process intersecting with any given location; no forests 
operate as islands distinct from the broader landscape matrix although the degree 
of connectivity varies widely. Similarly, models represent spatial context and pro-
cesses using a wide diversity of approaches. However, simulations of relatively 
small extents (<10 ha) necessarily exclude multiple interacting disturbances by 
design.

Here we review modeling approaches that are specifically focused on two 
primary outcomes of forest recovery: vegetation and biogeochemistry (specifi-
cally the magnitudes and rates of change of C and N). Most models have focused 
on either vegetation or biogeochemistry although hybrid approaches are now 
emerging.

10.3.1  Vegetation

Forests models may be highly deterministic in regard to vegetation where stand 
type (inclusive of the characteristic tree species) is immutable. Many early forest 
models were deterministic “growth and yield” models and did not simulate vegeta-
tive change; it was assumed that management controlled the general stand type. 
Immediately following any major disturbance or management activity the stand 
would essentially be reset to a younger version of itself after which the size classes 
(e.g., Landscape Age-Class Dynamics Simulator; Wimberly 2002) increment over 
time or the size of individual trees (e.g., Forest Vegetation Simulator; Robinson 
and Monserud 2003) increase over time or the amount of biomass (e.g., BIOME-
BGC; Running and Hunt 1993) increases over time. Succession in BIOME-BGC 
is determined by the dominant vegetation or potential vegetation type (PVT) (e.g., 
Neilson 1995) which reflects broad climatic and edaphic gradients. In landscapes 
with steep topography (and strong abiotic sorting), these models continue to be 
applied. Simulated PVTs—and particularly associated fuel types—typically inter-
act with simulated wildfire although the period of forest recovery is often treated 
as inflammable and therefore forest recovery serves primarily to reduce fuel conti-
nuity across the landscape (e.g., Kennedy and Wimberly 2009).

In contrast, many models add a level of stochastic behavior to forest recovery: 
the infinite vagaries of vegetative establishment and competition are simplified to 
a tractable set of outcomes via probability distribution functions. In the simplest 
case, the stand type or initial community is randomly chosen from a fixed suite of 
potential types or communities; the probability of a given type is usually inferred 
from historic patterns. After this stochastic assignment, the stand follows a succes-
sional pathway as described above. And again, in such models the period of for-
est recovery typically has little interaction with the broader landscape aside from 
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its effect on wildfire spread. An example of a model with stochastic types is the 
Vegetation Dynamics Development Tool (VDDT) (Klenner et al. 2000) wherein 
multiple initial states or types may each be associated with a probability following 
specific disturbance types.

A more mechanistic (an abstraction of the ecological process or mechanism) 
approach is to simulate establishment during forest recovery as a function of dis-
persal from neighboring areas and germination from the seed bank or other on-
site propagules (e.g., resprouting from root collars). Dispersal is highly stochastic, 
depending on spatial context and the life history characteristics of individual 
tree species. For example, aspens and other ruderal species typically have small, 
wind-blown seeds with long dispersal distances (aka “leptokurtotic”; Clark et al. 
1998). In contrast, acorns typically have short dispersal distances except when or 
where dispersal is facilitated by vertebrates. Seed source strength is also impor-
tant (Iverson et al. 2004). If the area undergoing forest recovery is relatively large, 
establishment at the center, farthest from potential seed sources, may be delayed 
by years or decades. Implementing seed dispersal within a model requires a dis-
persal algorithm (either away from seed sources or into potential sites) and esti-
mates of the dispersal distributions (Clark et al. 1998). Although the necessary 
algorithms deploy relatively simple trigonometry, the large area of potential 
sources (dependent upon maximum seed dispersal distance) requires recursive 
computational searches for sources across larger landscapes. And data to param-
eterize dispersal distributions are typically lacking. The net effect is large uncer-
tainty when simulating the establishment of vegetation during forest recovery, 
including the potential for delayed recovery. In contrast to such mechanistic 
regeneration approaches, the PVT approach (both deterministic and stochastic) 
described above encompasses all community components, including grasses, 
forbs, mosses, lichens, etc. Despite the computational cost, mechanistic disper-
sal simulation forges a much stronger link between forest recovery and landscape 
processes.

10.3.2  Biogeochemistry

Similar to vegetation dynamics, the biogeochemistry of forest recovery can be 
modeled as deterministic or stochastic processes. In general, simulated biochemi-
cal modeling has few feedbacks to the larger landscape; they are typically treated 
as vertical processes, mediating only the interactions among atmosphere, soil, and 
biotic components. The exception is watershed models that project water qual-
ity and quantity, e.g., the Soil and Water Assessment Tool (SWAT; Srinivasan and 
Arnold 1994). These models typically include information about the amount and 
location of early seral forests (if not the vegetation type) as they have large effects 
on water flow and timing. To our knowledge, these effects on water cycling have 
not been directly incorporated (although a loose coupling is common) into models 
designed primarily to project forest change.
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In the deterministic approach, live and dead C (and less frequently N) pools 
change through time as a function of growth (net primary productivity), mortality, 
and decay (heterotrophic respiration, Rh) (Janisch and Harmon 2002; Scheller and 
Mladenoff 2004). Disturbance may occur at any time along these C trajectories 
therefore generating novel live, dead, and soil C pools at the onset of forest recov-
ery. However, the rates of growth, mortality, and Rh are fixed for a given vegeta-
tion type or climate-vegetation combination. Examples of such models include the 
Carbon Budget Model-Canadian Forest Sector (CBM-CFS; Li et al. 2002) and 
LandCarb (Mitchell et al. 2012).

Stochastic biogeochemical models of forest recovery incorporate the effects of 
dynamic climate (e.g., PnET; Pan et al. 2009), dynamic soils (e.g., CENTURY; 
Smithwick et al. 2009), and/or dynamic vegetation (e.g., LANDIS-II with the 
Century extension; Scheller et al. 2011) on C and N cycles. Most of these mod-
els are dynamic in multiple dimensions although no model is fully dynamic: every 
model has some fixed parameters dependent upon the goals and temporal scales 
considered. For example, soil clay, sand, and loam percentages are typically fixed.

10.3.3  Disturbance Feedbacks

How simulated forest recovery feeds back to disturbance regimes typically mir-
rors the effect of spatial context on forest recovery. However, within models 
the strength of this feedback is often underrepresented—early seral stands are 
often assigned relatively static properties whereby they do not contribute veg-
etative propagules and have reduced (or no) probability of fire spread (as noted), 
reduced insect host preference, and reduced vulnerability to wind mortality. The 
opposite may be true. Birds that favor edges, e.g., jays, may facilitate seed dis-
persal, or snags may concentrate seed fall from animal dispersers (McClanahan 
and Wolfe 1987). Clearcuts can create wind “fetches” that increase wind speed at 
forest edges. Young conifer forests are often highly flammable (high live canopy 
fuel density) and experience higher wind speeds—and therefore higher fire sever-
ity—than mature forests. This is reflected in the occurrence of “reburn” events 
that occur during the early seral period (Gray and Franklin 1997; Thompson 
et al. 2008; Fontaine et al. 2009). Finally, early seral shrubs can harbor diseases 
that affect surrounding mature forests. White pine blister rust is the best known 
example; shade intolerant gooseberry (Ribes spp.) is the host for this fungal patho-
gen and was widely distributed following the “great cutover” in the U.S. Midwest 
(Hunt and Pandalai 2003). Although some models provide the flexibility to accom-
modate early seral fuel types (e.g., Sturtevant et al. 2009), to our knowledge few 
models capture these other important effects on landscape disturbances.
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10.4  Case Studies: Forest Recovery in Two Forests

To illustrate how the drivers of forest recovery have been modeled and applied, 
we chose two examples with similar approaches but divergent purposes. For 
both examples the LANDIS-II modeling framework was used (Scheller et al. 
2007). This model emphasizes spatial interactions, such as seed dispersal and fire 
spread, and tracks the location of age-defined cohorts of individual tree or shrub 
species through time. It also offers a large degree of flexibility, allowing differ-
ent processes to be emphasized depending on the question and application. For 
each example, we also highlight unique challenges and opportunities for future 
research.

10.4.1  Harvest Regeneration and Carbon in Chile

Our first example is of modeling Nothofagus forests in Tierra del Fuego, Chile 
(Swanson 2009). In this region, the effects of harvesting on forest regeneration are 
of particular concern and a simulation modeling approach was chosen to exam-
ine the consequences and trade-offs of harvesting at broad scales. Regeneration 
is particularly sensitive to harvesting because many of the tree/shrub species have 
low or mid shade tolerance and many management regimes incorporate planting, 
limiting the range of successional trajectories. The simulations conducted suggest 
that regeneration affects long-term C storage and planting, if successful, can sub-
stantially increase C storage as compared to natural regeneration alone (Swanson 
2009).

The focus on regeneration during forest recovery as a driver of long-term 
C storage highlighted numerous opportunities for further research. First, how 
important is disturbance size? There may be critical size thresholds at which 
regeneration becomes much more limiting, dependent in part on the seed dis-
persal capacities of trees found in neighboring forests. And what determines the 
success of artificial planting? Many models, including LANDIS-II, assume that 
any planting is successful. However, planting success is always less than 100 % 
and is highly dependent upon microclimatic conditions and seasonal patterns of 
precipitation.

The motivating questions included: Can the artificial regeneration failure rate 
be incorporated into broad-scale models and what information is necessary? The 
parameterization of LANDIS-II in this case included a higher rate of regeneration 
under a residual live forest canopy, such as may be created in the natural partial-
wave wind disturbance regime (whereby wind events over decadal time scales 
blow down portions of a stand progressively in the prevalent down-wind direction, 
resulting in a spatially diverse uneven-aged stand condition) in the actual land-
scape (Rebertus and Veblen 1993; Rebertus et al. 1997) or in shelterwood harvest-
ing (Schmidt and Urzúa 1982; Rosenfeld et al. 2006).
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This application revealed areas where model refinement was needed to rep-
resent early seral dynamics. Improved accuracy requires better accounting of 
the spatial variability of regeneration (i.e., assessment of founder effects, where 
long-term dispersal may influence available genotypes) obtained under a residual 
canopy, especially as a function of soil moisture availability. In the drier eastern 
portions of Tierra del Fuego, heterogeneity of moisture availability, especially 
as a function of location in gaps and substrate type (e.g., woody debris acting as 
a moisture reservoir) has significant implications for density and pattern of tree 
establishment. On the other extreme, wet soils can inhibit regeneration or favor 
more hydrophytic vegetation. Shrub competition (especially from Berberis spp.) 
was also not modeled, and this can be a significant factor in delaying return to a 
closed-canopy forest structure, especially along the immediate coast in Tierra del 
Fuego.

In summary, even sophisticated models that incorporate disturbance intensity 
and size and specific variation in seed rain density may not capture local substrate 
variability and competition that is critical to estimating regeneration dynamics. 
To obtain the information needed to populate more detailed models, resampling 
post-disturbance plots at a high frequency will be required, similar to approaches 
used to generate the data necessary to fit statistically rigorous trend models (e.g., 
Huisman et al. 1993).

10.4.2  Biogeochemical Cycling in the Lake Tahoe Basin

Our second example is from the Lake Tahoe Basin in California and Nevada, 
United States (Loudermilk et al. 2013, 2014). In this landscape, forest harvesting 
for timber is generally excluded and wildfire and thinning to prevent or ameliorate 
wildfire effects are important drivers of forest change. Loudermilk et al. (2013) 
focused on the effects of disturbance on net biogeochemical cycling, specifically 
the response of C pools to the long-term effects of wildfire and thinning. Although 
the emphasis was on long-term forest change, the Century extension used within 
the LANDIS-II framework allows for a finer-scale temporal analysis of C and N 
responses immediately post-disturbance.

We averaged the response of multiple ecosystem biochemical attributes to 
simulated wildfires separated in space and time, focusing on the 15 years imme-
diately following a wildfire (Fig. 10.3). Of the six attributes highlighted, one 
simulated attribute was relatively stable (soil organic nitrogen), three changed 
linearly (aboveground net primary productivity, soil organic carbon, aboveground 
biomass), and two were nonlinear [net ecosystem exchange (NEE), heterotrophic 
respiration (Rh)] over this relatively short period. The initial decline of NEE and 
Rh was caused by the rapid decay of large amounts of organic material immedi-
ately after fire (e.g., Janisch and Harmon 2002). For all six metrics, the rate of 
change exceeded the average rate of change over 100 years by at least an order of 
magnitude.
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The substantial decay immediately post-fire highlights the need to consider rel-
atively short-term and transient dynamics when simulating C trajectories. Longer 
time steps could potentially “average out” this period of heightened heterotrophic 
respiration and thereby could overestimate both coarse woody debris remaining on 
site and landscape-scale C in woody detritus.

This example highlights a substantial challenge: frequent (weekly or monthly) 
measurements are rarely collected immediately following disturbance and model 
calibration and validation generally depend on landscape-scale and longer-term 
empirical data. The result may be a broadly accurate forecast of landscape-scale 
dynamics with poorly measured or understood local accuracy. A common compro-
mise becomes apparent: principles and algorithms derived from landscape-scale 
data may have poor predictive capacity at local scales where management poli-
cies are implemented. The alternative is a highly parameterized local-scale model 
that cannot incorporate disturbance regimes and interactions among disturbances. 
Therefore a broader understanding (derived from empirical and modeling studies) 
of the circumstances under which the various drivers of forest recovery need to be 
included is required.

Fig. 10.3  Temporal 
dynamics of xix 
biogeochemical metrics 
immediately following 
simulated wildfire in the 
Lake Tahoe Basin, California 
and Nevada, United States. 
ANPP is aboveground net 
primary productivity (g 
biomass m−2 year−1); NEE 
is net ecosystem exchange 
(g C m−2 year−1); SON 
is soil organic nitrogen 
(g m−2); SOC is soil organic 
carbon (g m−2); biomass is 
aboveground live biomass 
(g m−2 year−1); respiration 
is heterotrophic respiration 
(g C m−2 year−1)
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10.5  Future Challenges and Opportunities

10.5.1  Process Uncertainty

There are many domains within which models and data about processes critical 
to understanding forest recovery are inadequate. This is not to say that complete 
knowledge or information about other processes or stages exists, but rather that 
some processes have proven more difficult to translate into suitable modeling 
approaches. This reflects the increasing recognition of the ecological complex-
ity of forest recovery. The net result is the need to become more mechanistic 
(Gustafson 2013). However, the mechanistic simulation of all processes acting 
during early succession is generally not feasible. We focus on two related domains 
that particularly merit further investment in data collection and modeling: the role 
of biological legacies and the role of partial disturbances.

Biological legacies in particular remain poorly understood or modeled for most 
systems. To what degree do they influence successional trajectories? To what 
degree do they ameliorate the effects of disturbance? Keeton and Franklin (2005) 
describe a negative exponential distribution of regeneration density with distance 
from old-growth shade-tolerant trees that survived stand-replacing wildfire in the 
south Washington Cascades, creating gradients of composition strongly related to 
topographic features. Topographically driven patterns of fire survival combined 
with seed dispersal patterns created heterogeneous successional states as a func-
tion of distance from refugial watercourses and/or fuel-limitations. However, 
changing disturbance regimes can alter the influence of living or dead biologi-
cal legacies, such as when higher fire severity reduces seed source and changes 
the post-disturbance substrate (Johnstone et al. 2010). Although progress has 
been made in quantifying dispersal over large distances (McLachlan et al. 2005), 
much uncertainty remains in how far seeds travel over annual or decadal scales 
and under what conditions. Seed dispersal has large implications for simulating 
the effects of disturbances and successful colonization often depends on sufficient 
disturbance severity and the removal of competitive barriers (Iverson et al. 2004).

Many landscape models now simulate variable severity disturbances, which 
affects the distribution and density of live residuals, thus incorporating some of 
the complexity associated with partial disturbance. Often, however, less data is 
available from which to estimate the survival of individual shrub and tree spe-
cies. This is due in part to a focus on catastrophic disturbances. The most severe 
disturbances attract the most media attention and this translates into management 
pressure and research agendas. However, low and moderate/mixed severity dis-
turbances are generally more common and have a more nuanced effect on forest 
landscapes (Perry et al. 2011). The effects of variable fire regimes and timber har-
vest have been simulated in a spatially explicit manner at stand scales (e.g., Miller 
and Urban 2000). However, modeling mixed-severity fire regimes, and their spa-
tially explicit outcomes, at the landscape scale is a greater challenge, especially 
due to the interaction of terrain, fuel beds, and climate drivers at multiple temporal 
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scales. The resulting complexity leads to the realization of nonequilibrium dynam-
ics at landscape scales, such as in the mixed-conifer forests of eastern Washington 
State (Hessburg et al. 2007). Adding a further layer of uncertainty to the template 
established by a disturbance regime is the variable response of tree regeneration 
as determined by climate (Brown and Wu 2005) or the interaction of disturbance 
and climate (North et al. 2005). This makes the modeling of forest dynamics more 
challenging and “data-hungry” in these areas than in forest regions where few top-
ographic and interannual climatic constraints on tree regeneration exist.

10.5.2  Linking Community Dynamics with Biogeochemistry

Improved model representation of forest recovery will require tighter integration 
of community dynamics and biogeochemistry. For example, it is not clear what 
effect detrital inputs following disturbance have on long-term heterotrophic res-
piration (Schmidt et al. 2011). In part, this is because few biogeochemical data 
are collected during or immediately following (within weeks) disturbance events 
(Lindenmayer et al. 2010). Biogeochemical data is typically expensive and is col-
lected at fine scales and the imputation of these data to the landscape-scale of for-
est models is difficult. For example, flux tower measurements are rarely paired 
with localized disturbances (although see Clark et al. 2012).

10.5.3  Model Formulation

Most models are sequential: events happen in a given (either specified or ran-
dom) order. Many of the processes outlined above, however, happen simultane-
ously, e.g., seed dispersal and ungulate browsing are continuous and overlapping 
processes. One solution is to increase the spatiotemporal resolution and use 
increasingly finer increments of time and distance in simulation models. The rep-
resentation of forest recovery at a high spatial and temporal resolution is at odds 
with the need to be computationally efficient when simulating large landscapes 
over long durations. In particular, the expectation of a changing climate necessi-
tates the incorporation of temperature and precipitation variables into the simula-
tion of forest recovery (Dale et al. 2001), especially when the model time horizons 
are many decades (He et al. 2002). These changes are actively being developed 
and the next substantial hurdle will be integration of forest recovery processes into 
dynamic global vegetation models and global circulation models. Currently such 
models generally only consider mature forests. However, if increased extreme 
weather events (Collins 2014) and forest disturbances (Hicke et al. 2013) push a 
substantial portion of forested landscapes into early seral stages, the integration 
of forest recovery processes will be necessary to accurately capture global carbon 
budgets.
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10.6  Conclusions

Models that incorporate forest recovery and the duration and character of early 
seral forest conditions, although imperfect, can aid in the assessment of potential 
landscape trajectories and associated values over time. If landscape management 
objectives are dominated by timber production or the maintenance of mature for-
est habitat, then such models can help assess the rate of recovery of closed forest 
conditions. Another value of these models is for representing early seral habitat 
and requires understanding the spatial characteristics, compositional traits, and 
duration of early seral pre-forest conditions. As the understanding develops of 
the value of early seral habitat for the maintenance of rare or threatened species 
(Swanson et al. 2014), models of forest recovery may become crucial tools for 
predicting the stability and connectivity of such habitats (e.g., Severns et al. 2013).

However, successful representation of forest recovery and early seral forests 
requires that forest ecologists (and their modeling efforts) embrace the ecologi-
cal complexity inherent to the forest recovery process (Green and Sadedin 2005; 
Puettmann et al. 2013). The rates of key fluxes change quickly immediately fol-
lowing a disturbance and sensitivity to initial conditions and circumstance (e.g., 
disturbance severity) become more prominent. Emergent behaviors are produced 
that increase the uncertainty of the forest recovery process and have the potential 
to produce divergent long-term outcomes (Fig. 10.1). Unfortunately, the ecological 
complexity of early seral stages is often grossly simplified within models.

Success will also require improved data sources. Understanding the emergent 
outcomes of disturbance regimes over relatively long temporal scales will require 
landscape models in both reconstructive and predictive applications. An important 
opportunity to test models of forest recovery would be reconstruction of the long-
term effects of large disturbances on the biota at regional scales (e.g., Crisafulli 
et al. 2005; Swanson et al. 2013). The benefits of large disturbances are their vari-
able intensity across large scales, diversity of biological legacies, temporal syn-
chrony, and their “charismatic” nature that often promotes long-term funding for 
monitoring. Simultaneously, remote sensing can serve as the long-term (multi-dec-
adal) and large-scale window for validating models of forest recovery following 
mixed-severity disturbances (Sturtevant et al. 2014). Finally, “citizen scientists” 
could be trained to collect data about establishment following disturbances. The 
technology now available to the average person with a mobile phone represents 
a unique opportunity to engage recreational forest users in monitoring forests to 
inform ecological forecasts (e.g., LeafSnap: Kumar et al. 2012). These data could 
augment existing inventory data that are typically sparse, infrequent, and not 
designed to capture the period immediately after disturbance. Such data could 
also capture finer-scale regeneration and substrate variability than is typically cap-
tured by inventory data. We can imagine future cell phone applications that would 
inform a recreational hiker when they are approaching a recent disturbance and 
prompt them to collect regeneration or snag data via a simple interface.
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Finally, disruptive or sudden climate change and associated increases in dis-
turbances may necessitate a much more active role for management during for-
est recovery, e.g., immediately planting tree species not currently extant within 
the broader landscape (Duveneck and Scheller 2015). Therefore, disturbances 
can serve as important windows of innovation and experimentation that enable us 
to test and explore novel manipulations of the recovery process. Such radical (or 
“transformative”; Puettmann et al. 2013) management actions likely will only be 
acceptable if models can quickly and convincingly demonstrate the net benefits of 
such actions to forest recovery and the forest beyond.

In summary:

•	 Forest recovery may be the most complex stage of succession, with high varia-
bility in terms of outcomes, due to the multitude of drivers and scales that influ-
ence regeneration and biogeochemical cycling.

•	 To date, simulations of forest dynamics have largely focused on the dynamics 
of the resulting overstory and subsequent disturbances. More attention must 
be paid to the forest recovery stage that determines long-term successional 
trajectories.

•	 Further empirical research is necessary to improve model formulation and per-
formance for the period of recovery following forest disturbance.

•	 Opportunities for data collection and scientific inquiry exist following “charis-
matic” or well-publicized disturbance events that are synchronized in time and 
with large area of variable disturbance intensity. Remote sensing is also rapidly 
emerging as a coarse-scale data source for model calibration and validation.

•	 Continued research is urgently necessary to help develop novel strategies for 
manipulating forest recovery to rapidly adapt to climate change disruptions. 
Improved modeling approaches are a key component of addressing this need.

References

Alldredge MW, Peek JM, Wall WA (2001) Shrub community development and annual productiv-
ity trends over a 100-year period on an industrial forest of Northern Idaho. For Ecol Manage 
152:259–273

Bailey S (2007) Increasing connectivity in fragmented landscapes: an investigation of evidence 
for biodiversity gain in woodlands. For Ecol Manage 238:7–23

Beatty SW (1984) Influence of microtopography and canopy species on spatial patterns of forest 
understory plants. Ecology 65:1406–1419

Betts MG, Hagar JC, Rivers JW et al (2010) Thresholds in forest bird occurrence as a function 
of the amount of early-seral broadleaf forest at landscape scales. Ecol Appl 20:2116–2130

Birchfield MK (2011) Thirty years of conifer establishment in volcanic primary succession at 
Mount St. Helens: patterns and factors affecting establishment. Dissertation, Washington 
State University

Boerner REJ (1982) Fire and nutrient cycling in temperate ecosystems. Bioscience 32:187–192
Bormann FH, Likens GE, Fisher DW, Pierce RS (1968) Nutrient loss accelerated by clear-cutting 

of a forest ecosystem. Science 159:882–884



280 R.M. Scheller and M.E. Swanson

Bosakowski T (1997) Breeding bird abundance and habitat relationships on a private industrial 
forest in the western Washington Cascades. Northwest Sci 71:87–96

Brais S, Camiré C, Bergeron Y et al (1995) Changes in nutrient availability and forest floor char-
acteristics in relation to stand age and forest composition in the southern part of the boreal 
forest of northwestern Quebec. For Ecol Manage 76:181–189

Brown PM, Wu R (2005) Climate and disturbance forcing of episodic tree recruitment in a south-
western ponderosa pine landscape. Ecology 86:3030–3038

Campbell J, Donato D, Azuma D, Law B (2007) Pyrogenic carbon emissions from a large wild-
fire in Oregon, United States. J Geophys Res 112:G04014. doi:10.1029/2007JG000451

Cavieres LA, Fajardo A (2005) Browsing by guanaco (Lama guanicoe) on Nothofagus pumilio 
forest gaps in Tierra del Fuego, Chile. For Ecol Manage 204:237–248

Clark JS, Fastie C, Hurtt G et al (1998) Reid’s paradox of rapid plant migration. Bioscience 
48:13–24

Clark KL, Skowronski N, Gallagher M et al (2012) Effects of invasive insects and fire on forest 
energy exchange and evapotranspiration in the New Jersey pinelands. Agric For Meteorol 
166:50–61

Cline ET, Ammirati JF, Edmonds RF (2005) Does proximity to mature trees influence ectomyc-
orrhizal fungus communities of Douglas-fir seedlings? New Phytol 166:993–1009

Collins BM (2014) Fire weather and large fire potential in the northern Sierra Nevada. Agric For 
Meteorol 189:30–35

Crisafulli CM, Swanson FJ, Dale VH (2005) Overview of ecological responses to the eruption 
of Mount St. Helens: 1980–2005. In: Dale VH, Swanson FJ, Crisafulli CM (eds) Ecological 
responses to the 1980 eruption of Mount St. Helens. Springer, New York

Dale VH, Joyce LA, McNulty S et al (2001) Climate change and forest disturbances. Bioscience 
51:723–734

DeBano LF, Neary DG, Ffolliott PF (2005) Chapter 2: soil physical properties. In: Neary DG, 
Ryan KC, DeBano LF (eds) Wildland fire in ecosystems: effects of fire on soils and water. 
USDA Forest Service, Ogden, UT. General Technical Report RMRS-GTR-32-vol.4

Donato DC, Fontaine JB, Campbell JL et al (2006) Post-wildfire logging hinders regeneration 
and increases fire risk. Science 311:352

Duveneck MJ, Scheller RM (2015) Climate suitable planting as a strategy for maintaining forest 
productivity and functional diversity. Ecol Appl. doi:10.1890/14-0738.1

Fontaine JB, Donato DC, Robinson WD et al (2009) Bird communities following high-severity 
fire: response to single and repeat fires in a mixed-evergreen forest, Oregon, USA. For Ecol 
Manage 257:1496–1504

Foster DR, Knight DH, Franklin JF (1998) Landscape patterns and legacies resulting from large, 
infrequent forest disturbances. Ecosystems 1:497–510

Franklin JF, Forman RTT (1987) Creating landscape patterns by forest cutting: ecological conse-
quences and principles. Landscape Ecol 1:5–18

Franklin JF, Lindenmayer DB, MacMahon JA et al (2000) Threads of continuity: ecosystem dis-
turbance, recovery, and the theory of biological legacies. Conserv Biol Prac 1:8–16

Frelich LE (2002) Forest dynamics and disturbance regimes: studies from temperate evergreen-
deciduous forests. Cambridge University Press, Cambridge

Freund JA, Franklin JF, Larson AJ, Lutz JA (2014) Multi-decadal establishment for single-cohort 
Douglas-fir forests. Can J For Res 44:1068–1078

Gray AN, Franklin JF (1997) Effects of multiple fires on the structure of southwestern 
Washington forests. Northw Sci 71:174–185

Green DG, Sadedin S (2005) Interactions matter—complexity in landscapes and ecosystems. 
Ecol Complex 2:117–130

Greene DF, Johnson EA (2000) Tree recruitment from burn edges. Can J For Res 30:1264–1274
Gustafson EJ (2013) When relationships estimated in the past cannot be used to predict the 

future: using mechanistic models to predict landscape ecological dynamics in a changing 
world. Landscape Ecol 28:1429–1437

http://dx.doi.org/10.1029/2007JG000451
http://dx.doi.org/10.1890/14-0738.1


28110 Simulating Forest Recovery Following Disturbances …

Hagar JC (2007) Wildlife species associated with non-coniferous vegetation in Pacific Northwest 
conifer forests: a review. For Ecol Manage 246:108–122

Halpern CB (1989) Early successional patterns of forest species: interactions of life history traits 
and disturbance. Ecology 70:704–720

Hamer D (1996) Buffaloberry [Shepherdia canadensis (L.) Nutt.] fruit production in fire-succes-
sional bear feeding sites. J Range Manage 49:520–529

He HS, Mladenoff DJ, Gustafson EJ (2002) Study of landscape change under forest harvesting 
and climate warming-induced fire disturbance. For Ecol Manage 155:257–270

Hessburg PF, Salter RB, James KM (2007) Re-examining fire severity relations in pre-man-
agement era mixed-conifer forests: inferences from landscape patterns of forest structure. 
Landscape Ecol 22:5–24

Hicke JA, Meddens AJ, Allen CD, Kolden CA (2013) Carbon stocks of trees killed by bark bee-
tles and wildfire in the western United States. Environ Res Lett 8:035032

Hobbs NT (1996) Modification of ecosystems by ungulates (invited paper). J Wildl Manage 
60:695–713

Host GE, Pregitzer KS, Ramm CW et al (1987) Landform-mediated differences in succes-
sional pathways among upland forest ecosystems in northwestern Lower Michigan. For Sci 
33:445–457

Huisman J, Olff H, Fresco LFM (1993) A hierarchical set of models for species response analy-
sis. J Veg Sci 4:37–46

Hunt R, Pandalai S (2003) White pine blister rust. Rec Res Dev Mycol 1:73–85
Hutto RL (1995) Composition of bird communities following stand-replacement fires in northern 

Rocky Mountain (U.S.A.) forests. Conserv Biol 9:1041–1058
Irwin LL, Peek JM (1983) Elk habitat use relative to forest succession in Idaho. J Wildl Manage 

47:664–672
Irwin LL, Rock DF, Miller GP (2000) Stand structures used by northern spotted owls in managed 

forests. J Raptor Res 34:175–186
Iverson LR, Schwartz MW, Prasad AM (2004) Potential colonization of new available tree-spe-

cies habitat under climate change: an analysis of five eastern US species. Landscape Ecol 
19:787–799

James DG, Nunnallee D (2011) Life histories of Cascadia butterflies. Oregon State University 
Press, Corvallis

Janisch JE, Harmon ME (2002) Successional changes in live and dead wood carbon stores: 
implications for net ecosystem productivity. Tree Physiol 22:77–89

Johnstone JF, Hollingsworth TN, Chapin FS, Mack MC (2010) Changes in fire regime break 
the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biol 
16:1281–1295

Karam SL, Weisberg PJ, Scheller RM et al (2013) Development and evaluation of a nutrient 
cycling extension for the LANDIS-II landscape simulation model. Ecol Model 250:45–57

Keeton WS, Franklin JF (2005) Do remnant old-growth trees accelerate rates of succession in 
mature Douglas-fir forests? Ecol Monogr 75:103–118

Keller JK, Richmond ME, Smith CR (2003) An explanation of patterns of breeding bird species 
richness and density following clearcutting in northeastern USA forests. For Ecol Manage 
174:541–564

Kennedy RSH, Wimberly MC (2009) Historical fire and vegetation dynamics in dry forests of the 
interior Pacific Northwest, USA, and relationships to Northern Spotted Owl (Strix occiden-
talis caurina) habitat conservation. For Ecol Manage 258:554–566

Kie JG, Bowyer RT, Stewart KM et al (2003) Ungulates in western coniferous forests: habitat 
relationships, population dynamics, and ecosystem processes. In: Zabel CJ, Anthony RG 
(eds) Mammal community dynamics: management and conservation in the coniferous for-
ests of western North America. Cambridge University Press, New York

King DI, Nislow KH, Brooks RT, DeGraaf RM, Yamasaki M (2011) Early-successional forest 
ecosystems: far from “forgotten”. Front Ecol Environ 9:319–320



282 R.M. Scheller and M.E. Swanson

Klenner W, Kurz W, Beukema S (2000) Habitat patterns in forested landscapes: management 
practices and the uncertainty associated with natural disturbances. Comput Electron Agr 
27:243–262

Klinger LF, Zimmerman PR, Greenberg JP et al (1994) Carbon trace gas fluxes along a succes-
sional gradient in the Hudson Bay lowland. J Geophys Res 99:1469–1494

Kumar N, Belhumeur PN, Biswas A et al (2012) Leafsnap: a computer vision system for auto-
matic plant species identification. In: Fitzgibbon A (ed) ECCV 2012, Part II, LNCS 7573. 
Springer, Berlin, pp 502–516

Larson AJ, Franklin JF (2005) Patterns of conifer tree regeneration following an autumn wildfire 
event in the western Oregon Cascade Range. For Ecol Manage 218:25–36

Leuschner C, Rode MW (1999) The role of plant resources in forest succession: changes in radi-
ation, water and nutrient fluxes, and plant productivity over a 300-yr-long chronosequence 
in NW-Germany. Perspect Plant Ecol 2:103–147

Li Z, Apps MJ, Banfield E, Kurz WA (2002) Estimating net primary production of forests in the 
Canadian prairie provinces using an inventory-based carbon budget model. Can J For Res 
32:161–169

Lindenmayer DB, Fischer J (2006) Habitat fragmentation and landscape change: an ecological 
and conservation synthesis. Island Press, Washington

Lindenmayer DB, Franklin JF (2002) Conserving forest biodiversity: a comprehensive multi-
scaled approach. Island Press, Washington

Lindenmayer DB, Noss RF (2006) Salvage logging, ecosystem processes, and biodiversity con-
servation. Conserv Biol 20:949–958

Lindenmayer DB, Possingham HP (1995) The conservation of arboreal marsupials in the 
montane ash forests of the Central Highlands of Victoria, South-eastern Australia—VII. 
Modelling the persistence of Leadbeater’s possum in response to modified timber harvesting 
practices. Biol Conserv 73:239–257

Lindenmayer DB, Burton PJ, Franklin JF (2008) Salvage logging and its ecological conse-
quences. Island Press, Washington

Lindenmayer DB, Likens GE, Franklin JF (2010) Rapid responses to facilitate ecological discov-
eries from major disturbances. Front Ecol Environ 8:527–532

Litvaitis JA (1993) Response of early successional vertebrates to historic changes in land use. 
Conserv Biol 7:866–873

Loudermilk EL, Scheller RM, Weisberg PJ et al (2013) Carbon dynamics in the future forest: the 
importance of long-term successional legacy and climate–fire interactions. Global Change 
Biol 19:3502–3515

Loudermilk EL, Stanton A, Scheller RM et al (2014) Effectiveness of fuel treatments for mitigat-
ing wildfire risk and sequestering forest carbon: a case study in the Lake Tahoe Basin. For 
Ecol Manage 323:114–125

Lutz JA, Halpern CB (2006) Tree mortality during early forest development: a long-term study of 
rates, causes, and consequences. Ecol Monogr 76:257–275

Mazurek MJ, Zielinski WJ (2004) Individual legacy trees influence vertebrate wildlife diversity 
in commercial forests. For Ecol Manage 193:321–334

McClain ME, Bilby RE, Triska FJ (1998) Nutrient cycles and responses to disturbance. In: Bilby 
RE, Naiman RJ (eds) River ecology and management: lessons from the Pacific coastal 
ecoregion. Springer, New York, pp 347–372

McClanahan TR (1986) The effect of a seed source on primary succession in a forest ecosystem. 
Vegetatio 65:175–178

McClanahan TR, Wolfe RW (1987) Dispersal of ornithochorous seeds from forest edges in cen-
tral Florida. Vegetatio 71:107–112

McLachlan JS, Clark JS, Manos SP (2005) Molecular indicators of tree migration capacity under 
rapid climate change. Ecology 86:2088–2098

McLellan BN, Hovey FW (2001) Habitats selected by grizzly bears in a multiple use landscape.  
J Wildlife Manage 65:92–99



28310 Simulating Forest Recovery Following Disturbances …

Meslow EC (1978) The relationship of birds to habitat structure—plant communities and succes-
sional stages. In: Proceedings of the workshop on nongame bird habitat management in the 
coniferous forests of the western United States. USDA Forest Service, General Technical 
Report PNW 64, pp 12–18

Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: manag-
ing in the face of uncertainty. Ecol Appl 17:2145–2151

Miller FL (1970) Distribution patterns of black-tailed deer (Odocoileus hemionus columbianus) 
in relation to environment. J Mammal 51:248–260

Miller JC, Hammond PC (2007) Butterflies and moths of Pacific Northwest forests and wood-
lands: rare, endangered and management-sensitive species. Forest Health Technology 
Enterprise Team, USDA Forest Service. FHTET-2006-07, Sept 2007

Miller C, Urban DL (2000) Modeling the effects of fire management alternatives on Sierra 
Nevada mixed-conifer forests. Ecol Appl 10:85–94

Mitchell SR, Harmon ME, O’Connell KE (2012) Carbon debt and carbon sequestration parity in 
forest bioenergy production. GCB Bioenergy 4:818–827

Mkhabela MS, Amiro BD, Barr AG et al (2009) Comparison of carbon dynamics and water use 
efficiency following fire and harvesting in Canadian boreal forests. Agric For Meteorol 
149:783–794

Neary DG, Klopatek CC, DeBano LF, Folliott PF (1999) Fire effects on belowground sustain-
ability: a review and synthesis. For Ecol Manage 122:51–71

Neilson RP (1995) A model for predicting continental-scale vegetation distribution and water 
balance. Ecol Appl 5:352–385

North M, Hurteau M, Fiegener R, Barbour M (2005) Influence of fire and El Nino on tree recruit-
ment varies by species in Sierran mixed conifer. For Sci 51:187–197

Nyberg JB, Janz DW (eds) (1990) Deer and elk habitats in coastal forests of southern British 
Columbia. B.C. Ministry of Forests, Vancouver

Nyland RD (2002) Silviculture: concepts and applications, 2nd edn. Waveland Press, Long Grove
Oliver CD, Larson BC (1996) Forest stand dynamics. Wiley, New York (update edition)
Pan Y, Birdsey R, Hom J, McCullough K (2009) Separating effects of changes in atmospheric 

composition, climate, and land-use on carbon sequestration of U.S. Mid-Atlantic temperate 
forests. For Ecol Manage 259:151–164

Perera A, Buse L (2014) Ecology of wildfire residuals in boreal forests. Wiley, West Sussex
Perry DA, Hessburg PF, Skinner CN et al (2011) The ecology of mixed severity fire regimes in 

Washington, Oregon, and Northern California. For Ecol Manage 262:703–717
Poage NJ, Weisberg PJ, Impara PC et al (2009) Influences of climate, fire, and topography on 

contemporary age structure patterns of Douglas-fir at 205 old forest sites in western Oregon. 
Can J For Res 39:1518–1530

Puettmann K, Messier C, Coates KD (2013) Managing forests as complex adaptive systems.  
In: Puettmann K, Messier C (eds) Managing forests as complex adaptive systems: Building 
resilience to the challenge of global change. Routledge, London, pp 3–16

Putman RJ (1996) Ungulates in temperate forest ecosystems: perspectives and recommendations 
for future research. For Ecol Manage 88:205–214

Pyle RM (2002) The butterflies of Cascadia. Seattle Audubon Society, Seattle
Rebertus AJ, Veblen TT (1993) Partial wave formation in old-growth Nothofagus forests on 

Tierra del Fuego, Argentina. B Torrey Bot Club 120:461–470
Rebertus AJ, Kitzberger T, Veblen TT, Roovers LM (1997) Blowdown history and landscape pat-

terns in the Andes of Tierra del Fuego, Argentina. Ecology 78:678–692
Robinson AP, Monserud RA (2003) Criteria for comparing the adaptability of forest growth 

models. For Ecol Manage 172:53–67
Rooney TP, Waller DM (2003) Direct and indirect effects of white-tailed deer in forest ecosys-

tems. For Ecol Manage 181:165–176
Rosenfeld JM, Navarro Cerrillo RM, Gúzman Alvarez JR (2006) Regeneration of Nothofagus 

pumilio (Poepp. et Endl.) Krasser forests after five years of seed tree cutting. J Environ 
Manage 78:44–51



284 R.M. Scheller and M.E. Swanson

Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other 
biomes, BIOME-BGC, and an application for global-scale models. In: Roy J, Ehleringer JR, 
Field CB (eds) Scaling physiological processes: leaf to globe. Elsevier, Amsterdam

Samson C, Huot J (1998) Movements of female black bears in relation to landscape vegetation 
type in southern Quebec. J Wildlife Manage 62:718–727

Scheller RM, Mladenoff DJ (2004) A forest growth and biomass module for a landscape simula-
tion model, LANDIS: design, validation, and application. Ecol Model 180:211–229

Scheller RM, Domingo JB, Sturtevant BR et al (2007) Design, development, and application of 
LANDIS-II, a spatial landscape simulation model with flexible spatial and temporal resolu-
tion. Ecol Model 201:409–419

Scheller RM, Hua D, Bolstad PV, Birdsey RA, Mladenoff DJ (2011) The effects of forest harvest 
intensity in combination with wind disturbance on carbon dynamics in Lake States mesic 
forests. Ecol Model 222:144–153

Schmidt H, Urzúa A (1982) Transformación y manejo de los bosques de lenga en Magallanes. 
Universidad de Chile. Santiago Cienc Agric 11:1–62

Schmidt MW, Torn MS, Abiven T et al (2011) Persistence of soil organic matter as an ecosystem 
property. Nature 478:49–56

Sessions J, Bettinger P, Buckman R et al (2004) Hastening the return of complex forests follow-
ing fire: the consequences of delay. J For 102:38–45

Smith DM, Larson BC, Kelty MJ, Ashton PMS (1997) The practice of silviculture: applied forest 
ecology, 9th edn. Wiley, New York

Severns PM, McIntire EJB, Schultz CB (2013) Evaluation functional connectivity with matrix 
behavior uncertainly for an endangered butterfly. Landscape Ecol 28:559–569

Smithwick E, Ryan M, Kashian D et al (2009) Modeling the effects of fire and climate change on 
carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands. Global Change Biol 
15:535–548

Srinivasan R, Arnold JG (1994) Integration of a basin-scale water quality model with GIS. J Am 
Water Resour Assoc 30:453–462

Sturtevant BR, Scheller RM, Miranda BR, Shinneman D (2009) Simulating dynamic and 
mixed-severity fire regimes: a process-based fire extension for LANDIS-II. Ecol Model 
220:3380–3393

Sturtevant BR, Miranda BR, Wolter PT et al (2014) Forest recovery patterns in response to 
divergent disturbance regimes in the Border Lakes region of Minnesota (USA) and Ontario 
(Canada). For Ecol Manage 313:199–211

Swanson ME (2009) Modeling the effects of alternative management strategies on forest carbon 
in the Nothofagus forests of Tierra del Fuego, Chile. For Ecol Manage 257:1740–1750

Swanson ME, Franklin JF, Beschta RL et al (2011) The forgotten stage of forest succession: 
early-successional ecosystems on forest sites. Front Ecol Environ 9:117–125

Swanson FJ, Jones JA, Crisafulli CM, Lara A (2013) Effects of volcanic and hydrologic pro-
cesses on forest vegetation: Chaitén Volcano, Chile. Andean Geol 40:359–391

Swanson ME, Studevant NM, Campbell JL, Donato DC (2014) Biological associates of early-
seral pre-forest in the Pacific Northwest. For Ecol Manage 324:160–171

Thompson JR, Spies TA, Ganio LM (2008) Reburn severity in managed and unmanaged vegeta-
tion in a large wildfire. P Natl Acad Sci USA 104:10743–10748

Titus JH, Householder E (2007) Salvage logging and replanting reduce understory cover and 
richness compared to unsalvaged-unplanted sites at Mount St. Helens, Washington. WN Am 
Nat 67:219–231

Turner MG, Romme WH, Gardner RH, Hargrove WW (1997) Effects of fire size and pattern on 
early succession in Yellowstone National Park. Ecol Monogr 67:411–433

Turner MG, Baker WL, Peterson CJ, Peet RK (1998) Factors influencing succession: lessons 
from large, infrequent natural disturbances. Ecosystems 1:511–523

Vernon SP, Macdonald SE, Dale MRT (2005) The interaction between masting and fire is key to 
white spruce regeneration. Ecology 86:1744–1750



28510 Simulating Forest Recovery Following Disturbances …

Vitousek PM, Gosz JR, Grier CC et al (1979) Nitrate losses from disturbed ecosystems. Science 
204:469–474

Vitz AC, Rodewald AD (2006) Can regenerating clearcuts benefit mature-forest songbirds? An 
examination of post-breeding ecology. Biol Conserv 127:477–486

Weisberg PJ, Bugmann H (2003) Forest dynamics and ungulate herbivory: from leaf to land-
scape. For Ecol Manage 181:1–12

Wimberly MC (2002) Spatial simulation of historical landscape patterns in coastal forests of the 
Pacific Northwest. Can J For Res 32:1316–1328

Zager P, Jonkel C, Habeck J (1983) Logging and wildfire influence on grizzly bear habitat in 
northwestern Montana. Int Conf Bear Res Manage 5:124–132

Zedler PH (1995) Fire frequency in southern California shrublands: biological effects and man-
agement options. Brushfires in California wildlands: ecology and resource management. 
International Association of Wildland Fire, Fairfield, pp 101–112



287

It was nearly a quarter-century ago when Turner and Gardner (1991) drew 
 attention to methods of quantifying landscape patterns and processes, includ-
ing simulation modeling. The many authors who contributed to that seminal 
text  collectively signaled the emergence of a new field—spatially explicit simu-
lation modeling of broad-scale ecosystem dynamics. Of particular note are the 
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works of Turner and Dale (1991), who produced a first comprehensive overview 
of the prospect of modeling landscape disturbances, and of Sklar and Costanza 
(1991), who summarized the limited state of landscape modeling across various 
systems ranging from natural to anthropogenic and from terrestrial to aquatic, all 
in a single chapter. Concurrent with the growth in landscape ecology, the field of 
modeling at broader scales has expanded and diversified quite rapidly since these 
early summaries. This growth is evident in that less than a decade later, Mladenoff 
and Baker (1999) were able to assemble an entire text on landscape modeling 
with a focus on the dynamics of forest landscape disturbances. The subsequent 
proliferation of landscape disturbance simulation modeling has been captured in 
several reviews (e.g., Keane et al. 2004; Scheller and Mladenoff 2007; He 2008) 
and compilations (Sturtevant et al. 2004). For brevity, we refer to these models as  
forest landscape disturbance models (FLDMs), an inclusive term that embraces 
not just forest landscape disturbance and succession models, but also models of 
risk and hazard assessment, decision-support tools, land-use and cover change 
models, and models of individual-based processes. This term and its abbreviated 
form (i.e., FLDMs) were created for convenience only: our intent is not to add to 
the plethora of terms and acronyms in landscape modeling parlance.

The evolution of FLDMs has been marked by many changes, but we emphasize 
three aspects in particular. First, there has been an increase in the number of dis-
turbance types and agents being simulated, and a change in how they are perceived 
by modelers. Early efforts focused on wildfire and some insect pests, but now the 
suite of disturbances included in FLDMs, at least in North America, is numer-
ous and continues to expand. During the early stages, disturbance processes were 
generally simulated as individual external disturbance agents that periodically 
influenced forest landscapes, independent of vegetation dynamics. Now, there is 
an explicit recognition of the synergistic effects of interactions among individual 
disturbances and the dependence of those dynamics on changes in the forest land-
scape’s composition and spatial patterns.

The second aspect relates to a gradual shift in modeling approaches. Early 
on, there was a heavy emphasis on empirical approaches that primarily relied on 
observations of past disturbance events based on the assumptions that the patterns 
exhibited by disturbance agents were stationary and that the responses of the for-
est landscape were static. Now, modelers are beginning to dispel the belief that 
knowledge of past disturbances is sufficient to understand what could happen in 
the future; instead, they are promoting an understanding of the mechanisms that 
drive disturbances as well as the dynamics of landscape composition. The nonsta-
tionary characteristic of forest landscape disturbances, driven by changes in con-
textual factors such as climate and anthropogenic influences, is an often-discussed 
topic among FLDM developers.

The third aspect relates to the advances in computing technology and data 
capture. The early limitations of computing capacity—hardware, program-
ming languages, networking, and affordability—and the limited availability of 
high-resolution data are far less relevant now than they were even a decade ago. 
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Technological advances in computation have surpassed the underlying science that 
supports the processes being simulated by FLDMs, except perhaps in few extreme 
circumstances. Progress in technology has enabled modelers to develop common 
(shared) modeling platforms, adopt modular designs that foster interactions among 
modelers, and remotely exchange vast amounts of information. An unfortunate 
consequence of advanced computing and data technology is the misplaced goal 
of pursuing technologically advanced models, which may occur at the expense of 
models that are imbued with rich and relevant science.

Our goal in this chapter is twofold. First, we present a synopsis of the contents 
of this book. Beyond being a summary of the salient points that were made in vari-
ous chapters, we hope that the emergent messages described here will present an 
adequate view of the current state of our topic—simulation modeling of forest 
landscape disturbances. Thus, despite the small sample size of only 10 chapters, 
we hope to capture what is “here and now” based on the examples provided by 
the contributions of other chapter authors. Second, we present thoughts on future 
directions or “where do we go from here?” addressed to the community of forest 
landscape disturbance modelers. Rather than specific prescriptions and remedies, 
these are general considerations about modeling (not disturbance ecology) that 
modelers should ponder as their modeling efforts grow, advance, and diversify.

11.1  Where Are We Now?

As mentioned above, we have assumed that the types of disturbances addressed 
in the preceding chapters, and the modeling approaches and methods described 
therein, provide a reasonable overview of the present state of FLDMs. This 
includes many facets of quantifying and simulating forest landscape disturbances: 
the behavior of disturbance agents, including their interactions with forest land-
scapes and the effects of contextual factors (i.e., broader-scale and external drivers 
such as climate and socioeconomic factors); the response of forest landscapes to 
disturbance agents; the recovery of forest landscapes; and assessment of the risk 
of disturbances. Even though this book includes only 11 chapters, its 28 authors 
represent a variety of topics, geographies, perspectives, and views that collec-
tively embody more than 250 years of experience in FLDM development and 
application. Admittedly, a more complete and global picture of the present state of 
FLDMs could be constructed through a thorough and exhaustive literature review 
and synthesis, but that’s a task we leave to colleagues who will be motivated by 
the discourse presented in this chapter.

In the following sections, we summarize the main points made by authors in 
each chapter, guided by Table 11.1, which provides an overview of their respective 
focus and key messages. We have grouped the chapters using the broad catego-
ries of abiotic, biotic, and integrated disturbances, followed by landscape recovery 
based on Fig. 1.1 in Chap. 1.

http://dx.doi.org/10.1007/978-3-319-19809-5_1
http://dx.doi.org/10.1007/978-3-319-19809-5_1
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11.1.1  Abiotic Disturbances

As Mitchell and Ruel (Chap. 2) explain, empirical windthrow models can rep-
resent site and management conditions at the tree and stand-scale and provide 
insights into landscape-scale patterns of wind disturbance. However, empirical 
models offer limited insights into the underlying mechanisms and are of limited 
use in as-yet unobserved situations. Hybrid–mechanistic modeling approaches are 
used to predict the behavior of individual trees under wind loads—individual trees 
fail if the critical wind load exceeds the stem strength or anchorage strength—and 
can be aggregated to simulate stand- and landscape-scale outcomes. Some spa-
tial effects, such as sheltering by upwind trees, are accounted for, while others, 
such as tree-to-tree collisions, are not. By including regional wind patterns and 
incorporating the models into decision-support systems, climate change scenarios 
can be explored. Many knowledge gaps remain, some of which can be addressed 
through expert knowledge. Predictive models can be improved via interdiscipli-
nary collaboration.

Using case studies, Gustafson and Shinneman (Chap. 3) present two stages of 
modeling in the relatively new field of simulating the effects of drought on forest 
landscapes: empirical correlations between stress and species responses and mech-
anistic simulations of the mortality induced by moisture stress. Although moisture 
stress has been modeled for decades, modeling drought as a disturbance (i.e., as 
episodes of drought-caused tree mortality) is recent and is still in the early stages 
of development. Deterministic approaches, although common and simple, have 
many disadvantages: they are not realistic, they simulate uniformity and homoge-
neity in disturbance patterns, and they do not account for changes in the climatic 
context. Furthermore, drought-based tree mortality is a confounded outcome: 
cumulative stress resulting from drought can predispose trees to biotic disturbance 
agents, such as insects and diseases, whose prevalence may be independently 
affected by climatic change. Additional drivers such as changes in atmospheric 
chemistry can likewise affect plant water use and moisture stress. Mechanistic 
modeling approaches based on tree physiology are poised to better address the 
cumulative effects of stress agents, and their effects on forest mortality.

In their synthesis, McKenzie and Perera (Chap. 4) observe that modeling of 
wildfire regimes is a relatively mature field of study, so that current paradigms in 
this field can inform simulations of other forest landscape disturbances. For exam-
ple, it is clear that the stochasticity of wildfire events and the effects of a changing 
climate are not replicated in observations of the past. Therefore, predefining prop-
erties of individual disturbances or fire regimes in general will fail to capture the 
dynamism, emergence, and stochasticity that characterize forest landscapes and 
will not be robust to changes in disturbance regime characteristics. Mechanistic 
modeling has advantages in this regard, but it is also possible to “over-model” 
by including extraneous mechanisms, which can produce false precision at fine 
scales, and to misrepresent wildfire disturbance at broad scales. The degree of 

http://dx.doi.org/10.1007/978-3-319-19809-5_2
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abstraction and complexity embedded in simulation models must be question- and 
situation-specific, and most importantly, must be scale-specific.

11.1.2  Biotic Disturbances

In reviewing the evolution of spruce budworm (Choristoneura fumiferana) 
modeling over a period of five decades, Sturtevant et al. (Chap. 5) illustrate the 
long-term process of model building to inform our understanding of complex dis-
turbance dynamics. Advances in spruce budworm modeling have been neither 
linear nor continuous, but rather they have emerged from competing and often 
incomplete paradigms that explain limited observations collected at inherently 
restricted spatial and temporal scales. Insect disturbance modeling is often com-
plicated by nonlinear and cross-scale interactions among components that operate 
at various scales. Despite extensive investments in research, comprehensive mod-
eling approaches have not readily emerged because of the inherent unpredictability 
and specificity of these ecological systems, as is the case for biotic disturbances 
in general. Sturtevant et al. present a vision of a hybrid approach that blends sci-
entific paradigms, modeling approaches, and empirical and mechanistic relation-
ships, using the framework of landscape disturbance and succession models.

In describing an individual-based model (IBM) that simulates mountain pine 
beetle (Dendroctonus ponderosae) responses to temperature changes, Regnière 
et al. (Chap. 6) present an excellent example of a highly mechanistic simulation 
model of the behavior of a disturbance agent. Their chapter is unique in that it 
focuses on a single model, and their in-depth case study illustrates a specific mod-
eling paradigm (i.e., IBM). The IBM approach can help to identify knowledge and 
data gaps and can be used to simulate low-probability events. In this approach, 
the built-in responsiveness to changes in the climate context is governed by rela-
tively simple rules that affect individual responses to the environment. IBM is a 
generalizable strategy that is particularly well-suited to insect disturbance, since 
outbreaks are emergent properties that result from the summation of individual 
responses. However, there are difficulties involved in up-scaling coupled distur-
bance mechanisms from tree (individual) to landscape scales and in applying the 
IBM approach to simulate outbreak behavior in time and space, which may be 
beyond the current computing capacity.

Birt and Coulson (Chap. 7) discuss many considerations for advancing models 
of the forest disturbance caused by the southern pine beetle (Dendroctonus fron-
talis). The vision of potential positive effects of disturbances is often overlooked 
because of the common socioeconomic perspective that disturbances are destruc-
tive. However, if considered as an integral part of a broader ecological system, 
beyond the scale of the “destroyed” forest stand, disturbances can be perceived as 
agents of ecosystem renewal. This point, which the authors present for southern 
pine beetle, is applicable to other disturbances. For some disturbances, adopting a 
holistic outlook that includes socioeconomic processes will help modelers to better 

http://dx.doi.org/10.1007/978-3-319-19809-5_5
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quantify the disturbance regimes and their consequences, and will also help them 
to communicate about disturbances and educate forest managers. Birt and Coulson 
argue in favor of simulation models based on mechanisms, although a variety of 
complementary modeling approaches will ultimately yield the most insight for 
complex systems. As well, they reiterate the view that past disturbances may not 
inform the future because of the dynamic nature of forest landscape drivers and 
the patterns they produce.

11.1.3  Integrated Disturbances

Using a case study of simulating the interactions among three disturbance types 
(i.e., fire, insects, and disease), Keane et al. (Chap. 8) demonstrate that the indi-
rect effects of climate change on disturbance regimes and their interactions can 
have far greater influence on ecosystem dynamics than the direct effects. Since 
these disturbances can act synergistically, their combined effects can be elucidated 
only with mechanistic models that include the underlying drivers, and cannot be 
discerned based solely on past observations. Recent advances in landscape mod-
els are enabling investigations of such interactions among disturbances; however, 
empirical knowledge of the underlying drivers that affect disturbance interactions 
remains a limiting factor. Emergent properties of integrated disturbances, through 
their reciprocal interactions, can be counterintuitive. Although the specifics of 
such interactions may be unique to each study area and set of circumstances, the 
approaches to understanding such interactions are transferable to other landscapes 
and situations.

Wimberly et al. (Chap. 9) review the coupling between natural and anthropo-
genic disturbances and the potential for combining land change models (LCMs), 
which address socioeconomic phenomena, with forest landscape models (FLMs), 
which focus on ecological phenomena. Although the spatial scales and approaches 
may differ between LCMs and FLMs, the common conceptual design in both 
approaches makes their integration possible. Real and complex interactions are 
inherent in these coupled systems, indicating that the effects can be direct and 
immediate (as is the case with forest harvesting) or they can be indirect or delayed 
(as is the case with road networks). Recent efforts in the landscape-scale mode-
ling of coupled human–natural systems have relied primarily on loose coupling 
of FLMs and LCMs, in which the input from one model is used to drive the other 
model. Given the reciprocal nature of human and ecological processes, further 
progress will require interdisciplinary efforts to more tightly couple these mod-
eling approaches.

http://dx.doi.org/10.1007/978-3-319-19809-5_8
http://dx.doi.org/10.1007/978-3-319-19809-5_9
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11.1.4  Recovery

Scheller and Swanson (Chap. 10) focus on modeling a system’s recovery after a 
disturbance. Reciprocal feedbacks between the disturbance and both vegetation 
and biogeochemical processes are integral to understanding the effects of distur-
bance on forest landscapes. The complexity and short time horizon of the recovery 
processes, as well as the many interacting factors and influences complicate mod-
eling efforts of short-term forest landscape recovery, and lead to uncertainty in the 
outcomes. Four major drivers influence recovery dynamics: biological legacies, 
nutrient and water fluxes, regeneration mechanisms, and management activities. 
The two contrasting case studies presented in this chapter demonstrate both the 
importance of modeling the recovery stage of forest dynamics and the challenges 
associated with this modeling. Mechanistic approaches are essential to reflect the 
complexity of the processes involved in forest recovery. Critical requirements to 
support these approaches are data to parameterize such models, the reconstruction 
of disturbance effects at regional scales, remote sensing of post-disturbance recov-
ery, and the enlistment of “citizen scientists” to fill data gaps.

11.1.5  Emergent Messages

The chapters in this volume not only spanned a broad range of disturbance types, 
they also present disturbance modeling from different perspectives. For exam-
ple, three sequential steps relevant to modeling forest landscape disturbances are 
addressed in the chapters at different levels of focus and detail (Fig. 11.1). Chapters 
5 and 7 focused on methods of simulating the disturbance agent’s behavior and the 
response of the forest landscape separately, whereas other chapters (3, 4, 8 and 9) 

Fig. 11.1  The three major steps involved in simulating forest landscape disturbances, and the 
modeling domains addressed in the chapters of this book
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addressed these steps together. Chapter 6 detailed only the first step, and Chap. 2 
focused on the second. Chapter 6 described simulation of the behavior of a distur-
bance agent (mountain pine beetle), given certain forest characteristics and climate 
drivers, whereas Chap. 2 addressed the response of a forest’s structure to a physi-
cal disturbance agent (windthrow, given the presence of wind storms). Even though 
most chapters alluded to post-disturbance vegetation changes, only Chap. 10 focused 
explicitly on the recovery of forest landscapes after disturbances.

To illustrate the emergent messages that result from synthesis of the discussion in 
the preceding 10 chapters, we created a word cloud based on the relative frequency 
of occurrence of the key terms (Fig. 11.2). This shows that concepts such as inter-
actions, complexity, mechanistic modeling, abstraction, and anthropogenic effects 
were more commonly addressed by chapter authors than stochasticity, validation, 
hypotheses, communication, and model parsimony. It appears that these “common” 
terms in the word cloud are interrelated. Below, we examine the concepts associated 
with these terms first and address the “less common” terms later in the text.

Spatially explicit interactions are inherent in forest landscape disturbances: a 
common theme in this book is the relative strength of the reciprocal interactions 
between vegetation and the various disturbance agents in time and space. Abiotic 
disturbance agents—particularly those that are most directly linked to weather 
and climate patterns (i.e., in this book, wind, drought)—have comparatively lim-
ited feedback with vegetation in terms of modifying disturbance regimes. Although 
vegetation does have a localized influence on disturbance effects, for example via 
size- or species-specific susceptibility to the disturbance (e.g., the likelihood of 
being blown over, as in Chap. 2; the relative tolerance of drought, as in Chap. 3), 
its relative influence on the behavior of disturbance agents is limited compared with 
larger-scale factors, such as hurricane frequency and regional drought episodes. In 
contrast, biotic disturbance agents have comparatively strong reciprocal feedbacks 
with vegetation dynamics (e.g., Chaps. 5–7). Furthermore, the absence of a host 
species can make its associated biotic disturbance agent become irrelevant. Wildfire 
disturbance lies between these two extremes because it is an abiotic disturbance 
that is strongly influenced by both weather and climate and by the specific fuels 

Fig. 11.2  The relative importance (frequency of mention) of 10 key terms in the independent 
contributions in this volume (Chaps. 1–10). The font size is proportional to the frequency of 
occurrence of the words in the text; however, the terms are randomly positioned within the figure
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produced by the vegetation (Chaps. 4 and 8). Thus, it is more general than most 
insect pests (fire occurs in most of the world’s forest ecosystems), but less general 
than wind (all trees become susceptible to windthrow at extreme wind speeds).

Moreover, interactions among disturbances are complex, a fact that all chap-
ter authors point out. Press disturbances influence pulse disturbances. (See Chap. 1 
and Table 1.1 for their definitions.) For example, drought stress may change the 
characteristics of the forest landscape, and this, in turn, will influence the behavior 
of wildfire. As well, some pulse disturbances influence other pulse disturbances. 
For example, a windthrow event may modify forest fuel availability, thereby alter-
ing the behavior of wildfire. Anthropogenic disturbances may alter natural distur-
bances both directly and indirectly; for example, indirect press disturbances such 
as road networks can change water tables (thus, can affect wildfire spread) and 
direct pulse disturbances such as harvesting can change stand properties (thus, can 
affect windthrow), thereby affecting subsequent disturbance dynamics. The rela-
tive strength of reciprocal interactions between disturbance agents and vegetation 
dynamics has important consequences for overall system complexity. Changes in 
contextual factors such as climate may be subtle until thresholds are reached, after 
which the response can be pronounced; examples include changes in temperatures 
and precipitation (drought) and in lightning patterns (wildfires).

As our knowledge of individual disturbance domains matures, there is a con-
current move by modelers of all disturbances toward mechanistic modeling. All 
authors in this book argued in favor of such a move, and noted that the limita-
tions of simple empirical models and extrapolations appear to be increasingly rec-
ognized by researchers. The once-popular and primary method of understanding 
forest landscape disturbance regimes solely based on past occurrences is either 
being replaced or complemented by scenario-based simulations that depend on an 
understanding and quantification of the underlying ecological processes. This is 
evident in simulations of the susceptibility to a disturbance and the vulnerability 
if one occurs (Chap. 8). This area of research stems from a long tradition in risk 
and hazard analysis, but has become quite sophisticated in terms of the science 
underlying the description of risk factors and their interactions with disturbance 
processes in time and space (e.g., Chaps. 2 and 5). It is also evident in approaches 
for addressing the concept of emergent disturbance regimes, where disturbance 
events initiate, spread, and terminate based on first principles of biology, phys-
ics, and chemistry to generate dynamic disturbance regimes that are influenced by 
both external drivers (e.g., climate variables) and internal properties (i.e., recip-
rocal interactions among vegetation composition, arrangement, and structure). It 
is possible to model disturbance behavior that emerges from an even lower level 
of organization, such as the cumulative behavior of individual disturbance agents 
rather than disturbance events. This method is suitable for simulating biotic dis-
turbances such as insects or human disturbances, as affected by the behavior of 
individuals (e.g., Chaps. 6 and 9). Simulating disturbances as emergent sys-
tem properties sets the stage for investigations of the interactions among distur-
bances—the consequences of which are often greater than the sum of their parts 
(Chap. 8).

http://dx.doi.org/10.1007/978-3-319-19809-5_4
http://dx.doi.org/10.1007/978-3-319-19809-5_8
http://dx.doi.org/10.1007/978-3-319-19809-5_1
http://dx.doi.org/10.1007/978-3-319-19809-5_1
http://dx.doi.org/10.1007/978-3-319-19809-5_8
http://dx.doi.org/10.1007/978-3-319-19809-5_2
http://dx.doi.org/10.1007/978-3-319-19809-5_5
http://dx.doi.org/10.1007/978-3-319-19809-5_6
http://dx.doi.org/10.1007/978-3-319-19809-5_9
http://dx.doi.org/10.1007/978-3-319-19809-5_8


300 A.H. Perera et al.

All authors in this book recognize the complexities that are involved in mech-
anistic modeling, and the difficulties in scaling and selecting the ecological pro-
cesses that need to be modeled. Limitations emphasized by several authors include 
those related to data, and specifically the quality, resolution, and extent of the data 
resources needed to parameterize, initialize, or validate models. More importantly, 
significant scientific limitations remain as a result of incomplete understanding 
and knowledge of various processes; for example, we do not fully understand 
the drivers underlying the “death spiral” associated with tree stress (Chap. 3), 
cross-scale interactions (Chaps. 5 and 7), and thresholds that influence many dis-
turbance types, including insect outbreaks, diseases, and wildfire (Chap. 8), nor 
the key drivers and processes crucial for forest recovery (Chap. 10). Nonetheless, 
landscape disturbance modeling, like virtually all other disciplines in ecological 
modeling, will always be subject to the middle-number paradox in ecosystems 
(sensu Allen and Hoekstra 1992), and expectations must be tempered accordingly 
(Chap. 4).

The shift toward mechanistic modeling is also perhaps motivated by the rec-
ognition of the nonstationarity of contextual factors. This includes a wide accept-
ance of the prospect of changing climatic conditions as well as inclusion of 
anthropogenic influences on a forest landscape’s structure and function. The latter 
are perhaps more complex and unpredictable because many social, political, and 
economic factors influence the behavior of human populations. Still, many have 
argued that simulating forest landscape disturbances in isolation from anthropo-
genic effects is only an academic exercise, because “real-world systems” include 
human effects through modification of landscape patterns (e.g., by forest harvest-
ing, road construction, and the control of disturbance agents that considerably 
modify the behavior of landscape-scale disturbances). Therefore, the integration 
of socioeconomic phenomena as constraining and controlling factors may be 
essential.

Some common knowledge gaps also emerged from the individual discourses 
by chapter authors. Foremost was the uncertainty involved with understanding 
which ecological processes are crucial for inclusion in mechanistic FLDMs, and 
extending those key fine-scale mechanisms to broader scales; this was echoed by 
all chapter authors. Paucity in knowledge is also evident in relation to factoring in 
anthropogenic influences, as emphasized by Chaps. 7 and 9. As the processes are 
scaled from fine to broad, and multiple mechanisms are added, the relative lack 
of knowledge on error propagation (Chap. 4) and validation (Chap. 2) also could 
become an impediment to developing mechanistic FLDMs. Some of these difficul-
ties can be, at least in the short term, alleviated by resorting to expert knowledge 
(Chap. 10).

In summary, the following messages resonate throughout the chapters in this 
book:

•	 Disturbance regimes are complex, but they nonetheless need to be examined 
and understood in a way that accounts for as much of the complexity as pos-
sible. Abstraction of the ecological system and of the disturbance and recovery 
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processes can be simple or complex, depending on the question and the mod-
eling goal.

•	 Disturbances in forest landscapes are dynamic and therefore nonstationary. They 
are dynamic because there are many interactions and feedback mechanisms with 
other ecological processes. They are nonstationary because the forest landscape 
patterns (and processes) change over time, and the contextual factors (that are 
beyond the scale of the disturbance mechanisms) can change outcomes.

•	 Past disturbance processes are informative, but they may not indicate what is 
possible or probable in the future. Simple extrapolation of past information into 
the future, however convincing and accurate, may be inappropriate in dynamic 
systems that are moving into novel conditions.

•	 Understanding the mechanisms that govern the behavior of disturbance agents, 
the responses of the forest landscape, and its recovery processes is very impor-
tant and, however daunting, will be the solution to exploring disturbances under 
possible future scenarios, as well as testing models as hypotheses to advance 
science. This is true notwithstanding the need to be parsimonious with the 
mechanisms that are quantified and modeled.

•	 Excluding anthropogenic influences, focusing on one disturbance at a time, and 
ignoring forest landscape recovery mechanisms are no longer the most effec-
tive strategies. Simulating scenarios with long time trajectories may not be valid 
unless the human effects, climate change, and interactions with other distur-
bances, as well as how forests landscapes evolve, are considered and included in 
modeling efforts.

•	 Computing and data-gathering techniques may have advanced well beyond 
our capacity, as ecologists, to conceive and quantify ecosystem processes. 
These former bottlenecks are rarely an impediment to developing sophisti-
cated FLDMs, with few exceptions such as extending IBMs to large forest 
landscapes. At the same time, FLDMs must not be guided and motivated by 
technological advancements. What is needed is not a consideration of what is 
technologically feasible, but rather what is ecologically sensible.

11.2  Where Do We Go from Here?

With increasing and broadening awareness of ecological disturbances and their 
consequences in forest landscapes, we expect the role of FLDMs to continue 
to expand. They have been and will continue to be fundamental tools to inform 
research on disturbance ecology through the iterative process of model develop-
ment, confrontation of models with data, and refinement or development of new 
models to incorporate the resulting insights. The scientific role of model devel-
opment has a special meaning in the field of forest landscape ecology, since 
landscape-scale experimental manipulation is complicated, if not impossible. 
Consequently, scientific advances in FLDM development will likely be sup-
ported by the growing demand for modeling tools by forest landscape managers, 
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who increasingly view FLDMs as an integral part of their strategic and tactical 
decision-making. Also, FLDM developers will have access to rapidly advancing 
scientific knowledge, improved empirical data on forest landscape patterns and 
processes, as well as superior computing technology and programming languages.

In the rest of this chapter, we present a collection of considerations for those 
who develop FLDMs with the goals of advancing science and applied decision-
support (Fig. 11.3). We address these considerations from five perspectives: 
the perception of disturbances; the purposes of modeling; abstraction, scaling, and 
parsimony of models; model validation; and communication.

1. Perception of forest landscape disturbances

Disturbances can be perceived as continua in multiple dimensions (Fig. 11.4). For 
example, they can be considered simultaneously based on:

Fig. 11.3  Considerations for developers of forest landscape disturbance models. The direction-
ality implied by the arrows is not necessarily linear; there are many feedback loops involved in 
successful model development based on continuous learning and adaptation

Fig. 11.4  The characteristics 
of the forest landscape 
disturbances that are included 
in a simulation model can 
be perceived along many 
dimensions. This illustration 
shows only three such axes, 
and does not necessarily 
suggest orthogonality among 
the dimensions, nor linearity 
in scale
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(a) The number of disturbances considered, starting with a simplified scenario of 
a single “type” of disturbance (i.e., a single causal factor), and progressing 
toward a complex suite of many interacting (integrated) disturbances

(b) The influence of human activities, ranging from no anthropogenic influence 
to indirect influences on disturbances through anthropogenically altered land-
scape patterns and direct influences by controlling the disturbance agents. For 
example, socioeconomic factors such as vagaries in the markets for forest 
products, shifts in cultural perceptions, demographic changes, and changes in 
human settlements can all influence forest landscape disturbances.

(c) Ecological context changes, starting with the assumption of stationary con-
texts and extending to dynamic (nonstationary) contexts that dynamically 
influence disturbance processes. Evolution of novel ecosystems as a conse-
quence of changes in context, such as climate change, atmospheric pollution, 
and species invasions, is a distinct probability.

“Real world” applications demand a high degree of complexity from FLDMs, 
and a more inclusive view of disturbances by model developers. Although model 
developers may envision and pursue an idealistic and complex FLDM that would 
capture all disturbances, including all human activities, under a range of scenarios 
related to context changes, in reality the success of such a pursuit will not initially 
be high. Such a pursuit may go beyond current theoretical knowledge, technologi-
cal and information capacity, and even computing capabilities. We therefore cau-
tion modelers that FLDM development should move in the direction of developing 
comprehensive models only with due rigor, as knowledge and capacity make this 
expansion both rational and feasible. In the meantime, they should eschew mod-
els that try to address as many issues as possible and that therefore address none 
well, since such models may be less useful than simpler models that address a few 
select disturbances well. During this process of advancement, while FLDMs con-
tinue to evolve and become more complex, an explicit articulation of the domain 
in which we perceive a disturbance to occur (which we consider essential state 
assumptions for modeling) will help define the FLDM’s scope for its developers, 
and will clarify its intent and utility to those who apply the FLDM.

2. Purposes of modeling

As we pointed out in Chap. 1, the differences among the purposes of FLDMs (i.e., 
prediction, forecasting, projection, and scenario exploration) are not mere aca-
demic distinctions; they matter greatly because they affect how models are devel-
oped, perceived, and applied by users. Nearly 40 years ago, Overton (1977) noted 
that the modeling literature did not contain clear statements of models’ goals and 
objectives. This is still true, as Evans et al. (2013a) echo in their meta-review of 
ecological model typologies that range from tactical uses to strategic purposes. 
Here, we reiterate that for successful development and use of FLDMs, both the 
model developers and the users must clearly understand the purpose of the model. 
This is especially the case for constraining how the FLDM output must be viewed 
(Fig. 11.5).

http://dx.doi.org/10.1007/978-3-319-19809-5_1
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It is common for practical users of FLDMs, such as forest managers, to demand 
precise and deterministic predictions of where and how forest landscape distur-
bances will occur. Though other fields of ecology may argue for predictive mod-
els (e.g., Evans et al. 2013b), we contend that the degree of certainty required to 
make such predictive and forecasting applications suitable for tactical purposes is 
an impossible expectation with current FLDMs. The most appealing and robust 
use of some FLDMs is to support long-term explorations of how forest landscapes 
are disturbed, and how they recover. For example, all chapter authors in this book 
note the need for discovery, and we emphasize that a robust understanding of the 
emergent properties of forest landscapes must be the goal of FLDMs. These would 
include the properties that are evident when individual-based disturbance events 
are scaled up to populations, which will elucidate the synoptic characteristics of 
the disturbance. Such discoveries could be made either by mechanistic modeling 
or by sophisticated statistical modeling of past disturbance events, provided that 
the latter cover a large enough sample space to capture the spatial, temporal, and 
stochastic variability of the system that is being simulated. Another possible dis-
covery is a depiction of the properties that may emerge from interactions among 
disturbance agents, which is only feasible with mechanistic modeling efforts. Such 
explorations of synoptic properties of forest landscape disturbances and scenario-
based simulations of future possibilities of ecosystem patterns and processes must 
be the primary goal of FLDMs. In this context, it is the responsibility of the mod-
el’s developers to clearly articulate the purpose of their model (including its limi-
tations) to those who will want to apply the model.

Fig. 11.5  The range of purposes and expected outcomes of forest landscape disturbance models. 
Adapted from Hall and Day (1977) and Bugmann (2003)
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3. Abstraction, Scaling, and Parsimony of Models

Numerous interrelated ecological factors—structures and functions—are linked to 
a given landscape disturbance process. Scoping the domain of the modeled pro-
cesses, identifying which processes are relevant, and selecting only the most sig-
nificant ones can be a difficult task. However, as philosophers have reiterated, it is 
abstraction that leads to universality, parsimony, and rigor, as well as to clarity in 
science. Therefore, abstracting the essence of complex and interrelated ecological 
phenomena in forest landscape disturbances is not just desirable, but is an essen-
tial task in developing FLDMs.

Strong arguments have been made for increased complexity in ecological mod-
els (e.g., Evans et al. 2013a), but this does not mean that the inclusion of more 
mechanisms will necessarily make models better or that these more complex mod-
els will advance the science more effectively. In fact, Duarte et al. (2003) note the 
pseudo-complexity of ecological models and the tendency for “mechanism creep” 
(i.e., the incorporation of insufficiently well understood or of low-importance 
mechanisms) during model development. We think that the temptation to over-
model a system can be prevented by carefully considering the scale-relevancy of 
ecological processes. Even though advances in computing and data-acquisition 
technologies have immensely helped forest landscape modelers, this progress 
could become an impediment to making FLDMs appropriately parsimonious. That 
is, models should only include mechanisms that we understand sufficiently well 
to be confident the model will produce more realistic results, and must exclude 
mechanisms that do not have important effects on the model’s outcomes. With 
increased computing capacity and efficiency in programming languages, and the 
ready availability of high-resolution data, modelers may feel compelled to develop 
more complex models, just because they can. Although it may appear ridiculous to 
suggest this, it is not inconceivable to expect FLDMs to include molecular-level 
processes! But even if such complex models are elegantly built, they would have 
very high uncertainties and an increased risk of error propagation.

Appropriate scaling of ecological processes is a crucial step in model concep-
tion. Since most ecological processes are scale-specific, adoption of an appropriate 
scale is the key to correctly representing a forest landscape system and its pro-
cesses, as well as to the discovery of emergent properties. Because ecologists are 
typically burdened by the intuitive familiarity of the phenomena they study and 
by their anthropocentric views, objectively choosing the correct scale can be diffi-
cult (Wiens 1989; Allen and Hoekstra 1992). Fortunately, many excellent explana-
tions of ecological scale exist to assist FLDM developers (e.g., Wiens 1989; King 
1991; Levin 1992; and many chapters in Peterson and Parker 1998). Also of value 
for forest landscape disturbance modelers is hierarchy theory (sensu Allen and 
Starr 1982; O’Neill et al. 1986), which helps to further unravel issues of scale and 
abstract ecological processes. Understanding the hierarchy of ecological process 
relationships will help simplify the view of complex interrelationships that might 
otherwise appear relevant and important (Fig. 11.6). As a starting point, we argue 
that FLDM developers should aim for no more than three hierarchical levels of 
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ecological processes: the context, the focal disturbance process, and the key mech-
anisms that drive the disturbance process.

4. Model validation 

It is clear that for ecological models to be credible, they must be considered valid. 
However, it is not necessarily clear what “validity” means. Borrowing from the 
allometric and other statistical models used in ecology, many modelers consider 
model validation to be the simple act of comparing model outputs to empirical 

Fig. 11.6  An abstract depiction of how scaling can help simplify model conception. a Many 
interrelated ecological processes related to disturbance processes appear essential, complex, and 
detailed if they are not scaled hierarchically. b After scaling as a nested hierarchy, three levels 
emerge: the context, the focal disturbance process, and the key mechanisms that drive the dis-
turbance process. This helps modelers to comprehend and address only the essential processes 
(gray), and ignore superfluous processes (white)
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observations. The ecological modeling literature is replete with such examples. 
However, this ignores the possibility that an incorrect model can still produce 
results that match observed data, and the possibility that a correct model can 
produce results that do not match the observed data. This is especially true for 
FLDMs, which aspire to simulate ecological patterns and processes at scales that 
exceed our capacity to observe, and that produce probabilistic scenarios. Simple 
confrontation of past observations (single data points) with a set of simulated pat-
terns (a probability distribution), even if statistically viable, may not prove that 
FLDMs are valid and credible. Many, in particular Oreskes and her colleagues 
(e.g., Oreskes et al. 1994; Oreskes 1998, 2003; Oreskes and Blitz 2001), have 
stressed that establishing model credibility involves verification, evaluation, and 
assessment of the whole modeling procedure (Fig. 11.7). This includes “valida-
tion” of the assumptions, input data, and model logic (conception, scale, and sub-
processes), and finally, and only then, assessment of the output. Accordingly, the 
major focus and the responsibility of model developers should be on establishing 
the credibility of the model’s structure: its logic, components, and assumptions.

5. Communication

There are two important facets to communicating in the context of FLDMs, espe-
cially with the user community. First, model developers must articulate about 
their FLDMs. This aspect of knowledge transfer—the necessity to unambigu-
ously and explicitly communicate the premise, value, and limitations of a model 
to a user community—was raised by landscape ecology modelers nearly a decade 
ago (King and Perera 2006), but this topic has still not gained sufficient recogni-
tion. Modelers must not assume that users are aware and informed of the purpose, 

Fig. 11.7  Validation of an FLDM involves critical examination, evaluation, and verification of 
all steps in the simulation of a disturbance process, not just comparing the model outcome to 
observed data
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assumptions, structure, limitations, and results of a FLDM. This is a risky assump-
tion, since miscomprehension by users will lead to misuse and abuse of models, 
and that may lower the credibility of both models and modelers, perhaps even 
more so than poorly constructed models. Although enthusiastic efforts to clar-
ify the value of FLDMs are admirable, model developers must be careful not to 
engage in aggressive marketing and promotion of their products, as this leads to 
poor communication and possibly unmet expectations. Also, ambiguity in expres-
sions, including the use of incorrect terminology, can lead to incorrect use and 
expectations of FLDMs. An example is the frequently incorrect use of the phrase 
“prediction” in modeling parlance that leads to applications of models for inappro-
priate purposes, and misinterpretations of model outcomes.

Second, model developers can use models to communicate about forest land-
scape disturbances. Simulating scenarios as what-if explorations provides power-
ful tools to gain insights about forest landscape disturbances that are otherwise 
beyond the bounds of empirical observations. For example, the spatial and tem-
poral probabilities and heterogeneity of disturbances are hard to comprehend 
based on few historical observations. As well, the notion that history will repeat, 
and therefore that past disturbances are predictive of future disturbances, can be 
challenged using FLDMs. This is especially true for disturbance regimes that are 
nonstationary in response to changing contexts. Another aspect worth communi-
cating is that, from an ecological perspective, not all disturbances are destructive. 
When some disturbance agents are viewed at a broader scale, above the scale 
of the forest communities that have been disturbed, the agents may appear as 
endogenous and the disruptions they create as integral to the broader ecological 
system.

11.3  Conclusions

During the two decades since their naissance in North America, simulation mod-
els have become a mainstay in landscape ecology research. They are also vitally 
important tools that aid policy development, strategic plans, and decision-making 
in land management. This trend is nowhere more evident than in modeling broad-
scale disturbances in forest landscapes. Aided by advances in technology—more 
powerful computing and better data acquisition—the field of forest landscape dis-
turbance modeling has flourished. The many and different discourses in this vol-
ume provide evidence for that growth, including the variety of disturbance types 
that are modeled and how they are modeled. The relative degree of maturity in 
modeling and understanding of disturbance agents is a continuum, ranging from 
wildfire and insect pests, which have been studied and modeled at broad scales for 
decades, to phenomena such as drought and disease modeling, which are relatively 
new topics.
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Nonetheless, several common messages have emerged:

•	 a shift toward mechanistic models that are based on understanding and quantify-
ing ecological processes,

•	 integration of nonstationarity in disturbance behavior due to feedback from 
many stochastic dynamics in forest landscapes and changes in climatic and 
other contextual factors,

•	 including interactions with many other simultaneous disturbance processes, and
•	 integrating anthropogenic influences in simulations of forest landscape patterns 

and processes.

Such advances in process-based modeling, including the integration of multi-scale 
feedbacks among processes and the interactions among multiple disturbance types, 
were not available even a decade ago. In addition, modeling of the recovery of for-
est landscapes has also begun to mature. The responses that are being studied and 
tracked now include biochemical and geochemical processes and biomass, which 
are important complements to projections of a forest’s species composition.

We believe the future of FLDMs to be promising. The topic of forest landscape 
disturbances is drawing increased attention from scientists and forest managers 
alike. The variety of disturbances being modeled, the rigor of the modeling pro-
cedures, and the number of FLDMs are all increasing. However, despite the pro-
gress that has been made in this field, potential traps exist. One is the pursuit of 
increased complexity. The detailed inclusion of all possible ecological processes 
is not synonymous with enhanced rigor; on the contrary, it may be the opposite. 
In many cases, more parsimonious models are more appropriate. Another trap is 
viewing amplified computing power as a goal rather than as a tool for achieving a 
goal. Although technology is a great aid to modelers, it is not, by itself, a reason 
for developing simulation models.

Modelers can maintain their momentum and avoid such pitfalls by adhering to 
a suite of best practices. Specifically, modelers should:

(a) pursue, whenever possible, parsimonious rather than complicated models;
(b) conceive and scale the modeled processes based on ecological concepts rather 

than based on the available computing technology and data;
(c) develop models collaboratively to facilitate ensemble modeling and 

cross-comparisons;
(d) evaluate a model’s structure, logic, and assumptions rather than validating 

models based solely on the match between their outcome and observed data;
(e) treat models as hypotheses, and vigorously strive to test those hypotheses, and 

continuously improve the model’s logic; and
(f) communicate about models to users continuously and actively rather than 

passively.

With this, we echo many other colleagues who have voiced the same sentiment: 
imbue simulation models with rich science, consider the models as hypotheses, 
and strive to simplify models to focus on the fundamental drivers over extraneous 
detail.
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Finally, FLDMs are a powerful and indispensable tool for policy developers 
and managers of forest landscapes. They can be applied to help propose strate-
gic objectives, examine plausible scenarios, and evaluate alternative management 
goals—all without having to rely exclusively on past experiences and evidence. 
When broad-scale experimentation is impossible, and when state assumptions 
based on a description of the past will not remain valid under a changing context 
(e.g., climate change, anthropogenic change), only the virtual explorations facili-
tated by FLDMs can inform us of potential emergent ecological patterns and pro-
cesses in forest landscapes.
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