Development of Unstructured Curved Meshes
with G! Surface Continuity for High-Order
Finite Element Simulations

Qiukai Lu and Mark S. Shephard

Abstract This paper presents a curved meshing technique for unstructured tetra-
hedral meshes where G' surface continuity is maintained for the triangular element
faces representing the curved domain surfaces. A bottom-up curving approach is
used to support geometric models with multiple surface patches where either C°
or G!' geometry continuity between patches is desired. Specific parametrization
approaches based on Bézier forms and blending functions are used to define the
mapping for curved element faces and volumes between parametric and physical
coordinate systems. A preliminary result demonstrates that using G'-continuity
meshes can improve the solution results obtained.

1 Introduction

It is well known that high-order finite element methods are among the most powerful
methods for simulating complex engineering problems [2]. In order to fully realize
the benefits of the high-order methods, the mesh entities representing curved
portions of the domain geometry must be curved and provide an high-enough order
of geometry approximation [11, 12]. The ability to provide such a higher order of
geometric approximation is facilitated by the use of greater than C° geometric shape
continuity between elements [8, 14—16]. Although such higher order geometric
continuity is being increasingly used with tensor product representations over
quadrilaterals (see [6, 10]), there is also the desire to have higher than C° geometry
continuity between elements on unstructured meshes where curved triangular finite
element faces are used. The current work is intended to investigate and address the
technical difficulties with developing curved meshing techniques for unstructured
meshes where G! surface geometry continuity is maintained for the triangular
element faces representing the curved domain surfaces. A preliminary result is also
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included that shows improved solution results when G' surface triangulations are
used.

2 Procedure to Create G' Curved Meshes

Many triangular patches have been developed in the CAGD community to construct
G' continuous surface interpolations [8, 9, 14—16]. The techniques can in general
be categorized into one of the two sets—polynomial based patches or rational
blend based patches. The schemes using polynomials address the problem by either
using single patch with relatively high polynomial degree or creating piecewise
parametrization using sub-patches [13], both of which lead to more control points
to be determined for the patch. The schemes using rationals are able to keep a
patch complete by using blending functions [3]. Rational patches achieve G' with
relatively low degree and require fewer control points. For the study in this paper, the
rational blend based scheme is chosen because of its relatively straight-forward to
construct and the data structure is similar to a regular Bézier triangle. The procedure
to create G' curved meshes from C° straight-sided meshes using rational triangular
patches is introduced in the following subsections. It is assumed that a straight-sided
mesh is given with the set of boundary mesh entities correctly classified on a CAD
model. Each mesh vertex on the model boundary is able to obtain its position and
surface normal data by interacting with the CAD model.

2.1 Rational Triangular G' Patch

The essential part of the procedure to create G' curved meshes is the scheme to
construct triangular G' patches for mesh faces that interpolate the position x;(£) and
normal data n; at their bounding vertices. The scheme used in this work to represent
the curved geometry is based on an extension of the Gregory patch proposed by
Walton et al. [16]. For each individual mesh face, each of the three bounding edges
is assigned with a geometric representation of a cubic Bézier curve B (£). Tangent
vectors are obtained along the curve direction by taking the derivatives of the Bézier
curve parametrization 1? = g—? . Cross-boundary tangent vectors are calculated by

taking cross product with the surface normal given at mesh vertices g? = n; x 1.
In order to obtain the required G' continuity, the cross-boundary tangent fields
associated with the three mesh edges have to be satisfied simultaneously, thus
requiring more degrees of freedom than a typical triangular Bézier patch. As a result,
the order of the polynomials representing the surface patch is increased from cubic
to at least quartic B (£), which leads to a set of three surface control points. Each
of the three surface control point is subsequently split into two and related together
using linear blending functions. The rational blend degree-4 triangular Bézier patch
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Fig. 1 Triangular Gregory patch and its control points

is defined by
BY (&) = Pubj(6) (1)

where Py are the control points and b?jk (&) are 4th order Bernstein basis functions.
The surface control points Pjiz, Pi21, P211 are affine combinations of the split
surface control points G;; and are calculated using Pi;, = ﬁ(glGZQ +

£Go.1). P12t = g5 (63Go2 + £1G1L1). Pati = 515 (5612 + §G20).
Figure 1 shows an example patch and its control point set.

2.2 Surface Mesh with Mixed C° and G' Continuity

The procedure introduced in Sect.2.1 serves the purpose of creating G' surface
meshes for models with a single model face. In the mean time, most 3D models
with challenging geometric features consist of more than one model face. Any
procedure aiming to create proper surface meshes for such multi-patch models has to
account for the mixture of C° and G' continuity. In this work, a bottom-up approach
is adopted based on the different topological types of model entities on which
a mesh entity is classified. Specifically, the mesh edges that represent the model
edges where model faces join with C’-continuity are curved first to be G! along the
model edge direction while maintaining C° in the cross-edge direction. After that,
the remaining surface mesh entities that represent the rest of the model boundary
are curved using the procedure discussed in Sect.2.1. As a result, a piecewise G!
surface mesh is created where it is G! within each model face as well as along the
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1 for each edge M} in the mesh do

2 if M,»1 represents model edge with C° continuity then

3 | determine edge control points to interpolate model edge tangent;
4 end

5 if M,»1 represents model face or edge with G continuity then

6 | determine edge control points to interpolate model face normal;
7 end

8 end

9 for each face M? in the mesh do

10 | if M} C G; then

11 compute edge tangent vector f;

12 compute cross-edge tangent vector g;
13 determine face control points G; ;

14 end

IS end

Algorithm 1: Algorithm for creating G' meshes for multi-patch CAD models

Fig. 2 Curved G' mesh of a
linear accelerator model

bounding model edges and C° in the cross-boundary direction at the model edges
where model faces join together. Note that in the case where two model faces join
with G' continuity in the first place, G' continuity is maintained by curving the
mesh edges representing the model edge in the same way as those representing
model faces. The pseudo code for the overall procedure is given in Algorithm 1.
Figure 2 shows an example mesh created using the algorithm.

3 Integration with Finite Element Analysis Solver

With the conventional isoparametric approach with C° meshes, the volumetric
mapping between a standard parametric space and the physical space is constructed
based on the same polynomial basis functions used for the finite element space.
However, the basis functions used to represent the rational G' curved mesh are
generally not the same as the finite element shape functions used for analysis.
Therefore, a more general approach is adopted to construct the volumetric mapping
in order to account for the G' surface geometry. The approach taken in this work
is based on blending [7]. More specifically, the shapes of lower dimensional mesh
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entities bounding the element volume are multiplied with linear blending functions,
and the contributions are summed together to get the complete volume mapping.
The equation to calculate the mapping is given in Eq. (2).

xi(§) = (1 =EDEI(E) + (1 = E)E2(E) + (1 = E)E5(E) + (1 — &) Eu(E)

(=& —&)FI(E) - (1 =& —&)F2(E) — (1 =& = EDF3(E)

(1 =& —&)F4(E) — (1 =& —E)F5(8) — (1 — & — £ Fs(&)
+£V1(1,0,0,0) + £V5(0,1,0,0) + +£V3(0,0,1,0) 4 £V4(0,0,0,1) (2)

Here, E;,j = 1,2, 3, 4 represent the four edge parametrization. Similarly, Fj, j =
1,2,3,4,5, 6 represent face parametrization. V; are the vertices. It is worth noting
that the blending approach is independent of the chosen face and edge parametriza-
tion, therefore can be used with other types of parametric representations of mesh
faces.

With the blending based volume parametrization, coordinate mapping can be
easily evaluated. Derivatives quantities g—g can also be evaluated by applying chain
rule to Eq.(2) to obtain the analytic express of the derivatives of the blending
mapping. With calculated derivatives, Jacobian of the mapping and its determinant
can be easily evaluated.

4 Geometric Interpolation Accuracy

To study and quantify the geometric interpolation properties of the quartic G' patch
discussed in Sect. 2.1, a set of numerical experiments have been conducted. A series
of uniformly refined meshes are generated on a CAD model representing a cylinder.
The distance between the mesh faces and CAD model faces is measured for each of
the uniformly refined meshes. The distance is measured in terms of the Hausdorff
norm which is commonly used to measure the distance between two parametric
faces [1]. The definition of Hausdorff distance is given by Eq. (3).

n . o
d(S,S)—rlr)lgg[r'pelg lp=r'|, 3

As a comparison, the measurement is done for both the G' meshes and a set of
C° meshes using quartic Lagrange basis functions with optimal point distribution
scheme proposed by Chen and Babuska [5]. Figure 3 shows the convergence plot
generated from the distance data. For the quartic G' meshes, 4th order interpolation
accuracy is observed, and for quartic C° meshes, it shows 5th order interpolation
accuracy. It is a well known result in 1D that the order of accuracy for polynomial
interpolation is p + 1, where p is the highest complete polynomial order [8]. The
one order difference in interpolation accuracy between the G! and C? is due to the
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Fig. 3 Convergence of geometric approximation error

fact that certain portion of the control points of the G! patch have to be constrained
to ensure the higher surface continuity.

5 Impact on Finite Element Solution Accuracy

The primary interest for using G' meshes is to see if they produce better finite
element simulation results. The test problem chosen is the Poiseuille flow, which
models viscous flow inside a pipe of constant circular cross-section. Governing
Equation for the Poiseuille flow is defined as:

10 Odu 1 dp
()= ——

= — 4
rdr or 0z @)

The fully developed flow is assumed to be incompressible, steady, laminar and
has a closed form exact solution which indicates a velocity profile of a parabola.
The analytic expression is given as:

1o

_ 2 .2
Uu; = 4MaZ(R ) Q)
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In the numerical test, it is of interest to solve for the fully developed velocity
profile and compare it with the exact solution. A CAD model is constructed to
represent the flow domain of a cylinder with radius r = 0.5. No-slip condition is set
for the wall. At inlet, the velocity profile is set to be fully developed: u, = 0.25—r2.
The pressure at the outlet is set to be constant.

The finite element solver package being used to perform the analysis is Nektar++
[4], which is a spectral/hp element framework being developed by research groups at
the University of Utah and Imperial College London. It has a set of flow solvers that
use high-order finite element methods. Specific modifications are made to Nektar++
to account for the G' mesh construction including elemental mapping evaluation,
derivatives and Jacobian calculation procedures. Two types of meshes with the same
number of elements, the same order of polynomial degree, but different order of
geometric continuity are used, namely, quartic C° curved and quartic G' curved
meshes (See Fig.4). A series of simulations are performed with each type of the
meshes using 4th and 5th order Legendre polynomial shape functions. The error
of finite element solution of the velocity field against the exact analytic solution is
measured in terms of the L, norm and is shown in Table 1. It is observed in this
test case that meshes with G' surface continuity achieve better solution accuracy
compared with C° meshes for the same order of shape functions.

Inlet

Fig. 4 CAD model and quartic G' mesh

Tabl? 1 Finite element Shape func order | Quartic C° | Quartic G

solution error for different 2 29207 3 s

types of curved meshes .29207e—3 | 4.33327e—
5 5.98625e—4 |9.67477e—5
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6 Closing Remarks

This paper presented a procedure to create G' curved surface meshes for high-order
finite element simulations. A method to create G'-continuous surface patches is
introduced and an approach to integrate a G' mesh with existing finite element
solver is presented. A preliminary test result shows the advantage of using G' con-
tinuous meshes, compared with conventional C? meshes, in terms of finite element
solution accuracy of a standard integral norm. Additional studies to examine the
influence of G' continuity on more problems and for other solution norms must be
carried out. There is particular interest to examine solution parameters more local
to the surface. For future developments, it is of interest to study other types of high-
order surface patches. Furthermore, the capability of using the CAD model surface
parametrization to define exact geometric mapping is to be developed. In order to
support adaptive simulations, extensions of existing mesh modification operations
and mesh adaptation procedure [11] will be needed to account for high-order curved
meshes.
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