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Abstract This paper describes extensions of the generalized summation-by-parts
(GSBP) framework to the approximation of the second derivative with a variable
coefficient and to time integration. GSBP operators for the second derivative lead
to more efficient discretizations, relative to the classical finite-difference SBP
approach, as they can require fewer nodes for a given order of accuracy. Similarly,
for time integration, time-marching methods based on GSBP operators can be
more efficient than those based on classical SBP operators, as they minimize the
number of solution points which must be solved simultaneously. Furthermore, we
demonstrate the link between GSBP operators and Runge-Kutta time-marching
methods.

1 Introduction

In this paper, we present an overview of generalized summation-by-parts (GSBP)
operators [7] for the approximation of the second derivative with a variable
coefficient and as time integration methods. Further details can be found in [2, 6].
The benefit of the GSBP approach is that it broadens the applicability of the SBP
approach to a wider class of operators and provides a straightforward methodology
to construct novel operators with the summation-by-parts (SBP) property. This
enables the use of simultaneous approximation terms (SATs) for the weak impo-
sition of initial and boundary conditions and inter-element/block coupling, leading
to schemes that are provably consistent, conservative, and stable.

The GSBP framework extends the definition of SBP operators given by Kreiss
and Scherer [13] to those that have a combination of (1) no repeating interior
point operator, (2) nonuniform nodal distributions, and (3) operators that do not
include one or both boundary nodes. The GSBP framework leads to operators
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that approximate the first derivative and that mimic the integration-by-parts (IBP)
property of the first derivative in a similar way as [13] for such operators.

The vast majority of work on SBP-SAT schemes has been in the context of
classical finite-difference SBP operators, typified by uniform nodal spacing, in
computational space, and a repeating interior point operator (see the two review
papers [8, 19]). There have been a number of extensions to more general operators;
for example, Carpenter and Gottlieb [4] realized that the SBP property defined by
Kreiss and Scherer [13] applies to a broad class of operators. They proved that using
the Lagrangian interpolant, operators with the SBP property can be constructed on
nearly arbitrary nodal distributions. The GSBP framework [7] unifies many of these
extensions. In contrast, the extensions to the classical definition found in Carpenter
et al. [5] and Abarbanel and Chertock [1] are not unified in the GSBP framework.

Using GSBP operators, derivatives can be approximated using a traditional finite-
difference approach where h-refinement is performed by increasing the number of
nodes in the mesh. Alternatively, the discretization can be implemented using an
element approach where the domain is subdivided into a number of elements, each
of which contains a fixed number of nodes, and h-refinement is carried out by
increasing the number of elements. GSBP operators that have a repeating interior
point operator can be applied in the traditional approach, while those that have a
fixed nodal distribution can only be applied using an element approach.

Nordström and Lundquist [15, 18] have applied classical SBP operators as
time integrators. They constructed fully discrete approximations that are provably
consistent, conservative, and stable. The ideas of [15, 18] equally apply to GSBP
operators, enabling the use of smaller operators for the same order of accuracy and
hence more efficient time-marching methods.

The objectives of this paper are to present the extensions of the GSBP approach
to the second derivative with a variable coefficient and to time integration.

2 Generalized Summation-by-Parts Operators
for the Second Derivative

In this section, we review the construction of GSBP operators for the second
derivative with a variable coefficient [6] that lead to stable and conservative schemes
for partial differential equations (PDEs) that contain first, second, and mixed-
derivative terms. GSBP operators for the first derivative are defined as follows [7]:

Definition 1 (First-Derivative GSBP Operator) A matrix operator, D1 2 R
N�N ,

on a nodal distribution x, approximating the first derivative @U
@x , is a GSBP operator
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of order p if it is exact for the restriction of monomials up to degree p and

• D1 D H�1Q, where H is a symmetric positive-definite matrix;
• Q C QT D E; and
• E D sˇsˇ

T � s˛s˛
T;

where the projection vectors sˇ and s˛ are constructed such that sˇ
Tu and s˛

Tu are
at least p C 1 order approximations to U .ˇ/ and U .˛/, respectively.

We note that for diagonal-norm GSBP operators, vTHu is an order 2p approxi-
mation to the L2 inner product

R ˇ

˛ V U dx [7].
The application of first-derivative GSBP operators twice leads to stable and

conservative schemes. However, for operators with a repeating interior point
operator, they lead to an unnecessarily wide interior point operator, and in general,
lead to approximations of the second-derivative that are one order less accurate than
the first-derivative operator. Alternatively, we can construct distinct GSBP operators
approximating the second derivative that are one order more accurate than the
application of the first-derivative operator twice while retaining the ability to prove
stability using the energy method—we denote such operators as order-matched. To
maintain stability of the semi-discrete or fully-discrete forms of the class of PDEs
of interest, certain relations need to exist between the operators used to discretize
the first-derivative, second-derivative, and mixed-derivative terms. One approach
is to use operators that are compatible with the first-derivative operator used to
discretize mixed-derivative terms [17]. In this paper, we concentrate on diagonal-
norm compatible and order-matched operators, since for the variable-coefficient
case, it is unclear how to construct stable schemes using dense-norm compatible
and order-matched operators (see Mattsson and Almquist [16] for a discussion and
potential solution). To motivate the form of compatible and order-matched GSBP
operators for the second derivative with a variable coefficient, consider the following
decomposition of the application of first-derivative GSBP operators twice:

D1BD1 D H�1
��D1

THBD1 C EBD1

�
: (1)

We construct compatible and order-matched GSBP operators as the application of
the first-derivative operator twice plus corrective terms in order to increase the order
of the resultant operator. These ideas lead to the following definition [6]:

Definition 2 (Compatible and Order-Matched Second-Derivative GSBP
Operator) A diagonal-norm order-matched GSBP operator, D2.B/ 2 R

N�N ,
approximating the second derivative @

@x

�
B @U

@x

�
, is compatible with the first-

derivative GSBP operator, D1 of order p, on a nodal distribution x, if it is exact
for the restriction of monomials up to degree p C 1 and is of the form

D2 .B/ D H�1

"

�D1
THBD1 C

NX

iD1

B.i; i/Ri C EB QD1

#

: (2)
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The matrices Ri are symmetric negative semidefinite. Furthermore, the matrix QD1 is
an approximation to the first derivative of at least order p C 1 and the matrix B is
constructed from the restriction of the variable coefficient B onto its diagonal. The
remainder of the matrices are given in Definition 1.

Stability can be proven if all derivative operators share the same norm H, and the
compatibility that is enforced on the second-derivative operator is with respect to
the first-derivative operator used to approximate mixed-derivative terms.

Definition 2 leads to stable schemes if the operator satisfies an SBP property.
In fact, GSBP operators are constructed such that they mimic the IBP property of
the continuous PDE. For example, consider the linear convection-diffusion equation
with a variable coefficient on the domain x 2 Œ˛; ˇ�:

@U

@t
D �@U

@x
C @

@x

�

B
@U

@x

�

: (3)

Applying the energy method to (3), i.e., multiplying by the solution, integrating in
space, and using integration by parts, leads to

dkU k2

dt
D �U 2

ˇ
ˇˇ

˛
C 2UB

@U

@x

ˇ
ˇ
ˇ
ˇ

ˇ

˛

� 2

ˇZ

˛

@U

@x
B

@U

@x
dx: (4)

With appropriate boundary conditions, (4) can be used to show that the solution
is bounded in terms of the data of the problem (for more information see [9, 10,
12]). The semi-discrete version of (3), using a diagonal-norm first-derivative GSBP
operator and a compatible and order-matched GSBP operator, is given as

du
dt

D �D1u C H�1

"

�D1
THBD1 C

NX

iD1

B.i; i/Ri C EB QD1

#

u: (5)

Applying the discrete energy method to (5), i.e., multiplying by uTH and adding the
transpose of the product to itself, leads to

dkuk2
H

dt
D

� �U 2jˇ

˛
C 2U B @U

@x jˇ

˛
�2

Ř

˛

@U
@x B @U

@x dx

‚ …„ ƒ
�uTEu C 2uTEB QD1u � 2 .D1u/ THBD1u C2

NX

iD1

uRiu; (6)

where kuk2
H D uTHu. We see that (6) is mimetic of the continuous case (4)

with the addition of a negative semidefinite term of the order of the discretization.
Using appropriate SATs for the imposition of boundary conditions and inter-element
coupling, (6) can be shown to be stable.
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The main difficulty in deriving compatible and order-matched operators is
ensuring that the Ri are symmetric negative semidefinite, since it is necessary to
ensure that the eigenvalues of N matrices are non-positive. This means that it is
necessary to solve the eigenvalue problem of N matrices of size N � N to determine
additional constraints. For compatible and order-matched operators, an alternative
method is to construct the variable-coefficient operator from the constant-coefficient
operator. This means that it is only necessary to solve the eigenvalue problem for
one matrix. The resultant operator has the following form [6]:

D2 .B/ D H�1

"

�D1
THBD1 C 1

N

NX

iD1

B.i; i/Rc C EB QD1

#

; (7)

where Rc and QD1 are from the constant-coefficient operator. As an example, consider
the approximation of the first and second derivative of order 3 on x 2 Œ�1; 1�

using 5 Chebyshev-Gauss quadrature nodes. This nodal distribution does not have
nodes on the boundary of the domains and is given as, to 5 digits of precision,
x D � �0:95106; �0:58779; 0:0; 0:58779; 0:95106

�
. The first-derivative GSBP

operator has a norm matrix that is an order 6 approximation to the L2 inner product;
to 5 digits of precision, these operators are given by

D1 D
2

4
�4:7488 6:6022 �2:6552 1:0967 �0:29478

�1:1708 �0:13670 1:7169 �0:53833 0:12892

0:32492 �1:3764 0:0 1:3764 �0:32492

�0:12892 0:53833 �1:7169 0:13670 1:1708

0:29478 �1:0967 2:6552 �6:6022 4:7488

3

5 ; H D
2

4
0:16778 0:0 0:0 0:0 0:0

0:0 0:52555 0:0 0:0 0:0

0:0 0:0 0:61333 0:0 0:0

0:0 0:0 0:0 0:52555 0:0

0:0 0:0 0:0 0:0 0:16778

3

5 :

The projection vectors used in the decomposition of E and to construct SATs (see
Sect. 3 where this is shown for time integration) are given as
sˇ

T D �
0:031677; �0:10191; 0:20000; �0:39252; 1:2628

�
;

s˛
T D �

1:2628; �0:39252; 0:20000; �0:10191; 0:031677
�
: For the second derivative,

the remaining matrices are given as

Rc D
2

4
0:13011 �0:34065 0:42106 �0:34065 0:13011

�0:34065 0:89182 �1:1024 0:89182 �0:34065

0:42106 �1:1024 1:3626 �1:1024 0:42106

�0:34065 0:89182 �1:1024 0:89182 �0:34065

0:13011 �0:34065 0:42106 �0:34065 0:13011

3

5 ; QD1 D
2

4
�4:9798 7:2068 �3:4026 1:7013 �0:52573

�1:0515 �0:44903 2:1029 �0:85065 0:24822

0:32492 �1:3764 0:0 1:3764 �0:32492

�0:24822 0:85065 �2:1029 0:44903 1:0515

0:52573 �1:7013 3:4026 �7:2068 4:9798

3

5 :

3 Time-Marching Methods Based on Generalized
Summation-by-Parts Operators

This section describes the application of GSBP operators to the solution of initial
value problems

dy

dt
D f . y; t/; with y.˛/ D y˛ and ˛ � t � ˇ: (8)
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This is an extension of the work presented in [15, 18] for time-marching methods
based on classical SBP operators. It also draws on the concepts of dual-consistency
and superconvergence presented in [11] for classical SBP operators.

The primary advantage of the GSBP approach in time is the significantly smaller
number of solution points required per block for a given order of accuracy. With
careful selection of SAT coefficients in a multiblock implementation, the pointwise
solution within each block is decoupled from the solution in subsequent blocks. As a
result, each block can be solved sequentially in time, though the pointwise solution
within each block remains in general fully coupled. Thus, the reduced size of the
operators possible with the GSBP approach can significantly improve the efficiency
of the time integration.

Consider the application of a single-block classical SBP or GSBP time-marching
method to the initial value problem (8):

D1yd D H�1Qyd D f.yd; t/ C �H�1s˛.s˛
Tyd � y˛/; (9)

where the second term on the right-hand side, the SAT penalty term, weakly
enforces the initial condition. The most practical choice of SAT coefficient � is
�1, which renders the temporal discretization dual consistent and L-stable [2].
In addition, if the norm associated with the GSBP operator is diagonal, then the
discretization becomes algebraically stable [2]. This choice of SAT coefficient
implies the superconvergence of the pointwise solution projected to the boundary
at ˇ, sˇ

Tyd, as well as linear functionals of the solution,
R ˇ

˛
g.t/y.t/dt, integrated

with the norm of the discretization [2]. These properties all extend to the multiblock
case with appropriate choice of interface SAT coefficients.

Time-marching methods based on classical SBP and GSBP operators are a
subclass of Runge-Kutta (RK) methods, which are written as

QyŒi� D QyŒi�1� C h
nX

jD1

bjf.yj; tŒi�1� C cjh/; (10)

with internal stage approximations:

yk D QyŒi�1� C h
nX

jD1

Akjf.yj; tŒi�1� C cjh/ for k D 1; : : : ; n; (11)

where A and b are the coefficient matrices of the method, c is the abscissa, and h
is the step size. With a dual consistent choice of SAT coefficients, classical SBP
or GSBP temporal discretizations can be rearranged and written in this form. The
pointwise solution mimics the RK stage approximations, and the projection of
the pointwise solution to the boundary at ˇ becomes the solution update [2]. The
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coefficient matrices of the equivalent RK scheme, written in terms of the SBP-SAT
discretization (9), are [2]:

A D 1
h

�
Q C s˛s˛

T
��1

H; bT D sˇ
TA D 1

h sˇ
T

�
Q C s˛s˛

T
��1

H D 1
h1

TH;
(12)

where c D t�1˛
h , h D ˇ � ˛, and 1 D Œ1; : : : ; 1�T.

This characterization of classical SBP and GSBP time-marching methods
enables a direct comparison with traditional time-marching methods. It also enables
common time-marching ideas to be transferred back into the GSBP realm, for
example diagonally-implicit methods, where the pointwise solution within each
block can be solved sequentially in time (See [2] for examples). It also highlights
the fact that dual-consistent SBP and GSBP time-marching methods do not define
a new class of methods. Nevertheless, the GSBP framework provides a relatively
simple way of constructing high-order implicit RK schemes with high-stage order
and L-stability. Furthermore, if the norm is diagonal then the resulting scheme will
be algebraically stable [2].

As an example, consider dual-consistent time-marching methods based on
classical SBP and Legendre-Gauss GSBP operators which are exact for third-order
polynomials. The minimum number of solution points per block required for the
diagonal and dense-norm classical SBP operators is 12 and 8, respectively. The rate
of superconvergence obtained for these classical SBP time-marching methods is 6

and 4, respectively. In contrast, only 4 solution points per block are required for
a Legendre-Gauss based GSBP operator to be exact for third-order polynomials.
Furthermore, the rate of superconvergence obtained is 7 [2], higher than both of the
classical SBP time-marching methods. This translates to significantly more efficient
time integration.

The first derivative GSBP operator and diagonal norm of the 4-point Legendre-
Gauss GSBP time-marching method discussed above are:

D.3/
1 D

"
�3:3320 4:8602 �2:1088 0:58063

�0:75756 �0:38441 1:4707 �0:32870

0:32870 �1:4707 0:38441 0:75756

�0:58063 2:1088 �4:8602 3:3320

#

, H D
2

4
0:34785 0 0 0

0 0:65215 0 0

0 0 0:65215 0

0 0 0 0:34785

3

5:

This is derived for the quadrature points t D Œ �0:86114; �0:33998; 0:33998; 0:86114 �, defined for
the interval Œ�1; 1�. The equivalent RK scheme has the coefficient matrices:

A D
"

0:095040 �0:047061 0:033084 �0:011632

0:17721 0:19067 �0:055518 0:017647

0:17810 0:32632 0:19067 �0:025102

0:16941 0:33390 0:33222 0:095040

#

, bT D Œ 0:086964; 0:16304; 0:16304; 0:086964 �;

with abscissa: c D Œ 0:069432; 0:33001; 0:66999; 0:93057 �. This RK scheme differs from the well-
known Kuntzmann-Butcher Gauss RK methods [3, 14] which are one order higher,
but forfeit L-stability.
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4 Conclusions

The developments reviewed in this paper extend the GSBP approach to the second
derivative with a variable coefficient as well as to time marching. The benefit of the
GSBP approach, relative to the classical SBP approach, is that for a given order of
accuracy, operators that require fewer nodes can be constructed. This leads to more
efficient methods.
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