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Preface

This volume presents selected papers from the tenth International Conference on
Spectral and High-Order Methods (ICOSAHOM’14) that was held in Salt Lake
City, UT, USA during the week of June 23–27, 2014. These selected papers were
refereed by members of the scientific committee of ICOSAHOM as well as by other
leading scientists.

The first ICOSAHOM conference was held in Como, Italy, in 1989 and marked
the beginning of an international conference series in Montpelier, France (1992);
Houston, TX, USA (1995); Tel Aviv, Israel (1998); Uppsala, Sweden (2001);
Providence, RI, USA (2004); Beijing, China (2007); Trondheim, Norway (2009);
and Gammarth, Tunisia (2012).

ICOSAHOM has established itself as the main meeting place for researchers
with interests in the theoretical, applied, and computational aspects of high-order
methods for the numerical solution of partial differential equations.

With over 300 participants, ICOSAHOM’14 was the largest conference devoted
to high-order methods to date. The program consisted of eight invited lectures
spread out through the week, 19 mini-symposia hosting approximately 192 talks,
and 80 contributed talks.

The content of this proceedings is organized as follows. First, contributions from
the invited speakers are included, listed in alphabetical order according to the name
of the invited speaker. The remainder of the volume consists of refereed selected
papers highlighting the broad spectrum of topics presented at ICOSAHOM’14.

The success of the meeting was ensured through the generous financial support
given by the US National Science Foundation, the US Office of Naval Research
(under the guidance of Dr. Reza Malek-Madani), the US Air Force Office of
Sponsored Research (under the guidance of Dr. Fariba Fahroo), the US Army
Research Office (under the guidance of Dr. Mike Coyle and Dr. Joe Myers), and
the SCI Institute at the University of Utah.

Special thanks goes to our local organizing committee Yekaterina Epshteyn,
Anne Gelb, Rodrigo Platte, Rosie Renaut, and Dongbin Xiu. They did an amazing
job organizing and executing the event. Individual thanks also goes to Mrs. Deb

v
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Zemek and Mr. Nathan Galli. Deb and Nathan were the ‘on the ground’ individuals
who kept everything moving smoothly.

Salt Lake City, UT, USA Robert M. Kirby
Salt Lake City, UT, USA Martin Berzins
Lausanne, Switzerland Jan S. Hesthaven
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C0 Interior Penalty Galerkin Method
for Biharmonic Eigenvalue Problems

Susanne C. Brenner, Peter Monk, and Jiguang Sun

Abstract We consider the C0 interior penalty Galerkin method for biharmonic
eigenvalue problems with the boundary conditions of the clamped plate, the simply
supported plate and the Cahn-Hilliard type. We establish the convergence of the
method and present numerical results to illustrate its performance. We also compare
it with the Argyris C1 finite element method, the Ciarlet-Raviart mixed finite
element method, and the Morley nonconforming finite element method.

1 Introduction

We consider the numerical solution of several eigenvalue problems for the bihar-
monic operator by the C0 interior penalty Galerkin (C0 IPG) method. These
eigenvalue problems appear for example in mechanics (vibration and buckling of
plates).

The C0 IPG method, developed in the last decade [8, 16], is a discontinuous
Galerkin method for fourth order problems based on standard continuous finite
element spaces for second order elliptic problems. The lowest order methods
in this approach are almost as simple as classical nonconforming finite element
methods [1, 21] and are much simpler than finite element methods using globally

S.C. Brenner (�)
Department of Mathematics and Center for Computation & Technology, Louisiana State
University, Baton Rouge, LA 70803, USA
e-mail: brenner@math.lsu.edu

P. Monk
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
e-mail: monk@math.udel.edu

J. Sun
Department of Mathematical Sciences, Michigan Technological University, Houghton,
MI 49931, USA
e-mail: jiguangs@mtu.edu

© Springer International Publishing Switzerland 2015
R.M. Kirby et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2014, Lecture Notes in Computational Science
and Engineering 106, DOI 10.1007/978-3-319-19800-2_1
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4 S.C. Brenner et al.

C1 functions [2, 23]. Unlike classical nonconforming finite element methods, higher
order finite elements can be used in this approach to capture smooth solutions
efficiently. Furthermore, the C0 IPG method converges for the biharmonic source
problem with boundary conditions of the clamped plate, the simply supported
plate and the Cahn-Hilliard type that appears in mathematical models for phase
separation phenomena [14]. It also preserves the symmetric positive-definiteness
of the continuous problems. This last property is very attractive for eigenvalue
problems since it means that the convergence for the eigenvalue problem can be
derived from the convergence for the source problem through the classical spectral
approximation theory. In contrast, the convergence of a mixed finite element method
for the source problem does not necessarily lead to the convergence of the method
for the eigenvalue problem unless the mixed method is chosen carefully [7].

In this paper we extend the C0 IPG method to biharmonic eigenvalue problems
(cf. Sect. 2). We show that the method converges for all three types of boundary
conditions (cf. Sect. 3), and we present numerical results that validate the theory (cf.
Sect. 4). We also compare the performance of the C0 IPG method, the Argyris C1

finite element method, the Ciarlet-Raviart mixed finite element method [15], and the
Morley nonconforming finite element method (cf. Sect. 5). We end the paper with
some concluding remarks in Sect. 6.

We note that numerical results for a related C0 discontinuous Galerkin method
were presented in [24] for the plate vibration and buckling problems on a square
with the boundary conditions of simply supported plates. However the convergence
of the method for the eigenvalue problem was not addressed in that paper.

Throughout the paper we will use C to denote a generic positive constant that is
independent of the mesh size h.

2 Biharmonic Eigenvalue Problems

Let ˝ denote a bounded polygonal domain in R
2 with boundary @˝ , and let n

denote the unit outward normal. We consider biharmonic eigenvalue problems for
plate vibration and plate buckling with three types of boundary conditions:

Clamped Plate (CP)

u D @u

@n
D 0 on @˝ (1)

Simply Supported Plate (SSP)

u D 4u D 0 on @˝ (2)
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Cahn-Hilliard Type (CH)

@u

@n
D @4u

@n
D 0 on @˝ (3)

Let the bilinear forms a.�; �/ and b.�; �/ be defined by

a.u; v/ D
Z
˝

D2u W D2v dx; (4)

where D2u W D2v D P2
i;jD1 uxixjvxixj is the Frobenius inner product of the Hessian

matrices of u and v, and

b.u; v/ D

8̂
<̂
ˆ̂:
.u; v/ D

Z
˝

uv dx for plate vibration;

.ru;rv/ D
Z
˝

ru � rv dx for plate buckling:
(5)

The weak formulation of the biharmonic eigenvalue problem is to seek .u; �/ 2
V � R such that u ¤ 0 and

a.u; v/ D �b.u; v/ 8 v 2 V; (6)

where

V D H2
0.˝/ for CP; (7)

V D H2.˝/\ H1
0.˝/ for SSP; (8)

V D fv 2 H2.˝/ W @v=@n D 0 on @˝ and .v; 1/ D 0g for CH. (9)

Remark 1 Since the bilinear form a.�; �/ is symmetric positive-definite on V for all
three types of boundary conditions, the biharmonic eigenvalues being considered are
positive. Note that we have excluded the trivial eigenvalue 0 from the CH problem
by imposing the zero mean constraint.

We will refer to the eigenvalue problem for plate vibration (where b.�; �/ D .�; �/)
with the three types of boundary conditions as the V-CP, V-SSP and V-CH
problems, and the eigenvalue problem for plate buckling (where b.�; �/ D .r�;r�/)
with the three types of boundary conditions as the B-CP, B-SSP and B-CH
problems.
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3 The C0 IPG Method for Biharmonic Eigenvalue Problems

Let Th be a regular triangulation of ˝ with mesh size h and QVh � H1.˝/ be the Pk

Lagrange finite element space (k � 2) associated with Th. Let Eh be the set of the
edges in Th. For an edge e 2 Eh that is the common edge of two adjacent triangles
T˙ 2 Th and for v 2 QVh, we define the jump of the flux to be

�@v=@ne� D
@vTC

@ne

ˇ̌
ˇ
e
� @vT�

@ne

ˇ̌
ˇ
e
;

where ne is the unit normal pointing from T� to TC. We let

@2v

@n2e
D ne � .D2v/ne

and define the average normal-normal derivative to be

���
@2v

@n2e

���
D 1

2

 
@2vTC

@n2e
C @2vT�

@n2e

!
:

For e 2 @˝ , we take ne to be the unit outward normal and define

�@v=@ne� D � @v
@ne

and

���
@2v

@n2e

���
D @2v

@n2e
:

Let RC be the set of positive real numbers. The C0 IPG method for the
biharmonic eigenvalue problem is to find .uh; �h/ 2 Vh � RC such that uh 6D 0

and

ah.uh; v/ D �hb.uh; v/ 8 v 2 Vh; (10)

where the choices of Vh and ah.�; �/ depend on the boundary conditions.

CP For this boundary condition the choices for Vh and ah.�; �/ are given by

Vh D QVh \ H1
0.˝/; (11)

ah.w; v/ D
X

T2Th

Z
T

D2w W D2v dxC
X
e2Eh

Z
e

���
@2w

@n2e

��� �
@v

@ne

�
C
���
@2v

@n2e

��� �
@w

@ne

�
ds

C �
X
e2Eh

1

jej
Z

e

�
@w

@ne

� �
@v

@ne

�
ds; (12)

where � > 0 is a (sufficiently large) penalty parameter.
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SSP For this boundary condition we use the same Vh in (11) and the bilinear form

ah.w; v/ D
X

T2Th

Z
T

D2w W D2v dxC
X
e2E i

h

Z
e

��
@2w

@n2e

�� �
@v

@ne

�

C
��
@2v

@n2e

�� �
@w

@ne

�

ds

C �
X
e2E i

h

1

jej
Z

e

�
@w

@ne

��
@v

@ne

�

ds; (13)

where E i
h is the set of the edges interior to ˝ .

CH For this boundary condition we use the same bilinear form ah.�; �/ defined
in (12) and take

Vh D
˚
v 2 QVh W .v; 1/ D 0

�
: (14)

The convergence of the C0 IPG method for these eigenvalue problems is based
on the convergence of the C0 IPG method for the corresponding source problems.

Let W be the space L2.˝/ for the plate vibration problems, the space H1
0.˝/ for

the B-CP and B-SSP problems, and the space fv 2 H1.˝/ W .v; 1/ D 0g for the B-
CH problem. We will denote by k fkb the norm induced by the bilinear form b.�; �/
defined in (5), i.e.,

k fk2b D b. f ; f /:

Given f 2 W, the weak formulation for the source problem is to find u 2 V such
that

a.u; v/ D b. f ; v/ 8 v 2 V; (15)

where the bilinear form a.�; �/ is defined in (4). For the V-CH source problem, we
also assume that f satisfies the constraint . f ; 1/ D 0.

The corresponding C0 IPG method for (15) is to find uh 2 Vh such that

ah.uh; v/ D b. f ; v/ 8 v 2 Vh; (16)

where Vh and ah.�; �/ are defined by

1. Equations (11) and (12) respectively for the CP boundary conditions,
2. Equations (11) and (13) respectively for the SSP boundary conditions, and
3. Equations (14) and (12) respectively for the CH boundary conditions.

The following lemma summarizes the results for the source problems obtained in
[9, 10, 12].
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Lemma 1 The biharmonic source problem (15) and the discrete source prob-
lem (16) are uniquely solvable for the boundary conditions of CP, SSP and CH.
In addition there exists ˇ > 0 such that

ku � uhkh � Chˇk fkb and ku � uhkb � Ch2ˇk fkb; (17)

where u 2 V (resp. uh 2 Vh) is the solution of (15) [resp. (16)], and the mesh-
dependent energy norm k � kh is defined by

kvk2h D
X

T2Th

jvj2H2.T/ C
X
e2Eh

jej�1k�@v=@ne�k2L2.e/ (18)

for the boundary conditions of CP and CH, and

kvk2h D
X

T2Th

jvj2H2.T/ C
X
e2E i

h

jej�1k�@v=@ne�k2L2.e/ (19)

for the boundary conditions of SSP.

Remark 2 Let V be the Sobolev space for the biharmonic problem defined in (7), (8)
or (9) and Vh be the corresponding finite element space. In all three cases we have a
Poincaré-Friedrichs inequality [11]

kvkb � Ckvkh 8 v 2 V C Vh: (20)

Remark 3 The exponent ˇ in (17) is given by ˇ D min.˛; k � 1/, where ˛ is index
of elliptic regularity that appears in the elliptic regularity estimate [6]

kukH2C˛.˝/ � C˝;˛k fkb

for the solution u of the source problem (15). It is determined by the angles at the
corners of ˝ and the boundary conditions. For the CP boundary conditions (1), ˛
belongs to . 1

2
; 2� and ˛ > 1 if ˝ is convex. For the SSP boundary conditions (2)

and the CH boundary conditions (3), ˛ belongs to .0; 2� in general, ˛ D 2 for
a rectangular domain, and ˛ is any number strictly less than 1=3 for an L-shaped
domain.

The convergence analysis of the C0 IPG method for the biharmonic eigenvalue
problems involves two (bounded) solution operators T W W �! V .� W/ and
Th W W �! Vh .� W/ on the Hilbert space

�
W; b.�; �/�, which are defined by

a.Tf ; v/ D b. f ; v/ 8 v 2 V and ah.Thf ; v/ D b. f ; v/ 8 v 2 Vh:
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Note that (6) is equivalent to Tu D .1=�/u, (10) is equivalent to Thuh D
.1=�h/uh, and the estimates (17) can be rewritten as

k.T � Th/fkh � Chˇk fkb and k.T � Th/fkb � Ch2ˇk fkb 8 f 2 W: (21)

Due to the compact embedding of V into W, the operator T is symmetric,
positive-definite and compact. Therefore the spectrum of T consists of a sequence of
positive eigenvalues �1 � �2 � : : : decreasing to zero, and the numbers �j D 1=�j

are the biharmonic eigenvalues that increase to infinity.
The theorem below on the convergence of the C0 IPG method for the biharmonic

eigenvalue problems follows from (20), (21) and the classical spectral approxima-
tion theory that can be found for example in [3, Sect. 2.7].

Theorem 1 Let 0 < �1 � �2 � : : : be the biharmonic eigenvalues, � D �j D
: : : D �jCm�1 be a biharmonic eigenvalue with multiplicity m, and 0 < �h;1 �
�h;2 � : : : be the discrete eigenvalues obtained by the C0 IPG method. Then we
have, as h! 0,

j�h;l � �j � Ch2ˇ; l D j; jC 1; : : : ; jC m � 1:

In addition, if V� � V is the space spanned by the eigenfunctions corresponding
to the biharmonic eigenvalues �j; : : : ; �jCm�1, Vh;� � Vh is the space spanned by
the eigenfunctions corresponding to the discrete eigenvalues �h;j; : : : ; �h;jCm�1, and
ı.V�;Vh;�/ is the gap between them, then we have, as h! 0, ı.V�;Vh;�/ � Chˇ in
the norm k � kh and ı.V�;Vh;�/ � Ch2ˇ in the norm k � kb.

Remark 4 We can apply the classical theory because we use the Hilbert space�
W; b.�; �/� and Vh is a subspace of W. This would not be possible if we use the

space V in (7)–(9).

Remark 5 The convergence of the method in [24] for eigenvalue problems can
similarly be established by the classical spectral approximation theory.

4 Numerical Examples of the C0 IPG Method

In this section we present numerical results of the quadratic C0 interior penalty
method. The penalty parameter � is taken to be 50 in all the computations. The
discrete eigenvalue problems are solved in MATLAB by using the eigs command.

We first consider the unit square. In Table 1 we display the first biharmonic
eigenvalues for the plate vibration problems, computed by the C0 IPG method on
a series of structured meshes generated by uniform refinement. We note that the
first V-CP eigenvalue obtained in [25] is 1294.93398. The first V-SSP eigenvalue
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Table 1 The first biharmonic plate vibration eigenvalues for the unit square on uniformly refined
meshes

h 1/10 1/20 1/40 1/80

V-CP(1) 1381.7409 1319.9044 1301.6876 1296.6904

V-SSP(1) 395.2823 391.2186 390.0615 389.7466

V-CH(1) 98.2432 97.6410 97.4711 97.4251

Table 2 Biharmonic plate vibration eigenvalues of the L-shaped domain on quasi-uniform meshes

h 1/10 1/20 1/40 1/80

V-CP(1) 7828:3034 7102:9564 6853:9181 6762.3442

V-SSP(1) 2767:1992 2686:5991 2657:3435 2641.3376

V-SSP(3) 6327:5449 6573:0063 6259:2682 6240.6958

V-CH(1) 202:1341 188:1774 181:0593 176.5303

V-CH(3) 1603:9472 1571:3380 1562:0031 1559.4471
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Fig. 1 Convergence history of the first biharmonic plate vibration eigenvalues. Left: the unit
square. Right: the L-shaped domain

is 4�4 � 389:6363 and the first V-CH eigenvalue is �4 � 97:4091. Therefore the
C0 IPG method provides good approximations in all three cases.

The second domain is the L-shaped domain. In Table 2 we present the first
biharmonic plate vibration eigenvalues computed by the C0 IPG method. We also
include the results for the third eigenvalues of V-SSP and V-CH, whose exact
values are 64�4 � 6234:1818 and 16�4 � 1558:5455, respectively. They are
approximated correctly with less than 1 % relative error at the finest meshes.

In Fig. 1 we plot the convergence history of the C0 IPG method. In the case of
the unit square, the convergence rates are O.h2/ as predicted by the theory in the
previous section. In the case of the L-shaped domain, there is a decrease in the
convergence rate due to the reentrant corner (1.6 for V-CP, 1.0 for V-SSP and 0.86
for V-CH), which is also consistent with the theoretical result.
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Table 3 The first B-CP,
B-SSP and B-CH eigenvalues
for the unit square on
quasi-uniform meshes

h 1/10 1/20 1/40 1/80

B-CP(1) 55:4016 53:2067 52:5757 52.4045

B-SSP(1) 20:0244 19:8193 19:7607 19.7448

B-CH(1) 9:9541 9:893 9:8758 9.8712

Next we present some numerical results for the B-CP problem, the B-SSP
problem and the B-CH problem. The first eigenvalues on a series of uniformly
refined meshes for the unit square are displayed in Table 3. The approximate
eigenvalue for the B-CP on the unit square agree with the approximation obtained
in [5], and the approximate eigenvalues for B-SSP (resp. B- CH) problem on
the unit square also agrees with the exact eigenvalue 2�2 � 19:73920880 (resp.
�2 � 9:869604401).

The convergence history of the first eigenvalue for the plate buckling problem on
the unit square (and the L-shaped domain) is similar to that of the plate vibration
problem.

5 Comparison with Other Methods

In this section we compare the quadratic C0 IPG method with the quintic Argyris
C1 finite element method [2], the Ciarlet-Raviart mixed finite element method [3,
15, 19], and the Morley nonconforming finite element method [21, 22].

The numerical results of the four methods for the plate vibration problem on the
unit square, the L-shaped domain and with the three types of boundary conditions
are presented in Tables 4, 5, 6, 7, 8, and 9. The mesh size used in the computations
is �1/80. In addition to the first six biharmonic eigenvalues, we also display the
number of degrees of freedom (DoF).

We observe that the numerical results for the quadratic C0 IPG method and the
Argyris C1 finite element method are comparable in all six cases. In view of the
high order of the finite element, the Argyris method provides very accurate approx-
imation of the biharmonic eigenvalues corresponding to smooth eigenfunctions.
Therefore the quadratic C0 IPG method is also quite efficient. This can also be seen
by comparing the approximate eigenvalues in Table 4 with the ones in [25].

From Tables 4, 6 and 8 we see that the Ciarlet-Raviart mixed finite element
method converges on the unit square for all three types of boundary conditions.
It is interesting to note that the eigenvalues computed by the Ciarlet-Raviart method
are consistently larger than the corresponding eigenvalues computed by the C0 IPG
method, and the eigenvalues computed by the Argyris method are always between
the other two with only one exception (the 4th eigenvalue in Table 4).
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Table 4 The first six V-CP eigenvalues for the unit square using a uniform mesh

DoF 1st 2nd 3rd 4th 5th 6th

C0IPG 16129 0:1299e4 0:5411e4 0:5411e4 1:1811e4 1:7412e4 1:7584e4

Argyris 36226 0:1304e4 0:5427e4 0:5427e4 1:1798e4 1:7443e4 1:7608e4

Mixed 3969 0:1309e4 0:5451e4 0:5451e4 1:1877e4 1:7548e4 1:7714e4

Morley 16129 0:1290e4 0:5349e4 0:5349e4 1:1607e4 1:7113e4 1:7280e4

Table 5 The first six V-CP eigenvalues for the L-shaped domain using a quasi-uniform mesh

DoF 1st 2nd 3rd 4th 5th 6th

C0IPG 32705 0:6694e4 1:0815e4 1:4655e4 2:5862e4 3:3418e4 5:3545e4

Argyris 73502 0:6775e4 1:1122e4 1:4985e4 2:6274e4 3:3686e4 5:4003e4

Mixed 8097 0:6695e4 1:1063e4 1:4925e4 2:6201e4 3:3499e4 5:3713e4

Morley 32705 0:6630e4 1:1004e4 1:4842e4 2:6018e4 3:3164e4 5:3033e4

Table 6 The first six V-SSP eigenvalues for the unit square using a uniform mesh

DoF 1st 2nd 3rd 4th 5th 6th

C0IPG 16129 0:3896e3 2:4166e3 2:4166e3 6:1961e4 9:6768e3 9:6768e3

Argyris 36990 0:3896e3 2:4352e3 2:4352e3 6:2343e3 9:7409e3 9:7409e3

Mixed 3969 0:3900e3 2:4409e3 2:4409e3 6:2609e3 9:7806e3 9:7806e3

Morley 16385 0:3893e3 2:4295e3 2:4295e3 6:2143e4 9:6896e3 9:6896e3

Table 7 The first six V-SSP eigenvalues for the L-shaped domain using a quasi-uniform mesh

DoF 1st 2nd 3rd 4th 5th 6th

C0IPG 32705 0:2718e4 0:3743e4 0:6061e4 1:3666e4 1:9156e4 3:1027e4

Argyris 74454 0:2692e4 0:3765e4 0:6234e4 1:3972e4 1:9375e4 3:1281e4

Mixed 8097 0:1491e4 0:3699e4 0:6242e4 1:3969e4 1:6354e4 2:7617e4

Morley 33025 0:2414e4 0:3663e4 0:6225e4 1:3904e4 1:8642e4 3:0002e4

Table 8 The first six V-CH eigenvalues for the unit square using a uniform mesh

DoF 1st 2nd 3rd 4th 5th 6th

C0IPG 16641 0:0970e3 0:0970e3 0:3881e3 1:5524e3 1:5524e3 2:4277e3

Argyris 36994 0:0974e3 0:0974e3 0:3896e3 1:5585e3 1:5585e3 2:4352e3

Mixed 4225 0:0974e3 0:0974e3 0:3901e3 1:5606e3 1:5606e3 2:4409e3

Morley 16385 0:0974e3 0:0974e3 0:3893e3 1:5548e3 1:5548e3 2:4295e3

Table 9 The first six V-CH eigenvalues for the L-shaped domain using a quasi-uniform mesh

DoF 1st 2nd 3rd 4th 5th 6th

C0IPG 33345 0:1783e3 0:2089e3 1:5097e3 1:5138e3 2:0354e3 2:9839e3

Argyris 74462 0:1755e3 0:2068e3 1:5585e3 1:5585e3 2:0856e3 3:0373e3

Mixed 8417 0:0349e3 0:1998e3 1:5595e3 1:5595e3 2:0769e3 2:5333e3

Morley 33025 0:1498e3 0:1971e3 1:5575e3 1:5576e3 2:0701e3 2:9353e3
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Table 10 The first
eigenvalues of the plate
buckling problems for the
unit square

B-CP B-SSP B-CH

C0IPG 52:4045 19:7448 9.8712

Argyris 52:3469 19:7392 9.8695

Mixed 52:3671 19:7422 9.8704

Morley 52:3301 19:7383 9.8694

Table 11 The first
eigenvalues of the plate
buckling problems for the
L-shaped domain

B-CP B-SSP B-CH

C0IPG 129:3580 61:6123 14.4305

Argyris 129:0132 61:9109 14.6288

Mixed 128:4905 38:6147 5.9099

Morley 127:7805 59:1396 13.9426

For the L-shaped domain, we observe from Table 5 that the Ciarlet-Raviart
mixed finite element method also converges for the V-CP problem, and again
the eigenvalues computed by the Ciarlet-Raviart mixed finite element method are
consistently larger than the corresponding eigenvalues computed by the C0 IPG
method. For the boundary conditions of SSP and CH, the results in Tables 7 and
9 show spurious eigenvalues generated by the Ciarlet-Raviart mixed finite element
method.

Comparing with the C0 IPG method, the performance of the Morley finite
element method is slightly better when the eigenfunction is very smooth and
slightly worse when the eigenfunction is less smooth. The approximate eigenvalues
generated by the Morley finite element method is consistently less than the
approximations generated by the Argyris finite element method, which agrees with
the discussion in [18].

Finally numerical results for the first eigenvalues of the plate buckling problems
are presented in Tables 10 (unit square) and 11 (L-shaped domain). The mesh size h
in the computations is�1/80. For the unit square, the results from all four methods
with respect to all three boundary conditions are consistent. For the L-shaped
domain, the results from the C0IPG method, the Argyris finite element method and
the Morley finite element method are consistent for all three boundary conditions,
whereas the Ciarlet-Raviart mixed finite element method is consistent with the other
methods only for the CP boundary conditions and generates spurious eigenvalues
for the other two boundary conditions.

6 Conclusion

We have demonstrated that the C0 IPG method is a provably accurate scheme for
approximating biharmonic eigenvalue problems. It is robust with respect to different
boundary conditions, which is a significant advantage over the Ciarlet-Raviart
mixed finite element method, because the latter produces spurious eigenvalues on
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nonconvex domains for the boundary conditions of the simply supported plate and
the Cahn-Hilliard type. Its performance is also comparable to the more complicated
Argyris C1 finite element method.

The results in this paper can be extended to three dimensions where the advantage
over C1 finite element methods would be even more obvious, and they can also be
extended to domains with curved boundaries where the isoparametric version of the
C0 IPG method [9, 13] can be applied, while the constructions of C1 finite element
space for such domains are much more complicated.

From the numerical results in Sect. 5, we see that the Ciarlet-Raviart mixed finite
element method converges on nonconvex domains for the boundary conditions of
the clamped plate. As far as we know this method has only been analyzed for
convex domains [4, 15, 17] or smooth domains [20] even for the source problem. It
would be interesting to develop a convergence analysis of the Ciarlet-Raviart mixed
finite element method on nonconvex domains for both the source problem and the
eigenvalue problem.
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Strong Stability Preserving Time
Discretizations: A Review

Sigal Gottlieb

Abstract Strong stability preserving (SSP) high order time discretizations were
developed to address the need for nonlinear stability properties in the numerical
solution of hyperbolic partial differential equations with discontinuous solutions.
These methods preserve the monotonicity properties (in any norm, seminorm or
convex functional) of the spatial discretization coupled with first order Euler time
stepping. This review paper describes the state of the art in SSP methods.

1 Overview

Explicit strong stability preserving (SSP) Runge–Kutta methods were developed
[32, 33] for the time evolution of hyperbolic conservation laws Ut C f .U/x D 0:
Solving these methods numerically is complicated by the fact that the exact
solutions may develop discontinuities. For this reason, significant effort has been
expended on finding spatial discretizations that can handle discontinuities [9]. Once
the spatial derivative is discretized, we obtain the system of ODEs

ut D F.u/; (1)

where u is a vector of approximations to U: uj � U.xj/. This system of ODEs can
then be evolved in time using standard methods. The spatial discretizations used to
approximate f .U/x are carefully designed so that when (1) is evolved in time using
the forward Euler method unC1 D un C �tF.un/ the solution satisfies the strong
stability property

kun C�tF.un/k � kunk (2)
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under the time step restriction

�t � �tFE: (3)

The term k � k can represent any norm, semi-norm, or convex functional, as dictated
by the design properties of the spatial discretization.

In practice, a higher order time discretization is needed for numerical simula-
tions, but we want to ensure that the higher order discretization will preserve the
strong stability properties of the spatial discretization coupled with forward Euler.
To accomplish this, we attempt to re-write a higher order time discretization as a
convex combination of forward Euler steps, so that any convex functional property
that is satisfied by the forward Euler method will still be satisfied by the higher order
time discretization, perhaps under a modified time step restriction

�t � C�tFE: (4)

Methods that can be decomposed like this with C > 0 are called strong stability
preserving (SSP), and the C is known as the SSP coefficient of the method. SSP
methods guarantee the strong stability of the numerical solution for any ODE and
any convex functional provided only that the forward Euler condition (2) is satisfied
under a time step restriction (3).

It is easy to see how a decomposition into convex combinations of forward
Euler steps is a sufficient condition for strong stability preservation. It has also
been shown [4, 5, 9, 12, 13] that this convex combination condition is necessary
for strong stability preservation. If a method does not have a convex combination
decomposition into forward Euler steps with a positive C we can always find some
ODE with some initial condition such that the forward Euler condition is satisfied
but the method does not satisfy the strong stability condition for any positive time-
step [9].

Notice that there are two factors that play a role in determining the stable
time step (4): the forward Euler time step �tFE, which depends on the spatial
discretization alone, and the SSP coefficient C , which depends only on the time
discretization. For efficiency, we seek high order SSP Runge–Kutta methods that
have the largest possible SSP coefficient C per function evaluation. The number of
function evaluations is typically the number of stages s of a method, so we define
the effective SSP coefficient Ceff D C

s and aim to find methods that maximize this
value. It has been shown [9] that all explicit general linear methods have an SSP
bound C � s, and therefore Ceff � 1, but this upper bound is not always attained. In
the following sections, we present some of the work done on SSP time discretization
methods of several types, and provide a number of recommendations for the best
SSP time discretizations based on the state-of-the-art in this field. Space constraints
do not permit a detailed treatment of these topics, and many interesting methods
such as additive methods, implicit-explicit methods, and multiderivative methods
will not be addressed here, but the reader is encouraged to explore these as well.
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2 SSP Runge–Kutta Methods

Runge–Kutta methods are typically written in the Butcher form, however these
methods can also be written in the Shu-Osher form [32, 33], which is more
convenient for our purpose:

u.i/ D viu
n C

sX
jD1

�
˛i;ju

. j/ C�tˇi;jF.u
. j//
�

for 1 � i � sC 1 (5)

unC1 D u.sC1/;

where we require vi CPs
jD1 ˛i;j D 1 for consistency. If all the coefficients vi � 0,

˛i;j � 0 and ˇi;j � 0 then each stage of this Runge–Kutta method (5) can be rewritten
as a convex combination of forward Euler steps, and we can bound any convex
functional by

ku.i/k D
������viu

n C
sX

jD1

�
˛i;ju

. j/ C�tˇi;jF.u
. j//
�
������

� vi kunk C
sX

jD1
˛i;j

����u. j/ C�t
ˇi;j

˛i;j
F.u. j//

���� � kunk;

where the final inequality is obtained by repeatedly using the forward Euler
condition (2) with the requirement that ˇi;j

˛i;j
�t � �tFE. This decomposition shows

that if the forward Euler condition (2) holds under some time step restriction (3), and
if ˛i;j; ˇi;j � 0, then the solution obtained by the Runge–Kutta method (5) satisfies
the strong stability bound kunC1k � kunk under the time step restriction (4) where
C D mini;j

˛i;j

ˇi;j
, and the ratio is understood as infinite if ˇi;j D 0.

To facilitate finding methods with optimal SSP coefficients, Ketcheson for-
mulated an optimization problem in [17]. This optimization problem was used
extensively in [1, 11, 18, 21, 22], to generate optimal SSP methods. The optimization
code in MATLAB is available at [23]. This code is the basis of many of the results
described in this work. Table 1 (left) lists the effective SSP coefficients of the best
known explicit and implicit SSP Runge–Kutta methods.

2.1 SSP Explicit Runge–Kutta Methods

The first two strong stability preserving Runge–Kutta methods were presented in
[32, 33]. These were the explicit s stage SSP Runge–Kutta method of order p D
s D 2

u.1/ D u.0/ C�tF.u.0//; unC1 D 1

2
u.0/ C 1

2

�
u.1/ C�tF.u.1//

�
:
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and the three stage third order method

u.1/ D un C�tF.un/; u.2/ D 3
4
un C 1

4
u.1/ C 1

4
�tF.u.1//;

unC1 D 1
3
un C 2

3
u.2/ C 2

3
�tF.u.2//;

that have SSP coefficient C D 1, and are optimal in the sense that there are no
methods of that number of stages and order that have a larger SSP coefficient [7].

It was shown in [7] that no four stage fourth order explicit Runge–Kutta methods
exist with positive SSP coefficient. By considering methods with s > p, fourth
order methods with order p D 4 have been found. Notable among these is the
.s; p/ D .5; 4/ method with C D 1:508 (Ceff D 0:302) in [35], and the ten-stage
fourth order method with C D 6 (Ceff D 0:6) in [17]

u.1/ D un C 1

6
�tF.un/; u.iC1/ D u.i/ C 1

6
�tF.u.i// i D 1; 2; 3

u.5/ D 3

5
un C 2

5
u.4/ C 1

15
�tF.u.4//; u.iC1/ D u.i/ C 1

6
�tF.u.i// i D 5; 6; 7; 8;

unC1 D 1

25
un C 9

25
u.4/ C 3

5
u.9/ C 3

50
�tF.u.4//C 1

10
�tF.u.9// :

It was shown [25, 31] that no methods of order p � 5 with positive SSP coefficients
can exist. This means that explicit SSP Runge–Kutta methods have an order barrier
of four and any higher order methods will not have a positive SSP coefficient.
The three methods given in this section represent the state-of-the-art explicit SSP
Runge–Kutta methods. They are all provably optimal and have nice low-storage
properties.

2.2 SSP Implicit Runge–Kutta Methods

If a spatial discretization F satisfies the forward Euler condition (2) under some time
step restriction (3) it will be unconditionally strongly stable, in the same norm, using
the implicit (or “backward”) Euler method [12, 16, 25]. Unfortunately, no methods
of order p > 1 can be unconditionally SSP [9]. In fact, the general optimization
method was used to investigate the SSP properties of fully implicit SSP Runge–
Kutta methods [21], and found that all the methods with order p � 2 had effective
SSP coefficients Ceff � 2. This numerical bound holds for second order methods,
which means that limiting ourselves to linear problems (see Sect. 2.3) will not
alleviate this restriction.

It has been shown that implicit Runge–Kutta methods with positive SSP coef-
ficient cannot exist for p > 6 [9]. This order barrier was shown to be sharp in
[21] where SSP implicit Runge-Kutta methods of order up to and including six
were found. It is interesting to note that in this work, all the optimal methods were
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diagonally implicit even though the search was conducted over all fully implicit
methods. Diagonally implicit methods have the property that each stage depends
explicitly on the previous values and implicitly only on itself, so that each stage can
be computed individually.

The SSP time step restriction is particularly desirable for implicit methods as it
provides a guarantee of other properties. For example, the SSP condition guarantees
a unique solution of the stage equations in implicit Runge–Kutta methods [25] and
also ensures that the errors introduced in the solution of the stage equations due
to numerical roundoff and errors in the implicit solver are not unduly amplified
[25]. Unfortunately, the order barrier of p � 6 and the observed bounds on the SSP
coefficient of implicit Runge–Kutta methods greatly limit their use in practice.

2.3 SSP Runge–Kutta Methods for Linear Problems

This restrictive order barriers on explicit SSP Runge–Kutta methods are partly a
result of the nonlinearity of the ODEs. When dealing with linear autonomous ODE
systems a smaller set of order conditions needs to be satisfied and we can find
explicit SSP Runge–Kutta methods for arbitrarily high linear orders plin > 4 [6].
Such “linear” methods are interesting because their SSP coefficients serve as upper
bounds for the usual methods, but they may also be useful in their own right, as
the strong stability preserving property can be useful for linear problems involving
Maxwell’s equations and the equations of linear elasticity.

In [24], Kraaijevanger presented optimal linear methods for linear orders 1 �
plin � s � 10, and plin 2 f1; 2; 3; 4; s� 1; s� 2; s� 3; s� 4g for any s. For example,
a family of provably optimal s-stage, linear order plin D s � 1 methods has C D 2

and Ceff D 2
s :

u.i/ D u.i�1/ C 1

2
�tF

�
u.i�1/

�
; i D 1; : : : ; s � 1

u.s/ D
s�2X
jD0

˛s
j u. j/ C ˛s

s�1
�

u.s�1/ C 1

2
�tF

�
u.s�1/

�	
;

unC1 D u.s/;

where u.0/ D un and the coefficients ˛s
j of the final stage of the s-stage method are

given iteratively by

˛s
j D

2

k
˛s�1

j�1 for j D 1; : : : ; s � 2; ˛s
s�1 D

2

s
˛s�1

s�2 ; ˛s
0 D 1 �

s�1X
jD1

˛s
j ;
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starting from the coefficients of the two-stage, first order method ˛20 D 0 and
˛21 D 1.

The linear and nonlinear order conditions are equivalent up to and including
second order, so that the methods of order plin > 2 still have nonlinear order p D 2.
In [11], we constructed explicit SSP Runge–Kutta methods that have nonlinear order
p D 3 or p D 4 (which is optimal for SSP methods), and higher linear orders
plin > p. We call these methods linear/nonlinear (or LNL) methods. The main
observation is that the SSP coefficients of the methods that have higher nonlinear
order is not significantly lower than those of the methods with nonlinear order
p D 2. In fact, there is no difference at all between the SSP coefficient of methods
with p D 2 and those with p D 3. If p D 4, the SSP coefficients are somewhat lower
than the corresponding p D 2 methods for smaller s and plin, but as we increase the
number of stages and the linear order these differences go away. Table 1 (right) gives
the SSP coefficients of the p D 4 LNL methods up to s D 12 stages and linear order
plin D 12. In boldface are the coefficients that equal those of the p D 2 methods.
The conclusion we draw from these methods is that if one wants higher linear order
without compromising nonlinear order, the cost in terms of SSP coefficient may be
insignificant.

3 SSP Multistep Methods

The idea behind multistep methods is to use the solution at previous time-steps
rather than intermediate stages to attain higher order. Compared to Runge–Kutta
methods, multistep methods typically have larger storage requirements. However,
the cost of computation per step is lower, and multistep methods are sometimes
advantageous for certain typed of problems. Like Runge–Kutta methods, multistep
methods can often be decomposed into convex combinations of forward Euler steps,
and so may preserve the strong stability properties satisfied by the forward Euler
method, perhaps under a different time-step restriction.

3.1 Explicit Multistep Methods

Explicit multistep methods have a unique form, which simplifies the study of their
SSP properties: any explicit k step multistep method takes the form [32],

unC1 D
kX

iD1

�
˛iu

nC1�i C�tˇiF.u
nC1�i/

�
: (6)

For this method to be consistent we require that
Pk

iD1 ˛i D 1. This method is of
order p if the coefficients satisfy the consistency condition and the order conditions
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Pk
iD1 iq˛i D q

Pk
iD1 iq�1ˇi for q D 1; : : : ; p . These order conditions are the only

requirement for the method to be of order p whether the method is applied to linear
or nonlinear problems.

It is easy to see that multistep methods can be written as convex combinations
of forward Euler methods whenever the coefficients ˛i and ˇi are nonnegative and
ˇi D 0 whenever ˛i D 0:

unC1 D
kX

iD1

�
˛iu

nC1�i C�tˇiF.u
nC1�i/

� D
kX

iD1
˛i

�
unC1�i C�t

ˇi

˛i
F.unC1�i/

	
:

Under these conditions on the coefficients, these methods preserve any strong
stability properties satisfied by the forward Euler time-stepping (2) for any time
step (3), in the sense that we will have

kunC1k � maxfkunk; kun�1k; : : : ; kunC1�kkg (7)

under the modified time-step restriction (4). where the SSP coefficient C D mini
˛i
ˇi

.
As before, our goal is to find multistep methods that are optimal in the sense of
allowable time step, i.e. those that have the largest SSP coefficient.

As mentioned above, all explicit general linear methods have a bound on the SSP
coefficient C � 1 [9], and of course multistep methods are included in this bound.
This bound is not tight: it has been shown in [26] that the SSP coefficient of an s step
explicit linear multistep method of order p > 1 has C � k�p

k�1 . A class of methods
that attains this bound is the family of optimal k > 2 step second order methods,
given by the coefficients [26]

˛1 D .k � 1/2 � 1
.k � 1/2 ; ˛k D 1

.k � 1/2 ; ˇ1 D k

k � 1
(any unlisted coefficients take the value zero). Furthermore, the third order method
with k D 5

unC1 D 25

32
un C 25

16
�tF.un/C 7

32
un�4 C 5

16
�tF.un�4/: (8)

also attains the bound with SSP coefficient C D 5�3
5�1 D 1

2
.

For low order and few steps, the SSP multistep methods have similar effective
SSP coefficients as the corresponding low order and few stage Runge–Kutta
methods. However, when we look at Runge–Kutta methods with many stages we
observe that they have much better effective SSP coefficients than linear multistep
methods with many steps. For example, the optimal six step fourth order method in
[18, 19] has SSP coefficient C D Ceff D 0:1648 which is significantly less than the
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bound of 2
5
, and compares very poorly to the five-stage fourth order SSP Runge–

Kutta method with Ceff D 0:302 and to the ten-stage fourth order SSP Runge–Kutta
method with Ceff D 0:6.

An advantage of explicit SSP multistep methods is that they do not suffer from
the restrictive p � 4 order barrier that explicit SSP Runge–Kutta methods are subject
to. However, these methods require a sufficient number of steps to attain the desired
order: a multistep method of order p > 1 with positive SSP coefficient requires k >
p steps [9]. If one requires higher order accuracy and the SSP property, multistep
methods may still be of interest. Ketcheson developed a fast algorithm for finding
optimal SSP multistep of any number of steps and order [18, 19], and used this
to obtain methods of up to 50 steps and order p D 15. The SSP coefficients of
these methods are given in [9], and show that as we go to higher order, the SSP
coefficients become much smaller than the bound, as seen in the fourth order method
above. Also, the number of steps required increase dramatically: for instance, the
minimum number of steps required for a tenth order SSP method is 22—far more
than the minimum of 12 one would expect from the theory. For this reason, SSP
multistep methods of order p > 4 are limited in their utility.

However, if specific starting procedures are used with the multistep methods
and the strong stability property is relaxed, and one relaxes the SSP criteria and
requires only boundedness, it is possible to create more useful multistep methods.
Hundsdorfer et al. [16] examined the required step size for a boundedness property
of the form

jjunjj � Mjju0jj

(where M depends only on the starting procedure) to hold for several multistep
methods with particular starting procedures. In [15, 30], such boundedness preserv-
ing multistep methods of up to sixth order were given with reasonably large time
step coefficients, for example a three step, third order method with C D 0:537 and
a four step, fourth order method with C D 0:458.

3.2 Implicit Multistep Methods

Implicit multistep methods have the form

unC1 D
kX

iD1

�
˛iu

nC1�i C�tˇiF.u
nC1�i/

�C�tˇ0F.u
nC1/: (9)

If for i � 1 the coefficients ˛i � 0 and ˇi � 0 where ˇi D 0 whenever ˛i D 0

then this method will satisfy the SSP condition (7) for any time step that satisfies (4)
with C D miniD1;:::;k ˛i

ˇi
: Unfortunately, it has been proved that the maximal SSP
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coefficient for implicit multistep methods of order p > 1 is no greater than two
[15, 27]. This bound is in fact attained by the second order trapezoidal method,
which uses only one function evaluation and has SSP coefficient C D 2. If we
compare the number of function evaluations with that of the two-stage second order
explicit SSP Runge–Kutta method, which requires two function evaluations and
has SSP coefficient C D 1, we see that the explicit SSP Runge–Kutta method
requires four relatively inexpensive explicit function evaluations per unit time while
the trapezoid method requires one costly implicit solve of a system of equations.
When we compare these costs, we see that the implicit method is not competitive,
despite the seemingly larger SSP coefficient. Relaxing the strong stability condition
and enforcing specific starting procedures do not help in overcoming the bound
C � 2 for p > 1 [15, 30] . For this reason, implicit SSP multistep methods are
not as computationally efficient as explicit multistep methods: the bound C � 2

is typically too restrictive to overcome the additional cost of solving an implicit
system.

4 Explicit SSP Multistep Runge–Kutta Methods

As we saw above, SSP methods suffer from restrictive bounds on the size of the SSP
coefficient and barriers on the order of the method. In particular, we observe that
explicit Runge–Kutta methods with positive SSP coefficient cannot be more than
fourth-order accurate [25, 31], while explicit SSP linear multistep methods of high-
order accuracy require many steps, and therefore have large storage requirements [9,
26].

These constraints have inspired the investigation of explicit methods that have
multiple steps and multiple stages in the hopes of attaining higher-order SSP meth-
ods with large effective SSP coefficients. These multistep Runge–Kutta (MSRK)
methods have been considered in multiple works. In [8] Gottlieb et al. considered
a class of two-step, two-stage methods. Spijker [34] developed a complete theory
for strong stability preserving multi-step multi-stage methods and presented new
second order and third order methods with optimal SSP coefficients. Constantinescu
and Sandu [3] focused their search on MSRK methods with up to four stages
and four steps of order p � 4. Huang [14] studied two-stage multistep methods,
and found methods of up to seventh order with reasonable SSP coefficients. This
work showed that the order barrier that Runge–Kutta methods suffer from, and
the low SSP coefficients characteristic of higher order multistep methods, can
both be alleviated by a combination of multiple steps and multiple stages. More
recently, SSP MSRK methods with order as high as 12 have been developed in [29]
and numerous similar works by the same authors, using sufficient conditions for
monotonicity and focusing on a single set of parameters in each work.
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In [1, 22], we studied MSRK methods with k steps and s stages:

yn
1 D un

yn
i D

kX
lD1

dilu
n�kCl C�t

k�1X
lD1
OailF.u

n�kCl/C�t
i�1X
jD1

aijF.y
n
j / 2 � i � s

unC1 D
kX

lD1
�lu

n�kCl C�t
k�1X
lD1
OblF.u

n�kCl/C�t
sX

jD1
bjF.y

n
j /:

Here the values un�kCj denote the previous steps and yn
j are intermediate stages used

to compute the next solution value unC1. Spijker’s theory (including necessary and
sufficient conditions for monotonicity) was generalized to these MSRK methods
and used to develop an optimization algorithm for explicit SSP methods of any
number of steps k and stages s, and up to order p D 10. These works found
optimized explicit MSRK methods of up to five steps, eight stages, and tenth
order. The most useful methods fifth order are the .s; k; p/ D .3; 4; 5/ method with
Ceff D 0:33 and the .s; k; p/ D .7; 2; 5/ method with Ceff D 0:418. For sixth order,
the .s; k; p/ D .5; 3; 6/ method with Ceff D 0:272 is a good choice, or if one is
willing to incur the additional storage cost of five steps the .s; k; p/ D .6; 5; 6/

method with Ceff D 0:345 is more efficient. The recommended seventh order
methods are .s; k; p/ D .7; 3; 7/ with Ceff D 0:243 or, for the cost of an additional
step the .s; k; p/ D .7; 4; 7/ method with Ceff D 0:286. The eighth order method
.s; k; p/ D .8; 3; 8/ is a good method, with Ceff D 0:1, but increasing the number
of stages by one and the number of steps by two yields a .s; k; p/ D .9; 5; 8/ with
more than double allowable time step, a Ceff D 0:229. Finally, among the ninth
and tenth order methods there are fewer to choose, with two good options being
the .s; k; p/ D .9; 4; 9/ method with Ceff D 0:1766 and the .s; k; p/ D .20; 3; 10/

method with Ceff D 0:0917. The methods’ SSP coefficients and coefficients (dil; ail

etc.) can be found in [10].
The results of studies of explicit MSRK methods show that these methods allow

higher order than explicit SSP Runge–Kutta methods while featuring larger SSP
coefficients than the multistep methods of corresponding order. In [22], we proved
an order barrier of eight for two-step methods and in [1] we showed that this barrier
is broken for three-step methods. We also proved [1] an upper bound on the SSP
coefficient of explicit MSRK methods of order two and above with k � 2 steps and
s � 1 stages:

C � .k � 2/sCp.k � 2/2s2 C 4s.s� 1/.k � 1/
2.k � 1/ :

We note that we also investigated implicit MSRK methods, but found (numeri-
cally) that even for second order we can obtain effective SSP coefficients no bigger
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than two: Ceff � 2. As mentioned above, this step size is not large enough to
overcome the cost of the solver required for the implicit method.

5 Methods with Downwinding

In the initial presentation of SSP methods in [32, 33], it was suggested that
the inclusion of downwinding in SSP time-stepping methods can be of benefit.
Downwind operators approximate the same operator to the same order of accuracy
as the upwind operator, the only difference is in the choice of upwinding direction.
If F is a discretization of �f .U/x in the PDE that satisfies the forward Euler
condition (2) under time-step restriction (3), then we can design a downwind spatial
discretization, denoted by �QF, which approximates f .U/x such that the backwards
in time method unC1 D un � �t QF.un/ is strongly stable kun � �t QF.un/k � kunk
under the same time step restriction (4). Typically, if the stable approximation F has
a left-biased stencil, then the stable approximation �QF would have a right-biased
stencil.

The idea of including a downwind operator is not new: it was used in the
MacCormack scheme presented in 1969 [28]. In our case the inclusion of a
downwind operator allows us to relax the restrictions on the coefficients of the
SSP schemes and so alleviate some of the order barriers and time-step restrictions
associated with SSP methods. If we allow the coefficients ˇi;j in Runge–Kutta
methods (or ˇj in multistep methods) to become negative, we can still have the SSP
property hold with SSP coefficient QC D mini;j

˛i;j

jˇi;jj (where the ratio is understood as
infinite if ˇi;j D 0), as long as we replace the upwind operator F with the downwind
spatial discretization QF whenever the coefficient is negative.

Allowing negative coefficients does not alleviate the bound Ceff � 1 for explicit
Runge–Kutta methods, but it does allow us to break the order barrier and obtain
methods of order p > 4 [20]. Furthermore, implicit Runge–Kutta methods with
downwinding break the (observed) bound Ceff � 2. This is apparent in the method
presented in [20]

y1 D 2

r.r � 2/u
n C 2

r

�
y1 C �t

r
F.y1/

	
C r2 � 4rC 2

r.r � 2/
�

y2 � �t

r
QF.y2/

	

y2 D y1 C �t

r
F.y1/; unC1 D y2 C �t

r
F.y2/

that has an SSP coefficient C D r for any choice of r. Higher order methods (p D
3; 4; 5) that break the bound have also been found [2]. The downwind operators adds
some diffusion to the numerical solution: a fact that can readily understood when
looking at the difference between the upwind and downwind operators. However,
for larger time-steps this diffusion is better than that of the backward Euler method,
and is the typical price of generous strong stability properties.
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6 Open Problems and Future Directions

Ongoing research in the field of SSP time stepping methods focuses on the search
for higher order methods with largest allowable time-steps. Implicit methods with
downwinding hold promise in this regard, and methods that break the SSP barrier
and the order barrier of p � 6 are currently sought. Methods that attack different
components of the ODE differently (e.g. additive methods and IMEX methods) are
also a major area of interest. Furthermore, there is ongoing interest in determining
the bounds and barriers of different methods theoretically: for example, a proof that
for implicit nonlinear Runge–Kutta methods the effective SSP coefficient does not
exceed two would be a major accomplishment. Finally, the search for a meaningful
SSP definition outside the method-of-lines framework is an interesting new research
area, that will expand the use of SSP time stepping methods in several directions.
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Solving PDEs with Hermite Interpolation

Thomas Hagstrom and Daniel Appelö

Abstract We examine the use of Hermite interpolation, that is interpolation using
derivative data, in place of Lagrange interpolation to develop high-order PDE
solvers. The fundamental properties of Hermite interpolation are recalled, with
an emphasis on their smoothing effect and robust performance for nonsmooth
functions. Examples from the CHIDES library are presented to illustrate the
construction and performance of Hermite methods for basic wave propagation
problems.

1 Introduction

Polynomials are the workhorse for approximating the solution to general PDE’s—
indeed, using Taylor expansions, it is clear that convergence of a method at high
order with grid refinement is equivalent to it being at least approximately exact
for polynomial solutions of high degree. Thus both high order finite difference
methods and nodal spectral element methods are typically constructed using
Lagrange interpolants. However, the two classes of method are obviously distinct
in the way the polynomials are used—for difference methods they are implicitly
reconstructed at each grid point via the difference formulas, while for element
based approaches they are defined and used in a finite region. An advantage of the
element-based interpolants is the possibility to directly use properties of the PDE
to guarantee stability, as in the standard continuous and discontinuous Galerkin
frameworks [11, 18], as well as the localization of much of the computational
effort. A disadvantage, however, is the fact that high-degree polynomials can support
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Fig. 1 Plot of the Legendre polynomial, P15.x/ and its first derivative. Note that the maximum
value is 1 and the maximum derivative value is 120—see (1)

boundary layers at element edges, as illustrated by the plot of the degree 15
Legendre polynomial and its derivative in Fig. 1.

This boundary layer phenomenon is encapsulated in the inequalities of Bernstein
and Markov [5]:

Theorem 1 Let q.x/ be a polynomial of degree n. Then for �1 � x � 1
????dq

dx

???? � min

�
np
1 � x2

; n2
	
kqkL1.Œ�1;1�/: (1)

The practical consequence of (1) and its generalization to multidimensional ele-
ments [14] is that differentiation matrices built from polynomials of degree n
must have first derivative matrices whose norm scales like n2

H , where H is the
element width. Given that the element contains n C 1 Lagrange nodes, this is a
factor of n worse than the scaling of finite difference formulas with a comparable
node density, leading to an artificially stiff semidiscretization. If second derivatives
are present the situation becomes more extreme. Although approaches based on
mappings (to produce nonpolynomial bases, e.g. [21]) or filtering [26] can be used,
the fundamental fact is that a nonstiff polynomial differentiation matrix can only be
based on differentiation near the element center.

Motivated by these facts, and in addition by the inherent stability properties
detailed below, we propose the use of Hermite interpolation in place of Lagrange
interpolation to construct high-order polynomial elements. That is, rather than using
function values distributed throughout an element as the basic degrees-of-freedom,
we use function and derivative values, or equivalently the coefficients of the Taylor
polynomial, centered at an interior point. In many aspects the resulting methods
enjoy the advantages of both finite difference and finite element discretizations:

1. Degree-independent stability constraints—with sufficiently accurate local time-
stepping for hyperbolic problems all degrees-of-freedom in an element can be
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updated independent of neighboring elements over a time step limited only by
domain-of-dependence requirements.

2. Stability based on continuous energy estimates.
3. Highly localized evolution of many degrees-of-freedom.

Below, through simple examples, we will illustrate the basics of a PDE solver
built on Hermite interpolation. The examples are implemented as Matlab programs
and freely available as part of the CHIDES1 library chides.org. Our initial release
of CHIDES will contain, besides the Matlab implementation of the examples
discussed here, various subroutines and drivers written in modern FORTRAN illus-
trating and enabling the construction of Hermite PDE solvers on structured meshes.
We plan future releases including more complex capabilities such as coupling with
DG methods on hybrid grids, as well as implementations on overset grids.

2 Hermite Interpolation

Theorem 2 (Hermite interpolation (Dahlquist and Björk [12])) Let fxigsiD1 be s
distinct points. Let f .x/ be a function defined and with derivatives up to order mi

at xi. Then there exists a unique polynomial p.x/ of degree � r � 1, where r DPs
iD1.mi C 1/ solving the Hermite interpolation problem:

djp.x/

dxj

ˇ̌
ˇ̌
ˇ
xDxi

D djf .x/

dxj

ˇ̌
ˇ̌
ˇ
xDxi

; j D 0; : : : ;mi; i D 1; : : : ; s: (2)

2.1 Piecewise Interpolation

Now consider the special form of Hermite interpolation used in CHIDES—namely
piecewise interpolation using two nodes with m derivatives at each. Suppose x0 <
x1 < : : : < xN . On an interval .xi�1; xi/ we independently compute an interpolant,
pi.x/, of degree 2mC 1, satisfying (2) with mi�1 D mi D m. The global piecewise
interpolant we denote by:

Im f D pi.x/; x 2 .xi�1; xi/: (3)

Note that Im f 2 Cm. We also employ piecewise degree 2mC 1 interpolation on a
dual grid consisting of nodes xiC1=2 D .xi C xiC1/=2 and define

QIm f D piC1=2.x/; x 2 .xi�1=2; xiC1=2/; (4)

1Charles Hermite Interpolation Differential Equation Solver.



34 T. Hagstrom and D. Appelö

Table 1 A generalized Newton divided difference table

xi�1

xi�1

xi�1

xi

xi

xi

f .xi�1/

f .xi�1/

f .xi�1/

f .xi/

f .xi/

f .xi/

f .1/.xi�1/=1Š

f .1/.xi�1/=1Š

?

f .1/.xi/=1Š

f .1/.xi/=1Š

f .2/.xi�1/=2Š

?

?

f .2/.xi/=2Š

?

?

?

?

?
?

with piC1=2.x/ being the solution to the Hermite interpolation problem with data
consisting of derivatives through order m at xi˙1=2.

2.2 Newton Form

The cellwise Hermite interpolation problem is solved repeatedly during each time
step, and its cost is the dominant cost for linear systems with constant coefficients.
An efficient way to solve to (2) is to form the generalized divided difference table
used to find the interpolating Newton polynomial. We form the Newton table by first
filling in f .s/.xi�1/=sŠ and f .s/.xi/=sŠ; s D 0; : : : ;m as illustrated in Table 1. Next we
fill in the missing positions (indicated by ? in Table 1) one column at a time from
left to right. The interpolating polynomial, pi.x/, can then be found as

pi.x/ D a0 C a1.x � xi�1/C � � � C amC1.x � xi�1/mC1 C amC2.x � xi�1/mC1.x � xi/

C � � � C a2mC1.x � xi�1/mC1.x � xi/
m;

where aj; j D 0; : : : ; 2mC 1 are the coefficients on the upper diagonal in the table.
In our PDE solvers we work with monomial basis,

pi.x/ D
2mC1X
jD0

cjx
j: (5)

The coefficients cj can be obtained from aj by a fast dual Vandermonde solve [12].

2.3 Error Estimates

Detailed formulas for the error in Hermite interpolation of a smooth function are
given in [4]. Precisely, for x 2 .xi�1; xi/, the Peano representation of the local error
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can be easily derived by noting that e D f � Im f solves the two point boundary
value problem

d2mC2e
dx2mC2 D

d2mC2f
dx2mC2 ;

dje

dxj
D 0; x D xi�1; xi; j D 0; : : :m: (6)

Thus

f .x/�Im f .x/ D
Z xi

xi�1

Ki.x; s/
d2mC2f
dx2mC2 .s/ds; (7)

where the kernel Ki is the Green’s function for the two-point boundary value
problem (6). Indeed, the local Hermite interpolant can be characterized as the unique
solution of the inhomogeneous boundary value problem

d2mC2pi

dx2mC2 D 0;
djpi

dxj
D djf

dxj
; x D xi�1; xi; j D 0; : : :m: (8)

Simple scaling arguments combined with the transformation x D xi�1 C zhi then
show that e D O.h2mC2

i / where hi D xi � xi�1 is the element width. We also have
the formula

f .x/ �Im f .x/ D .�1/mC1
.2mC 2/Š.x � xi�1/mC1.xi � x/mC1

d2mC2f
dx2mC2 .	/: (9)

These formulas show that the error is significantly smaller near the endpoints of the
interval, and allows one to compute an accurate artificial dissipation coefficient in a
modified equation approximation to the discrete evolution; see [2, 19] for details.

2.4 Smoothing Properties

A fundamental feature of piecewise Hermite interpolation is the following mini-
mization property in the HmC1 seminorm,

jwj2mC1 	
Z xN

x0

�
dmC1w
dxmC1

	2
dx: (10)

Theorem 3 Suppose g is any function in HmC1.x0; xN/ satisfying djg
dxj .xi/ D djf

dxj .xi/,
j D 0; : : : ;m, i D 0; : : : ;N. Then jIm f jmC1 � jgjmC1:
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This result holds locally on each interval and follows from the fact that pi.x/
is orthogonal in the HmC1 semi-inner product to any function w.x/ satisfying
djw
dxj .xi�1/ D djw

dxj .xi/ D 0, j D 0; : : : ;m. In fact by the Pythagorean Theorem

j f j2mC1 D jIm f j2mC1 C j f �Im f j2mC1: (11)

These smoothing results are used to prove the stability of Hermite methods and
establish optimal convergence results; see [16] and the discussion below.

2.5 Application to Nonsmooth Functions

The aforementioned smoothing properties of Hermite interpolation are also bene-
ficial when dealing with nonsmooth functions. For example consider the canonical
model of a shock wave, the step function q.x/ D �sign.x/. Let Q.x/ be the Hermite
interpolant of degree 2m C 1 of q.x/ on x 2 Œ�1; 1�. It is straightforward to prove
(see [2]) that Q.x/ is monotone and thus the total variation of Q.x/ is identical to
the total variation of q.x/. The first 20 Hermite interpolants are displayed in Fig. 2.
A well-known result due to Bernstein is that the sequence of Lagrange interpolation
polynomials for jxj at equally spaced nodes in x 2 Œ�1; 1� diverges everywhere,
except at zero and the end-points. As can be seen in Fig. 2 Hermite interpolation
does considerably better. In fact, one can check that the degree 2m C 1 Hermite
interpolant for jxj coincides with the polynomial

b.x/ D
mX

kD0

 
2k

k

!
.�1/kC1.x2 � 1/k
22k.2k � 1/ ;
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Fig. 2 Hermite interpolating polynomials of degree 2mC 1;m D 1; : : : ; 20 of the step function
q.x/ D �sign.x/ (to the left) and the absolute value function jxj (to the right)
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which, in turn, is identical to the first terms of the generalized binomial expansion

.1C t/
1
2 D

1X
kD0

 
1=2

k

!
tk;

when we set t D x2 � 1 (note that jxj D .x2/
1
2 ). The sequence of Hermite

interpolation polynomials thus do converge in jxj < 1.

3 A Hermite-Taylor Method for Solving ut C ux D 0

We now describe how the approximate solution of a PDE can be found using
Hermite interpolation combined with Taylor series approximation in time. The
algorithms are implemented in the Matlab files Hermite_Taylor_1Ddriver.m,
Advection1D_PDE.m and Advection1D_INIT.m which can be downloaded from
chides.org.

Consider the scalar advection equation with periodic boundary conditions:

@v.x; t/

@t
C c

@v.x; t/

@x
D 0; x 2 Œxl; xr�; t > 0; (12)

v.x; 0/ D v0.x/; v.xl; t/ D v.xr; t/: (13)

The first step in our method (implemented in Hermite_Taylor_1Ddriver.m) is
to define the primal and dual grids with nx C 1 and nx grid-points covering the
computational domain

xi D xl C ihx; hx D .xr � xl/=nx; (14)

with i D 0; : : : ; nx for the primal grid and i D 1=2; : : : ; nx � 1=2 for the dual grid.
Next, we initialize the degrees-of-freedom used to describe the approximate

solution, which are approximations to scaled derivatives of the solution of orders
0; : : : ;m, or equivalently scaled coefficients of the degree-m Taylor polynomial. At
t D 0 the piecewise degree-2mC 1 Hermite interpolant u.x; 0/ is determined by:

cl D hl
x

lŠ

dlu.x; 0/

dxl

ˇ̌
ˇ̌
xDxi

� hl
x

lŠ

dlv0

dxl

ˇ̌
ˇ̌
xDxi

:

The data to be evolved is stored as an array of coefficients; u(l,k,i) holds the
coefficient cl of the kth field at the grid-point xi. We obtain these basic degrees-of-
freedom directly from the initial data. In the example in Advection1D_INIT.m we
use v0.x/ D sin 20�x and may compute the coefficients directly, but in general we
can find them by solving a local interpolation problem at each grid-point.
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To evolve the approximate solution in time, we choose a time step �t satisfying
the CFL condition

c�t < hx: (15)

Note that the degree m does not appear in this relation. We now form space-time
polynomials centered at a grid-point on the dual grid and at time tn (initially tn D 0)

un
iC 1

2

.x; t/ D
2mC1X
lD0

qX
sD0

dls

�x � xiC 1
2

hx

	l 
 t � tn
�t

�s

: (16)

At time t D tn this expression reduces to

un
iC 1

2

.x; tn/ D
2mC1X
lD0

dl0

�x � xiC 1
2

hx

	l

; (17)

where the coefficients dl0 in (17) are determined so that (17) is the Hermite
interpolant of the data at the adjacent primal nodes.

To find the remaining coefficients dls we repeatedly differentiate (12) in space
and time:

@lCsv

@xl@ts
D �c

@lCsv

@xlC1@ts�1 ; (18)

and insist that our approximation u satisfy (18). In particular, note that at .xiC 1
2
; tn/

the following relation holds

dls D hl
x

lŠ

�ts

sŠ

@l@su

@xl@ts

ˇ̌
ˇ̌
xDx

iC 1
2
;tDtn

; (19)

which together with (18) yields the recursion

dls D �c
lC 1

s

�t

hx
dlC1 s�1; l D 0; : : : ; 2mC 1; s D 1; : : : ; q D 2mC 2: (20)

Thus, the coefficients dls are updated recursively. Once the “time-derivative-
coefficients” are known we can simply update the approximation at the dual
grid-point at the next half time level by evaluating

@lun
iC 1

2

@xl
.x; tn C�t=2/; l D 0; : : : ;m;
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Table 2 Error data for the evolution of v0.x/ D sin 20�x for different methods and final times

Final time m nx # time steps l2-error Final time m nx # time steps l2-error

1 1 2000 2222 1.92(�6) 1000 5 20 22,222 3.89(�3)

1 5 21 23 2.04(�6) 1000 15 5 5556 9.87(�8)

1 11 6 7 3.73(�7) 1000 25 4 4444 1.16(�9)
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Fig. 3 Left: The square wave (x>0.25).*(x<0.75)-0.5 at time 10 using nx D 8 and
m = 5, 15, 25. The crosses mark the location of the grid points. Right: The error at time 10 as
a function of x for the three different choices of m

Repeating the procedure at the next half time level and using the periodic boundary
conditions completes a full time step.

To demonstrate the method we run Hermite_Taylor_1Ddriver.m with the
initial data v0.x/ D sin 20�x. The computational domain is x 2 Œ0; 1�; thus there
are ten wavelengths inside the computational domain. We choose two different final
times: 1 and 1000. This corresponds to waves traveling 10 and 10,000 wavelengths
respectively. The results for some different combinations of m; nx with the ratio
�t
hx
D 9

10
are shown in Table 2. The table clearly demonstrates the benefits of using

a very high order method; for example using a method of order 51 on a grid with
0.4 grid-points per wavelength to evolve the solution 10,000 wavelengths using only
4444 timesteps the error is 1:16 � 10�9.

As a second example we evolve a square wave using nx D 8 and m D 5; 15; 25,
yielding l2-errors: 2.99(�2), 4.66(�3) and 6.13(�4) at the final time 10. The
approximation and errors are displayed in Fig. 3. As the solution is nonsmooth we
cannot expect convergence at the full order of the method; see [2] where a discussion
of the expected convergence behavior based on a modified equation is given. Despite
this we still see a big improvement when a high order method is used.
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3.1 Convergence Analysis

The analysis of convergence for the Hermite-Taylor method implemented above
follows from the smoothing and convergence properties of Hermite interpolation
combined with the observation that so long as (15) holds the updated Taylor
polynomial at the cell center is in fact the Taylor expansion of the exact solution of
the evolution problem over the half time step. Thus we may succinctly express the
algorithm as:

unC1=2
h D QImS.�t=2/un

h; unC1
h D ImS.�t=2/unC1=2

h ;

where S denotes the exact solution operator for the PDE—in this case simply
translation by c�t=2. Since S preserves the HmC1-seminorm we immediately
conclude from (11) that

jun
hjmC1 � ju0hjmC1; (21)

establishing stability.2 We can then obtain a slightly suboptimal error estimate in
the seminorm by combining (11) and the error bound obtained by taking m C 1

derivatives of (7). Let u.x; t/ represent the true solution and en D u � un
h, enC1=2 D

u � unC1=2
h represent the errors. Then

enC1=2 D S.�t=2/u.�; tn/� QImS.�t=2/un
h (22)

D QImS.�t=2/en C u.�; tnC1=2/ � QImu.�; tnC1=2/
enC1 D S.�t=2/u.�; tnC1=2/�ImS.�t=2/unC1=2

h (23)

D ImS.�t=2/enC1=2 C u.�; tnC1/ �Imu.�; tnC1/;

which implies

jenC1=2j2mC1 � jenj2mC1 C O.h2mC2
x /; jenC1j2mC1 � jenC1=2j2mC1 C O.h2mC2

x /:

Tracking these inequalities shows that jenjmC1 D O.hmC1=2
x /: In fact this argument

can be refined to prove the optimal error estimate [16]:

Theorem 4 There exists a constant, C.T/, independent of hx and the initial data
u.x; 0/ such that for all n � T

�t

kenkL2 � Ch2mC1
x ku.�; 0/k2mC2: (24)

2We must also use the fact that the average value of the solution remains constant.
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It is also shown in [16] that the result holds in general for constant coefficient
symmetric hyperbolic systems in any number of space dimensions. It can also be
generalized to variable coefficients and inexact time stepping so long as the local
time stepping schemes are sufficiently accurate.

4 Incorporating Nonlinearity

For nonlinear PDEs it is often more efficient to use a one-step ODE solver than the
Taylor series approach used above. In particular, using Taylor series requires the
repeated differentiation in time of the PDE, spawning many new terms. In contrast
a standard ODE solver just requires the computation of a single time derivative.

Assume we have found the Hermite interpolant at a dual grid-point xiC 1
2

but
rather than expanding in time let the coefficients dl be time dependent functions

un
iC 1

2

.x; t/ D
2mC1X
lD0

dl.t/

�x � xiC 1
2

hx

	l

: (25)

For a PDE vt D f .v/ we can insert (25):

@un
iC 1

2

.x; t/

@t
D

2mC1X
lD0

d0l.t/
�x � xiC 1

2

hx

	l

D f .un
iC 1

2

.x; t//: (26)

As before we can differentiate in space and evaluate at x D xiC 1
2

to find

kŠ

hk
x

d0k.t/ D
@k

@xk
f .un

iC 1
2

.x; t//
ˇ̌
ˇ
xDx

iC 1
2

: (27)

To avoid the differentiation of the right hand side we first approximate f .un
iC 1

2

.x; t//

by a Taylor polynomial of degree 2mC 1

f .un
iC 1

2

.x; t// �
2mC1X
lD0

bl.t/

�x � xiC 1
2

hx

	l

; (28)

for which differentiation is straightforward. With this approximation and after
carrying out the differentiation in (27) we obtain the local system of ODEs

d0k.t/ D bk.t/; k D 0; : : : ; 2mC 1; (29)

that can be solved to evolve our approximate solution. Of course, this requires us to
first find the Taylor coefficients bk.t/.
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The precise way to compute bk.t/ depends on the composition of f . For example,
for the nonlinearity vvx encountered, e.g., in Burgers’ equation vtCvvx D "vxx, we
may first compute the derivative

vx �
2mC1X
lD1

l

hx
dl.t/

�x � xiC 1
2

hx

	l

; (30)

followed by a polynomial multiplication truncated to degree 2mC 1. This example
is implemented in Burgers1D_PDE.m and discussed in detail below.

For more general non-linearities we can use techniques for finding recursions for
Taylor series. Let f .x/;w.x/ and u.x/ have Taylor series around some base point with
coefficients Fk;Wk and Uk. Then, for non-linearities which satisfy the differential
equation f 0.x/ D w.x/u0.x/ (w is a function of f , u or both) we can directly compute
the coefficients Fk; k D 1; 2; : : : using the formula [24]

Fk D W0Uk C 1

k

k�1X
jD0

jUjWk�j: (31)

For example, if f D exp.u/ we have f 0.x/ D f .x/u0.x/ and thus w D f . We start the
recursion with F0 D exp.U0/.

Thus, for general conservation laws in the form vtC.f .v//x we may first use (31)
to find a truncated Taylor series followed by differentiation [by the formula (30)].3

4.1 A Hermite-Runge–Kutta Solver for vt C vvx D "vxx

To make things concrete we now consider the approximate solution to viscous
Burgers’ equation using the approach outlined above. We evolve the local system of
ODEs (29) using the classic fourth order Runge-Kutta method. The driver routine is
called Hermite_RK_1Ddriver.m and the routines for the PDE and the initial data
are Burgers1D_PDE.m and Burgers1D_INIT.m.

The nonlinearity in the PDE is handled as outlined above, we first differentiate
and then perform a polynomial multiplication (in the code this is done using
Matlab’s built-in polynomial multiplication routine conv.)

The driver Hermite_RK_1Ddriver.m is nearly the same as the driver for the
Hermite-Taylor method. As before the initial data is set up in a separate file, here
in Burgers1D_INIT.m. As an example we choose the initial data to be v.x; 0/ D
�sin.�x/ on the domain x 2 Œ�1; 1� and " D 0:02. This data develops into a

3Conservation can be enforced when we interpolate, but we have not yet experimented with this
approach.
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shock-like sharp transition around time 0.3 so we evaluate the error at 0.2, well
before the formation time, and at 0.35, just after the shock forms. In order to
maintain stability for this nonlinear problem we reduce �t

hx
to 0.1 and take a single

Runge-Kutta substep. We vary the resolution using methods of order 7, 11 and 15;
see the results in Table 3. The rate of convergence is not quite at the spatial design
order, most likely due to the fourth order accurate time stepper.

4.2 p-Adaptivity

For problems with highly localized features it is often useful to employ adaptive
methods. Methods based on Hermite interpolation can be enhanced with both p and
H adaptivity and, in particular, incorporating p-adaptivity is quite straightforward.
Noting that the above descriptions of the methods are local in the sense that we only
require m derivatives at two adjacent nodes in order to evolve the solution a half time
step, and also noting that Theorem 3 holds locally, we can allow m to vary spatially
choosing mloc D min.mi;miC1/ when we form the Hermite interpolant at xiC1=2.
The driver routine Padapt_Hermite_RK_1Ddriver.m illustrates how natural it is
to incorporate p-adaptivity.

Taking mmax = 25 we compute the solution to the Burgers example using vari-
ous tolerances. As can be seen from the results displayed in Table 4 the algorithm
yields solutions with l2-errors roughly at the level of the selected tolerance.

In Fig. 4 we display the solution at the end time 0.35 and the distribution of the
number of derivatives used in the computation. Note that in order to meet the strict
tolerance 10�12 we need to use m D 25, i.e. a method of order 51 around the shock.

5 Hermite-Taylor Methods for Systems in Multiple
Dimensions

As a concrete example of a system of PDEs in multiple dimensions we consider
Maxwell’s equations in transverse magnetic form

�Hx
t D �Ez

y; �Hy
t D Ez

x; "Ez
t D Hy

x � Hx
y ; (32)

on a rectangular domain .x; y/ 2 Œ xl; xr ��Œ yb; yt �. To illustrate how simple boundary
conditions can be imposed by a mirroring principle we consider the case where the
boundary is a perfect electric conductor, i.e. Ez D 0. Then from (32) it is clear that
Hx D 0 and Hy

x D 0 on x D xl; xr and Hy D 0 and Hx
y D 0 on y D yb; yt.
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Fig. 4 In the left and middle figures the white line denotes the number of derivatives in the adaptive
method that were used at the final time. The contour plot is the base 10 logarithm of the coefficients
stored in u. The left figure corresponds to tol = 1e-4 and the middle to tol = 1e-12. To
the right the computed solution (black line behind the red line), the exact solution (red) and the
solution at the 31 nodes (black circles) are displayed

The discretization of (32) is a direct generalization of the one dimensional
Hermite-Taylor method on a staggered grid consisting of a primal grid:

.xi; yj/D .xlC ihx; ybC jhy/; .i; j/ 2 Œ0; nx�� Œ0; ny�; hxD .xr � xl/=nx; hyD .yt � yb/=ny;

and a dual grid

.xiC1=2; yjC1=2/ D .xlC.iC1=2/hx; ybC. jC1=2 /hy/; i D 0; : : : ; nx�1; j D 0; : : : ; ny�1:

The method starts with the tensor product polynomials

ui;j; kvar.x; y; t0/ D
mX

lxD0

mX
lyD0

clx;ly; kvar

�
x � xi

hx

	lx �y � yj

hy

	ly

; (33)

where ui;j; kvar.x; y; t0/; kvar D 1; 2; 3 approximate Hx;Hy and Ez.
As in one dimension, the first step in the method is to form the Hermite

interpolant at a dual node

uiC 1
2 ;jC 1

2 ; kvar
.x; y; t0/ D

2mC1X
lxD0

2mC1X
lyD0

dlx;ly; kvar

�
x � xi

hx

	lx �y � yj

hy

	ly

: (34)

Algorithmically, these polynomials are formed by applying the one dimen-
sional interpolation to all y-derivatives at the bottom and top of a cell (see
get_tcofs1_2D). and interpolating the resulting x-derivatives to the cell center.

The interpolated data is evolved by the Taylor series technique and the time
derivative coefficients are computed in Maxwell2D_PDE. At the end of the first half
time step the solution is known on all the dual nodes inside the boundary. Evolution
of the approximate solution at the primal nodes inside the boundary is carried out
as described above. At the primal nodes on the boundary we form the Hermite
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Table 5 Errors and convergence rates for the Maxwell TM cavity problem with!xD 4� ,!yD 8�
mD 5 hx 1.0 6.7(�1) 5.0(�1) 4.0(�1) m D 10 1.0 6.7(�1) 5.0(�1) 4.0(�1)

l2-error 2.1(0) 3.3(�1) 1.8(�2) 3.4(�3) 9.6(�4) 3.2(�7) 8.8(�10) 1.1(�11)

Rate 4.5 10.1 7.5 19.8 20.5 19.7

interpolating polynomial by first extending the solution from interior dual nodes
to ghost nodes just outside the boundary. The extension is done in such a way that
the resulting interpolant is even or odd (depending on the boundary conditions, see
Maxwell2D_PDE).

To demonstrate the method we set � D 1 and " D 1, then in the cavity .x; y/ 2
Œ�1; 1�2 a solution to the TM problem is

Hx D �!y=!t sin.!xx/ cos.!yy/ sin.!tt/; (35)

Hy D !x=!t cos.!xx/ sin.!yy/ sin.!tt/; (36)

Ez D sin.!xx/ sin.!yy/ sin.!tt/; (37)

with !t D
q
!2x C !2y .

We use this solution as initial data and evolve until time 3 and measure the error
in the l2-norm. As we choose 2!x D !y we also use 2hx D hy and set the time step
as dt = CFL*min(hx,hy) with CFL = 0.9. The results, listed in Table 5, show a
rate of convergence almost at the design rate.

6 Extensions and Other Work

Simulations of Compressible Flows: The first steps in constructing a compress-
ible Navier-Stokes solver appear in the thesis of Dodson [15]. More recently we
have been using the method to simulate compressible mixing layers, with an eye
towards applications in aeroacoustics [1, 3, 17, 20].

Adaptive Implementations: The ease of incorporating p-adaptivity in Hermite
methods is another of its attractive features, with the basic idea in one and
two space dimensions explored in [7] and illustrated in the example above. We
have also carried out preliminary studies of an h-adaptive version in [3]. Here
we advocate quadtree/octree refinement of the Hermite cells with local time
stepping. We believe that the stability of the resulting method follows directly
from dissipativity of piecewise Hermite interpolation.

Dispersion and Dissipation: The dispersion and dissipation properties of Her-
mite methods in one and two space dimensions are studied in [2, 19, 20].
A conclusion is that the method is quite competitive in terms of cost with
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other high-order structured grid discretizations, particularly if large time steps
are taken. Note that the primary errors are dissipation errors which occur when
the data is interpolated. Thus the method is most accurate (and most efficient)
if the global time step is taken to be as large as possible while maintaining
stability. Thus in the Runge-Kutta framework we suggest using as many substeps
as needed to maintain accuracy and stability with a large global step.

Coupling with Other Methods: A drawback of Hermite methods is their
reliance on structured grids and the need to utilize the PDE and geometry
description to derive equations for normal derivatives at boundaries. To make
the method more flexible we have implemented coupled Hermite-DG solvers
on hybrid structured-unstructured grids [8]. Here the DG method obtains fluxes
from the solution in neighboring Hermite cells, while Hermite cells bordering
DG elements obtain data by interpolation. We adapt the local time stepping to
the requirements of each method, so at high order we take many steps within the
DG elements for each Hermite step. Using dissipative upwind DG schemes we
have experimentally found the method to be quite robust.

Of course we are not the only researchers to have used Hermite interpolation
to solve differential equations. Hermite-based finite element methods have been
studied for quite some time, in particular for problems posed in spaces H2 or higher
[10]. Among the first applications to hyperbolic equations can be found in the
work of Yabe and collaborators [27]. More recently, Nave, Rosales, and Seibold
have used Hermite interpolation to solve advection problems, with a particular
interest in using the Hermite-based advection solver in conjunction with level set
methods [9, 23, 25]. They term the methods jet schemes borrowing terminology
from differential geometry. These methods differ from the one presented here in
that a staggered mesh is not employed.

Hermite interpolation has also been proposed by Butcher as a way to construct
SDIRK methods for solving stiff systems of ordinary differential equations [6]. The
methods are explicitly interpreted as collocation methods employing the Hermite
interpolant by Mülthei [22].

To conclude we recall a quote from Davis [13]: “Hermite’s formulas are
rediscovered and republished every four years.” We hope we have demonstrated
to the reader the unique and useful properties of Hermite interpolants and their
potential use for solving differential equations. We also wish to encourage the use
of the codes in chides.org and invite any feedback for their improvement.

Acknowledgements Work of the first author was supported in part by ARO Grant W911NF-09-
1-0344 and NSF Grants DMS-1418871, OCI-0904773. He also acknowledges the hospitality of
the Courant Institute, where he was visiting during the preparation of the manuscript. Work of the
second author was supported in part by NSF Grant DMS-1319054. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the Army Research Office or the National Science Foundation.



48 T. Hagstrom and D. Appelö

References

1. D. Appelö, T. Hagstrom, Experiments with Hermite methods for simulating compressible
flows: Runge-Kutta time-stepping and absorbing layers, in 13th AIAA/CEAS Aeroacoustics
Conference (AIAA, 2007)

2. D. Appelö, T. Hagstrom, On advection by Hermite methods. Pac. J. Appl. Math. 4, 125–139
(2012)

3. D. Appelö, T. Colonius, M. Inkman, T. Hagstrom, Recent progress on Hermite methods in
aeroacoustics, in 17th AIAA/CEAS Aeroacoustics Conference (AIAA, 2011)

4. G. Birkhoff, M. Schultz, R. Varga, Piecewise Hermite interpolation in one and two variables
with applications to partial differential equations. Numer. Math. 11, 232–256 (1968)

5. P. Borwein, T. Erdélyi, Polynomials and Polynomial Inequalities (Springer, New York, 1995)
6. J.C. Butcher, A generalization of singly-implicit formulas. BIT 21, 175–189 (1981)
7. R. Chen, T. Hagstrom, P-adaptive Hermite methods for initial value problems. ESAIM Math.

Model. Numer. Anal. 46, 545–557 (2012)
8. R. Chen, D. Appelö, T. Hagstrom, A hybrid Hermite - discontinuous Galerkin method for

hyperbolic systems with application to Maxwell’s equations. J. Comput. Phys. 257, 501–520
(2014)

9. P. Chidwagyai, J.-C. Nave, R. Rosales, B. Seibold, A comparative study of the efficiency of jet
schemes. Int. J. Numer. Anal. Model.-B 3, 297–306 (2012)

10. P. Ciarlet, The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics,
vol. 40 (SIAM, Philadelphia, 2002)

11. G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer,
New York, 2002)

12. G. Dahlquist, A. Björk, Numerical Methods in Scientific Computing, vol. I (SIAM,
Philadelphia, 2008)

13. P. Davis, Interpolation and Approximation. (Dover Publications, New York, 1975)
14. Z. Ditzian, Multivariate Bernstein and Markov inequalities. J. Approx. Theory 70, 273–283

(1992)
15. C. Dodson, A high-order hermite compressible Navier-Stokes solver. Master’s thesis, The

University of New Mexico, 2003
16. J. Goodrich, T. Hagstrom, J. Lorenz, Hermite methods for hyperbolic initial-boundary value

problems. Math. Comput. 75, 595–630 (2006)
17. T. Hagstrom, J. Goodrich, G. Zhu, A Hermite-Taylor algorithm for simulating subsonic shear

flows, in 12th AIAA/CEAS Aeroacoustics Conference (AIAA, 2006)
18. J. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods. Texts in Applied

Mathematics, vol. 54 (Springer, New York, 2008)
19. C.Y. Jang, T. Hagstrom, An analysis of the dispersion and dissipation properties of Hermite

methods (2014, in preparation)
20. C.-Y. Jang, D. Appelö, T. Hagstrom, T. Colonius, An analysis of dispersion and dissipation

properties of Hermite methods and its application to direct numerical simulation of jet noise,
in 18th AIAA/CEAS Aeroacoustics Conference (AIAA, 2012)

21. D. Kosloff, H. Tal-Ezer, A modified Chebyshev pseudospectral method with an o.n�1/ time
step restriction. J. Comput. Phys. 104, 457–469 (1993)

22. H.N. Mülthei, Maximale konvergenzordnung bei der numerischen lösung von anfangswert-
problemen mit splines. Numer. Math. 39, 449–463 (1982)

23. J.-C. Nave, R. Rosales, B. Seibold, A gradient-augmented level set method with an optimally
local, coherent advection scheme. J. Comput. Phys. 229, 3802–3827 (2010)

24. R. Neidinger, Efficient recurrence relations for univariate and multivariate Taylor series
coefficients. J. Am. Inst. Math. Sci. 2013, 587–596 (2013)

25. B. Seibold, R. Rosales, J.-C. Nave, Jet schemes for advection problems. Discrete Contin. Dyn.
Syst. Ser. B 17, 1229–1259 (2012)



Solving PDEs with Hermite Interpolation 49

26. T. Warburton, T. Hagstrom, Taming the CFL number for discontinuous Galerkin methods on
structured meshes. SIAM J. Numer. Anal. 46, 3151–3180 (2008)

27. T. Yabe, T. Ishikawa, P. Wang, T. Aoki, Y. Kadota, F. Ikeda, A universal solver for hyperbolic
equations by cubic-polynomial interpolation. II. Two- and three-dimensional solvers. Comput.
Phys. Commun. 66, 233–242 (1991)



High-Order Adaptive Galerkin Methods

Claudio Canuto, Ricardo H. Nochetto, Rob Stevenson, and Marco Verani

Abstract We design adaptive high-order Galerkin methods for the solution of
linear elliptic problems and study their performance. We first consider adaptive
Fourier-Galerkin methods and Legendre-Galerkin methods, which offer unlimited
approximation power only restricted by solution and data regularity. Their analysis
of convergence and optimality properties reveals a sparsity degradation for Gevrey
classes. We next turn our attention to the hp-version of the finite element method,
design an adaptive scheme which hinges on a recent algorithm by P. Binev for
adaptive hp-approximation, and discuss its optimality properties.

1 High-Order Adaptive Methods: Motivation

The advantages of high-order methods for problems with smooth solutions or
solutions with localized singularities is documented well in the literature. The a
priori error analysis started in the late 1970s whereas the a posteriori error analysis
goes back to the late 1980s. We refer to the books [9, 29], to the survey paper [8]
and the references therein for more details.
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Despite the interest on these methods, adaptivity is much less developed than for
the h-version of the FEM, for which a rather complete theory has been developed in
the last decade [5, 16, 19, 25, 26, 30]. We mention [23], which proves a convergence
rate (Theorem 2) under rather restrictive assumptions on the local estimator and
local error; this is somewhat related to [17, 18, 27]. We also cite [1, 7, 20, 28], which
prove convergence of the hp-FEM for practical estimators but do not derive rates
of convergence. The latter is an outstanding open issue, supported by overwhelming
computational evidence, but not yet accessible to analysis in full generality. The
purpose of this survey is to shed light on the key issues at stake when the polynomial
degree is unlimited. We devote Sects. 2–3 to the discussion of adaptive spectral
methods, the so-called Fourier-Galerkin and Legendre-Galerkin methods, and next
turn our attention to the hp-AFEM in Sects. 5–6. Our presentation is based on the
recent papers [8, 10–12, 14] and on a key new idea by P. Binev for hp-adaptive tree
approximation [2, 3], which we discuss in Sect. 4.

We highlight the difficulties associated with the analysis of adaptive high-order
methods by considering a function u in a Banach space V and its best approximation
with subspaces VN of V of dimension� N:

EN.u/ WD inf
fVN�V; dimVN�Ng

inf
U2VN
ku �Uk:

We take N as a measure of the complexity of the approximation of u by N degrees
of freedom; N provides information about the computational cost of constructing
a best approximation U 2 VN such that EN.u/ D ku � Uk. Let’s assume that an
iterative procedure with counter k � 1 generates best approximations Uk 2 VNk

with increasing Nk. We ask the following fundamental question:

How many degrees of freedom are necessary to reduce ENk.u/ by a fixed
factor 
 < 1 ?

It turns out that this is related to the decay of the rearranged coefficients of a suitable
expansion of u. We assume that ENk.u/ exhibits a prescribed decay, either algebraic
or exponential, in terms of Nk.

Algebraic Decay If ENk.u/ D AN�s
k , then a simple calculation yields

NkC1 D 
� 1s Nk (1)

The new number of degrees of freedom NkC1 is proportional to the current one Nk,
and the complexity of Un is proportional to the last step:

nX
kD0

Nk D N0

nX
kD0


�
k
s � Nn:

This is what the h-theory of AFEM predicts [5, 16, 25, 26, 30].
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Exponential Decay If ENk.u/ D Ae�	Nk , then a simple calculation reveals that

NkC1 � Nk D 	�1j log 
j (2)

and the number of degrees of freedom must only grow by an additive constant, which
is very hard to prove! Since Nn D N0 C n	�1j log
j, the complexity of Un is

nX
kD0

Nk D
nX

kD0

�
N0 C k	�1j log
j� � nNn:

Therefore, the complexity of the last step does not dominate the overall complexity,
as in the algebraic case, which makes counting of degrees of freedom a very
delicate matter. Even more delicate is the situation in which not all the rearranged
components of u exhibit the ideal decay assumed in (2), as in the presence of
plateaux, where a relevant number of expansion coefficients of u are constant. Then
one can show that Dörfler marking adds many more frequencies, which poses further
difficulties in the analysis of the exponential case. We explore these issues below.

2 Adaptive Spectral Methods

In this section we focus on the spectral analysis of elliptic PDE with emphasis on
the Fourier analysis [10]. We briefly mention the Legendre approach [11]. Our goal
is to describe an ideal adaptive Fourier algorithm, based on Dörfler marking, along
with several more aggressive variants suitable for spectral analysis.

2.1 Elliptic PDE and Fourier Analysis

Let d � 1 and consider the following elliptic PDE in ˝ D .0; 2�/d, with periodic
boundary conditions,

Lu D �r � .�ru/C �u D f in ˝ ; (3)

where � and � are sufficiently smooth coefficients satisfying 0 < �� � �.x/ �
�� < 1 and 0 < �� � �.x/ � �� < 1 in ˝; let us set ˛� D min.��; ��/ and
˛� D max.��; ��/. Its weak formulation reads

u 2 H1
p.˝/ W a.u; v/ D h f ; vi 8v 2 H1

p.˝/ ; (4)

where H1
p.˝/ is the closure in H1.˝/ of all smooth periodic functions, and the

bilinear form is a.u; v/ D R
˝ �ru � rv C R˝ �uv: We denote by jjjvjjj D p

a.v; v/
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the energy norm of any v 2 H1
p.˝/, which satisfies

p
˛�kvkH1

p .˝/
� jjjvjjj � p˛�kvkH1

p .˝/
: (5)

Fourier Analysis We first introduce the trigonometric basis �k.x/ D 1

.2�/d=2
eik�x

for any k 2 Z
d and x 2 R

d. Any function v 2 L2.˝/ can be expanded in terms of
f�kgk2Zd as follows:

v D
X

k

Ovk�k ; Ovk D hv; �ki ; kvk2L2.˝/ D
X

k

j Ovkj2 : (6)

The space H1
p.˝/ can now be easily characterized as the space of those v 2 L2.˝/

for which

kvk2 D kvk2H1
p .˝/
D
X

k

j OVkj2 <1 .where OVk WD ck Ovk; with ck WD .1Cjkj2/1=2/:

This induces an isomorphism between H1
p.˝/ and `2.Zd/: for each v 2 H1

p.˝/ let

v D . OVk/k 2 `2.Zd/ and note that kvk D kvk. Likewise, the dual space H�1p .˝/ D
.H1

p.˝//
0 is characterized as the space of those functionals f for which k fk2 D

k fk2
H�1

p .˝/
D P

k j OFkj2 with OFk WD c�1k
Ofk. We also have an isomorphism between

H�1p .˝/ and `2.Zd/ upon setting f D . OFk/k for f 2 H�1p .˝/ and realizing that
kfk D kfk.

We can now rewrite (4) in matrix-vector form upon introducing the bi-infinite
matrix A D .ak;m/, with ak;m WD .ckcm/

�1a.�m; �k/, that represents the bilinear
form a.�; �/ in the basis f�kgk:

Au D f: (7)

Fourier-Galerkin Approximation Given any finite set � Z
d and corresponding

subspace V, let

u 2 V W a.u; v/ D h f ; vi 8v 2 V :

For any w 2 V, we define the residual

r.w/ D f � Lw D
X

k

Ork.w/�k 2 H�1p .˝/ ;

where Ork.w/ D h f �Lw; �ki D h f ; �ki�a.w; �k/ ; and let r.w/ D f�Aw 2 `2.Zd/.
The definition of u is equivalent to the condition

P�r.u/ D 0 ; i.e., Ork.u/ D 0 8k 2  ; (8)
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where P� is the adjoint of the H1
p.˝/-orthogonal projection onto . This is called

Galerkin orthogonality.
By the continuity and coercivity of the bilinear form a.�; �/, one has

1

˛�
kr.u/k � ku � uk � 1

˛�
kr.u/k ; (9)

and also 1p
˛�
kr.u/k � jjju � ujjj � 1p

˛�
kr.u/k ; in light of (5). Therefore, the

quantity

kr.u/k D
0
@X

k 62
j ORk.u/j2

1
A
1=2

D kr.u/k;

where ORk.un/ WD c�1k Ork.un/, is an error estimator from above and from below.
However, this quantity is not computable because it involves infinitely many terms.
We comment on Sect. 2.5 on a feasible version.

2.2 ADFOUR: Ideal Adaptive Fourier Algorithm

Fix any � 2 .0; 1/ and set 0 D ;, u0 D 0. For n D 0; 1; : : : , assume that n and
un WD un 2 Vn are already computed and choosenC1 WD n[ @n by Dörfler’s
marking (or bulk chasing) as

kP�
@n

r.un/k D kP�
nC1

r.un/k � �kr.un/k or
X

k2@n

j ORk.un/j2 � �2
X
k2Zd

j ORk.un/j2 :
(10)

This can be implemented by rearranging the coefficients ORk.un/ in decreasing order
of modulus and picking the largest ones (greedy approach). However, this is only
‘ideal’ because the number of coefficients ORk.un/ is infinite. The ideal algorithm
thus reads:

ADFOUR.�; tol/
set r0 WD f , 0 WD ;, n D �1
do

n nC 1
@n WD DÖRFLER.rn; �/

nC1 WD n [ @n

unC1 WD GAL.nC1/
rnC1 WD RES.unC1/

while krnC1k > tol
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The greedy approach gives sets @n in (10) with minimal cardinality and is thus
crucial below in the study of optimality of ADFOUR and its variants.

Theorem 1 (Contraction Property of ADFOUR) Let � 2 .0; 1/ and let

fn; ungn�0 be the sequence generated by ADFOUR. If 
.�/ D
q
1 � ˛�

˛� �2,

then

jjju� unC1jjj � 
.�/jjju� unjjj :

Proof Since the proof is simple but illuminating, we show it. We proceed in five
steps.

• Pythagoras orthogonality: Since the spaces are nested Vn � VnC1
, the

following holds

e2nC1 D e2n � d2n;

with en WD jjju� unjjj and dn WD jjjunC1 � unjjj.
• Saturation property: If d2n � �e2n with � > 0 independent of n, then e2nC1 �
.1��/e2n. Since this is the assertion with 
2 D 1��, it remains to prove d2n � �e2n
with � D ˛�

˛� �
2.

• Discrete efficiency: In view of (9) and (8) we obtain

˛�d2n � kL.unC1 � un/k2 D krnC1 � rnk2 � kP�
nC1

.rnC1 � rn/k2 D kP�
nC1

rnk2 :

• Dörfler marking: We recall (10), namely kP�nC1
rnk2 � �2krnk2.

• Upper bound: We realize that krnk2 � ˛�e2n is a consequence of (9), and finally
deduce � D �2 ˛�

˛� : ut

2.3 Aggressive Versions of ADFOUR

The contraction factor 
 guaranteed for ADFOUR is bounded from below away

of 0: 
.�/ �
q
1 � ˛�

˛� > 0: This is overly pessimistic in the context of smooth

solutions, since a Fourier method allows for an exponential decay of the error as the
number of (properly selected) active degrees of freedom is increased.

2.3.1 Quasi-Sparsity of A and A�1

The key to a contraction constant 
 arbitrarily close to 0 relies on the sparsity
patterns of the bi-infinite Hermitian positive definite matrix A, defined in (7), and
its inverse A�1. The decay of the entries away from the diagonal depends on the
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regularity of the coefficients � and � of L. In view of the orthogonality properties
of f�kgk, only an operator L with constant coefficients � and � leads to a diagonal
matrix A. If � and � are real analytic in a neighborhood of ˝ , then ak;m decays
exponentially away from the diagonal [10]: there exist parameters cL; 	L > 0 such
that jak;mj � cLexp.�	Ljk � mj/ as jk � mj ! 1: This justifies the symmetric
truncation AJ of A with parameter J, defined as .AJ/`;k D a`;k if j` � kj � J and
.AJ/`;k D 0 otherwise, which satisfies

kA � AJk � CA.J C 1/d�1e�	LJ :

Most notably, the inverse matrix A�1 is also quasi-sparse [10, Property 2.3]: if cL <
1
2
.e	L � 1/min` a`;` ; then there exist explicit constants CA�1 and N	L 2 .0; 	L� such

that the symmetric truncation .A�1/J of A�1 satisfies

kA�1 � .A�1/Jk � CA�1 .J C 1/d�1e�N	LJ :

2.3.2 A-ADFOUR: An Aggressive Version of ADFOUR

We can exploit the preceding quasi-sparsity of A and A�1 to enrich the set @n

obtained by Dörfler marking by a neighborhood in Z
d of radius J � ˇ̌

log.1 � �2/ˇ̌
around each point of @n. This leads to the procedure E-DÖRFLER.rn; �; J/ and
ensuing algorithm A-ADFOUR.�; tol/, instead of ADFOUR.�; tol/.

Theorem 2 (Contraction Property of A-ADFOUR [10]) Let � 2 .0; 1/, J D
J.�/, and let fn; ungn�0 be the sequence generated by A-ADFOUR. Then,

jjju� unC1jjj �
r
˛�
˛�
p
1 � �2 jjju� unjjj :

Note that the contraction factor 
.�/ D
q

˛�

˛�

p
1 � �2 can now be made arbitrarily

close to 0, as desired.

2.4 Super-Aggressive Version of ADFOUR

The preceding enrichment process built in E-DÖRFLER can be further enhanced
upon making a dynamic choice of parameters � D �n and J D Jn for E-DÖRFLER.
This is summarized as follows.

Theorem 3 (Quadratic Convergence [13]) The algorithm A-ADFOUR with a
dynamic choice of parameters � and J, according to

p
1 � �2n ' krnk and

Jn ' j log krnkj, converges quadratically ku � unC1k <
 ku � unk2 :
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This theorem has three important consequences. The quadratic rate is consistent
with exponential convergence. Second, the cardinalities j@nj grow at a geometric
rate [compare with (2)]:

E.Un/ D Ae�	jnj ) j@nj D jnC1j � jnj D jnj � 	�1 log AI

The third issue is that the computational cost of A-ADFOUR scales linearly with
jnj. This is an optimal result and a rare instance in the theory of high-order
methods.

2.5 Variants of ADFOUR

The ideal situation described above deals with the error estimator krnk, which is not
computable because rn has in general 1-many components. We now introduce a
feasible version of ADFOUR: given 0 < � < 1, let Qrn be a truncated residual so
that krn � Qrnk � �kQrnk: We use kQrnk as error estimator and apply Dörfler marking
on Qrn. We replace the module RES by a feasible version F-RES which hinges on
two procedures f" D F-RHS .f ; "/ and w" D F-APPLY.v; "/. They compute a
finite expansion f" of f and a finite truncation w" of Lv so that kf � f"k � " and
kLv�w"k � ". The cardinalities of f" and w" depend on the sparsity class of f D Lu
and Lv, which happens to be different from that of u and v, for the exponential class.
This surprising issue is described in Sect. 3.

A second fundamental variant of ADFOUR, relevant for the p-version of the
FEM, is adaptive Legendre-Galerkin methods. In case d D 1, with Lk being the
Legendre polynomial of degree k normalized so that Lk.1/ D 1, we replace the
trigonometric basis by the Babuška-Shen basis

	k.x/ D
q

k � 1
2

Z 1

x
Lk�1.s/ds D 1p

4k � 2
�
Lk�2.x/� Lk.x/

�
k � 2;

which is orthogonal in H1
0.0; 1/, equipped with j � jH1.0;1/. The methodology

developed for Fourier-Galerkin methods extends to Legendre-Galerkin methods for
d D 1 [11]. The case d > 1 is, however, much harder because the tensorized
Babuška-Shen basis is not orthogonal in H1

0.˝/. Despite the stiffness matrix S
for the Laplace operator not being spectrally equivalent to a diagonal matrix, a
computationally feasible change of basis gives a matrix S with such a property
[12, 15].
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3 Sparsity Classes

The notion of best N-term approximation in nonlinear approximation theory is
related to the sparsity pattern of the Fourier decomposition (6). In this section
we explore connections between this concept and the asymptotic decay rate of
ADFOUR and its variants.

3.1 Best N-Term Approximation and Rearrangement

We start with an arbitrary Hilbert space V equipped with an orthonormal basis f � W
� 2 Mg (a generalisation to a Riesz basis causes no difficulties). Given any finite
index set  � M, we define the subspace V D span f�� j� 2 g of V and set
jj D card, so that dim V D jj. If v 2 V admits an expansion v DP

� Ov� �,
then we define its projection Pv onto V by setting Pv DP�2 Ov� � : The best
N-term approximation error for v 2 V is

EN.v/ WD inf
jjDN

inf
s2V

kv � sk : (11)

We classify v according to the decay of EN.v/ as follows. Given a strictly decreasing
function � W N! RC such that �.N/! 0 as N !1, we define the sparsity class
A� by setting

A� WD fv 2 V W jvjA� WD sup
N

EN.v/

�.N/
< C1g :

So for v 2 A� and " > 0, the number of degrees of freedom that is sufficient
to achieve a target tolerance " with a best N-term approximation is N D N" D
d��1."=jvjA� /e.

Since kv � Pvk2 D P
�62 j Ov�j2 ; a best N-term approximation is obtained by

rearranging the coefficients of v in decreasing order of magnitude jv�j j � jv�jC1j
with v�j WD Ov�j for j � 1, and picking up the N largest ones to define  D N

(greedy approach). Since functions v D P
� Ov� � 2 V and vectors v D . Ov�/ 2

`2.M/ are isomorphically related, the sparsity class A� has a natural counterpart
`�� , related to any non-increasing rearrangement v� D .v�j / 2 `2.N/ of v 2 `2.M/:
let �� W N ! RC be a strictly decreasing function such that ��.j/ ! 0 when
j!1, and set

`�� D
n
v 2 `2.M/ W jv�j`�� WD sup

j�1
jv�j j
��.j/

< C1
o
:
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In the next two examples, we assume V D H1.˝/ with ˝ a domain in R
d, and

s; 	; � > 0 are parameters.

Example 1 (Algebraic Case) For �.N/ D N�s=d and ��.N/ D N� s
d� 12 , we write

A� as As
B and `�� as `s

B. We thus have

EN.v/ � N�s=djvjAs
B

i.e., N" �
&� jvjAs

B

"

	d=s
'

8v 2 As
B:

The subscript B stands for Besov, because of the connection with Besov regularity:
for sufficiently smooth  �, v 2 BsC1

� .L� .˝// if and only if v� 2 `� .N/ where
� D . 1

2
C s

d /
�1, the latter being slightly stronger property than v 2 `s

B. If a tree
constraint is imposed, as with FEM, then v 2 BsC1

� .L� .˝// with 1
�
< s

d C 1
2

implies
v 2 As

B.

Example 2 (Exponential Case) Let f �g be the trigonometric basis of Sect. 2.1. For
�.N/ D e�	N� and ��.N/ D N

��1
2 e�	N� , we write As as A	;�

G and `�� as `	;�G . We
thus have

EN.v/ � e�	N� jvjA	;�
G

i.e., N" �
2
666
 
1

	
log
jvjA	;�

G

"

!1=�3
777 8v 2 A

	;�
G :

The subscript G stands for Gevrey because of the relation with Gevrey regularity
(� D t=d): if t < 1 function v is C1 and if t � 1 function v is analytic.

3.2 Sparsity of the Range of Operator L

The algebraic class As
B, or equivalently the class of sequences `s

B, is a vector space.
However, the exponential class `	;�G .N/ is not as the following counterexample for
d D 1 reveals [10]: the sequences in `2.N/

u D .uk/ D .e�	; 0; e�2	; 0; e�3	; 0; e�4	; 0; � � � /;
v D .vk/ D .0; e�	; 0; e�2	; 0; e�3	; 0; e�4	; � � � /

are in `	;1G because u� D .e�	; e�2	; e�3	; e�4	; � � � / and v� D .e�	; e�2	; e�3	;
e�4	; � � � /, but their sum u C v D .e�	; e�	; e�2	; e�2	; e�3	; e�3	; e�4	; e�4	; � � � /
belongs to `	=2;1G n`	;1G . Therefore, the sparsity class for uC v deteriorates from `

	;1
G

to `	=2;1G (the decay rate is slower and dictated by 	=2 instead of 	). This indicates
that we cannot expect the sparsity of the range and domain of operator L to be the
same.
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We confirm this observation with a counterexample from [10] for d D 1: let
v D fvkgk2Z be defined by vk D e�	n if k D 2p.n � 1/ and vk D 0 otherwise, for
p � 2 and n � 1; since v�n D e�	n we deduce v 2 `	;1G . Let A D .aij/

1
i;jD1 be the

Toeplitz matrix aij D 1 if ji � jj � q and aij D 0 otherwise. To compute Av we
observe that for q < p consecutive frequencies of v do not interact, and

.Av/i D e�	n if
ˇ̌
i� 2p.n� 1/ˇ̌ � q for some n � 1

and otherwise .Av/i D 0. This implies that the non-increasing rearrangement of Av
reads .Av/�m D e�	m if .2qC 1/.n� 1/C 1 � m � .2qC 1/n, thereby exhibiting a
sequence of plateaux of size 2q. We thus conclude that the sparsity class of Av is

Av 2 ` N	;1G with N	 D 	

2qC 1 < 	:

The situation can be worse in the sense that v 2 `	;�G may yield Av 2 ` N	;N�G with
N	 < 	 and N� < � [10]. This in turn affects the cost of the feasible version
F-ADFOUR of ADFOUR for the exponential case: since kLvk

A
N	;N�
G

. kvkA	;�
G

,

symmetric truncation AJ of the bi-infinite matrix A allows for a finite truncation Qrn

of rn D Lun satisfying the accuracy properties of F-APPLY but with cardinality
dictated by the pair . N	; N�/ rather than .	; �/. This is an essential difficulty which
does not occur for the algebraic class [10]. We can partially compensate by adding a
coarsening step WD COARSE.w; "/: given u 2 A

	;�
G and a function w 2 V , which

is known to satisfy ku � wk � " ; the output  is a set of minimal cardinality such
that

kw � Pwk � 2" ; jj �

1
	

log
jujA	;�

G

"

�1=� C 1:

This yields AC-ADFOUR, an aggressive version of ADFOUR with coarsening,
which satisfies [10]:

Theorem 4 (Contraction Property for AC-ADFOUR) Let � 2 .0; 1/ be as close
to 1 as desired and let fn; ungn�0 be the sequence generated by AC-ADFOUR.
Then, there exists C D C.˛�=˛�; �/ > 0 such that

jjju � unC1jjj � C
p
1 � �2 jjju � unjjj :

Theorem 5 (Cardinality of AC-ADFOUR) There exist constants Q	; O	 < 	 and
N� < � such that the cardinalities of the feasible residual Qr.un/ and intermediate sets
On are suboptimal and given by

jsupp Qr.un/j �
 
1

Q	 log
C�jujA	;�

G

ku � unk

!1=N�
; j OnC1j �

 
1

O	 log
C�jujA	;�

G

ku � unC1k

!1=N�
;
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but the final sets nC1 exhibit optimal cardinality dictated by 	 and �

jnC1j �
 
1

	
log

C�jujA	;�
G .˝/

ku � unC1k

!1=�
:

4 hp-Adaptive Tree Approximation

To explain the challenges of hp-approximation, we observe that the exponential
rate of convergence for the canonical example u.x/ D x˛ with ˛ < 1 on I0 D
Œ0; 1� hinges on a non-degeneracy assumption for the interpolation error E.I; p/with
polynomials of degree � p on any interval I � Œ0; 1� [17, 18, 22, 23, 27]: there
exist constants C1;C2 independent of I and p such that C2 � E.I;pC1/

E.I;p/ � C1: This
assumption is not valid for highly oscillatory functions, either global polynomials
of high degree or piecewise linear on a very fine mesh. An optimal hp-adaptive
selection strategy should account for these degenerate cases and avoid getting stuck
for too long with a wrong choice. We now present one such strategy developed by
P. Binev [2, 3].

4.1 Near-Best h-Adaptive Tree Approximation

This strategy is due to P. Binev and R. DeVore for h-refinement and finds a quasi-
optimal tree with linear complexity [4]. We start with a couple of definitions. A tree
T is a finite collection of elements with a root, and every element has two successors
or none (leaves). The collection of leaves, denoted by L.T/, defines a partition of the
underlying domain˝ . Given a function v, a local h-error functional is a subadditive
quantity e.v;K/, i.e. e.v;K/ � e.v;K0/ C e.v;K00/; available for every K 2 T,
where K0 and K00 denote the children of K. For instance, if v 2 L2.˝/, then e.v;K/
is simply the square of the best L2-error in approximating v on K by polynomials of
fixed degree. The global h-error functional is given by E.v;T/ DPK2L.T/ e.v;K/
and the best h-approximation of v is defined by �N.v/ WD inf#L.T/�N E.v;T/:

However, computing a mesh which realizes �N.v/ has exponential complexity.
The key idea of P. Binev and R. DeVore is to penalize the lack of success in

reducing the error. They achieve this upon modifying e.v;K/ to Qe.v;K/ for all K 2 T

as follows:

Qe.v;K/ WD e.v;K/ if K is a root;

1

Qe.v;K/ WD
1

e.v;K/
C 1

Qe.v;K�/ where K� is the parent of K.
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They apply a greedy algorithm to fQe.v;K/gK2T: given a tree TN , with #L.TN/ D N,
construct TNC1 by bisecting the leaf K 2 L.TN/ with largest Qe.v;K/. The sequence
of trees so generated gives a near-best h-adaptive approximation in the sense
E.v;TN/ � 2N

N�nC1�n.v/ for any integer n � N, with complexity O.N/. Therefore,
taking n to be the floor of N=2, there exist universal constants C2 < 1 < C1 so that

E.v;TN/ � C1�C2N.v/: (12)

4.2 Adaptive Strategy for hp-Refinements

This strategy, designed by P. Binev [2, 3], builds two trees: a ghost h-tree T, similar
to that in Sect. 4.1 but with degree dependent error and modified error functionals,
and a subordinate hp-tree P. The second tree is obtained by trimming the first
one and increasing the polynomial degree as follows. Given K 2 T, we denote
by T.K/ the subtree of T emanating from K, and let d.K;T/ be the dimension of the
admissible polynomial space on K (the number of leaves of T.K/)

d.K;T/ D #L.T.K// (13)

and p.K;T/ be the admissible polynomial degree (the largest p satisfying .pCd/Š
pŠdŠ �

d.K;T/ with d the space dimension). Let ep.v;K/ denote the approximation error
of function v on K with polynomials of degree p. The local hp-error functionals
ET.K/ D ET.v;K/ for K 2 T are defined by

• ET.K/ D e0.v;K/ provided K 2 L.T/, i.e., when K is a leaf of T;
• ET.K/ D minfET.K0/C ET.K00/; ep.K;T/.v;K/g otherwise.

The subordinate hp-tree P is obtained from T employing a bottom-top approach,
depicted in Fig. 1 for spatial dimension d D 1, that eliminates a node K 2 T and
corresponding subtree T.K/ whenever ET.K/ D ep.K;T/.v;K/. The hp-tree P gives
rise to an hp-partition D, being a collection of hp-elements D D .KD; dD/, defined
by fKD W D 2 Dg D L.P/ and dD D d.KD;T/, with pD D p.KD;T/. The cardinality
of D and corresponding hp-error functional for a given function v are defined by

#D D
X
D2D

dD D #L.T/; E.v;D/ D
X
D2D

epD.v;KD/:

Theorem 6 (Instance Optimality [3]) For any function v and tolerance � , the
algorithm sketched above, and detailed in [3], constructs a hp-tree P subordinate to
an h-tree T such the hp-error functional and cardinality of the resulting hp-partition
D satisfy

E.v;D/ � �; #D � 2# QD;
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Fig. 1 Ghost h-tree T (left) with ten leaves (#L.T/ D 10) and d D 1. The label of each node K
is d.K;T/ D p.K;T/C 1; the root K0 thus has an admissible polynomial degree 9. Subordinate
hp-tree P (right) resulting from T upon trimming three subtrees and raising the polynomial degrees
of the interior nodes of T, now leaves of P, from 0 to 1; 2, and 1 respectively

for any hp-partition QD with E.v; QD/ � 1
4
� . The cost of building P is bounded

by O
�P

K2T d.K;T/
�
, and varies from O.#D log #D/ for well balanced trees to

O..#D/2/ for highly unbalanced trees.

5 hp-AFEM: The One Dimensional Case

In this section we discuss our hp-AFEM in dimension d D 1 along with our
convergence and optimality theory [14]. We stress that, in contrast to [23, 27], we
make no special assumptions on the error and estimator.

Let ˝ WD .0; 1/ be the domain and d WD .f ; g; �; �/ be the data, where f ; g 2
L2.˝/ are forcing functions and �; � 2 H1.˝/ are the coefficients, which satisfy
0 < �� � � � �� < 1 and 0 � � � �� < 1. Given that H1.˝/ is compactly
embedded in L1.˝/ for d D 1, the regularity of the coefficients � and � is made
for convenience to handle the approximation of � and � together with that of u; f ; g
within Binev’s algorithm. Let u 2 H1

0.˝/ be the solution of the variational problem

a.u; v/ D
Z
˝

�u0v0 C �uv D
Z
˝

fv � gv0 8v 2 H1
0.˝/; (14)

where the bilinear form a.�; �/ satisfies the following bounds provided ˛� D �� and
˛� D �� C ��

2

˛�jvj2H1.˝/
� a.v; v/ D jjjvjjj2 � ˛�jvj2H1.˝/

:

For any interval K � ˝ , we equip H1
0.K/ with j � jH1.K/, and define H�1.K/ as

.H1
0.K//

0.
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We now describe the hp-discretization. Let us consider an hp-partition D as
defined in Sect. 4.2, which we write here as D D fD D .KD; pD/g in light of the
simple relation pD D dD � 1 between the polynomial space dimension dD and the
polynomial degree pD. The collection fKDgD2D forms a partition of˝ that is created
by a sequence of dyadic refinements of subintervals in the partition, starting from
the initial partition f.0; 1/g. Let hD D diam KD be the diameter of KD. Let VD be
the hp-finite element space associated with D

VD WD fv 2 H1
0.˝/ W vjKD 2 PpD.KD/ 8D 2 Dg;

and let VL
D be the corresponding space of continuous piecewise linear functions

w.r.t. fKDgD2D vanishing at x D 0; 1. The natural orthogonal decomposition of
H1
0.˝/ D V

L
D ˚

L
D2D H1

0.KD/ has the discrete counterpart

VD D V
L
D ˚

M
D2D

P
0
pD
.KD/;

where P
0
pD
.KD/ WD PpD.KD/ \ H1

0.KD/. The Galerkin solution UD 2 VD satisfies
a.UD;V/ D h f ;Vi � hg;V 0i for all V 2 VD. The residual r D r.UD/ 2 H�1.˝/
is given by

hr.UD/; vi D h f ; vi � hg; v0i � a.UD; v/

D
X
D2D

Z
KD



f C ��U0D

�0 � �UD

�
„ ƒ‚ …

Dr1;D

.v � IDv/ �g„ƒ‚…
Dr2;D

.v � IDv/
0

for all v 2 H1
0.˝/; note that there are no jumps because the linear interpolant IDv

equals v at the nodes. The a posteriori error estimator 	.UDID/ and local error
indicator 	.UDID/ read

	2.UDID/ WD kr.UD/k2H�1.˝/
D
X

D2D

	2.UDID/ ; 	.UDID/ WD kr.UD/kH�1.KD/:

Since we evaluate r.UD/ in H�1.˝/, we thus have the following upper and lower a
posteriori error estimates

1p
˛�
	.UDID/ � jjju �UDjjj � 1p

˛�
	.UDID/:
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5.1 Computable Residual and Saturation Property

We now describe a simple procedure to compute kr.UD/kH�1.KD/ for any D 2 D.
We start with the H1

0-representation of the element residual: let eKD 2 H1
0.KD/ satisfy

he0KD
; v0iL2.KD/ D hr.UD/; vi 8v 2 H1

0.KD/I (15)

Exploiting the explicit expression of the Green’s function on KD D .a; b/

G.x; y/ WD .a � x/.b � y/

b � a
if x < y G.x; y/ WD .a � y/.b � x/

b � a
if x > y:

we obtain a simple integral representation of eKD.x/ D
R b

a G.x; y/r1.y/dy CR b
a
@G.x;y/
@y r2.y/dy: This in turn yields the computable expression 	.UDID/ D

jeKDjH1.KD/:

Piecewise polynomial data turns out to be useful to allow for exact computation
of the stiffness matrix and Galerkin solution and to guarantee the saturation property
below. We say that data d D .f ; g; �; �/ satisfies the assumption of no data
oscillation w.r.t. D if for any D 2 D the data d is polynomial of degree NpD on
KD, with NpD � pD. If UD 2 VD is the corresponding Galerkin solution, then the
residuals r1;D D f C ��U0D

�0 � �UD and r2;D D �g are also polynomials of degree
p1 D NpD C pD and p2 D NpD on KD, whence the integral residual representation eKD

is a polynomial of degree NpD C pD C 2 which can be computed exactly. With this
observation in mind, we enrich the local bubble subspaces P0pD

.KD/ corresponding
to marked elements D 2M:

p�D WD
� NpD C pD C 2 when D 2M

pD when D 2 D nM (16)

We consider the hp-decomposition D� D fD� D .KD; p�D/g W 8D 2 Dg and the
enriched finite element space

VD� D V
L
D ˚

M
D2D�

P
0
p�

D
.KD/: (17)

Lemma 1 (Saturation Property) Let the assumption of no data oscillation w.r.t.
D be valid. Let U D UD 2 VD and U� D UD� 2 VD� be the Galerkin solutions in
VD and the enriched space VD� given by (16)–(17). If 0 < � < 1 is the parameter
of Dörfler marking, then

jjjU � U�jjj2 � �2 ˛�
˛�
jjju �Ujjj2: (18)
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Proof Since H1
0.˝/ D V

L
D ˚

L
D2D H1

0.KD/ and both residuals r.U/ and r.U�/
vanish against functions in V

L
D, the norm in H�1.˝/ of r.U/ � r.U�/ localizes to

contributions over elements D 2 D:

˛�jjjU �U�jjj2 � kr.U/ � r.U�/k2H�1.˝/
D
X
D2D
kr.U/ � r.U�/k2H�1.KD/

�
X

D2M
kr.U/ � r.U�/k2H�1.KD/

:

Since U� is the Galerkin solution w.r.t. the enriched finite element space and the
degree of eKD is p�D, according to (15), we deduce

sup
v2P

0

p�
D
.KD/

jhr.U/ � r.U�/; vij2
jvj2

H1.KD/

D sup
v2P

0

p�
D
.KD/

jhr.U/; vij2
jvj2

H1.KD/

D kr.U/k2H�1.KD/
8D 2M:

Adding over D 2 M we show discrete efficiency: ˛�jjjU � U�jjj2 � 	2.UIM/.
Combining Dörfler marking 	.UIM/ � �	.UID/ with the upper bound ˛�jjju �
Ujjj2 � 	.UID/2 we obtain the assertion. ut

5.2 Contraction Property of Module PDE

Module PDE Given a hp-partition OD, we suppose that data Od satisfies a no data
oscillation assumption w.r.t. OD, and let Ou 2 H1

0.˝/ be the corresponding solution
of (14). If � denotes the Dörfler parameter and " the error tolerance, the module
PDE computes an hp-discretization D finer than OD and Galerkin solution UD such
that jOu �UDjH1

0.˝/
� " W

ŒD;UD� D PDE . OD; Od; "/
set ` D 0; D.0/ D OD;
do

UD.`/ D SOLVE. Od;D.`//

f	.UD.`/ ID/; D 2 D.`/g D ESTIMATE.UD.`/ ;D.`//

M.`/ D MARK.D.`/; 	.UD.`/ ID.`//; �/

D.`C1/ D ENRICH.Mi;D.`//

update ` `C 1
while .	.UD.`/ ID.`// > ˛�"/
D WD D.`/; UD WD UD.`/

We point out that data Od is piecewise polynomial of degree NpD for all D 2 OD, comes
from an outer iteration, and does not change within PDE. This allows SOLVE
and ESTIMATE to compute stiffness matrices, Galerkin solutions, and estimators
exactly. The module MARK uses a greedy approach to select estimators. Finally,
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ENRICH increases the local polynomial degree pD of VD.`/ according to (16) and
thus guarantees the saturation property (18) as well as the following analogue of
Theorem 1, with a similar proof.

Theorem 7 (Contraction Property of PDE) If 
 D �
1 � �2 ˛�

˛�

�1=2
, then the

iterates U.`/ D UD.`/ for ` � 0 satisfy jjju � U.`C1/jjj � 
jjju � U.`/jjj: Moreover,
the estimate jOu � UDjH1.˝/ � � is valid upon termination.

Given a reduction parameter � < 1, this theorem implies that the number of
iterations within PDE to reduce the energy error from the value ı to �ı is uniform
in p, h, and ı, but depends on � < 1.

Perturbation Analysis We must now account for the piecewise polynomial
approximation Od D .Of ; Og; O�; O�/ of general data d D .f ; g; �; �/. We first enforce the
following bounds for the coefficients O�; O�

0 < O�� D ��
2
� O� � �� C ��

2
D O��; ���

2
� O� � �� C ��

2
D O��I

Since kvkL1.˝/ � jvjH1.˝/ and kvkL2.˝/ � 1p
2
jvjH1.˝/, we have the following

perturbation estimate for the solution Ou of OLOu WD �. O� Ou0/0 C O� Ou D Of C Og0: if M D
4
��

�kfkH�1.˝/ C kgkL2.˝/

�
, then jOujH1.˝/ � M and

��ju� OujH1.˝/ � kf � Of kH�1.˝/Ckg� OgkL2.˝/C M

2
k� � O�kH1.˝/CMk�� O�kH1.˝/:

(19)

5.3 Module hp-NEARBEST and Quasi-optimality

The procedure Œ OD; OV; Od� = hp-NEARBEST.v;d; "/ is the algorithm of Sect. 4.2
applied with � D �2 to a specific local error functional which, for a given
function v 2 H1

0.˝/ and data d, outputs an hp-discretization OD and hp-quasi best
approximations OV and Od. The latter are simply the local L2-projections Of D P0ODf and

Og D P0ODg onto V OD of f and g, or the local H1-projections O� D P1OD� and O� D P1OD�
onto V OD of � and � ; note that OV and Od are globally discontinuous. We thus define

data oscillation to be osc2.d; OD/ WDPD2 OD osc2.d;D/ with

osc2.d;D/ D kp�1
D hD.f�Of /k2L2.KD/

Ckg�Ogk2L2.KD/
Ck��O�k2H1.KD/

Ck��O�k2H1.KD/
8D 2 OD:
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In light of (19), we realize that ju�OujH1.˝/ � 2M�

��
osc.d; OD/with M� WD maxf1;Mg:

Given a suitable parameter ! � 1, to be chosen later, we let the local error
functional be

e.v;d;D/ WD jv � P1ODvj2H1.KD/
C 1

!2
osc2.d;D/ 8D 2 OD; (20)

set OV WD P1ODv, and define the global error functional to be E.v;d; OD/ WDP
D2 OD e.v;d;D/: In view of Theorem 6, the output Œ OD; OV; Od� = hp-NEARBEST

.v;d; �/ is instance optimal:

E.v;d;D/ � "2; # OD � 2 # QD; (21)

for any admissible hp-mesh QD with E.v;d; QD/ � 1
4
"2. This result is promising

but unfortunately cannot be applied to the solution u 2 H1
0.˝/ of (14) because u

is not directly accessible. However, we still achieve a near-best hp-approximation
provided there is an approximation v 2 H1

0.˝/ of u so that ju � vjH1.˝/ � ":

it is easily seen that the hp-mesh OD generated by hp-NEARBEST.v;d; 3"/ with
tolerance 3� satisfies

E.u;d; OD/ � 16"2; # OD � 2 # QD;

for any admissible hp-mesh QD with E.u;d; QD/ � 1
4
"2.

5.4 The hp-AFEM

Given data d D .f ; g; �; �/ and parameters �; ! < 1 and tol, the following algorithm
hp-AFEM generates an hp-partition D and Galerkin solution U over D so that
ju �UjH1

0.˝/
� tol W

ŒD;U� = hp-AFEM.d; tol/
let n D 0 and initialize D0, d0, and "0 with ju �U0jH1.˝/ � 2�0;
do

n nC 1; "n D �"n�1
Œ ODn; OUn; Odn� = hp-NEARBEST.Un�1;d; 6"n�1/
ŒDn;Un� D PDE. ODn; Odn; "n/

while "n >
1
2
tol

D WD DnI U D Un

The presence of the parameter! in (20) penalizes data approximations and prepares
data dnC1 for the next level of approximation within the outer loop in hp-AFEM.
This is critical for the next result.
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Theorem 8 (Convergence and Optimality of hp-AFEM) Let ! � ���

12M�
. Then

hp-AFEM terminates in finite number of steps N and ju � UjH1.˝/ � tol: The last

output . ODN ; OUN ; OdN/ of hp-NEARBEST satisfies

ju � OUN jH1.˝/ �
4

�
tol; osc.d; ODN/ � ��

4M�
tol; ODN � 2 # QD;

for any admissible hp-mesh QD with E.u;d; QD/ 12 � 1
2

tol. The number of inner loops
of PDE is independent of n, whence the complexity of PDE scales linearly with #Dn.
The complexity of hp-NEARBEST scales from linear to quadratic in terms of # ODn

depending on the tree structure.

6 hp-AFEM: The Two Dimensional Case

We finally give a brief overview of the case d D 2 treated in [14]. We consider
a polygonal domain ˝ � R

2 and data d D f with f 2 L2.˝/, and let u 2
H1
0.˝/ be the solution of the model problem ��u D f . Since the operator has

constant coefficients, the notion of data oscillation is simpler than in Sect. 5, namely
osc2.d;D/ D kp�1D hD.f � Of /k2L2.KD/

: However, the local error functional eD.v;d/
and module hp-AFEM remain the same.

Our theory of hp-AFEM for d D 2 hinges on the following three issues [14]:

• Saturation property (SP): Existence of constant � > 0, independent of p, so
that jjjU �U�jjj � �jjju � Ujjj: This is illustrated in Theorem 1 for ADFOUR and
Lemma 1 for hp-AFEM with d D 1. The existing a posteriori error estimators
for d D 2 are not completely satisfactory. The residual estimator of J. Melenk
and B. Wohlmuth [24] is p-sensitive, whereas the hypercircle estimators of D.
Braess, V. Pillwein and J. Schöberl [6], and A. Ern and M. Vohralík [21] are
p-insensitive but not known to satisfy (SP). In [14] we use [1] and thus get
a p-sensitive module PDE, but we are currently constructing a p-insensitive a
posteriori estimator for polynomial data d which satisfies (SP).

• Local implies global approximation: The hp-approximation generated by hp-
NEARBEST is local. We claim that local H1-approximation w.r.t. a conforming
mesh is equivalent to global H1-approximation for any polynomial degree p with
a logarithmic dependence on p [14]. This result extends recent ones of A. Veeser
[32] for fixed polynomial degree and is fully documented in [14].

• Completion for hp-refinement: The algorithm hp-NEARBEST developed by P.
Binev may output a nonconforming mesh with abrupt and unlimited transitions of
polynomial degrees between adjacent elements [2, 3]; we exhibit a pathological
example in [14]. This is undesirable and in fact difficult to handle in practice for
d � 2 and may deteriorate the complexity of hp-AFEM, but not its instance
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optimality. The module hp-NEARBEST is to be modified to ensure a smooth
transition of polynomial degrees or to output (nearly) conforming meshes, a
process called p-completion. A related h-completion process for bisection is
instead well understood [5, 26, 31].
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Nonlinear Elasticity for Mesh Deformation
with High-Order Discontinuous Galerkin
Methods for the Navier-Stokes Equations
on Deforming Domains

Bradley Froehle and Per-Olof Persson

Abstract We present a numerical framework for simulation of the compressible
Navier-Stokes equations on problems with deforming domains where the boundary
motion is prescribed by moving meshes. Our goal is a high-order accurate,
efficient, robust, and general purpose simulation tool. To obtain this, we use a
discontinuous Galerkin space discretization, diagonally implicit Runge-Kutta time
integrators, and fully unstructured meshes of triangles and tetrahedra. To handle
the moving boundaries, a mapping function is produced by first deforming the
mesh using a neo-Hookean elasticity model and a high-order continuous Galerkin
FEM method. The resulting nonlinear equations are solved using Newton’s method
and a robust homotopy approach. From the deformed mesh, we compute grid
velocities and deformations that are consistent with the time integration scheme.
These are used in a mapping-based arbitrary Lagrangian-Eulerian formulation, with
numerically computed mapping Jacobians which satisfy the geometric conservation
law. We demonstrate our methods on a number of problems, ranging from model
problems that confirm the high-order accuracy to the flow in domains with complex
deformations.

1 Introduction

Over the last decade, high-order accurate methods such as discontinuous Galerkin
(DG) methods [2, 6] have become increasingly popular for computational fluid
dynamics simulations [15]. One of the main reasons for this popularity is that the
schemes produce stable discretizations of conservation laws on fully unstructured
meshes of tetrahedral elements, with arbitrary orders of accuracy. More recently,
they have also been applied to problems with moving boundaries and deforming
domains [13], for applications such as flapping flight simulations [16].
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A popular technique for handling the deforming domains is the Arbitrary
Lagrangian Eulerian (ALE) method [4, 8, 14], which allows for a deforming grid by
using a discretization which accounts for the grid motion. While usually formulated
in a moving grid framework, in [13] it was demonstrated how these schemes can
be used in a DG setting with a mapping-based formulation and a fixed reference
domain, to easily obtain high-order accuracy in both space and time.

For complex geometries and deformations, this domain mapping has to be solved
for numerically using some type of mesh deformation scheme. In this work, we
show how to do this using a quasi-static nonlinear elasticity approach, similar to
the one used for high-order curved mesh generation in [12]. We show how to use
the resulting deformed meshes in a DG-based ALE scheme, and how to derive
discretely consistent grid velocities for diagonally implicit Runge-Kutta methods.
Using a non-trivial test problem we can demonstrate optimal order convergence.
We also show that a lower-order element-wise mapping is preferable to a full
isoparametric mapping, which is convenient in the case of rigid body motions.
Finally we show how the scheme has been applied to two complex flapping flight
applications.

2 Governing Equations

The fluid flow is governed by the compressible Navier-Stokes equations, which can
be written in conservation form as:

@

@t
.
/C @

@xj
.
uj/ D 0 (1)

@

@t
.
ui/C @

@xj
.
uiuj C pıij/ D @

@xj
�ij for i D 1; 2; 3 (2)

@

@t
.
E/C @

@xj
.
ujEC ujp/ D @

@xj
.�qj C ui�ij/ (3)

where the conserved variables are the fluid density 
, momentum in the jth spatial
coordinate direction 
uj, and total energy 
E. The viscous stress tensor and heat flux
are given by

�ij D �
�
@ui

@xj
C @uj

@xi
� 2
3

@uk

@xj
ıij

	
and qj D � �

Pr

@

@xj

�
EC p



� 1
2

ukuk

	
:

(4)

Here, � is the viscosity coefficient and Pr D 0:72 is the Prandtl number which
we assume to be constant. For an ideal gas, the pressure p has the form
p D .� � 1/
 .E � ukuk=2/, where � is the adiabatic gas constant. We write the
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system of conservation laws (1)–(3) in vector form as

@u
@t
Cr � f .u;ru/ D 0; (5)

where u D Œ
; 
u1; 
u2; 
u3; 
E� is the vector of conserved quantities and f is the
corresponding flux function. In our examples we impose two types of boundary
conditions—free-stream conditions and adiabatic no-slip wall conditions.

The deformable domains are handled through an Arbitrary Lagrangian Eulerian
(ALE) formulation. A point X in a fixed reference domain V is mapped to x.X; t/ in a
time-varying domain v.t/. The deformation gradient G, mapping (or mesh) velocity
�, and mapping Jacobian g are defined as

G D rXx; � D @x
@t
; g D det G (6)

The system (5) in the physical domain .x; t/ can then be rewritten as a system of
conservation laws in the reference domain .X; t/

@U
@t
CrX � F.U;rXU/ D 0 (7)

where the conserved quantities in reference space are U D gu with the fluxes F D
gG�1f � uG�1�, and the gradient of the solution is given by

ru D .rX.g
�1U//G�T D .g�1rXU �UrX.g

�1//G�T : (8)

For more details, including a convenient method for satisfying the Geometric
Conservation Law (GCL) by introducing an additional set of ODEs, see [13].

3 Numerical Schemes

3.1 Discretization of the Navier-Stokes Equations

Our 3DG flow solver is based on the high-order Discontinuous Galerkin (DG)
method with tetrahedral mesh elements and nodal basis functions. For simplicity,
we change the notation and use lower-case symbols for the solution u, and we omit
the subscripts on the derivative operators. We also split the fluxes into an inviscid
component Fi.u/ and a viscous component Fv.u;ru/. The ALE system (7) can
then be written in a split form as

@u
@t
Cr � Fi.u/� r � Fv.u; q/ D 0; (9)

ru D q: (10)
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Next, we introduce a computational mesh Th D fKg of the reference domain ˝ ,
and the finite element spaces V p

h and˙p
h :

V p
h D fv 2 ŒL2.˝/�5 j vjK 2 ŒPp.K/�

5 8K 2 Thg; (11)

˙
p
h D f� 2 ŒL2.˝/�5�3 j �jK 2 ŒPp.K/�

5�3 8K 2 Thg; (12)

where Pp.K/ is the space of polynomial functions of degree at most p � 1 on
K, and 3 and 5 refer to the dimension and number of solution components of the
Navier-Stokes equations in three dimensions. We multiply the system of Eqs. (9)–
(10) by test functions v;� and integrate by parts. Our semi-discrete DG formulation
is then expressed as: find uh 2 V

p
h and qh 2 ˙p

h such that for all K 2 Th, we have

Z
K

@uh

@t
� v dxC

Z
K

�
Fi.uh/� Fv.uh; qh/

� W rv dx

�
I
@K


 dFi.uh/ � dFv.uh; qh/
�
� v ds D 0;8v 2 ŒPp.K/�

5

(13)Z
K

qh W � dxC
Z

K
uh � .r � �/ dx �

I
@K
. Ouh ˝ n/ W � ds D 0;8� 2 ŒPp.K/�

5�3

(14)

To complete the description we need to specify the numerical fluxes for all element

boundaries @K. The inviscid fluxes dFi.uh/ are computed using a standard approx-
imate Riemann solver and the modification for our ALE formulation described in
[13]. For the viscous fluxes cFvh , Ouh, we use a formulation based on the Compact
DG (CDG) method [10]. At a boundary face, we impose either far field or no-slip
conditions weakly through the fluxes.

Using a standard finite element procedure, we obtain the semi-discrete form of
our equations:

M
d Nu
dt
D Nr. Nu/; (15)

for discrete solution vector Nu, mass matrix M, and residual function Nr. Nu/. We
integrate this system of ODEs in time using Diagonally Implicit Runge-Kutta
(DIRK) methods [1], where the solution is advanced from time tn to tnC1 by:

M Nki D Nr
0
@tn C ci�t; Nun C�t

sX
jD1

aij Nkj

1
A ; i D 1; : : : ; s (16)

NunC1 D Nun C�t
sX

jD1
bj Nkj: (17)
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We consider a variety of DIRK schemes, but in particular the 2- and 3-stage L-
stable schemes presented in [1]. Note that the implicit scheme requires inversion
of matrices of the form M � aii�tdNr=d Nu. This is accomplished by using a
preconditioned parallel Newton-Krylov solver, see [11] for details.

3.2 Computation of Gradients and Mesh Velocities

The ALE equations (7) require the mesh deformation gradient G, which is computed
as the gradient of the mesh position x. The rXg�1 term is computed as

rXg�1 D �1
g2
rXg D �1

g2
rX det G (18)

where the gradient of det G is computed component-wise using the formula

d det.G/
dXi

D det.G/ tr

�
G�1

dG
dXi

	
(19)

with dG=dXi computed numerically.
Next we consider the computation of the mesh velocity � D @x=@t. Depending

on the specifics of the problem there are a few different ways in which the mesh
velocities may be calculated. In the simplest case the mesh motion may be given
as an analytic function of time, in which case we may simply take the derivative
to compute the mesh velocity. For example, if the mesh position is given by an
interpolation of a deformation of the boundary using radial basis functions [3],
it is often natural to use the same interpolation process to interpolate boundary
deformation velocities into mesh velocities.

However, if only numerical values of the mesh position are available we must
resort to a numerical differentiation procedure to compute the mesh velocity. It is
desirable to use a definition which uses specific details of the time integrator used for
the time integration. We say a method of calculating mesh velocities is consistent
if, when integrated using the numerical method they recover the numerical mesh
positions. This was done in, for example, [9] for several explicit multistep and
Runge-Kutta methods. Here we show an extension of this idea to the case of
diagonally implicit Runge-Kutta methods.

Given the mesh position xi at stages i D 1; : : : ; s, we say the mesh velocities �i

at stages i D 1; : : : ; s are stage consistent if

xi D x0 C�t
sX

jD1
aij�j; i D 1; : : : ; s (20)

where x0 is the initial mesh position and aij are the Runge-Kutta coefficients.
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In the case when A is of full rank, i.e., a fully implicit Runge-Kutta or diagonally
implicit Runge-Kutta method, some algebraic manipulation allows us to write the
stage mesh velocity as a linear combination of the mesh positions

�i D
sX

jD1
.A�1/ij

xj � x0

�t
; i D 1; : : : ; s: (21)

For a diagonally implicit Runge-Kutta method A�1 is lower triangular so each
stage mesh velocity may be calculated using only mesh positions from that and
previous stages. This preserves an obvious time dependency relationship and may
be desirable, especially in cases when the stage mesh position is calculated on-the-
fly from current stage variables as in the case of a fluid-structure interaction problem
[5].

If the first stage of the Runge-Kutta scheme is explicit, say in an ESDIRK
method, the coefficient matrix A will not be invertible and thus a different approach
is required. In fact, it is clear that the stage mesh velocities �i are not even uniquely
defined in terms of the stage mesh positions xi. In this case it is natural to require
an initial mesh velocity �0. The first (explicit) stage mesh velocity �1 is set to this
value and mesh velocities at later stages are then uniquely given by Eq. (20). The
ESDIRK schemes we have considered all have the first same as last property, that
is, the final stage coefficients are the same as the weights, and so it is natural to use
the mesh velocity at the final stage �s of one timestep as the initial mesh velocity in
the following timestep.

4 Mesh Deformation

For the mesh deformation, we use a quasi-static hyperelastic neo-Hookean for-
mulation [7]. The deformation is given by a mapping x.X/ which maps a point
X in the unstretched reference configuration ˝ to its location x in the deformed
configuration. We differentiate x with respect to space to obtain the deformation
gradient tensor G as G D rXx.X/. The governing equations are then given by

�r � P.G/ D b in ˝; (22)

x D xD on � ; (23)

where P is the first Piola-Kirchhoff stress tensor and b is an external body force per
unit reference volume, which we typically assume is zero. On the boundary of the
domain � D @˝ we have assumed Dirichlet boundary conditions, i.e., specified
material positions xD.
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In this work we use a compressible neo-Hookean material model, with first Piola-
Kirchhoff stress tensor given by [7]

P.G/ D @W

@G
D �J�2=3

�
G � 1

3
tr.GGT/G�T

	
C �.J � 1/JG�T ; (24)

where the constants � and � are the shear and bulk modulus of the material. For
two-dimensional problems we use a plane strain formulation in which we treat the
stretching in the third dimension as constant.

To develop a finite element formulation for (22)–(23), we define the space of
continuous piecewise polynomials of degree p:

V p
h D

˚
v 2 ŒC0.˝/�3

ˇ̌
vjK 2 ŒPp.K/�

3 8K 2 Th
�
; (25)

where the domain ˝ is divided into elements Th D fKg, and Pp.K/ is the space
of polynomial functions of degree at most p � 1 on K. Furthermore, we define
the subspaces of functions in V p

h that satisfy the non-homogeneous as well as the
homogeneous Dirichlet boundary conditions:

V
p

h;D D
˚
v 2 V

p
h

ˇ̌
vj@V D xp

D

�
; (26)

V
p

h;0 D
˚
v 2 V

p
h

ˇ̌
vj@V D 0

�
: (27)

Here, xp
D is a suitable projection of xD onto the space of piecewise polynomials of

order p defined over @V . By multiplying (22) by an arbitrary test function z 2 V
p

h;0,
integrating over the domain V , and integrating by parts, we obtain our finite element
formulation: find xh 2 V

p
h;D such that for all z 2 V

p
h;0,

Z
V

P.G.xh// W rz dV D
Z

V
b � z dV: (28)

This system of equations is generated using standard finite element techniques.
Using nodal basis functions, the computed elemental residuals are assembled into a
global discrete system of equations Nr.Nx/ D 0. We solve this system using a standard
Newton method, which involves the Jacobian matrix K D @Nr=@Nx which is evaluated
for each element and assembled into a global matrix. The prescribed displacement
at the boundary nodes is imposed by elimination of the corresponding variables
from the system of equations. The linear systems that arise are solved using a
direct sparse solver. For problems with complex deformations, we use the simple
homotopy approach described in [12] to obtain global convergence.
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5 Results

5.1 Deformed Mesh Quality

As a test problem to demonstrate the quality of the nonlinear elasticity based mesh
deformation, we consider a square with a smaller square removed from the center:

˝ D Œ0:0; 1:0�2 n Œ0:4; 0:6�2: (29)

The domain is triangulated in a structured fashion using isoparametric elements of
polynomial degree 2. We fix the outer boundary of the domain and rotate the inner
boundary about the center, Œ0:5; 0:5�T , by an angle � . Clearly, for increasing � any
deformation strategy will eventually fail and produce invalid elements. However, for
moderate angles this is a good test case for comparing different methods.

We first perform the mesh deformation using the commonly used radial basis
function interpolation [3]. Here we seek an interpolant giving the deformed mesh
position x as function of the position X in the reference mesh, of the form

x.X/ D
nX

jD1
˛j�j.kX � Xjk2=rj/C p.X/ (30)

where Xj are a set of control points, �j radial basis functions, rj characteristic radii,
and p a linear polynomial. The coefficients ˛j and coefficients of the polynomial
p are found by imposing the value of x at the control points Xj, and additionally
requiring that the function preserves polynomial deformations of degree less than or
equal to the degree of p. We solve the resulting linear system using a direct solver.

There are many choices of radial basis functions, but on the recommendation of
[3] we use a C2 compactly supported function

�.r/ D
(
.1 � r/4.4rC 1/ if 0 � r � 1
0 if 1 � r:

(31)

with characteristic radius 1, which gave the best results for several different RBF
interpolants and radii examined. The resulting deformed mesh for rotations of
30ı, 60ı, 90ı, and 120ı are shown in Fig. 1 (top). Here we see that this mesh
deformation method does a very good job with the small deformation (30ı), but has
some difficulty with larger deformations. In particular, some elements have already
inverted (i.e., the determinant of the local Jacobian mapping is negative) by 90ı.

In addition one can easily show that a non-inverting deformation of a 180ı
rotation of the inner square is not possible using this technique for any choice of
radial basis function interpolant. To see this, recall that the deformed position of any
node depends linearly on the positions of the boundary nodes. Since a C180ı and
�180ı rotation of the inner square would lead to the same locations of the boundary
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Fig. 1 Mesh deformation using radial basis function interpolation (top) and using the quasi-static
nonlinear elasticity method (bottom)

nodes, the RBF interpolant is unable to distinguish between these two cases. In
particular, a curve connecting the left outer boundary to the left inner boundary
in the undeformed mesh would have to pass both under the square in the C180ı
rotation and under the square in the �180ı rotation, which is not possible.

In the bottom plots of Fig. 1 we repeat the same experiment, this time using
the nonlinear elasticity deformation method. Here we set � D 0:40 and a spatially
varying E according to

E.x/ D 1C 100

1C .d.x/=d0/2
(32)

where d0 D 0:05 and d.x/ D max f0:0;min .dist.x; �in/� d0; dist.x; �out/C 2d0/g.
Here, �in and �out are the inner and outer boundaries. This expression for E was
chosen to cause more deformation to occur in the intermediate region between the
inner and the outer boundaries, which is desirable. As the figure shows, the resulting
mesh still has not inverted, even at a rotation of 120ı, although the element quality
does become quite poor for the larger rotations. These results are significantly better
than what we could achieve even with the best possible parameters for the RBF
deformation.

Because the deformation equations are nonlinear, the system may exhibit
multiple solutions for a given configuration of the boundary. In particular, the zero
that we find is going to be dependent upon the initial approximation in the Newton
solver. In particular this means that we are in principle able to construct deformed
meshes corresponding to C180ı and �180ı rotations of the inner boundary using
essentially a homotopy of intermediate rotations.
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5.2 Convergence Test, Expanding Pressure Wave

To study the accuracy of the Arbitrary Lagrangian-Eulerian formulation, we
consider a case with a specified analytic mesh deformation and compare the spatial
convergence for several deformation strategies. As a non-trivial test problem, we
consider a viscous flow problem with a small Gaussian perturbation in the density
and the pressure of an otherwise constant state.

As the domain we choose ˝ D Œ0; 1�2 with far-field boundary conditions on the
left, bottom, and right walls and an adiabatic no-slip condition on the top wall. The
momentum is initialized as 
u D 0, and the spatially varying initial density and
pressure are 
 D 
1'.x/ and p D p1'.x/, respectively, where

'.x/ D 1C d0 exp.kx � x0k22=r20/ (33)

and the non-dimensionalized far-field density 
1 D 1. The far-field pressure p1 is
calculated using the non-dimensionalized sound speed a1 D 5. The perturbation
parameters where chosen as d0 D 0:1, r0 D 0:1, and x0 D Œ0:5; 0:7�T .

The fluid is modeled using the compressible Navier-Stokes equations (1)–(3),
with dynamic viscosity � D 1=1000. The background mesh was deformed using an
analytic mapping

x.X;Y; t/ D X C A sin.2�X/ sin.2�Y/ sin.2�ft/; (34)

y.X;Y; t/ D Y C A sin.2�X/ sin.2�Y/ sin.4�ft/; (35)

with amplitude A D 0:05 and frequency f D 20.
For the time-integration, we use an explicit RK4 scheme with a sufficiently

small �t so that the spatial errors are dominating. We integrate until a final time
of T D 1=20, which is one entire period of the mesh deformation so that the mesh
starts in an undeformed configuration at time t D 0 and returns to an undeformed
configuration at time t D T. This allows us to measure the accuracy of the ALE
mapping by comparing the numerical solution of the problem at t D T to one
obtained on a non-deforming mesh.

The domain˝ is discretized using a regular grid of triangles with element size h,
and we use polynomial degrees p D 1 through 5 within each element. Numerically
the mesh deformation is represented on each element using either a linear p D 1

representation or an isoparametric representation. A time series of the solution on
two meshes is shown in Fig. 2.

We observe that both deformation strategies are able to accurately capture the
radiating pressure wave. Notice that when we represent the mesh deformation using
p D 1 elements the resulting map x.X; t/ is piecewise linear and hence the ALE
formulation in Sect. 2 simplifies significantly as the deformation gradient G and
mapping determinant g are both constant. This also simplifies the calculation of
the viscous derivative as an entire term rX.g�1/ vanishes. However, a p D 1



High-Order DG on Deforming Domains 83

L
in
ea
r

Is
op

ar
am

et
ri
c

t = 0 t = T/ 3 t = 2T/3 t = T

Fig. 2 An expanding pressure wave on a deforming mesh using a linear deformation (top) and an
isoparametric deformation (bottom), for polynomial degrees p D 5. (Pressure)
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Fig. 3 Spatial convergence in the discrete maximum error at the final simulation time for an
expanding pressure wave for meshes of polynomial degree p D 1 to 5. The deformation is either
linear (P1) or isoparametric (Full P)

mesh deformation representation is likely not able to capture complicated boundary
motions as accurately as the isoparametric p D 5 representation.

The relative accuracy of using a p D 1 deformation instead of an isoparametric
can be discussed. We would expect the linear p D 1 mapping to produce slightly
better results because it introduces less variations in the solution fields. This intuition
is reflected in a numerical convergence plot which is shown in Fig. 3. Here we
measure the error in the solution at t D T in the discrete maximum norm for a
non-deforming fixed mesh, a p D 1 deformation, and an isoparametric deformation
(‘Full P’) for elements of order p D 1 through 5. In general we observe convergence
orders at the expected pC 1 rate for all the cases. For the lower p the difference in
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accuracy between the three methods is difficult to ascertain. However, for higher p
there is a notable difference in accuracy between the three methods, with the fixed
mesh being the most accurate and the isoparametric deformation being the least
accurate.

From this experiment we can generally recommend using a linear representation
of the mesh deformation if possible. If not, the isoparametric deformation gives
adequate results and is able to represent a much larger class of deformations. Mixed
approaches should be feasible and represent a possible compromise.

5.3 Flapping Wing Applications

As two final examples, we show how our methods have been successfully applied
to flapping flight problems. In Fig. 4, the simulation of a pair of flapping bat
wings is shown. A representative surface mesh frame was chosen for the reference
domain, and a high-quality tetrahedral mesh of the domain was generated (left plot).
This mesh was then deformed for each subsequent time frame using the nonlinear
elasticity approach (middle plot), and a preliminary simulation at a low Reynolds
number was performed (right plot).

The second example is from [16], where several energetically optimal flapping
wing designs were computed using a multi-fidelity approach. These designs were
simulated using the high-fidelity DG framework presented here. Figure 5 (top)
shows the mesh deformation, and the bottom plots show flow fields from a sample
design.

G(X, t)

Fig. 4 A large deformation example of the flapping flight of a bat. The reference mesh (left) is
deformed in time using the nonlinear elasticity approach which maintains the high-quality of the
elements (middle). The right plot shows a sample solution field
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Fig. 5 High-order simulation of energetically optimal flapping wings (from [16]). The figures
show a reference mesh, two deformed meshes, and some flow fields for a sample design
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Exploiting Superconvergence Through
Smoothness-Increasing Accuracy-Conserving
(SIAC) Filtering

Jennifer K. Ryan

Abstract There has been much work in the area of superconvergent error analysis
for finite element and discontinuous Galerkin (DG) methods. The property of
superconvergence leads to the question of how to exploit this information in
a useful manner, mainly through superconvergence extraction. There are many
methods used for superconvergence extraction such as projection, interpolation,
patch recovery and B-spline convolution filters. This last method falls under the
class of Smoothness-Increasing Accuracy-Conserving (SIAC) filters. It has the
advantage of improving both smoothness and accuracy of the approximation.
Specifically, for linear hyperbolic equations it can improve the order of accuracy
of a DG approximation from k C 1 to 2k C 1, where k is the highest degree
polynomial used in the approximation, and can increase the smoothness to k� 1. In
this article, we discuss the importance of overcoming the mathematical barriers in
making superconvergence extraction techniques useful for applications, specifically
focusing on SIAC filtering.

1 Introduction

Many numerical methods experience a phenomenon known as superconvergence.
Superconvergence is higher than theoretical predicted convergence:

j.u � uh/.�/j � ChrC� ;

where r is the expected convergence and � > 0 [22]. So-called “natural”
Superconvergence occurs when the function is evaluated at a point and compared
with the exact solution. We can create globally superconvergent solutions through
post-processing the approximation. In this article we focus on a specific post-
processing technique that uses B-spline convolution to obtain a superconvergent
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approximation. Specifically, we concentrate on SIAC filters, which have their roots
in work by Bramble and Schatz [2] and Cockburn, Luskin, Shu and Süli [6].

2 Motivation and Background

We frame our discussion in the context of a linear hyperbolic equation with smooth
initial data,

ut C
dX

iD1
Ai
@

@xi
uC A0u D 0; x 2 ˝ � Œ0;T�; (1)

u.x; 0/ D u0.x/; x 2 ˝: (2)

We also assume periodic boundary conditions for simplicity. For these types of
equations, the superconvergence property is straight-forward to prove in both the
pointwise setting and in terms of the negative-order norm.

2.1 Discontinuous Galerkin Methods

The important components that aid in creating a superconvergent approximation
from a discontinuous Galerkin solution are that

1. The approximation space consists of piecewise polynomials of degree � k W

Vk
h D fv 2 L2.˝/ W v 2 P

k.�e/; j D 1; : : : ;Ng (3)

where �e are the elements in the associated mesh and ˝ D [e�e:

2. The variational formulation of the discontinuous Galerkin scheme:

Z
�e

.uh/tvh.x/ dx �
dX

iD1

Z
�e

Aiuh.x; t/.vh/xi.x/ dxC
Z
�e

A0uh.x; t/vh dx

C
dX

iD1

Z
@�e

bAiuh Oni vh; ds D 0

3. The weak continuity at the element interfaces that are enforced through the
choice of the fluxes in the discontinuous Galerkin scheme.

The reader is advised to consult [5] for a more detailed discussion of the discontin-
uous Galerkin method.
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2.2 Error Estimates: Convergence and Superconvergence

Assuming the initial condition is regular enough, the errors in L2 for the DG
approximation are given by

ku � uhk0 � C hkC1ju0jHkC2 (4)

[5]. However, Adjerid et al. noted that the approximation has the property of
pointwise superconvergence [1]. That is, the local error at the“outflow” edge
converges at twice the usual convergence rate,

.u� uh/.x
�
jC1=2/ D ˛kC1

.�a/kC1kŠ
2kC 1 h2kC2 C O.h2kC3/ (5)

for linear equations such as u0 � au D 0: This occurs at the roots of the right Radau
polynomial.

3 Extracting Superconvergence

We would like to turn the local superconvergence property into a globally super-
convergent solution. There are many different options for this to be accomplished.
A few are to interpolate using superconvergent fluxes [4, 15], elementwise post-
processing [3], or convolution kernel post-processing [2, 6]. We focus on the latter,
specifically the Smoothness-Increasing Accuracy-Conserving filter [10, 18, 21].
This last technique allows for global superconvergence and smoothness.

3.1 Smoothness-Increasing Accuracy-Conserving (SIAC)
Filtering

The SIAC filter has its roots in an accuracy-enhancing post-processor. Motivated
by the work of Mock and Lax [14], Bramble and Schatz introduced a central B-
spline kernel to post-process finite element approximations to elliptic equations [2].
This was also explored from a Fourier perspective and for derivative filtering by
Thomeé [20]. Cockburn, Luskin, Shu and Süli then extended it to discontinuous
Galerkin approximations to linear hyperbolic equations [6]. It was further extended
to a broader class of problems in [7, 8, 11].

The basic idea of the original post-processor, u�.x/, is to convolve the numerical
approximation with a B-spline kernel,

u�.x/ D .K2.kC1/;kC1
H � uh.�;T//.x/: (6)



90 J.K. Ryan

This allows us to achieve u� uh 
 O.h2kC1/ in L2 as shown in [6]. A more general
form of the B-spline kernel, K2.kC1/;kC1

H .x/; will be discussed in Sect. 3.2.
The post-processor is useful for removing the highly oscillatory errors in the

discontinuous Galerkin approximation. The result is a solution that has increased
smoothness and accuracy.

3.2 The SIAC Kernel

The SIAC kernel is a more general form of the B-spline kernel above. It is a linear
combination of suitably scaled B-spline translates,

K.rC1;`/
H .x/ D 1

H

rX
�D0

c.rC1;`/�  .`/

 x

H
� x�

�
; (7)

where r C 1 is the number of B-splines in the kernel and ` is the order of the
B-splines. In (7), c� are weights of the B-splines,  .`/.x/; and are determined by
reproducing polynomials of degree less than or equal to r: For the original kernel
r D 2k; ` D k C 1 and x� D �k C � as given in (6). In the more general SIAC
filter, x� depends on the point being evaluated and we have more flexibility both in
the number of B-splines and order of the B-splines.

Central B-splines are defined as  .1/ D �Œ� 1
2 ;
1
2 �
;  .`/ D  .`�1/ � �Œ� 1

2 ;
1
2 �
; ` �

2: Here, � is equal to one on Œ� 1
2
; 1
2
� and otherwise is zero. The central B-splines

that form the post-processed solution are chosen because of their compact support
of suppf .`/g D Œ� `

2
; `
2
�: Further, they are easy to compute through a recurrence

relation. Lastly, there is a natural relation between their derivatives and divided
differences: D˛ .`/ D @˛H 

.`�˛/: In Fig. 1 a plot of the B-splines making up the
convolution kernel as well as the convolution kernel is shown for k D 2:

Fig. 1 Dashed lines: the B-splines,  .3/.xC k� �/; � D 0; : : : ; 4 used in the k D 2 kernel. Solid
line: the kernel, K5;3

H .x/ for k D 2
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The convolution coefficients that weigh the B-spline translates are found by using
the property of polynomial reproduction.

As an example, we give the original symmetric B-spline kernel for the second
order approximation, k D 1: The kernel coefficients are found by using K4;2

h �p D p
for p D 1; x; x2: This creates the kernel

K4;2.x/ D �1
12
 .2/.x � 1/C 7

6
 .2/.x/� 1

12
 .2/.xC 1/: (8)

To summarise, the convolution kernel is designed to extract higher order accuracy
through polynomial reproduction. It induces smoothness of C`�2 through the
convolution with the B-splines and uses a local stencil of size .r C `/H: The
kernel is a polynomial of degree ` � 1; making the post-processed solution
a polynomial of degree ` C k: It has theoretical and numerical convergence of
O.hs/; s D minfr C 1; 2k C 1g in both L2- and L1-norms for linear hyperbolic
equations over uniform meshes.

3.3 Implementing the Post-Processor

Assuming the one-dimensional discontinuous Galerkin approximation can be writ-
ten as

uh.x; t/ D
kX

nD0
u.n/e .t/�

.n/
e .x/; x 2 �e; (9)

where �.n/e .x/ are the basis functions for the DG approximation. Using this modal
form of the DG approximation, the post-processed solution can be written as

u�.x/ D
p0X

jD�p0

kX
nD0

C.j; n; k; x/ u.n/eCj (10)

where p0 D d rC`
2
e and

C.j; n; k; x/ D 1

h

rX
�D0

crC1;`
�

Z
IeCj

 .`/

y � x

h
� �

�
�
.n/
eCj.y/ dy

„ ƒ‚ …
2P`Ck

: (11)
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The multi-dimensional kernel is a tensor product of the one-dimensional kernel.
For example, in two-dimensions,

KH.x; y/ D 1

HxHy

rX
�xD0

rX
�yD0

crC1;`
�x

crC1;`
�y

 .`/
�

x

Hx
� x�x

	
 .`/

�
y

Hy
� y�y

	
:

(12)

It is expected that the kernel can be applied to Q
k-polynomial approximations, but

it is also effective for Pk-polynomial approximations.

3.4 Convergence of the SIAC Filtered Solution

Let u�h .x;T/ D KH � uh be the post-processed DG approximation at the final time.
Then the errors for the post-processed solution are given by

ku � u�h .x;T/k0;˝ � ku � u�k0;˝„ ƒ‚ …
Exact filtered

Ck.u � uh/
�k0;˝„ ƒ‚ …

DG errors

: (13)

The estimate for the first term comes about from the ability of the kernel to
reproduce polynomials of degree r: Then, using a Taylor expansion we obtain ku �
Kh � uk˝ � ChrC1 [6, 9]. The second term can be bounded by the negative-order
norm [2, 6]. If we can show the negative-order norm is of higher order, then we can
demonstrate superconvergence of the filtered solution.

In Fig. 2 a comparison of the convergence rates and errors between the discon-
tinuous Galerkin approximation and the SIAC filtered approximation is given. If

Fig. 2 A comparison of the
convergence rates and errors
between the discontinuous
Galerkin approximation and
the SIAC filtered DG
approximation

k=1 DG
k=1 SIAC DG
k=2 DG
k=2 SIAC DG
k=3 DG
k=3 SIAC DG

Number of Elements

Convergence in L2

10110–12

10–10

10–8

10–6

10–4
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100

102 103
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we consider the k D 1 filtered approximation and compare it with the k D 2 DG
approximation, we can see that although they have the same convergence rate, the
errors for the k D 2 approximation are better.

3.5 Applications

Currently, the applications of SIAC filtering include extracting accuracy out of
existing code [18] and visualization filtering [19]. However, there is promising
relations to image processing [13, 23] as well as potential in LES filtering [7, 8].

3.6 Interesting Challenges

The challenge in making SIAC filtering applicable to broader areas of applications
include: A negative-order norm estimate that depends upon the PDE, the ability to
extract derivative information, filtering near a boundary, and most importantly mesh
geometry. In the following sections we discuss the challenges in extending SIAC
filtering to a range of applications.

4 The Error Estimate

Recall that in Eq. (13) the SIAC filtered error estimate is controlled by our ability to
prove superconvergence in the negative-order norm, where the negative-order norm
is given by

k@˛H.u � uh/k�.kC1/;˝ D sup
�2C1

0 .˝/

.@˛H.u � uh/; �/˝

k�kkC1;˝
� C h2kC1 ku0kkC1;D˝1

(14)
if H D h [6].

For the negative-order norm, we actually only need to consider the numerator
in Eq. (14). In general, the estimate depends on defining a suitable dual equation
and we are able to prove ku � u�hk � Ch2kCm. Details of the existing estimates for
various equations are provided in Table 1.
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Table 1 SIAC Filter error estimates for various types of equations

m s D 2kC m Equation

2 2kC 2 Elliptic (FEM) [2]

1 2kC 1 Linear Hyperbolic (DG) [6]

1 � m � 2 2kC 1 � s � 2kC 2 Convection-diffusion (DG) [7]

1 2kC 1 Variable-Coefficient Hyperbolic (DG) [11]

0; 1
2
; 2 2k � s � 2kC 2 Nonlinear hyperbolic (DG) [8]

5 Derivative SIAC Filtering

Another interesting aspect of SIAC filtering is that it allows us to create a super-
convergent approximation to derivatives. In general, the approximation obtained
via a DG method will give k@˛.u � uh/k � ChkC1�˛ for the derivatives. This
makes it impossible to obtain a good second order derivative approximation
for k D 1: However, using SIAC filtering makes it possible to obtain higher
order derivatives even for a piecewise linear approximation. In order to obtain a
superconvergent derivative approximation, there are two options: accept a reduction
in order of accuracy by taking the derivative of the filtered solution, or forming a
kernel that uses higher-order B-splines whose errors do not reduce in order with
differentiation. Each method has its advantages and disadvantages and both will
give a superconvergent derivative approximation.

In the first method, we compute the derivative of the SIAC filtered solution
directly. This gives

d˛

dx˛



KrC1;`

h � uh.�;T/
�
.x/ D d˛

dx˛

�
1

H

Z
R

K.rC1;`/
H


x � y

h

�
uh.y; t/ dy

	
: (15)

Recall that the post-processed approximation induces smoothness of C`�2 and is
up to 2k C 1th-order accurate. If we calculate the derivative of the post-processing
polynomial directly we would then have 
 O.hminf2kC2;rC2g�˛/; for ˛ � ` � 1,
which would give a reduced order of accuracy with each successive derivative.
Further, the oscillations in the error increase [18]. This method may be more
advantageous if only a first or second derivative is needed.

There is an alternative that allows us to obtain the same superconvergent
approximation to the derivatives. That is, we can obtain a 2k C 1 order accuracy
approximation to the ˛th-derivative using higher order splines in our kernel [16, 20].
This gives a derivative approximation whose order or convergence is independent
of ˛. The derivative kernel is defined as

KrC1;˛;`
H .x/ D 1

H

rX
�D0

drC1;˛;`
�  .`C˛/


 x

H
� x�

�
: (16)
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The difference to the kernel in Equation (7) is that it uses smoother B-splines. Note
that smoother B-splines give an increased support size. Further, computing the ˛th
derivative only requires computing the convolution of translations of the B-spline
 .`/ with uh: This allows us to obtain the error estimate:

Theorem 1 (Ryan and Cockburn [16]) Let uh be the approximate solution given
by the DG method for the model problem ut C .au/x D 0; .x; t/ 2 R � .0;T/.
Assume that the initial data uo is very smooth. Then

���� d˛

dx˛
u.x;T/� d˛

dx˛



KrC1;˛;`

h � uh.�;T/
�
.x/:

����
0;˝0

� C hs;

where s D minfrC 1; 2kC 1g and C depends upon the smoothness of the solution.

In Fig. 3 and Table 2, we can see how these two methods of obtaining a derivative
approximation compare by considering a variable coefficient equation taken from
[16]. If we take the derivative of the SIAC filtered approximation, we can still obtain
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Fig. 3 Pointwise errors in log scale for the second derivatives for the DG approximation together
with the SIAC filtered solutions. (a) @2.u� uh/. (b) @2.u� Kh � uh/. (c) @2.u� QKh � uh/

Table 2 L2-errors and orders the first and second derivatives for the DG approximation together
with the SIAC filtered solutions

P
2

N @˛x uh @˛x .K � uh/ QK � @˛h uh

L2 error Order L2 error Order L2 error Order

1st derivatives

40 8.7240E�04 – 5.5069E�08 – 2.4411E�06 –

60 3.8775E�04 2.00 6.9067E�08 5.12 3.2245E�06 4.99

80 2.1811E�04 2.00 1.6903E�09 5.03 7.6554E�08 4.99

100 1.3959E�04 2.00 5.8972E�09 4.72 2.5074E�09 5.00

2nd derivatives

40 3.3923E�02 – 3.2544E�07 – 1.4294E�07 –

60 2.2619E�02 1.00 6.1855E�08 4.10 1.7735E�08 5.15

80 1.6966E�02 1.00 1.9310E�08 4.05 4.2872E�09 4.94

100 1.3573E�02 1.00 7.8612E�09 4.03 1.4798E�09 4.77
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2kC1 order accuracy for the first derivative, but each successive derivative looses an
order. However, if we use smooth B-splines of higher order, we can maintain 2kC1
order accuracy for higher derivatives as well.

6 Filtering Near a Boundary

The next question that would be useful to answer is how to filter near a boundary or
discontinuity. This requires modifying the filter [17, 21]. To do so, we first use B-
splines that depend continuously on the evaluation point through the shift function
�.Nx/:

x� D � r

2
C � C �.x/; �.x/ D

8<
:

min
n
0;� rC`

2
C Nx�xL� �h2

h

o
; x 2 ŒxL;

xLCxR
2
�;

max
n
0; rC`

2
C Nx�xRC �h

2

h

o
; x 2 . xLCxR

2
; xR�;

(17)

where the one-dimensional domain is defined as ˝ D ŒxL; xR�:

The accuracy is improved by using extra B-splines near a boundary so that the
post-processed solution is

u�h .Nx/ D �.Nx/ u�h;2kC1.Nx/„ ƒ‚ …
filtering with 2kC 1 B-splines

C.1 � �.Nx// u�h;4kC1.Nx/:„ ƒ‚ …
filtering with 4kC 1 B-splines„ ƒ‚ …

smooth convex combination

(18)

In this example, � is chosen such that �.Nx/ D 1 in the interior (giving the symmetric
filter); �.Nx/ D 0 near the boundary (to obtain extra accuracy from extra B-splines);
� is smooth in the transition regions between symmetric and boundary filtering.

As an example, we consider the linear equation ut C ux D 0 with Dirichlet
boundary conditions. Plots of the errors are given in Fig. 4 and errors are given
in Table 3. We can see from these that we have an improved convergence rate as
well as reduction in errors. This occurs even near the boundary and for non-periodic
boundary conditions.

Adapting the kernel to handle filtering near boundaries allows us to obtain the
following L1-error estimate:

Theorem 2 (Ji et al. [9]) Let uh be a DG approximation to an exact solution u for a
linear hyperbolic equation. Construct u�h by applying the position-dependent SIAC
filter to uh, k � 1. Then,

ku � u�hk1;˝ � Cku0k2kC3CŒd=2�;˝hs;
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Fig. 4 Pointwise errors in log scale for before and after post-processing for a linear hyperbolic
equation with Dirichlet boundary conditions. A comparison of using 2kC1 (middle) versus 4kC1
(right) central B-splines when near a boundary. (a) DG errors. (b) SIAC DG (2k C 1). (c) SIAC
DG (4kC 1)

Table 3 L2-errors and order for before and after post-processing for a linear hyperbolic equation
with Dirichlet boundary conditions. A comparison of using 2kC1 (middle column) versus 4kC1
(right column) central B-splines when near a boundary

Before After (2kC 1) After (4kC 1)

Mesh L2-error Order L2-error Order L2-error Order

P
2

20 2.681e�04 – 4.003e�03 – 6.984e�06 –

40 3.352e�05 3.00 2.108e�04 4.25 1.850e�07 5.24

80 4.190e�06 3.00 5.464e�06 5.27 4.798e�09 5.27

160 5.238e�07 3.00 1.254e�07 5.45 1.498e�10 5.00

P
3

20 5.176e�06 – 1.304e�04 – 3.751e�07 –

40 3.236e�07 4.00 4.712e�06 4.79 6.396e�10 9.20

80 2.023e�08 4.00 3.406e�08 7.11 2.867e�12 7.80

160 1.264e�09 4.00 1.999e�10 7.41 3.079e�14 6.54

and

ku � u�hk0;˝ � Cku0k2kC2;˝h2kC1;

where s D minf2kC 1; 2kC 2� d
2
g and C is a constant, dependent on the L1-norm

of the kernel coefficients but independent of the mesh.

However, there are still limitations to overcome. For example, using extra B-
splines at the boundaries is good for lower-order approximations, but not for higher-
order approximations due to the excessive support size and increased condition
number of the matrices involved. Further, the added support does not aid in creating
a better approximation for non-uniform meshes.



98 J.K. Ryan

7 Mesh Geometry

Until now, the assumptions on the applicability of the SIAC filter have required a
uniform mesh. A logical question to then ask is whether it can work for nonuniform
meshes. The challenges that are incurred when attempting to extend the SIAC filter
to a nonuniform mesh is that it requires O.h2kC1/ convergence in the negative-
order norm for both the approximation as well as the divided difference of the
approximation. This requires defining a suitable dual equation and a DG scheme
for the divided differences. If the mesh is translation invariant, it is easy to show
appropriate convergence for the divided differences [10]. However, let us investigate
further the actual requirements of the scaling parameter.

Recall that our error estimate is ku � KH � uhk˝ � CH2kC1; where H is the
kernel scaling parameter. The translation invariance property requires that T`Hv.x/ D
v.xCH`/: Thus the mesh is translation invariant for a scaling of mH; m 2 Z as well.
This is illustrated in Fig. 5. In this figure, a kernel scaling of H D mh is used for
the convolution kernel in the SIAC filter for a discontinuous Galerkin approximation
over a uniform mesh designated by h:We can see that error reduction actually occurs
even when H < h: Superconvergent order starts to occur around H D h and errors
start to increase for H > h: The sweetspot of reduced errors and superconvergence
seems to occur around H D h:

Although the typical meshes tested involve some type of translation invariance,
the SIAC filter has also been tested over unstructured triangular meshes with
promising results [10, 12]. For example Fig. 6 shows the difference in the pointwise
errors for the DG approximation versus the SIAC filtered DG approximation. The
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Fig. 6 Typical pointwise error plots for SIAC filtering over a Delaunay Mesh with element
splitting. (a) DG errors. (b) SIAC filtered errors

Table 4 Typical errors for SIAC filtering over a Delaunay Mesh with element splitting

m D 0:5 mD 1 m D 2

Mesh L2-error Order L2-error Order L2-error Order

P
2

776 7.08E�05 – 1.25E�04 – x –

3104 7.84E�06 3.17 6.45E�06 4.27 x –

12,416 8.24E�07 3.25 5.02E�07 3.68 1.98E�06 –

49,664 1.09E�07 2.20 5.97E�08 3.07 8.11E�08 4.60

P
3

776 9.88E�07 – 8.52E�06 – x –

3104 2.71E�08 5.18 1.30E�07 6.03 x –

12,416 3.28E�09 6.02 1.99E�09 6.02 4.58E�08 –

49,664 2.34E�10 3.80 5.85E�11 5.08 6.20E�10 6.20

L2-errors are given in Table 4. Figure 7 displays the effect of different scalings,
when h is taken to be the longest element edge and the kernel is scaled by H D mh:
Clearly, one can achieve error reduction.

With SIAC filtering we can usually improve the DG convergence rate from order
kC1 to order 2kC1 but we have to be careful with kernel scaling [10]. Table 5 gives
a list of some of the meshes that SIAC filtering has been tested over and whether
reduced errors, improved order or increased smoothness occurs.
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Fig. 7 The effect of the kernel scaling for SIAC filtering over a Delaunay Mesh with element
splitting. (a) P2-polynomials. (b) P3-polynomials

Table 5 Some typical meshes over which SIAC filtering has been tested. Listed is the mesh type
along with whether SIAC filtering will aid in error reduction, improved convergence order or
increasing the smoothness of the solution

Mesh type Reduced errors Improved order Increased smoothness

Uniform quadrilateral X X X
Variable cross quadrilateral X X X
Uniform structured triangle X X X
Structured variable triangle X X X
Delaunay mesh X ? ?

8 Summary

We can make superconvergence useful through accuracy extraction techniques.
SIAC filtering is one technique that uses a B-spline convolution kernel that induces
smoothness on the DG field and enhances accuracy. In general, we can obtain order
improvement from O.hkC1/ to O.hs/ where s D minfr C 1; 2k C 1g: However, the
expected order improvement relies on higher-order estimates in the negative-order
norm for the approximation as well as the divided differences. Once we are able
to prove these estimates we can concentrate on other issues in SIAC filtering such
as modifying the filter for higher-order derivative information or boundary filtering.
For the scaling of the kernel, we must exploit information about the mesh geometry
in order to have a reduction in the errors.
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Computational Comparison of Continuous
and Discontinuous Galerkin Time-Stepping
Methods for Nonlinear Initial Value Problems

Bärbel Janssen and Thomas P. Wihler

Abstract This article centers on the computational performance of the continuous
and discontinuous Galerkin time stepping schemes for general first-order initial
value problems in R

n, with continuous nonlinearities. We briefly review a recent
existence result for discrete solutions from Janssen and Wihler (Existence results
for the continuous and discontinuous Galerkin time stepping methods for nonlinear
initial value problems, 2014, Submitted), and provide a numerical comparison of
the two time discretization methods.

1 Introduction

In this paper we focus on (possibly high-order) continuous and discontinuous
Galerkin (cG and dG, respectively) time stepping discretizations as applied to initial
value problems of the form

u0.t/ D F .t; u.t//; t 2 .0;T/; (1)

u.0/ D u0: (2)

Here, u W .0;T/ ! R
n, for some n 2 N and T > 0, is an unknown solution.

The initial vector u0 2 R
n prescribes the solution u at the start-up time t D 0,

and F W Œ0;T� � R
n ! R

n is a possibly nonlinear, continuous operator. We will
usually omit to explicitly write the dependence on the first argument t.

Galerkin-type time stepping methods for initial-value problems are based on
weak formulations. For both the cG and the dG schemes, the test spaces constitute
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of polynomials that are discontinuous at the time nodes. In this way, the discrete
Galerkin formulations decouple into local problems on each time step, and the
discretizations can hence be understood as implicit one-step schemes. Galerkin time
stepping methods have been analyzed for ordinary differential equations (ODEs),
e.g., in [2–5, 7, 10, 13].

In the current article, we will start by reviewing the definitions of the cG and dG
schemes of arbitrary order in Sect. 2. Furthermore, we will recall the recent work [6]
which shows that the existence of discrete cG and dG solutions for continuous
nonlinearities is independent of the approximation order and only requires the
local time steps to be sufficiently small (and thereby generalizes the previous
works [10, 13], where Lipschitz continuous nonlinearities where considered). The
focus of this work is to provide a computational comparison of the two schemes in
Sect. 4.

Throughout the paper, we shall use the following notation: For an interval I D
.a; b/, a < b, the space C0.I/ consists of all functions u W I ! R

n that are continuous
on I. Moreover, introducing, for 1 � p <1, the norm

kukL p.I/ D
�Z

I
ju.t/jp dt

	1=p

;

and, for p D 1, the norm kukL1.I/ D ess supt2Iju.t/j, we write L p.I/ to signify
the space of measurable functions u W I ! R

n so that the corresponding norm is
bounded. We note that L2.I/ is a Hilbert space with the inner product

.u; v/L2.I/ D
Z

I
.u.t/; v.t// dt:

Here, .�; �/ and j � j denote the standard dot product and Euclidean norm in R
n,

respectively.

2 Galerkin Time Stepping

On an interval I D Œ0;T�, consider time nodes 0 D t0 < t1 < � � � < tM�1 < tM D T
which introduce a time partition M D fImgMmD1 of I into M open time intervals Im D
.tm�1; tm/, m D 1; : : : ;M. The length km D tm � tm�1 of a time interval (which
may vary locally) is called the mth time step. Furthermore, we let r � 0 to be a
(global) polynomial degree, which takes the role of an approximation order. Then,
given s 2 N0, the set

P s.J/ D
(

p 2 C0.NJ/ W p.t/ D
sX

iD0
xit

i; xi 2 R
n

)
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signifies the space of all polynomials of degree at most s on an interval J � R with
values in R

n.
The cG(rC 1) and dG(r) time marching methods on M will seek solutions that

locally belong to the spaces P rC1.Im/ andP r.Im/, respectively. We emphasize that,
for both schemes, the local test space is P r.Im/.

2.1 The cG Method

With the notation above, the cG(rC 1) time marching scheme is iteratively given as
follows: For a prescribed initial vector Um�1 WD UjIm�1 .tm�1/ 2 R

n (with U0 WD u0,
where u0 2 R

n is the initial vector from (2)), we find UjIm 2P rC1.Im/ through the
weak formulation

Z
Im

.U0;V/ dt D
Z

Im

.F .U/;V/ dt 8V 2P r.Im/;

U.tm�1/ D Um�1;
(3)

for any 1 � m � M. Notice that, in order to enforce the initial condition on
each individual time step (and thereby to obtain a globally continuous solution U
on .0;T/), the local trial space possesses one degree of freedom more than the local
test space.

Introducing the (local) L2-projection˘ r
m W L2.Im/!P r.Im/ onto P r.Im/ given

by

Z
Im

.v �˘ r
mv;w/ dt D 0 8w 2P r.Im/;

the following result is quite elementary to deduce:

Proposition 1 A function U 2 P rC1.Im/ is a solution of (3) if and only if U
satisfies the fixed point equation

U.t/ D Um�1 C
Z t

tm�1

˘ r
mF .U/ d�; (4)

for any t 2 Im.

2.2 The dG Method

In order to define the discontinuous Galerkin scheme, some additional notation is
required: We define the one-sided limits of a piecewise continuous function U at
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each time node tm by

UCm :D lim
s&0

U.tm C s/; U�m :D lim
s%0

U.tm C s/:

Then, the discontinuity jump of U at tm, for 0 � m � M � 1, is defined by ŒŒU��m D
UCm �U�m ; for m D 0 we set U�0 D u0, where u0 is the initial vector from (2).

With these definitions the dG(r) time stepping method for (1)–(2) reads: Find
UjIm 2P r.Im/ such that

Z
Im

.U0;V/ dtC .ŒŒU��m�1;VCm�1/ D
Z

Im

.F .U/;V/ dt 8V 2P r.Im/; (5)

for any 1 � m � M. We underline that, in contrast to the continuous Galerkin
formulation, the local trial and test spaces are the same for the discontinuous
Galerkin scheme. This is due to the fact that the initial values are weakly imposed
(by means of an upwind flux) on each time interval.

In order to derive a fixed-point formulation for the dG scheme as in (4), we
revisit [11, Sect. 4.1] to define a lifting operator, for 1 � m � M,

Lr
m W Rn !P r.Im/;

by

Z
Im

.Lr
m.z/;V/ dt D .z;VCm�1/ 8V 2P r.Im/; z 2 R

n:

Then, looking at the discrete derivative operator

� W P r.Im/!P r.Im/; U 7! �.U/ D U0 C Lr
m.U

C
m�1/; (6)

we recall the following result from [6].

Proposition 2 The operator � from (6) is an isomorphism, and satisfies the bound,
for any p 2 Œ1;1�,

k��1.U/kL1.Im/ � 2k1�1=p
m kUkL p.Im/ 8U 2P r.Im/:

Moreover, a function U 2 P r.Im/ is a solution of (5) if and only if the fixed point
equation

U D U�m�1 C ��1
�
˘ r

mF .U/
�

(7)

is fulfilled.



Comparison of Galerkin Time-Stepping Methods 107

Remark 1 We note that the discrete operator � from (6) is closely related to the
(parabolic) reconstruction operator as discussed in, e.g., [8].

3 Existence of Discrete Galerkin Solutions

The well-known Peano Theorem (see, e.g., [12]) guarantees the existence of C1-
solutions u of (1)–(2) within some limited time range, t 2 .0;T?/, for some T? > 0.
Notice that the existence interval for solutions may be arbitrarily small even for
smooth F : For instance, the initial value problem (1)–(2) may exhibit solutions that
may become unbounded in finite time; to give an example, let us consider the initial
value problem of finding a R-valued function u which satisfies

u0.t/ D ju.t/jˇ�1u.t/; u.0/ D 1; (8)

for a given constant ˇ > 1. It is elementary to check that

u.t/ D .1 � .ˇ � 1/t/ 1
1�ˇ

is a solution of (8), and we see that there appears a blow-up as t% T? WD 1
ˇ�1 .

Based on the fixed point equations (4) and (7) for the cG and dG schemes,
respectively, it is possible to prove the ensuing existence result for solutions, see [6]:

Theorem 1 Let 1 � m � M, and suppose that, for some �m > 0,

K�m
m WD sup

.t;y/2Im�B�m

jF .t; y/j <1;

where B�m D
˚
y 2 R

n W jy � U�m�1j � �m
�
. Then, if the local time step is chosen

such that

km � �m

CexK�m
m
; (9)

where

Cex D
(
1 for the cG(rC 1) scheme;

2 for the dG(r) scheme;
(10)

then the cG(r C 1) and dG(r) methods from (3) and (5), respectively, on the time
interval Im each possess at least one solution in M�m

m WD fY 2 P rC2�Cex.Im/ W
Y.t/ 2 B�m 8t 2 Img. In particular, the existence of discrete Galerkin solutions is
independent of the polynomial degree r.
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Remark 2 We note that Theorem 1 still holds true for varying polynomial degrees
on each time interval.

4 Numerical Experiments

We will now compare the cG and dG discretizations by means of a few numerical
tests. Specifically, we consider the initial value problem (8) for the linear case
ˇ D 1,

u0.t/ D u.t/; t � 0; u.0/ D 1;

as well as for the nonlinear case ˇ D 2,

u0.t/ D u.t/2; t � 0; u.0/ D 1:

The former problem has an analytic exact solution which is given by u.t/ D exp.t/.
For ˇ D 2, the exact solution is u.t/ D .1 � t/�1, and features a blow-up as t% 1.

The time meshes in our computations are based on the existence criterion from
Theorem 1, i.e., the individual time steps are chosen according to (9) (independently
of the polynomial degree r). For ˇ D 1 and some �m > 0 there holds that

K�m
m D sup

jy�U�
m�1j��m

jyj D �m C jU�m�1j:

Hence, for km in (9) we obtain

km � �m

Cex.�m C jU�m�1j/
! C�1ex ;

as �m !1, where Cex is the constant from (10). In our experiments we shall choose

km D 1

2Cex
.ˇ D 1/:

For ˇ D 2, it has been shown in [6] that the maximal possible time step according
to (9) is given by

km D 1

4CexjU�m�1j
.ˇ D 2/:

Here, Cex is again the constant from (10). Incidentally, while the time steps for ˇ D
1 are chosen to be of constant size, the time mesh for ˇ D 2 turns out to be
geometrically refined towards the blow-up point at T D 1.
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In order to deal with the nonlinearities, the Newton method will be applied. We
note that, for ˇ D 2 close to the blow-up, the Newton iterations may deteriorate
or take a long time to converge. If the Newton method fails to converge, we simply
stop the time iteration.

In Figs. 1, 2, 3, and 4 we compare the performance of the dG(r) and the cG(rC1)
time stepping methods as applied to our model problem (8); note that, for given r �
0, these methods feature the same number of degrees of freedom on each time step
(as they are both based on the same test spaces). In each of the figures below we
display the ratio of the cG(rC1) and dG(r) errors for different error types, including
the accumulated L2 errors, the L1 errors, and the nodal end time errors, for different
problem parameters. More precisely, we use the following notation:

• Accumulated L2 error:

ku � UcGkL2.0;tm/

ku �UdGkL2.0;tm/
; m � 1I

• L1 error:

ku � UcGkL1.0;tm/

ku � UdGkL1.0;tm/
; m � 1I

• Nodal end time error:

ju.tm/ �UcG
m j

ju.tm/� .UdG/�m j
; m � 1:

Here, u is the exact solution of (8) (for ˇ 2 f1; 2g), and UcG and UdG denote the
corresponding cG(rC 1) and dG(r) solutions defined by (3) and (5), respectively. In
our experiments we perform tests for both Cex D 1 (existence for the cG method)
and Cex D 2 (existence for the dG method) for both schemes; cf. (10).

Discussion of the Results

In terms of the L2 and L1 errors in the low-order context, the cG method seems to
perform better than the dG scheme in both the smooth (ˇ D 1) as well as in the
blow-up (ˇ D 2) case. For ˇ D 1, however, the ratios tend to a limit just below 1
for increasing polynomial degrees r. This behavior is similar for ˇ D 2 (away from
the blow-up time T D 1), although here we observe that the ratios seem to stabilize
slightly above 1 for higher r.

For the ratios of the nodal end time errors, we only show results for polynomial
degrees r D 0; 1; 2; 3, and for ˇ D 1; indeed, for higher polynomial degrees
(and ˇ D 2 away from the blow-up) the nodal end time errors become quickly
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Fig. 3 Error ratios for ˇ D 2 (blow-up solution) and Cex D 1

close to machine precision due to well-known super convergence effects at nodes
in Galerkin time stepping discretizations. We observe that the cG method performs
again better than the dG method; for increasing polynomial degree, the dominance
of the cG scheme over the dG scheme becomes even more pronounced. This
behavior is not surprising since the super convergence regime of the cG scheme
for smooth solutions is (at least theoretically) superior to the dG method (see the
papers [1, 9] for related super convergence results for Galerkin methods).

In conclusion, both discretization schemes perform similarly in the high-order
context, whereas the cG method seems a little more favorable in the low-order
setting for the examples considered here.
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Recovering Piecewise Smooth Functions
from Nonuniform Fourier Measurements

Ben Adcock, Milana Gataric, and Anders C. Hansen

Abstract In this paper, we consider the problem of reconstructing piecewise
smooth functions to high accuracy from nonuniform samples of their Fourier
transform. We use the framework of nonuniform generalized sampling (NUGS) to
do this, and to ensure high accuracy we employ reconstruction spaces consisting of
splines or (piecewise) polynomials. We analyze the relation between the dimension
of the reconstruction space and the bandwidth of the nonuniform samples, and show
that it is linear for splines and piecewise polynomials of fixed degree, and quadratic
for piecewise polynomials of varying degree.

1 Introduction

In a number of applications, including Magnetic Resonance Imaging (MRI), elec-
tron microscopy and Synthetic Aperture Radar (SAR), measurements are collected
nonuniformly in the Fourier domain. The corresponding sampling patterns may be
highly irregular; for example, one may sample more densely at low frequencies and
more sparsely in high frequency regimes. Standard tools for reconstruction from
such data such as gridding [14] seek to compute approximations to the harmonic
Fourier modes, which can be then further postprocessed by conventional filtering
and/or edge detection algorithms. However, gridding methods are low order, and
lead to both physical (e.g. Gibbs phenomena) and unphysical artefacts [18].

In this paper we consider high-order, artefact-free methods for the recon-
struction of one-dimensional piecewise smooth functions. To do this, we use the
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recently-introduced tool of nonuniform generalized sampling (NUGS) [6]. NUGS
is reconstruction framework for arbitrary nonuniform samples which allows one to
tailor the reconstruction space to suit the function to be approximated. Critically,
in NUGS the dimension of the reconstruction space, which we denote by T, is
allowed to vary in relation to the bandwidth K of the samples. By doing so, one
obtains a reconstruction which is numerically stable and quasi-optimal. Hence, if T
is chosen appropriately for the given function—for example, a polynomial or spline
space for smooth functions, or a piecewise polynomial space for piecewise smooth
functions—one obtains a rapidly-convergent approximation.

The key issue prior to implementation is to determine such scaling. In principle,
this depends on both the nature of the nonuniform samples and the choice of
reconstruction space. In this paper we provide a general analysis which allows
one to simultaneously determine such scaling for all possible nonuniform sampling
schemes by scrutinizing two intrinsic quantities � and � of the reconstruction space
T, related to the maximal uniform growth of functions in T and the maximal growth
of derivatives in T respectively. Provided these are known (as is the case for many
choices of T), one can immediately estimate this scaling. As a particular conse-
quence, for trigonometric polynomials, splines and piecewise algebraic polynomials
(with fixed polynomial degree), we can show that this scaling is linear, and for
piecewise algebraic polynomials with varying degree we show that it is quadratic.
The asymptotic order of such estimates is provably optimal.

2 Nonuniform Generalized Sampling

Throughout we work in the space H D L2.0; 1/ with its usual inner product
h�; �i and norm k�k. Define the Fourier transform by Of .!/ D R 1

0
f .x/e�2� i!x dx for

! 2 R. We let f˝NgN2N be a sequence of ordered nonuniform sampling points, i.e.
˝N D f!n;NgNnD1 � R where �1 < !1;N < !2;N < : : : < !N;N < 1, and let
fTMgM2N be a sequence of finite-dimensional subspaces of H. We make the natural
assumption that the sequence of orthogonal projections PM D PTM W H ! TM

converge strongly to the identity operator I on H. That is, any function f 2 H can
be approximated to arbitrary accuracy from TM for sufficiently large M.

Our goal is the following: given the samples f Of .!n;N/gNnD1 compute an approx-
imation fN;M to f from the subspace TM . Proceeding as in [6], we do this via the
following weighted least-squares:

fN;M D argmin
g2TM

NX
nD1

�n;N

ˇ̌
ˇOf .!n;N/� Og.!n;N/

ˇ̌
ˇ2 ; (1)

where �n;N � 0 are appropriate weights (see later). As discussed in [6], the key is to
choose M suitably small for a given N (or equivalently N suitably large for a given
M) so that the approximation f Of .!n;N/gNnD1 7! fN;M 2 TM is numerically stable and
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quasi-optimal. To this end, the following estimates were shown in [6]:

kf � fN;Mk � C.N;M/ inf
g2TM

kf � gk; kfN;Mk � C.N;M/kfk; 8f 2 H; (2)

where C.N;M/ D p
C1.N/=C1.N;M/ and C1.N;M/ and C2.N/ are the optimal

constants in the inequalities

NX
nD1

�n;N

ˇ̌
ˇOf .!n;N/

ˇ̌
ˇ2 � C1.N;M/kfk2; 8f 2 TM;

NX
nD1

�n;N

ˇ̌
ˇOf .!n;N/

ˇ̌
ˇ2 � C2.N/kfk2; 8f 2 H:

In particular, fN;M exists uniquely for any f 2 H if and only if C1.N;M/ > 0.

Remark 1 Recently, a number of other works have investigated the problem of high-
order reconstructions from nonuniform Fourier data. In [9, 18] spectral reprojection
techniques were used for this task, and a frame-theoretic approach was introduced
in [10]. Recovering the Fourier transform to high accuracy was studied in [16], and
in [8, 15] the problem of high-order edge detection was addressed. We note that the
methods we consider in this paper based on NUGS can be shown to achieve optimal
convergence rates amongst all stable, convergent algorithms [3, 5]. However, a more
detailed discussion is beyond the scope of this paper.

3 A Sufficient Condition for Stability and Quasi-Optimality

To ensure that C.N;M/ is small and finite, and hence guarantee stability and quasi-
optimality via (2), we first need the following density assumption:

Definition 1 The sequence f˝NgN2N is uniformly ı-dense for some 0 < ı < 1 if:
(i) there exists a sequence fKNgN � Œ0;1/ with KN ! 1 as N ! 1 such that
˝N � Œ�KN ;KN �, and (ii) for each N, the density condition maxnD0;:::;Nf!nC1;N �
!n;Ng � ı holds, where !0;N D !N;N � 2KN and !NC1;N D !1;N C 2KN .

This condition ensures that the sample points spread to fill the whole real line
whilst remaining sufficiently dense.1 We will commonly refer to the numbers KN

as the sampling bandwidths. Note that the ı-dense sample points can have arbitrary
locations. In particular, the points f!n;NgNnD1 are allowed to cluster arbitrarily. To

1We remark in passing that the case of critical density ı D 1 can also be addressed [6], but one
cannot in general expect stable reconstruction for ı > 1. See also [11, 12].
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compensate for this, we choose the weights �n;N in the least-squares (2) as follows:

�n;N D 1
2
.!nC1;N � !n�1;N/ ; n D 1; : : : ;N: (3)

With this to hand, we next define the z-residual of a finite-dimensional space T � H:

ET.M; z/ D sup
n
kOf kRn.�z;z/ W f 2 TM; kfk D 1

o
; z 2 .0;1/:

Here kfkI D
qR

I jf .x/j2 dx denotes the Euclidean norm over a set I.

Theorem 1 ([6]) Let f˝NgN2N be uniformly ı-dense, fTMgM2N be a sequence of
finite-dimensional subspaces and let 0 < � < 1 � ı. Let M;N 2 N be such that

ET.M;KN � 1=2/2 � �.2 � �/; (4)

then the reconstruction f 7! fN;M defined by (1) with weights given by (3) has
constant C.N;M/ satisfying

C.N;M/ � 1C ı
1 � � � ı : (5)

This theorem reinterprets the required scaling of M and N in terms of the z-
residual E.M;KN � 1=2/. Note that this residual is independent of the geometry
of the sampling points, and depends solely on bandwidths KN . Hence, provided (4)
holds, one ensures stable, quasi-optimal recovery for any sequence of sample points
f˝NgN2N with the same parameters KN .

Unsurprisingly, the behaviour of the z-residual depends completely on the choice
of subspaces fTMgM2N. Whilst one can often derive estimates for this quantity using
ad-hoc approaches for each particular choice of fTMgM2N—for example, see [4, 6]
for the case of wavelet spaces—it is useful to have a more unified technique to
reduce the mathematical burden. We now present such an approach.

Definition 2 ([17]) Let U and V be closed subspaces of H with corresponding
orthogonal projections PU and PV respectively. The gap between U and V is the
quantity G.U;V/ D k.I �PU/PVk, where I W H! H is the identity.

Proposition 1 Let fTMgM2N and fSLgL2N be sequences of finite-dimensional sub-
spaces of H. Then ET.M; z/ � ES.L; z/C G.SL;TM/ for every M;L 2 N.

Proof Let f 2 TM, kfk D 1. Then

kOfkRn.�z;z/ � k1PSL fkRn.�z;z/ C kf �PSL fk
� ES.L; z/kPSL fk C G.SL;TM/kfk � ES.L; z/C G.SL;TM/:
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This result implies the following: if the behaviour of z-residual ES.L; z/ and the gap
G.SL;TM/ are known, then one can immediately determine the required scaling of
M with z to ensure that ET.M; z/ satisfies (4). We now make the following choice
for fSLgL2N to allow us to exploit this result:

SL D
˚
g 2 H W gjŒl=L;.lC1/=L/ 2 P0; l D 0; : : : ;L � 1� : (6)

Here P0 is space of polynomials of degree zero. In [6], it was shown that there
exists a constant c0.�/ > 0 such that ES.L; z/ � � whenever z � c0.�/L. Therefore,
according to Proposition 1, to estimate ET.M; z/ we now only need to determine
G.SL;TM/.

From now on, we let 0 < w1 < : : : < wk < 1 be a fixed sequence of nodes, and
define the space H1

w.0; 1/ D f f W f j.wj;wjC1/ 2 H1.wj;wjC1/; j D 0; : : : ; kg where
w0 D 0, wkC1 D 1 and H1.I/ is the usual Sobolev space of functions on an interval
I. By convention, if k D 0 then H1

w.0; 1/ D H1.0; 1/.

Proposition 2 Suppose that TM � H1
w.0; 1/ and let SL be given by (6). If L�1 �

	 D minjD0;:::;kfwjC1 � wjg then G.SL;TM/ �
q
�2M=.�L/2 C 4�2M=L, where

�M D max
jD0;:::;k sup

˚kf 0k.wj;wjC1/ W f 2 TM; kfk.wj ;wjC1/ D 1
�
;

�M D max
jD0;:::;k sup

˚kfk1;.wj ;wjC1/ W f 2 TM; kfk.wj;wjC1/ D 1
�
;

and, if I is an interval, kfk2I D
R

I jf .x/j2 dx and kfk1;I D ess supx2Ijf .x/j. Moreover,
if k D 0, i.e. TM � H1.0; 1/, then G.SL;TM/ � �M=.�L/.

Proof Since L � 1=	 there exist lj 2 N with l1 < l2 < : : : < lk such that 0 �
Lwj � lj < 1 for j D 1; : : : ; k. For an interval I � R, let us now write fI D 1

jIj
R

I f .
Then

kf �PSL fk2 D
L�1X
lD0

Z
Il

jf � fIl j2 D
L�1X
lD0

l¤l1;:::;lk

Z
Il

jf � fIl j2 C
kX

jD1

Z
Ilj

ˇ̌
ˇf � fIlj

ˇ̌
ˇ2 ;

where Il D Œl=L; .l C 1/=L/. Since f 2 H1.Il/ for l ¤ l1; : : : ; lk, an application of
Poincaré’s inequality gives that

kf �PSL fk2 � 1

.L�/2

L�1X
lD0

l¤l1;:::;lk

kf 0k2Il
C

kX
jD1

Z
Ilj

ˇ̌
ˇf � fIlj

ˇ̌
ˇ2 : (7)
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We now consider the second term. Write Ilj D .lj=L;wj/[ .wj; .ljC1/=L/ D Aj[Bj

and note that for an arbitrary interval I we have
R

I jf � fI j2 D kfk2I � jIjjfIj2. Hence

Z
Ilj

ˇ̌
ˇf � fIlj

ˇ̌
ˇ2 D

Z
Aj

ˇ̌
f � fAj

ˇ̌2 C
Z

Bj

ˇ̌
f � fBj

ˇ̌2 C jAjjjBjj
jAjj C jBjj

ˇ̌
fAj � fBj

ˇ̌2

� 1

.�L/2



kf 0k2Aj

C kf 0k2Bj

�
C 2jAjjjBjj
jAjj C jBjj



kfk21;Aj

C kfk21;Bj

�
;

where in the final step we use Poincaré’s inequality once more and the fact that f is
H1 within Aj and Bj. Since jAjj; jBjj � L�1 and jAjj C jBjj D jIlj j D L�1 we now get

kX
jD1

Z
Ilj

ˇ̌
ˇf � fIlj

ˇ̌
ˇ2 � 1

.�L/2

kX
jD1



kf 0k2Aj

C kf 0k2Bj

�
C 4

L

kX
jD0
kfk21;.wj ;wjC1/

:

Combining this with (7) gives

kf �PSL fk2 �

 �M

L�

�2 kX
jD0
kfk2.wj;wjC1/

C 4�2M
L

kX
jD0
kfk2.wj;wjC1/

:

Since kfk2 DPk
jD0 kfk2.wj ;wjC1/

the result now follows.

This proposition provides the main result of this paper. Using it, we deduce that
for any fTMgM2N, the question of stable reconstruction from any uniformly ı-
dense samples now depends solely on the quantities �M and �M , which are intrinsic
properties of the subspaces completely unrelated to the sampling points.

4 Examples

To illustrate this result, we now present several examples.

Trigonometric Polynomials Functions f that are smooth and periodic can be
approximated in finite-dimensional spaces of trigonometric polynomials TM DnPM

mD�M ame2� imx W am 2 C

o
. If f 2 C1.T/, where T D Œ0; 1/ is the unit torus, then

the projection error kf �PTMf k decay superalgebraically fast in M; that is, faster
than any power of M�1. If f is also analytic then the error decays exponentially fast.

For this space, we have TM � H1.0; 1/ and �M � 2�M by Bernstein’s inequality.
Hence Theorem 1 and Propositions 1, 2 give that the reconstruction fN;M is stable
and quasi-optimal provided M scales linearly with the sampling bandwidth KN . This
result extends a previous result of [3] to the case of arbitrary nonuniform samples.
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Note that this is the best scaling possible up to a constant: for an arbitrary sequence
fTMgM2N with dim.TM/ D M the scaling of M with KN is at best linear [6].

Algebraic Polynomials Functions that are smooth but nonperiodic can be approx-
imated by algebraic polynomials. If TM D PM is the space of algebraic polynomials
of degree at most M, then the projection error kf �PTMf k decays superalgebraically
fast in M whenever f 2 C1Œ0; 1�, and exponentially fast when f is analytic.

The classical Markov inequality for this space gives that �M �
p
2M2, 8M 2 N

[7]. Hence we deduce stability and quasi-optimality of the reconstruction, but only
with the square-root scaling M D O

�p
KN
�
, N ! 1 (this result extends previous

results [1, 2, 13] to the case of nonuniform Fourier samples). On the face of it, this
scaling is unfortunate since it means the approximation accuracy of fN;M is limited
to root-exponential in KN , which is much slower than the exponential decay rate
of the projection error. However, such scaling is the best possible: as shown in [5],
any reconstruction algorithm (linear or nonlinear) that achieves faster than root-
exponential accuracy for analytic functions must necessarily be unstable.

Piecewise Algebraic Polynomials There are two issues with the previous result.
First, the space is not suitable for approximating piecewise smooth functions.
Second, the scaling is severe. To mitigate both issues, we may consider spaces
of piecewise polynomials on subintervals. In the first case, we fix the intervals
corresponding to the discontinuities of the function, and vary the polynomial degree.
In the second case, we vary the subinterval size whilst keeping the polynomial
degree fixed.

Mathematically, both scenarios equate to considering the subspaces Tw;M D f f 2
H W f jŒwj;wjC1/ 2 PMj ; j D 0; : : : ; kg, where w D fw1; : : : ;wkg for 0 D w0 < w1 <
: : :wk < wkC1 D 1 and M D fM0; : : : ;Mkg 2 N

kC1. If f is piecewise smooth with
jump discontinuities at known locations 0 D w0 < w1 < : : :wk < wkC1 D 1 then
the projection error decays superalgebraically fast in powers of .Mmin/

�1 as Mmin

increases, where Mmin D minfM0; : : : ;Mkg, and exponentially fast if f is piecewise
analytic. Alternatively, if f is smooth and the points w are varied whilst the degrees
M are fixed, then the error decays like h�Mmin�1, where h D maxjD0;:::;k jwjC1 � wjj
and Mmin D minfM0; : : : ;Mkg.

For analysis, we need to determine �M and �M. For the first we use the scaled
Markov inequality kp0kI �

p
2M2=jIjkpkI , 8p 2 PM, M 2 N, where jIj denotes the

length of I. Hence, if 	 D minjD0;:::;kfwjC1 �wjg then �M �
p
2M2

max=	. For �M, we
recall the following inequality for polynomials kpk1;I � cM=

pjIjkpkI , 8p 2 PM ,
M 2 N, where c > 0 is a constant. Hence �M � cMmax=

p
	. We therefore deduce the

following sufficient condition: M2
max=	 D O .KN/ as N ! 1. In the first scenario,

where 	 is fixed and Mmax is varied, we attain the same square-root-type scaling for
piecewise smooth functions when approximated by piecewise polynomials as with
the polynomial space of the previous example. In the second scenario, where Mmax

is fixed and 	 is varied, we see that this leads to a linear relation between KN and 	.
Thus, by forfeiting the superalgebraic/exponential convergence of the polynomial
space for only algebraic convergence, we obtain a better scaling with KN . Note that
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Fig. 1 In the first pair of panels, depending on the type of the reconstruction space, appropriate
ratios are shown: M=KN (for trigonometric polynomials), M=

p
KN (for algebraic polynomials) and

Md2=KN (for splines of order d), where for a given KN 2 Œ5; 200�, we used M D maxfM 2 N W
C.N;M/ � 3g. In the second pair of panels, for such KN and M, the error kf � fN;Mk is plotted
where f .x/ D x2 C x sin.4�x/ � exp.x=2/ cos.3�x/2 . We used different sampling schemes ˝N :
jittered (for the first and third panel) and log (for the second and forth panel)

in some cases it may be desirable to approximate using functions that are themselves
smooth (up to a finite order). In this case, we can replace Tw;M by the spline space
QTw;Mmin of degree Mmin on the knot sequence w. Since QTw;Mmin � Tw;M we obtain the
same linear scaling with KN in this case as well.

Numerical Results We demonstrate our results using two common nonuniform
sampling schemes; jittered and log sampling (see [6] for details). In the first two
panels of Fig. 1, we illustrate the scaling for different spaces TM between the
sampling bandwidth KN and space dimension M such that C.N;M/ is bounded.
For such KN and M, in the second pair of panels, we compute the L2 error of the
approximation fN;M for a continuous function f . The superiority of the spline spaces
for small N is evident, with the polynomial space becoming better as N increases.
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A Parallel-in-Time-and-Space HPC Framework
for a Class of Fractional Evolution Equations

Ahmad Alyoubi and Mahadevan Ganesh

Abstract We develop a high performance computing (HPC) framework for effi-
cient simulations of a class of fractional-order partial differential equations (FPDE),
using high-order in time and space parallel algorithms. HPC systems provide a large
number of processing cores with limitations on the amount of memory available per
core. Such limitations impose severe constraints for resolving fine spatial structures
that require large degrees of freedom (DoF). In this article, using several message
passing interface (MPI) communicators, we develop and demonstrate an efficient
hybrid framework that combines parallel in time and space tasks that facilitate
careful balance between parallel performance within the memory constraint to
simulate the FPDE model. We demonstrate the approach for a 3D fractional PDE
using several million spatial DoF.

1 Introduction

In this work, we consider a fractional-order space-time evolution equation that is
of recent interest to efficiently model (anomalous) physical processes that do not
conform to standard modeling based on integer (local) time derivative operators. In
particular, our focus is on an efficient high performance computing (HPC) approach
to resolve fine spatial structures in the solution u.�; t/; t 2 .0;T� and perform long-
time simulation (say, the final time is several hundred order higher compared to
the standard simulation approach of taking T D 1). For example, in tumor growth
(semi-linear) biological models [2] (with Turing space parameters), the main interest
is in the long-time (steady state) behavior of a diffusion driven evolution process,
resulting from perturbation of the homogeneous (diffusion less) steady state.

In such cases, a practical requirement is to analyze the behavior of the solution at
various user specified short list of increasing time periods tk 2 .0;T�; k D 1; : : : ;m
(with t1 small and tm relatively large) and, if required, augment the list with a few
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more periods until a desired property is reached. Depending on the behavior at tk,
one may also be interested in altering the input source term in the model at tkC1 and
then probe the model, to explain properties such as phase transitions, vortex states
and symmetry breaking that have been observed in various experiments [4–6].

For such practical requirements, traditional time-stepping (serial-in-time) algo-
rithms lead to severe computational bottleneck. Particularly, if tm is large and at each
discrete time step, several million spatial of degrees of freedom (DoF) are needed to
resolve fine scale structures. It is well known that the time-stepping requirement in
linear models can be avoided by using the Laplace transform (LT) approach.

Standard LT algorithms require that the LT of the source term can be evaluated.
This source term restriction is severe, especially for linearized version of the semi-
linear models (with source terms depending on the unknown solution) and also
for cases where one needs to dynamically modify the source term, depending on
the behavior of the solution at the previous time period in the user specified list.
In this article, we develop an efficient high-order HPC parallel-in-time-and-space
framework that does not impose such severe restrictions on the source term.

The rate of convergence of the LT algorithm-based approximate solution, say
uMz;h, depends crucially on the (inverse-LT) choice of a contour in the complex
plane to evaluate the solution in the time domain using a contour integral and
a quadrature rule to discretize the integral. Here, Mz denotes the number of
quadrature points required to discretize the contour integral and h is the chosen
spatial discretization parameter for simulating the frequency domain elliptic partial
differential equation (PDE) model at each LT based quadrature point. The Mz elliptic
PDEs are independent and hence, the LT based approach leads to a naturally parallel
algorithm (NPA). The standard HPC approach for the NPA is to use only built-in
message passing interface (MPI) communicator MPI_COMM_WORLD to distribute
the tasks.

A major disadvantage of the standard parallel implementation of the LT algo-
rithms is the requirement of large memory (as several elliptic PDEs need to
be solved simultaneously). Distribution of the work is severely restricted by the
availability of memory. Memory limitation (in each multi-core compute node of
a cluster of HPC nodes) demands that substantial effort is required to achieve
balanced scalability with respect to memory. Thus, parallelization in the LT and
spatial variables are required.

The main contribution of this short (8-page) article is to describe and demonstrate
such HPC technical details (based on multiple MPI communicators) for a model
problem for a range of processing cores P (that depends on the data size parameters
Mz; h). We demonstrate our approach for 2D and 3D models using high-order
discretization in the LT variable and high/low-order finite-element/finite-difference
methods (FEM/FDM). Many industrial standard codes for 3D elliptic PDEs use
low-order approximations such as second-order FDM or equivalent piecewise linear
FEM. However, it is efficient to develop high-order FEM in 2D models.

High-order approximations in the LT variable and evaluation of the solution even
for very small time can be achieved using the smooth contour proposed and analyzed
in [3, 7] (that depends on certain properties of the spatial differential operator). Our
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approach is based on the method developed and analyzed in [8] (that utilizes various
techniques in [3, 7] and references therein). Implementation of the method in [3, 7, 8]
were carried out only in serial (using one processor) for some zero (no spatial)
and two dimensional spatial examples with only a few thousand DoF using low-
order piecewise-linear FEM. The present work is a practical HPC counterpart of
the mathematical methods and analysis developed over the last decade. Our long-
time simulations include high-order FEM discretization and millions of DoF that
are typically required to resolve fine spatial structures in the solution of the model.

2 A Model Problem: Ansatz and Discretization

We consider the following model problem based on non-local (fractional) time and
local spatial derivative operators: Compute approximations to the solution u.x; t/,
for x 2 ˝ � R

n; n D 2; 3 and at t 2 Sm D ftk W k D 1; : : : ;mg � .t0;T� such that

@u

@t
� @�˛

@t�˛
Œr � .�ru/� D f .x; t/; in ˝ � .t0;T�; u.x; t0/ D u0.x/; in ˝;

(1)

and u.x; t/ D 0 on @˝ for t 2 Œt0;T�. We refer to [8] and references therein for
further details of the PDE. In (1), � > 0 is independent of time and chosen so
that A D �r � .�r/ satisfies technical conditions required in [8] for the inverse-
LT contour representation and analysis. For example, � D 1 on ˝ satisfies such
conditions.

The model problem (1) with ˛ D 0 is the standard parabolic evolution initial
boundary value problem. For non-zero ˛ 2 .�1; 1/, we use the Riemann–Liouville
definition of the non-local fractional-order operator: If�1 < ˛ < 0, @imath�˛

@imatht�˛ u.t/ WD
@imath
@imatht

R t
0

.t�s/˛

� .1C˛/u.s/ds, and if 0 < ˛ < 1, @imath�˛

@imatht�˛ u.t/ WD R t
0
.t�s/˛�1

� .˛/
u.s/ds,

where � is the Euler Gamma function. The case of �1 < ˛ < 0 in (1) is for
anomalous sub-diffusion models, and 0 < ˛ < 1 case is suitable for viscoelastic
applications [8].

Let e� be a contour in the complex plane C chosen as in [8] (and references
therein). Throughout the article, we use z 2 C to denote points on e� . For t 2 Sm, we
represent the solution using a contour integral on e� . For a given function g defined
on e� �˝�Sm[ft0g, we define gk on e� �˝ , k D 0; : : : ;m, as gk.z; x/ D g.z; x; tk/.

For a chosen data gk, it is convenient to consider a PDE solution operator S˛.z/
defined as ŒS˛.z/gk� .x/ D wk.x; z/, for x 2 ˝ , where wk is the solution of the PDE

z1C˛ wk.x; z/� r � .�rwk.x; z// D z˛gk.z; x/; x 2 ˝; z 2 e� ; k D 1; : : : ;m;
(2)
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satisfying the homogeneous Dirichlet boundary condition on @˝ . For example, if we
take f D 0 in (1) and then apply the LT in (1), we obtain (2) with gk.x; z/ D u0.x/
and wk being the LT of u [8]. In this work, we avoid the requirement that the LT of
the forcing function f in (2) to exist or is known. Hence, for each tk, we consider
S˛.z/gk to represent the solution of (1) using Duhamel’s formula based data gk,
depending on u0; f and a set of quadrature points z (to approximate the inverse-LT).

We simulate the PDE (2) using a high-order FEM or low-order FDM with a mesh
parameter h and denote the corresponding solution as wh

k.�; z/. As described below,
we choose 2NC 1 points zj 2 e� ; j D �N; : : : ;N. The computational complexity is
dominated by the need to solve m.2NC 1/ independent PDEs (2) with z D zj. More
precisely, for our solution representation, we need to compute wh

j;k.x/ D wh
k.x; zj/

for j D �N; : : : ;N; k D 1; : : :m. The algorithm provides a convenient framework
to add more points in Sm and changes in the source term at different time steps.

Following [8], using Duhamel’s formula, the forward and inverse LT techniques,
we represent the desired solution u.x; tk/ of (1) for k D 1; : : : ;m as

u.x; tk/ D u0.x/C
Z tk

0

f .x; s/dsC 1

2 i

Z
e�
�
S˛.z/gk.z; x/ � z�1gk.z; x/


dz; (3)

where gk is defined using the initial and source data in the model:

g.z; x; t/ D eztu0.x/C
Z t

0

ez.t�s/f .x; s/ds; gk.z; x/ D g.z; x; tk/: (4)

For a chosen LT variable discretization parameter N, we use a quadrature approx-
imation [8] of the contour integral in (3) (by mapping the contour to the real line,
accounting for the Jacobian term, and choosing 2N C 1 equally spaced points).
Using the quadrature points zj 2 e� ; j D �N: : : : ;N and a weight parameter qN (for
example qN D 1=

p
N) and denoting the Jacobian function evaluated at zj as z0j, the

computable approximation to u.x; tk/, for x 2 ˝ and k D 1; : : : ;m, is defined as

uN;h.x; tk/ D u0.x/C
Z tk

0

f .x; s/dsC qN

2 i

NX
jD�N

�
wh

j;k.x/� z�1j gk.zj; x/


z0j: (5)

The LT based time discretization approach has been proven to be high-order
accurate [8]. It is ideal to choose N to match the spatial discretization accuracy.
The standard piecewise linear FEM approach leads to O.h2/ convergence and this
can be improved to O.hdC1/, in the L2 norm using the spline degree d � 2,
provided the solution of the continuous model is sufficiently smooth. In this work,
we demonstrate the approach using both the high-order FEM (for a smooth test
solution case) and use a O.h2/ method to simulate a 3D fractional PDE (FPDE)
model on a domain with edges and corners with unknown solution that is in general
non-smooth.
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3 Parallel Implementation Techniques

For each k D 1; : : : ;m, computation of the solution in (5) requires solving .2NC 1/
independent PDEs (2) with z D zj, for j D �N; : : : ;N. For simple model problems,
it is straightforward to parallelize with respect to the LT variable using the MPI
by distributing the discrete LT points among all cores determined by the built-
in communicator MPI_COMM_WORLD. The simplicity is based on the assumption
that the FEM/FDM based discretization of each PDE requires only a few thousand
DoF and that the memory accessible by each core is sufficient to accommodate the
complexity. In this work, we are interested in solving model problems with fine
scale features and hence, it requires tens of thousands to several million DoF. In
such cases, parallelization in spatial variable is also necessary, by distributing the
entries of the mass and stiffness matrices of the discrete system. In this section,
we describe efficient coupling of the parallel-in-time algorithm (described in the
last section) and a general class of parallel-in-space algorithms using multiple MPI
communicators.

Cores and Load Distribution We distinctly identify each processing core in two
local classes of communicators containing subsets of cores in the MPI_COMM–
_WORLD communicator. We call the two classes of communicators, obtained by
reshaping the total number of cores in a rank two matrix form, as row and column
communicators. We use row communicators to distribute the LT discretization
points among them. For each row communicator, the FEM/FDM matrices and
vectors are distributed among its cores. We use the column communicators to gather
the partial solutions from all row communicators and then use these to obtain the
sum in (5).

More precisely, let Nt (a non-prime integer number) be the total number of cores
in MPI_COMM_WORLD and let Nt D Nr Nc. We create Nr row communicators and
Nc column communicators to obtain additional NrCNc communicators. The choice
of Nr and Nc depends on the availability of memory for each core and the spatial
DoF. We tag each core with three ranks: first being that in MPI_COMM_WORLD
and the other two depend on the position in the matrix form of the local row-
column communicators. Let pLi; Lj denote the rank of a core if it belongs to both the
Li-th row communicator and Lj-th column communicator, for Li D 0; : : : ;Nr � 1 and
Lj D 0; : : : ;Nc � 1. Ranks of cores in the MPI_COMM_WORLD communicator are
denoted by PLk where Lk D 0; : : : ;Nt � 1.

There are two kinds of parallel tasks required for our model problem: parallel
tasks for the LT variable discretization and parallel tasks for spatial discretization.
In this segment, these tasks are identified and distributed. Each core should have a
subset from both kinds. Let £z D m.2N C 1/ be the total number of parallel tasks
described in the previous section for the parallel-in-time algorithm. We distribute
these parallel tasks among the Nr row communicators. For each fixed k and for



132 A. Alyoubi and M. Ganesh

l D 0; : : : ;Nr�1, let Œdl
0; d

l
1� be the sub-interval we use for distributing indices of the

LT discretization points. The interval can be obtained for the l-th row communicator
as follows:

dl
0 D l� C 1; dl

1 D
(

dl
0 C � C � � 1 if l D Nr and � > 0,

dl
0 C � � 1 if l < Nr or � D 0,

(6)

where � D b.2N C 1/=Nrc and � D .2N C 1/ mod Nr . Since the LT discretization
points are the same for all tk, these can be computed once and used repeatedly to get
the solution for tk. Thus, for a given row communicator, there are m.dl

1 � dl
0 C 1/

parallel tasks.
The parallel tasks in the spatial variables are distributed among all cores in

a given row communicator. For each k and j D �N; : : : ;N, the FDM/FEM
discretization of the PDE (2) with z D zj yields a linear algebraic system of the
form Ax D b where A is a sparse matrix of size M �M and b is a load vector. We
distribute these load vectors and the matrices equally among all cores in a given
row communicator. The vectors and the matrices should be locally created. Let sLj be

the total number of rows of the local arrays in the Lj-th core in a row communicator.
Thus, the local x and b vectors are of length sLj whereas the local matrix A is of size

sLj �M. With 	 D bM=Ncc, � D M mod Nc and 0 � Lj � Nc � 1, we have sLj

sLj D
(
	C 1 if Lj < �,

	 if Lj � �.
(7)

Additionally, it is necessary to compute the global range of local vectors and the
rows of the local matrices. For Lj D 0; : : : ;Nc � 1, this range is represented by the

interval Œr
Lj
0; r
Lj
1�where r

Lj
0 is the first index and r

Lj
1 is the last index of the first dimension

of the local arrays for the Lj-th core in any row communicator. They should be locally
computed as

r
Lj
0 D

8̂
ˆ̂<
ˆ̂̂:

Lj	 if � D 0,

Lj .	C 1/ if Lj < � and � > 0,

�.	C 1/C

Lj � �� 	 if Lj � � and � > 0,

r
Lj
1 D

8<
:

r
Lj
0 C 	 if Lj < �,

r
Lj
0 C 	 � 1 if Lj � �.

(8)

Further for efficient memory utilization, in addition to dynamic memory allocation,
it is essential (especially for 3D models) to exploit the sparse structure of the
linear system. This can be achieved in several ways. For example, in the PETSc
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environment, we can utilize shell matrix technique (also known as matrix-free
operations).

Computation of Approximation Solution For l D 0; : : : ;Nr � 1, let ul
N;h denotes

the partial approximation solution that is owned by a single row communicator and
determined by the representation in the third term in (5) and the full summation is
replaced with partial summation from dl

0 to dl
1. At this point, there are Nr partial

approximation solutions performed by Nr row communicators. These solutions
are summed up using one of the MPI reduce subroutines using Nc column
communicators. Then, the first two terms in (5) should be computed and added
to the final solution.

4 Numerical Experiments

In this section, we demonstrate the efficiency of the approach described in the last
two sections for an FPDE 3D model (1) with ˛ D �0:5, � D 1, t0 D 0, T D 1000,
m D 5, Sm D f0:1; 1; 10; 100; 1000g, and˝ D .0; 4/� .0; 4/� .0; 4/. The evolution
process is induced by an initial condition u0 with several scales, as shown in Fig. 1
for a fixed x3 2 .0; 4/.

For demonstrating the accuracy of computed solutions, as the number of DoF
increases, it is standard to test the code with some special choice of exact solution
u.x; t/ and derive the source function f .x; t/ by substituting the test solution in the
LHS of (1). Such an approach is practical for (1) only with ˛ D 0. Otherwise,
a standard approach is to consider a computed fine grid solution as the reference
solution and demonstrate the accuracy. It is important to make sure that the fine grid
is chosen so that the reference solution is highly accurate.

In order to obtain some ideas about the fine grid for the 3D FPDE model, we
first consider a 2D version of the model problem with ˛ D 0. Results in Table 1
demonstrate that for the simulation of a special test choice of u.x; t/with x 2 .0; 4/�
.0; 4/ (with t D 0 case having multiple scales) requires over half a million DoF
(using a high-order method) even for about 0:3% accuracy. This is the case despite
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Fig. 1 Initial state of a fractional evolutionary process
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Table 1 Results (L2-error, EOC-estimated order of convergence, and CPU time using a compute
node with 12 cores) for the 2D model problem at T D 1000, using a high-order FEM with quadratic
(d D 2) and cubic (d D 3) splines various mesh sizes with coarse mesh h D 0:125 and N D 640

d D 2

hmin DoF L2 Error EOC Time (s)

h 1953 8.72E+0 – 3.9559E+0

h=2 8001 1.22E+0 2:84 1.7969E+1

h=4 32,385 2.36E�1 2:37 1.1146E+2

h=8 130,305 2.73E�2 3:11 9.9093E+2

h=16 522,753 3.21E�3 3:09 1.5492E+4

d D 3

DoF L2 Error EOC Time (s)

4465 3.29E+0 – 9.9152E+0

18,145 4.61E�1 2:84 5.7653E+1

73,153 4.34E�2 3:41 5.7319E+2

293,761 2.70E�3 4:01 8.3841E+3

Table 2 Left table: Maximum nodal errors and the EOC for several grid sizes at T D 1000 with
N D 100. Right table: Maximum nodal errors for simulating at all t 2 Sm using DoF=16;777;216
grid

DoF h Max. nodal error EOC

4096 0:250000 1.59E�1 –

32,768 0:125000 3.98E�2 2:00

262,144 0:062500 9.86E�3 2:01

2,097,152 0:031250 2.35E�3 2:07

16,777,216 0:015625 4.69E�4 2:32

t 2 S5 Max. nodal error

0:1 1.03E�5

1:0 1.32E�5

10:0 4.93E�5

100:0 1.67E�4

1000:0 4.69E�4

using a high-order FEM with spline degree d D 2 and similar accuracy can be
obtained with about half of the DoF by increasing the spline degree to d D 3 because
of the high estimated order convergence (EOC) is O.hdC1/ in the L2 norm. For the
2D model problem, we chose the smooth solution to be

u.x; y; t/ D


1C t

T

�
e�

t
T sin.20  x/ sin.10  y/; (9)

and hence with t D 0, it is easy to observe features of the solution as in Fig. 1.
The 2D model (smooth solution) simulation results in Table 1 clearly indicate that

for the 3D model problem with unknown (non-smooth) solution, we need several
millions of DoF to obtain the reference solution. For our 3D numerical experiments,
we compute the reference solution with DoFD 134;217;728 using a fine 512�512�
512 grid on˝ . We apply a lower order FDM with EOC O.h2/ for the 3D model.

Results in Table 2 (with Nt;Nc;Nr as described in the last section) demonstrate
that millions of DoF are required to simulate the FPDE model in 3D to achieve at
least 0:1% accuracy, even for the simple case f .x; t/ D exp.�t=.4T//, for x 2 ˝ .

Next, we demonstrate the scalability of the practical HPC approach. We utilize
the PETSc environment to implement spatial parallelization [1]. Our hybrid
parallel-in-time-and-space approach provides a framework to efficiently utilize the
naturally parallel aspect of the LT based time discretization and the amount of
memory available. We simulated the 3D model using a Blue Gene Q HPC cluster
with each compute node comprising a PowerPC A2 processor with 16 cores and
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Table 3 Parallel performance for the 3D FPDE model to compute solution at T D 1000 with
N D 100

Nr � Nc Time (h) Speedup

1 � 8 9.71

2� 8 4.90 1.98

4 � 8 2.92 3.33

8 � 8 1.52 6.38

16 � 8 0.82 11.81

Nr � Nc Time (h.) Speedup

1� 16 29.66

2� 16 14.98 1.98

4� 16 9.33 3.18

8� 16 5.13 5.78

Left Table: DoFD 27;000;000 and Nc=8. Right Table: DoFD 134;217;728 and Nc=16

16 GB memory. Thus, memory available per core in the powerful machine is just
1 GB.

Results in Table 3 (with f depending on x and t) demonstrate the HPC perfor-
mance of our hybrid parallelization with (1) 27; 000; 000DoF using a 300�300�300
grid; and (2) 134;217;728DoF using a 512�512�512 grid, for the 3D FPDE model
problem. Based on the data size and memory limitation, several communicators
(with a careful choice of Nr and Nc) are needed for efficient parallel implementation.
For 27;000;000 and 134;217;728 cases, we choose Nc to be 8 and 16, respectively
and achieve good parallel performance, as demonstrated in Table 3.
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High-Order Upwind Methods for Wave
Equations on Curvilinear and Overlapping
Grids

J.W. Banks and W.D. Henshaw

Abstract In this work we discuss a newly developed class of robust and high-order
accurate upwind schemes for wave equations in second-order form on curvilinear
and overlapping grids. The schemes are based on embedding d’Alembert’s exact
solution for a local Riemann-type problem directly into the discretization (Banks
and Henshaw, J Comput Phys 231(17):5854–5889, 2012). High-order accuracy is
obtained using a single-step space-time scheme. Overlapping grids are used to
represent geometric complexity. The method of manufactured solutions is used
to demonstrate that the dissipation introduced through upwinding is sufficient to
stabilize the wave equation in the presence of overlapping grid interpolation.

1 Introduction

Upwind methods for first-order hyperbolic partial differential equations (PDEs)
have been extremely effective at facilitating the simulation of a wide variety of phys-
ical problems. The success of upwind methods can largely be attributed to the incor-
poration of natural dissipation through the embedding of the characteristic wave-
structure of the hyperbolic system into the discretization. Many well-known and
powerful schemes have their roots in these ideas. A partial list includes the Courant-
Isaacson-Rees scheme [9], flux-corrected transport [5], total-variation-diminishing
methods [16] the piecewise-parabolic method (PPM) [8], essentially-non-oscillatory
(ENO) schemes [12], discontinuous Galerkin (DG) approximations [7], and the
weighted-essentially-non-oscillatory (WENO) class of methods [15].

In a recent paper [2], we extended these powerful ideas to wave equations written
directly in second-order form without the need to recast governing equations as a
system of first-order PDEs. There are numerous potential advantages of solving the
second-order form directly such as fewer dependent variables and fewer constraint
equations. The approach was based on incorporating the well-known d’Alembert
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solution into the discretization. Following the well established procedure for upwind
treatments for the first-order form, a localized expression of the upwind flux
was derived that enables easy application to a wide class of problems including
multiple dimensions and variable coefficients. In this work we demonstrate the
extension of upwind scheme for the wave equation in second-order form to the
cases of curvilinear grids and overlapping grids. As discussed in [1], dissipation free
schemes may exhibit instabilities on overlapping grids due to perturbations from the
interpolation formula; these instabilities were found to be naturally suppressed by
upwind schemes for waves equations in first-order form. This property has permitted
many stable overlapping grid capabilities for hyperbolic PDEs (e.g. [1, 3, 4, 14]). In
the current work we demonstrate that upwind methods for the second-order system
also appear to be naturally stable when used with overlapping grids.

2 Governing Equations and Overlapping Grids

Consider the discretization of the scalar wave equation on a domain˝ ,

@2u

@t2
D Lu 	 c2�u; x 2 ˝; (1)

where x 2 Rd, u D u.x; t/, c is a constant wave speed, and �u is the Laplacian
operator in d space dimensions. Appropriate boundary and initial conditions are also
applied. We will discretize (1) using an overlapping grid approach where the overall
domain is covered by an overlapping grid G consisting of a set of component grids
Gk that communicate through interpolation. Such a scenario is depicted in Fig. 1
which shows a domain consisting of an annular grid (green) and a rectangular grid
(blue). In the region where these two grids overlap the solution is communicated
from one grid to the other using interpolation. For further details on overlapping
grids refer to [6] and the references therein.

G1

G2

G1

interpolation
ghost
unused

G2

Fig. 1 Left: an overlapping grid consisting of two structured curvilinear component grids, x D
G1.r/ and x D G2.r/. Middle and right: component grids for the square and annular grids in
the unit square parameter space r. Grid points are classified as discretization points, interpolation
points or unused points. Ghost points are used to apply boundary conditions



High-Order Upwind Methods for Wave Equations 139

For each component grid we define a smooth mapping x D G.r/ from physical
space x to the unit square r 2 Œ0; 1�d in parameter space. Following the notation
in [13], in the parameter space coordinates the governing equation (1) can be written
in conservative form as

L.u/ D 1

J

dX
mD1

dX
nD1

@

@rm

�
JAmn @u

@rn

	
; (2)

where

Amn D c2
dX

�D1

@rm

@x�

@rn

@x�
;

and J is the determinant of the Jacobian matrix Œ@xi=@rj�. Note that in (2) the
conserved quantity is Ju, and the metrics of the mapping enter the equation as
variable coefficients. The form (2) is applicable to general curvilinear and non-
orthogonal grids; an optimized scheme is used for Cartesian grids.

As discussed in [13], self-adjoint discretizations of (2) can be developed to
arbitrary order for the case of a single component grid. These discretizations have
a compact stencil and are free from numerical dissipation. However, when over-
lapping grids are used, the perturbations introduced by the interpolation between
component grids can result in numerical instabilities. In [13] these instabilities
were treated by adding a simple dissipation operator whose coefficients were
chosen experimentally and with expert judgement. In [1], a proof was presented
showing the presence of these unstable modes for overlapping grids. The analysis
indicated a form of dissipation operator that would stabilize the schemes against
overlapping grid interpolation. Centered (dissipation free) discretizations of the
first-order system were also shown to exhibit similar instabilities associated with
overlapping grid interpolation, but the dissipation inherent to standard upwind
discretizations for the first-order system was shown to stabilize the system. The
form of dissipation required to stabilize the wave equation in second-order form
against overlapping grid interpolation has since been shown to be naturally present
in “upwind” discretizations of the second-order system as described in [2]. For this
reason, we will develop upwind discretizations of (2).

2.1 Upwind Discretization

Following the approach in [2] we introduce the time derivative of the field quantity
(indicated using a dot as in Pu 	 @u

@t ), and rewrite the equations as

@

@t

�
u
Pu
�
D
�Pu
0

�
C 1

J

dX
mD1

@

@rm

"
0Pd

nD1 JAmn @u
@rn

#
: (3)
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As in [2] we integrate in time over a time step�t, and produce the exact differential-
difference equations

Pu.x; tnC1/ D Pu.x; tn/C �t

J

dX
mD1

DCrmF
Pu

rm
.x � hrm

2
erm ; t

n/; (4)

u.x; tnC1/ D u.x; tn/C�tPu.x; tn/C �t2

J

dX
mD1

DCrmF
u
rm
.x � hrm

2
erm ; t

n/: (5)

Here rm is the mth direction in index space, erm is the unit vector in the rm direction,
DCrm is the forward divided difference operator in the rm direction, hrm is the grid
spacing in the rm direction, and the integrals of the fluxes are defined as

F Purm
.x; tn/ D 1

�t

Z �t

0

Lfrm.x; t
n C �/ d�; (6)

F u
rm
.x; tn/ D 1

�t2

Z �t

0

Z �

0

Lfrm.x; t
n C � 0/ d� 0 d�; (7)

where the upwind flux functions are given by

Lfrm.xC
hrm

2
erm ; t

n C �/ 	
dX

�D1
ArmJAm� @u

@r�
.xC hrm

2
erm ; t

n C �/ (8)

CArm

J
p

Amm

2

�
PurC

m .xC hrm

2
erm ; t

n C �/ � Pur�
m .xC hrm

2
erm ; t

n C �/
	
:

In (8) we have introduced the operator Arm which is defined to satisfy the identity
@w
@rm
.x/ D DCrm



Armw.x � hrm

2
erm/

�
for any sufficiently smooth function w and is

given by the expansion Armw.x; t/ D P1
jD0 ˛j h2j

rm

@2jw

@r
2j
m
.x; t/. The coefficients ˛j can

be computed from the identity �=2 D sinh.�=2/
P1

jD0 ˛j�
2j following the approach

described in [10, 11]. Values for the first few coefficients are ˛0 D 1, ˛1 D � 1
24

,
˛2 D 7

5760
, ˛3 D 31

967680
. As in the description in [2] we use m-point Gaussian

quadrature to evaluate the integrals in (4) and (5). Taylor expansions in space and
time are used to define the quantities in (8) to the desired order. The final result is
a single-step scheme of the desired accuracy. Such a time integration technique is
often referred to as a modified-equation, Cauchy–Kovalevskaya, or Lax-Wendroff
time-stepper.

The maximal stable time step of the upwind schemes for each component grid
can be computed exactly assuming constant coefficients (i.e. rectangular grids).
See [2] for details. This bound is applied locally as an estimate for the maximal
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stable time step for curvilinear component grids. Such a procedure is similar to
the use of a linearized estimate to determine the time step for computations of the
Navier–Stokes equations. The time step for the overall simulation is then taken to be
the smallest of the time steps computed over all component grids. The exact form of
the discrete stability bound in multiple dimensions is found to be quite complex. In
addition, the time step assuming constant coefficients is often an overly optimistic
estimate for curvilinear grids. Therefore, we fit a simplified bound (which also gives
a simple explicit expression for�t) of the form

dX
mD1

��m � �
max

where �m D maxi.
jAmmj
hrm

/�t and the maximum is taken over all grid points. The
coefficients � and max are determined for each discretization through a normal
mode stability analysis of the linearized constant coefficient problem. Figure 2 gives
the numerical values for these parameters as well as a plot of the bounds in two
dimensions for discretization orders two, four, and six. Note that larger time-steps
can be taken in the higher order schemes compared to the second-order scheme.
Finally, we use an additional safety factor of 0:9 and so the final time step is only
90% of the value computed by taking the minimum allowable over all grids.

Fig. 2 At left are coefficients defining the simplified stability bound for the schemes of various
orders. At right is a plot showing those stability bounds in two space dimensions. The discretiza-
tions are stable for parameters that lie to the lower left of the appropriate curve
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3 Numerical Examples

In this section we present some initial results to demonstrate the accuracy of the
overall approach as well as the stability of the upwind discertizations on overlapping
grids. To this end we present convergence tests using twilight zone solutions, also
known as the method of manufactured solutions, in both two- and three-dimensions.
In this approach an exact solution ue is posed, in this case we choose trigonometric
functions in space and time, and a source term is applied to the governing equations
so that a solution to the forced system is the presupposed exact solution ue. This
modified system reads

@2u

@t2
D LuC @2ue

@t2
� Lue; x 2 ˝: (9)

For this study we take Dirichlet boundary conditions on physical boundaries with
the exact solution being specified.

3.1 Twilight Zone in Two Space Dimensions

Here we investigate the discrete solution of the wave equation on a two-dimensional
unit disk. The exact solution is chosen as ue D 1

2
cos.2�x/ cos.2�y/ cos.2�t/. The

overlapping grid, shown in Fig. 3, uses a narrow boundary fitted grid near the
edge of the disk and a large background Cartesian grid over the domain interior.
Figure 3 also shows the solution at the final time t D 0:5. A convergence study

overlapping grid solution (t = 0:5)
0:5

−0:5

Fig. 3 Left: overlapping grid for the disk. Right: trigonometric twilight zone solution at t D 0:5
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Fig. 4 Left: convergence results for the various schemes. Right: solution error at t D 0:5 for the
fourth order scheme on the 3rd refinement grid

is performed on a series of grids of increasing resolution. As discussed in [1], it
is more challenging from a stability perspective to refine the boundary fitted grids
keeping the number of grid lines normal to the boundary fixed; the boundary grids
thus become narrower as the grid is refined. Figure 4 presents results from this
study showing max-norm errors at the final time for the second, fourth, and sixth-
order methods. Convergence at the designed accuracy is demonstrated and there are
no indications of instability. The error field for the fourth-order scheme and the 3rd
refinement grid is also shown in Fig. 4. Note that the error magnitude is uniform
across the grid overlap. Also note that due to the overlapping grid interpolation and
the upwinding, there is no conserved discrete energy. Instead the discrete energy
converges to the order of accuracy of the scheme.

3.2 Twilight Zone in Three Space Dimensions

For three dimensions we perform simulations for a domain consisting of the box
.x; y; z/ 2 Œ�2; 2� � Œ�2; 2� � Œ�2; 2� with a spherical cavity of radius 0:5 in the
center. The exact solution is chosen as ue D cos.2�x/ cos.2�y/ cos.2�z/ cos.2�t/.
Figure 5 shows the simulation geometry and the exact solution at the initial time.
Also shown are results for a max-norm convergence study for the second-, fourth-,
and sixth-order schemes. As in two dimensions, convergence at the designed
accuracy is obtained and there is no evidence of instability associated with the
overlapping grid interpolation.
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Fig. 5 At left are the results of a max-norm convergence test for the various schemes while at right
is the exact solution for the sphere in a box test

4 Conclusions

In this work we have extended the upwind approach for second-order wave
equations developed in [2] to curvilinear and overlapping grids. Upwinding is
incorporated through the definition of the numerical flux function by embedding
a localized form of d’Alembert’s exact solution. A high-order accurate single-step
space-time scheme is developed by employing a Cauchy-Kovalevskaya (Lax-
Wendroff) procedure. The overall approach is shown to be stable in the presence of
overlapping grid interpolation in two and three space dimensions using the method
of manufactured solutions. Future work includes incorporation of physical boundary
conditions, development of implicit schemes to handle small mesh cells arising from
fine geometrical features, and optimization of the schemes.
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Well-Posedness, Stability and Conservation
for a Discontinuous Interface Problem: An
Initial Investigation

Cristina La Cognata and Jan Nordström

Abstract A robust interface treatment for the discontinuous coefficient advection
equation satisfying time-independent jump conditions is presented. The aim of the
investigation is to show how the different concepts like well-posedness, conserva-
tion and stability are related. The equations are discretized using high order finite
difference methods on Summation By Parts (SBP) form. The interface conditions
are weakly imposed using the Simultaneous Approximation Term (SAT) procedure.
Spectral analysis and numerical simulations corroborate the theoretical findings.

1 Introduction

In this paper we study fundamental properties such as well-posedness, stability and
conservation for an advection equation, which changes wave-speed at the interface
separating two spatial domains. The solution satisfies a time-independent jump-
condition, which makes it discontinuous. The first goal is to show that for any
piecewise constant advection velocity and interface jump condition the continuous
problem is always well-posed. We provide a straightforward condition for checking
conservation despite the presence of discontinuities. Applications where this is
of interest include acoustic electromagnetism, seismology and fluid dynamics,
[6, 9, 11, 12].

Stability and conservation at interfaces have also been studied in [2–4] for
the case of identical velocities in the two domains. We extend this investigation
by showing how well-posedness, conservation and stability are related in a more
general setting. SBP-SAT schemes, [1, 13, 14], up to fifth order of accuracy are used
to exemplify that the interface treatment is stable and accurate for all theoretically
meaningful cases.
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2 The Discontinuous Interface Problem

Consider two advection equations with different real positive advection velocities,
a and b

ut C aux D 0; x � 0; t � 0;
vt C bvx D 0; x � 0; t � 0; with v.0; t/ D cu.0; t/; (1)

where c is a real constant which makes the solution discontinuous at the interface
point x D 0 when it is different from one.

2.1 Well-Posedness and Conservation

Proposition 1 The interface problem defined by the coupled equations (1) is well-
posed for any positive a; b and any constant c 2 R.

Proof By applying the energy method to (1) using a modified L2-norm we get

Z 0

�1
u Œut C aux� dxC

Z 1

1
˛cv Œvt C bvx� dx D 0

where ˛c is a positive free weight parameter. By ignoring the outer boundary terms,
integration by parts leads to an energy estimate if ˛c verifies

� aC ˛cbc2 � 0: (2)

Uniqueness of the solution can be proved by using the same technique. Existence
can be proved by using the Laplace transform technique for the initial boundary
value problem, see [5, 7] for details. ut
Proposition 2 The interface problem (1) is conservative if

c D a

b
: (3)

Proof The weak formulation of (1) is given by

Z 1
�1

Œ� w�t0 dx�
Z 1
�1

Z t

0

Œ�t C �x Nu�w dxdtC
Z t

0

�w Œa � bc�xD0 dt D 0; (4)

where �.x; t/ 2 C1 with compact support in the spatial interval Œ�1;1� while
Nu D a for x � 0 and Nu D b for x > 0. Thus, all the terms at the interface vanish,
resulting in a conservative problem if c D a=b: ut
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3 The Semi-discrete Approximation

The first derivative in space is approximated using summation-by-parts (SBP) finite
difference operators ux � Du D P�1Qu; introduced in [13, 14]. u is the discrete
grid function approximating the solution. From now on we indicate the difference
operator with P�1l;r Ql;r, which are related to the left and right spatial intervals
respectively. By ignoring the boundaries we can write the approximation of (1)
together with the SAT procedure [3, 4], for interface conditions as

ut C aP�1l Qlu D P�1l �L.cuN � v0/eN

vt C bP�1r Qrv D P�1r �R.v0 � cuN/e0;
(5)

where eN D .0; : : : ; 0; 1/ and e0 D .1; 0 : : : ; 0/ have length of the left and right
domain grid, respectively. Equation (5) can be written in a compact matrix form as
follows

�
u
v

	
t

D P�1 QQ
�

u
v

	
(6)

where

P D
�

Pl 0

0 Pr

�
; QQ D �Q C˙; and Q D

�
aQl 0

0 bQr

�
:

The penalty matrix ˙ which contains the penalties coefficients is zero everywhere
except at the boundary and interface points.

3.1 Stability and Conservation Properties of the Semi-discrete
Approximation

Similar to the continuous case we apply the semi-discrete energy method to (5) to
derive stability conditions. To do so we multiply (5) with uTPl; v

T Pr from the left
and we obtain

d

dt

�kuk2Pl
C ˛dkvk2Pr

 D IT (7)

where ˛d is a positive weight (not necessarily the same as in the continuous case).
IT is a quadratic form given by

IT D
�

uN

v0

	T

H

�
uN

v0

	
; H D

�
.�aC 2c�L/ �.�L C ˛dc�R/

�.�L C ˛dc�R/ ˛d.bC 2�R/

�
: (8)
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We have an energy estimate if IT� 0, which require H to be a negative semi-definite
matrix. Hence, we need a condition on �L and �R to ensure this. In the full paper [8]
we prove

Proposition 3 The semi-discrete schemes (5) for the coupled advection equa-
tions (1) has a stable interface treatment when

.�aC 2c�L/C ˛d.bC 2�R/ � 0;

.�aC 2c�L/˛d.bC 2�R/ � .�L C ˛dc�R/
2 � 0:

(9)

One can also prove, see [8], that

Proposition 4 The conditions in (9) imply that P�1 QQ has eigenvalues with negative
semi-definite real parts.

As in the continuous case we rewrite (5) in a weak formulation to derive the
conservation condition. We obtain the following discrete conservation criteria

Proposition 5 The semi-discretization (5) with the continuous conservation condi-
tion (3) is a conservative approximation if

�R D �L � b: (10)

The conservative approximation requires a conservative continuous problem.

4 The Relation Between Stability and Conservation

In this section we present explicit stability condition for the penalty coefficients �L;R

for different type of continuous problems and approximations. All the conditions are
algebraically derived from (9).

Proposition 6 Consider the most general well-posed interface problem without
assuming any conservation conditions. The semi-discrete approximation (5) is
stable for all parameters a; b; c when the penalty coefficients �L; �R satisfy

�R � �b

2
: (11)

bC �R �
q
.bC 2�R/.b� �

�
a
c

�
/

�
� �L �

bC �R C
q
.bC 2�R/

�
b � � � a

c

��
�

;

(12)

where � D 1=.˛dc/ � bc=a must hold for real penalty coefficients.
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Proposition 7 The continuous conservation condition (3) leads to a stable semi-
discrete approximation if the penalty parameters �L; �R satisfy (11) and

bC �R �
p

b.bC 2�R/.1 � �/
�

� �L � bC �R C
p

b.bC 2�R/.1� �/
�

(13)

with � D b=.a˛d/ � 1.

Note that conservation and stability are two independent properties of the
approximation (5). We have a stable and non-conservative semi-discretization
if the assumptions of Proposition 6 are satisfied. Note also that for one norm,
the stability requirements in Proposition 6 also lead to conservation. That
norm is given by ˛d D b=a.

Proposition 8 The conditions (3) and (10) lead to a stable and conservative scheme
if

b

1 �p� � �L � b

1Cp� with � D b=.a˛d/ � 1: (14)

5 Numerical Results

In order to show the effect of the interface treatment we must restrict ourselves to a
finite spatial domain, we choose Œ�1; 1�.

In Fig. 1 we show a few of the frames of the time-evolution of a conservative
solution of (1), namely sin.4�.�1C 3t//. The wave propagates with velocity a = 2

−1 −0.5 0 0.5 1
−2.5

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
2.5

x

u

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

u

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

u

Fig. 1 Time-evolution of the wave function sin.4�.�1 C 3t// satisfying a conservative jump
condition. The solution is computed with a conservation approximation (Proposition 5). Zero
initial data in both domains and boundary condition given by sin(4�(�1C3t)). The parameters are:
aD 2, bD 1 and cD 2
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Table 1 Convergence rate as a function of grid N points for the non-conservative interface
problem (1) and semi-discretization (5)

L2 SBP21 SBP42 SBP63 SBP84

N ul ur ul ur ul ur ul ur

80 2.0124 2.0267 3.0397 3.0096 3.6801 3.8770 4.5847 5.0897

160 2.0086 2.0102 3.0713 3.0083 3.8480 4.0149 4.7510 5.0624

320 2.0059 2.0044 3.0359 3.0068 3.9590 4.0052 4.9033 5.0176

ul and ur are the computed solutions in the left and the right domain respectively. Parameters
setting: a D 3, b D 2, c D 3. Interface penalties �L;R satisfying the stability conditions of
Proposition 6

in the left domain, bD 1 in right domain and jump condition cD 2. The initial data
is zero in both domains. The computations are done using RK4 in time and SBP84
in space, with CFL D 0.1 and 300 grid points in each domain. The penalty �L;R

satisfy the conservative assumptions of Proposition 8.

5.1 Order of Accuracy

Next we establish the order of accuracy of our scheme by using the method of
manufactured solutions with periodic boundary conditions. In Table 1 we present the
accuracy of SBP21, SPB42, SBP63 and SBP84 operators in the L2 norm for a non-
conservative problem and approximation (stability conditions from Proposition 6).
Table 1 shows that the solutions computed with the considered SBP operators
converge with the correct second, third, fourth and fifth order, respectively. We
obtain analogous results for a conservative problem with both conservative and non-
conservative approximation.

5.2 The Spectrum

Given that our numerical scheme is accurate, we are now interested in showing that
the interface treatment produces a negative semi-definite spectrum, which converges
to the continuous spectrum. The semi-discrete spectrum is given by the eigenvalues
of P�1 QQ defined in (6). The continuous spectrum of (1) is derived by using the
Laplace Transform technique [5, 7] and is given by the infinite sequence

s D ab

aC b
Œlog.jcdj/C 2i�k� ; k 2 Z with cd ¤ 0: (15)

The real constant d defines the boundary closure through u.�1; t/�dv.1; t/ D 0. In
Fig. 2 we plot the semi-discrete spectrum vs the continuous one for a conservative
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Fig. 2 Continuous and semi-discrete spectrum of fourth order SBP-SAT approximation. Penalty
coefficients �L; �R as in Proposition 7. Parameter setting: a D 2, bD 1, and c D 2

Table 2 Convergence rate of
the semi-discrete spectra as a
function of N grid points for
the non-conservative interface
problem (1) and
semi-discretization (5)

N SBP21 SBP42 SBP63 SBP84

40 2.4430 5.2086 6.1259 10.1153

80 2.0485 4.2217 6.9556 8.9885

160 2.0197 4.0813 5.9620 8.8797

Parameters setting: a D 3, b D 2, c D 3.
Interface penalties �L;R satisfying the stability
conditions of Proposition 5

problem and approximation. We can see that the spectra have eigenvalues with
negative real parts, which implies well-posedness and a stable semi-discretization
as stated in Proposition 4. We get similar plots for the other problems and schemes.

Table 2 show the order of convergence for the semi-discrete spectra to the con-
tinuous spectra for SBP21, SPB42, SBP63 and SBP84 operators. The convergence
rate is computed by measuring the distance between the eigenvalues from the
semi-discrete spectrum and the eigenvalues from the continuous spectrum. Note
that Table 2 show that the convergence is the same as the order of the internal
approximation.

Figure 2 also show that a few discrete eigenvalues are located to the right of
the continuous spectrum. According to the definition of strict stability, [5, 7], the
time growth rate of a strictly stable approximation is bounded by the growth rate of
the corresponding continuous problem. Hence, we prefer that the eigenvalues of the
semi-discrete spectrum lies on the left side of the continuous spectrum. By adding
suitable artificial dissipation to the semi-discretization (5), we can move the discrete
spectrum to the left side of the continuous one without reducing accuracy. Figure 3
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Fig. 3 Close-up of the spectra of the conservative problem plotted in Fig. 2 (left figure). The right
figure shows the same problem approximated by using artificial dissipation

show a close-up of the spectrum of the conservative approximation of the same case
with and without artificial dissipation. The semi-discrete eigenvalues on the right in
Fig. 3 converge from the left side implying strict stability. For a discussion on how
to build artificial dissipation operators for SBP operators without losing accuracy
and stability, see [10].

6 Conclusions

We have presented a complete analysis of the discontinuous coefficient interface
problem. We have shown that a such problem is always well-posed and we have
investigated when it is conservative. We have derived a stable SBP-SAT scheme
which can be made conservative or non-conservative depending on our choice.
We have also shown that the approximation can be made strictly stable by adding
artificial dissipation without reducing the accuracy.
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An Adaptive Fourier Filter for Relaxing Time
Stepping Constraints for Explicit Solvers

Dennis Denker, Rick Archibald, and Anne Gelb

Abstract Filtering is necessary to stabilize piecewise smooth solutions. The
resulting diffusion stabilizes the method, but may fail to resolve the solution near
discontinuities. Moreover, high order filtering still requires cost prohibitive time
stepping. This paper introduces an adaptive filter that controls spurious modes of
the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize
the solution with larger time steps, but also take advantage of the accuracy of a high
order filter.

1 Introduction

Filters are often used to stabilize piecewise smooth solutions. In order to maintain
spectral accuracy away from discontinuities, such filters must decay with high
order smoothness, [2]. Unfortunately, high order filters require small time steps to
maintain stability in partially filtered modes; and achieving high order smoothness
results in diffusion in some innately stable modes. Apart from using filters to
improve accuracy of under-resolved solutions, the resolution of the solution space
can be increased; but this comes at the cost of even smaller step sizes and greater
computational effort per step.

As a way of better balancing accuracy and computational cost, we introduce
an adaptive filter, which maintains stability without diffusion when the numerical
solution is well resolved, but acts as a high order filter when spectral support
is large. The modification to a standard filter is simple to implement and has
negligible computational cost. The numerical tests show this filter can achieve a
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lasting increase in solution accuracy even after the time when solutions become
permanently under-resolved and traditional filtering is required.

This paper is organized as follows: In Sect. 2 the necessary background in filter
construction and the sources of instability are reviewed. In Sect. 3 a simple chop
filter is introduced, which is further refined into an adaptive filter. In Sect. 4 we
present the results of a variety of numerical tests using this filter.

2 Background

It is well known that the pseudo-spectrum of the spatial discretization must sit within
the stability region of the time integration scheme, [5]. Violating this condition leads
to exponential growth of modes with eigenvalues outside the region. Even when
solution spectral support is limited to stable modes, numerical noise can perturb
modes with growth factors larger than one, which then grow exponentially, [3].

A direct solution to this problem is to reduce time step size, which also
increases accuracy, but may be prohibitively expensive computationally. For piece-
wise smooth solutions, filtering promotes stability and can control modes with large
growth factors, [1]. The requirements for high quality filters that promote spectral
accuracy has been well studied, [2].

Definition 1 Let the ratio of a given Fourier frequency to the highest allowable
frequency in the solution space be given by: 	 D jjj

N ; j D �N : : :N. An even
function, � .	/ � 0 is a filter of order q � 2 provided that:

• � .	/ 2 Cq�1 Œ�1;1�
• � .0/ D 1 and � .	/ D 0; 	 � 1
• �.m/ .0/ D �.m/ .1/ D 0;8m 2 Œ1; : : : ; q � 1�
A commonly used filter is the exponential filter, given by:

� .	/ D
(

1; 	 � 	c

e�˛


	�	c
1�	c

�p

; 	 > 	c

(1)

Typically ˛ is chosen such that � .1/ D O ."machine/. The filter acts on modes
starting at 	c and when 	c D 0, we have:

� .	/ D e�˛	p
(2)

Reconstruction quality in smooth regions can be improved by increasing the power
of the exponential filter, p. Stability is better for smaller p, but filter induced
diffusion extends into low frequency modes with smaller values of p and 	c, as
illustrated in Fig. 1. Thus we see that balancing spectral accuracy with performance
leads to filters that introduce some level of diffusion in otherwise stable modes.
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Fig. 1 Illustration of the diffusive effects from a well formed filter that extend into stable modes

3 The Proposed Filter

When a solution has small spectral support it is possible that the exact solution is
zero in the unstable modes. Until the solution expands into unstable regions the only
trigger for instabilities is numerical noise. In particular, one often uses the FFT in
solving nonlinear problems and round-off errors in the FFT are sufficient to perturb
unstable modes that then grow exponentially, [7].

Consider the following filter:

chop
�Ouj
� D

� Ouj;
ˇ̌Ouj

ˇ̌
> �

0;
ˇ̌Ouj

ˇ̌ � � ; � � 5N"Machine (3)

where Ouj is a Fourier coefficient for an individual mode of the solution.
Equation (3) represents a modification of shrink operator used in l1 regularization

problems and the proposal for solving PDEs by maintaining solution sparsity using
this operator, [4, 6]. It was observed that a noise reducing side-effect of the shrink
operator could be applied to a different class of PDEs. For well scaled and well
posed problems,

ˇ̌Ouj

ˇ̌
in modes associated with the actual solution will exceed the

threshold and will be unaffected leaving only noise driven modes to be corrected to
zero. Non-linear PDE terms can introduce data in modes that are indistinguishable
from noise, but in practice for well scaled problems these effects are fleeting and
exist at a level many orders of magnitude smaller than the accuracy of the numerical
scheme.
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Algorithm 1: Adaptive Filter
1: procedure ADAPTIVE_FILTER Ou,�,�
2: for all Ouj do
3: if

ˇ̌Ouj

ˇ̌
< � then

4: Ouj  0

5: support max
�˚jjj W ˇ̌Ouj

ˇ̌
> �

��
6: if support � � then
7: for all Ouj do
8: Ouj  Ouje�˛	p F ˛; 	; p as defined in (2)

The chop filter thus allows time steps that may exceed the CFL condition without
introducing diffusion; and the solution remains stable as long as its instantaneous
support sits in the stability region of the numerical scheme. Nevertheless, problems
of interest will have support that spends some time in unstable regions. During these
periods (3) is not contractive and is completely ineffective at controlling instabilities.
In order to stabilize the solution once the true spectrum expands into the region of
instability a standard filter can be used.

A new threshold parameter, � , can be compared against the size of the spectral
support of the solution to determine whether the filter should merely chop noise or
chop noise as well as apply an exponential filter. The resulting hybrid filter maintains
stability while minimizing diffusive effects when spectral support is small. The
optimal choice for � coincides with the highest stable mode for a given time step.
Larger choices lead to instability, while smaller choices weaken the accuracy gained
with the adaptive filter. A good choice for � , with minimal accuracy impact, can be
found by a bisection-like process to estimate the last stable mode and setting � to a
point one or two modes fewer. The choice for the power of the exponential filter, p,
is the highest possible value that stabilizes the scheme for a given time step.

Algorithm 1 can be optimized substantially. Determination of the size of the
spectrum on line 5 can be found as a side effect of the chop filter on lines 2–4. Other
than making this determination, the chop filter affects each mode independently and
can be made parallel. In addition, the chop operator, (3), requires the determination
of the magnitude of a complex number. Numerical tests show that (4) is a less
expensive alternative to (3) and has no measurable impact on the calculated solution.

chop�
�Ouj
� D

� Ouj;
ˇ̌
Re
�Ouj
�ˇ̌C ˇ̌Im �Ouj

�ˇ̌
> ��

0; otherwise
(4)

The primary requirement for the proposed filter to provide some accuracy gain at
larger step sizes is that the support for the spectrum of the initial condition solution
be smaller than that established by � . Assuming � is chosen as described above, the
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level of improvement achieved by the proposed filter is determined by the growth
rate of the spectral support, whether the spectrum contracts periodically, and the
necessary strength of the exponential filter, p.

4 Numerical Results

In the results that follow we will make use of the following definitions:

Definition 2 Time step acceleration factor,!: The ratio between the smallest stable
time step size for an unfiltered solution and the smallest stable time step size for the
solution using the adaptive filter.

Definition 3 Enduring relative accuracy, � : The ratio of the accuracy in the
solution using only (2) vs. Algorithm 1 at some time after the solution has become
under-resolved and the accuracy of each method is well established.

To demonstrate our new algorithm, we consider the following example:

Example 1

ut C c .x/ ux D 0 (5a)

c .x/ D 1

2
sin2 .ˇx/C 1

�
I u .x; 0/ D cos .x/ (5b)

We used a fourth order Runge-Kutta scheme for time stepping and a spatial
discretization with N Fourier modes.

The form of (5) was chosen to help illustrate the effects of the adaptive filter,
Algorithm 1. With properly chosen constants and initial conditions, the solution
starts out stable and well resolved, the spectrum then grows into the region of
instability and beyond to the region where aliasing can occur.

Figure 2 shows a comparison of the accuracy using the adaptive filter, Algo-
rithm 1, vs. the exponential filter, (2), alone using the equation and filter parameters
in Table 1. In the region 0 � t < 2:26, the solution is stable and the spectrum sits in
a region where the value of the exponential filter is essentially one. The two filters
perform identically. In the region 2:26 � t < 2:98, the spectrum has grown to the
point where the solution is still stable and the adaptive filter is only chopping, but
the exponential filter has become diffusive and the accuracy of the solution suffers.
In the region 2:98 � t < 4:76, the adaptive threshold is periodically exceeded and
the adaptive filter must apply diffusion during some time steps. In this region, the
exponential filter is continually diffusive and accuracy decreases more rapidly than
with the adaptive filter. Finally in the region 4:76 � t the spectrum sits in the region
of instability and aliasing. The adaptive filter frequently acts like the exponential
filter, but the early accuracy gains persist.
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Fig. 2 Illustration of the accuracy gains from the adaptive filter as compared to the exponential
filter

Table 1 Equation and numerical parameters used to produce the results in Figure 2

Equation parameters Filter parameters Results

N p �, chop � , adaptive ! �

ˇ � modes power threshold threshold accel. accuracy

2 20 1000 12 5� 10�13 0.96 1.06 10.54

Figure 3 shows the source of this enduring accuracy gain for the results Fig. 2.
With the strong diffusion of the exponential filter, the spectral support never grows
beyond 75% of the available modes in the numerical solution space. When the
adaptive filter operates as a chop filter, the spectral support grows until it reaches
the adaptive threshold value, � D 0:96. At this point the adaptive filter acts as the
exponential filter and further support growth is limited. The effective resolution of
the method is increased vs. the exponential filter alone.

Using the parameters in Table 2, the problem is solved at a lower resolution
and lower filter power. The results are shown in Fig. 4. Even though the time step
improvement is better, the lower resolution and smaller adaptive threshold, � , lead
to marginal accuracy gains. The solution spends very little time in the region where
the adaptive filter chops and the exponential filter is diffusive.

The parameters and results in Table 3 compare the behavior of the filter at various
spatial resolutions. Such a comparison is difficult. We require that the support of the
true solution spectrum exceeds the capacity of the numerical solution space even for
high resolutions; but at low resolutions the same spectrum causes truncation error
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Fig. 3 Illustration of the larger effective numerical solution support possible with the adaptive
filter

Table 2 Equation and numerical parameters used to produce the results in Figure 4

Equation parameters Filter parameters Results

N p �, chop � , adaptive ! �

ˇ � modes power threshold threshold accel. accuracy

1 18 400 8 5� 10�13 0.85 1.68 1.21

to dominate. To achieve a balance we use the same equation for all resolutions, but
compare the results at the moment when the support of the true solution is 1.75
times the maximum support resolved by the numerical solution space. Additionally,
time step sizes that are unstable at high resolutions become stable at low resolutions
eliminating the need for filtering. So, to produce a reasonable comparison the time
step size needs to be dependent on spatial resolution. We use:

�t D ˛�texponential C .1� ˛/�tstable (6)

where �texponential is the smallest stable time step using the exponential filter and
�tstable is the smallest stable time step with no filtering. We set ˛ to 0.9 which
achieves nearly the time step gains of the exponential filter (2), but provides room
for accuracy gains from the adaptive filter Algorithm 1. Having a different time step
associated with each resolution inevitably creates a resolution dependence in the
error resulting from the accuracy of the time stepping scheme. For the following
tests we use:

c .x/ D 1

2

�
sin2 .x/C 3

2
sin2 .2x/

	
C 1

20
(7)

with the chop threshold, �: 5 � 10�13 and the adaptive filter threshold, � : 0.98.
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Fig. 4 Illustration of the effect of lower resolution on adaptive filter accuracy gains

Table 3 A comparison of adaptive filter accuracy gains using different spatial resolutions

N �t p ! �
��u� uadaptive

��
1

modes time step power acceleration accuracy error

256 0.0317 12 1.43 2.52 2.56e�5

512 0.0154 12 1.45 4.53 3.657e�5

768 0.0104 12 1.47 4.70 6.39e�5

1024 0.0077 12 1.47 5.35 9.54e�5

We see a modest improvement in accuracy between the adaptive filter and the
exponential filter. The ratio gets better as the resolution grows, because the solution
spends more time in the region where the adaptive filter can operate without the
exponential filter. Contrary to what is normally expected, the absolute accuracy of
the solution does not improve with better resolution. This is not a failure of the
technique, but instead a consequence of the tests being designed to have a consistent
portion of true solution support in the numerical solution space when measurements
are made. The same test is performed in Table 4, but with lower filter power. With
the lower power, larger time steps are possible, but there is also more diffusion; and
the adaptive filter’s accuracy improves compared to the exponential filter.

Similar numerical tests were also performed on Burger’s equation and the KDV
equation, showing modest accuracy improvements as well.
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Table 4 A comparison of adaptive filter accuracy gains using different spatial resolutions, but
with a lower exponential filter power

N �t p ! �
��u� uadaptive

��
1

modes time step power acceleration accuracy error

256 0.0359 8 1.65 4.56 0.0003

512 0.0179 8 1.71 7.08 0.0005

768 0.0120 8 1.71 8.36 0.0008

1024 0.009 8 1.73 9.40 0.0011

5 Conclusion

The accuracy gains achieved with the adaptive filter are highly dependent on the
PDE being solved and the particular parameters that are chosen as well as the
degree to which the CFL condition is exceeded. Certain configurations result in very
small accuracy gains. Nonetheless, in all numerical tests that were performed the
adaptive filter with stability maintaining parameters outperformed the exponential
filter alone. The computational cost and development time of the adaptive filter are
negligible, making it a simple addition to standard filtering techniques. With the
current algorithm, the choice of the adaptive threshold parameter, � , is left to the
implementer. Maximum accuracy gains occur when this parameter is just below the
first unstable mode, future versions of this algorithm could determine the proper
value for the parameter by analyzing the growth factors for the equation in question
dynamically.
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High Order Finite Difference Schemes
for the Heat Equation Whose Convergence Rates
are Higher Than Their Truncation Errors

A. Ditkowski

Abstract Typically when a semi-discrete approximation to a partial differential
equation (PDE) is constructed a discretization of the spatial operator with a
truncation error � is derived. This discrete operator should be semi-bounded for
the scheme to be stable. Under these conditions the Lax–Richtmyer equivalence
theorem assures that the scheme converges and that the error will be, at most, of the
order of k�k. In most cases the error is in indeed of the order of k�k.

We demonstrate that for the Heat equation stable schemes can be constructed,
whose truncation errors are � , however, the actual errors are much smaller. This
gives more degrees of freedom in the design of schemes which can make them
more efficient (more accurate or compact) than standard schemes. In some cases the
accuracy of the schemes can be further enhanced using post-processing procedures.

1 Introduction

Consider the differential problem:

@ u

@t
D P

�
@

@x

	
u ; x 2 ˝ � R

d ; t � 0 (1)

u.t D 0/ D f .x/ :

where u D .u1; : : : ; um/
T and P .@ =@x/ is a linear differential operator with

appropriate boundary conditions. It is assumed that this problem is well posed, i.e.
9K.t/ <1 such that jju.t/jj � K.t/jjf jj, where typically K.t/ D Ke˛t.
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Let Q be the discretization of P .@ =@x/ where we assume:

Assumption 1: The discrete operator Q is based on grid points fxjg, j D 1; : : : ;N.
Assumption 2: Q is semi-bounded in some equivalent scalar product .�; �/H D
.�;H�/, i.e

.w;Qw/H � ˛ .w;w/H D ˛ kwk2H : (2)

Assumption 3: The local truncation error vector of Q is Te which is defined, at
each entry j by

.Te/j D
�
Pw.xj/

� � .Qw/j ; (3)

where w.x/ is a smooth function and w is the projection of w.x/ onto the grid. It

is assumed that kTek N!1����! 0.

Consider the semi-discrete approximation:

@ v
@t
D Qv ; t � 0 (4)

v.t D 0/ D f :

Proposition Under Assumptions 1–3 The semi-discrete approximation converges.

Proof Let u is the projection of u.x; t/ onto the grid. Then, from assumption 3,

@u
@t
D Pu D QuC Te : (5)

Let E D u � v then by subtracting (4) from (5) one obtains the equation for E,
namely

@E
@t
D QEC Te : (6)

Next, by taking the H scalar product with E, using assumption 2 and the Schwartz
inequality the following estimate can be derived

�
E;
@E
@t

	
H

D 1

2

@

@t
.E;E/H D kEkH

@

@t
jjEkH D .E;QE/H C .E;Te/H

� ˛ .E;E/H C kEkH kTekH :

Thus

@

@t
kEkH � ˛ kEkH C kTekH : (7)
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Therefore:

kEkH .t/ � kEkH .t D 0/e˛t C e˛t � 1
˛

max
0���t

kTekH
N!1����! 0 : (8)

Here we assumed that kEkH .t D 0/ is either 0, or at least of the order of machine
accuracy. Equation (8) establishes the fact that if the scheme is stable and consistent,
the numerical solution v converges to the projection of the exact solution onto the
grid, u. Furthermore, it assures that the error will be at most in the truncation error
kTekH . This is one part of the landmark Lax–Richtmyer equivalence theorem for
semi-discrete approximation. See e.g. [6].

Due to this and similar results the common way for constructing finite difference
schemes is to derive a semi-bounded Q with proper truncation error. Typically the
error kEkH is indeed of the order of kTekH.

It should be noted, however, that (6) is the exact equation for the error dynamics,
while (8) is an estimate. In this paper we present finite difference schemes in which
the errors are smaller than their truncation errors. It is well known that boundary
conditions can be of one order lower accuracy without destroying the convergence
rate expected from the approximation at inner points, see e.g. [1, 4, 5, 9]. In [5, 9]
it was shown that for parabolic, incompletely parabolic and 2nd-order hyperbolic
equations the boundary conditions can be of two order less. Here, however, we
consider low order truncation errors in most or all of the grid points.

This paper is constructed as follows; in Sect. 2 we present a preliminary example
and illustrate the mechanism which reduces the error. In Sect. 3 we present a two-
point block scheme which has a first order truncation error but has a second or third
order error. In Sect. 4 two three-point block schemes are presented. Discussion and
remarks are presented in Sect. 5.

2 Preliminary Example

Consider the heat equation

@ u

@t
D @2 u

@x2
C F.x; t/ ; x 2 Œ0; 2�/ ; t � 0

u.t D 0/ D f .x/ (9)

with periodic boundary conditions.
Let the scheme be:

@ vj

@t
D DCD�vj C .�1/j c vj C Fj.t/ I xj D jh; h D 2�=N ; N is even

vj.t D 0/ D fj (10)
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Fig. 1 Convergence plots, log10 kEk vs. log10 N, for different values of c. (a): Scheme (10).
(b): Scheme (16)

where Fj.t/ is the projection of F.x; t/ onto the spatial grid. The truncation error is

.Te/j D
h2

12

�
uj
�

xxxx
C O.h2/ � .�1/j c vj D O.1/ : (11)

Formally, this scheme is not consistent. The scheme (10) was run with the initial
condition f .x/ D cos.x/, F D 0 and N D 32; 64; : : : ; 1024 with forward-Euler
time propagator. The plots of log10 kEk vs. log10 N, at tfinal D 2� , for c D 0; 0:5; 1

are presented in Fig. 1a. It can be seen that this is a second order scheme.
In order to understand this phenomenon let us consider one high frequency mode

of the error.1 Denote .Tc/j D .�1/j c vj. This term can also be written as:

.Tc/j D .�1/j c h˛ D ch˛ eiNxj=2 (12)

For the scheme (10) ˛ D 0. The equation for the error term caused by Tc is

@Ec

@t
D DCD�Ec C Tc (13)

Since .Ec/j D OEc eiNxj=2
p
2� , OEc 2 C, then the equation for OEc is

@ OEc

@t
D �

�
N

2

	2
OEc C c0h˛ (14)

1This scheme was presented for demonstrating the phenomenon that the error, due to high
frequency modes, is lower than the truncation error. As this is not a practical scheme, full analysis
of the error is not presented, only a demonstration of the dynamics of high frequency error modes
is presented. Full analysis is given for the scheme presented in the next section.
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Therefore,

kEck .t/ D
ˇ̌
ˇ OEc

ˇ̌
ˇ .t/ D

ˇ̌
ˇ OEc

ˇ̌
ˇ .0/e�. N

2 /
2
t C

�
2

N

	2 

1 � e�.

N
2 /

2
t
�

c0h˛ (15)

�
ˇ̌
ˇ OEc

ˇ̌
ˇ .0/e�. N

2 /
2
t CO

�
h˛C2

�

Note that the actual error, kEck .t/, is two orders lower that the truncation error,
kTck. In the next sections we present practical schemes which utilize this idea.

3 Two-Point Block, 3rd Order Scheme

Let the grid be: xj D j h, h D 2�=.N C 1/ and xjC1=2 D xj C h=2, j D 0; : : :N.
Altogether there are 2.NC1/ points with spacing of h=2. For simplicity, we assume
that N is even.

Consider the approximation:

d2

dx2
uj � 1

.h=2/2
��

uj�1=2 � 2uj C ujC1=2

� C c
��uj�1=2 C 3uj � 3ujC1=2 C ujC1

�

(16)

d2

dx2
ujC1=2 � 1

.h=2/2
��

uj � 2ujC1=2 C ujC1

� C c
�
uj�1=2 � 3uj C 3ujC1=2 � ujC1

�

The truncation errors are:

.Te/j D
1

12

�
h

2

	2 �
uj
�

xxxx
C c

"�
h

2

	 �
uj
�

xxx
C 1

2

�
h

2

	2 �
uj
�

xxxx

#
C O.h3/

D O.h/ (17)

.Te/jC 1
2
D 1

12

�
h

2

	2 

ujC 1

2

�
xxxx
C c

"
�
�

h

2

	

ujC 1

2

�
xxx
C 1

2

�
h

2

	2 

ujC 1

2

�
xxxx

#

CO.h3/ D O.h/

The motivation leading to this scheme is that the highly oscillating O.h/ error
terms will be dissipated, as in the previous example, while the O.h2/ terms will
be canceled, for the proper value of c.
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3.1 Analysis

Let ! 2 f�N=2; : : : ;N=2} and

� D
8<
:
! � .N C 1/ ! > 0

! C .N C 1/ ! � 0
(18)

Then

ei!xj D ei�xj and ei!xjC1=2 D �ei�xjC1=2 : (19)

We look for eigenvectors in the form of:

 k.!/ D ˛kp
2�

0
BBBB@

:::

ei!xj

ei!xjC1=2

:::

1
CCCCAC

ˇkp
2�

0
BBBB@

:::

ei�xj

ei�xjC1=2

:::

1
CCCCA (20)

where, for normalization, it is require that j˛kj2 C jˇkj2 D 1, k D 1; 2. The
expressions for ˛k, ˇk and the eigenvalues (symbols) OQk are:

˛1 D

2
666664

vuuuut
1C

c2 cos.4.h=2/!/C 4.2c � 1/� cos..h=2/!/C 4.c.7c � 8/C 2/
� cos.2.h=2/!/C .35c � 32/cC 8

2c2.2 sin..h=2/!/C sin.2.h=2/!//2

3
777775

�1

(21)

ˇ1 D � i..8c � 4/ cos..h=2/!/C�/
2c.2 sin..h=2/!/C sin.2.h=2/!//˛�1

1

(22)

ˇ2 D

2
66664

vuuuut1C 2c2.2 sin..h=2/!/C sin.2.h=2/!//2

c2 cos.4.h=2/!/C 4.1 � 2c/� cos..h=2/!/C 4.c.7c � 8/C 2/
� cos.2.h=2/!/C .35c � 32/cC 8

3
77775

�1

(23)

˛2 D �2ic.2 sin..h=2/!/C sin.2.h=2/!//

..4 � 8c/ cos..h=2/!/C�/ˇ�1
2

(24)
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where

� D
p
2c2 cos.4.h=2/!/C 38c2 C 8.c � 1/.3c � 1/ cos.2.h=2/!/ � 32cC 8

(25)

and the

OQ1;2.!/ D �4C 2c.cos.2.h=2/!/C 3/˙�
2.h=2/2

: (26)

It can be shown that the eigenvalues are real and non positive for jcj < 1=2.
Therefore the scheme is stable.

For !h 1 the eigenvalues and eigenvectors are:

OQ1.!/ D �!2 C .1C 4c/!4

12 � 24c

�
h

2

	2
C O.h4/ (27)

˛1 D 1 � c2

32.1 � 2c/2

�
!h

2

	6
C O

�
h7
�
; ˇ1 D � ic

4 � 8c

�
!h

2

	3
C O.h5/ (28)

and

OQ2.!/ D �4 � 8c

(h/2)2
C .1 � 4c/!2 CO.h2/ (29)

˛2 D ic

2c � 1
�
!h

2

	
C O.h3/ ; ˇ2 D 1CO.h2/ (30)

If the initial condition is

vj.0/ D ei!xj ; vjC 1
2
.0/ D e

i!xjC 1
2 I !2h 1 (31)

then

.v/j .t/ D e�!2t

 
1� .1C 4c/!2t

12 � 24c

�
!h

2

	2
CO.h4/

!
ei!xj

C
 
� ic

4 � 8c

�
!h

2

	3
CO.h5/

!
ei�xj (32)

The same expression hold for xjC 1
2
. Therefore the scheme is, in general, 2nd

order and it is 3rd order if c D �1=4. Note that by naive analysis of the truncation
error terms, (17), one would expect to get 3rd order with c D �1=6.

We used the approximation (16) for solving the heat equation (9), where F.x; t/
and the initial condition were chosen such that the exact solution is u.x; t/ D
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exp.cos.x � t//. The scheme was run with N D 32; 64; : : : ; 1024. 4th order Runge–
Kutta scheme was used for time integration. The plots of log10 kEk vs. log10 N for
c D 0; 1=6;�1=6;�1=4 are presented in Fig. 1b. As can be seen, the results are as
predicted by the analysis.

4 Three-Point Block

In this section we briefly present two schemes which are based on three-point block.
Here we use the grid, xj D j h, h D 2�=.N C 1/ with the internal block nodes
xjC1=3 D xjC h=3 and xjC2=3 D xjC 2h=3, j D 0; : : :N. Altogether there are 3.NC 1/
points with spacing of h=3.

three-point block, 3rd order scheme
Consider the approximation:

d2

dx2
uj D 1

4.h=3/2
��
4uj�1=3 � 8uj C 4ujC1=3

�

Cc
��uj�1=3 C 3uj � 3ujC1=3 C ujC2=3

� C O.h/

d2

dx2
ujC1=3 D 1

4.h=3/2
��
4uj � 8ujC1=3 C 4ujC2=3

� C O.h2/ (33)

d2

dx2
ujC2=3 D 1

4.h=3/2
��
4ujC1=3 � 8ujC2=3 C 4ujC1

�

Cc
�
uj � 3ujC1=3 C 3ujC2=3 � ujC1

� C O.h/

This scheme was run under the same conditions as the example in Sect. 3. As in
the previous example the truncation error is of O.h/, however this is a 2nd order
scheme and 3rd order for c D 1:340. The convergence results are presented in
Fig. 2a.

three-point block, 5th order scheme

d2

dx2
uj D 1

12.h=3/2
���uj�2=3 C 16uj�1=3 � 30uj C 16ujC1=3 � ujC2=3

� C
c
�
uj�2=3 � 5uj�1=3 C 10uj � 10ujC1=3 C 5ujC2=3 � uj

� C O.h3/

d2

dx2
ujC1=3 D 1

12.h=3/2
���uj�1=3 C 16uj � 30ujC1=3 C 16ujC2=3 � uj

� C O.h4/

(34)

d2

dx2
ujC2=3 D 1

12.h=3/2
���uj C 16ujC1=3 � 30ujC2=3 C 16ujC1 � ujC4=3

� C
c
��uj�1=3 C 5uj � 10ujC1=3 C 10ujC2=3 � 5ujC1 C ujC4=3

� C O.h3/
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Fig. 2 Convergence plots, log10 kEk vs. log10 N, for different values of c. (a):Scheme (33).
(b): Scheme (34)

This scheme was run under the same conditions as the previous examples, with the
exception that now a 6th order Runge–Kutta scheme was used for time integration.
Here the truncation error is of O.h3/, however this is a 4th order scheme and 5th
order for c D �0:385. The convergence results are presented in Fig. 2b.

It should be noted that by taking c D 1 the coefficients of uj�2=3 and ujC4=3 are 0.
Therefore the scheme is more ‘compact’ than standard explicit 4th order scheme in
the sense that the scheme depends only on one term, on each side, out of the three-
point block uj; ujC1=3; ujC2=3. Potentially, this thinner stencil helps in the derivation
of boundary schemes for initial-boundary value problems.

5 Summary

In this paper we presented a few block-finite-difference schemes in which the
actual errors are much smaller than their truncation errors. This reduction of error
was achieved by constructing the truncation errors to be oscillatory and using the
dissipative property of the scheme.

A comparison between standard and block finite difference schemes in terms of
the number of points out of the cell and operation count is presented in Table 1.
As can be seen, in terms of accuracy and computational cost the 3rd and 5th order
schemes are between the standards 2nd and 4th order and 4th and 6th order schemes
respectively.

If c D �1=4 in the two-point block, 3rd order scheme (16), the leading term in the
error is highly oscillatory, see (32). It was suggested by Jennifer K. Ryan (J. Ryan,
Private communication) that this term can be filtered by post-processing. In this
technique the high frequency error terms are filtered using convolution with a proper
kernel. This method was successfully applied to the discontinuous Galerkin method.
As this filtering is done only once, after the final time step, the cost is minimal, see
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Fig. 3 Convergence plots, log10 kEk vs. log10 N, for scheme (16), c � 1=4. with no post-
processing, with spectral filter and with the filter suggested in [3]

e.g. [2, 3, 8]. Here we used a global spectral filter and the local filter suggested in [3].
As can be seen in Fig. 3, the filtered scheme is 4th order accurate. The difference
between both kernels is that the global filter is more computationally expensive,
O.N log N/ for proper values of N, but is accurate for small values of N while the
local filter requires only O.N/ operation but is accurate only for large values of N.
The investigation of which is the optimal filter for these schemes is a topic for future
research.

It should be noted that finite difference representations of discontinuous Galerkin
schemes for the heat equation have a similar form to the schemes presented above.
They may also present similar enhancing of accuracy. See [10]. This manuscript was
the inspiration to the current work. As was also pointed out in [10] the increasing of
accuracy may be related to a phenomenon called Supra-Convergence [7].

Further research of the properties and implementations of these schemes as well
as the existence of these kinds of schemes for hyperbolic problems are topics for
future research.
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Hybrid Compact-WENO Finite Difference
Scheme For Detonation Waves Simulations

Yanpo Niu, Zhen Gao, Wai Sun Don, Shusen Xie, and Peng Li

Abstract The performance of a hybrid compact (Compact) finite difference
scheme and characteristic-wise weighted essentially non-oscillatory (WENO)
finite difference scheme (Hybrid) for the detonation waves simulations is
investigated. The Hybrid scheme employs the nonlinear 5th-order WENO-Z
scheme to capture high gradients and discontinuities in an essentially non-
oscillatory manner and the linear 6th-order Compact scheme to resolve the
fine scale structures in the smooth regions of the solution in an efficient and
accurate manner. Numerical oscillations generated by the Compact scheme is
mitigated by the high order filtering. The high order multi-resolution algorithm
is employed to detect the smoothness of the solution. The Hybrid scheme
allows a potential speedup up to a factor of three or more for certain classes
of shocked problems. The simulations of one-dimensional shock-entropy wave
interaction and classical stable detonation waves, and the two-dimensional
detonation diffraction problem around a 90ı corner show that the Hybrid
scheme is more efficient, less dispersive and less dissipative than the WENO-Z
scheme.
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1 Introduction

Detonation is a complex phenomenon that involves a shock front followed by
a reaction zone. Accurate and efficient numerical simulations of a mathematical
model of detonation waves provide a way to obtain insights in the physical problems
and guide researchers to have a deeper understanding of the physics and to design
better experiments.

Characteristic-wise WENO conservative finite difference schemes on an equidis-
tant stencil as a class of high order/resolution nonlinear scheme for solutions of
hyperbolic conservation laws in the presence of shocks and small scale structures
was initially developed in [11] (for details and history of WENO scheme, see
[14] and references contained therein). It has been shown that the WENO-Z
scheme [1, 3] is less dissipative and has higher resolution power than the classical
WENO-JS scheme [11] for a larger class of problems. High order compact finite
difference (Compact) schemes are sufficiently accurate to resolve both small and
large scale structures presented at direct numerical simulation of highly complex
flows. However, when applied to simulate the propagation of detonation waves
near the detonation front exhibiting high gradients and discontinuities, known as
the Gibbs phenomenon, that causes loss of accuracy and numerical instability.

In this work, we aim at the conjugation of high order Compact scheme and the
WENO-Z scheme (Hybrid) for numerical simulations of detonation waves. The 5th-
order characteristic-wise WENO-Z finite difference scheme and 6th-order Compact
finite difference scheme are employed to resolve solutions in the non-smooth parts
and the smooth parts of the solution respectively. A high order multi-resolution
analysis [9] is performed at every Runge-Kutta step to measure the degree of
smoothness at a given grid point to maintain the high order/resolution nature of
the Hybrid scheme.

The paper is organized as follows. In Sect. 2, a very brief introduction to
the WENO-Z scheme, the Compact scheme and the Hybrid scheme for solving
hyperbolic conservation laws on uniform cells are given. In Sect. 3, the one-
dimensional shock-entropy wave interaction and classical stable detonation waves,
and the two-dimensional detonation diffraction problem around a 90ı corner are
simulated by the Hybrid scheme and their results are discussed. Conclusions are
given in Sect. 4.

2 Hybrid Compact-WENO Finite Difference Scheme

The nonlinear system of hyperbolic conservation laws can be written compactly as

@Q
@t
C r � F.Q/ D S; (1)
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where Q;F and S are vectors of the conservative variables, flux and source term
respectively.

Consider a uniformly spaced grid defined by the points xi D i�x; i D 0; : : : ;N,
which are called cell centers, with cell boundaries given by xiC 1

2
D xi C �x

2
, where

�x is the uniform cell size. The semi-discretized form of (1) is transformed into the
system of ordinary differential equations and solved by the method of lines

dQi.t/

dt
D � @f

@x

ˇ̌
ˇ̌
xDxi

; i D 0; : : : ;N; (2)

where Qi.t/ is a numerical approximation to the cell-averaged value Q.xi; t/.

2.1 Weighted Essentially Non-Oscillatory Schemes

The 5th-order WENO-Z scheme [1, 3] defines the nonlinear weights !Z
k as

˛Z
k D

dk

ˇZ
k

D dk

�
1C

�
�5

ˇk C �
	p	

; !Z
k D ˛Z

k=

2X
lD0

˛Z
l ; k D 0; 1; 2; (3)

where �5 D jˇ0 � ˇ2j, which has a leading truncation error of order O.�x5/. In
contrary, the leading truncation error of ˇk are of order O.�x2/ in an absence of
critical points [5]. The sensitivity and power parameters are � D 10�12 and p D
2, respectively.

˚
d0 D 3

10
; d1 D 3

5
; d2 D 1

10

�
are the ideal weights that, when the

solution is sufficiently smooth, one has !k � dk and the WENO-Z scheme becomes
the optimal 5th-order central upwind scheme.

2.2 Compact Finite Difference Schemes

A 6th-order (cr D 6) compact finite difference scheme [12] approximates the
derivative of a function on a uniformly spaced grids can be written compactly as

Ag0 D BgC b; (4)
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where A and B are the banded coefficient matrices,

A D

0
BBBBB@

1 1=3

1=3 1 1=3

: : :
: : :

: : :

1=3 1 1=3

1=3 1

1
CCCCCA
; B D 1

36�x

0
BBBBBBBB@

0 28 1

�28 0 28 1

�1 �28 0 28 1
: : :

: : :
: : :

: : :
: : :

�1 �28 0 28

�1 �28 0

1
CCCCCCCCA
:

The vector b is

b D 1

36�x
.�g�1 � 28g0;�g0; 0; � � �; 0; gN; 28gN C gNC1/

T � 1
3

�
g0
0; 0; 0; � � �; 0; 0; g0

N

�T
;

where g�1 D g.x0��x/ and gNC1 D g.xNC�x/ are the ghost points. The derivatives
at the two boundary points g00 and g0N are computed by the WENO-Z scheme.

2.3 Hybrid Scheme

By performing a high order MR analysis [9, 10] of a given variable (usually density),
a MR flag Flag is specified by

Flagi D
�
1; jdij > �MR Non-Smooth;
0; otherwise Smooth;

(5)

where di is the MR coefficient at xi which measures the error in approximating the
function by a high degree polynomial (8th) and �MR is the MR tolerance parameter
(�MR D 10�3 in this study.) Readers are referred to [4, 9] for details on the MR
analysis. In the Hybrid scheme, a buffer zone is created around each cell that
is flagged as non-smooth with Flagi D 1 to allow a smooth transition between
non-smooth and smooth stencils. Then, the PDEs (1) is solved by the WENO-Z
and Compact schemes at non-smooth and smooth stencils respectively. In smooth
stencils, the numerical fluxes on the non-smooth zones obtained by the WENO
scheme are saved and automatically used as the internal boundary fluxes needed
by the Compact scheme, and an 8th-order finite difference filtering is applied to
stabilize the Hybrid scheme ([15]).

The resulting system of ordinary differentiation equations (ODEs) resulted from
the spatial discretization is advanced in time via the third order TVD Runge-Kutta
scheme [1]. The CFL condition is set to be CFL D 0:4 in this study. Readers
are referred to [4, 6] for details. We would like to remark that, in implementation,
the Hybrid Compact-WENO scheme is different from the Hybrid Central-WENO
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scheme [6] where the central scheme can first be applied at all grid points, and the
solution in the non-smooth stencils are then updated by the WENO scheme.

3 Governing Equations and Numerical Results

For the one-dimensional unsteady reactive Euler equations with a perfect ideal gas
coupled with one step irreversible chemical reaction, one has, from (1),

Q D .
; 
u; E; 
f1/; F D .
u; .
u2 C P/; .EC P/u; 
f1u/; S D .0; 0; 0; P!/;
(6)

where 
 is density, P is pressure, u is velocity, and 0 � f1 � 1 is the reactant
mass fraction. The total specific energy, with an addition of energy 
f1q0 generated
through the chemical reaction, is given by E D P

��1 C 1
2

u2 C 
f1q0. The source

term consists of the energy production term in the form of P!.T; f1/ D �K
f1e�Ea=T

where � is the ratio of specific-heat (� D 1:2 is used in this study), q0 is the heat-
release parameter, Ea is the activation-energy parameter, and K is a pre-exponential
factor that sets the spatial and temporal scales. The temperature T D P=
R, R is the
specific gas constant (R D 1 in this study). Readers are referred to [7, 8] for details
on the initial conditions and the boundary conditions.

3.1 Shock Interaction with Small Entropy Wave

To demonstrate the performance of the Hybrid scheme in terms of accuracy and
efficiency, we solve the source-less Euler equations (6) in simulating a right moving
Mach 3 shock interacting with a small amplitude sinusoidal perturbation of the
entropy in the pre-shock region. The initial condition is

.
; u;P/ D
(
. 27

7
; 4
p
35
9
; 31
3
/; x � x0;

. exp.�" sin.k.xC x0///; 0; 1 /; x > x0;

where x 2 Œ�10; 10�; " D 0:01; x0 D �9:5 and k D 13. The final time is tf D 5.
Since there is no exact solution for this problem, the numerical solution computed
by the WENO-JS9 scheme with N D 10;240 uniform cells is used as the reference
solution.

The left figure of Fig. 1 shows that the MR analysis captures the location of
the shock very well. In the middle and right figures of Fig. 1, it is clear from the
evolution of the small amplitude high frequency entropy waves behind the main
shock that the wave form computed by the Hybrid scheme has no discernible
dissipation and dispersion errors over time at both lower and higher resolutions.
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Fig. 1 (Left) The entropy and WENO flag (red and green solid lines) of the Hybrid scheme,
(Middle) and (Right) close-up view of entropy as computed by the WENO-Z and Hybrid schemes
with N D 1500 and N D 2560 at the final time tf D 5

Table 1 Comparative CPU
timing and speedup for the
shock-entropy wave
interaction

2r � 1 cr N WENO-Z Hybrid Speedup

5 6 1500 7.3 2.5 2.9

2560 20.5 5.9 3.5

In contrary, those computed by the WENO-Z scheme are severely dampened at a
lower resolution and increasingly less so at the higher resolution. Table 1 gives the
comparative CPU timing and speedup of both schemes. We observe that the Hybrid
scheme is at least three times faster than the WENO-Z scheme.

3.2 One-Dimensional Detonation Waves

Here we evaluate the performance of the Hybrid scheme by simulating the one-
dimensional stable detonation waves with the parameters f D 1:8; q0 D 50; Ea D
50; K D 145:69 and the final time tf D 100. The physical domain is set to be x D
Œ120; 180� with PML layer x D Œ120; 130� and the location of the initial detonation
front at xd D 160. Readers are referred to [6] for details. The numerical solution
computed by the WENO-Z scheme with N D 4800 uniform cells serves as the
reference solution.

The left figure of Fig. 2 gives the density spatial profiles showing that the MR
analysis captures the location of the detonation front very accurately. The peak
pressure temporal histories Pm.t/ computed by the Hybrid and WENO-Z schemes
with several resolutions at the time tf D 100 are shown in the right figure of Fig. 2,
which agree well with those given in [2, 13]. At the lower resolution N D 1800,
the temporal history of the peak pressure of both schemes is oscillatory and does
not seem to reach a steady state. As one increases the resolution to N D 3000,
both schemes reach the constant steady state solution with a value slightly lower
than the reference solution. Table 2 gives the comparative CPU timing and speedup,
which shows that the Hybrid scheme is at least three times faster than the WENO-Z
scheme.



Hybrid Compact-WENO Finite Difference Scheme For Detonation Waves Simulations 185

Fig. 2 (Left) The density and WENO flag (green and red solid lines) of the Hybrid scheme and
(Right) the peak pressure temporal histories Pm.t/ of detonation waves with the overdrive factor
f D 1:8 at the final time tf D 100

Table 2 Comparative CPU
timing and speedup for the
one-dimensional detonation
waves

2r � 1 cr N WENO-Z Hybrid Speedup

5 6 1800 295 77 3.8

3000 815 205 4.0

3.3 Two-Dimensional Detonation Diffraction problem

In this section, we consider the detonation diffraction problem. It is numerically
challenging especially for the high order schemes because the pressure and density
may drop very close to zero when the shock wave is diffracted around an obstacle
making an 90o angle turn (see Fig. 4). The initial condition is

.
; u; v;E; f1/ D
�
. 11; 6:18; 0; 970; 1/; x < 0:5;
. 1; 0; 0; 55; 1/; otherwise;

:

The physical domain is set to be .x; y/ D Œ0; 5�� Œ0; 5�. The boundary conditions are
reflective except that at x D 0; .
; u; v;E; f1/ D .11; 6:18; 0; 970; 1/. The uniform
cells used are Nx � Ny D 400 � 400 and Nx � Ny D 1000 � 1000. The final time is
tf D 0:6.

As shown in Fig. 3, the MR analysis captures the detonation front very accurately.
In Fig. 4, the density and pressure computed by the Hybrid scheme at tf D 0:6

are in a very good agreement with those in [16]. The solution computed by the
WENO-Z scheme is omitted as they are very similar to the one computed by the
Hybrid scheme. One can see that the density becomes very small when the flow
expands around the corner and is well handled by the Hybrid scheme. In Table 3,
the comparative CPU timing and speedup show that the Hybrid scheme is at least
two and half times faster than the WENO-Z scheme.
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Fig. 3 The multi-resolution flags in the x- and y-directions of detonation diffraction around a 90ı

corner computed by the Hybrid scheme with the uniform cells Nx � Ny D 400 � 400

Fig. 4 The density and pressure of detonation diffraction around a 90ı corner as computed by the
Hybrid scheme with the uniform cells Nx � Ny D 400 � 400
Table 3 Comparative CPU
timing and speedup for the
two-dimensional detonation
diffraction problem

2r � 1 cr Nx � Ny WENO-Z Hybrid Speedup

5 6 400� 400 1697 691 2.5

1000� 1000 27,980 8430 3.3

4 Conclusion

We studied the performance of the hybrid Compact-WENO finite difference scheme
(Hybrid) in the simulations of detonation waves. The Hybrid scheme is used
to keep the solutions parts displaying high gradients and discontinuities always
captured by the WENO-Z scheme in an essentially non-oscillatory manner while
the smooth parts are highly resolved by a more efficient and high resolution
compact finite difference scheme and to speedup the computation of the overall
scheme. Here, the 5th-order WENO-Z schemes and the 6th-order Compact scheme
are conjugated in the discontinuous and smooth parts respectively. To detect the
smooth and discontinuous parts of the solutions, a high order multi-resolution
algorithm was used. The 8th-order finite difference filter was used to mitigate the
numerical oscillations of the Compact scheme. We conducted several numerical
comparisons between the WENO-Z and Hybrid schemes in the simulations of the
one-dimensional shock-entropy wave interaction, stable detonation waves and two-
dimensional detonation diffraction problem. The results showed that the Hybrid
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scheme can be three times faster than and as accurate as the WENO-Z scheme.
The FORTRAN 95 program is written based on subroutines contained in the high
performance software library HOPEpack.
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Higher Order Accurate Solutions for Flow
in a Cavity: Experiences and Lessons Learned

Peter Eliasson, Marco Kupiainen, and Jan Nordström

Abstract Experiences from using a higher order accurate finite difference multi-
block solver to compute the time dependent flow over a cavity is summarized.
The work has been carried out as part of a work in a European project called
IDIHOM in a collaboration between the Swedish Defense Research Agency (FOI)
and University of Linköping (LiU). The higher order code is based on Summation
By Parts operators combined with the Simultaneous Approximation Term approach
for boundary and interface conditions. The spatial accuracy of the code is verified
by calculations over a cyclinder by monitoring the decay of the errors of known
wall quantities as the grid is refined. The focus is on the validation for a test case
of transonic flow over a rectangular cavity with hybrid RANS/LES calculations.
The results are compared to reference numerical results from a second order finite
volume code as well as with experimental results with a good overall agreement
between the results.

1 Introduction

The project IDIHOM (Industrialization of High-Order Methods—a Top-Down
Approach) is a collaboration between 21 European partners from universities,
research establishments and industries. The objective of the project is to indus-
trialize the higher order methods and CFD codes to handle industrial type of
applications. Within the scope of IDIHOM, FOI and LiU have jointly been further
developing a higher order finite difference CFD code for multiblock structured grids.
The current paper focuses on the validation of a calculation using a formally third
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order accurate approach in space for calculations of the unsteady, turbulent transonic
flow over a rectangular cavity with experimental comparisons.

The next section summarizes the computational approach including a short
description of a tool that has been used to make reference calculations. Section 3
describes the verification for flow over a cylinder by a study of the decay of errors
of known wall quantities as the grid is refined. The cavity flow calculations are then
presented and in Sect. 4 we summarize and make concluding remarks.

2 Computational Tools

The higher order finite difference solver, called Essense, is based on Summation
By Parts (SBP) operators combined with the Simultaneous Approximation Term
(SAT) approach with penalty terms that guarantee accuracy and stability [1–5]. The
code is able to handle arbitrary order of spatial accuracy, but is currently limited
to fifth order. The code uses central difference operators for the approximation of
the first derivative, DU D P�1QU, where P is a block diagonal positive matrix
containing the step size and where Q is an almost block skew symmetric difference
matrix. The Navier-Stokes equations are transformed to a curvilinear coordinate
system where the differentiation is carried out separately in each direction. The
transformation contains metric first derivatives which are differentiated with the
same technique. Second differences, as in the viscous terms, are computed by
applying the first difference operator twice. Since the difference operator is central,
artificial dissipation is added to stabilize the computations [6]. No shock capturing
has been applied for the computations described here.

Weak boundary conditions are applied on all boundaries including wall boundary
conditions, far-field boundary conditions and interface conditions between blocks.
A common feature for all boundary and interface conditions is that they are enforced
through penalty terms multiplying the difference of the unknown quantity and the
corresponding prescribed data. The data, the size of the penalties and the number
of boundary conditions depend of the specific boundary condition. Explicit time
stepping with a fourth order accurate additive Runge-Kutta scheme is used to
integrate the governing equations in time.

The parallel implementation utilizes domain decomposition for each block of
the multiblock grid. Point-to-point communication is done by using so called halo-
zones of half the width of the central SBP-operator. The communication across
the different grids yields a possibly one-to-many and many-to-one communication
pattern, which may have an adverse effect on load-balancing and scalability [7].

The higher order results for the cavity are compared to reference results from a
formally second order accurate CFD solver, the Edge code, being an edge- and node-
based Navier-Stokes flow solver applicable for both structured and unstructured
grids [8–10]. Edge is based on a finite volume formulation where a median dual
grid forms the control volumes with the unknowns allocated in the centers. The



Higher Order Accurate Solutions for Flow in a Cavity: Experiences and Lessons. . . 191

governing equations are integrated with a multistage Runge-Kutta scheme to steady
state and with acceleration by FAS agglomeration multigrid [11].

3 Computed Results

3.1 Verification for Flow Over a Cylinder

The computed results from the higher order code Essense have been verified for
a number of test cases. Here we describe the verification for flow over a cylinder
where the decay of errors of known wall quantities are studied as the grids are
successively refined. The flow conditions are M1 D 0:3 and Re D 50 where
the Reynolds number is based on the cylinder diameter. Five successively refined
grids are used, the grids are of O-type structured grids where the coarsest grid
contains 51 � 51 nodes. Two spatial operators denoted 42- and 84-operators are
used where the first figure in the notation denotes the interior accuracy and the
second the accuracy at the boundary. The two operators are formally third and fifth
order accurate, respectively.

Figure 1 shows the decay of the errors of the wall velocity for a calculation
with isothermal wall boundary conditions (left) and the errors of the normal
wall temperature gradient using adiabatic boundary conditions (right). The errors
follow more or less the expected design order; the decay of the errors is actually
slightly higher than the design order. The results indicate the correct behavior and
implementation of the numerical schemes.
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Fig. 1 Decay of errors of the velocity using isothermal wall boundary conditions (left); decay of
temperature gradient using adiabatic wall boundary conditions (right)
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3.2 Validation for Flow Over a Cavity

All partners within IDIHOM validated higher order results on different industrially
relevant test cases. FOI and LiU chose a test case with transonic flow over a
rectangular cavity, the test case is also denoted M219 in the literature [12]. The
test case is suitable for Large Eddy Simulations (LES) or for hybrid RANS/LES
calculations due to the turbulent fluctuations over the cavity. Experimental, time
dependent data exist on the cavity walls and floor [12], computational results are
available in many past references, e.g. [13, 14]. Several different cavity geometries
exist; the one used here is the cavity with 5:1:1 length-to-depth-to-width relation.
The geometry as well as the locations of the pressure probes are reproduced in Fig. 2.

The free stream values are M1 D 0:85 and Re D 6:8 � 106 where the
Reynolds number is based on the cavity length (20 in.). The cavity is experimentally
measured on a device inside a wind tunnel. For the higher order calculations with
Essense, calculations were carried out on a flat plate with the cavity embedded.
A two block structured grid was created for these calculations where one block is
located inside the cavity. To have a single boundary condition per block side, the
block on top of the cavity block was split up resulting in ten blocks all together.

Fig. 2 Cavity geometry, experimental setup and location of the pressure probes recording
unsteady pressure fluctuations [12]
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Fig. 3 Mesh pictures of the cavity test case used for Essense

Table 1 Details of the computational grids for the cavity

# boundary # volume Near wall

Grid Solver # vol. nodes nodes in cavity nodes in cavity distance (m)

Structured Essense 2:6� 106 41� 103 0:73 � 106 1:2 � 10�5

Unstructured Edge 6:2� 106 77� 103 2:0 � 106 4:0� 10�6

The computational grid is depicted in Fig. 3. The stretching of the grid near the
boundaries is relaxed in the interior to have a more uniform resolution which causes
the grid to become curvilinear. For the reference calculations with Edge [15], the
calculations were carried out on a hybrid unstructured grid that has been generated
by EADS (European Aeronautic Defence and Space Company) and contains a grid
over the cavity, the device on which the cavity is integrated and the entire test section
of the wind tunnel. The main data of the two grids are displayed in Table 1. The grid
for the higher order calculations has fewer grid points than that for the reference
calculations with Edge.

The computational grids are designed to carry out hybrid RANS/LES calcula-
tions with RANS in the near wall region and LES off wall in the cavity. Both
calculations were initiated from poorly converged steady state calculations with
local time steps. Only one higher order calculation was performed using a third
order accurate calculation (42-operator), no model was used for modeling the
turbulence. Adiabatic weak wall boundary conditions were used inside the cavity
and on the plate. Far-field boundary conditions were used elsewhere. The higher
order calculation use explicit time stepping and progress for about 60 through flows
(L=U1 where L is the cavity length and U1 the free stream velocity), the solutions
from last 40 through flows are used for the statistics.

The reference calculations use the second order implicit backward difference
method and dual time stepping in each time step. An algebraic RANS/LES model is
used to model the turbulence [15]. The calculations progress for about 120 through
flows with statistics from the last 80 through flows. Some computational parameters
are given in Table 2.

In Fig. 4 the sound pressure level (SPL) at two locations on the cavity floor are
presented. The overall sound pressure level (OASPL) is displayed and compared
to experimental values in Fig. 5, the OASPL is obtained by integrating SPL for all
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Table 2 Sizes of time steps and number of inner iterations for the reference cavity calculations

Grid Solver �t �t=T N inner iterations

Structured Essense 1:0� 10�8 182� 103 1

Unstructured Edge 2:0� 10�5 91 32
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Fig. 4 Sound pressure level at cavity floor at kulits k21, x=L D 15% (left); k25, x=L D 55%
(right)
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Fig. 5 Overall sound pressure level at cavity floor

frequencies. The higher order results compare reasonably well to the experimental
values of SPL. The main tonal peaks are captured. The higher order results have
a tendency to have somewhat larger amplitudes of the oscillations compared to
the reference results. This may be due to the lack of RANS/LES model for the
higher order calculations or possibly a too short and coarse sampling interval.
The computed OASPL from the higher order scheme and from the reference
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calculations with the unstructured grid agree well with the experimental values, an
over prediction of OASPL is common.

In an attempt to quantify the deviation from the experimental OASPL and to
make a cross comparison between different results we defined the normalized
deviation D as

D D k OCFD �Oexp � ıO k2
Oexp

D

s
1
N

NP
iD1
.Oi;CFD �Oi;exp � ıO/2

Oexp
(1)

where Oexp D 159:2 dB, N D 10. The intention with the derived formula for the
deviation is to define a measure that gives a zero value if the shape of OASPL is
identical to the shape of the experimental OASPL. It allows for a shift in absolute
level though. As it turns out the deviation obtained with the higher order scheme
is the same as that obtained with Edge indicating that the two solutions follow
experimental OASPL equally well.

4 Summary and Conclusions

A higher order, provable stable, finite difference solver has been verified for a 2D
cylinder flow case for which design order accuracy was obtained. The higher order
solver has been applied to an industrially relevant case, the transonic flow over a
3D rectangular cavity at a high Reynolds number for which third order accurate
time dependent solution were obtained. The quality of the solutions was good in
terms of SPL and OASPL indicating that the higher order solution can be of use
for industrial applications. The next phase in the development of Essense includes
steady state convergence acceleration and implicit time integration.
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On the Solution of the Elliptic Interface
Problems by Difference Potentials Method

Yekaterina Epshteyn and Michael Medvinsky

Abstract Designing numerical methods with high-order accuracy for problems
in irregular domains and/or with interfaces is crucial for the accurate solution of
many problems with physical and biological applications. The major challenge
here is to design an efficient and accurate numerical method that can capture
certain properties of analytical solutions in different domains/subdomains while
handling arbitrary geometries and complex structures of the domains. Moreover,
in general, any standard method (finite-difference, finite-element, etc.) will fail
to produce accurate solutions to interface problems due to discontinuities in the
model’s parameters/solutions. In this work, we consider Difference Potentials
Method (DPM) as an efficient and accurate solver for the variable coefficient elliptic
interface problems.

1 Introduction

In this paper, we consider Difference Potentials Method (DPM) as an efficient
and accurate solver for variable coefficient elliptic interface problems. DPM can
be understood as the discrete version of the method of generalized Calderon’s
potentials and Calderon’s boundary equations with projections in the theory of
partial differential equations (PDEs). DPM introduces a computationally simple
auxiliary domain. The original domain of the problem is embedded into an auxiliary
domain, and the auxiliary domain is discretized using simple structured grids, e.g.
Cartesian grids. After that, the main idea of DPM is to define a Difference Potentials
operator, and to reformulate the original discretized PDEs (without imposed
boundary/interface conditions yet) as equivalent discrete generalized Calderon’s
boundary equations with projections (BEP). These BEP are supplemented by the
given boundary/interface conditions (the resulting BEP are always well-posed, as
long as the original problem is well-posed), and solved to obtain the values of
the solution at the points near the continuous boundary of the original domain
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(at the points of the discrete grid boundary which approximates the continuous
boundary from the inside and outside of the domain). Using the obtained values
of the solution at the discrete grid boundary, the approximation to the solution in the
original domain is constructed through the discrete generalized Green’s formula.
DPM offers geometric flexibility (without the use of unstructured meshes or “body-
fitted” meshes), but does not require explicit knowledge of the fundamental solution,
is not limited to constant coefficient problems or linear problems, does not involve
singular integrals, and can handle general boundary and/or interface conditions.
The reader can consult [14–16] for a detailed theoretical study of the methods
based on Difference Potentials, and ([1, 4, 5, 7, 8, 11–13, 16–21], etc.) for the recent
developments and applications of DPM.

In this paper, we extend the work on DPM for the elliptic interface problems
started in [7, 19, 20] to variable coefficient elliptic interface models in 2D. A more
detailed presentation of DPM for elliptic (and parabolic interface problems) in 2D
with different high-order accurate discretizations, as well as the analysis of DPM
for the interface problems will be part of the future publications [2, 6].

The paper is organized as follows. In Sect. 2, we introduce the formulation of the
problem. Next, in Sect. 2.1 we briefly describe the main building blocks of the DPM.
Finally, we illustrate the performance of the proposed DPM, as well as compare
DPM with the Mayo’s method [3, 10] and the Immersed Interface Method (IIM)
[3, 9] in several challenging numerical experiments (performed by M. Medvinsky)
in Sect. 2.2.

2 Elliptic Interface Problem

In this work we consider interface/composite domain problem defined in some
bounded domain D0 � R

2:

LDu D
(

L1uD1 D f1.x; y/ .x; y/ 2 D1

L2uD2 D f2.x; y/ .x; y/ 2 D2

(1)

subject to the appropriate interface conditions:

uD1

ˇ̌
�
� uD2

ˇ̌
�
D �1.x; y/;

@uD1

@n

ˇ̌
ˇ̌
�

� @uD2

@n

ˇ̌
ˇ̌
�

D �2.x; y/ (2)

and boundary conditions

uj@D D  .x; y/ (3)
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Fig. 1 Example of an
auxiliary domain D0, original
domains D1 and D2 separated
by the interface � , and the
example of the points in the
discrete grid boundary set �
for the 5-point stencil of the
second-order method.
Auxiliary domain D0

coincides with D here

where D1 [D2 D D and D � D0, see Fig. 1. Here, we assume Ls , s 2 f1; 2g are the
second-order linear elliptic differential operators of the form

LsuDs 	
@

@x



as.x; y/

@uDs

@x

�
C @

@y



bs.x; y/

@uDs

@y

�
; s 2 f1; 2g:

The functions as.x; y/ � 1 and bs.x; y/ � 1 are sufficiently smooth and defined
in a larger auxiliary subdomains Ds � D0

s . The functions fs.x; y/ are sufficiently
smooth functions defined in each subdomain D0

s . We assume that the continuous
problem (1)–(3) is well-posed. Moreover, we assume that the operators Ls are well-
defined on some larger auxiliary domain D0

s . More precisely, we assume that for any
sufficiently smooth functions fs.x; y/ the equations LsuD0s

D fs.x; y/ have a unique
solution uD0s

on D0
s that satisfy the given boundary conditions on @D0

s .
Note, here and below, the upper/or lower index s 2 f1; 2g is introduced to
distinguish between the subdomains.

2.1 Difference Potentials Method for Interface/Composite
Domain Problems

Here we discuss the development of high-order methods based on Difference
Potentials approach for the elliptic interface/composite domain problem (1)–(3).
Below, we only briefly discuss main ideas of DPM for interface problems. The
reader can consult [1, 7, 16, 19, 20] and future publications [2, 6] for more details.
Also, the reader can consult [16] for the detailed discussion on the general theory
and numerical analysis of DPM. Let us briefly describe the main steps of the
algorithm.

Introduction of the Auxiliary Domain Place the original domains Ds, s 2 f1; 2g
in the auxiliary computationally simple domains D0

s � R
2 that we will choose to be

squares. Next, introduce a Cartesian mesh for each D0
s , with points xs

j D j�xs; ys
k D

k�ys; .k; j D 0;˙1; : : :/. Let us assume for simplicity that �xs D �ys WD hs.
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Select discretization of the continuous model (1), for example here we will consider
a finite-difference approximation. Next, define a finite-difference stencil Ns

j;k with
its center placed at .xs

j ; y
s
k/ (like a 5 node “dimension by dimension stencil” for the

second-order scheme, or a 9 node “dimension by dimension stencil” for the classical
fourth-order scheme, etc.). Additionally, introduce the point sets M0

s (the set of all
the mesh nodes .xs

j ; y
s
k/ that belong to the interior of the auxiliary domain D0

s ),
MCs WD M0

s\Ds (the set of all the mesh nodes .xs
j ; y

s
k/ that belong to the interior of the

original domain Ds), and by M�s WD M0
s nMCs (the set of all the mesh nodes .xs

j ; y
s
k/

that are inside of the auxiliary domain D0
s but don’t belong to the interior of the

original domain Ds). Define NCs WD f
S

j;k Ns
j;kj.xs

j ; y
s
k/ 2 MCs g (the set of all points

covered by the stencil Ns
j;k when center point .xs

j ; y
s
k/ of the stencil goes through all

the points of the set MCs � Ds). Similarly, define N�s WD f
S

j;k Ns
j;kj.xj; yk/ 2 M�s g

(the set of all points covered by the stencil Ns
j;k when center point .xs

j ; y
s
k/ of the

stencil goes through all the points of the set M�s ).
Introduce �s WD NCs \ N�s . The set �s is called the discrete grid boundary. The

mesh nodes from set �s straddle the boundary @Ds. N0
s WD f

S
j;k Ns

j;kj.xs
j ; y

s
k/ 2

M0
s g � D0

s . The sets N0
s , M0

s , NCs , N�s , MCs , M�s , �s will be used to develop the
method based on the Difference Potentials approach, Fig. 1.

Difference Equations The discrete reformulation of the model problem (1) in each
auxiliary domain D0

s is: solve for us
j;k 2 NCs

Ls
hŒu

s
j;k� D Fs

j;k; .xs
j ; y

s
k/ 2 MCs (4)

where Ls
hŒu

s
j;k� is the discrete linear elliptic operator obtained using finite-difference

approximation of order r (for example, the second-order r D 2 or the fourth-order
r D 4, etc.). Fs

j;k denotes the discrete right-hand side. The unknowns are us
j;k W�

uDs.x
s
j ; y

s
k/, where .xs

j ; y
s
k/ is a mesh point of the Cartesian grid.

We need to complete the linear system of difference equations (4) with the
appropriate choice of the numerical boundary and interface conditions to construct
a unique accurate approximation of the continuous problem (1)–(3) in domain
D. Thus, to design an efficient algorithm for any type of boundary and interface
conditions, we will consider a numerical method based on the idea of the Difference
Potentials.

Step 1: Construction of a Particular Solution: Denote by us
j;k WD Gh

s Fs
j;k; us

j;k 2
NCs the particular solution of the discrete problem (4), which we will construct as the
solution (restricted to set NCs ) of the simple auxiliary problem (AP) of the following
form:

Ls
hŒu

s
j;k� D

(
Fs

j;k; .xs
j ; y

s
k/ 2 MCs ;

0; .xs
j ; y

s
k/ 2 M�s ;

(5)

us
j;k D 0; .xs

j ; y
s
k/ 2 N0

s nM0
s (6)
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Step 2: Difference Potentials and Construction of the BEP: We now introduce a
linear space V�s of all the grid functions denoted by v�s defined on �s [7, 16, 19, 20],
etc. We will extend the value v�s by zero to other points of the grid N0

s .

Definition 1 The Difference Potential with any given density v�s 2 V�s is the grid
function us

j;k WD PNC�s
v�s , defined on NCs , and coincides on NCs with the solution

us
j;k of the simple auxiliary problem (AP) of the following form:

Ls
hŒu

s
j;k� D

(
0; .xs

j ; y
s
k/ 2 MCs ;

Ls
hŒv�s �; .xs

j ; y
s
k/ 2 M�s ;

(7)

us
j;k D 0; .xs

j ; y
s
k/ 2 N0

s nM0
s (8)

Here, PNC�s
denotes the operator which constructs the Difference Potential us

j;k D
PNC�s

v�s from the given density v�s 2 V�s . The operator PNC�s
is the linear operator

of the density v�s . Hence, it can be easily constructed [7, 19, 20]. We will now state
the most important theorem of the method:

Theorem 1 Density u�s is the trace of some solution us
j;k 2 NCs to the Difference

Equations (4): u�s 	 Tr�s u
s
j;k, if and only if, u�s satisfies Generalized Calderon’s

Boundary Equations with Projections (BEP)

u�s � P�s u�s D Gh
s F�s ; (9)

where Gh
s F�s WD Tr�s.G

h
s Fs

j;k/ is the trace (or restriction) of the particular solution
Gh

s Fs
j;k 2 NCs constructed in (5)–(6) on the grid boundary �s, and P�s u�s WD

Tr�s.PNC�s
u�s/ is the trace of the Difference Potential PNC�s

u�s 2 NCs in (7)–(8)
on the grid boundary �s.

Remark The BEP (9) are constructed for each subdomain and solved efficiently
together with the boundary and interface conditions for the unknown densities u�s

using the idea of the extension operator for u�s , and the spectral approach for the

approximation of the Cauchy data .uDs ;
@uDs
@n /j@Ds ([12, 19, 20], etc.).

Step 3: Construction of the Approximate Solution to the Model Problem (1)–(3)
from the density u�s obtained in Step 2:

Statement 1 (Generalized Green’s Formula) The discrete solution us
j;k WD

PNC�s
u�s C Gh

s Fs
j;k is the approximation to the solution us

j;k � uDs.x
s
j ; y

s
k/,

.xs
j ; y

s
k/ 2 NCs \ Ds of the continuous problem (1)–(3) (see [14–16] for a general

theory of DPM and [1, 6, 7, 19, 20]).
The expected accuracy of the proposed method for domains with the smooth

boundaries and under sufficient regularity of the exact solutions will be O.hr�"/ in
the discrete Hölder norm of order 2C" (if the continuous second-order linear elliptic
operator L is approximated with rth order of accuracy by the discrete operator Lh,
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and the extension operator for u�s is constructed with sufficient accuracy), see [14–
16], [1, 6, 7, 19, 20] and Sect. 2.2. Here, " is an arbitrary number with 0 < " < 1.

2.2 Numerical Examples

In the numerical examples below, we consider a second-order centered finite-
difference approximation (with 5-node stencil) as the underlying discretization
for DPM. The numerical experiments for the fourth-order approximation will be
presented in future publication [6]. The first test problem that we present here is the
problem from the paper [3]:

�uDs D fs.x; y/; .x; y/ 2 Ds; s 2 f1; 2g (10)

where the interface between two subdomains D1 and D2 (see Fig. 1) is given by an
ellipse with semi-axes .a; b/ D .0:9; 0:1/, and the curvature is � D �90 at .˙a; 0/
which leads to a quite challenging tests [3]. The exact solution here is

u1 D sin x cos y; u2 D 0; (11)

which is discontinuous at the interface. The results for the test problem (10)–(11)
are presented in Table 1, which shows the relative error in the maximum norm of
the solution and its derivatives. To match the settings of the numerical experiments
in paper [3], we consider auxiliary domains (here and below) D0

1 D D0
2 	 D D

Œ�1:1; 1:1� � Œ�1:1; 1:1� for the subdomains D1 and D2 respectively, Fig. 1. Note,
that in these settings, h1 D h2 D h (however, DPM handles as easily different
auxiliary problems/non-matching meshes [1, 5, 7, 19, 20]). As observed from the
Table 1 here, and from the Table 1 (bottom), on page 111 in paper [3], the accuracy
in the solution for the test problem (10)–(11) obtained by DPM is very close to
the accuracy obtained by Mayo’s Method and by IIM. But, the accuracy in the
derivatives of the solution obtained by DPM is superior to the accuracy obtained
by Mayo’s Method or IIM.

Table 1 Test problem (10)–(11) with a D 0:9, b D 0:1 from paper [3]

N L1-error in u Rate L1-error in ux Rate L1-error in uy Rate

40 1:7474e� 06 1:0559e� 06 1:0041e � 06
80 5:2910e� 07 1.72 1:7733e� 07 2.57 1:6081e � 07 2.64

160 1:2986e� 07 2.03 2:5886e� 08 2.78 2:1461e� 08 2.91

320 3:1742e� 08 2.03 1:7307e� 09 3.90 1:3500e � 09 3.99

640 7:8701e� 09 2.01 2:0067e� 10 3.11 1:3030e � 10 3.37

Here N corresponds to half of the number of subintervals (the same number of subintervals in x
and y-direction), similarly to the results in Table 1 (bottom), page 111 in [3]. Relative L1 error in
the solution and in its derivatives



On the Solution of the Elliptic Interface Problems by Difference Potentials Method 203

Table 2 Test problem (10), (12) with a D 0:9, b D 0:1 from paper [3]

N L1-error in u Rate L1-error in ux Rate L1-error in uy Rate

40 1:0000eC 00 8:3442e� 01 1:0000eC 00
80 2:6622e� 01 1.91 2:2263e� 01 1.91 3:3108e � 01 1.59

160 3:8645e� 02 2.78 2:2076e� 02 3.33 5:0801e � 02 2.70

320 9:0971e� 03 2.09 2:7015e� 03 3.03 7:7708e � 03 2.71

640 2:3838e� 03 1.93 3:3376e� 04 3.02 1:0421e � 03 2.90

Here N corresponds to half of the number of subintervals (the same number of subintervals in x and
y-direction), similarly to the results in Table 3, page 113 in [3]. Relative L1 error in the solution
and its derivatives

The second test problem is again from [3] and has the same settings as the first
test problem (10)–(11), but now the exact solution is defined as:

u1 D x9y8; u2 D 0: (12)

The results for this test problem are presented in Table 2. DPM errors for this test
problem (10), (12) are again close to the errors for Mayo’s method and IIM, reported
in Table 3, page 113 in [3]. As the last and more challenging test problem, we
consider the interface problem with variable coefficients as described below:

@

@x



as.x; y/

@uDs

@x

�
C @

@y



bs.x; y/

@uDs

@y

�
D fs.x; y/; .x; y/ 2 Ds; s 2 f1; 2g

(13)

where a1 D .3C 0:5 sin.2xC y// b1 D .2C 0:5 cos.4xC 3y// and a2 D b2 D 106.
The interface curve for this problem is again given by the ellipse with semi-axes
.a; b/ D .0:9; 0:1/. The exact solution for this test problem (13) is set to

u1 D sin.y2x/ sin.x3y/; u2 D sin.2x/ sin.3y/: (14)

The interface problem (13)–(14) is much more challenging than the previous test
problems since it has discontinuous solution at the interface, as well as a large jump
ratio between diffusion coefficients in subdomains D1 and D2, Fig. 2. The results
for this test problem are presented in Table 3, which shows the relative error of the
solution and its derivatives in the maximum norm. As in the previous numerical
examples, DPM preserves overall second-order (and even slightly better in the
derivative) accuracy in the solution and its derivatives. The observed numerically
in Tables 1, 2, and 3 slightly higher order of accuracy in the derivatives could be due
to the specifics of the considered test problems and the properties of the extension
operator for u�s .
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Fig. 2 Exact solution to the test problem (13)–(14)

Table 3 Test problem (13)–(14) with a D 0:9, b D 0:1

N L1-error in u Rate L1-error in ux Rate L1-error in uy Rate

40 4:5671e� 04 1:3639e� 04 1:3981e � 03
80 1:1520e� 04 1.99 2:2087e� 05 2.63 3:1356e � 04 2.16

160 2:8329e� 05 2.02 2:3138e� 06 3.25 3:5176e � 05 3.16

320 7:0319e� 06 2.01 3:1931e� 07 2.86 4:6670e� 06 2.91

640 1:7578e� 06 2.00 4:9421e� 08 2.69 7:2111e � 07 2.69

Here N corresponds to half of the number of subintervals (the same number of subintervals in x and
y-direction), similarly to previous examples. Relative L1 error in the solution and its derivatives
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Generalized Summation by Parts Operators:
Second Derivative and Time-Marching Methods

David C. Del Rey Fernández, Pieter D. Boom, and David W. Zingg

Abstract This paper describes extensions of the generalized summation-by-parts
(GSBP) framework to the approximation of the second derivative with a variable
coefficient and to time integration. GSBP operators for the second derivative lead
to more efficient discretizations, relative to the classical finite-difference SBP
approach, as they can require fewer nodes for a given order of accuracy. Similarly,
for time integration, time-marching methods based on GSBP operators can be
more efficient than those based on classical SBP operators, as they minimize the
number of solution points which must be solved simultaneously. Furthermore, we
demonstrate the link between GSBP operators and Runge-Kutta time-marching
methods.

1 Introduction

In this paper, we present an overview of generalized summation-by-parts (GSBP)
operators [7] for the approximation of the second derivative with a variable
coefficient and as time integration methods. Further details can be found in [2, 6].
The benefit of the GSBP approach is that it broadens the applicability of the SBP
approach to a wider class of operators and provides a straightforward methodology
to construct novel operators with the summation-by-parts (SBP) property. This
enables the use of simultaneous approximation terms (SATs) for the weak impo-
sition of initial and boundary conditions and inter-element/block coupling, leading
to schemes that are provably consistent, conservative, and stable.

The GSBP framework extends the definition of SBP operators given by Kreiss
and Scherer [13] to those that have a combination of (1) no repeating interior
point operator, (2) nonuniform nodal distributions, and (3) operators that do not
include one or both boundary nodes. The GSBP framework leads to operators

D.C. Del Rey Fernández (�) • P.D. Boom • D.W. Zingg
University of Toronto Institute for Aerospace Studies, 4925 Dufferin St., Toronto, ON,
Canada M3H 5T6
e-mail: dcdelrey@gmail.com; pieter.boom@mail.utoronto.ca; dwz@oddjob.utias.utoronto.ca

© Springer International Publishing Switzerland 2015
R.M. Kirby et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2014, Lecture Notes in Computational Science
and Engineering 106, DOI 10.1007/978-3-319-19800-2_17

207

mailto:dcdelrey@gmail.com
mailto:pieter.boom@mail.utoronto.ca
mailto:dwz@oddjob.utias.utoronto.ca


208 D.C. Del Rey Fernández et al.

that approximate the first derivative and that mimic the integration-by-parts (IBP)
property of the first derivative in a similar way as [13] for such operators.

The vast majority of work on SBP-SAT schemes has been in the context of
classical finite-difference SBP operators, typified by uniform nodal spacing, in
computational space, and a repeating interior point operator (see the two review
papers [8, 19]). There have been a number of extensions to more general operators;
for example, Carpenter and Gottlieb [4] realized that the SBP property defined by
Kreiss and Scherer [13] applies to a broad class of operators. They proved that using
the Lagrangian interpolant, operators with the SBP property can be constructed on
nearly arbitrary nodal distributions. The GSBP framework [7] unifies many of these
extensions. In contrast, the extensions to the classical definition found in Carpenter
et al. [5] and Abarbanel and Chertock [1] are not unified in the GSBP framework.

Using GSBP operators, derivatives can be approximated using a traditional finite-
difference approach where h-refinement is performed by increasing the number of
nodes in the mesh. Alternatively, the discretization can be implemented using an
element approach where the domain is subdivided into a number of elements, each
of which contains a fixed number of nodes, and h-refinement is carried out by
increasing the number of elements. GSBP operators that have a repeating interior
point operator can be applied in the traditional approach, while those that have a
fixed nodal distribution can only be applied using an element approach.

Nordström and Lundquist [15, 18] have applied classical SBP operators as
time integrators. They constructed fully discrete approximations that are provably
consistent, conservative, and stable. The ideas of [15, 18] equally apply to GSBP
operators, enabling the use of smaller operators for the same order of accuracy and
hence more efficient time-marching methods.

The objectives of this paper are to present the extensions of the GSBP approach
to the second derivative with a variable coefficient and to time integration.

2 Generalized Summation-by-Parts Operators
for the Second Derivative

In this section, we review the construction of GSBP operators for the second
derivative with a variable coefficient [6] that lead to stable and conservative schemes
for partial differential equations (PDEs) that contain first, second, and mixed-
derivative terms. GSBP operators for the first derivative are defined as follows [7]:

Definition 1 (First-Derivative GSBP Operator) A matrix operator, D1 2 R
N�N ,

on a nodal distribution x, approximating the first derivative @U
@x , is a GSBP operator
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of order p if it is exact for the restriction of monomials up to degree p and

• D1 D H�1Q, where H is a symmetric positive-definite matrix;
• QCQT D E; and
• E D sˇsˇT � s˛s˛T;

where the projection vectors sˇ and s˛ are constructed such that sˇTu and s˛Tu are
at least pC 1 order approximations to U .ˇ/ and U .˛/, respectively.

We note that for diagonal-norm GSBP operators, vTHu is an order 2p approxi-
mation to the L2 inner product

R ˇ
˛ V U dx [7].

The application of first-derivative GSBP operators twice leads to stable and
conservative schemes. However, for operators with a repeating interior point
operator, they lead to an unnecessarily wide interior point operator, and in general,
lead to approximations of the second-derivative that are one order less accurate than
the first-derivative operator. Alternatively, we can construct distinct GSBP operators
approximating the second derivative that are one order more accurate than the
application of the first-derivative operator twice while retaining the ability to prove
stability using the energy method—we denote such operators as order-matched. To
maintain stability of the semi-discrete or fully-discrete forms of the class of PDEs
of interest, certain relations need to exist between the operators used to discretize
the first-derivative, second-derivative, and mixed-derivative terms. One approach
is to use operators that are compatible with the first-derivative operator used to
discretize mixed-derivative terms [17]. In this paper, we concentrate on diagonal-
norm compatible and order-matched operators, since for the variable-coefficient
case, it is unclear how to construct stable schemes using dense-norm compatible
and order-matched operators (see Mattsson and Almquist [16] for a discussion and
potential solution). To motivate the form of compatible and order-matched GSBP
operators for the second derivative with a variable coefficient, consider the following
decomposition of the application of first-derivative GSBP operators twice:

D1BD1 D H�1
��D1

THBD1 C EBD1


: (1)

We construct compatible and order-matched GSBP operators as the application of
the first-derivative operator twice plus corrective terms in order to increase the order
of the resultant operator. These ideas lead to the following definition [6]:

Definition 2 (Compatible and Order-Matched Second-Derivative GSBP
Operator) A diagonal-norm order-matched GSBP operator, D2.B/ 2 R

N�N ,
approximating the second derivative @

@x

�
B @U

@x

�
, is compatible with the first-

derivative GSBP operator, D1 of order p, on a nodal distribution x, if it is exact
for the restriction of monomials up to degree pC 1 and is of the form

D2 .B/ D H�1
"
�D1

THBD1 C
NX

iD1
B.i; i/Ri C EB QD1

#
: (2)
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The matrices Ri are symmetric negative semidefinite. Furthermore, the matrix QD1 is
an approximation to the first derivative of at least order p C 1 and the matrix B is
constructed from the restriction of the variable coefficient B onto its diagonal. The
remainder of the matrices are given in Definition 1.

Stability can be proven if all derivative operators share the same norm H, and the
compatibility that is enforced on the second-derivative operator is with respect to
the first-derivative operator used to approximate mixed-derivative terms.

Definition 2 leads to stable schemes if the operator satisfies an SBP property.
In fact, GSBP operators are constructed such that they mimic the IBP property of
the continuous PDE. For example, consider the linear convection-diffusion equation
with a variable coefficient on the domain x 2 Œ˛; ˇ�:

@U

@t
D �@U

@x
C @

@x

�
B
@U

@x

	
: (3)

Applying the energy method to (3), i.e., multiplying by the solution, integrating in
space, and using integration by parts, leads to

dkU k2
dt

D �U 2
ˇ̌ˇ
˛
C 2UB

@U

@x

ˇ̌
ˇ̌ˇ
˛

� 2
ˇZ

˛

@U

@x
B
@U

@x
dx: (4)

With appropriate boundary conditions, (4) can be used to show that the solution
is bounded in terms of the data of the problem (for more information see [9, 10,
12]). The semi-discrete version of (3), using a diagonal-norm first-derivative GSBP
operator and a compatible and order-matched GSBP operator, is given as

du
dt
D �D1uC H�1

"
�D1

THBD1 C
NX

iD1
B.i; i/Ri C EB QD1

#
u: (5)

Applying the discrete energy method to (5), i.e., multiplying by uTH and adding the
transpose of the product to itself, leads to

dkuk2H
dt

D

	�U 2jˇ˛C 2U B @U
@x jˇ˛�2 Ř

˛

@U
@x B @U

@x dx

‚ …„ ƒ
�uTEuC 2uTEB QD1u � 2 .D1u/ THBD1uC2

NX
iD1

uRiu; (6)

where kuk2H D uTHu. We see that (6) is mimetic of the continuous case (4)
with the addition of a negative semidefinite term of the order of the discretization.
Using appropriate SATs for the imposition of boundary conditions and inter-element
coupling, (6) can be shown to be stable.
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The main difficulty in deriving compatible and order-matched operators is
ensuring that the Ri are symmetric negative semidefinite, since it is necessary to
ensure that the eigenvalues of N matrices are non-positive. This means that it is
necessary to solve the eigenvalue problem of N matrices of size N �N to determine
additional constraints. For compatible and order-matched operators, an alternative
method is to construct the variable-coefficient operator from the constant-coefficient
operator. This means that it is only necessary to solve the eigenvalue problem for
one matrix. The resultant operator has the following form [6]:

D2 .B/ D H�1
"
�D1

THBD1 C 1

N

NX
iD1

B.i; i/Rc C EB QD1

#
; (7)

where Rc and QD1 are from the constant-coefficient operator. As an example, consider
the approximation of the first and second derivative of order 3 on x 2 Œ�1; 1�
using 5 Chebyshev-Gauss quadrature nodes. This nodal distribution does not have
nodes on the boundary of the domains and is given as, to 5 digits of precision,
x D ��0:95106; �0:58779; 0:0; 0:58779; 0:95106 . The first-derivative GSBP
operator has a norm matrix that is an order 6 approximation to the L2 inner product;
to 5 digits of precision, these operators are given by

D1 D
2
4

�4:7488 6:6022 �2:6552 1:0967 �0:29478

�1:1708 �0:13670 1:7169 �0:53833 0:12892

0:32492 �1:3764 0:0 1:3764 �0:32492

�0:12892 0:53833 �1:7169 0:13670 1:1708

0:29478 �1:0967 2:6552 �6:6022 4:7488

3
5 ; H D

2
4

0:16778 0:0 0:0 0:0 0:0

0:0 0:52555 0:0 0:0 0:0

0:0 0:0 0:61333 0:0 0:0

0:0 0:0 0:0 0:52555 0:0

0:0 0:0 0:0 0:0 0:16778

3
5 :

The projection vectors used in the decomposition of E and to construct SATs (see
Sect. 3 where this is shown for time integration) are given as
sˇT D � 0:031677; �0:10191; 0:20000; �0:39252; 1:2628  ;
s˛T D �

1:2628; �0:39252; 0:20000; �0:10191; 0:031677  : For the second derivative,
the remaining matrices are given as

Rc D
2
4

0:13011 �0:34065 0:42106 �0:34065 0:13011

�0:34065 0:89182 �1:1024 0:89182 �0:34065

0:42106 �1:1024 1:3626 �1:1024 0:42106

�0:34065 0:89182 �1:1024 0:89182 �0:34065

0:13011 �0:34065 0:42106 �0:34065 0:13011

3
5 ; QD1 D

2
4

�4:9798 7:2068 �3:4026 1:7013 �0:52573

�1:0515 �0:44903 2:1029 �0:85065 0:24822

0:32492 �1:3764 0:0 1:3764 �0:32492

�0:24822 0:85065 �2:1029 0:44903 1:0515

0:52573 �1:7013 3:4026 �7:2068 4:9798

3
5 :

3 Time-Marching Methods Based on Generalized
Summation-by-Parts Operators

This section describes the application of GSBP operators to the solution of initial
value problems

dy

dt
D f . y; t/; with y.˛/ D y˛ and ˛ � t � ˇ: (8)
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This is an extension of the work presented in [15, 18] for time-marching methods
based on classical SBP operators. It also draws on the concepts of dual-consistency
and superconvergence presented in [11] for classical SBP operators.

The primary advantage of the GSBP approach in time is the significantly smaller
number of solution points required per block for a given order of accuracy. With
careful selection of SAT coefficients in a multiblock implementation, the pointwise
solution within each block is decoupled from the solution in subsequent blocks. As a
result, each block can be solved sequentially in time, though the pointwise solution
within each block remains in general fully coupled. Thus, the reduced size of the
operators possible with the GSBP approach can significantly improve the efficiency
of the time integration.

Consider the application of a single-block classical SBP or GSBP time-marching
method to the initial value problem (8):

D1yd D H�1Qyd D f.yd; t/C �H�1s˛.s˛Tyd � y˛/; (9)

where the second term on the right-hand side, the SAT penalty term, weakly
enforces the initial condition. The most practical choice of SAT coefficient � is
�1, which renders the temporal discretization dual consistent and L-stable [2].
In addition, if the norm associated with the GSBP operator is diagonal, then the
discretization becomes algebraically stable [2]. This choice of SAT coefficient
implies the superconvergence of the pointwise solution projected to the boundary
at ˇ, sˇTyd, as well as linear functionals of the solution,

R ˇ
˛

g.t/y.t/dt, integrated
with the norm of the discretization [2]. These properties all extend to the multiblock
case with appropriate choice of interface SAT coefficients.

Time-marching methods based on classical SBP and GSBP operators are a
subclass of Runge-Kutta (RK) methods, which are written as

QyŒi� D QyŒi�1� C h
nX

jD1
bjf.yj; t

Œi�1� C cjh/; (10)

with internal stage approximations:

yk D QyŒi�1� C h
nX

jD1
Akjf.yj; t

Œi�1� C cjh/ for k D 1; : : : ; n; (11)

where A and b are the coefficient matrices of the method, c is the abscissa, and h
is the step size. With a dual consistent choice of SAT coefficients, classical SBP
or GSBP temporal discretizations can be rearranged and written in this form. The
pointwise solution mimics the RK stage approximations, and the projection of
the pointwise solution to the boundary at ˇ becomes the solution update [2]. The
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coefficient matrices of the equivalent RK scheme, written in terms of the SBP-SAT
discretization (9), are [2]:

A D 1
h

�
QC s˛s˛T

��1
H; bT D sˇTA D 1

h sˇT
�
QC s˛s˛T

��1
H D 1

h1
TH;

(12)

where c D t�1˛
h , h D ˇ � ˛, and 1 D Œ1; : : : ; 1�T.

This characterization of classical SBP and GSBP time-marching methods
enables a direct comparison with traditional time-marching methods. It also enables
common time-marching ideas to be transferred back into the GSBP realm, for
example diagonally-implicit methods, where the pointwise solution within each
block can be solved sequentially in time (See [2] for examples). It also highlights
the fact that dual-consistent SBP and GSBP time-marching methods do not define
a new class of methods. Nevertheless, the GSBP framework provides a relatively
simple way of constructing high-order implicit RK schemes with high-stage order
and L-stability. Furthermore, if the norm is diagonal then the resulting scheme will
be algebraically stable [2].

As an example, consider dual-consistent time-marching methods based on
classical SBP and Legendre-Gauss GSBP operators which are exact for third-order
polynomials. The minimum number of solution points per block required for the
diagonal and dense-norm classical SBP operators is 12 and 8, respectively. The rate
of superconvergence obtained for these classical SBP time-marching methods is 6
and 4, respectively. In contrast, only 4 solution points per block are required for
a Legendre-Gauss based GSBP operator to be exact for third-order polynomials.
Furthermore, the rate of superconvergence obtained is 7 [2], higher than both of the
classical SBP time-marching methods. This translates to significantly more efficient
time integration.

The first derivative GSBP operator and diagonal norm of the 4-point Legendre-
Gauss GSBP time-marching method discussed above are:

D.3/
1 D

"
�3:3320 4:8602 �2:1088 0:58063

�0:75756 �0:38441 1:4707 �0:32870

0:32870 �1:4707 0:38441 0:75756

�0:58063 2:1088 �4:8602 3:3320

#
, H D

2
4

0:34785 0 0 0

0 0:65215 0 0

0 0 0:65215 0

0 0 0 0:34785

3
5:

This is derived for the quadrature points t D Œ �0:86114; �0:33998; 0:33998; 0:86114 �, defined for
the interval Œ�1; 1�. The equivalent RK scheme has the coefficient matrices:

A D
"

0:095040 �0:047061 0:033084 �0:011632

0:17721 0:19067 �0:055518 0:017647

0:17810 0:32632 0:19067 �0:025102

0:16941 0:33390 0:33222 0:095040

#
, bT D Œ 0:086964; 0:16304; 0:16304; 0:086964 �;

with abscissa: c D Œ 0:069432; 0:33001; 0:66999; 0:93057 �. This RK scheme differs from the well-
known Kuntzmann-Butcher Gauss RK methods [3, 14] which are one order higher,
but forfeit L-stability.
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4 Conclusions

The developments reviewed in this paper extend the GSBP approach to the second
derivative with a variable coefficient as well as to time marching. The benefit of the
GSBP approach, relative to the classical SBP approach, is that for a given order of
accuracy, operators that require fewer nodes can be constructed. This leads to more
efficient methods.
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3D Viscoelastic Anisotropic Seismic Modeling
with High-Order Mimetic Finite Differences

Miguel Ferrer, Josep de la Puente, Albert Farrés, and José E. Castillo

Abstract We present a scheme to solve three-dimensional viscoelastic anisotropic
wave propagation on structured staggered grids. The scheme uses a fully-staggered
grid (FSG) or Lebedev grid (Lebedev, J Sov Comput Math Math Phys 4:449–
465, 1964; Rubio et al. Comput Geosci 70:181–189, 2014), which allows for
arbitrary anisotropy as well as grid deformation. This is useful when attempting to
incorporate a bathymetry or topography in the model. The correct representation of
surface waves is achieved by means of using high-order mimetic operators (Castillo
and Grone, SIAM J Matrix Anal Appl 25:128–142, 2003; Castillo and Miranda,
Mimetic discretization methods. CRC Press, Boca Raton, 2013), which allow for
an accurate, compact and spatially high-order solution at the physical boundary
condition. Furthermore, viscoelastic attenuation is represented with a generalized
Maxwell body approximation, which requires of auxiliary variables to model the
convolutional behavior of the stresses in lossy media. We present the scheme’s
accuracy with a series of tests against analytical and numerical solutions. Similarly
we show the scheme’s performance in high-performance computing platforms. Due
to its accuracy and simple pre- and post-processing, the scheme is attractive for
carrying out thousands of simulations in quick succession, as is necessary in many
geophysical forward and inverse problems both for the industry and academia.

1 Introduction

Seismic waves occur when the subsurface is excited, by an internal event (e.g. an
earthquake, an underground explosion) or an external event (e.g. the impact of a
meteorite, a landslide). The behaviour of such waves can be described by means of a
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hierarchy of physical laws that represent ever more accurately observed phenomena.
For certain applications, waves can be represented as rays, although some wave
phenomena require of mechanical laws that properly describe their properties. At
medium to long scales, seismic waves can be fully described with an anisotropic
viscoelastic theory. Anisotropy describes the properties of some solids to support
waves moving with different speeds when they travel in different directions. In
rocks, anisotropy can be due to intrinsic crystalline properties or a macroscopic
representation of fine sediment layering. Viscoelasticity is a macroscopic property
which accounts for energy losses observed in the subsurface. When having good
models of the subsurface properties, anisotropic viscoelastic modelling allows
us to obtain synthetic seismic waves which behave very similarly to observed
waves. A very popular approach for modelling seismic waves is the staggered-
grid time-domain finite-difference method [14, 16, 20, 21]. This method is very
efficient for large simulations. However, it presents limitations when modelling
strong anisotropy [9] or topography [8]. An improvement to the method is the fully-
staggered grid (FSG) method [13, 15] which naturally supports arbitrary anisotropy.
More recently [4] showed that the method can be further modified by using mimetic
operators and deformed grids to model topography with high precision. In this paper
we show how the mimetic FSG finite-difference method can be improved by adding
support for viscoelastic materials with Generalized Maxwell Body (GMB, see [5])
rheology.

2 Viscoelastic Wave Propagation

Viscoelastic waves, in time-domain velocity-stress formulation, are governed by the
PDE

@S
@t
D C � E ;

@v
@t
D 1



T ;

(1)

where the stress tensor in vector form is S D .�xx; �yy; �zz; �yz; �xz; �xy/
T , the strain-

rate tensor in vector form is E D .P"xx; P"yy; P"zz; P"yz; P"xz; P"xy/
T , C is the stiffness

matrix, v is the particle velocity vector, 
 the density and T 	 @�ij
ı
@xj which is

related to the gradients of the tractions in planes perpendicular to all three Cartesian
directions x, y and z. Equation (1) is sufficient to describe waves propagating through
a solid lossy material. In general, both compressional P and shear S wave modes
are supported in viscoelastic media. The convolution in the equation becomes a
normal product in case the medium is lossless (e.g. elastic). Viscoelastic effects are
generally accounted for with quality factors QP and QS which are lower the more
attenuated the wave mode is and, additionally, are reported to be almost frequency
independent. Many mechanical models exist to represent accurately viscoelastic
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effects in geophysics, although one of the most accurate is the Generalized Maxwell
Body (GMB) rheology (see [17] for a complete overview). When using GMB, we
can rewrite (1) as

@S
@t
D QCE �

nX
lD1

YlAl ;

@v
@t
D 1



T ;

@Al

@t
D !l

�
Al � E

�
;

(2)

where n denotes the number of Maxwell mechanisms used, Yl are viscoelastic
coefficient matrices, Al D .axx; ayy; azz; ayz; axz; axy/

T are the anelastic variables
related to the strain rates and !l is the characteristic frequency of each mechanism.
Notice that the stiffness matrix in (2) refers to the unrelaxed stiffness QC, which
refers to the value of C at very high frequencies. Equation (2) allows us to model
viscoelastic waves without convolution operators, which have been substituted by
extra (anelastic) variables in our system. This makes the simulation of viscoelastic
waves affordable in the time domain. Explicitly, we have

QC D

0
BBBBBBB@

Qc11 Qc12 Qc13 c14 c15 c16
Qc12 Qc22 Qc23 c24 c25 c26
Qc13 Qc23 Qc33 c34 c35 c36
c14 c24 c34 Qc44 c45 c46
c15 c25 c35 c45 Qc55 c56
c16 c26 c36 c46 c56 Qc66

1
CCCCCCCA
; Yl D

0
BBBBBBB@

YP
l Y�l Y�l 0 0 0

Y�l YP
l Y�l 0 0 0

Y�l Y�l YP
l 0 0 0

0 0 0 YS
l 0 0

0 0 0 0 YS
l 0

0 0 0 0 0 YS
l

1
CCCCCCCA
; (3)

so that the material can be anisotropic but we only accept isotropy in the attenuative
properties of the material. The !l values are chosen to cover our desired bandwidth
evenly in the logarithmic scale. Then, the coefficients in Yl can be found, if we use
auxiliary halfway !k points with k D 1; � � � ; 2n� 1, by using

Q�1� .!k/ D
nX

lD1

!k!l C !2l Q�1� .!k/

!2l C !2k
Y�l with � D P; S :

Y�l D
P

L
YP

l �
2S

L
YS

l

(4)

where QP and QS are locally constant values and P D cii=3 with i D 1; 2; 3,
S D cii=3 with i D 4; 5; 6 and L D P � 2S. Finally, the unrelaxed stiffness
components must be found so that the input velocities match as well as possible
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the phase velocity at our peak frequency !0. This can be achieved using

��
1 D 1 �

nX
lD1

Y�l
1

1C .!0=!l/2
; ��

2 D
nX

lD1
Y�l

!0=!l

1C .!0=!l/2
;

U� D
q�
��
1

�2 C ���
2

�2 C��
1

2
�
��
1

�2 C 2 ���
2

�2 ; with � D P; S:

(5)

The values UP and US can be used to obtain the unrelaxed stiffness values following

Qcii D ciiU
P ; for i D 1; 2; 3 ;

Qcii D ciiU
S ; for i D 4; 5; 6 ;

Qcij D cij
PUP � 2US

L
; for i; j D 1; 2; 3 and i ¤ j :

(6)

After initializing the parameters with Eqs. (3)–(6), we solve system (2) using an FSG
finite-difference method, where all spatial derivatives are substituted by mimetic
operators [2–4, 18]. In addition, we use a leap-frog explicit scheme for the time
integration which benefits from the corrections in [11] for reducing storage in this
configuration. Notice that in time-domain explicit seismic modelling applications,
time integration beyond second order is rare, as errors in the form of dispersion are
dominated by the spatial discretization at the relevant frequency and propagation
distances [6].

3 2D Homogeneous Test

First of all we wish to verify the accuracy of our scheme when handling elastic
and viscoelastic wave propagation. To that goal we set up a simple 2D test in
homogenous material for which an analytical solution exists [1]. We use a material
with vP D 6000m/s, vS D 3464m/s and 
 D 2700 kg/m3. We then set QP D 60 and
QS D 30 for the viscoelastic case and QP D QS D 1 for the elastic case. The source
is a force acting with a Ricker wavelet having its energy peak at 10 Hz. A receiver
is placed 1500 m away from the source along the source direction. Viscoelasticity
is modelled with n D 3 using a bandwidth of 100 Hz centered on the source’s peak
frequency. The model was discretized with a 201 � 201 grid of spacing 30 m. In
Fig. 1 left, we plot the wave velocities depending on the frequency as a consequence
of the GMB mechanisms. Similarly we can observe how the desired Q value is
fitted along our bandwidth. In Fig. 1 right, we show the fit between analytical and
numerical solutions for both the elastic and viscoelastic cases. We observe no quality
degradation due to using viscoelasticity in our algorithm. Furthermore, we can
observe how the P-wave (earlier) and S-wave (later) arrivals are both damped, being
the energy loss stronger for the S-wave due to the lower (i.e. more attenuating) Q
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Fig. 1 Left: velocity dispersion and attenuation fit for both P- and S-wave. Right: simulation and
analytical solutions for elastic and viscoelastic case

value for this wave mode. Similarly, we can observe that our coefficient computation
algorithm enabled a nearly zero phase difference between the elastic and viscoelastic
runs, as is expected from our waves concentrating energy around the peak of the
wavelet.

4 3D Heterogeneous Test

We have built a large 3D elastic and its equivalent viscoelastic model. The model
is cubic and composed of 27 small subcubes, each of them with different physical
properties. The model is challenging because it displays very large contrasts in the
material properties. P-wave velocities range from 1000 to 5000 m/s and Poisson
ratios from values of 0.2–0.45, which results in S-wave velocities ranging from
408 to 3535 m/s. Densities range from 1200 to 2700 kg/m3. In the viscoelastic case,
QP takes values from 50 to 250 and QS from 20 to 176. We have an explosive
source located at the middle of the domain with a Ricker wavelet having peak
frequency at 20 Hz. A total of six receivers are located at the center of each of
the domain’s quadrilateral faces. The time sampling is �t D 0:00016 s and the
spatial sampling is equal in all directions to 2.5 m. The volume is composed of
501 � 501 � 501 cells and the simulation lasts for 10,000 iterations. CPML [10]
boundary conditions are set everywhere. The results of the simulation with and
without viscous mechanisms can be seen in Fig. 2. We observe that the strong
heterogeneity generates many wave arrivals. The viscoelastic simulation is mostly
in-phase with the elastic one, displaying different degrees of energy loss depending
on the actual arrival and receiver. We conclude that the method is robust in strongly
heterogeneous cases, including attenuation in 3D, when using a wide range of
realistic values for the material properties. For large scenarios like this, we employ
a hybrid parallel approach OpenMP/MPI for distributed memory computer clusters.
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Fig. 2 Description of model for P-wave velocity and S-wave velocity (top) and seismograms
recorded at all six locations, for the x and z components of the particle velocity vector (bottom)

Fig. 3 Strong and weak scalability tests performed on the MareNostrum supercomputer at the
Barcelona Supercomputing Center

The simulation code has been developed with BSIT [7, 19] achieving 69 GFLOPS
per Intel E5-2670 16-core node. A scalability test is provided in Fig. 3.

5 Discussion

As a final check for the correctness of our results we can quantify the dispersion
and amplitude differences for our two examples. We perform a time-frequency
analysis of the elastic and viscoelastic solutions using the definitions of Kristekova
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Fig. 4 Phase and envelope misfits for the homogeneous case and for a randomly chosen receiver
in the 3D heterogeneous case

et al. [12]. This allows us to completely separate phase misfits from envelope misfits.
By looking at the misfits for the homogeneous case, in Fig. 4 left, we can see that
the envelope misfits are negative everywhere, which corresponds to the observed
(and expected) amplitude loss in the viscoelastic case. More interesting is the phase
misfit. We observe that, for both the P and S arrivals, we have first a slight phase
misfit increase which is followed by a slight misfit decrease after the wave peak.
This indicates that each wave arrival is being dispersively separated into faster wave
components and slower wave components. This is what we expect, and corresponds
to the dispersion curves in Fig. 1 where higher frequency modes travel faster than
lower frequency modes. We remark again that this dispersive behaviour is expected
in physically sound viscoelastic rheologies [1]. Furthermore, the phase misfit tends
to average out along during each arrival, indicating that the central frequencies
travel at the correct velocity. In Fig. 4 right we have a more complex scenario,
but nevertheless displaying the same behaviour: phase misfits increase and then
decrease for an overall in-phase propagation although with signs of dispersion.
The envelope misfit, however is always negative and quite large. Notice that as
waves have travelled more cycles, the effects of dispersion and attenuation are also
stronger.

6 Conclusions

We have described the upgrade of the FSG time-domain mimetic finite-difference
method to support viscoelastic attenuation accurately. Our approach is based on
a Generalized Maxwell Body mechanism which allows us to correctly model the
dispersive behaviour of viscoelastic waves. We make an effort in finding ways to
obtain attenuating parameters that respect our wave velocity at the center of our
frequency bandwidth and are quasi-flat throughout it. The resulting algorithm has
been tested against an analytical solution obtaining an excellent agreement with it.
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Furthermore, we have shown that the method is robust enough to tackle cases of
extreme heterogeneity in large 3D scenarios.
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A Locally Conservative High-Order
Least-Squares Formulation in Curvilinear
Coordinates

Marc Gerritsma and Pavel Bochev

Abstract We present a locally conservative spectral least-squares formulation for
the scalar diffusion-reaction equation in curvilinear coordinates. Careful selection
of a least squares functional and compatible finite dimensional subspaces for the
solution space yields the conservation properties. Numerical examples confirm the
theoretical properties of the method.

1 Introduction

Least-squares finite element methods for partial differential equations reformulate
PDEs into unconstrained minimization problems. The sum of weighted equation
residuals measured in suitable Sobolev norms defines the least-squares functional.
Norm-equivalent least-squares functionals give rise to symmetric and strongly
coercive variational problems. These properties are inherited on conforming finite
dimensional subspaces of the solution space. Therefore, conforming finite element
discretizations circumvent inf-sup conditions and are always symmetric, positive
definite, which make these discrete systems amenable to well-established iterative
solvers.
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Exceptional stability of least-squares formulations has led to the widespread
use of standard C0 elements in their discretization. Unfortunately, resulting finite
element methods are only approximately conservative, which generally leads to
violation of fundamental physical properties, such as loss of mass or artificial
vorticity generation in potential flows. In many cases this drawback can outweigh
potential advantages of least squares methods; see [10, 19]. As a result, improving
conservation properties of least-squares methods has attracted significant attention
[1–4, 7, 8, 10, 12–14].

2 Conservative Least-Squares Functional

We explain our approach using the following diffusion-reaction problem [5]

�r � Ar� C �� D f in ˝ ; � D g on �D ; n � Ar� D h on �N ; (1)

where˝ � R
d, d D 2; 3, has a Lipschitz-continuous boundary @˝ D �D [�N and

n is the outward unit normal to @˝ . We assume that A is a symmetric positive
definite tensor and � is a real-valued, strictly positive function, i.e., there exist
constants amin; amax; �min; �max > 0 such that amin�T� � �T

A.x/� � amax�
T�

and �min � �.x/ � �max for all x 2 ˝ and vectors �. The tensor A and the
function � describe material properties. For instance, in heat transfer applications
A is the thermal conductivity of the material and � can be related to the specific
heat capacity.

This scalar problem can be recast as an equivalent four-field problem, given by

r � uC  D 0 in ˝ ;

vCr� D 0 in ˝ ;

v D A
�1u in ˝ ;

 D �� � f in ˝ ;
and

� D g on �D ;

�n � u D h on �N :
(2)

We will refer to the equations r � uC  D 0 and vCr� D 0 as the conservation
laws. The first one expresses the fact that the net amount of outflow, u, over the
surface of any body ! � ˝ balances the volumetric production terms  . The
second equation states that circulation of v over any closed loop is zero. We call
such equations topological because they are independent of material parameters and
only involve geometric concepts like surface, body and closed loop. With proper
selection of discrete variables these equations can be satisfied exactly.

On the other hand, the equations v D A
�1u and  D �� � f depend explicitly

on the material parameters A and � and the right hand side term f . We refer to
these equations as the constitutive relations. Their association with geometry is less
obvious; for instance v D A

�1u equates circulation of v along a curve to the flux
of u across a surface. This geometrical incompatibility between the variables is an
important source of errors in many numerical methods.
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The two sets of equations play very different mathematical and physical roles.
The constitutive relations prescribe functional relationships between the variables,
which represent simplified summaries of more complex physical phenomena, i.e.,
these equations are based on modeling assumptions. The material-dependent data
is generally obtained through experiment and is not known exactly. On the other
hand, the conservation laws express fundamental balance relationships between
global quantities that hold universally, i.e., these equations do not involve modeling
assumptions. Let

H1
D.˝/ D

˚
� 2 H1.˝/ j� D 0 on �D

�
;

HN.div;˝/ D fu 2 H.div;˝/ j u D 0 on �Ng :

In this paper we consider a least-squares functional originally proposed in [5]:

J ..�; v/; . ;u/I f / D 1

2


��A�1=2�uC Ar����2
0
C

����1=2��� Cr � u� f
���2
0
C��vCr���2

0
C ��r � uC  ��2

0

�
;

(3)

and its associated least-squares principle

min
.�;v/2U;. ;u/2V

J ..�; v/; . ;u/I f / (4)

where U D H1
D.˝/ � .L2.˝//n and V D L2.˝/ �HN.div;˝/.

Proposition 1 The least-squares functional (3) is norm-equivalent with respect to
the solution space U D H1

D.˝/ � .L2.˝//n and V D L2.˝/ � HN.div;˝/.

Proof See [5].

Corollary 1 Let Uh � U, Vh � V and .�h; vh/ 2 Uh, . h;uh/ 2 Vh satisfy

f.�h; vh/; . h;uh/g D arg minJ .. O�h; Ovh/; . O h; Ouh/I f /

Then, there exists a positive constant C such that

k�h � �k1 C kvh � vk0 C k h �  k0 C kuh � ukdiv

� C inf
. O�h;Ovh/2Uh;. O h;Ouh/2Vh



k O�h � �k1 C kOvh � vk0 C k O h �  k0 C kOuh � ukdiv

�

Proof Norm-equivalence of (3) implies that the associated Euler-Lagrange equation
has coercive and bounded bilinear form. Then, by Céa’s Theorem, the error in the
least-squares solution is bounded by a constant times the best approximation of the
exact solution out of the conforming space Uh � Vh.
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Proposition 2 The solution of (4) satisfies the conservation laws in the L2 sense.

Proof The proof follows by taking variations of (3) with respect to v and  .

3 A Mimetic Least-Squares Method

Because strong coercivity is inherited on subspaces, conforming finite element
spaces of H1

D.˝/ and HN.div;˝/ such as standard C0 elements will give a well-
posed least-squares finite element method. Since the inception of least-squares
methods this has often been quoted as one of its principal advantages. However,
if we want Proposition 2 to hold at the discrete level, we need to ensure that the
discrete conservation laws, r � uC  D 0 and vCr� D 0, can be represented on
these subspaces, i.e. if .�h; vh/ 2 Gh � Ch with Gh � H1

D.˝/ and Ch � �L2.˝/�n
,

we need to have that r�h 2 Ch for all �h 2 Gh. Similarly, for . h;uh/ 2 Sh � Dh

with Sh � L2.˝/ and Dh � HN.div;˝/ we require that r � uh 2 Sh for all uh 2 Dh.
Thus, the finite dimensional spaces forming Uh D Gh � Ch and Vh D Sh �Dh need
to belong to a discrete DeRham complex, [4, 17]. With the spectral element basis
functions from [11] this is indeed the case. With these spectral basis functions, the
conservation laws can be exactly satisfied and reduce to simple relations between
the expansion coefficients. In addition, the discrete conservation laws do not depend
on the size or shape of the grid and will be independent of the order of the spectral
element approximation. The discrete conservation laws only depend on the topology
of the grid, see for instance [5, 16, 18] for a more extensive explanation.

Let ˝0 D Œ�1; 1�2 be the reference spectral element with coordinates .�; 	/ and
˚ W ˝0 ! ˝ , .x; y/ D ˚.�; 	/. We expand the pullback of the potential, ˚?�h,
in terms of a tensor product of Lagrange polynomials, hi, associated with the GLL
points of polynomial degree N in both �- and 	-direction, see also [9] and [5] for
the transformations

˚?�h.�; 	/ D
NX

iD0

NX
jD0

�i;jhi.�/hj.	/ ; (5)

and ˚?v as

˚?vh.�; 	/ D
NX

iD1

NX
jD0

ui;jei.�/hj.	/C
NX

iD0

NX
jD1

vi;jhi.�/ej.	/ ; (6)



A Locally Conservative High-Order Least-Squares Formulation in Curvilinear. . . 231

where the edge ei.�/ are given by, [11], ei.�/ D �Pi�1
kD0 dhk.�/ : In terms of these

expansions the conservation law vCr� D 0 assumes the form

˚?vh Cr˚?�h D
NX

iD1

NX
jD0
.ui;j C �i;j � �i�1;j/ei.�/hj.	/C

NX
iD0

NX
jD1
.vi;j C �i;j � �i;j�1/hi.�/ej.	/ D 0 :

(7)

Since basis functions are linear independent, (7) holds if and only if

ui;j C �i;j � �i�1;j D 0 and vi;j C �i;j � �i;j�1 : (8)

The pullback of the fluxes, ˚?uh, is expanded in terms of tensor products of edge
functions and Lagrange polynomials as, see [5, 11, 15] for details

˚?uh.�; 	/ D
NX

iD0

NX
jD1

pi;jhi.�/ej.	/ �
NX

iD1

NX
jD0

qi;jei.�/hj.	/ : (9)

Finally, the pullback of  h, ˚? h is expanded as

˚? h.�; 	/ D
NX

iD1

NX
jD1

 i;jei.�/ej.	/ : (10)

With these particular expansions the conservation lawr�uC D 0 can be expressed
as a relation between the expansion coefficients

pi;j � pi�1;j C qi;j � qi;j�1 C  i;j D 0 : (11)

4 Numerical Example

In [5] we demonstrated the conservation properties of (3) on affine elements. In this
paper we extend these results to non-affine, curvilinear grids.

In order to show that even in curvilinear coordinates the conservation laws are
satisfied up to machine precision we solve the scalar diffusion-reaction problem on
the spectral element grid shown in Fig. 1. The spectral element mesh consists of
K � K elements

x.�; 	/ D � C c sin.��/ sin.�	/ ;

y.�; 	/ D 	C c sin.��/ sin.�	/ ;
.�; 	/ 2 Œ�1; 1�2 : (12)

This curvilinear mesh was also used in [6, 9, 17].
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Fig. 1 Curvilinear
coordinate system generated
by the mapping (12) for
K D 16
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For this test problem we use A D I and � D 1 and as exact reference solution
�ex.x; y/ D sin.�x/ sin.�y/. Although the material parameters are trivial in the
.x; y/-coordinates, this is no longer the case when the equations are transformed to
.�; 	/-coordinates, see [5]. In Fig. 2 h-convergence of the unknowns �, v, u and in
the L2-norm is depicted for K D 1; : : : ; 16 and N D 1; : : : ; 6. The convergence rates
are optimal in all unknowns, although the errors are higher than for an orthogonal
grid. In Fig. 3 the residuals of r � u C  and r � v are plotted in the L1-norm
as a function of h D 2=K and N. The conservation relations are satisfied up to
machine precision, independent of the mesh size, the particular mesh shape (i.c.
curved grid) and polynomial degree. The slight increase in error with h-refinement
and p-enrichment is a result of the increase in condition number, since in this study
the full system resulting from (3) was solved. In practice this is not necessary,
because if we know a priori that we can satisfy the conservation laws exactly, we
might as well use the reduced functional

J R..�;u/I f / D 1

2


��A�1=2�uC Ar����2
0
C ����1=2��� Cr � u � f

���2
0

�
;

(13)

and determine v from � and  from u afterwards using (8) and (11). In summary,

when the reduced least-squares functional (13) is used to calculate �h and uh

and vh and  h are derived in a post-processing step using (8) and (11) and the
associated expansions (7) and (10) for vh and  h, then for all meshes and all

(continued)
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Fig. 2 Convergence plots of �, v, u and  with h-refinement for various polynomial approxima-
tions

polynomial degrees

kr � vhkL1 D 0 kr � uh C  hkL1 D 0 ;

that is, the least-squares formulation is exactly locally conservative. Exact conser-
vation is observed in the computations.
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Fig. 3 Convergence plots of r � u C  , and r � v with h-refinement for various polynomial
approximations

5 Conclusions

Despite all its advantages, lack of conservation is one of the major drawbacks of
least-squares finite element methods implemented using standard C0 elements. In
this paper we have shown that by combining an appropriate choice of a least-squares
functional with compatible finite element spaces, one can define a least-squares
method that is conservative up to a machine accuracy.

In practice, one can use the reduced functional (13) in which case the conserva-
tion laws are identically satisfied regardless of the coarseness and shape of the grid
as well the approximation order. The price we pay is that we can no longer use our
favorite C0-elements.

Acknowledgements This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research (ASCR).

References

1. J.H. Adler, P.S. Vassilevski, Error analysis for constrained first-order system least-squares finite
element methods. SIAM J. Sci. Comput. 38(3), A 1071–A 1088 (2014)

2. P.B. Bochev, M.D. Gunzburger, A locally conservative least-squares method for Darcy flows.
Commun. Numer. Methods Eng. 24, 97–110 (2008)

3. P.B. Bochev, M.D. Gunzburger, Least-Squares Finite Element Methods (Springer, New York,
2009)

4. P.B. Bochev, M.D. Gunzburger, A locally conservative mimetic least-squares finite element
method for the Stokes equations, in Proceedings of LSSC 2009, ed. by I. Lirkov, S. Margenov,



A Locally Conservative High-Order Least-Squares Formulation in Curvilinear. . . 235

J. Wasniewski. Springer Lecture Notes in Computer Science, vol. 5910 (Springer, Berlin/Hei-
delberg, 2009), pp. 637–644

5. P.B. Bochev, M.I. Gerritsma, A spectral mimetic least-squares method. Comput. Math. Appl.
68, 1480–1502 (2014). http://dx.doi.org/10.1016/j.camwa.2014.09.014

6. P.B. Bochev, D. Ridzal, Rehabilitation of the lowest-order Raviart-Thomas element on
quadrilateral grids. SIAM J. Numer. Anal. 47(1), 487–507 (2008)

7. P.B. Bochev, J. Lai, L. Olson, A non-conforming least-squares finite element method for
incompressible fluid flow problems. Int. J. Numer. Methods Fluids 72, 375–402 (2013)

8. P. Bolton, R.W. Thatcher, On mass conservation in least-squares methods. J. Comput. Phys.
203(1), 287–304 (2005)

9. M. Bouman, A. Palha, J.J. Kreeft, M.I. Gerritsma, A conservative spectral element method on
curvilinear domains, in Spectral and Higher Order Methods for Partial Differential Equations,
ed. by J. Hesthaven, R. Rønquist. Springer Lecture Notes in Computational Science and
Engineering, vol. 76 (Springer, Berlin/Heidelberg, 2011), pp. 111–119

10. C.L. Chang, J.J. Nelson, Least-squares finite element method for the Stokes problem with zero
residual of mass conservation. SIAM J. Numer. Anal. 34(2), 480–489 (1997)

11. M.I. Gerritsma, Edge functions for spectral element methods, in Spectral and Higher Order
Methods for Partial Differential Equations, ed. by J. Hesthaven, R. Rønquist. Springer Lecture
Notes in Computational Science and Engineering, vol. 76 (Springer, Berlin/Heidelberg, 2011),
pp. 199–208

12. J.J. Heys, E. Lee, T.A. Manteuffel, S.F. McCormick, An alternative least-squares formulation
for the Navier-Stokes equations with improved mass conservation. J. Comput. Phys. 226(1),
994–1006 (2007)

13. J.J. Heys, E. Lee, T.A. Manteuffel, S.F. McCormick, J.W. Ruge, Enhanced mass conservation
in least-squares methods for Navier-Stokes equations. SIAM J. Sci. Comput. 31(3), 2303–2321
(2009)

14. T. Kattelans, W. Heinrichs, Conservation of mass and momentum of the least-squares spectral
element collocation scheme for the Stokes problem. J. Comput. Phys. 228(13), 4649–4664
(2009)

15. J.J. Kreeft, M.I. Gerritsma, Mixed mimetic spectral element method for Stokes flow: a
pointwise divergence-free solution. J. Comput. Phys. 240, 284–309 (2013)

16. J.J. Kreeft, A. Palha, M.I. Gerritsma, Mimetic framework on curvilinear quadrilaterals of
arbitrary order (2011). arXiv:1111.4304

17. A. Palha, M.I. Gerritsma, Spectral element approximations of the Hodge-? operator in curved
elements, in Spectral and Higher Order Methods for Partial Differential Equations, ed. by J.
Hesthaven, R. Rønquist. Springer Lecture Notes in Computational Science and Engineering,
vol. 76 (Springer, Berlin/Heidelberg, 2011), pp. 283–291

18. A. Palha, P. Rebelo, R. Hiemstra, J.J. Kreeft, M.I. Gerritsma, Physics-compatible discretization
techniques on single and dual grids, with application to the Poisson equation for volume forms.
J. Comput. Phys. 257, 1394–1422 (2014)

19. M.M.J. Proot, M.I. Gerritsma, Mass- and momentum conservation of the least-squares spectral
element method for the Stokes problem. J. Sci. Comput. 27, 389–401 (2006)

http://dx.doi.org/10.1016/j.camwa.2014.09.014


Nonlinear Compact Finite-Difference Schemes
with Semi-Implicit Time Stepping

Debojyoti Ghosh and Emil M. Constantinescu

Abstract Atmospheric flows are characterized by a large range of length scales as
well as strong gradients. The accurate simulation of such flows requires numerical
algorithms with high spectral resolution, as well as the ability to provide nonoscilla-
tory solutions across regions of high gradients. These flows exhibit a large range of
time scales as well—the slowest waves propagate at the flow velocity and the fastest
waves propagate at the speed of sound. Time integration with explicit methods
are thus inefficient, although algorithms with semi-implicit time integration have
been used successfully in past studies. We propose a finite-difference method for
atmospheric flows that uses a weighted compact scheme for spatial discretization
and implicit-explicit additive Runge-Kutta methods for time integration. We present
results for a benchmark atmospheric flow problem and compare our results with
existing ones in the literature.

1 Introduction

The simulation of atmospheric flows requires accurate numerical solutions of the
compressible Navier-Stokes equations or the inviscid Euler equations if the physical
viscosity and heat conduction are neglected. Such flows are characterized by
localized flow structures and strong gradients, and numerical algorithms need a high
spectral resolution and must be nonoscillatory across regions of strong gradients.
Algorithms used for numerical weather prediction include finite-difference methods
[13], finite-volume methods [1], and discontinuous Galerkin and spectral element
methods [9, 10]. Although standard finite-difference methods suffer from poor
spectral resolution, compact finite-difference methods [15] have significantly higher
spectral resolution and have been applied to applications such as large eddy
simulations and direct numerical simulations of turbulent flows [14, 18].
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In this study, we propose a high-order finite-difference method for atmo-
spheric flows based on compact-reconstruction weighted essentially nonoscillatory
(CRWENO) schemes [5, 6, 8]. The CRWENO schemes combine the high spectral
resolution of linear compact schemes with the solution-dependent stencil adaptation
method of the WENO schemes [11, 17] to produce nonoscillatory solutions.
Although discontinuities such as shock waves are not encountered in atmospheric
flows, strong gradients often form that are resolved by very few grid points. The
CRWENO schemes are thus well suited for simulating such flows. We explore
implicit-explicit time-integration schemes based on a separation of stiff and nonstiff
components of the governing equations [9]. We present results for a benchmark
atmospheric flow problem.

2 Governing Equations

We consider the conservative form of the Euler equations based on the mass,
momentum, and potential temperature for mesoscale flows (neglecting the Coriolis
forces) [9]. These are given by

@

@t

2
4 

0

u

�

3
5Cr �

2
4 
u

u˝ uC p0I


�u

3
5 D

2
4 0

�
0g Ok
0

3
5 (1)

where 
 is the density, u is the velocity vector, p is the pressure, I is the identity
matrix, and g is the acceleration due to gravity acting along the z-axis of the
coordinate system with unit vector Ok. The potential temperature � is given by

� D T

�
I � D

�
p

p0

	 R
CP

; (2)

where T is the temperature, � is the Exner pressure, p0 is the pressure at the
surface (or reference altitude), R is the universal gas constant, and CP is the constant
pressure specific heat. The system of equations is completed by the equation of state,

p D p0



R�
p0

� CP
CV , where CV is the constant volume specific heat. Equation (1) is

expressed in terms of the density, pressure, and potential temperature perturbations
(
0, p0, � 0) that can be expressed as .�/0 D .�/ .x; y; z; t/� N.�/.z/, where N.�/ is the mean
density, pressure, or potential temperature in hydrostatic balance CP

N� d N�
dz D �g.

The governing equations form a system of hyperbolic partial differential equations
(PDEs) and are solved by a conservative finite-difference algorithm.
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3 Numerical Methodology

Equation (1) can be expressed as a system of hyperbolic conservation laws with a
source term

@U
@t
C @fi .U/

@xi
D s .U/ ; i D 1; � � � ;D; (3)

where U is the solution, fi is the flux along the ith dimension, s is the source
term, and D is the number of dimensions. We describe the discretization of (3)
in one dimension (D D 1); it can be trivially extended to multiple dimensions.
A conservative, finite-difference spatial discretization of (3) on this grid results in a
semi-discrete ordinary differential equation (ODE) in time,

dUj

dt
C 1

�x

hOfjC1=2 � Ofj�1=2
i
D sj; j D 1; � � � ;N; (4)

where j denotes the grid index, Uj D U.xj/ is the cell-centered solution, OfjC1=2 is the
numerical flux at the cell interface xjC1=2, and sj is the source term evaluated at the
cell center.

3.1 Reconstruction

We use the CRWENO scheme [5, 6, 8] to reconstruct the interface fluxes OfjC1=2
from the cell-centered flux fj. We briefly summarize the scheme in this section; a
more complete description is available in [5]. The fifth-order CRWENO scheme
(CRWENO5) is constructed by considering three third-order-accurate compact
interpolation schemes for the flux function at the . jC 1=2/th interface:

2

3
Ofj�1=2 C 1

3
OfjC1=2 D 1

6

�
fj�1 C 5fj

� I c1 D 2

10
; (5)

1

3
Ofj�1=2 C 2

3
OfjC1=2 D 1

6

�
5fj C fjC1

� I c2 D 5

10
; (6)

2

3
OfjC1=2 C 1

3
OfjC3=2 D 1

6

�
fj C 5fjC1

� I c3 D 3

10
: (7)

Multiplying (5)–(7) with their optimal coefficients (ck; k D 1; 2; 3) and adding, we
obtain the fifth-order-accurate compact interpolation scheme,

3

10
Ofj�1=2 C 6

10
OfjC1=2 C 1

10
OfjC3=2 D 1

30
fj�1 C 19

30
fj C 1

3
fjC1: (8)
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We now compute weights!k based on the local smoothness of the solution [11] such
that they converge to the corresponding optimal coefficient ck when the solution
is locally smooth, and approach zero at or near a discontinuity. They can be
expressed as

!k D ˛kP
k ˛k
I ˛k D ck

.� C ˇk/
p I k D 1; 2; 3; (9)

where � D 10�6 is a small number to prevent division by zero. The smoothness
indicators (ˇk) measure the local smoothness of the solution and are given by

ˇ1 D 13

12
.fj�2 � 2fj�1 C fj/

2 C 1

4
.fj�2 � 4fj�1 C 3fj/

2; (10)

ˇ2 D 13

12
.fj�1 � 2fj C fjC1/2 C 1

4
.fj�1 � fjC1/2; (11)

and ˇ3 D 13

12
.fj � 2fjC1 C fjC2/2 C 1

4
.3fj � 4fjC1 C fjC2/2: (12)

Multiplying (5)–(7) with !k instead of ck, and adding, we obtain the CRWENO5
scheme:

�
2

3
!1 C 1

3
!2

	
Ofj�1=2 C

�
1

3
!1 C 2

3
.!2 C !3/

�
OfjC1=2 C 1

3
!3 OfjC3=2

D !1

6
fj�1 C 5.!1 C !2/C !3

6
fj C !2 C 5!3

6
fjC1:

(13)

This scheme is fifth-order accurate when the solution (!k ! ck) is smooth, and it
yields a nonoscillatory solution across discontinuities by biasing the interpolation
stencil away from it. The standard fifth-order WENO scheme [11] is used to
compute the flux at the physical boundaries [5]. Equation (13) requires the solution
to a tridiagonal system of equations at each time-integration step or stage; however,
past studies [5] demonstrated the higher computational efficiency of the CRWENO
scheme compared with a standard finite-difference scheme. A scalable and efficient
parallel implementation of the CRWENO5 scheme is discussed in [7]. This discus-
sion describes the left-biased computation of the interface flux; the corresponding
expressions for the right-biased interface flux can be similarly obtained. The final
flux at a given interface is computed from the left- and right-biased approximations
by using the Rusanov upwinding scheme [16].
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3.2 Time Integration

Equation (4) is integrated in time by using explicit Runge-Kutta (ERK) and implicit-
explicit additive Runge-Kutta (ARKIMEX) methods. Efficient implementations of
these methods are available in the TS (time-stepping) module of PETSc [3, 4].
ERK methods are often inefficient, however, because the time-step size is restricted
by the acoustic (fastest) wave. Implicit-explicit time-integration methods have
been previously applied to atmospheric flows [9, 10]. We briefly summarize the
separation of stiff and nonstiff components of the governing equations and its
implicit-explicit discretization in time.

Equation (1) can be rearranged such that the right-hand side comprises a nonstiff
term and a linear stiff term [9],

@U
@t
D S .U/C L .U/ ; (14)

U D
2
4 
0

u

� 0

3
5 ; S .u/ D �r �

2
4 0


u˝ u

�u � 
 N�u

3
5 ; L .u/ D �

2
4 r � 
u
rp0 C g
0 Ok
r � 
 N�u

3
5 ;

where the pressure perturbation is linearized as p0 D � Np
N
 N�
�

� � N
 N��, with � D

CP=CV as the specific heat ratio. The nonstiff component, S .U/, of the right-hand
side of (14) consists of terms that are second and higher order perturbations around
the hydrostatic balance; and the linear stiff component, L .U/, consists of terms that
are first order perturbations. Equation (14) is spatially discretized and integrated in
time by using the ARKIMEX methods [2, 12, 19], where an ERK method is applied
to the nonstiff term and an ARK method is applied to the stiff term. This multistage
procedure can be expressed as

U.k/ D Un C�t
k�1X
iD1

aki OS



U.i/
�
C�t

kX
iD1
Qaki OL



U.i/

�
; k D 1; � � � ; s; (15)

UnC1 D Un C�t
sX

iD1
bi OS



U.i/

�
C�t

sX
iD1
Qbi OL



U.i/

�
; (16)

where s is the number of stages, the superscripts of U indicate the stage index, and
the subscripts of U indicate the time step. The coefficients aki and bi specify the
ERK method, and the coefficients Qaki and Qbi specify the ARK method. OS and OL are
the spatially discretized forms of S .U/ and L .U/, respectively.

Past applications of implicit-explicit time-integration to atmospheric flows [9, 10]
used discontinuous Galerkin or spectral element methods for the discretization
of spatial derivatives; these approaches resulted in (15) being a linear system.
We, however, use a nonlinear finite-difference operator to discretize the spatial
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derivative, as given by (4) and (13). Thus, OL is nonlinear even though L is linear,
and (15) is a nonlinear system of equations. We make two comments on our
algorithm in this context.

• We ensure that the discretized right-hand side ( OSC OL) is consistent with the right-
hand side of (14) by using the same finite-difference operator to discretize both
S and L. The nonlinear weights in (13) are computed based on the smoothness
of SC L, and the resulting CRWENO5 scheme is applied to both terms.

• We linearize the finite-difference operator at each stage such that (15) is a linear
system of equations. We compute the nonlinear weights in (13) at the beginning
of stage k based on the smoothness of .SC L/

�
U.k�1/� (or .SC L/ .Un/ for

k D 1); and we solve (15) as a linear system (since, once the nonlinear weights
are fixed, (13) is a linear operator).

The linear system is solved using the generalized residual method (GMRES)
method [20] implemented in the KSP (linear equations solvers) module of PETSc.
The current implementation does not apply any preconditioning; the derivation of
effective preconditioners for this application is a subject of active research.

4 Results

We verify our algorithm by solving the two-dimensional inertia-gravity wave prob-
lem [13]. The domain is a periodic channel with dimensions 300;000 � 10;000m.
Zero-flux boundary conditions are specified at the top and bottom boundaries. The
initial atmosphere has a mean flow of 20m/s and is uniformly stratified with a
Brunt-Vaisala frequency of N D 0:01/s [9, 13]. A perturbation in the potential
temperature is introduced as

� 0 D �c

h
sin
n
.�cz/ .hc/

�1oi �1C ˚.x � xc/ a�1c

��2
; (17)

where �c D 0:01K, hc D 10;000m, ac D 5000m, xc D 100;000m, and �c is the
trigonometric constant. Solutions are obtained at a final time of 3000 s. Figure 1a
shows the potential temperature perturbation (� 0) contours for a solution obtained
with the CRWENO5 scheme on a grid with 1200 � 50 points. The solution is
integrated in time with the second-order-accurate, two-stage ARKIMEX 2C method
at a CFL of 8. We observe good agreement with results in the literature [1, 9, 13].
The cross-sectional variation of the potential temperature perturbation through
z D 5000m is shown in Fig. 1b for the solutions obtained with the CRWENO5
as well as the fifth-order WENO (WENO5) [11] schemes. The explicit four-
stage, fourth-order Runge-Kutta (RK4) and the three-stage, third-order ARKIMEX
(ARKIMEX3) methods are used to integrate the solution in time. The absolute and
relative tolerances for the linear solver are specified as 10�6. Excellent agreement
is observed for all the methods with the reference solution, obtained by using the
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Fig. 1 Solutions of the inertia-gravity wave problem obtained on a grid with 1200 � 50

points. (a) Potential temperature perturbation contours. (b) Cross-sectional variation of potential
temperature perturbation

Fig. 2 Error analysis on a grid with 8192 � 256 points. (a) L2 norm of the error as a function of
time step size. (b) Mass conservation error as a function of time step size

spectral element method with 10th-order polynomials and 250-m grid resolution
[9]. Figure 2a shows the L2 norm of the error as a function of the time-step sizes
for solutions obtained on a grid with 8192 � 256 points. The reference solution
is computed with the strong-stability-preserving three-stage, third-order Runge-
Kutta (SSPRK3) scheme and a small time-step size of 0:0005. We consider two
ERK schemes, SSPRK3 and RK4, and three ARKIMEX schemes, ARKIMEX2C,
ARKIMEX3, and ARKIMEX4 (four-stage, fourth-order). The semi-implicit solu-
tions are obtained by specifying the absolute and relative tolerances for the linear
solver as 10�12 and 10�10, respectively. The methods converge at their theoretical
convergence rates. Figure 2b shows the error in mass conservation for the various
methods and time-step sizes. Mass is conserved to round-off error for all the
methods considered.
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5 Conclusions

A high-order-accurate finite-difference method for the simulation of atmospheric
flows is proposed in this paper. The algorithm uses the CRWENO scheme for spatial
discretization and the ARKIMEX schemes for time integration. The semi-implicit
ARKIMEX schemes result in a time-step size that is not restricted by the acoustic
waves. The algorithm is applied to a benchmark atmospheric flow problem, and
solutions show excellent agreement with existing results in the literature. The semi-
implicit time-integrators exhibit optimal convergence and conservative behavior.
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Unsteady Simulations of Rotor Stator
Interactions Using SBP-SAT Schemes: Status
and Challenges

G. Giangaspero, M. Almquist, K. Mattsson, and E. van der Weide

Abstract Recent developments in the SBP-SAT method have made available
high-order interpolation operators (Mattsson and Carpenter, SIAM J Sci Comput
32(4):2298–2320, 2010). Such operators allow the coupling of different SBP
methods across nonconforming interfaces of multiblock grids while retaining the
three fundamental properties of the SBP-SAT method: strict stability, accuracy, and
conservation. As these interpolation operators allow a more flexible computational
mesh, they are appealing for complex geometries. Moreover, they are well suited
for problems involving sliding meshes, like rotor/stator interactions, wind turbines,
helicopters, and turbomachinery simulations in general, since sliding interfaces are
(almost) always nonconforming. With such applications in mind, this paper presents
an accuracy analysis of these interpolation operators when applied to fluid dynamics
problems on moving grids. The classical problem of an inviscid vortex transported
by a uniform flow is analyzed: the flow is governed by the unsteady Euler equations
and the vortex crosses a sliding interface. Furthermore, preliminary studies on a
rotor/stator interaction are also presented.

1 Introduction

The SBP-SAT framework has been developed considerably during the last two
decades. While it has already been successfully applied to many different problems
[6], it is not yet suitable for turbomachinery cases. One of the main reasons for this
is the lack of a consistent (stable and accurate) treatment of sliding interfaces, and of
nonconforming interfaces in general. In the industrial environment, turbomachinery
problems are typically solved with low-order discretization techniques for which
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ways of handling such interfaces are readily available. This is not the case for
high-order (not only SBP-SAT) schemes: nonconforming interfaces are still a major
problem. However, high-order schemes are receiving a constantly growing attention
thanks to their better computational efficiency [7], that is less computational
work for a given accuracy. Computational efficiency is highly appreciated by
turbomachinery designers, who have to perform computations with large number
of unknowns in tight turn-around times. Moreover, general high-order interpolation
operators for nonconforming interfaces, besides being necessary for sliding inter-
faces, would have the added benefit of allowing a more flexible computational mesh
for complex geometries.

Within the SBP-SAT framework, consistent interpolation operators have been
recently proposed for static interfaces [2]. In this work, we adapt the interpolation
operators in [2] to sliding interfaces (see Sect. 2). In Sect. 3, we verify their design
accuracy with the classic test case of the Euler vortex. Then, in Sect. 4 we apply
them to an academic rotor-stator interaction test case. Finally, Sect. 5 provides our
conclusions and future work.

2 Interpolation Operators

In conforming meshes, the SAT term of a vertex on one side of the interface
between computational blocks is proportional to the difference between the solution
in that vertex and the penalty state, i.e. the target solution, which is the solution
in the overlapping vertex on the other side of the interface [4]. By definition, in
a conforming mesh there is a 1to1 matching between the vertices at the interface,
so the penalty state is clearly defined. In a sliding interface, however, such 1to1
relations cease to exist and interpolation is needed. Therefore, our aim is to find
the narrowest possible interpolation stencil that both preserves high-order accuracy
and leads to a stable discretization. In this work, we make the following simplifying
assumptions:

1. the problem is 2D, thus the interpolation is 1D
2. the mesh spacing is constant on both sides of the interface
3. same number of points on both sides of the interface (1:1 compression ratio)
4. the problem is periodic in the direction parallel to the interface.

Assumptions 2 and 3 imply that the sliding interface can reside on one face only
of the computational block. Assumption 4 implies that there is no boundary closure
and therefore the same stencil can be used throughout the interface. For example,
referring to Fig. 2, periodic boundary conditions are applied at the top and bottom
computational boundaries and hence, no special boundary treatment is needed. The
procedure to construct the operators for a more general case, where assumptions 3
and 4 are removed, can be found in [2]. Here we present the second and fourth order
accurate interpolation operators resulting from the assumptions outlined above.



Unsteady Simulations of Rotor Stator Interactions Using SBP-SAT Schemes 249

Fig. 1 Stencil for fourth
order interpolation operator

Figure 1 shows the stencil for the fourth order operator. There we introduce a general
notation for all stencils: P is the vertex on one side of the interface where we wish
to calculate the penalty state; the penalty state in P is a weighted sum of the solution
in the neighboring points Ni, which reside on the other side of the interface. The
second order stencil uses two neighbors and their interpolation weights are given in
Eq. (1).

Sol.P/ D w0Sol.N0/C w1Sol.N1/ (1a)

w0 D .h � h0/=h; w1 D h0=h (1b)

The fourth order stencil uses four neighbors, and their interpolation weights are
given in Eq. (2). The sixth and eighth order stencils are presented in the Appendix.

Sol.P/ D
2X

iD�1
wiSol.Ni/; ˛ D .h � h0/=h (2a)

w�1 D� 1=6.˛ � 2/.˛ � 1/.˛/; w0 DC 1=2.˛ � 2/.˛ � 1/.1C ˛/;
(2b)

wC1 D� 1=2.˛ � 2/.˛/.1C ˛/; wC2 DC 1=6.˛ � 1/.˛/.1C ˛/: (2c)

In order to have a consistent discretization, we use the interpolation operator that
corresponds to the accuracy of the interior stencil of the scheme. We employ
SBP-SAT schemes with diagonal norms (see, for example, [5] to explain this
terminology), for which the design accuracy is s in a few points near the boundary
and p in the interior, where s D p=2. This leads to a scheme with global accuracy
of order s C 1 measured in the L2-norm. Therefore, the fourth order interpolation
operator is used with the third order scheme (which is second order accurate at the
boundary and fourth in the interior); the sixth order interpolation operator is used
with the fourth order scheme, and the eighth order interpolation operator is used
with the fifth order scheme.

Referring again to [2], for stability to be proven, the following condition must be
met:

Hy
RIL2R DIT

R2LHy
L (3)



250 G. Giangaspero et al.

where Hy
L and Hy

R are the norms in the direction parallel to the interface in the left
and right domain, respectively; IL2R and IR2L are the interpolation operators. Because
of assumption 4, Hy

L and Hy
R reduce to the identity matrix. It remains to show that

IL2R D IT
R2L, which is easily verified by computing the weights wi on both sides of

the interface.

3 Accuracy Study: The Euler Vortex Test Case

This classic test case is used here to verify the design accuracy of the interpolation
operators. The unsteady 2D Euler equations govern the simulation, which consists
of a 2D vortex transported by a uniform flow across two rectangular computational
domains of dimensions .x; y/ D .�Lx; 0/ � .�0:5Ly; 0:5Ly/ and .x; y/ D .0;Lx/ �
.�0:5Ly; 0:5Ly/, see Fig. 2. The initial configuration of the vortex, centered in
.xc; yc/ and superimposed onto the uniform (infinity) flow, is given by the following
equations:


0 D 
1 .T0=T1/1=.��1/ ; u0 D U1 C ıu; v0 D ıv; T0 D T1 � ıT
(4)

where

ıu D �.ˇU1/
y � yc

R
e�r2=2; ıv D .ˇU1/

x � xc

R
e�r2=2; ıT D 0:5

Cp
.ˇU1/2e�r2

Fig. 2 Euler vortex problem. Nx D Ny D 65, fifth order solution (density). (a) Initial solution.
(b) Solution at t D 0:6tfinal D 0:6Lx=U1
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and Cp D �Rgas=.� � 1/, r Dp.x � xc/2 C .y � yc/2=R. The variable R represents
the vortex characteristic radius while ˇ defines its strength; � D 1:4 is the
constant specific heat ratio, Rgas D 287:87 J=.kg K/ is the gas constant and
U1 D M1

p
�RgasT1 and 
1 D p1=.T1Rgas/ are the velocity and density

of the unperturbed flow, respectively. We set M1 D 0:5, ˇ D 1=2� , R D 0:1,
Lx D Ly D 1, xc D �0:5; yc D 0:0.

The (analytic) solution is steady in the frame of reference moving with the free-
stream. The flow is periodic in the y direction, therefore no boundary closure is
needed at the interface and there we can use the interpolation operators. The analytic
solution is used as boundary data at the left and right boundaries. While the left
block is fixed, the right block is oscillating with a frequency of f D U1=Lx and an
amplitude of 0:5Ly.

For the SBP-SAT discretization of the Euler equations, we refer to [2], where
static interfaces were considered. To cope with the sliding interface, the interpo-
lation operators IC2F and IF2C presented therein must be replaced by the novel
operators IL2R and IR2L, derived in the present study.

The solution is advanced in time with an explicit third order TVD Runge-Kutta
scheme for 1 characteristic time (tfinal D Lx=U1), such that the vortex has to travel
across the interface once. The time step is chosen such that the error due to the
temporal discretization is negligible with respect to the error due to the spatial
discretization. In this configuration, 3000 time steps were used. As the problem
is almost linear, no artificial dissipation was necessary for this case.

Since the vortex should be transported without distortion, the L2 norm of the error
can be defined as

L2error D
"
.

NtotX
iD1

error2i /=Ntot

#1=2
; errori D �final

i � �analytic
i ; i D 1; : : : ;Ntot

where � is one of the conserved variables; �final is the numerical solution at t D tfinal;
the analytic solution is computed from Eq. (4) with .xc D 0:5; yc D 0:0/, and Ntot is
the total number of grid points.

The convergence rates of the density error are reported in Table 1; similar values
were obtained for the other conserved variables. The global accuracy of the schemes
is verified, hence the interpolation operators show the design accuracy.

Table 1 Euler vortex: L2error norms and convergence rates for the density error obtained with the
different schemes

Second order Third order Fourth order Fifth order
N L2error Conv. Rate L2error Conv. Rate L2error Conv. Rate L2error Conv. Rate

33 1.176e�4 – 3.365e�5 – 6.372e�5 – 5.623e�5 –

65 3.216e�5 1.87 4.128e�6 3.03 5.369e�6 3.57 2.032e�6 4.79

129 8.042e�6 2.00 4.971e�7 3.05 3.618e�7 3.89 5.802e�8 5.13

N (D Nx D Ny) is the number of grid points in the two directions for each block
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4 A Rotor-Stator Interaction Problem

To further illustrate the applicability of the sliding interface treatment, we consider a
linear cascade problem. Originally designed at the Duke University [1], the cascade
consists of a 1&1=2 stages (stator-rotor-stator) compressor. In order to reduce the
grid complexity and computational costs, the geometry has been scaled down to a
3-4-5 configuration from the original 16-20-25 configuration. The coarse grid, used
to obtain a cheap initial solution, is shown in Fig. 3. The fine mesh consists of 54
computational blocks,� 650;000 vertices. The mesh topology was chosen in order
to comply with the simplifying assumptions of Sect. 2; that is, only one block on
each side of the interface and 1 W 1 matching. However, this forced us to introduce
sub-faces in the computational blocks involved in the sliding interfaces, see the red
block in Fig. 3b. Sub-faces, also known as T-junctions, are not accounted for in
the stability of the SBP-SAT schemes of third order and higher, and are a relatively
recent topic of research. A possible solution has been proposed in [3], however it has
not been implemented yet in our code and no ad-hoc treatment has been employed.

Characteristic far-field boundary conditions are used at inlet and outlet, and the
flow is assumed to be periodic in the y direction. The rotor travels at a speed
of 1.25 m/s in vertical direction and the total compression ratio is 1:6. The flow
is inviscid and subsonic, and the solution is advanced in time until the initial
disturbances are smoothened out and a periodic solution is obtained.

We computed the second and third order solution. The fourth and fifth order
schemes were not stable. The cause of this behavior is under investigation but we
believe the most likely culprit is the non-stable handling of sub-faces. Figure 4a
shows the instantaneous pressure field at a particular time during the periodic

Fig. 3 Coarse mesh for the linear cascade problem. (a) Coarse mesh. (b) 1:1 matching at the
interface and sub-faces (right boundary of the red block)
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Fig. 4 Pressure contours of the third order instantaneous solution of the stator-rotor-stator
calculation. (a) Global view. (b) Zoom at the sliding interface: the solution is smooth, the mesh
is not

regime. The third order accurate method is used. Figure 4b shows the pressure
contours and the mesh close to the rotor-stator interface (the same considerations
hold for the stator-rotor interface). The mesh is clearly not continuous, but the
solution is.

5 Conclusions and Future Work

We have constructed stable and accurate SBP-SAT interpolation operators for
sliding interfaces under some simplifying assumptions. In order to verify their
design accuracy, we have applied them to the classic test case of the Euler
vortex (Sect. 3). A more involved test case, a linear cascade, has been computed
as well (Sect. 4). Promising results were obtained: design accuracy is verified,
the solution is smooth over the sliding interfaces and there are no reflections.
However, the limitations of the operators presented in this work and in [2] are
simply too restricting for real-life (industrial) applications. For those kind of
problems we need generalized interpolation operators, which should be able to
handle 2D interpolation, any compression/expansion ratio, non-constant spacings,
and arbitrary number of (sub-)faces. Generalized operators are not only necessary
for the calculations of sliding interfaces, but would also be very beneficial for
nonconforming fixed interfaces in general. For example, the mesh generation of
some complicated geometrical features, like blade cooling holes, would be greatly
simplified. While this work is a step forward towards a fully consistent SBP-
SAT discretization technique for turbomachinery problems, there are clearly many
more to take. However, once generalized operators become available, real-life
turbomachinery problems will be at reach.
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Appendix

The interpolation weights for the sixth order operator are (see Fig. 1):

Sol.P/ D
3X

iD�2
wiSol.Ni/; ˛ D .h � h0/=h

w�2 D �1=120 .˛ � 3/.˛ � 2/ .˛ � 1/.˛/ .1C ˛/
w�1 D C1=24 .˛ � 3/.˛ � 2/ .˛ � 1/.˛/ .2C ˛/

w0 D �1=12 .˛ � 3/.˛ � 2/ .˛ � 1/.1C ˛/ .2C ˛/
wC1 D C1=12 .˛ � 3/.˛ � 2/ .˛/.1C ˛/ .2C ˛/
wC2 D �1=24 .˛ � 3/.˛ � 1/ .˛/.1C ˛/ .2C ˛/
wC3 D C1=120 .˛ � 2/.˛ � 1/ .˛/.1C ˛/ .2C ˛/

The interpolation weights for the eighth order operator are (see Fig. 1):

Sol.P/ D
4X

iD�3
wiSol.Ni/; ˛ D .h � h0/=h

w�3 D �1=5040 .˛ � 4/.˛ � 3/ .˛ � 2/.˛ � 1/ .˛/.˛ C 1/ .˛ C 2/
w�2 D C1=720 .˛ � 4/.˛ � 3/ .˛ � 2/.˛ � 1/ .˛/.˛ C 1/ .˛ C 3/
w�1 D �1=240 .˛ � 4/.˛ � 3/ .˛ � 2/.˛ � 1/ .˛/.˛ C 2/ .˛ C 3/

w0 D C1=144 .˛ � 4/.˛ � 3/ .˛ � 2/.˛ � 1/ .˛ C 1/.˛ C 2/ .˛ C 3/
wC1 D �1=144 .˛ � 4/.˛ � 3/ .˛ � 2/.˛/ .˛ C 1/.˛ C 2/ .˛ C 3/
wC2 D C1=240 .˛ � 4/.˛ � 3/ .˛ � 1/.˛/ .˛ C 1/.˛ C 2/ .˛ C 3/
wC3 D �1=720 .˛ � 4/.˛ � 2/ .˛ � 1/.˛/ .˛ C 1/.˛ C 2/ .˛ C 3/
wC4 D C1=5040 .˛ � 3/.˛ � 2/ .˛ � 1/.˛/ .˛ C 1/.˛ C 2/ .˛ C 3/
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Degree and Wavenumber [In]dependence
of Schwarz Preconditioner for the DPG Method

Jay Gopalakrishnan and Joachim Schöberl

Abstract This note describes an implementation of a discontinuous Petrov
Galerkin (DPG) method for acoustic waves within the framework of high order
finite elements provided by the software package NGSolve. A technique to impose
the impedance boundary condition weakly is indicated. Numerical results from
this implementation show that a multiplicative Schwarz algorithm, with no coarse
solve, provides a p-preconditioner for solving the DPG system. The numerical
observations suggest that the condition number of the preconditioned system is
independent of the frequency k and the polynomial degree p.

1 A Petrov Galerkin Formulation

We consider the Helmholtz equation modeling time harmonic acoustic waves in a
homogenous medium,

��u � k2u D f on ˝ (1a)

u D 0 on @˝: (1b)

Here we have set the simplest Dirichlet boundary condition (postponing the case of
impedance boundary condition to later), and ˝ is a polygonal (2D) or polyhedral
(3D) domain, partitioned into a simplicial finite element mesh ˝h. When k2 is
not an eigenvalue of ��, this problem has a unique solution. We want to study
its approximation by the so-called primal discontinuous Petrov Galerkin (DPG)
method [4] (cf. [1, 2]). This approximation is based on a Petrov Galerkin weak
formulation.
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The derivation of the formulation begins, as in other standard finite element
formulations, by multiplying the equation by a smooth enough complex-valued test
function v and integrating by parts. The difference in the DPG case is that v is
allowed to be discontinuous across element interfaces. Hence the appearance of
interelement fluxes is inevitable, i.e.,

X
K2˝h

�Z
K

grad u � gradv �
Z

K
k2uv �

Z
@K
.n � grad u/v

	
D
X

K2˝h

Z
K

f v:

Here, n generically denotes the unit outward normal of any domain under consid-
eration, f is assumed to be square integrable (although this can be relaxed), and
as usual, the integral over @K must be interpreted as a duality pairing if u is not
sufficiently regular. Letting n � grad u be an independent unknown, denoted by n � q,
this leads to the following weak formulation: Find u 2 U and q 2 Q such that

.grad u; gradv/˝h � k2.u; v/˝h � hn � q; vi@˝h D . f ; v /˝; 8v 2 Y; (2)

where .r; s/˝h D
P

K2˝h
.r; s/K and .�; �/D, for any domain D, denotes the complex

L2.D/-inner product, h`;wi@˝h D
P

K2˝h
h`;wi1=2;@K where h`; �i1=2;@K denotes the

action of a functional ` in H�1=2.@K/,

U D H1
0.˝/; Y D

Y
K2˝h

H1.K/; Q D H.div;˝/
ı Y

K2˝h

H0.div;K/:

Here H0.div;K/ D fq 2 H.div;K/ W q � nj@K D 0g: Formulation (2) is clearly of the
Petrov-Galerkin kind as the trial space X D U�Q is different from the test space Y.
Adapting the techniques in [3, 4], it is possible to prove that this weak formulation
has a unique solution whenever k2 is not a cavity resonance. However, the focus of
this note is on practical implementation.

The method we shall implement is not based on the above Petrov-Galerkin form,
but rather on an equivalent mixed Bubnov-Galerkin form. To describe it, first let us
set the sesquilinear form b.�; �/ by

b..u; q/; v/ D .grad u; gradv/˝h � k2.u; v/˝h � hn � q; vi@˝h

and the Y-inner product by

.y; v/Y D .grad y; gradv/˝h C k2.y; v/˝h :

The equivalent mixed formulation is to find ."; u; q/ 2 Y � X such that

."; y/Y C b..u; q/; y/ D . f ; y/˝h (3a)

b..w; r/; "/ D 0; (3b)
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for all .y;w; r/ 2 Y � X. One can show (see e.g., [5]) that the solution .u; q/ of (2)
together with " D 0 is the unique solution of (3).

2 A DPG Method for the Helmholtz Equation

The DPG method we want to study is a Galerkin method obtained directly from (3),
i.e., the DPG approximation ."h; uh; qh/ is in a discrete subspace Yh � Uh � Qh of
Y � U �Q and satisfies

."h; y/Y C b..uh; qh/; y/ D . f ; y/˝h (4a)

b..w; r/; "h/ D 0 (4b)

for all .y;w; r/ 2 Yh�Uh�Qh. (A different DPG method for the Helmholtz equation
based on an ultra-weak formulation can be found in [3].)

The discrete spaces are set, as recommended in [2, 4], for any degree p � 0, by

Yh D fv 2 Y W vjK 2 PpC2.K/;8K 2 ˝hg;
Uh D fw 2 U W wjK 2 PpC1.K/;8K 2 ˝hg;
Qh D fr 2 Q W qjK 2 R@p.K/;8K 2 ˝hg;

where Pp.K/ denotes the space of polynomials of degree at most p on K and R@p.K/
is defined as follows. Recall that the Raviart-Thomas space in N space dimensions
Rp.K/ D Pp.K/N C xPp.K/ (where x 2 R

N is the coordinate vector), can be split
into a subspace R0p.K/ D Rp.K/\H0.div;K/ and a linearly independent remainder
R@p.K/. The decomposition Rp.K/ D R0P.K/˚ R@p.K/ depends on the choice of the
basis for Rp.K/, but since the sesquilinear form b.�; �/ uses only the trace n � q of
function q in Q, its value is independent of the choice of the basis representation.
The trace space of Rp.K/ and R@p.K/ coincide. Indeed, we may even use a space
other than the Raviart-Thomas space, as long as its traces coincide with that of the
Raviart-Thomas space of index p (i.e., polynomials of degree at most p on each
.N � 1/-subsimplex of K).

3 The Matrix Form of the Method

Let fvjg; fwlg; frmg denote some bases for Yh;Uh; and Qh, respectively. Then,
defining the matrices A;B;C by

Aij D .vj; vi/Y D
X

K

�Z
K

gradvj � grad vi C k2
Z

K
vjvi
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Blj D b..wl; 0/; vj/ D
X

K

�Z
K

grad vj � grad wl � k2
Z

K
vjwl

	

Cmj D b..0; rm/; vj/ D �
X

K

�Z
@K
vj n � rm

	
;

we can write the matrix form of the DPG method as

2
4A B� C�

B 0 0

C 0 0

3
5
2
4x"

xu

xq

3
5 D

2
4F
0

0

3
5 ; (5)

where � denote conjugate transpose. Clearly, the system is Hermitian. It is possible
to prove that this discrete system inherits invertibility from the well-posedness of the
exact problem whenever Yh is of sufficiently high degree, but in practice we choose
Yh to be of degree pC 2 as already stated.

Since functions in Yh have no continuity constraints across element interfaces, the
matrix A is block diagonal (in addition to being Hermitian and positive definite) with
one block per element, and is thus easy to invert. Therefore, the preferred matrix
system for inversion is not (5), but rather its positive definite Schur complement
computed as follows. With L� D ŒB� C�� and xuq� D Œx�u x�q �, rewriting (5) as

�
A L�
L 0

� �
x"
xuq

�
D
�

F
0

�
; (6)

and eliminating x", we obtain

.LA�1L�/xuq D LA�1F: (7)

This is a Hermitian and positive definite system whenever (5) is invertible. Hence we
are able to use the preconditioned conjugate gradient method as an iterative solver
even though the original Helmholtz problem is indefinite. The remaining component
x" can be recovered by x" D A�1.F � L�xuq/.

4 Implementation in NGSolve

We use several facilities provided by the package NGSolve [7, 8] to implement the
above DPG method. First, the spaces Yh and Uh are standard finite element spaces
provided by the classes L2HighOrderFESpace and H1HighOrderFESpace,
respectively. The space Qh can be implemented by removing all interior degrees of
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freedom from the NGSolve class HDivHighOrderFESpace. A built-in facility
for this removal is provided via the option -orderinner which allows one to
restrict the degree of interior shape functions (those with zero normal traces on the
element boundary). One then makes a compound space using these components. All
of this can be done in the standard pde-input file format of NGSolve, as shown:

# Finite element spaces (p = 2 case)
fespace fs1 -type=l2ho -order=4 -complex # Yh
fespace fs2 -type=h1ho -order=3 -complex # Uh
fespace fs3 -type=hdivho -order=2 -complex -orderinner=1 # Qh
fespace fs -type=compound -spaces=[fs1,fs2,fs3] -complex # Yh x Uh x Qh

Next, we must define all the sesquilinear forms in (4). The first form .�; �/Y
in (4a) can be input in the pde-file using the built-in “integrator” classes laplace
and mass provided in NGSolve. The b.�; �/ form however is nonstandard and
is not available in NGSolve. We therefore exploit NGSolve’s extensibility via
shared library additions by writing new integrator classes. They use the dynamic
polymorphism in NGSolve, inheriting properties from the abstract NGSolve class
BilinearFormIntegrator. The new integrator classes are used to build a
shared library of forms often needed in DPG methods. With the integrators for the
b.�; �/ form made (subsumed under [custom_integrators] below) we can
now define the sesquilinear form:

bilinearform dpg -fespace=fs -linearform=lf -nonsym -eliminate_internal
[custom_integrators] # b( (u,q), v)
laplace (1.0) --comp=1 # (grad e, grad v)
mass (k*k) --comp=1 # k*k* (e,v)

Of particular interest to us is the option -eliminate_internal above. Each
degree of freedom in an NGSolve finite element space is marked if it is “inner” or
not. An inner degree of freedom on one element does not interact with another
inner degree of freedom on another element. By virtue of this stored information,
the code can automatically perform static condensation of all inner degrees of
freedom. In particular, all degrees of freedom of L2HighOrderFESpace within
an element are marked to be inner. This means that the elimination of x" that allowed
us to go from (5) to (7) is automatically performed by the code once the flag
-eliminate_internal is given. To be precise, in addition to condensing (5)
to (7), the code does a further condensation that eliminates all inner degrees of
freedom of Uh.

Thus the condensed system consists only of degrees of freedom of Qh (which by
definition are associated only to element interfaces) and those degrees of freedom
of Uh at the element interfaces (see Fig. 1). This final system, being another Schur
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Fig. 1 Schematic of degrees of freedom left after condensation

complement of the Hermitian positive definite Schur complement (7), is Hermitian
and positive definite. We solve it by conjugate gradients, preconditioned by the
Schwarz procedure discussed later.

This and other input files in their entirety as well as the code for the DPG shared
library is publicly available at [https://github.com/jayggg/DPG]

5 The Impedance Boundary Condition

Previously, we built the Dirichlet boundary condition (1b) into the weak formulation
by essentially imposing it in U. Now suppose we are given, instead of (1b), the
impedance condition

@u

@n
� O{ku D 0; on @˝;

where O{ denotes the imaginary unit. Then instead of setting U to H1
0.˝/, we

now set U D H1.˝/. Using the flux approximation given explicitly in the DPG
formulations, the impedance boundary condition can be rewritten as

n � q � O{ku D 0; on @˝: (8)

Being a constraint tying two of the component spaces, a natural implementation
would be by a Lagrange multiplier technique. However, this can result in loss of
positive definiteness.

We pursue a different approach that imposes condition (8) weakly. The idea is to
use the test function components w and r, i.e., we would like to impose the additional
conditions

R
@˝
.n � qh � O{kuh/ n � r D 0 and

R
@˝
.n � qh � O{kuh/w D 0 without over-

constraining the system. Since "h is an approximation to zero, we are motivated to
build an approximate version of these conditions into the system by adding the term

˙
Z
@˝

.n � qh � O{kuh/ .n � r � O{kw/ (9)

https://github.com/jayggg/DPG
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to the left hand side of (4b). This then perturbs the original system (6) to

�
A L�
L D

� �
x"
xuq

�
D
�

F
0

�
: (10)

This system can also be condensed to get an analogue of (7):

.LA�1L� � D/xuq D LA�1F: (11)

Now the choice of the sign in (9) becomes important: If we want (11) to be positive
definite, we must choose the negative sign in (9) so that D is negative semidefinite.

6 The Condensed Schwarz Preconditioner

We now study a preconditioner for (11) constructed using a block Gauss-Seidel
operator with overlapping blocks. The block Gauss-Seidel algorithm is standard,
so we omit all details, except the specification of the blocks for our application.
The blocks consists of all degrees of freedom after condensation, associated to a
vertex patch. In 2D, one such block consists of all degrees of freedom of Uh and
Qh associated to the edges which meet at a single vertex (see Fig. 2). The block
corresponding to a vertex in the 3D case consists of all degrees of freedom on all
the mesh edges and the mesh faces containing that vertex. There are as many blocks
as there are mesh vertices. The block Gauss-Seidel iteration multiplicatively updates
an iterate by block inverses of certain residuals. These block inverses exist because
they are principal submatrices of the positive definite matrix in (11). The action of
our preconditioner consists simply of a block Gauss-Seidel relaxation algorithm
followed by its adjoint given by the same relaxation done in the reverse block
ordering.

Fig. 2 Gauss-Seidel blocks
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7 Numerical Results

We now report a result that is typical of our numerical experience with this method.
We simulated a plane wave propagating in the x-direction on a uniform 4 � 4
triangular mesh of the unit square by providing the needed non-homogenous data
to the impedance boundary condition. After assembling the condensed system (11),
we used conjugate gradients, preconditioned by the above-mentioned block Gauss-
Seidel algorithm, as an iterative solver. We stopped the iterations when successive
iterates differed by less than 10�10. The number of iterations are reported in
Table 1. Each column of the table reports iteration counts obtained using a fixed
wavenumber k D 2� � n� where n� (indicated atop the table) is the number of
wavelengths that fit into the unit square.

The grayed out entries give iteration counts as well as indicate that computed
solution did not resolve the wave. As is typical of all finite element type methods
for wave problems, when meshes are too coarse, waves are not resolved. However,
unlike many other methods, the DPG system remains solvable, no matter how coarse
the mesh is. Moreover, the preconditioned conjugate gradient algorithm seems to
converge at a degree-independent rate even on such coarse meshes. The bold entries
also give the iteration numbers, but additionally indicate that in these cases the
converged solution clearly showed the wave features. For example, in the k D 2��4
case, it appears that we need at least p D 8 to resolve the wave. Note that we are able
to go to polynomial degrees as high as 32 due to the good conditioning properties
of the integrated Legendre shape functions implemented in NGSolve.

For comparison, we provide results from a simple diagonal preconditioning in a
separate table. Clearly, the results from the block preconditioner are better. Entries
marked “***” indicate that stopping criterion was not met even at 1000 iterations.

Our main conclusion from these observations is that the preconditioner seems
to be uniform in p and k. (Similar observations were reported in [6] using an
analogous preconditioner within GMRES for a different method. That method yields
an indefinite system, while the current DPG method yields positive definite systems,
so we may reliably use conjugate gradients on the latter.) Other (unreported)
experiments in other wave directions in 2D, as well as in 3D tetrahedral meshes,

Table 1 Preconditioned conjugate gradient iteration counts

Schwarz preconditioner

Number of waves

Degree p 2 4 8 16

1 16 14 12 11

2 22 13 12 10

4 28 27 12 12

8 28 30 32 11

16 29 30 30 32

32 29 30 30 30

Diagonal preconditioner

Number of waves

Degree p 2 4 8 16

1 63 59 54 51

2 180 178 166 121

4 261 468 416 398

8 328 612 *** ***

16 662 894 *** ***

32 *** *** *** ***
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all appear to confirm the uniformity of the preconditioner on k and p. Finally, we
note that the preconditioner is not uniform in mesh size h. One usually needs to use
a “coarse” solution to get h-uniformity. But for wave propagation, a good coarse
problem is still a subject of debate.
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An HDG Method for Unsteady Compressible
Flows

Alexander Jaust, Jochen Schütz, and Michael Woopen

Abstract Recent gain of interest in discontinuous Galerkin (DG) methods shows
their success in computational fluid dynamics. One potential drawback is the high
number of globally coupled unknowns. By means of hybridization, this number
can be significantly reduced. The hybridized DG (HDG) method has proven to
be beneficial especially for steady flows. In this work we apply it to a time-
dependent flow problem with shocks. Due to its inherently implicit structure, time
integration methods such as diagonally implicit Runge-Kutta (DIRK) methods
present themselves as natural candidates. Furthermore, as the application of flux
limiting to HDG is not straightforward, an artificial viscosity model is applied to
stabilize the method.

1 Introduction

A prominent class of high-order methods for computational fluid dynamics are so-
called discontinuous Galerkin methods [3, 4, 7, 9–12]. Based on a partitioning of
the domain into a set of N elements, the solution is approximated by piecewise
polynomials on each of the elements. This allows local (non-conforming) refinement
by varying the number of elements N or the degree p of the polynomials used
on each of the elements. However, these methods suffer from a large number of
globally coupled unknowns when being used with implicit time-stepping methods
or in the context of stationary problems. An approach to reduce this number
is to use hybridization, presented for DG by Cockburn et al. [6]. This leads to

A. Jaust (�)
MathCCES, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
e-mail: jaust@mathcces.rwth-aachen.de

J. Schütz
IGPM, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany
e-mail: schuetz@igpm.rwth-aachen.de

M. Woopen
AICES, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
e-mail: woopen@aices.rwth-aachen.de

© Springer International Publishing Switzerland 2015
R.M. Kirby et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2014, Lecture Notes in Computational Science
and Engineering 106, DOI 10.1007/978-3-319-19800-2_23

267

mailto:jaust@mathcces.rwth-aachen.de
mailto:schuetz@igpm.rwth-aachen.de
mailto:woopen@aices.rwth-aachen.de


268 A. Jaust et al.

the hybridized discontinuous Galerkin (HDG) method, see, e.g., [15–19, 21]. By
introducing an additional unknown �h having support on the element interfaces,
the system of equations can be formulated such that it is only globally coupled in
this hybrid variable. Therefore, the number of globally coupled unknowns changes

asymptotically from O
�
pdN

�
to O



pd�1 ON

�
where ON is the number of element

interfaces in the mesh and d the spatial dimension.
In this paper we focus on supersonic inviscid flows. These flows can be described

by the compressible Euler equations, and it is known that they tend to develop
discontinuities. These discontinuities are a severe issue for high-order methods,
as they usually show oscillatory behavior that leads to stability issues. In order
to capture discontinuities and stabilize computations we use an shock-capturing
method that has been introduced by Persson and Peraire [20].

2 Numerical Method

In this section, we give a brief introduction to the hybridized discontinuous Galerkin
method. For more details, we refer to, e.g., [13, 15]. We shortly describe the applied
time integration and shock-capturing schemes. Please note that we focus on the
two dimensional case in this work, i.e., d D 2. Therefore, we will refer to element
interfaces as edges from here on.

2.1 Governing Equations

We consider supersonic inviscid flows that can be described using the compressible
Euler equations, given by

@w

@t
Cr � f .w/ D 0 8 .x; t/ 2 ˝ � Œ0;1/ (1)

on a domain ˝ , equipped with appropriate initial and boundary conditions. The
vector of conserved variables is w D .
; 
u1; 
u2;E/T and involves the density 
,
velocities u1 and u2 and total energy E. Convective fluxes f D . f1; f2 / are given by

f1 D .
u1;PC 
u21; 
u1u2; u1.EC P //T ;

f2 D .
u2; 
u1u2;PC 
u22; u2.EC P //T :
(2)

Pressure P is determined using the ideal gas law with the adiabatic constant � D 1:4
for air.



An HDG Method for Unsteady Compressible Flows 269

2.2 The Hybridized Discontinuous Galerkin Method

In order to discretize Eq. (1), we assume a partitioning of ˝ as ˝ D SN
kD1 ˝k.

Additionally, we define the following ansatz spaces

Vh WD ff 2 L2.˝/ j f j˝k 2 ˘ p.˝k/ 8k D 1; : : : ;Ng4 (3)

Mh WD ff 2 L2.� / j fjek 2 ˘ p.ek/ 8k D 1; : : : ; ON; ek 2 � g4; (4)

where � is the set of all edges. Given these definitions, the semi-discrete formula-
tion of the HDG method can be written as

NX
kD1



..wh/t; 'h/˝k � . f .wh/;r'h/˝k C h Of � n; 'hi@˝k

�
D 0 8'h 2 Vh (5)

ONX
kD1
h� Of � n�; �hi� D 0 8�h 2 Mh: (6)

.�; �/ and h�; �i denote the element and edge scalar product, respectively. The fluxes
over edges have been substituted by the numerical fluxes

Of WD f .�h/� ˛.�h � w�h /n; (7)

with positive real parameter ˛ and w�h denoting wh evaluated on the element’s
interior. wh 2 Vh and �h 2 Mh are the unknowns.

Equation (5) is very similar to the weak formulation one obtains for standard DG
methods. However, the coupling between cells is established via the hybrid variable
�h. The second Eq. (6) is derived from the original problem and is necessary to both
determine �h and ensure that the total flux has a weak divergence. Together with the
Rusanov-/Lax-Friedrichs inspired flux the locality of the scheme is retained. In this
setting, locality means that the system of equations on each element only depends on
the information given on the element and on its edges. This allows the application of
static condensation [6]. Therefore, the linearized system of equations can be written
such that it is globally coupled only in �h. This may lead to an extensive reduction
of globally coupled unknowns.

2.3 Time Integration

In Eqs. (5)–(6), only the temporal derivative of wh occurs. Thus, the discretization
leads to a system of differential-algebraic equations (DAEs) of index 1. This
poses a severe restriction to the time integration methods that can be applied [8].
Therefore, only implicit methods with adequate stability properties can be used with
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HDG [16–18]. In our case, we found backward differentiation (BDF) methods and
diagonally implicit Runge-Kutta (DIRK) methods [1, 2, 5, 8] to be reliable time
integrators for the HDG method [13, 14, 22].

2.4 Shock-Capturing

High-order methods such as the DG or the HDG method tend to show oscillatory
behavior near discontinuities or steep gradients if they are not suitably stabilized.
For DG, flux limiters and artificial viscosity models are a generic choice. However,
the HDG method relies on the locality of the method, which makes it hard or even
impossible to employ flux limiters. The use of artificial viscosity models, however, is
possible. In this work, we use a shock-capturing method introduced by Persson and
Peraire [20], which relies on adding an additional diffusive term to the equations. In
our case, we add an (inconsistent) discretization of the Laplacian, ."krwh;r�h/, to
Eq. (5).

The cell-wise constant viscosity "k is determined using a shock sensor

sk WD log10

 
. Nw � w; Nw � w/L2.˝k/

.w;w/L2.˝k/

!
(8)

where Nw represents the L2-projection of w from˘ p.˝k/ to ˘ p�1.˝k/. Please note,
that this projection step is very cheap as we employ orthogonal basis functions.
Hence, sk measures the discrete smoothness of a solution by comparing its highest
order terms to the complete solution.

Then, the actual amount of viscosity "k for each element is computed from

"k WD

8̂
<̂
ˆ̂:

0 ; sk < s0 � �av
"0

2

�
1C sin

�
�.sk � s0/

2�av

		
; s0 � �av � sk � s0 C �av

"0 ; sk > s0 C �av

(9)

where "0 
 h
p , s0 
 log. p / and �av are problem-dependent parameters. They

have to be chosen such that the method is sufficiently stabilized while keeping
discontinuities sharp.

3 Numerical Results

In this section we present results obtained from the described method. Based on the
work in [13, 14, 20] we present results for a double Mach reflection at a wedge. At
each time step, we employ a Newton-Krylov solver based on a restarted GMRES
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Fig. 1 Sketches of computational domain and how initial data is distributed. (a) Sketch of the
physical domain. (b) Partitioning of the domain for setting the initial conditions

for the resulting linear system. As a preconditioner we use an incomplete LU
factorization without additional levels of fill.

This famous test case is taken from the paper of Woodward and Colella [23].
Supersonic flow enters the domain from the left and hits a wedge of 30 degree angle
(see Fig. 1a). Instead of a rectangular domain as in the original paper, we choose
the domain such that the flow enters the domain on the left and is parallel to the x1-
direction. Therefore, we do not have to prescribe the shock on the upper boundary.
We have inflow boundary conditions on the left, slip-wall boundary conditions at
the wedge and symmetry boundary conditions everywhere else.

The domain is initialized with pre-shock values, .
L D 8:0; u1;L D 8:25; u2;R D
0;PL D 116:5/T , in front of the wedge, denoted by L, and post-shock values, .
R D
1:4; u1;R D 0; u2;R D 0;PR D 1:0/T , everywhere else (see Fig. 1b). We run the
simulation up to t D 0:2 and use a DIRK method of second order with two stages
described by Alexander [2]. Due to limited deflection angles for the given flow
conditions, the shock is reflected such that a complex structure occurs. A convex
shock beginning at the tip of the wedge is created and a region with interacting
shocks develops close to where the shock hits the wedge.

We run two simulations with N1 D 3167 and N2 D 8395 elements. In both
cases polynomials of degree p D 3 are employed. For the coarse mesh, see Fig. 2,
and the fine mesh, see Fig. 3, we show the mesh, the artificial viscosity, the density
and isolines of the density. For both meshes, the general structure of the solution is
captured while on the finer mesh the shocks are sharper. The shocks are detected by
the smoothness sensor such that artificial viscosity is only applied in these regions.
In the region where the shock interacts with an occurring jet much less viscosity is
added than at the outer shocks. However, on neither of the meshes Kelvin-Helmholtz
instabilities in the jet can be seen. There is possibly too much dissipation due to the
applied viscosity, the mesh resolution or the applied time integration method.

Note that there are small oscillations in the area in front of the shock that cannot
be seen in this figures. These may be reduced by using other parameters for the
shock-capturing. However, these are actually that small, such that the shock sensor
hardly recognizes them.
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Fig. 2 Mesh and solution at t D 0:2. (a) Mesh with 3167 elements. (b) Cellwise artificial viscosity
using 14 levels from "k;min D 0:0 and "k;max D 0:014 at t D 0:2. (c) Density distribution for 20
levels with 
min D 1 and 
max D 19 at t D 0:2. (d) Isolines of the density distribution for 20 levels
with 
min D 1 and 
max D 19 at t D 0:2

4 Conclusion and Outlook

We have presented a hybridized DG method for an unsteady compressible flow
problem. By applying an artificial viscosity model we can stabilize the method
successfully to approximate flows with shocks.

Future work will include more detailed studies regarding the optimal parameters
for the shock-capturing scheme as well as the behavior on refined grids. The meshes
used here rely on uniformly large elements which is not suitable for flows with sharp
flow features such as shocks. Therefore, local adaptation of the polynomial degree p
and the mesh is work in progress. The latter is a challenging task for unsteady flows
since the flow features are likely to move. This introduces the need for both mesh
refinement and coarsening to keep the number of elements low.

In addition to adaptation, we also plan to try further shock-capturing strategies to
see whether there are methods in particular well-suited for the HDG method. This
also includes different ways of applying the artificial viscosity. As suggested in the
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Fig. 3 Mesh and solution at t D 0:2. (a) Mesh with 8395 elements. (b) Cellwise artificial viscosity
using 15 levels from "k;min D 0:0 and "k;max D 0:007 at t D 0:2. (c) Density distribution for 20
levels with 
min D 1 and 
max D 19 at t D 0:2. (d) Isolines of the density distribution for 20 levels
with 
min D 1 and 
max D 19 at t D 0:2

work by Persson and Peraire [20] it may be beneficial to use the physical diffusive
terms present in the Navier-Stokes equations instead of a Laplacian.

Another point to address are time integration schemes. So far, classical one step
and multistep methods have been applied, but it may be worthwhile to also consider
other concepts such as general linear methods.
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Thermal Boundary Condition of First Type
in Fourier Pseudospectral Method

D. Kinoshita, A. da Silveira Neto, F.P. Mariano, and R.A.P. Silva

Abstract The purpose of this paper is to extend a novel numerical methodology,
combining thermal immersed boundary and Fourier pseudospectral methods called
IMERSPEC. This methodology has been developed for incompressible fluid flow
problems modeled using Navier-Stokes, mass and energy equations. The numerical
algorithm consists of Fourier pseudospectral method (FPSM), where Dirichlet
boundary condition is modeled using an immersed boundary method (multi-direct
forcing method). The new method combines the advantages of high accuracy and
low computational cost provided by FPSM to the possibility of managing complex
and non periodical geometries given by immersed boundary method. In the present
work this new methodology is applied to the problem of heat transfer for natural
convection in the annulus between horizontal concentric cylinders and conducted to
validate the capability and efficiency of present method. Results for this application
are presented and good agreement with available data in the literature have been
achieved.
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1 Introduction

The search for accurate methods to solving the Navier-Stokes, mass and energy
equations is of great interest to computational fluid mechanics for the solution of
physical phenomena for which only high accuracy methodologies allows one to
obtain a representative solution.

In terms of high accuracy, the classical Fourier pseudospectral collocation
method is probably impressive, due to its extremely high accuracy and its low
computational cost. These classical methods, however, are barely applicable over
complex geometries, since a periodic domain is required, [1, 2].

Seeking to contributions to the solution of such problem have been developed,
alternatively, the methodologies based on the concept of immersed boundary. It can
handle complex and moving geometries, using Cartesian mesh.

In the present work, the main goal is to verify and validate the proposed metho-
dology and the numerical implementation. We employ the IMERSPEC method
presented by Mariano et al. [6], which combines a classical Fourier pseudospectral
method with an immersed boundary method and extend for flows with internal
energy transfer.

In order to verify the IMERSPEC methodology, a synthesized or manufactured
solution for Taylor-Green problem was used, which also considers thermal effects.
For that, an analytical solution of the velocity field, pressure and temperature field
was given. Besides to validate the numerical code, developed in the present work,
the problem of natural convection in a horizontal concentric cylinder is simulated
and compared with the literature.

2 Mathematical Modeling

The mathematical model for incompressible flows of Newtonian fluids with thermal
energy transfer is composed by the mass conservation, Eq. (1), the Navier-Stokes
equations, Eq. (2) and the energy conservation, Eq. (3). Such equations present
source terms that model the boundary conditions for momentum and thermal
energy transfer, as well as, the synthesized solution, originated from the method
of manufactured solutions.
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D 0; (1)
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2.1 Dirichlet Boundary Condition for Energy Equation

For the first type of boundary condition, the temperature T� .X; t/, is provided over
the immersed boundary, where� indicates that the points are in the boundary, which
gives the reference temperature to assess the forcing term, defined as:

TREF.X; t/ 	 T� .X; t/; (4)

where TREF.X; t/ is used in order to calculate the forcing term fT.x; t/. The tempe-
rature T� .X; t/ is given in terms of the physical condition for each problem. In the
present paper, this forcing term is calculated using the thermal direct forcing, with
a procedure similar to that used by Wang et al. [8]. So, if we discretize Eq. (3) using
the Euler time discretization method, as demonstration, we obtain:

TtC�t.x/ � Tt.x/
�t

D RHSt
T.x/C

1


Cp
fT.x/: (5)

By adding and subtracting a temporal parameter for the temperature, T�.x/
(estimation of variable T), on the left hand side of Eq. (5), it gives:

TtC�t.x/� Tt.x/
�t

C T�.x/ � T�.x/
�t

D RHSt
T.x/C

1


Cp
fT.x/: (6)

This equation can be decomposed in to Eqs. (7) and (8):

T�.x/ � Tt.x/
�t

D RHSt
T.x/; (7)

fT.x/ D 
Cp
TtC�t.x/ � T�.x/

�t
: (8)

Equation (8), which is valid for any material particle, can be rewriten for a
material particle placed over the interface, in the other words, over the immersed
boundary:

FT.X/ D 
Cp
TtC�t.X/ � T�.X/

�t
; (9)
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where TtC�t.X/ 	 TtC�t
REF .X/ is given by the physical characteristic of each pro-

blem. On the other hand, T�.X/ is obtained by the interpolation of T�.x/, which is
obtained by the solution of Eq. (7). This interpolation can be defined mathematically
by the following equation:

T�.X/ D
X
˝

T�.x/Dh.x �X/h2; (10)

where x 2 ˝ , which represent the cartesian and periodical domain (Eulerian
points) and X 2 � , which represent the non cartesian and non periodical domain
(Lagrangian points). The distribution function, Dh.x � X/, is given by the cubic
function, proposed by Tornberg and Engquist [7].

Once FT.X/ is obtained, determined by Eq. (9), it is distributed over ˝ . With
the force term distributed to the Eulerian points, fT.x/, we can finally update the
temperature, using Eq. (8), rewriten as:

TtC�t;itC1.x/ D T�;it.x/C �t


Cp
f itC1
T .x/; (11)

where T�.x/ is obtained by Eq. (7) and it is the multi-direct forcing process which
is given by the minimum value of the error between the calculated temperature
at the immersed boundary and the desired temperature and the times of exerting
direct heat source. Note that this error measures how good is the model for the
boundary condition. Likewise, Dirichlet boundary condition is given for Navier-
Stokes equations, this boundary condition is characterized by the ‘non-slip’physical
condition.

2.2 Mathematical Model in the Fourier Spectral Space

Given the mathematical model in the physical space, the next step is to transform
it to the Fourier spectral space. For instance, the Fourier transform of the mass
conservation equation Eq. (1) is given by:

#ki Oui.k; t/ D 0: (12)

where Oui.k; t/ stands for the Fourier transform of the velocity field ui.x; t/ [1].
Equation (12) shows that, for incompressible flows, the transformed velocity field
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is orthogonal to the wave number vector. The transformed Eqs. (2) and (3) are given
by:
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where }im is the projection tensor, presented by Canuto et al. [2].
The non-linear terms which appear at the right hand side of Eqs. (13) and (14)

are given by the convolution integrals, which are expensive to be solved. Otherwise,
they can be solved using the pseudospectral method, presented by Canuto et al. [2].
It consists of evaluating the product in the physical space and then, transforming
it to the Fourier spectral space. It is worth to be highlighted that the pressure is
eliminated from Navier-Stokes equations as shown by Eq. (13). Nevertheless, the
pressure can be recuperated at the post-processing procedure. Details can be seen in
[6].

3 Results and Discussion

3.1 Taylor-Green Problem with Thermal Effects

In order to verify the methodology proposed in the present paper, a synthesized
or manufactured solution is proposed. It consists of determining a source term
from proposed analytical solutions for velocity, temperature and pressure fields.
The following equations, proposed by Henshaw [3]—including a similar analytical
solution for the energy equation—are used in the present work:
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where, uan, van, pan and Tan are, respectively, the analytical solutions for the velo-
city components, the pressure and the temperature. The parameters x and y are the
components of the coordinate system, t is the time, 
, � and ˛ are the fluid density,
the kinematic viscosity and thermal diffusivity, respectively. U1 is the reference
velocity, Tr is the reference temperature and L is the reference length.

From the analytical solutions imposed to Eqs. (2) and (3), source terms are
obtained simultaneously. This case is characterized by the presence of an immersed
boundary � inside of the domain˝ .

Figure 1 shows both the geometrical domain (a) and the rate of convergence (b)
for coinciding collocation nodes. The rate of convergence is approximately eighth
order for �t D 10�2Œs� with mesh size h D L=8, L=16, L=32 and L=64, where
L D Lx D Ly D 2� and the corresponding number of Lagrangian points are 14,
30, 62 and 126. For non-coinciding collocation nodes fourth order is obtained. The
error is greater for non-coinciding collocation nodes than, in the case, of coinciding
nodes. This happens due to the interpolation and distribution routines required by
the immersed boundary methodology for non-coinciding nodes.

Fig. 1 Coinciding collocation nodes to �t D 10�2Œs�: (a) geometrical domain and (b) rate of
convergence
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3.2 Natural Convection in a Concentric Horizontal Cylindrical
Annulus

In order to validate the methodology for a physical problem, using non-coinciding
collocation nodes, natural convection between concentric cylinders is simulated.
The scheme of the computational domain used is seen in Fig. 2.

For Dirichlet boundary condition, it is necessary to impose the temperature in
both cylinders: Ti D TrC�T and T0 D Tr��T, for the inner and the outer cylinder,
respectively, where Tr D 300 K. The temperature difference is obtained from both

Rayleigh (Ra) and Prandtl (Pr) numbers, given by Ra D gˇ�Tl3

˛�
and Pr D 0:71,

where l D Ro � Ri Œm�. The dimensionless parameters to temperature field and the
radius are given by NT D T�Tc

Th�Tc
and R D r�Ri

R0�Ri
.

The local Nusselt number is evaluated at both inner and outer cylinders, as
proposed by Joo-Sik [4]. Figure 3 shows comparisons with experimental [5] data.
One can see the dimensionless temperature profiles along the annulus radius for
� D 90ı, in Fig.3a. The local Nusselt number for the inner and the outer cylinders
is depicted in Fig.3b. For both plots, a good agreement is observed between the
obtained numerical results and the experimental data.

Moreover, the spatial accuracy and the computational cost of the MPEF is
investigated for the annulus study as shown in Fig. 4a, b, respectively. Figure 4a
shows the related L2 error of the numerical solution, as function of the mesh spacing.
For uniform meshes displaying four refinement levels: h D L=32, L=64, L=128

Fig. 2 Scheme for the complete domain for natural convection between horizontal concentric
cylinders
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Fig. 3 Comparison with experimental data at Ra D 4:7� 104 , (a) temperature distribution at 90ı

and (b) distribution of the local Nusselt number

Fig. 4 Analysis of mesh refinement as function of (a) the L2-norm for temperature and (b) run
time

and L=256. Second order is achieved for non-coinciding Lagrangian and Eulerian
meshes applied in a physical problem. Furthermore, it was observed in Fig. 4b that
the computational run time with refinement of the mesh keep the order O.NlogN/,
where N is the number of the point of the mesh discretization.

4 Conclusions

A new methodology, combining Fourier pseudospectral method with immersed
boundary method, is extended from [6] in order to consider non periodical flows
with internal energy transfer. A mathematical model for the first type thermal
boundary condition is proposed and introduced to the Fourier pseudospectral
numerical code. The code is verified using a synthesized analytical solution for
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Navier-Stokes and energy equations. Non periodical problems with internal energy
transfer are simulated using a Fourier pseudospectral methodology coupled with the
immersed boundary methodology. The comparison to experimental results presents
good agreement. Furthermore, it can be observed that this methodology keeps the
computational cost at order O.NlogN/, as expected, reaching second order when
applied to a physical problem. The methodology presented in the paper is currently
being extended in order to contemplate second and third type boundary conditions.
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Numerical Dissipation Control in High Order
Shock-Capturing Schemes for LES of Low
Speed Flows

D.V. Kotov, H.C. Yee, A.A. Wray, and B. Sjögreen

Abstract In Kotov et al. (Proceedings of ICCFD8, 2014) the LES of a turbulent
flow with a strong shock by Yee and Sjögreen (Proceedings of ICOSAHOM 09,
Trondheim, Norway, 2013) scheme indicated a good agreement with the filtered
DNS data. There are vastly different requirements in the minimization of numerical
dissipation for accurate turbulence simulations of different compressible flow types
and flow speeds. The present study examines the versatility of the Yee and Sjögreen
scheme for LES of low speed flows. Special attention is focused on the accuracy
performance of this scheme using the Smagorinsky and the Germano-Lilly SGS
models.

1 Introduction

For the last decade, high order shock-capturing methods with numerical dissipation
controls have been the state-of-the-art numerical approach for direct numerical
simulation (DNS) and large eddy simulation (LES) of turbulent flows with shocks.
See for example [1–10]. The majority of these methods involve flow sensors with
parameter tuning applied depending on the flow type. Some of the flow sensors
were designed for certain flow types and might not preserve their high accuracy
when used to simulate a different flow type. In a study presented in Johnsen et al.
[3], all of the shock-capturing schemes involve tuning of the parameters. It appears
that the Yee and Sjogreen filter scheme is not as accurate as the hybrid scheme
presented in [3] as the key parameter � responsible for minimizing the numerical
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dissipation in the 2007 Yee and Sjogreen scheme [4] was mandated to set to a
constant for all of test cases shown for results presented in [3]. See [2, 5] for a
description of better control of numerical dissipation using a local �. The hybrid
scheme presented in [3] which employed the Ducros et al. flow sensor [6] also
consists of a key tuning parameter ı. From our study presented below of the same
Taylor-Green vortex problem considered in [3], the cut-off parameter ı to be 1 to
achieve the best accurate result. On the other hand, for the isotropic turbulence with
shocklets test case, the Ducros et al. flow sensor ı parameter has to be reduced,
mostly by trial and error. Yet in another study [1] for turbulence interacting with a
high speed stationary shock, depending on the Mach number and turbulent Mach
number, different ı are required for each case.

In recognizing the different requirements on numerical dissipation control for
DNS and LES of a variety of compressible flow types, Yee and Sjogreen, [2],
presented a general framework for a local � and the accompanying variety of flow
sensors were introduced into their high order nonlinear filter scheme. Aside from
suggesting different local � formulation, Yee and Sjogreen also proposed the use
of a combination of different flow sensors. Their proposed scheme with numerical
dissipation control has not been studied extensively. A subset to the sequel to [2]
was presented in [5]. This is yet another sequel to Yee and Sjogreen. The goal of
this work is to examine the different combinations of flow sensors for DNS and LES
of low speed turbulent flows.

2 High Order Nonlinear Filter Schemes

This section gives a brief overview of the high-order nonlinear filter scheme of
Yee et al. [2, 4, 5, 7] for accurate computations of DNS and LES of compressible
turbulence for a wide range of flow types by introducing as little shock-capturing
numerical dissipation as possible.
Preprocessing Step Before the application of a high-order non-dissipative spatial
base scheme, a preprocessing step is employed to improve numerical stability. The
inviscid flux derivatives of the governing equations are split into the following three
ways, depending on the flow types and the desire for rigorous mathematical analysis
or physical argument.

• Entropy splitting of [8]. This is non-conservative and the derivation is based
on the physical entropy variable and energy norm stability for the compressible
Euler equations with boundary closure for the initial boundary value problem.

• The Ducros et al. splitting [9] for systems. This is a conservative splitting and the
derivation is based on physical arguments.

• Tadmor entropy conservation formulation for systems [10]. The derivation is
based on mathematical analysis. Preliminary study in [10] indicated the Tadmor
entropy conservation formulation is more diffusive than the other two splittings.
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Base Scheme Step A full time step is advanced using a high-order non-dissipative
spatially central scheme on the split form of the governing equations. A summation-
by-parts (SBP) boundary operator [11] and matching order conservative high-order
free stream metric evaluation for curvilinear grids [12] are used. Note that the base
scheme can be a high order compact scheme [13], the standard high order central
schemes or spectral methods. However the same entropy stable SBP boundary
closure for high order central schemes is not valid for the latter base schemes.
Post-Processing (Nonlinear Filter Step) To further improve the accuracy of the
computed solution from the base scheme step, after a full time step of a base
scheme step the post-processing step is used to nonlinearly filter the solution by
a dissipative portion of a high-order shock-capturing scheme with a local flow
sensor. The flow sensor provides locations and amounts of built-in shock-capturing
dissipation that can be further reduced or eliminated. At each grid point a local
flow sensor is employed to analyze the regularity of the computed flow data.
Only the strong discontinuity locations would receive the full amount of shock-
capturing dissipation. In smooth regions no shock-capturing dissipation would be
added, unless high frequency oscillations are developed, owning to the possibility
of numerical instability in long time integrations of nonlinear governing PDEs. In
regions with strong turbulence, if needed, a small fraction of the shock-capturing
dissipation would be added to improve stability. Note that the filter numerical fluxes
only involve the inviscid flux derivatives regardless if the flow is viscous or inviscid.
If viscous terms are present, a matching high order central difference operator (as
the inviscid difference operator) is included on the base scheme step.

Let U� be the solution after the completion of the full time step of the base
scheme step. The final update of the solution after the filter step is (with the
numerical fluxes in the y- and z-directions suppressed as well as their corresponding
y- and z-direction indices on the x inviscid flux suppressed)

UnC1
j;k;l D U�j;k;l �

�t

�x
ŒH�jC1=2 � H�j�1=2�; H�jC1=2 D RjC1=2HjC1=2; (1)

where RjC1=2 is the matrix of right eigenvectors of the Jacobian of the inviscid flux
vector in terms of Roe’s average states based on U�. H�jC1=2 and H�j�1=2 are “filter”
numerical fluxes in terms of Roe’s average states based on U�. Denote the elements

of HjC1=2 by h
l
jC1=2; l D 1; 2; : : : ; 5, where

h
l
jC1=2 D

� l
jC1=2
2

wl
jC1=2� l

jC1=2: (2)

Here wl
jC1=2 is a flow sensor to activate the nonlinear numerical dissipation portion

of a high order shock-capturing scheme 1
2
� l

jC1=2, and � l
jC1=2 is a flow dependent

positive parameter to control the amount of shock-capturing dissipation to be
used. The nonlinear dissipative portion of a high-resolution shock-capturing scheme
“ 1
2
� l

jC1=2” can be any shock-capturing scheme. The choice of the parameter � l
jC1=2
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can be different for different flow types and is automatically chosen by using
the local � l

jC1=2 described in [2]. The flow sensor wl
jC1=2 can be a variety of

formulae introduced in the literature or can be switched from one flow sensor
to another, depending on the computed flow data at that particular location. For
a variety of local flow sensors with automatic selection of the proper parameter,
depending on different flow type, see [2]. The form of Tauber-Sandham [14] for
the filter numerical flux uses the Ducros et al. flow sensor as � l

jC1=2 and the Harten
artificial compression method formula (ACM) as the flow sensor indicated in [7] and
similarly in [15] are part of the Yee and Sjögreen adaptive numerical dissipation
control generalization filter formulae. The form of Ducros et al. flow sensor is
w D .ru/2=

�
.ru/2 C !2 C "�. Here u is the velocity vector, ! is the vorticity

magnitude and " is a small number to avoid division by zero (e.g., 10�6). The Ducros
et al. flow sensor consists of a cut off parameter ı that can be used to switch on or
off the dissipative portion of the high order shock-capturing scheme. If ı is set to be
one, the dissipation only switches on when it encounters a shock wave. For lower
value of the cut off ı parameter, vorticity can be detected.

The current numerical experimental study is confined to the following four forms
for the filter numerical flux. It is well known that for certain low speed turbulence
flows, the schemes of choice are spectral and high order compact, or central schemes
with SBP boundary closures. The nonlinear filter step is not needed and this option
using the high order central scheme base scheme only is included as the fifth scheme
for comparison (the last bullet below).

• The first form of the filter numerical flux indicated in [2] is where � l
jC1=2 is the

Mach curve for low speed flow described in [2]. wjC1=2 is the wavelet flow sensor.
If the tenth-order central base scheme, entropy splitting and the dissipative
portion of the ninth-order WENO scheme (WENO9) are employed, it is denoted
by WENO9fi-Esplit-Wav �.i/. If the Ducros et al. splitting is used, it is denoted
by WENO9fi-Dsplit-Wav.

• The second form of the numerical flux is the same as the first form except � l
jC1=2

is a constant based on the initial Mach number of the flow. The corresponding
schemes are denoted by Esplit-Wav � D const and WENO9fi-Dsplit-Wav � D
const

• The third form of the numerical flux is where � l
jC1=2 is a positive non-zero

constant, and wjC1=2 is the Ducros et al. flow sensor in conjunction with the ı
cut off parameter. The corresponding schemes are denoted by WENO9fi-Esplit-
Ducr & WENO9fi-Dsplit-Ducr.

• The fourth form of the numerical flux is where the Ducros et al. flow sensor
is used as � l

jC1=2, and wjC1=2 is the wavelet flow sensor or the ACM flow sensor.
For the same base scheme and the dissipative portion of WENO9, it is denoted by
WENO9fi-Esplit-WavD & WENO9fi-Dsplit-WavD (WENO9fi-Esplit-AcmD &
WENO9fi-Dsplit-AcmD).

• The last form is when no nonlinear filter step is used, i.e., only the base scheme
step is employed. It is denoted by C10-Esplit in the case of employing the tenth-
order central base scheme with entropy splitting. If the Ducros et al. splitting is
used, it is denoted by C10-Dsplit.
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The subgrid-scale (SGS) Smagorinsky model denoted by LES1 using Cs D
0:0085 [16] and the dynamic Germano model [17, 18] denoted by LES2 are
considered. All of the results shown use the third-order Runge-Kutta temporal
discretization.

3 Test Cases

This section illustrates the performance of our high-order filter scheme for DNS
and LES of two 3D low speed turbulence flows considered in [3]. The first test
case is the nearly incompressible (inviscid) Taylor-Green vortex problem and its
viscous counterpart. The second test case is the decay of an isotropic turbulence
with shocklets for an initial turbulent Mach number Mt;0 D 0:6. For both test cases
grid convergence studies are performed using uniform 2563, 1283 and 643 grids for
the DNS simulations. Grid convergence studies also are performed using uniform
1283, 643 and 323 grids for LES computations. Studies found that for an accurate
numerical dissipation control scheme, a coarse grid DNS using a uniform 643 grid
compared well with the filtered DNS using a fine grid of 2563 grid points (spectrally
filtered to a 643 grid). For the LES computations the 323 grid is too coarse for
obtaining an accurate solution, whereas, the 1283 grid solutions are almost on top of
the filtered DNS computation on the 2563 grid. Here, only the results using the 643

are briefly discussed. Due to a page limitation, see [19] for extended comparisons
with more relevant illustrations that are not able to include here.
Taylor-Green Vortex: The 3D compressible inviscid test case solve the Euler
equations with gas constant � D 5=3. The computational domain is a 2� square
cube using a uniform 643 grid. Boundary conditions are periodic in all directions.
The initial conditions are:


 D 1; p D 100C .Œcos.2z/C 2�Œcos.2x/C cos.2y/� � 2/=16;
ux D sin x cos y cos z; uy D � cos x sin y cos z; uz D 0: (3)

The initial turbulent Mach number is Mt;0 D 0:042 and the final time is t D 10.
We also consider the viscous counterpart of the Taylor-Green vortex problem. In
the viscous case the physical viscosity is assumed to follow a power-law: �=�ref D�
T=Tref

�3=4
. Here we use �ref D 0:005 and Tref D 1 in non-dimensional units.

The initial Reynolds number is Re0 D 2040. For this low-Mach number flow
without high shear regime the simulation actually does not require any numerical
dissipation. However, we use the same shock-capturing scheme with adaptive
numerical dissipation control to demonstrate its accurate performance for such
low-Mach number cases. The key study involves the assessment of accuracy of
the computed solution using different forms of � l

jC1=2 and different values of ı
mentioned above.
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Inviscid Taylor-Green Vortex—DNS Scheme Comparison: In the inviscid case the
kinetic energy should be constant. It can be used as a criterion to judge the
accuracy of the four considered filter numerical fluxes. The coarse grid DNS
(643 grid—no SGS model) comparison among different methods by examining the
temporal evolution of the mean kinetic energy and enstrophy comparing with the
2563 grid filtered DNS reference solution (figure not shown). The preservation of
kinetic energy is achieved with C10-split, WENO9fi-Dsplit-WavD and WENO9fi-
Dsplit-Wav � D 10�5, while WENO9fi-Dsplit-Wav �.i/ obtains a small loss in
energy after t � 6. All four methods presented on the enstrophy plot demon-
strate good agreement with the semi-analytical solution [20], which is defined
on the interval 0 � t � 3:5. The enstrophy values obtained using WENO9fi-
Dsplit-Wav �.i/ are slightly smaller than those obtained using the other three
methods.
Viscous Taylor-Green Vortex—DNS and LES Scheme Comparison: The temporal
evolution of the mean-square velocity and enstrophy of the coarse grid DNS (no
SGS model) results on a 643 grid by different methods are shown in [19] The
reference solution is the DNS simulation using a 2563 grid and spectral filtering
to the 643 grid. For this viscous case the most accurate cut off parameter ı in
WENO9fi-Esplit-WavD and WENO9fi-Dsplit-Ducr is when ı D 1. The kinetic
energy computed solutions by all considered methods matches the reference solu-
tion. The difference between methods is only visible on the enstrophy comparison,
though all the results are very close to the reference solution. The methods using
Ducros et al. split C10-Dsplit and WENO9fi-Dsplit-Wav � D 10�5 as well as
WENO9fi-Esplit-Wav �.i/ obtain slightly more accurate results than C10-Esplit and
WENO9fi-Esplit-WavD.

The results obtained using the LES1 model is shown in Fig. 1. Results obtained in
LES1 are closer to the reference solution than the results obtained using the dynamic
model LES2 (figure not shown; see [19]). All LES methods underestimate both the
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Fig. 1 LES1 comparison for the viscous Taylor-Green vortex problem using a 643 grid: Temporal
evolution of the kinetic energy (left) and enstrophy (right). The reference solution is the DNS
computation on a 2563 grid and spectrally filtered to a 643 grid
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kinetic energy and the enstrophy. WENO9fi-Esplit-Wav �.i/ is slightly less accurate
than C10-Dsplit and WENO9fi-Esplit-WavD. The accuracy by C10-Esplit and C10-
Dsplit are almost the same.
Decaying Isotropic Turbulence with Shocklets: The second test case is the
decaying compressible isotropic turbulence with eddy shocklets considered in [3].
For high enough turbulent Mach number, Mt weak shock waves (shocklets) develop
spontaneously from the turbulent motions. For the current numerical experiment we
set the initial Mt;0 D 0:6. The filtered governing equations are solved using gas
constant � D 1:4. The computational domain is on the 2�3 cube with periodic
boundary conditions in all directions. The physical viscosity is assumed to follow a
power-law.

The initial condition consists of a random solenoidal velocity field ui;0 that

satisfies E.k/ 
 k4 exp.�2.k=k0/2/;
3
2
u2rms;0 D hui;0ui;0i

2
D R1

0
E.k/dk. The

brackets here denote averaging over the entire computational domain. For this
study we put urms;0 D 1 and k0 D 4. The density and pressure fields are initially
constant with initial turbulent Mach number Mt;0 D 0:6 and Taylor-scale Reynolds

Re�;0 D 100. These parameters are defined as follows: Mt D
phuiuii
hci ; Re� D

h
iurms�

h�i ; urms D
q
huiuii
3
; � D

r
hu2xi
h.@xux/2i . The time scale is � D �0=urms;0 and the

final time is t=� D 4. The final turbulent Mach number is Mt D 0:29.
Unlike the Taylor-Green vortex case, the most accurate solutions are obtained

using a smaller � and for vales of ı between 0:7 and 1. Comparisons of the
temporal evolutions of the mean-square velocity, enstrophy, temperature variance
and dilatation using by the various filter numerical fluxes on a 643 coarse
grid DNS (no SGS model) are shown in [19]. The reference solution was
obtained from the DNS simulation using a 2563 grid and spectral filtering to
a 643 grid (digitized from [3]). The best results are obtained with C10-AV12,
WENO9fi-Dsplit-Wav �.i/ and WENO9fi-Esplit-Ducr. The cut-off parameter of
the Ducros et al. sensor in WENO9fi-Esplit-WavD is ı D 0:7. However, the
results remain almost the same when ı increases slightly beyond 0:7. For the
dilatation, the best match with the reference solution is obtained by method
C10-AV12 . However, this scheme underestimates the enstrophy, while the rest
of the methods either match or slightly overestimate the enstrophy. The results
obtained using the LES1 model is shown in Fig. 2. The LES1 computations
are closer to the reference solution than the dynamic model LES2 (figure not
shown). The best results is obtained with C10-Esplit, WENO9fi-Esplit-Ducr and
WENO9fi-Esplit-WavD. The spectra of this isotropic decaying turbulence
test case were examined, the computed spectra by these schemes are as
expected and results are not shown due to a space limitation. See [19] for the
comparison.
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Fig. 2 LES1 comparison for the isotropic turbulence problem using a 643 grid: Temporal
evolution of kinetic energy (top left), enstrophy (top right), temperature variance (bottom left)
and dilatation, �i D @iui (bottom right). The reference solution is the digitized solution from [3]
on a 2563 grid spectrally filtered to a 643 grid

4 Conclusions

The performance of the filter scheme with different flow sensors was demonstrated
in LES and DNS of low-Mach number flows. Forms (1)–(4) for the filter numerical
flux were chosen to demonstrate that for low speed turbulence flows without strong
shear waves, the constant � vs. the local � l

jC1=2 behave similarly. The main difference
when using the constant � parameter is that one has to know the flow structure of the
entire evolution a priori in order to select the proper constant � parameter. Contrary
to the considered low speed flow test cases, our previous investigations [2, 5, 7, 21–
24] for various complex high speed shock-turbulence interaction flows, employing
the local � l

jC1=2 would provide an automatic selection of the amount of numerical
dissipation needed at each flow location, thus, leading to a more accurate DNS and
LES simulation with less tuning of parameters.
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A Sub-cell Discretization Method for the
Convective Terms in the Incompressible
Navier-Stokes Equations

N. Kumar, J.H.M. ten Thije Boonkkamp, and B. Koren

Abstract In this contribution we present a sub-cell discretization method for the
computation of the interface velocities involved in the convective terms of the
incompressible Navier-Stokes equations. We compute an interface velocity by
solving a local two-point boundary value problem (BVP) iteratively. To account for
the two-dimensionality of the interface velocity we introduce a constant cross-flux
term in our computation. The discretization scheme is used to simulate the flow in
a lid-driven cavity.

1 Introduction

When solving the incompressible Navier-Stokes equations using a finite-volume
method on a staggered grid, it is required to compute the interface velocities
involved in the convective terms. Standard methods for computing the interface
velocities use linear interpolations (taking the average values of the two neighbour-
ing velocities), or use the upwind value. For incompressible flows the interface
velocities attain the average value in case of diminishing flow (Re # 0) or the
upwind value in the limit Re ! 1. Using standard methods for computing the
interface velocities we tend to ignore the nature of the flow in most cases. In
the sub-cell computation, we solve a reduced momentum equation locally over an
interval to compute the interface velocities. The interface velocities thus computed
are consistent with the equations governing fluid flow.

In [1], we presented the idea of including a piecewise linear pressure gradient
in the local BVP for the computation of interface velocities. In the present paper
we further extend the method, by including the cross-flux term to the right-hand
side (RHS) of the local BVP. The inclusion of the cross-flux term provides a two-
dimensional character to the computed interface velocities. The sub-cell method
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is computationally more expensive than the standard methods for computing the
interface velocities. However, the accuracy gain allows us to use coarser grids as
compared to the standard methods.

In the next section we give details of the underlying finite-volume method used
for solving the incompressible Navier-Stokes equations. In this article we focus
only on the two-dimensional case. In Sect. 3, we give the details for the integral
representation of the interface velocities. In order to account for the nonlinear
character of the two-point local BVP, the computation of the interface velocities
is done iteratively, which is discussed in Sect. 4. The results for the proposed
discretization scheme are presented in Sect. 5.

2 Convective Terms and Interface Velocities

Consider the incompressible Navier-Stokes equations,

r � u D 0; (1a)

@u
@t
Cr � .uu/ D�rpC 1

Re
r2u; (1b)

where u D .u; v/ is the velocity of the fluid, p the pressure and Re the Reynolds
number. We discretize the above system of equations using a finite volume scheme
on uniform staggered grid, as shown in Fig. 1. The discrete system of equations is

Fig. 1 Spatial discretization
scheme on a uniform
staggered grid, with pressure
p defined in the cell center
and the velocity components
defined at the centers of the
cell faces
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written as

D u.t/ D r1.t/; (2a)

j˝ju0.t/ D �C.u/C 1

Re
Lu.t/ �Gp.t/C r2.t/; (2b)

where D, C, L and G represent the discrete divergence, convection, diffusion and
gradient operators, respectively, and where j˝j represents the measure of the control
volumes. The terms r1.t/ and r2.t/ include the boundary conditions for the system
of equations, for details see [2].

Let us consider the u-component of the convective term C.u/ at .xiC1=2; yj/, i.e.,

�
Cu.u/

�
iC1=2; j

D�y
�
u2iC1; j � u2i;j

�C
�x
�
viC1=2; jC1=2uiC1=2; jC1=2 � viC1=2; j�1=2uiC1=2; j�1=2

�
:

(3)

In order to compute the above term we need the interface velocities uiC1; j,
uiC1=2; jC1=2 and viC1=2; jC1=2, the rest can be computed in similar way. We will
focus on the computation of the interface velocity uiC1; j using the local momentum
equation,

.u2/x � �uxx D �px �
�
.uv/y � �uyy

� 

xiC1=2 < x < xiC3=2I y D yj

�
; (4)

where the flow is assumed to be locally steady (ut D 0) and � D 1=Re. Let Fu;y =
.uv/y � �uyy, then Eq. (4) becomes

.u2/x � �uxx D �px � Fu;y: (5)

The above equation resembles a steady viscous Burgers equation. We assume that
the pressure p is piecewise linear over .xiC1=2; xiC3=2/, thus the pressure gradient px

is piecewise constant with a jump at xiC1. On the other hand, the cross-flux term
Fu;y is constant over the interval. We now suppress the y-dependence of Eq. (5) and
denote u.xi; yj/ by ui. Thus we have to solve the equation for x 2 .xiC1=2; xiC3=2/
subject to the boundary conditions

u.xiC1=2/ D uiC1=2; u.xiC3=2/ D uiC3=2; (6)

in order to compute uiC1 D u.xiC1/ (indicated in red in Fig. 1).
Further, we linearize Eq. (5) by replacing the nonlinear term .u2/x by Uux, where

U is an estimate for the interface velocity uiC1; j. The linearized equation is then
solved iteratively, in order to account for the nonlinearity of the problem, for more
details see [1], where it is assumed that Fu;y D 0. In this paper, we briefly outline
the method used in [1] and then extend it by including a constant cross flux term
Fu;y.
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3 Integral Representation of the Interface Velocities

In the local BVP (5)–(6), we get the y-dependence of the velocity component u
as a result of the inclusion of the cross-flux term Fu;y. We introduce the following
notation: u0 D ux, p0 D px, a D U=� and P D a�x, with P being the local Péclet
number for the control volume. Then Eq. (5) can be linearized and rewritten as

�.u0 � au/0 D p0 C Fu;y: (7)

Using the integrating factor formulation u0 � au D eax.e�axu/0 and integrating
Eq. (7), we find

�.e�axu/0 D e�ax
�
I.x/C Fu;y.x � xiC1/C K

�
; I.x/ D

Z x

xiC1

p0.�/d�:

Note that we begin the integration from xiC1, as p0 has a jump at x D xiC1.
Next integrating the equation from xiC1=2 to x and using the boundary condition
u.xiC1=2/ D uiC1=2 yields

u.x/ D ea.x�xiC1=2/uiC1=2 C 1

�

Z x

xiC1=2

ea.x��/I.�/d�C

1

�
Fu;y

Z x

xiC1=2

ea.x��/.� � xiC1/d� C 1

�
K
Z x

xiC1=2

ea.x��/d�:

We now introduce the scaled x-coordinate � defined as

� WD �.x/ D x � xiC1=2
�x

;
�
0 � � � 1�:

Using the scaled coordinate we get

u.�/ D eP�uiC1=2 C 1

�
�x J.�/C 1

�
Fu;y�x2

Z �

0

eP.��	/


	� 1

2

�
d	C

K

U
.eP� � 1/;

J.�/ D
Z �

0

eP.��	/I.xiC1=2 C 	�x/d	:

The integral in the RHS, which gives the contribution of the cross-flux term in the
interface velocity, is given by

Z �

0

eP.��	/


	 � 1

2

�
d	 D G.� IP/; G.� IP/ WD 1

P2




1 � 1

2
P
�
.eP� � 1/� �P

�
:



Sub-cell Discretization Method 299

Thus we get

u.�/ D eP�uiC1=2 C 1

�
�x J.�/C 1

�
Fu;y�x2G.� IP/C K

U
.eP� � 1/:

Applying the boundary condition u.xiC3=2/ D uiC3=2 we obtain

u.�/ D W.1 � � I �P/uiC1=2 CW.� IP/uiC3=2 C 1
�
�x



J.�/ �W.� IP/J.1/
�
C

1
�
Fu;y�x2



G.� IP/ �W.� IP/G.1IP/

�
;

where

W.� IP/ D eP� � 1
eP � 1 ;



0 � W.� IP/ � 1I W.1 � � I �P/CW.� IP/ D 1

�
:

The details for the computation of J.�/ and J.1/ can be found in [1]. At this point
we rewrite u.�/ as a sum of components arising from terms in the RHS of Eq. (7),
i.e,

u.�/ D uh.�/C up.�/C uf.�/; (10)

where

uh.�/ WD W.1 � � I �P/uiC1=2 CW.� IP/uiC3=2;
up.�/ WD 1

�
�x



J.�/ �W.� IP/J.1/
�
;

uf.�/ WD 1
�
Fu;y�x2

�
1
P.W.� IP/ � �/

�
:

In case of no pressure gradient and no cross-flux, we get u.�/ D uh.�/ on solving
the homogeneous local BVP. Including the pressure gradient p0 in the RHS of the
homogeneous local BVP gives us u.�/ D uh.�/ C up.�/. Similarly, including the
constant cross-flux term Fu;y gives us the additional component uf.�/.

Finally the interface velocity uiC1; j can be computed as

uiC1; j D uh
iC1; j C up

iC1; j C uf
iC1; j:

For x D xiC1, we have � D 0:5, for which W WD W.0:5IP/ D .1C eP=2/�1. Now
the velocity components are given by

uh
iC1; j D.1�W/uiC1=2; j CW uiC3=2; j; (11a)

up
iC1; j D�

1

4�
�x2



A.�P=2/.ıxp/iC1=2; j C A.P=2/.ıxp/iC3=2; j

�
; (11b)

uf
iC1; j D

1

�
Fu;y

iC1; j�x2
�
W � 1

2

� 1
P
; (11c)
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Algorithm 1: Iterative computation of the interface velocity uiC1; j

Input: uiC1=2; j, uiC3=2; j, .ıxp/iC1=2; j, .ıxp/iC3=2; j, Fu;y
iC1=2; j, Fu;y

iC3=2; j, �x and �

Initialization: Set uh D 1
2
.uiC1=2; j C uiC3=2; j/, up D 0 and uf D 0

uiC1; j D uh C up C uf

Set, u
.k�1/

iC1; j D 0 (the interface velocity from previous iteration)

Define TOL, as a control parameter for the convergence of the iterative procedure

Define err WD ˇ̌
uiC1; j � u

.k�1/

iC1; j

ˇ̌
do

u
.k�1/

iC1; j D uiC1; j

P WD 1
�
uiC1; j�x and W D .1C exp.P=2//�1

uh D .1�W/uiC1=2; j CWuiC3=2; j

up D ��x2

4�

�
A.�P=2/.ıxp/iC1=2; j C A.P=2/.ıxp/iC3=2; j

�
Fu;y

iC1; j D .1�W/Fu;y
iC1=2; j CWFu;y

iC3=2; j

uf D 1
�
Fu;y

iC1; j �x2
�
W � 1

2

�
1
P

uiC1; j D uh C up C uf

err D ˇ̌
uiC1; j � u.k�1/

iC1; j

ˇ̌
while err � TOL

where

.ıxp/iC1=2; j D 1

�x
.piC1; j � pi; j/ and A.z/ D ez � 1 � z

z2.ez C 1/ :

4 Computation of the Interface Velocity

For solving the discretized momentum Eq. (2b), we need to compute Fu;y D
.uv/y � �uyy at .xiC1=2; yj/ and .xiC3=2; yj/. Thus the terms Fu;y

iC1=2; j and Fu;y
iC3=2; j

are computed at each time step. In order to compute Fu;y
iC1; j we take the weighted

average of Fu;y
iC1=2; j and Fu;y

iC3=2; j analogous to Eq. (11a), i.e.,

Fu;y
iC1; j D .1 �W/Fu;y

iC1=2; j CWFu;y
iC3=2; j: (12)

In order to account for the nonlinearity of Eq. (5), we iteratively compute the
integral representation (Eq. (11)) of the interface velocities. Algorithm 1 describes
the iterative computation of the interface velocity uiC1; j.

For computing the convective term as given by Eq. (3), besides uiC1; j we also
need uiC1=2; jC1=2 and viC1=2; jC1=2. These velocities can also be computed using the
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iterative local BVP method. Further details for the iterative computation of these
interface velocities can be found in [1].

Note that the above discussion can be done analogously for the computation of
the interface velocity vi; jC1 involved in the convective term Cv.u/.

5 Numerical Results

We now use the proposed discretization scheme for computing the interface
velocities involved in the convective terms of the incompressible Navier-Stokes
equations applied to lid-driven cavity flow.

We present the results for Re D 100, on a hierarchy of rather coarse grids (8�8),
(16�16) and (32�32). The results obtained using the present method are compared
with those obtained using the standard average method, the upwind method and
the 1-D local BVP method (absence of the cross flux term) described in [1]. We
take the results from Ghia, Ghia and Shin [3] on a (128 � 128) grid as a reference.
Figure 2 shows the velocity profiles for u along the vertical line passing through the
geometric center of the cavity. It can be seen that the present method exhibits higher
accuracy than the 1-D local BVP method for all grid sizes. Thus we have improved
the 1-D local BVP method by including the cross-flux term, which provides a two-
dimensional character to the interface velocities.

Fig. 2 Comparison of the velocity component u along the vertical centerline of the cavity for
Re D 100. Grids used are 8� 8 (dotted lines), 16� 16 (dashed lines) and 32� 32 (solid lines)
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Next, Richardson extrapolation [4] was used to study the convergence of the
present method. We observed that our method is second order convergent, just as
the standard average method. Since the underlying FVM is second order, the overall
accuracy of the scheme can never be higher than second order, even if the exact
values of the interface velocities were known. It should be remarked though that
conventional error analysis based on Taylor-series expansion is not very suitable
here, since it leads to negative powers of the small diffusion coefficient, which might
very well annihilate positive powers of the small mesh size. The computation of
the interface velocities using the local two-point BVP approach, provides a more
accurate estimate of the interface velocities, thereby leading to significantly smaller
error constants (instead of higher order of accuracy), and hence allowing for the use
of coarser grids.

Similar comparison of the velocity profiles along the geometric center of the
cavity is also done for the case of Re D 1000, which is shown in Fig. 3. The velocity
profile obtained with the present method is remarkable; it shows a minimum of
about the same magnitude and y-location as the Ghia-Ghia-Shin solution. For larger
values of y though, it agrees well with the upwind method. For the Re D 1000 case
the flow separates from the flat cavity walls, leading to secondary and even smaller
vortices. Flow separation from flat walls easily gives rise to non-unique solutions.
Non-uniqueness seems to occur here indeed. In our opinion, the present results show
that this high-Re test case can not be really relied upon in investigating the accuracy
of discretization methods for the incompressible Navier-Stokes equations.

Fig. 3 Comparison of the velocity component u along the vertical centerline of the cavity for
Re D 1000
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6 Conclusions

In the preceding sections we proposed a method for the sub-cell computation
of interface velocities using local two-point BVPs. We presented an integral
representation for the interface velocities as a sum of the components uh, up and uf

given by Eq. (11). The integral representation is then solved iteratively to evaluate
the interface velocities. As observed from Fig. 2, the present method exhibits
higher accuracy than the 1-D local BVP method. Thus inclusion of the cross-flux
term in the local BVP gives us higher accuracy by taking into account the two-
dimensionality of the interface velocities.

Acknowledgements This work is part of the research programme of the Foundation for Funda-
mental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific
Research (NWO).

References

1. N. Kumar, J.H.M. ten Thije Boonkkamp, B. Koren, A new discretization method for the
convective terms in the incompressible Navier-Stokes equations, in Finite Volumes for Complex
Applications VII - Methods and Theoretical Aspects, pp. 363–371 (Springer, Berlin, 2014)

2. B. Sanderse, Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes
equations. J. Comput. Phys. 233, 100–131 (2013)

3. U. Ghia, K.N. Ghia, C.T. Shin, High-Re solutions for the incompressible flow using the Navier-
Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

4. P.J. Roache, Quantification of uncertainty in computational fluid dynamics. Annu. Rev. Fluid.
Mech. 28, 123–160 (1997)



Localization in Spatial-Spectral Method
for Water Wave Applications

R. Kurnia and E. van Groesen

Abstract In the description of water waves, dispersion is one of the most important
physical properties; it specifies the propagation speed as function of the wave-
length. Accurate modelling of dispersion is essential to obtain high-quality wave
propagation results. The relation between speed and wavelength is given by a
non-algebraic relation; for finite element/difference methods this relation has to
be approximated and leads to restrictions for waves that are propagated correctly.
By using a spectral implementation dispersion can be dealt with exactly above
flat bottom using a pseudo-differential operator so that all wavelengths can be
propagated correctly. However, spectral methods are most commonly applied for
problems in simple domains, while most water wave applications need complex
geometries such as (harbour) walls, varying bathymetry, etc.; also breaking of
waves requires a local procedure at the unknown position of breaking. This paper
deals with such inhomogeneities in space; the models are formulated using Fourier
integral operators and include non-trivial localization methods. The efficiency and
accuracy of a so-called spatial-spectral implementation is illustrated here for a few
test cases: wave run-up on a coast, wave reflection at a wall and the breaking of a
focussing wave. These methods are included in HAWASSI software (Hamiltonian
Wave-Ship-Structure Interaction) that has been developed over the past years.

1 Introduction

As a simple introduction, consider the linear theory of water waves in one spatial
direction x and time t above a flat bottom at depth D. With the elevation described
by 	.x; t/, denote by O	.k; t/ the spatial Fourier transform. Then the dynamics of each
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mode (fixed k) is governed by a harmonic oscillator

@2t O	.k; t/ D � Ő 2.k;D/ O	.k; t/

where˝.k;D/ defines the dispersion relation. The solutions exp



i.kx˙ Ő .k;D/t/
�

are harmonic in space and time, and constitute the building blocks of wave
propagating to the right and left with phase speed given by Ő .k;D/=k. For
linear water waves, the dispersion relation is explicitly given by Ő .k;D/ Dp

gk tanh .kD/, which is a skew symmetric and concave function of k, causing
the problems for finite element and difference implementations. By defining the
pseudo-differential operator ˝ with symbol Ő , the equation above can be written
in real space as

@2t 	.x; t/ D �˝2	.x; t/:

Spectral methods are widely used in water wave application, see for instance
early contributions of [3, 4, 7], and [5, 6] for applications in simple domains.
To deal with applications with complex geometries, in [16] a spatial-spectral
implementation using Fourier integral operators was introduced for waves above
varying bottom; [10] deals with localization for breaking mechanism in fully
dispersive models. This paper illustrates methods to deal with such spatial inhomo-
geneities in the full nonlinear equations; using FFT for nonlinear terms, an efficient
implementation with exact dispersion properties is obtained.

In Sect. 2, the full nonlinear dynamic equations are formulated as a Hamiltonian
system in surface variables only by approximating the interior fluid motion through
the kinetic energy, leading to a dimension reduction. In Sect. 3 we deal with
inhomogeneous extensions, and Sect. 4 describes the test cases.

2 Hamiltonian Boussinesq Model

We briefly describe the basic equations and the spatial-spectral numerical imple-
mentation.

Waves in one horizontal direction x on the surface of incompressible, inviscid
fluid under the influence of gravity can be described for irrotational internal fluid
motion by a set of Hamilton equations in terms of the surface elevation 	 .x; t/ and
the fluid potential � .x; t/ at the surface. This observation of [17] and [2] follows
from Luke’s variation principle [13] as was shown by Miles [15]. The dynamic
equations are determined by partial variational derivatives with respect to 	 and to
� of the Hamiltonian which are written as ı	H .�; 	/ and ı�H .�; 	/ respectively.
The dynamic equations can be compactly presented in the physical variables 	 and
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the tangential velocity u D @x� as

@t	 D �@xıuH .u; 	/

@tu D �@xı	H .u; 	/ : (1)

The Hamiltonian is the total energy, the sum of potential energy P.	/ and kinetic
energy K.u; 	/. The potential energy is given by

R
1
2
g	2 dx. The kinetic energy is

difficult to express in the variables at the surface; it requires to solve the interior fluid
potential ˚ .x; z; t/ that satisfies the Laplace equation in the interior (representing
the incompressible and irrotational fluid conditions), the surface condition ˚ D �

at the surface and the impermeable bottom boundary condition. Dirichlet’s principle
defines K through a minimization problem of which the potential is the solution

K .�; 	/ D min
˚

�
1

2

Z Z
jr˚ j2 dzdx j˚ D � at z D 	

�
: (2)

By applying Green’s theorem, the kinetic energy can be written as

K .�; 	/ D 1

2

Z
�@N˚ dx D 1

2

Z
�L� dx:

in which @N˚ D L .�/ is the Dirichlet-to-Neumann (DtN) operator.
The kinetic energy can also be expressed in u and 	 as

K.u; 	/ D 1

2g

Z
.Cu/2 dx:

where C can be interpreted as a phase velocity operator. Then the DtN operator is
given by L D � 1g@xC�C@x. In [10] the kinetic energy has been expanded up to 5th
order nonlinearity; in this paper we only describe the 2nd order model.

The operator C can be obtained exactly in two limiting cases. The first case is that
of linear equations above constant depth D mentioned in Sect. 1, that are obtained
by taking for C the phase speed, i.e. the pseudo-differential operator with symbol

OC .k;D/ D Ő .k;D/=k: (3)

Another limit is obtained for long waves (all linear waves have the same velocity,
no dispersion); above bathymetry with varying depth D.x/, the operator C is
obtained as

CSW D
p

g .D .x/C 	/:
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These two cases are obtained as the limits of the general Fourier integral operator
with symbol OC .k;H.x; t//, where H is the total depth H.x; t/ D D .x/C	 .x; t/. The
presence of 	.x; t/ in H leads to equations that are second order accurate; as shown
in [9].

The Fourier integral operator with symbol OC.k;H/ in the spatial-spectral imple-
mentation is given by

Cu D 1

2�

Z
OC .k;H/ Ou .k/ eikxdk D F�1

h OC .k;H/F .u/ .k/
i

where F and F�1 denote Fourier and inverse Fourier transformation. Note that
the calculation of Cu (and the adjoint C� needed in the DtN operator) requires
a Fourier transformation for each value of x. The implementation of the Fourier
integral operator is robust but quite time consuming; it can be made more efficient
by a piecewise constant approximation using partition of unity of the interval of
values of H, or by an interpolation method as described in [10, 16].

3 Spatial Localization in Spectral Implementations

In this section we describe localization methods in the spatial-spectral implemen-
tation of the wave equations to deal with wave generation, run up on a coast and
reflection at a wall, and wave breaking.

3.1 Wave Generation

The dynamic equations for the numerical implementation are given as follows

@t	 D �@xıuH .u; 	/C C	:�d C S.x; t/

@tu D �@xı	H .u; 	/C Cu:�d (4)

The second term in the right hand side (RHS) of both equations is a damping term
that is localized using a smooth function �d to define a damping zone near the end
points of the computation interval in order to prevent periodic looping in the spectral
description.

The third term in the RHS of the continuity equation is a source term S.x; t/
that act as an embedded influx to generate waves. As described in [12], for a given
influx signal s0.t/ that defines the desired elevation at a given position in a specified
direction, the source S.x; t/ is not unique: the spatial-temporal Fourier transform
NS.k; !// is unique only if k and ! are related by dispersion relation. This makes it
possible to decide about the extent of the spatial generation area by modifying the
given temporal function s0.t/.
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3.2 Run-Up on a Coast and Reflection at a Wall

When a wave is running-up a coast, the shoreline is moving and the governing
dynamic equations hold on the wet side of the changing simulation interval. For
a wave colliding at a wall, the simulation interval is restricted to the area in front of
the wall. It turns out that for both cases a Heaviside function can be used to define
the wet and dry domain; this corresponds to restricting the interval of the kinetic
energy functional. The Heaviside function � is inserted in the Hamiltonian as

H .u; 	/ D 1

2

Z �
g	2 C 1

g
.Cu/2

�
� dx: (5)

with � defined for the two cases as follows

�runup D
�
0 if H.x; t/ �Hmin < 0

1 if H.x; t/ �Hmin � 0 �wall D
�
0 if x � xwall > 0

1 if x � xwall � 0

Here xwall is the wall position; for the run-up case, H.x; t/ is the total depth and Hmin

the minimum depth that can be simulated depending on the maximal wave number
used in the simulation. The dynamic equations accurate to second order are given by

@t	 D �@x
�
C� .Cu:�/ =g


@tu D �@x

��
g	C C0u:Cu:=g

�
�


(6)

in which C0 D @	C.

3.3 Wave Breaking

In [10] a breaking mechanism is described for the fully dispersive Hamiltonian
equations. As trigger mechanism for the onset of breaking a kinematic criterion
U=C > b, with b 2 .0:7I 1/, U the particle speed at the crest and C the crest speed,
is used. An eddy viscosity model with decay in tangential velocity is used as the
dissipation mechanism; the dissipation conserves momentum and is localized in the
front face of the wave.

4 Test Cases

In this section we illustrate the simulation capacity of the HAWASSI code for
various cases.
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Fig. 1 Spatial wave profiles at four different times of the standing wave (left) and the horizontal
(top right) and vertical movement (bottom right) of the shore-point; analytic approximation (blue,
solid-line) and simulation with the HAWASSI code (red, dashed-line)

4.1 Harmonic Wave Run-Up on a Coast

A non-breaking long wave running up an impermeable slope is considered as in
[8, 14]. The initial signal is harmonic with period 10 s, wave height 0.006 m; the
bathymetry is 5 m deep at the flat area and decreases with a 1:25 slope to a shore.
Wave run-up and run-down produces a standing wave. We compare the simulation
result with an analytic approximate solution that is calculated based on [1]. This
analytic approximation uses the nonlinear shallow water equations; a difference
with the simulation that uses the fully dispersive model is visible in Fig. 1. At
the left spatial profiles of the standing wave at four different times are shown for
both methods; at the right the corresponding vertical and horizontal movement
of the shore-point are plotted. The two result are qualitatively similar, with some
quantitative differences. The relative computation time Crel, defined as the cpu-time
divided by the total time of simulation, is about Crel D 3:3.

4.2 Reflection at a Wall

We study reflection at a wall of harmonic waves with initial amplitude 0.5 m above
a flat bottom at depth 5 m. Three different periods are considered: 2, 4 and 6 s with
related wavelengths of 6.2, 22.2 and 38.6 m, respectively. The wave is generated
at x D 0m and the wall is located at x D 125m. Figure 2 shows spatial wave
profile of simulations with the linear HAWASSI code and the analytic solution. The
plots show that the simulation performs well; a small phase shift is observed for the
simulation with period 6 s. The relative computation time Crel is less than 1.
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Fig. 2 Reflection at a wall positioned at 125 m for harmonic waves with periods 2 s (top), 4 s
(middle) and 6 s (bottom). Plotted are the analytic solution (blue, solid-line), the simulation with
the HAWASSI code (red, dashed-line), maximum temporal crest (black, solid), minimum temporal
trough (cyan, solid) and the wall (yellow, solid-line)

4.3 Breaking of Focussing Wave Above a Flat Bottom

In this section we show simulation results for a focussing wave with initial steepness
kp:a D 0:13, peak wave number kp, initial maximal amplitude a D 0:12m, peak
period T D 1:96 s, above a flat bottom at depth D D 2:13m. This test case is one of
a series of wave breaking experiments that have been conducted in the wave tank at
TU Delft and registered as TUD1403Foc8 [11]. In the experiment the elevation is
measured at six position: W1;W2; : : : ;W6 at x D 10:31; 40:57; 60:83; 65:57; 70:31,
and 100:57m; the measured elevation at W1 is used as influx signal. For the
simulation we use a third order Hamiltonian model with wave breaking mechanism.
Figure 3 shows at the left a good agreement between the measurement and the
simulation; the wave shape is well reproduced and a single breaking position is
well predicted at x D 58m (close to W3). The corresponding normalized amplitude
spectra are shown at the right. Quantitatively, the correlation of the simulation and
the measurement is at all positions larger than 0.97 of the maximal value 1. The
relative computation time is Crel D 0:56.
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Fig. 3 Elevation time traces (left) and normalized spectra (right) at positions W2 to W6 for the
breaking focussed wave (TUD1403Foc8); measurement (blue, solid) and simulation (red, dashed-
line)

5 Conclusions

The spatial-spectral implementation using Fourier integral operator leads to con-
sistent Hamiltonian modelling that preserves the exact dispersion relation. The
non-trivial localization methods make it possible to deal with complex geometries.
As test cases, we have shown simulation results of run-up on a coast, reflection at a
wall and breaking of a focussed wave.

Acknowledgements This work is funded by the Netherlands Organization for Scientific Research
NWO, Technical Science Division STW, project 11642.
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Sparse Modal Tau-Method for Helical Binary
Neutron Stars

Stephen R. Lau and Richard H. Price

Abstract We sketch a modal tau approach for treating binary neutron stars, in
particular a low-rank technique for dealing with the changing surface of a tidally
distorted star.

1 Introduction and Preliminaries

We describe aspects of ongoing work toward solution of a specific problem: con-
struction of initial data for relativistic binary neutron stars. Binary inspiral requires
a starting configuration for the gravitational field and stellar structure. A promising
way to provide such configurations is to retain the nonlinearities of relativistic
gravitation, but suppress the radiation reaction that drives the inspiral. The resulting
problem has helical symmetry and involves the corresponding reduction of the wave
operator. Elsewhere [1–3], we have considered the helically reduced wave equation
(HRWE) as a model problem. In terms of co-rotating Cartesian coordinates x; y; z
(with the y-axis as the rotation axis; these are QX; QY; QZ from [2]), the HRWE is

L� D g.x/; L D @2

@x2
C @2

@y2
C @2

@z2
�˝2

�
z
@

@x
� x

@

@z

	2
; (1)

where ˝ is the rotation rate and g a source. The equation is posed on a domain D
with radiation conditions placed on (possibly part of) @D . This problem is of mixed-
type, although we solve it as a relaxation problem and in doing so have encountered
no troubles. Here we describe coupling the HRWE to equations for stellar structure.
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Our work [1–3] thus far has been based on multidomain spectral methods, with
several novel features. First, we adopt a modal approach (expansion coefficients as
unknowns), and achieve sparse and banded systems through the use of integration
matrices, as first described by Coutsias et al. [4]. In the context of iterative
methods, the sparse formulation alone proves insufficient, and much of our work
has focused on the preconditioning of such sparse modal systems. We have
chiefly used block-Jacobi preconditioners, with the block sizes determined by the
modal representations of the relevant operators. Recently [3], we have explored an
interpolative decomposition technique to improve our preconditioners.

In this report we only touch on many of the key points underlying our approach,
instead focusing on a new innovation in dealing with the interface of the stellar
surface and exterior. Inclusion of the stellar surface adds significant computational
complexity, since this surface, due to tidal deformation, is nonspherical. Moreover,
it changes with each iteration in our relaxation scheme. Were the stellar surface
realized as a boundary between subdomains, some form of bulk re-gridding (at least
at the subdomain level) would be unavoidable. Realizing the stellar surface through
tau conditions, we sketch how this can be avoided. While we have our specific
target application in mind, the described technique could also be used for other
problems in computational astrophysics and relativity (for example, the construction
of Newtonian binaries or solution of the conformal thin sandwich equations [5]).

2 Modal-Tau Approximation of Nonspherical Stellar
Surfaces

At each stellar surface regularity is lost both in the solution � and right-hand side
g.x/ of Eq. (1). Therefore, confining a stellar surface within a single spherical sub-
domain spoils spectral convergence. We describe here a treatment of stellar surfaces
which should retain spectral convergence. Since working with the HRWE entails no
further complications, for simplicity we here consider the Poisson problem

r2˚ D 4�G
.x/; x 2 D and ˚.x/ D h.x/; x 2 @D; (2)

where D is a 3d spherical ball with a 2d spherical boundary @D. Again for simplicity,
here we consider an isolated Dirichlet problem associated with D, but in practice D
is a subregion of an overall “two-center domain” D which is a larger 3d spherical
ball containing both stars. Figure 2a depicts a two-center domain, with the closeup
in Fig. 2b showing a configuration of subdomains surrounding one of the stars. D
is the spherical region covered by this local configuration. Therefore, in practice
interface conditions with the external subdomains would actually be specified on
@D. The non-negative density 
 (stellar material) is compactly supported on D.
That is, D contains the set U D fx W 
.x/ > 0g; however, the boundary @U is
nonspherical and a priori unknown.

We typically partition subregion D into four subdomains, three concentric
spherical shells and an center-filling rectangular block. The outermost shell (shell 3)
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= +

shell 1 and blockshell 2

Fig. 1 Subdomain configuration surrounding a stellar surface depicted as an elliptical bold curve

is conforming with its neighbor (shell 2), i.e. the inner boundary of shell 3 and
outer boundary of shell 2 are the same round 2d sphere. Shell 3 serves to couple
D to the external cylindrical and block subdomains, and will not play a role in our
description here. Figure 1 depicts the remaining subdomains which do play a role.
An inner region consists of a spherical shell (shell 1) and the inner 3d block. For
our purposes, we may consider these two subdomains as a single unit. An external
region is another spherical shell (shell 2). Shells 1 and 2 overlap, and we assume
that this overlap contains the boundary @U of the support of the stellar density 
.

Let Q̊ a
`qn represent the triply-indexed modal expansion coefficients on shell

a D 1; 2. Here, the modal indices are ` D 0; : : : ;N� dual to the polar angle,
q D 0; � � � ;N� dual to the azimuthal angle, and n D 0; � � � ;Na

r dual to the radial
coordinate. Throughout, shells 1 and 2 share the same angular resolution, so that
N� and N� need not carry a superscript (subdomain index). We take N� D 2N� ,
although we enforce Q̊ a

`qn D 0 for q > 2`. As described in [2], we keep the

nonphysical coefficients f Q̊ a
`qn W q > 2`g to have the same data structure for the

modal and nodal representations (convenient when using the spherical harmonic
transform).

The representation of r2 on a shell is block-diagonal. Precisely, for each .`; q/
we have an .Nr C 1/-by-.Nr C 1/ block. When q > 2`, each such block is the
identity; however, the block corresponding to a physical mode 0 � q � 2` has the
form

2
4 0

0
B`q

3
5 D IrŒ2�A

2
r � 2BrŒ2�Ar � `.`C 1/B2rŒ2�: (3)

Here 0 represents a row of zeros, and B`q is a sparse .Nr�1/-by-.NrC1/ submatrix
(here we use superscripts ` and q to label matrices). As described in [2], Ar

represents multiplication by r in the Chebyshev basis and B2rŒ2� double integration
in this basis. A subscript Œ2� indicates two free rows of zeros. Therefore, the system
sector corresponding to either shell 1 or 2 has .N�C1/2 free rows of zeros in which to
enforce conditions at the stellar surface. We now describe how these rows are filled.

Each step of our iterative approach (see below) involves update of the density.
We perform this update only on the inner region (shell 1 + block), and it yields
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(modal coefficients for) the updated density 
1. This density is smooth and defined
everywhere on the inner region. Moreover, 
1.x/ < 0 outside of the current
nonspherical surface @U. On the external region (shell 2) we demand 
2.x/ D 0

for all points.
On shell a D 1; 2 the coefficients Q̊ a

`qn determine the function (cf. Eq. (15) of [2])

PNa
r ;N� ˚

a.r; �; �/ D
N�X
`D0

2N�X
qD0

Na
rX

nD0
Q̊ a
`qnE

a
`qn.r; �; �/: (4)

Here the P merely indicates that the function arises as a finite expansion. Moreover,
the basis functions E a

`qn.r; �; �/ are (with m D 1; : : : ;N� )

E a
`0n.r; �; �/ D P`0.cos �/Tn.�

a.r//

E a
`;2m�1;n.r; �; �/ D P`m.cos �/ cos.m�/Tn.�

a.r//

E a
`;2m;n.r; �; �/ D P`m.cos �/ sin.m�/Tn.�

a.r//;

(5)

where the P`m.u/ are normalized associated Legendre functions (denoted by Pm
` .u/

in [6]) and �a.r/ maps the shell-a radial domain Œra
min; r

a
max� to Œ�1; 1�.

Conditions which enforce continuity of the numerical solution and its normal
derivative across the stellar surface @U are then represented by

PN1r ;N�
˚1.xjk/ DPN2r ;N�

˚2.xjk/; n � �rPN1r ;N�
˚1
�
.xjk/ D n � �rPN2r ;N�

˚2
�
.xjk/;

(6)

where xjk D x.rjk; �j; �k/ are Cartesian points on and n is the normal to @U. In
practice the points xjk are determined by the angular collocation points .�j; �k/

corresponding the (discrete) spherical harmonic transform [7] and the corresponding
radial values rjk. The preceding equations determine 2.N� C 1/.2N� C 1/ linear
relationships between the modal coefficients Q̊ 1`qn and Q̊ 2`qn. Indeed, there are
.N� C 1/.2N� C 1/ physical points xjk. Among these relationships are, for example,

N�X
`D0

2N�X
qD0

N1rX
nD0
Q̊ 1
`qnF

1
`qn.xjk/ D

N�X
`D0

2N�X
qD0

N2rX
nD0
Q̊ 2
`qnF

2
`qn.xjk/; (7)

where F a
`qn.x/ 	 .n � rE a

`qn/.x/. Evidently, this is a linear relationship expressible

in terms of the vector direct sum of the modal coefficients Q̊ 1`qn and Q̊ 2`qn as well as

a matrix F2;1W2 which has F 1
`qn.xjk/ and F 2

`qn.xjk/ as entries. The lead index 2 on
F2;1W2 indicates that these relationships as intended for filling zero rows associated
with the shell 2 row sector of the linear system, and the trailing 1:2 (colon notation)
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Algorithm I. Computation of matching conditions across a stellar surface.

INPUT: Modal coefficients f Q
1`qng determining density 
1.x/ on shell 1.

OUTPUT: Matrices QE1;1W2 and QF2;1W2 defining tau conditions.

1: Find surface @U on which 
1D 0. Precisely, for each angular collocation direction .�j; �k/

compute radius rjk D r.�j; �k/ corresponding to 
1.xjk/ D 0.
2: Using the spherical harmonic transform, from the rjk obtain the modal coefficients Or`m

which define the stellar surface @U as r.�; �/ DP
`m Or`mY`m.�; �/.

3: Obtain the components n D .n1; n2; n3/ of the normal to @U. Here we use

.1� u2/
dPm

`

du
D .`C 1/uPm

` � .`� mC 1/Pm
`C1;

where Pm
` .u/ is an associated Legendre function with u D cos � . This identity determines

@Y`m=@xk for xk D .x; y; z/. Then nk / r�1xk �P`m Or`m@Y`m=@xk .
4: For each shell a D 1; 2 compute and store the factors

E a
`qn.xjk/; F a

`qn.xjk/:

The angular factors defining these expressions may be computed once and stored. This
step and the previous one defines the matrices E1;1W2 and F2;1W2.

5: Compute column-by-column spherical harmonic transforms QE1;1W2 and QF2;1W2.

that they will stretch across the shell 1 and shell 2 column sectors. The other set of
matching conditions similarly determine a matrix E1;1W2.

The matrices E1;1W2 and F2;1W2 have too many rows, since, as mentioned above,
there are only 2.N� C 1/2 free rows of zeros, whereas both E1;1W2 and F2;1W2 have
.N� C 1/.2N� C 1/ rows. We reduce the number of equations as follows. Using the
spherical harmonic transform, we compute the column-by-column transforms QE1;1W2
and QF2;1W2. The rows of these matrices which correspond to physical index pairs then
define the tau conditions. The procedure is summarized in Algorithm II.

3 Numerical Experiments

This section describes two experiments. The first from [2] tests the accuracy of
the basic linear solve. The second is a proof-of-concept experiment testing our
method for treating stellar surfaces. Throughout, the two-center domain D and
truncations are from [2]. Some modifications of this setup are necessary for the
second experiment.

First, we consider the retarded solution to

�r2 � @2t /� D �4�ı.3/.x� ���.t//; ���.t/ D a cos.˝t/ex C a sin.˝t/ey; (8)
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Fig. 2 Two-center domain decomposition for neutron star problem. (a) Domain decomposition,
(b) close up of decomposition

where a˝ < 1 so that the source point moves subluminally. When expressed in
terms of co-rotating coordinates, this equation takes the form (1) with an inhomo-
geneity g determined by a Dirac-delta function excited at a fixed-location. An exact
solution to this problem is expressible through Liénard-Wiechert potentials.

We consider two such Dirac-delta forcings for the HRWE (1), one of “charge”
QA D 0:5 located on the z-axis at zA D �0:9, and the other with QB D 1:0 and zB D
1:0. The domain shown in Fig. 2 then needs modification. More precisely, the inner
blocks and shells are excised, so that Dirac-delta sources lie outside of D . We then
use the Liénard-Wiechert solution to fix inner Dirichlet boundary conditions. As
described in [2], at the outer boundary we enforce exact nonlocal radiation boundary
conditions [8]. In all, D is comprised of 11 subdomains: 2 inner spherical shells (one
around each source), 1 outer spherical shell, 3 blocks, and 5 cylinders.

We approximate the problem using our sparse modal-tau method, and then solve
iteratively with preconditioned GMRES [9]. As described in [2], preconditioning
plays a crucial role. Results for the full solve appear in Table 1. A numerical solution
is a collection of modal expansion coefficients (one for each subdomain); however,
comparisons with the exact solution are computed in physical space using the nodal
grid dual to the modal expansion on each subdomain. These nodal grids are coarse,
and the norms reported in the table do not settle down quickly. In the table each
solve serves as the initial guess for the next; therefore, the iteration count drops.

We now turn to our second experiment involving the Newtonian equations for
stellar structure with r2 replaced by L from (1). We consider the simplest possible
equation of state corresponding to an n D 1 polytrope. The system to solve is then

L� D 4�G
.x/; B.�/ D 0; 
.rA���A/ D 0 D 
.rB���B/

�A;B D 2KA;B
.x/C �.x/� 1
2
$2.x/˝2 for x 2 UA;UB

(9)
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Table 1 Solution of the HRWE on D

˝ D 0:1

MPSPD L2 error L2 norm L1 error L1 norm Iterations Tolerance

15.7 3.7532E�06 7.0509E�01 9.9579E�05 3.6556EC00 5 1.0000E�05

23.9 4.2440E�08 7.8382E�01 5.8222E�07 3.6563EC00 3 1.0000E�07

31.0 2.6333E�10 8.3492E�01 4.0406E�09 3.6564EC00 3 1.0000E�09

37.2 4.1855E�12 9.3982E�01 8.6696E�11 3.6565EC00 3 1.0000E�11

37.9 4.7733E�13 9.5252E�01 8.2254E�12 3.6565EC00 2 1.0000E�12

MPSPD stands for modes per subdomain per dimension. Note that an MPSPD of 37.9 corresponds
to (11 subdomains) � .37:93/ ' 599,000 unknowns

Algorithm II. One iteration of equal-mass binary SCF method.

INPUT/OUTPUT: 
, � , and envelope functions rA;B for stars.

1: Solve L� D 4�
 with interface conditions determined by envelope functions.
2: Let x˙ be the north/south pole of one star, so 
.x˙/D0. To keep x˙ fixed throughout the

iteration, choose � and ˝ to solve � D �.x˙/� 1
2
$2.x˙/˝2 .

3: On each star’s inner shell/block update 
.x/ 1
2
K�1

�
� � �.x/C 1

2
$2.x/˝2

�
.

4: Via bisection, find rA;B.�/ from 
1A;B.x/ in each angular direction (see above).

Here B.�/ D 0 is the radiation boundary condition, $.x/ is the distance from
the rotation axis, and now U from before is the union of two sets, UA and UB, one
for each star. The ���A;B are direction cosines relative to star A;B, and rA;B.���A;B/ are
envelope functions for the (a priori unknown) free surfaces @UA;B. The envelope
functions are part of the solution. KA;B and �A;B are constants.

We have considered the self consistent field (SCF) method for solving this
problem. SCF is essentially a fixed-point method, and it is provably convergent for
single stars [10]. However, its implementation for binary stars is complicated [11].
Here we consider its simplest form [12] for equal mass binaries; see Algorithm III.
For this case �A D �B and KA D KB. Although to date all methods that we have
considered are experimental (and our results therefore tentative), the experiment
here suggests that our modal treatment of stellar surfaces is viable.

To generate an initial configuration for the iteration, we consider the Newtonian
Lane-Emden solution corresponding to a single n D 1 polytropic star:

˚ D
n�2K
cŒ1C .�r=R/�1 sin.�r=R/�
�2K
cR=r

; 
 D
n

c.�r=R/�1 sin.�r=R/ for r � R
0 for r � R:

(10)

where the stellar radius is R D p
K�=.2G/. In terms of the central density 
c the

mass is M D 4�2
c.R=�/3. As an initial configuration, we superpose two Lane-
Emden stars, with 
c

A D 100;RA D 1:875; zA D �5:0 and 
c
B D 100;RB D 1:875,

zB D 5:0. This configuration is roughly a dilation by 5 of the previous “Liénard-
Wiechert” configuration. In (9) we fix ˝ D 0:03125 in L, but change ˝ in �A;B.
Kepler’s law ˝2 D .MA C MB/G=a3 with the L rate fixes G. Table 2 indicates
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Table 2 Root-mean-square
errors

Iteration krnew
A .�/� rold

A .�/k
.
krnew

A .�/k kL� � 4�G
k
0 – 1.4473E�02

1 1.2481E�02 2.1790E�03

2 3.3602E�03 1.2159E�03

3 1.3015E�03 7.6345E�04

4 5.2798E�04 6.1734E�04

5 1.9848E�04 5.4127E�04

6 7.9286E�05 4.9521E�04

The middle column lists relative surface errors; in the last
column the residual L� � 4�G
 uses the previous � and
updated 
 from Algorithm III

convergence of the successive stellar surfaces for subdomain truncations similar to
the lowest resolution run in the first “Liénard-Wiechert” experiment. Computation
of the middle column errors uses Spherepack [7] quadrature weights. Convergence
is lost for some truncations/domain decompositions.

4 Conclusion

We have described a modal tau approach for solving the structure equations for
binary stars, in particular focusing on treatment of stellar surfaces. Our approach
avoids re-computation of the bulk operators around the stars, although interface-tau
conditions are altered as a stellar surface evolves. Such change involves low-rank
modification of the previous linear system, and we have exploited the Woodbury
identity to avoid full re-computation of subdomain preconditioners. We are currently
working to implement the approach for helically symmetric binaries using Newton-
Raphson iteration. In our experience the SCF method described here is sensitive to
instabilities arising from the chosen truncations and domain decomposition.
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Uniformly Best Wavenumber Approximations
by Spatial Central Difference Operators:
An Initial Investigation

Viktor Linders and Jan Nordström

Abstract A characterisation theorem for best uniform wavenumber approxima-
tions by central difference schemes is presented. A central difference stencil is
derived based on the theorem and is compared with dispersion relation preserving
schemes and with classical central differences for a relevant test problem.

1 Introduction

Modelling wave propagation over sizeable intervals using finite differences is a
common problem in fields ranging from aeroacoustics to seismology. For high
frequency problems the numerical error may over time be dominated by inaccurate
approximations of the dispersion relation, leading to errors in phase and group
velocity, unless the spatial increment,�x is very small.

A remedy, presented in [1] for central differences, is to perturb the classical
schemes by an extra parameter but decreasing the formal accuracy. The new
parameter is used to minimise the dispersion error in the L2Œ0; �=2� norm. Such
schemes are known as Dispersion Relation Preserving (DRP). For other approaches
based on similar ideas, see e.g. [2–4].

The DRP approach is disadvantageous in that it provides no means of obtaining
wavenumber-specific error bounds. For problems involving a range of wavenumbers
it is more convenient to minimise the dispersion error in the L1-norm. In this paper
we present a characterisation theorem for best uniform wavenumber approxima-
tions. New central difference schemes are derived and compared with their classical
and DRP counterparts.
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2 Central Difference Schemes

We begin by demonstrating why classical central differences are suboptimal for
wavenumber approximation. Consider a central difference stencil of order 2p,

.ux/j D 1

�x

pX
kD1

c. p/
k .ujCk � uj�k/C O.�x2p/:

The numerical wavenumber of this scheme is (see e.g. [1])

N�c D 2
pX

kD1
c. p/

k sin .k�/ (1)

where � D �x� and � is the exact wavenumber of the propagating solution. Here
we let � 2 Œ0; �max� � Œ0; ��.

A Taylor expansion reveals that to obtain desired accuracy, c. p/
k must satisfy

0
BBB@

1 2 : : : p
1 23 : : : p3

:::
:::

:::

1 22p�1 : : : p2p�1

1
CCCA

0
BBBB@

c. p/
1

c. p/
2
:::

c. p/
p

1
CCCCA D

0
BBB@

1
2

0
:::

0

1
CCCA : (2)

The following observation is useful. For the proof, see [5].

Lemma 1 Consider the function

fp.x/ D 1 � 2
pX

kD1
c. p/

k kTk.x/

where c. p/
k satisfies (2) and Tk.x/ is the kth order Chebyshev polynomial of the first

kind, uniquely defined through the relation Tk.cos .�// D cos .k�/. Then

fp.x/ D dp.1 � x/p

for some dp that depends exclusively on p.

Theorem 1 Classical central difference stencils underestimate the speed of propa-
gating solutions.
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Proof Let

Ec.�/ 	 � � N�c D � � 2
pX

kD1
c. p/

k sin .k�/

be the error function associated with a classical central difference stencil of order
O.�x2p/. Note from the definition of fp and the Chebyshev polynomials that

dEc

d�
D fp.cos .�//:

It follows that dEc
d� D 0 only when cos .�/ D 1. It is thus clear that Ec.�/ has

an inflection point at � D 0 and no other extrema in the domain of interest.
Consequently Ec.�/ is monotonic and since Ec.0/ D 0 and Ec.�/ D � it is also
increasing. We thus have N�c � � with equality only at � D 0. Therefore the classical
central difference stencils underestimate the analytic wavenumber. It follows now
that the relative error in the phase speed is

Nvp � vp

vp
D
N�c

�
� 1 � 0

and so the phase speed is underestimated. ut
Let us now, like for DRP schemes, perturb the stencil by adding an additional

coefficient, apC1 without increasing the accuracy. The coefficients of the new stencil
must solve the system (2) for each apC1, though this system is now underdetermined.
Calling the coefficients of the new system ak, k D 1; : : : ; p C 1, we must have a
linear dependence of the first p coefficients on the added parameter, apC1. We write

ak D c. p/
k C c0kapC1, k D 1; : : : ; p.

In view of (3) the numerical wavenumber of the perturbed stencil is

N� D 2
pC1X
kD1

ak sin .k�/; 0 � � � �max � �: (3)

Let us define the error function of this scheme as

E.�/ 	 � � N� D � � 2
pC1X
kD1

ak sin .k�/: (4)

Our goal is to choose apC1 such as to minimise the magnitude of any extrema of
E.�/. In order to do so we will extend Lemma 1 to the perturbed stencil. For a
detailed proof, see [5].



328 V. Linders and J. Nordström

Lemma 2 Let

gp.x/ D 1 � 2
pC1X
kD1

akkTk.x/

where ak D c. p/
k C c0kapC1 are the coefficients of the perturbed central difference

stencil as defined previously, and Tk.x/ is the kth order Chebyshev polynomial. Then

gp.x/ D .1 � x/p
"
.1 � x/

dpC1
c.pC1/pC1

apC1 C dp

 
1 � apC1

c.pC1/pC1

!#

where dp and c. p/
k are defined as before.

Corollary 1 E.�/ has at most one extremum in the open interval .0; �max� and it is
located at

� D �r D arccos

 
1 � dp

dpC1

"
1 � c.pC1/pC1

apC1

#!
:

For good approximations �r is a minimum. This occurs only when apC1 and c.pC1/pC1
have the same sign and japC1j �

ˇ̌
c.pC1/pC1

ˇ̌
, where equality holds only for classical

stencils.

Again, for the proof we refer to [5]. From the above corollary we conclude that
we can have jE.�/j D kEk1 only at two possible points, namely at �r or �max, i.e.

kEk1 D maxfjE.�max/j; jE.�r/jg: (5)

Of course E.�r/ and E.�max/ depend on how we choose apC1 and in view of (5) it is
of interest to investigate this dependency. Our goal is to find the choice of apC1 that
minimises (5). In fact we have

Theorem 2 Consider a 2p C 3 point central difference scheme of order O.�x2p/

with numerical wavenumber N� defined as in (3), and a corresponding error function
E.�/ D � � N� . The stencil that uniformly minimises the error function, i.e.
minN� kEk1 D minapC12R k� � N�k1, is uniquely characterised by the property

E.�r/C E.�max/ D 0: (6)

The proof is found in [5] where it is also demonstrated how this result generalises
to an arbitrary number of free parameters, apC1; : : : ; apCn.
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3 A Numerical Example

For a given �max solving (6) is a simple matter. Even for general �max good estimates
may be found by replacing E.�r/ by a suitable polynomial approximation. For the
case p D 1 this is shown in Fig. 1 for �max 2 Œ0; �=2�. Here e D �minN� kEk.

To illustrate the strength of Theorem 2 we consider a profoundly polychromatic
solution to the advection equation over a periodic domain:

ut C ux D 0; 0 � x � 3; t � 0
u.x; 0/ D exp .�3200.x� 1=2/2/:

This pulse is narrow and its Fourier transform is wide resulting in a significant
contribution from a broad range of wavenumbers. The dominating wavenumber is
� D 0. Contributions from larger wavenumbers decay exponentially but slowly. It
makes sense to use a scheme that accurately approximates the dispersion relation
near � D ��x D 0 and for some suitably chosen region of larger wavenumbers.

From Fig. 1 we see that if we choose �max D �=4 � 0:785 we will have an error
in the dispersion relation of around 10�3. Solving (6) gives the scheme

a1 D 0:683345936919182; a2 D �0:091672968459591:

In Fig. 2 the dispersion error of the new scheme is plotted as a function of �. The
approximation starts to deviate from the exact result for � � �max. The errors of a
fourth order classical central difference scheme and of a five-point DRP scheme [1]
are also included. As expected from Theorem 1 the classical stencil underestimates

Fig. 1 Error of best uniform wavenumber approximation for given �max 2 Œ0; �=2� (orange dots)
and general solution using third degree polynomial approximation (black line)
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Fig. 2 Dispersion error for the new scheme, the classical 4th order stencil, and a five-point DRP
scheme

the dispersion relation, seen by the positive sign of the error. For the shown range of
� it seems that the DRP scheme overestimates the dispersion relation whereas our
new scheme stays within tight error bounds.

We set �x D 1=120 and integrate in time using the classical fourth order Runge-
Kutta scheme with time step �t D 10�3 so the contribution from the temporal
discretisation is small. The exact and numerical solutions are shown in Fig. 3 (top)
together with the error as a function of time (bottom). All numerical solutions
quickly disperse into a train of pulses of decaying amplitude trailing behind the
main peak. As expected from Fig. 2, the DRP scheme overestimates the speed of
some pulses. Our new scheme does this as well but to a much reduced extent. The
smaller pulse train behind the DRP solution with respect to the new scheme may
be attributed to a better approximation for very high wavenumbers. However, since
the contribution of these wavenumbers are comparably small, the resulting error
remains larger for the DRP scheme as compared with the classical and the new
stencil.
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Fig. 3 (Top) Exact solution and numerical approximations after 2000 time steps. (Bottom)
Corresponding errors
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4 Extension to Multiple Dimensions

Extending the new stencil to multiple dimensions is in principle straight forward.
As an example, for the advection problem in 2D we may, after discretising in space,
write

vt C .Dx ˝ Iy/vC .Ix ˝ Dy/v D 0

where v is a grid vector approximating the true solution, Dx;y are periodic operators
containing the central difference stencil and operating on a given cartesian grid
in the x and y direction respectively. Here Ix;y are identity matrices of appropriate
dimensions and˝ denotes the Kronecker product.

For this situation, the solution propagates at an angle � with respect to the
x-axis. It should be noted that the stencils presented here are optimal for the one-
dimensional problem, that is for the cases when � D n�=4; n D 0; 1; 2; 3. For any
other angle the stencils will be suboptimal since the numerical dispersion relation
depends on the direction of propagation. In other words, these stencils may be
sensitive to numerical anisotropy. For a comprehensive overview of methods that
handles this issue, see e.g. [6]. At present we shall not consider this phenomenon
further.

5 Conclusion

We have proved a characterisation theorem for best uniform wavenumber approx-
imations by central difference stencils with one free parameter. The best approx-
imation is unique and may be easily obtained numerically for a given range
of wavenumbers. This allows for accurate approximations of problems of high
frequency waves, or multi-frequency solutions, with a relatively coarse spatial mesh.
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Development of Unstructured Curved Meshes
with G1 Surface Continuity for High-Order
Finite Element Simulations

Qiukai Lu and Mark S. Shephard

Abstract This paper presents a curved meshing technique for unstructured tetra-
hedral meshes where G1 surface continuity is maintained for the triangular element
faces representing the curved domain surfaces. A bottom-up curving approach is
used to support geometric models with multiple surface patches where either C0

or G1 geometry continuity between patches is desired. Specific parametrization
approaches based on Bézier forms and blending functions are used to define the
mapping for curved element faces and volumes between parametric and physical
coordinate systems. A preliminary result demonstrates that using G1-continuity
meshes can improve the solution results obtained.

1 Introduction

It is well known that high-order finite element methods are among the most powerful
methods for simulating complex engineering problems [2]. In order to fully realize
the benefits of the high-order methods, the mesh entities representing curved
portions of the domain geometry must be curved and provide an high-enough order
of geometry approximation [11, 12]. The ability to provide such a higher order of
geometric approximation is facilitated by the use of greater than C0 geometric shape
continuity between elements [8, 14–16]. Although such higher order geometric
continuity is being increasingly used with tensor product representations over
quadrilaterals (see [6, 10]), there is also the desire to have higher than C0 geometry
continuity between elements on unstructured meshes where curved triangular finite
element faces are used. The current work is intended to investigate and address the
technical difficulties with developing curved meshing techniques for unstructured
meshes where G1 surface geometry continuity is maintained for the triangular
element faces representing the curved domain surfaces. A preliminary result is also
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included that shows improved solution results when G1 surface triangulations are
used.

2 Procedure to Create G1 Curved Meshes

Many triangular patches have been developed in the CAGD community to construct
G1 continuous surface interpolations [8, 9, 14–16]. The techniques can in general
be categorized into one of the two sets—polynomial based patches or rational
blend based patches. The schemes using polynomials address the problem by either
using single patch with relatively high polynomial degree or creating piecewise
parametrization using sub-patches [13], both of which lead to more control points
to be determined for the patch. The schemes using rationals are able to keep a
patch complete by using blending functions [3]. Rational patches achieve G1 with
relatively low degree and require fewer control points. For the study in this paper, the
rational blend based scheme is chosen because of its relatively straight-forward to
construct and the data structure is similar to a regular Bézier triangle. The procedure
to create G1 curved meshes from C0 straight-sided meshes using rational triangular
patches is introduced in the following subsections. It is assumed that a straight-sided
mesh is given with the set of boundary mesh entities correctly classified on a CAD
model. Each mesh vertex on the model boundary is able to obtain its position and
surface normal data by interacting with the CAD model.

2.1 Rational Triangular G1 Patch

The essential part of the procedure to create G1 curved meshes is the scheme to
construct triangular G1 patches for mesh faces that interpolate the position xi.�/ and
normal data nj at their bounding vertices. The scheme used in this work to represent
the curved geometry is based on an extension of the Gregory patch proposed by
Walton et al. [16]. For each individual mesh face, each of the three bounding edges
is assigned with a geometric representation of a cubic Bézier curve B.3/.�/. Tangent
vectors are obtained along the curve direction by taking the derivatives of the Bézier
curve parametrization t.2/ D @B

@�
. Cross-boundary tangent vectors are calculated by

taking cross product with the surface normal given at mesh vertices g.2/ D nj � t.2/.
In order to obtain the required G1 continuity, the cross-boundary tangent fields
associated with the three mesh edges have to be satisfied simultaneously, thus
requiring more degrees of freedom than a typical triangular Bézier patch. As a result,
the order of the polynomials representing the surface patch is increased from cubic
to at least quartic B.4/.�/, which leads to a set of three surface control points. Each
of the three surface control point is subsequently split into two and related together
using linear blending functions. The rational blend degree-4 triangular Bézier patch
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Fig. 1 Triangular Gregory patch and its control points

is defined by

B.4/.�/ D Pijkb4ijk.�/ (1)

where Pijk are the control points and b4ijk.�/ are 4th order Bernstein basis functions.
The surface control points P112;P121;P211 are affine combinations of the split
surface control points Gi;j and are calculated using P1;1;2 D 1

�1C�2 .�1G2;2 C
�2G0;1/;P1;2;1 D 1

�3C�1 .�3G0;2 C �1G1;1/;P2;1;1 D 1
�2C�3 .�2G1;2 C �3G2;1/.

Figure 1 shows an example patch and its control point set.

2.2 Surface Mesh with Mixed C0 and G1 Continuity

The procedure introduced in Sect. 2.1 serves the purpose of creating G1 surface
meshes for models with a single model face. In the mean time, most 3D models
with challenging geometric features consist of more than one model face. Any
procedure aiming to create proper surface meshes for such multi-patch models has to
account for the mixture of C0 and G1 continuity. In this work, a bottom-up approach
is adopted based on the different topological types of model entities on which
a mesh entity is classified. Specifically, the mesh edges that represent the model
edges where model faces join with C0-continuity are curved first to be G1 along the
model edge direction while maintaining C0 in the cross-edge direction. After that,
the remaining surface mesh entities that represent the rest of the model boundary
are curved using the procedure discussed in Sect. 2.1. As a result, a piecewise G1

surface mesh is created where it is G1 within each model face as well as along the
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1 for each edge M1
i in the mesh do

2 if M1
i represents model edge with C0 continuity then

3 determine edge control points to interpolate model edge tangent;
4 end
5 if M1

i represents model face or edge with G1 continuity then
6 determine edge control points to interpolate model face normal;
7 end
8 end
9 for each face M2

i in the mesh do
10 if M2

i � G2
j then

11 compute edge tangent vector t;
12 compute cross-edge tangent vector g;
13 determine face control points Gi;j;
14 end
15 end

Algorithm 1: Algorithm for creating G1 meshes for multi-patch CAD models

Fig. 2 Curved G1 mesh of a
linear accelerator model

bounding model edges and C0 in the cross-boundary direction at the model edges
where model faces join together. Note that in the case where two model faces join
with G1 continuity in the first place, G1 continuity is maintained by curving the
mesh edges representing the model edge in the same way as those representing
model faces. The pseudo code for the overall procedure is given in Algorithm 1.
Figure 2 shows an example mesh created using the algorithm.

3 Integration with Finite Element Analysis Solver

With the conventional isoparametric approach with C0 meshes, the volumetric
mapping between a standard parametric space and the physical space is constructed
based on the same polynomial basis functions used for the finite element space.
However, the basis functions used to represent the rational G1 curved mesh are
generally not the same as the finite element shape functions used for analysis.
Therefore, a more general approach is adopted to construct the volumetric mapping
in order to account for the G1 surface geometry. The approach taken in this work
is based on blending [7]. More specifically, the shapes of lower dimensional mesh



Development of G1 Meshes for High-Order FE Simulations 339

entities bounding the element volume are multiplied with linear blending functions,
and the contributions are summed together to get the complete volume mapping.
The equation to calculate the mapping is given in Eq. (2).

xi.�j/ D .1 � �1/E1.� 0/C .1 � �2/E2.� 0/C .1 � �3/E3.� 0/C .1 � �4/E4.� 0/
�.1 � �1 � �2/F1.� 0/ � .1 � �1 � �3/F2.� 0/� .1 � �1 � �4/F3.� 0/
�.1 � �2 � �3/F4.� 0/ � .1 � �2 � �4/F5.� 0/� .1 � �3 � �4/F6.� 0/

C�1V1.1; 0; 0; 0/C �2V2.0; 1; 0; 0/CC�3V3.0; 0; 1; 0/C �4V4.0; 0; 0; 1/ (2)

Here, Ej; j D 1; 2; 3; 4 represent the four edge parametrization. Similarly, Fj; j D
1; 2; 3; 4; 5; 6 represent face parametrization. Vj are the vertices. It is worth noting
that the blending approach is independent of the chosen face and edge parametriza-
tion, therefore can be used with other types of parametric representations of mesh
faces.

With the blending based volume parametrization, coordinate mapping can be
easily evaluated. Derivatives quantities @xi

@�j
can also be evaluated by applying chain

rule to Eq. (2) to obtain the analytic express of the derivatives of the blending
mapping. With calculated derivatives, Jacobian of the mapping and its determinant
can be easily evaluated.

4 Geometric Interpolation Accuracy

To study and quantify the geometric interpolation properties of the quartic G1 patch
discussed in Sect. 2.1, a set of numerical experiments have been conducted. A series
of uniformly refined meshes are generated on a CAD model representing a cylinder.
The distance between the mesh faces and CAD model faces is measured for each of
the uniformly refined meshes. The distance is measured in terms of the Hausdorff
norm which is commonly used to measure the distance between two parametric
faces [1]. The definition of Hausdorff distance is given by Eq. (3).

d.S; S0/ D max
p2S

min
p02S0

��p � p0
��
2

(3)

As a comparison, the measurement is done for both the G1 meshes and a set of
C0 meshes using quartic Lagrange basis functions with optimal point distribution
scheme proposed by Chen and Babuska [5]. Figure 3 shows the convergence plot
generated from the distance data. For the quartic G1 meshes, 4th order interpolation
accuracy is observed, and for quartic C0 meshes, it shows 5th order interpolation
accuracy. It is a well known result in 1D that the order of accuracy for polynomial
interpolation is p C 1, where p is the highest complete polynomial order [8]. The
one order difference in interpolation accuracy between the G1 and C0 is due to the
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Fig. 3 Convergence of geometric approximation error

fact that certain portion of the control points of the G1 patch have to be constrained
to ensure the higher surface continuity.

5 Impact on Finite Element Solution Accuracy

The primary interest for using G1 meshes is to see if they produce better finite
element simulation results. The test problem chosen is the Poiseuille flow, which
models viscous flow inside a pipe of constant circular cross-section. Governing
Equation for the Poiseuille flow is defined as:

1

r

@

@r
.r
@uz

@r
/ D 1

�

@p

@z
(4)

The fully developed flow is assumed to be incompressible, steady, laminar and
has a closed form exact solution which indicates a velocity profile of a parabola.
The analytic expression is given as:

uz D � 1

4�

@p

@z
.R2 � r2/ (5)
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In the numerical test, it is of interest to solve for the fully developed velocity
profile and compare it with the exact solution. A CAD model is constructed to
represent the flow domain of a cylinder with radius r D 0:5. No-slip condition is set
for the wall. At inlet, the velocity profile is set to be fully developed: uz D 0:25� r2.
The pressure at the outlet is set to be constant.

The finite element solver package being used to perform the analysis is Nektar++
[4], which is a spectral/hp element framework being developed by research groups at
the University of Utah and Imperial College London. It has a set of flow solvers that
use high-order finite element methods. Specific modifications are made to Nektar++
to account for the G1 mesh construction including elemental mapping evaluation,
derivatives and Jacobian calculation procedures. Two types of meshes with the same
number of elements, the same order of polynomial degree, but different order of
geometric continuity are used, namely, quartic C0 curved and quartic G1 curved
meshes (See Fig. 4). A series of simulations are performed with each type of the
meshes using 4th and 5th order Legendre polynomial shape functions. The error
of finite element solution of the velocity field against the exact analytic solution is
measured in terms of the L2 norm and is shown in Table 1. It is observed in this
test case that meshes with G1 surface continuity achieve better solution accuracy
compared with C0 meshes for the same order of shape functions.

Fig. 4 CAD model and quartic G1 mesh

Table 1 Finite element
solution error for different
types of curved meshes

Shape func order Quartic C0 Quartic G1

4 1.29207e�3 4.33327e�4

5 5.98625e�4 9.67477e�5
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6 Closing Remarks

This paper presented a procedure to create G1 curved surface meshes for high-order
finite element simulations. A method to create G1-continuous surface patches is
introduced and an approach to integrate a G1 mesh with existing finite element
solver is presented. A preliminary test result shows the advantage of using G1 con-
tinuous meshes, compared with conventional C0 meshes, in terms of finite element
solution accuracy of a standard integral norm. Additional studies to examine the
influence of G1 continuity on more problems and for other solution norms must be
carried out. There is particular interest to examine solution parameters more local
to the surface. For future developments, it is of interest to study other types of high-
order surface patches. Furthermore, the capability of using the CAD model surface
parametrization to define exact geometric mapping is to be developed. In order to
support adaptive simulations, extensions of existing mesh modification operations
and mesh adaptation procedure [11] will be needed to account for high-order curved
meshes.
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Efficient Fully Discrete Summation-by-Parts
Schemes for Unsteady Flow Problems: An Initial
Investigation

Tomas Lundquist and Jan Nordström

Abstract We make an initial investigation into the temporal efficiency of a fully
discrete summation-by-parts approach for stiff unsteady flows with boundary layers.
As a model problem for the Navier–Stokes equations we consider a two-dimensional
advection-diffusion problem with a boundary layer. The problem is discretized in
space using finite difference approximations on summation-by-parts form together
with weak boundary conditions, leading to optimal stability estimates. For the
time integration part we consider various forms of high order summation-by-parts
operators, and compare the results to an existing popular fourth order diagonally
implicit Runge-Kutta method. To solve the resulting fully discrete equation system,
we employ a multi-grid scheme with dual time stepping.

1 Introduction

Based on finite difference operators on summation-by-parts (SBP) form and the
simultaneous-approximation-term (SAT) technique for imposing boundary condi-
tions, the SBP-SAT technique constitutes a robust framework for implementing high
order finite difference schemes on complex geometries. By construction, it leads
to discrete energy estimates that perfectly imitates the corresponding continuous
estimates. This technique was recently extended to initial value problems [10, 12],
making it possible to formulate fully discrete SBP-SAT approximations with the
same optimal energy estimates. The purpose of this work is to make an initial
efficiency study of these new temporal schemes for a stiff model problem with a
boundary layer. A more detailed description of this study can be found in [9].

The numerical treatment of unsteady flow problems has gained increased
attention in later years due to increased computer resources making realistic cal-
culations of this type more viable. However, the construction of efficient algorithms
still remains a significant computational challenge. The two basic methods most
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commonly used employ Newton iteration and dual time stepping. While Newton
iterations are typically better for deep convergence, dual time stepping is more
reliable, at least for the initial iterations, and it can also be used for preconditioning
purposes [8]. Some studies indicate that a combination of both these techniques can
be the most fruitful approach [1, 2, 8].

To illustrate the SBP-SAT technique for time integration, we consider the test
equation ut C �u D 0 with initial condition u.0/ D f . The corresponding SBP-SAT
approximation of this problem is

DUC �U D P�1�.U0 � f /e0: (1)

The SAT penalty treatment on the right hand side of (1) forces the solution at t D 0
to initial data, and the first derivative operator D satisfies the SBP property given by
the decomposition D D P�1Q, where QC QT D Diag.�1; 0; : : : ; 0; 1/, and P is a
positive definite matrix that defines a numerical quadrature. This formulation leads
in an automatic way to a clean, optimally sharp energy estimate. With the choice
� D �1, we get after multiplying (1) with u�P and adding the conjugate transpose:

juN j2 C 2Re.�/jjujj2P D j f j2 � ju0 � f j2;

where the norm is defined as jjujj2P D u�Pu. This mimics the continuous energy
estimate ju.T/j2 C 2Re.�/kuk2dt D j f j2, where kuk2 D R T

0
juj2dt (obtained by

multiplying the test equation with u� and then integrating).
As an alternative to the global formulation (1), we may also consider a multi-

stage version with rC 1 stages:

.P�1QC �I/VnC1 D P�1�.VnC1
0 � Un/e0

UnC1 D VnC1
r ;

where VnC1 D .VnC1
0 ;VnC1

1 ; : : : ;VnC1
r /. The size of the matrix operator P�1Q in

the multi-stage formulation is given by the number of intermediate stages r C 1

used for each subinterval, and thus remains constant also for long time calculations.
Conversely, the minimum number of stages stages depends on how small P�1Q
can be made. The classical SBP operators are based on a repeated central finite
difference stencil together with boundary closures. An example is the second order
operator given by

P D �t

2
64

1
2

1

: : :

3
75 Q D

2
64
� 1
2

1
2

� 1
2
0 1

2
: : :

: : :
: : :

3
75 :

Higher order operators have more extensive boundary closures, thus increasing the
minimum number of stages required in the multi-stage approach. Other operators
on SBP form, e.g. based on Legendre spectral collocation [5], may alternatively be
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used to decrease the number of stages necessary, as demonstrated in [3, 4]. See also
[6] for more details on the construction non-classical SBP operators based on any
type of quadrature.

We summarize the most important advantages of the SBP-SAT technique
below.

• The schemes are always A-stable and L-stable. If P is diagonal they are also B-
stable and preserve energy stability. Moreover, they lead to optimally sharp fully
discrete energy estimates.

• The order of convergence is given by the order of accuracy of the quadrature P.
For classical SBP operators this coincides with the order of the interior scheme.

• The stage order, and thus the order of stiff convergence, is given by the local
order of consistency of the operator P�1Q. Classical operators are thus limited
by the accuracy of the boundary closures.

2 A Stiff Flow Model in Two Dimensions

As a model of the Navier–Stokes equation, we study a viscous fluid undergoing
advective flow past a plate with fixed temperature.

ut C ux D ".uxx C uyy/C  0 � x; y � 1 t � 0
u.0; x; y/ D f .x; y/ t D 0

u.t; 0; y/� "ux.t; 0; y/ D g1.t; y/ @˝1 D f.x; y/ W x D 0g
"u.t; 1; y/ D g2.t; y/ @˝2 D f.x; y/ W x D 1g
u.t; x; 0/ D 0 @˝3 D f.x; y/ W y D 0g

uy.t; x; 1/ D 0 @˝4 D f.x; y/ W y D 1g

(2)

where " D 0:01. The solid boundary @˝3 is associated with a stiff boundary layer
of width

p
", the inflow and outflow boundaries are @˝1 and @˝2 respectively,

while @˝4 is a far-field boundary. An exact manufactured solution can be imposed
by appropriately specifying the forcing function  . The energy method yields the
estimate

kuk2t C 2".kuxk2 C kuyk2/ D
Z
@˝1

.g21 � .u � g1/
2/dSC

Z
@˝2

.g22 � .u � g2/
2/dS:

which shows that the problem (2) is well-posed.
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Fig. 1 Stretching of vertical
coordinate to resolve the
boundary layer
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In order to resolve the boundary layer around @˝3, we introduce a stretching
function 	 of the vertical coordinate, given by

y D 1C tanh.B.	� 1//
tanhB

;

where B D 9=4. This gives y	.0/ D p", and the full stretching function is shown in
Fig. 1. After this change of coordinate, the model problem (2) becomes

ut C ux D ".uxx C 	y.	yu	/	/C  0 � x; 	 � 1 t � 0
u.0; x; 	/ D f .x; 	/ t D 0

u.t; 0; 	/ � "ux.t; 0; 	/ D g1.t; 	/ @˝1 D f.x; 	/ W x D 0g
"u.t; 1; 	/ D g2.t; 	/ @˝2 D f.x; 	/ W x D 1g

u.t; x; 0/ D 0 @˝3 D f.x; 	/ W 	 D 0g
	yu	.t; x; 1/ D 0 @˝4 D f.x; 	/ W 	 D 1g

(3)

We now use the techniques outlined in [11, 13] to discretize (3) in space using SBP-
SAT:

Ut C .P�1x Qx ˝ I	/U D �...P�1x Qx/
2 ˝ I	/U C .Ix ˝ .HyP�1	 Q	/

2/U/

C .P�1x ˝ P�1	 Hy/.˙x.t/C˙	.t//C �.t/
U.0/ D F;

(4)
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where

Hy D Diag.�y/; �.t/ D  .t; .x˝ 1y/; .1x ˝ �//

˙x.t/ D �0x.e0x ˝ H�1y P	.ujxD0 � �uxjxD0 � g1.t///

C �1x.e1x ˝H�1y P	.�uxjxD1 � g2.t///

˙	.t/ D �0	.Pxuj	D0 ˝ e1	/C �1	.Pxu	j	D1 ˝ e1	/

g1.t/ D g1.t; .ex0 ˝ �//; g2.t/ D g2.t; .ex1 ˝ �//; F D f ..x˝ 1	/; .1x ˝ �/:

After analyzing (4) using the energy method, we obtain a stable scheme with the
following set of penalty parameters: �0x D �1x D �1, �1	 D �1=2 and �0	 D
�"	y.0/

2=.P	/11.

3 SBP-SAT in Time with Dual Time Stepping

We now consider the semi-discrete problem (4) written in a compact way as

Ut C BU D R.t/; 0 < t � T
U.0/ D F:

The semi-discrete spectrum of a fifth order discretization with Nx D N	 D 95 is
shown in Fig. 2. The spectral radius of almost 105 indicates that an explicit time
marching scheme would be an inefficient way to solve this problem. Instead we
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Fig. 2 Left: the semi-discrete spectrum of (4). Right: Stability region of Runge–Kutta smoother
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employ an implicit SBP-SAT time integration scheme with rC 1 stages:

.P�1Q˝ IB/VnC1 C .It ˝ B/VnC1 D .P�1�e0/˝ .VnC1
0 � Un/C R

UnC1 D VnC1
r ;

(5)

where R D .R.tn/;R.tnC�t=r/; : : : ;R.tnC�t//. Consider the compact form of (5):

QBVnC1 D QR
UnC1 D VnC1

r ;
(6)

where QB D P�1.Q��e0eT
0 /˝IBCIt˝B. Using the dual time stepping technique, we

now employ a multi-grid cycle for solving (6), where the smoothing step consists of
stepping forward in pseudo-time toward steady-state. Thus, we add a pseudo time
derivative to (6):

dVnC1

d�
C QBVnC1 D QR:

To march forward in pseudo-time, we use an explicit s-stage low storage Runge-
Kutta smoother:

WnC1;mC1
0 D VnC1;m

WnC1;mC1
p D VnC1;m C��˛p. QR � QBWnC1;mC1

p�1 /; p D 1; : : : ; s
VnC1;mC1 DWnC1;mC1

s

The stability function of this scheme is S.z/ D .1C˛sz.1C˛s�1z.: : : .1C˛1z/ : : :///.
To match the semi-discrete spectrum to the left in Fig. 2, we use the 4-stage
smoother ˛ D .0:0178571; 0:0568106; 0:174513; 1/ proposed in [7]. The stability
region of this scheme is shown to the right in Fig. 2.

4 Numerical Results

We employ the manufactured solution u D sin.2�.x � t//e
1�y
p
" to (2), and compare

the numerical results for a selection of high order temporal schemes. We use both
classical diagonal norm operators, denoted SBP(2s,s), as well as spectral element
operators based on Gauss-Lobatto quadrature, denoted by GL(2s,s). In both cases,
2s denotes the order of the scheme, and s the stage order. For the classical operators
we always use the minimum number of stages possible. We use the following
operators of order four and eight: SBP(4,2) with 8 implicit stages, SBP(8,4) with 16
implicit stages, GL(4,2) with 3 implicit stages, and GL(8,4) with 5 implicit stages.
For comparison we also consider a fourth order diagonally implicit Runge-Kutta
scheme ESDIRK4, with a stage order of 2, and 5 implicit stages.
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Fig. 3 Accuracy of the high order temporal schemes at t D 1

In order to minimize the spatial error component we use the fifth order discretiza-
tion with Nx D N	 D 95with spectrum shown in Fig. 2. Note that the spectral radius
of almost 105 is a result both of the boundary layer and of overresolving in space.
The time integration is carried out using a multi-grid V-cycle on three grid levels,
with refinement in the vertical coordinate only. On each grid, 10 steps of the explicit
Runge-Kutta scheme is used as smoother, with a pseudo-time step restriction of
Re.z/ D �25 to make the Runge–Kutta scheme stable on each respective grid, see
Fig. 2. The number of pseudo time iterations is set to make the iteration error less
than 10% compared with the error from the physical time discretization.

In Fig. 3 we measure the accuracy at t D 1 of the different temporal schemes as a
function of the total number of implicit stages. In all cases we observe a small level
of order reduction, with convergence rates slightly less than the order of the scheme
(but higher than the stage order). The number of multi-grid iterations required to
converge each implicit stage on average is shown in Fig. 4. Figure 5 finally shows
the total efficiency, where work is defined as the total number of multi-grid cycles
summed over all implicit stages. With this measure the results are comparable
between methods using different numbers of implicit stages in each implicit solve.
We note that there is no advantage of the diagonally implicit ESDIRK4 method
over the Gauss-Lobatto SBP schemes. The classical SBP operators on the other
hand, using more implicit stages in each implicit solve, are clearly less efficient
here. Current work however indicate that this drawback might be possible to correct
by modifying the multi-grid scheme in an appropriate way. Finally, we note that the
increased accuracy of the eighth order schemes is counterbalanced by the reduced
multi-grid efficiency due to the coarser discretizations in physical time, resulting in
very similar results as for the fourth order schemes.
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Fig. 5 Accuracy versus the total amount of work required to solve up to t D 1

5 Conclusions and Further Work

We have investigated the temporal efficiency of fully discrete SBP-SAT discretiza-
tions for unsteady flow calculations. A stiff linear model problem was considered,
and a basic dual time-stepping scheme was employed with no attempt made at
optimizing the smoother. The numerical results indicate that some of the SBP-SAT
time stepping schemes can compete with ESDIRK4 for efficiency already in this
basic setting, even though the classical SBP schemes using a larger number of
stages did not perform as well. Current work indicate that this disadvantage can
be overcome with a more suitable choice of multi-grid scheme that works more
efficiently for fully implicit methods.
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Future work will aim at developing more efficient multi-grid schemes, including
optimization of the Runga Kutta smoother used for pseudo-time stepping. Non-
linear model problems will also be considered, as well as combining the dual time
stepping technique with Newton iteration.
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Physics-Based Stabilization of Spectral Elements
for the 3D Euler Equations of Moist
Atmospheric Convection

Simone Marras, Andreas Müller, and Francis X. Giraldo

Abstract In the context of stabilization of high order spectral elements, we
introduce a dissipative scheme based on the solution of the compressible Euler
equations that are regularized through the addition of a residual-based stress
tensor. Because this stress tensor is proportional to the residual of the unperturbed
equations, its effect is close to none where the solution is sufficiently smooth,
whereas it increases elsewhere. This paper represents a first extension of the work
by Nazarov and Hoffman (Int J Numer Methods Fluids 71:339–357, 2013) to high-
order spectral elements in the context of low Mach number atmospheric dynamics.
The simulations show that the method is reliable and robust for problems with
important stratification and thermal processes such as the case of moist convection.
The results are partially compared against a Smagorinsky solution. With this work
we mean to make a step forward in the implementation of a stabilized, high order,
spectral element large eddy simulation (LES) model within the Nonhydrostatic
Unified Model of the Atmosphere, NUMA.

1 Introduction

Recently [18], a numerically stable and computationally inexpensive large-eddy
simulation (LES) model for compressible flows was designed for adaptive finite
elements. It is a close relative of the entropy-viscosity method by Guermond and
co-workers (see, e.g. [7]), although no entropy equation is used to construct the
dynamic viscosity coefficient of the stress tensor.

In the current paper, we explore the capabilities of the aforementioned LES
model to act as a stabilization method for the spectral element solution of the
Euler equations at the low Mach number regimes typical of atmospheric flows.
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This effort is justified by the fact that, within the community of atmospheric
modelers, there is still a widespread concern about the most proper stabilization
scheme to be used with either Galerkin or other approximation methods of the
equations of atmospheric dynamics. Although the use of residual-based stabilizing
schemes has been largely assessed for the finite element method during the past
thirty years (e.g. Streamline-Upwind/Petrov-Galerkin (SUPG) [3], Galerkin/Least-
Squares (GLS) [10], Variational Multiscale (VMS) [2, 8, 9, 15]), hyper viscosity
is still today the most classical approach in spite of its important drawbacks and
mathematical inconsistency.

This work is a first step toward the implementation of a stabilized high order
spectral element LES model (LES-SEM) for the Nonhydrostatic Unified Model of
the Atmosphere (NUMA) developed by the authors [6, 11]. The rest of the paper
is organized as follows. The set of equations and the LES model are described
in Sect. 2. Some basics on the space and time discretization of these equations is
reported in Sect. 3, which is followed by the numerical tests and results in Sect. 4.
Some conclusions are given in Sect. 5.

2 Equations for Wet Dynamics

Let ˝ 2 R
3 be a fixed three dimensional domain with boundary @˝ and Cartesian

coordinates x D .x; y; z/. Let us identify the dry air density, the velocity vector,
and the potential temperature with the symbols 
;u; and � . Let us also define the
mixing ratios of water vapor, cloud water, and rain as qv D 
v=
; qc D 
c=
 and
qr D 
r=
, where 
v;c;r are the densities of vapor, cloud, and rain. Furthermore, let

0.t; x/ D 
.t; x/ � 
0.z/, � 0.t; x/ D �.t; x/ � �0.z/, and p0.t; x/ D p.t; x/ � p0.z/
be the perturbations of density, potential temperature, and pressure with respect to
a hydrostatically balanced background state indicated by the subscript 0. Then, the
strong form of the time-dependent Euler equations with gravity, g, can be written as:


0t C u � r
C 
r � u D 0;

ut C u � ruC 1


r � .Ip0/ D g.1C �qv � qc � qr/k;

� 0t C u � r� D S� .
; �; qv; qc; qr/;

qit C u � rqi D Sqi.
; �; qv; qc; qr/; for i D v; c; r;

(1)

where I is the identity matrix, k is the unit vector Œ0 0 1�T , and � D R=Rv is the ratio
of the gas constant of dry air, R and the constant of water vapor, Rv. Because moist
air contributes to the buoyancy of the flow, the right hand side of the momentum
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equation is corrected with total buoyancy B D g.1 C �qv � qc � qr/k. Due to
the microphysical processes that involve phase change in the water content, the
source/sink term S at the right-hand side of the equations of potential temperature
and water tracers must be computed. These processes are modeled by the Kessler
parameterization [12]. Equations (1) must be solved in ˝ 8t 2 .0;T/. Initial and
boundary conditions will be assigned. � , 
, and p are related through the equation
of state for a perfect gas.

2.1 Dynamic Dissipation in an LES Sense

In the absence of any type of either physical or artificial viscosity, the high-order
SEM1 approximation of (1) is characterized by numerical instabilities that may
cause the solution to break if not stabilized in some way. Furthermore, in the case
of the transport equations for water tracers, where the water quantities are often
characterized by sharp gradients, unphysical Gibbs oscillations may compromise the
stability of the solution even more (see, e.g., [14] and citations therein). To stabilize
the problem, the Euler equations are corrected to include an artificial diffusion
whose viscosity coefficients are given by a residual-based approximation that leads
the problem to converge to the entropy solution, as proved in [17].

Remark 1 Because a saturation adjustment scheme [20] is used to treat the moist
thermodynamics, the source terms are set to zero in the main step of the solution,
and are only computed within the Kessler sub-step. For this reason, the sources will
not appear in the regularized version of Eqs. (1).

We write:


0t C u � r
C 
r � u D r � .�nr
/

ut C u � ruC 1


r � .Ip/ D 1



r � ��n

�ruCruT
��C B

�t C u � r� D r � .�nr�/

qit C u � rqi D r � .�cr�/ :

(2)

Except for �c that, for the time being, is set to a constant, the viscosity coefficients
that appear in the first five equations are computed dynamically as a function of the
solution. They are calculated element-wise on every high order element ˝e. More

1The high-order spectral elements used for this study are built using Legendre-Gauss-Lobatto
(LGL) integration and interpolation points.
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specifically, given the sensible temperature T D �.p=p0/R=cp and one element with
equivalent length Nh˝e , we start by defining the dynamic viscosities

�maxj˝e D 0:5Nh˝e kjuj C
q

cp.� � 1/Tk1;˝e ; (3)

and

�1j˝e D Nh2˝e
max

 
kR.
/k1;˝e

k
 � N
k1;˝ ;
kR.u/k1;˝e

ku � Nuk1;˝ ;
kR.�/k1;˝e

k� � N�k1;˝

!
; (4)

where N� indicates the space average of the quantity at hand over ˝ and the k �
k1;˝ terms at the denominator are used for normalization for a consistent dimension
of the resulting equation. Having �max and �1 constructed, we can compute the
dynamics coefficients of the viscosity terms in Eqs. (2) as:

�nj˝e Dmin .�maxj˝e ; �1j˝e/ ; �nj˝e D
Pr

� � 1�nj˝e ; �nj˝e D
Pr

k
nk1;˝e

�nj˝e ;

(5)

where Pr D 0:7 is the Prandtl number of dry air.

Remark 2 To keep the discussion brief, the details of the derivation of the equations
is not reported and the notation is somewhat abused. A proper formulation will be
reported in a subsequent paper.

3 Space and Time Discretization

Equations (2) are approximated in space by high order spectral elements using LGL
points and by an Implicit-Explicit (IMEX) method in time. Details can be found in,
e.g. [5] (SEM) and [6] (IMEX).

4 Numerical Tests

The SEM-LES method is tested against benchmarks of ubiquitous use when testing
the dynamical core of new atmospheric codes. First, the model is verified in dry
mode. We perturb a neutrally stable atmosphere with a cold thermal anomaly
that triggers the development of a density current. Once we have verified the
ability of the model to handle dry dynamics, we solve a fully three-dimensional
supercell triggered by the thermal perturbation of a realistic, moist, partially
unstable background state.
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4.1 Density Current in a Pseudo-3D Domain

The density current is a standard benchmark in the development of atmospheric
codes [21]. The inviscid version of [1] is used for our analysis. This is because
we are interested in assessing the current LES-like approach as a stabilizing tool
that does not require further viscosity. The background state is characterized by a
neutral atmosphere at uniform potential temperature � D 300 K and hydrostatically
balanced pressure. Due to the symmetry of the original problem with respect to the
plane center line of the x � z plane, the solution is computed in the region ˝ D
25:6 � 1 � 6:4 km3 The perturbation � 0 centered in .xc; zc/ D .0; 3/ km has radii
.rx; ry; rz/ D .4;1; 2/ km and is given by � 0 D 0:5�� .1C cos.�cR// for R � 1,
with amplitude�� D �15 K and section R Dp.x � xc/=r2x C .z � zc/=r2z . Periodic
boundary conditions are used along y whereas no-flux conditions are set in x and z.
The initial velocity is zero everywhere. Figure 1 shows the fully developed current
at time t D 900 s on two grids with uniform resolutions �x D �z D 50m and
�x D �z D 25m. To measure the front position at tf D 900 s, we take the node
on the ground where � 0 D �1 K. A comparison of the front position and � 0max;min
with respect to previous work is reported in Table 1. As the resolution decreases, the
front appears slower; this fact is also observed in Fig. 5 of [21].

We are aiming at using the current stabilizing scheme as a Large Eddy Simulation
scheme. As a first analysis in this direction, we compare how the current model com-
pares with the classical model by Lilly and Smagorinsky [13, 19]. The Smagorinsky
solution (implemented within NUMA as well) is plotted in Fig. 2. A more thorough

4000

2000

0
0

4000

2000

0
0 5000

5000 10000 15000

t=900 s

t=900 s

10000 15000

Fig. 1 Density current: � 0 at 900 s. Top: 128� 1� 32 el. (�z D �x 	 50m). Bottom: 256� 1�
64 el. (�z D �x 	 25 m). 4th-order elements
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Table 1 Case 3. Comparative results of front location at 900 s

Model Nel Order � D 75m2 s�1 Front location (m)

LES (25 m) 256� 1� 64 4th NO 15,080

LES (50 m) 128� 1� 32 4th NO 14,888

LES (100 m) 64� 1� 16 4th NO 14,546

LES (200 m) 32� 1� 8 4th NO 13,736

LES 32� 1� 8 6th NO 14,568

LES 32� 1� 8 8th NO 14,754

VMS [16] (25 m) NO 14,890

VMS [16] (50 m) NO 14,629

VMS [16] (75 m) NO 14,487

VMS [16] (100 m) NO 14,355

WRF-ARW 50 m YES 14,470

SE [5] 50 m YES 14,767

DG [5] 50 m YES 14,767

f-wave (FV) [1] 50 m YES 14,975

REFC [21] 50 m YES 14,437

PPM [21] 50 m YES 15,027

LES (SEM), VMS (FE), WRF-ARW V2.2 (FD), f-wave (FV), filtered Spectral Elements (SE),
filtered Discontinuous Galerkin (DG), REFC, REFQ and PPM results are compared. All models
but LES and VMS used artificial diffusion with constant � D 75m2 s�1

0 5000

2000

4000

10000 15000
0

Fig. 2 Density current using a classical Smagorinsky SGS scheme with constant Cs D 0:14: � 0 at
900 s. 256 � 1� 64 el. (�z D �x 	 25m) 4th-order elements

and quantitative analysis is currently being carried out by the authors. At a resolution
�z D �x � 25m and by plotting comparable contours (values not shown in the
plot), the two models are highly comparable, although the degree of dissipation of
the current scheme seems lower than Smagorinsky’s using a Smagorinsky constant
Cs D 0:14. Significantly more sub-grid structures are resolved using the current
model. Further analysis is though required.

Remark 3 Throughout this paper we have discussed an LES approach to stabiliza-
tion. Nevertheless, it must be pointed out that the simulations that we have presented
are not necessarily to be viewed as LES simulations unless finer grids are used.
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Fig. 3 Supercell: 3d view (using az = -135 and el = 8) of qc (grey surface), surface velocity
(vectors), and the instantaneous distribution of qr on the ground (contours)

4.2 3D Moist Convection

The three-dimensional simulation of a convective cell is defined in the domain
160 � 120 � 24 km3. The initial field is perturbed by a temperature anomaly � 0
3 K warmer than the surrounding environment, which is given by the sounding
of [4]. The domain ˝h is subdivided into 40 � 30 � 24 elements of order 4. A
stretched grid along z is used to make the resolution higher in the lower atmosphere
where convection is triggered. The domain is crossed by a horizontal wind along
the x-direction with a 12m s�1 shear at z D 2000m. A no-slip condition is applied
on the surface boundary while periodic boundaries are defined along x and y. A
Rayleigh type absorbing layer is included at z � 19;000m. The cloud first forms at
approximately 500 s, and is fully develop after 4500 s. A 3D instantaneous view of
qc is plotted in Fig. 3. Qualitatively, it is comparable to previous results on a similar
case. A quantitative evaluation of the instantaneous rain on the ground is plotted in
Fig. 4a, whereas the cloud content obtained by averaging qc along the y�direction
is plotted in Fig. 4b.

5 Conclusions

We extended to high order spectral elements the LES-based stabilization method
first introduced in [18] for the finite element solution of fully compressible flows. We
explored the capabilities of this inexpensive technique to solve the Euler equations
of stratified flows at the low-Mach regimes encountered in atmospheric flows.
When applied to dry and moist simulations, the current implementation appears
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Fig. 4 3D supercell: horizontal slice of qr at z D 0m and y-averaged qc at t D 6000 s. (a)
Instantaneous rain distribution on the ground at t D 6000 s (b) Vertical slice of the distribution of
qc averaged along the y direction

to give satisfactory results that are comparable to others presented in the literature.
Without the need for any additional viscosity, this dynamic LES scheme proved
to be sufficient to stabilize the spectral element solution of the Euler equations
in atmospheric applications. However, since a thorough analysis was not carried
out to evaluate this approach in terms of its turbulence modeling properties, much
additional work is necessary to fully assess it in its applicability as a turbulence
closure for atmospheric simulations.
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High-Order Finite-Differences
on Multi-threaded Architectures Using OCCA

David Medina, Amik St-Cyr, and Timothy Warburton

Abstract High-order finite-difference methods are commonly used in wave propa-
gator for industrial subsurface imaging algorithms. Computational aspects of the
reduced linear elastic vertical transversely isotropic propagator are considered.
Thread parallel algorithms suitable for implementing this propagator on multi-core
and many-core processing devices are introduced. Portability is addressed through
the use of the OCCA runtime programming interface. Finally, performance results
are shown for various architectures on a representative synthetic test case.

1 Introduction

High-order finite-differences are used in seismic imaging and many other indus-
trial applications primarily because of their computational efficiency. A high-
order wave propagator for vertical transversely isotropic media (VTI), at the
heart of numerous seismic imaging applications such as full waveform inver-
sion and reverse time migration, is studied with respect to its multi-threaded
performance on various current and emerging computing architectures. OCCA, a
recently developed library for handling multi-threading is employed. The latter is
a C++ library making use of run-time compilation and macro expansions which
results in a novel and simple single kernel language that expands to multiple
threading languages. OCCA supports device kernel expansions for the OpenMP,
OpenCL, pThreads, Intel COI and CUDA APIs. In the following we describe
the reduced elastic VTI model for isotropic media together with a typical finite-
difference discretization employed in industry and present performance character-
istics for implementations built on top of the OCCA API. Using the unified OCCA
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programming approach allows customized kernels optimized for CPU and GPU
architectures.

The VTI propagator introduced in [3] is given by

@2p

@t2
D �2x

�
@2p

@x2
C @2p

@y2

�
C �2z

@2q

@z2
C s.t/ı.x � xi/; (1)

@2q

@t2
D �2n

�
@2p

@x2
C @2p

@y2

�
C �2z

@2q

@z2
: (2)

In the preceding equations, p is an approximation for the P-wave while q is
and auxiliary wavefield variable. � and ı are the anisotropic parameters. The
vertical P-wave velocity is represented with �z and its horizontal component is
�x D �z

p
1C 2� while the normal move-out velocity is �n D �z

p
1C 2ı. For this

approximation to be relevant � � ı � 0 is necessary. The forcing considered in our
benchmark is the Ricker wavelet s D .1 � 2�2f 2t2/e��2f 2 t2 with f D 15Hz.

We consider a centered finite-difference discretization in time and space in
second order form on infinite domains. For u.x; t/ D . p; q /T and F.u; x; t/ set
as the right and side of (1) and (2) the centered in time approximation reads

unC1 � 2un C un�1 � �t2F.un/ (3)

where uk 	 u.x; tn/ with tn D n�t. High-order finite-difference stencils are
of practical importance for the efficient numerical solutions of wave propagation
problems [1, 14]. Indeed, for a similar number of points composing the computa-
tional grid, the number of points required to resolve the shortest wavelength (as
defined by Nyquist) decreases and gets close to the spectral or pseudo-spectral limit
of two points per wavelength [4]. Most propagators used in seismic applications
use two different flavors of high-order finite-differences. The earth subsurface is
geologically horizontally layered. Since depth, represented by the z coordinate,
will experience the most changes in the rock properties, while in the x � y planes
the properties will remain constant within a layer. Therefore, a common strategy
is to have a symmetric stencil in the x � y direction, while handling a variable
spacing in z. The weights and spacings can be optimized to handle a variety of
physical and numerical properties [5, 6]. For simplicity, we suppose a domain
% D Œ0;Lx� � Œ0;Ly� � Œ0;Lz� where �x D �y D h and �zk result from the
discretization in space using NdDfx;y;zg points in each direction respectively. The
mesh size in the z direction varies per grid point belonging to a different x� y plane.
Adopting the convention p.xi; yj; zk/ D pi;j;k, the differentiation stencil in the x � y
plane is

h2.
@2

@x2
C @2

@y2
/pi;j;k � wxy

0 pi;j;kC
RxyX
lD1

wxy
l

�
piCl;j;k C pi�l;j;k C pi;jCl;k C pi;j�l;k

�
(4)
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where the wxy
l are the Rxy C 1 weights for approximating the two dimensional

Laplacian. The differentiation is a bit simpler in the z direction:

@2

@z2
qi;j;k �

RzX
lD�RzC

wz
k;lqi;j;kCl: (5)

Again, the wz
k;l are the weights for approximated the second derivative. However,

for each position zk where the value of the derivative is sought, 2Rz C 1 weights
are needed instead of Rz C 1 as in the symmetric case due to the asymmetry in
the z direction. The grid size �zk is absorbed into the wz

k;l weights in practice and
therefore are not appearing above. The domain% is embedded into a larger domain
where a damping formula is applied as in [2]. Outside the damping region, the
solution is assumed to be zero for Rxy points in the x and y directions and Rz points
in z.

In the following sections, we describe the reduced elastic VTI model for isotropic
media together with a typical finite-difference discretization employed in industry.

2 Computational Efficiency of High-Order Finite Differences

The peak parallel floating point operations per second (flops) available on modern
CPUs and GPUs have followed the trend set by Moores law. Unfortunately, the
available memory bandwidth lagged this trend. This gap in bandwidth currently
favors algorithms generating lots of flops per byte of data moved [7]. For VTI, using
this type of stencil, a pessimistic computational intensity is

CI � .1=4/.5RxyC 4Rz/=.4Rxy C 2Rz/ � 0:4 flops/byte (6)

where most of the loads are assumed to be not in cache. An idealized version is to
consider the least loads as possible (assumes most of the data in cache). This is done
by assuming three single precision loads per point for the model properties (�2x , �2n
and �2z ) as well as the two pairs of loads and stores for un and, respectively, unC1.

CI � .1=28/.5RxyC 4Rz/ � 0:3.Rxy C Rz/ flops/byte (7)

Therefore increasing the order of the stencil augments the intensity since the low
order case is close to the pessimistic estimate. In practice, better approximations
can be obtained [15]. Performing those measurements automatically using hardware
counters is still in development [12]. Moreover in [4], the effectiveness of finite-
differences for wave propagation problems is shown to increase with order. Indeed
for a fixed number of Fourier modes “M”, QNd points are required to guarantee
their resolution according to Nyquist. The relation is approximated with QNd D
cpM1C.2R/�1 and therefore doubling the polynomial order for a fixed number of
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modes, leads to M
1
4 times more points in each direction. Since the method is explicit

in time, the total increase in computational cost is M in 3D.

3 OCCA: Portable Multi-threading

OCCA, a recently developed C++ library for handling multi-threading is employed.
The OCCA library is an API providing a kernel language and an abstraction layer
to back-ends APIs such as OpenMP, OpenCL and CUDA see [10, 11, 13] amongst
others. It uses run-time compilation and macro expansions which results in a novel
and simple single kernel language that expands to multiple threading languages.
OCCA currently supports device kernel expansions for the OpenMP, OpenCL,
pThreads, Intel COI and CUDA languages. Performance characteristics are given
for our implementations built on top of the OCCA API. Using the unified OCCA
programming approach allows customized kernels optimized for CPU and GPU
architectures with a single “host” code.

OCCA host API: Aside from language-based libraries from OpenMP, OpenCL
or CUDA, the OCCA host API is a stand-alone library.This independence allows
OCCA to be combined with other libraries without conflict, as shown in Fig. 1. The
three key components that influenced the OCCA host API development: the platform
device, device memory and device kernels. Presenting the entire OCCA API is not
feasible in this paper. For the complete details see [8] and the git repository for
the latest developments.1 We try here to expose the minimal knowledge required to
write the VTI kernel.

Fig. 1 OCCA wraps different language APIs and is non-conflicting with external libraries in either
platform

1http://www.github.com/tcew/OCCA.

http://www.github.com/tcew/OCCA
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for(int bZ = 0; bZ < gridDim.z; ++bZ; outer2){ // (1)
for(int bY = 0; bY < gridDim.y; ++bY; outer1){

for(int bX = 0; bX < gridDim.x; ++bX; outer0){
// Shared memory is initialized here
for(int tZ = 0; tZ < blockDim.z; ++tZ; inner2){ // (2)

for(int tY = 0; tY < blockDim.y; ++tY; inner1){
for(int tX = 0; tX < blockDim.x; ++tX; inner0){

// Work here, initialize register memory
}}}}}}

Listing 1 The expansion of the implicit for-loops found in CUDA and OpenCL kernels is
displayed. The OCCA outer-loops (1) map to multi-dimensional work-groups [[blocks]] and OCCA

inner-loops (2) map to multi-dimensional work-items [[threads]].

Partition the top plane of the grid into Bx � By blocks of size w� h

For time-step n D 0; 1; : : : ; time-Steps
For each block .bi; bj/ (1)

For n D 0; 1; : : : ;Nz

For each point .i; j; k/ such that
(bi � i < bi C w) and (bj � j < bj C h) (2)
Update pnC1.i; j; k/ and qnC1.i; j; k/

End For // Point Update
End For // Traversing depth

End For // Iterating over blocks
End For // Computing a time-step update

Listing 2 For each time-step, the 2D blocks at the top of the structured grid sweep in the z direction
and update all points in the current z plane.

OCCA kernel language: GPU computing involves many threads and the thread-
space is logically decomposed into thread-blocks. Thread blocks are queued for
execution onto the available multiprocessors. In general a GPU chip has more than
a single multiprocessor and the choices for number of blocks and threads per blocks
are dependent on the algorithm, resources available and the developer. he resulting
kernel language is shown in Listing 1, where outer-loops and inner-loops, denoted
by the 4th clause in the for-loops, map to work-groups [[blocks]] and work-items
[[threads]] respectively.

The use of shared memory is still available in OCCA since it is essential for
many GPU optimized codes. Shared memory still acts as a scratchpad cache for
GPU architectures but can be seen as a prefetch buffer for CPU-modes in OCCA.

The OCCA:OpenMP code performs the VTI steps uses the classic technique
of cache blocking as seen in code Listing 2. The best performing kernel had 2D
cache blocking with the Z-block first followed by the Y-block. The innermost loop
would be x (stride-1) then z and finally y. The z-blocks were handled in OCCA with
occaOuterFor2, the y one with occaOuterFor1 and so on. The vectorization was
handled directly by the Intel compiler by placing a pragma #pragma ivdep in the
occaInnerFor0 (x) and making sure the data was correctly padded. The size of the
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Fig. 2 The left panel represents a 3D finite-difference stencil vectorized with AVX. The fast stride
is in the x direction and 8 single precision stencil evaluation are performed simultaneously. The
right panel represents thread block with the large 2D subdomain the information loaded into shared
(fast) memory. The register rolling in the z-direction is shown and for a “two-elements” Kernel,
each thread handles two columns

blocking in z� y was determined as .28; 20/ by running the code over a set of grids
and possible block ranges and comparing throughput times see Sect. 4. The OpenMP
first-touch policy was critical in obtaining performance across dual sockets as well
as the correct thread affinity. Finally, to make sure the compiler was optimizing as
depicted in Fig. 2, a hand written kernel with explicit register blocking was written:
5% increase in performance was observed.

A single implementation encompasses OCCA:OpenCL and OCCA:CUDA fol-
lows directly the work of [9]. As depicted in the right panel of Fig. 2, for a given
thread block, the 2D x � y stencil executes into fast shared memory while the z
direction is handled by register rolling. If each thread handles one such column per
thread block then this is a one-element approach while a two-elements approach
consists of having two such columns per thread. Care was taken to align the data to
enable coalescing loads to shared memory.

4 Performance

The VTI kernel is integrated in time for a thousand time steps. A metric of
performance used in seismic is the throughput: number of sweeps through the entire
grid block per second. The precision is set at Rxy D 12 and Rz D 8 and yields
approximatively92 flops per point. The CI optimistic model derived in Sect. 2 yields
a factor of 3:3.

Results on a dual socket node with E5-2670 are reported in Table 1. The dual
socket node is capable of 666 single precision GFlops while the bandwidth is 102:4
GB/s. The optimistic CI predicts a maximal peak of 47 %. The results show the
fastest OCCA kernel achieving 21 % and good scalability as compared to the native
OpenMP code (without OCCA). The difference stems from the added knowledge at
compile time for OCCA, where all loop-bounds are known at compile time.
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Table 1 Multithreading scaling with OpenMP using alternative thread distributions on different
number of cores (using two Xeon E5-2640 Processors)

Project Distribution 1 thread 2 threads 4 threads 8 threads 16 threads % Peak

Native Compact 92 183 (98 %) 360 (96 %) 668 (89 %) 1226 (82 %) 17

Native Scatter 92 183 (98 %) 356 (95 %) 686 (92 %) 1191 (80 %) 16

OCCA Compact 115 229 (99 %) 448 (97 %) 820 (89 %) 1548 (84 %) 21

OCCA Scatter 115 230 (100 %) 454 (98 %) 884 (96 %) 1411 (76 %) 19

Table 2 Performance
comparisons on the VTI
update kernels tailored for
GPU architectures

Project Kernel language K10 (1-chip) K20x

Native CUDA 1068 1440

Native (2) CUDA 1296 2123

OCCA OCCA:CUDA 1241 1934

OCCA (2) OCCA:CUDA 1579 2431

OCCA OCCA:OpenCL 1303 1954

OCCA (2) OCCA:OpenCL 1505 2525

Update kernels use 1-point updates per work-item/thread
or are labeled with (2) to represent 2-point update
kernels. One K10 chip runs at 745 MHz and contains
1536 floating point units with 160 GB/s bandwidth. By
comparison, the K20x runs at 732 MHz and contains
2496 floating point units with 250 GB/s bandwidth

Table 3 Performance
comparisons between
combinations of OpenMP,
CUDA and OpenCL running
on the CPU and GPU tailored
kernels

CPU-tailored GPU-tailored
Kernel Kernel

OpenMP 1548 364 (23 %)

CUDA (1 K10 core) 515 (41 %) 1241

OpenCL (1 K10 core) 665 (51 %) 1302

Table 2 contains performance on GPU architectures that were based on optimized
CUDA code and translated to OCCA. We note that performance seen in Table 2
was on par with native code due to optimizations that can be done with run-time
compilation including manual unrolling and manual bounds on OpenMP-loops.

Table 3 contains results from two optimized kernels, a CPU-tailored code and
a GPU-tailored code, run on OpenMP, OpenCL and CUDA to note performance
portability. Although it was expected that optimal CPU-tailored algorithms would
not give optimal performance for GPU architectures, we see 40–50 % of optimal
performance by just running the OCCA kernels in GPU-modes. The GPU-tailored
algorithm ran on CPU-modes ended running on 20 % performance compared with
optimal CPU code, mainly due to the lack of direct control over shared memory as
seen on GPU architectures.



372 D. Medina et al.

5 Conclusion and Future Work

We have studied a vertical transverse isotropic propagator discretized with centered
finite-differences in time and space. Finite-differences are extensively used in
seismic modeling. We have justified the advantage of using high-order stencils both
in terms of computational efficiency and points needed per wavelength. To enable
the study on various compute architectures, a multi-threaded gateway API to many
multi-threading APIs was employed: OCCA. The performance results obtained with
the library are generally faster than with the codes written using the best API for the
hardware, thanks to the just-in-time compilation. For now, it seems a single OCCA
kernel solution performing well for two types of architecture is impossible. The
main factor preventing portable optimization is due to the lack of direct control
over cache on CPU architectures which can be done on GPU architectures through
shared memory. This level of control is currently only available for GPGPUs
and unavailable for traditional CPUs. Having such control on the next generation
of CPUs would most certainly re-open possibilities of a single code performing
efficiently on both architectures.

Acknowledgements This work funded partly by Royal Dutch Shell, ONR award number N00014-
13-1-0873, and sub-contract to the CESAR Exascale Co-design Center at Argonne National Lab
award number ANL 1F-32301.

References

1. R.M. Alford, K.R. Kelly, D.M. Boore, Accuracy of finite-difference modeling of the acoustic
wave equation. Geophysics 39(6), 834–842 (1974)

2. C. Cerjan, D. Kosloff, R. Kosloff, M. Reshef, A nonreflecting boundary condition for discrete
acoustic and elastic wave equations. Geophysics 50(4), 705–708 (1985)

3. X. Du, R.P. Fletcher, P.J. Fowler, A new pseudo-acoustic wave equation for vti media, in 70th
EAGE Conference & Exhibition, 2008

4. B. Fornberg, The pseudospectral method: Comparisons with finite differences for the elastic
wave equation. Geophysics 52(4), 483–501 (1987)

5. B. Fornberg, Classroom note: calculation of weights in finite difference formulas. SIAM Rev.
40(3), 685–691 (1998)

6. O. Holberg, Computational aspects of the choice of operator and sampling interval for
numerical differentiation in large-scale simulation of wave phenomena. Geophys. Prospect.
35(6), 629–655 (1987)

7. J.D. McCalpin, Stream: sustainable memory bandwidth in high performance computers.
Technical report, University of Virginia, Charlottesville, Virginia, 1991–2007. A Continually
Updated Technical Report. http://www.cs.virginia.edu/stream/

8. D.S. Medina, A. St.-Cyr, T. Warburton, OCCA: a unified approach to multi-threading
languages. CoRR, abs/1403.0968 (2014)

9. P. Micikevicius, Gpu performance analysis and optimization, in GPU Tech-
nology Conference, 2012. http://www.developer.download.nvidia.com/GTC/PDF/GTC2012/
PresentationPDF/S0514-GTC2012-GPU-Performance-Analysis.pdf

http://www.cs.virginia.edu/stream/
http://www.developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0514-GTC2012-GPU-Performance-Analysis.pdf
http://www.developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/S0514-GTC2012-GPU-Performance-Analysis.pdf


High-Order Finite-Differences on Multi-threaded Architectures Using OCCA 373

10. J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with cuda. Queue
6(2), 40–53 (2008)

11. OpenMP Architecture Review Board, OpenMP application program interface version 3.0, May
2008

12. F. Rubio, M. Hanzich, J. de la Puente, A. Farrés, M. Ferrer, P. Thierry, Roofline-based
optimizations for elastic propagation on xeon, in 77th EAGE Conference and Exhibition 2015
(2015)

13. J.E. Stone, D. Gohara, G. Shi, Opencl: a parallel programming standard for heterogeneous
computing systems. IEEE Des. Test 12(3), 66–73 (2010)

14. D. Vishnevsky, V. Lisitsa, V. Tcheverda, G. Reshetova, Numerical study of the interface errors
of finite-difference simulations of seismic waves. Geophysics 79(4), T219–T232 (2014)

15. S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual performance model for
multicore architectures. Commun. ACM 52(4), 65–76 (2009)



Modified Equation Analysis
for the Discontinuous Galerkin Formulation

Rodrigo Costa Moura, Spencer Sherwin, and Joaquim Peiró

Abstract In this paper we present an assessment of the discontinuous Galerkin
(DG) formulation through modified equation analysis (MEA). When applied to
linear advection, MEA can help to clarify wave-propagation properties previously
observed in DG. In particular, a connection between MEA and dispersion-diffusion
(eigensolution) analysis is highlighted. To the authors’ knowledge this is the first
application of MEA to DG schemes, and as such this study focuses only on
element-wise constant and linear discretizations in one dimension. For the linear
discretization, we found that the physical mode’s accuracy can be increased via
upwinding. MEA’s application to higher order solutions and non-linear problems
is also briefly discussed. In special, we point out that MEA’s applicability in
the analysis of DG-based implicit large eddy simulations seems infeasible due to
convergence issues.

1 Introduction

The so-called modified equation analysis (MEA) technique is arguably one of the
most fundamental tools one can apply to analyse a numerical scheme. By using
Taylor series to rewrite discrete derivative expressions, MEA can reveal which
PDE is actually governing a numerical solution. Generally, due to the presence of
truncation terms, the resulting PDE (referred to as the modified equation) differs
from the physical PDE being discretized. As a result, dispersion and diffusion errors
are quantified and numerical aspects such as accuracy and stability can be assessed.

To the authors’ knowledge, this is the first successful application of MEA to the
discontinuous Galerkin (DG) formulation, although previous attempts have been
reported [7]. The study focuses on linear advection in one dimension and sheds
more light on wave-propagation characteristics previously verified for DG [3, 6],
specially the super-convergence properties [1, 2]. Due to the exploratory character
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of the study, only element-wise constant and linear approximations are considered
in detail, though the path to higher order discretizations is discussed.

In addition, we highlight a connection between MEA and eigensolution analysis
(ESA), sometimes simply called dispersion-diffusion analysis, and argue that
both techniques provide essentially the same information when applied to linear
advection. Still, while ESA is restricted to linear problems, MEA’s usage usually
extends to non-linear problems. For such problems, an interesting application of
MEA would be the analysis of DG-based implicit LES. In [5], this approach was
chosen to assess the suitability of a specific finite volume scheme for implicit LES.
However, as we point out further on, our results do not encourage such approach
for DG.

2 MEA for Linear Advection with DG

We consider the 1D advection equation within an infinite or periodic domain˝ ,

@u

@t
C a

@u

@x
D 0 , (1)

being a the advection speed. In the DG framework, the solution is approximated by
a weighted sum of basis functions �i within each element˝e (˝ DSe˝e), namely

uj˝e Š
PX

iD0
ci.t/ �i.�/ , (2)

in which �i is chosen in this study to be the orthonormal Legendre polynomial (of
degree i) where � is defined in the standard domain˝st D Œ�1; 1�, see [4] for details.

The discrete residue is then required to vanish at the element level via projection,
while inter-element communication is enforced by a numerical flux. Hence, when
using a polynomial basis of degree P, one is left with PC 1 PDEs per element:

h

2a

@ci

@t
D

PX
jD0

cj�ij � .Qu�i/j˝R
e
C .Qu�i/j˝L

e
, (3)

where the left (or right) boundary of ˝e is referred to by L (or R), h is the (constant
over˝) mesh spacing, while the constants �ij and the numerical flux Qu are given by

�ij D
Z
˝st

�j
@�i

@�
d� and Qu.u
; u˚/ D u
 C u˚

2
C ˇSa

u
 � u˚
2

, (4)

being ˇ 2 Œ0; 1� an upwinding parameter, Sa D jaj=a the sign of a, and u
 (or u˚)
is simply the local solution at the left (or right) side of each considered interface.
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Finally, in order to obtain the modified equations, the coefficients cL
i and cR

i of the
neighbouring elements must be expressed through quantities related to the (central)
element ˝e. This is done by considering ci (for i D 0; : : : ;P) as functions of x and
t, since they are the solution of the PDE in Eq. (3), and then by relating ci.x˙ h; t/
to ci.x; t/ via Taylor series, namely

ci.x˙ h; t/ D
1X

kD0
.˙1/k hk

kŠ
@k

xcij.x;t/ , (5)

which translates into

cL
i D ci � h

@ci

@x
C h2

2Š

@2ci

@x2
� � � � and cR

i D ci C h
@ci

@x
C h2

2Š

@2ci

@x2
C � � � . (6)

3 Analysis of P D 0 and P D 1 Discretizations

Deriving the modified equation for the element-wise constant (P D 0) discretization
is straightforward because only one PDE stems from Eqs. (3) and (6):

@c0
@t
C a

@c0
@x
D ˇjaj

2

@2c0
@x2

h� a

6

@3c0
@x3

h2C ˇjaj
24

@4c0
@x4

h3 � a

120

@5c0
@x5

h4C � � � , (7)

where one can clearly see that the leading error term is O.h/ and of diffusive nature,
provided that ˇ ¤ 0. If ˇ D 0, i.e. for centred numerical flux, the leading error is
O.h2/ and of dispersive nature, as expected.

We note that the correct coefficients’ PDE for any value of P is known (a priori)
to be @ci=@t C a @ci=@x D 0. Once the analytical solution of the advection PDE is
the exact propagation of a given signal, it is only natural to expect that the solution’s
coefficients should follow the same rule.

For the element-wise linear (P D 1) case, two PDEs stem from Eq. (3):

h

2a

@c0
@t
D � 1

2
ˇSac0 C 1

4
cR
0 .ˇSa � 1/C 1

4
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0.ˇSa C 1/C
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3
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1.ˇSa C 1/ , (8)
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3
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0.ˇSa C 1/C

� 3
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ˇSac1 � 3

4
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1 .ˇSa � 1/� 3

4
cL
1.ˇSa C 1/ . (9)

Before resorting to Taylor series, it is worth noting that these PDEs are coupled:
@tc0 and @tc1 are both functions of c0 and c1. There is however a way of obtaining
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separate PDEs, one for each coefficient. By defining the identity operator IŒci� D ci,
as well as the operators M and N through the relations in Eq. (6) as

MŒci� D cR
i C cL

i

2
D ci C h2

2Š

@2ci

@x2
C h4

4Š

@4ci

@x4
C � � � , (10)

NŒci� D cR
i � cL

i

2
D h
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C � � � , (11)

one can rewrite Eqs. (8) and (9) as:

�
@t C a

h
N � ˇjaj

h
.M � I/

�
c0 D

"p
3a

h
.M � I/ �

p
3ˇjaj
h

N

#
c1 , (12)

�
@t � 3a

h
NC 3ˇjaj

h
.MC I/

�
c1 D

"
�
p
3a

h
.M� I/C

p
3ˇjaj
h

N

#
c0 . (13)

Noting that all the bracketed operators in Eqs. (12) and (13) are linear, one can
perform a Gauss-like elimination by applying the left-hand side operator of Eq. (12)
over Eq. (13) and vice versa. Then, after simple substitution, this procedure yields
exactly the same PDE for both coefficients, namely
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@t C a
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We verified that these manipulations (including the Gauss-like elimination) can
be used for higher values of P to provide a single PDE which governs the evolution
of all coefficients. Accordingly, each coefficient evolves independently of the others.
Also, the highest time derivative of such PDE will be of order P C 1. The role of
high-order time derivatives can be better understood by recalling the wave equation,

@2u

@t2
� a2

@2u

@x2
D 0 ”

�
@

@t
C a

@

@x

	�
@

@t
� a

@

@x

	
u D 0 , (15)

whose solution is the sum of two signals travelling in opposite directions. Recog-
nizing such behaviour in DG is not surprising, since the capability of supporting
multiple solution modes is a common feature for spectral element discretizations.

Following this idea, one can factor out the single PDE derived above (consider
Eq. (14) without ci) by “solving” it for @t. For the simpler case ˇ D 0, the roots are

@t D a

h
N ˙ a

h

p
4N2 � 3.M� I/2 , (16)
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which, by using the right-hand side of Eqs. (10) and (11), and then the expansion

f .z/ D .yC z/n D yn C nyn�1zC n.n� 1/yn�2 z2

2Š
C � � � , (17)

with n D 1=2, constant y and z D z.h/, yields
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Separating these two roots leads to the desired PDE in factored form, namely
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ci D 0 . (19)

The numerical solution can then be seen as the sum of two modes, one
physical (lower bracket) and another one unphysical (upper bracket). These can
be distinguished by the sign and magnitude of their advection speed. Regarding
numerical accuracy, for this case (ˇ D 0), all the truncation terms are of a dispersive
nature, and the leading error term of the physical mode is of second order. Moreover,
there is no point in discussing order of accuracy for the unphysical mode, since it
simply does not approximate the advection equation being discretized.

Let us now consider the case ˇ ¤ 0. For this more general case, the same steps
taken before can be adopted (though with much greater algebraic manipulation) to
provide the modified equation, which can be compacted in factored form as

 
@

@t
� 3a

@

@x
C 6ˇjaj

h
C ˇjajh @

2

@x2
� ah2

3

@3

@x3
� jajh

3

ˇ
3

@4

@x4
� ah4

ˇ
4

@5

@x5
C � � �

!

 
@

@t
C a

@

@x
C jajh

3

72ˇ

@4

@x4
C ah4

ˇ˚4

@5

@x5
C jajh

5

ˇ˚5

@6

@x6
C � � �

!
ci D 0 (20)

by using the constants ˇ
3 D Œ.72ˇ/�1 � ˇ=12��1, ˇ
4 D Œ.108ˇ2/�1 C 1=90��1,
ˇ˚4 D Œ.108ˇ2/�1 � 1=180��1 and ˇ˚5 D Œ.162ˇ3/�1 � .216ˇ/�1��1.

Now, the leading error term for the physical mode is of a diffusive nature, has
the expected sign (stabilizing for ˇ > 0) and is of third order. Surprisingly, here
the accuracy of the physical mode is increased via upwinding, though the opposite
happens for the unphysical mode. This is advantageous since in the unphysical PDE,
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the leading error term is proportional to ci and plays the role of a singular energy
drain (for ˇ > 0). This term is also inversely proportional to h, growing without
bound as h! 0 while other truncation terms vanish. This grants exponential decay
of the unphysical mode through mesh refinement alone. For example, by considering
only the leading error term, the exact solution of the unphysical PDE would be

ci.x; t/ D c o
i .xC 3at/ exp

�
�6ˇjaj

h
t

	
, (22)

where c o
i .x/ is the initial condition for the unphysical mode. The above expression

states that, for a given mesh, the unphysical mode will decay exponentially in
time. Also, at a given instant t, the magnitude of the unphysical mode will decay
exponentially as the mesh spacing is reduced.

4 Validation and Connections to ESA

To validate the results obtained so far, one can compare the information contained
in truncation error terms with dispersion and diffusion curves provided by eigenso-
lution analysis. Here, for the sake of brevity, these comparisons will be shown only
for ˇ D 1, which is the representative value for practical (stabilized) simulations.

When wave-like solutions in the form cj.x; t/ D eikxe.rCis/t are assumed for the
modified PDEs, the real and imaginary parts of the modified wavenumber can be
evaluated as Real.k�/ D �s=a and Imag.k�/ D r=a, where a is the advection
speed. After usual normalization, these can be compared directly with ESA results.
However, only a finite number of truncation terms can be taken into account. The
case P D 0 is shown in Fig. 1, where the relation between modified (k�) and
actual (k) wavenumbers is depicted for an increasing number of truncation terms
considered.

It is observed that MEA-based curves approach the exact numerical eigencurves
as more truncation terms are taken into account. Exact dispersion/diffusion curves
for this case (P D 0, ˇ D 1) are derived analytically in [6] and given by

k� D i
�
exp

��i k
� � 1 , (23)

where k D k h=.PC 1/ and k� D k�h=.PC 1/.
Now for the case P D 1 (with ˇ D 1), one has the formula (again from [6])

k� D 1

2i

�
2C exp

��2i k
�˙ 1

2

q
2 � 10 exp

��2i k
� � exp

��4i k
�

, (24)

altogether for the physical (positive root sign) and unphysical (negative root sign)
modes. The comparison for these modes are given respectively in Figs. 2 and 3.
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Fig. 1 Comparison between exact and MEA-based eigencurves (for P D 0, ˇ D 1)

Fig. 2 Comparison between exact and MEA-based eigencurves (physical mode, P D 1, ˇ D 1)

In this case, MEA-based eigencurves also converge to the exact numerical
curves but only within a limited radius around k D 0. It was then verified that
the (analytically obtained) Taylor series expansion of Eq. (24) exhibits the same
behaviour. Moreover, we found a one-to-one correspondence between the terms of
such Taylor series and the truncation terms of the associated modified equation.
This equivalence between MEA and ESA results (for linear advection) can be
justified mathematically from ESA-based relations, but is omitted here for space
considerations.

We remark that these are not issues of the MEA technique as applied here,
but stem from a limited convergence radius of the Taylor expansion of the exact
numerical dispersion-diffusion relations. Moreover, for well-resolved simulations
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Fig. 3 Comparison between exact and MEA-based eigencurves (unphysical mode, P D 1, ˇ D 1)

(k  �), these issues are not really important since only the first few truncation
terms are of interest. If these are predicted correctly, the eigencurves’ behaviour
near k D 0 is being captured, and that is sufficient to analyse stability, order of
accuracy and even exponential damping of unphysical modes. On the other hand,
for under-resolved simulations, convergence issues are indeed important and should
not be neglected.

5 Concluding Remarks

The present study discussed how to apply the modified equation analysis (MEA)
technique to the discontinuous Galerkin (DG) formulation. While focusing on
linear advection, this paper presented a complementary view on wave-propagation
properties for DG methods. For stabilized simulations (ˇ > 0) in particular, orders
of accuracy of 1 and 3 were verified for the modified equations of physical modes
respectively for P D 0 and P D 1. Such results are consistent with previous works
on wave propagation for DG [1, 2], where order of accuracy of 2P C 1 has been
shown.

A connection between MEA and eigensolution analysis (ESA) was also pointed
out, so that both approaches can be considered to provide essentially the same
information (for linear advection). However, while ESA is restricted to linear prob-
lems, the usage of MEA normally extends to non-linear problems. An interesting
application of MEA to such problems would be the assessment of DG’s suitability
for implicit LES. In e.g. [5], MEA’s application to a specific finite volume scheme
revealed similarities between its truncation terms and mixed subgrid-scale models.
However, the results obtained in Sect. 4 do not encourage this approach for DG. The
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convergence issues verified for under-resolved simulations are unlikely to disappear
for discretizations of higher order or when considering non-linear problems.
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Fully Discrete Energy Stable High Order Finite
Difference Methods for Hyperbolic Problems
in Deforming Domains

Samira Nikkar and Jan Nordström

Abstract A time-dependent coordinate transformation of a constant coefficient
hyperbolic system of equations is considered. We use the energy method to
derive well-posed boundary conditions for the continuous problem. Summation-
by-Parts (SBP) operators together with a weak imposition of the boundary and
initial conditions using Simultaneously Approximation Terms (SATs) guarantee
energy-stability of the fully discrete scheme. We construct a time-dependent SAT
formulation that automatically imposes the boundary conditions, and show that
the numerical Geometric Conservation Law (GCL) holds. Numerical calculations
corroborate the stability and accuracy of the approximations. As an application
we study the sound propagation in a deforming domain using the linearized Euler
equations.

1 Introduction

High order SBP-SAT schemes, can efficiently and reliably handle large problems
on structured grids for reasonably smooth geometries [7, 11]. The developments
within this framework, have so far dealt mostly with steady meshes while computing
flow-fields around moving and deforming objects involves time-dependent meshes
[3, 12]. In this paper (and the full paper [5]) we treat the time-dependent trans-
formations in a SBP-SAT framework. To guarantee stability of the fully discrete
approximation we employ the recently developed SBP-SAT technique in time
[4, 8].
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2 The Continuous Problem

The following hyperbolic symmetrized constant coefficient system,

Vt C . OAV/x C . OBV/y D 0; .x; y/ 2 ˚.t/; t 2 Œ0; T�; (1)

can, with the use of the GCL [3], be rewritten as

.JV/� C .AV/� C .BV/	 D 0; .�; 	/ 2 ˝; � 2 Œ0; T�;
LV D g.�; �; 	/; .�; 	/ 2 ı˝; � 2 Œ0; T�;

V D f .�; 	/; .�; 	/ 2 ˝; � D 0;
(2)

through a time-dependent transformation from the Cartesian coordinates into
curvilinear coordinates as

x.�; �; 	/• �.t; x; y/; y.�; �; 	/• 	.t; x; y/; t D �: (3)

In (2), A D J�tIC J�x OAC J�y OB; B D J	tIC J	x OAC J	y OB, and˝ D Œ0; 1�� Œ0; 1�:
Moreover, L is the boundary operator, g is the boundary data, f is the initial data,
and JDx�y	�x	y� >0 is the determinant of the Jacobian of the transformation.

2.1 Well-Posedness

The energy method (multiply (2) with the transpose of the solution and integrate
over the domain˝ and time-interval Œ0; T�) is applied to (2), and the term VT

� JV C
VT
� AV C VT

	 BV D 0 is added to the integral argument. Then, integration together
with the use of Green-Gauss theorem gives

jjV.T; �; 	/jj2J D jj f .�; 	/jj2J �
Z T

0

I
ı˝

VT Œ.A;B/ � n� V ds d�; (4)

where the norm is defined by jjVjj2JD
RR
˝

VTJ V d� d	. In (4), n is the unit normal
pointing outward from ˝ , and ds is an infinitesimal element along the boundary,
ı˝ .

In order to bound the energy of the solution, boundary conditions must be applied
when the matrix C D .A;B/ � n is negative definite. We decompose C D XCXT D
XCC XT C X�C XT D CC C C� where CC and �C are diagonal matrices with
positive and negative eigenvalues of C, respectively. We choose the characteristic
boundary conditions, in order to bound the energy of the solution as

.XTV/iD.XTV1/i; .C/ii < 0; (5)

where V1 is the solution at ı˝ .
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The continuous energy, using (5) is estimated as

jjV.T; �; 	/jj2J D jj f .�; 	/jj2J �
Z T

0

I
ı˝

VT1C�V1 ds d� �
Z T

0

I
ı˝

VTCCV ds d�:

(6)

The estimate (6) guarantees uniqueness of the solution and existence is given by
the fact that we use the correct number of boundary conditions. Hence we can
summarize the results obtained so far in the following proposition.

Proposition 1 The continuous problem (2) with the boundary condition in (5) is
strongly well-posed and has the bound (6).

3 The Discrete Problem

The spatial domain, ˝ , is a square in �;	 coordinates, and discretized using N and
M nodes in � and 	 directions respectively. In time we use L time levels from 0 to T.

The first derivative u� is approximated by D�u, where D� is a so-called SBP
operator, see [10]. A multi-dimensional finite difference approximation (including
the time discretization [4, 8]), on SBP-SAT form, is constructed by extending the
one-dimensional SBP operators in a tensor product fashion as

D�DP�1� Q�˝I�˝I	˝I; D�D I�˝P�1� Q�˝I	˝I; D	D I�˝I�˝P�1	 Q	˝I (7)

where˝ represents the Kronecker product [14]. In (7), I denotes the identity matrix
with a size consistent with its position in the Kronecker product. In [5] it is shown
that the operators in (7) commute.

The SBP-SAT approximation of (2) including the penalty terms for the weak
boundary conditions (we only consider the boundary along which 	 D 0, namely
the south boundary, denoted by subscript s), and a weak initial condition, is
constructed as

1
2
ŒD� .JV/C JD�VC J�V�C 1

2
ŒD� .AV/C AD�VC A�V�C

1
2
ŒD	.BV/C BD	VC B	V� D QP�1i ˙i.V � f/C QP�1s ˙sXT

s ŒV � V1�;
(8)

in which the bold face of the variables corresponds to the approximated values. ˙i

and˙s are the penalty matrices for the weak initial condition and the south boundary
procedure. Furthermore QP�1i D P�1� E0 ˝ I� ˝ I	 ˝ I, QP�1s D I� ˝ I� ˝ P�1	 E0 ˝ I,
and Xs D .I� ˝ I� ˝ E0 ˝ X/. Also, the vectors V1 and f contain the boundary
data at 	 D 0 and initial data at � D 0 respectively. Note that in (8), the splitting
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technique described in [6] is used prior to the discretizations, in order to get similar
energy estimate as the one in the continuous case.

3.1 Stability

The energy method (multiplying from the left with VT.P�˝P�˝P	˝ I/) is applied
to (8) and the equation is added to its transpose. The result is

VT. QB�JC QB�AC QB	B/VCVT QP.J� C A� C B	/V D
VT.E0 ˝ P� ˝ P	 ˝ I/˙i.V�f/C .V�f/T˙T

i .E0 ˝ P� ˝ P	 ˝ I/VC
VT.P� ˝ P� ˝ E0 ˝ I/˙sXT

s ŒV�V1�C ŒV�V1�T Xs˙
T
s .P� ˝ P� ˝ E0 ˝ I/V;

(9)

where QP D .P� ˝ P� ˝ P	 ˝ I/; QB� D Œ.Q C QT/� ˝ P� ˝ P	 ˝ I�, QB� D ŒP� ˝
.QCQT/� ˝ P	˝ I�, and QB	 D ŒP� ˝ P� ˝ .QCQT/	˝ I�. The following Lemma
is proved in [2].

Lemma 1 The numerical GCL holds: J� C A� C B� D 0.

In (9), by using Lemma 1 we get

VTJ.EL ˝ P�	 ˝˝I/VDVT.E0 ˝ P�	 ˝ I/.JC 2˙i/V�fT.E0 ˝ P�	 ˝ I/˙iV�
VT.E0 ˝ P�	 ˝ I/˙ifC VT.P�;� ˝ E0 ˝ I/.Bs C˙sXT

s C Xs˙
T
s /V�

VT.P�� ˝ E0 ˝ I/˙sXT
s .V1/s�.V1/Ts Xs˙

T
bs.P�� ˝ E0 ˝ I/V; (10)

where P�	 D P� ˝ P	, P�� D P� ˝ P� , Bs D .I� ˝ I� ˝ E0I	 ˝ I/B, and E0, EL

are zero matrices except at the one entry corresponding to the initial and final time,
respectively.

Proposition 2 The problem (8) is stable if JC 2˙i � 0; ˙sXT
s CXs˙

T
s CBs � 0:

Proof With zero boundary and initial data the solution at the final time is clearly
bounded. ut

4 Numerical Experiments

We consider the two-dimensional linearized symmetrized Euler equations in a
deforming domain described by (1), where VDŒNc
=.p� N
/; u; v;T=.Ncp�.� � 1//�T,
and 
; u; v;T and � are respectively the density, the velocity components in x and
y directions, the temperature and the ratio of specific heats [1, 13]. An equation of
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Fig. 1 A schematic of the Cartesian-polar transformation, and illustrations of r0, r1 , �0 and �1;
Also boundary definitions as West: ad ! a0d0, East: bc ! b0c0, South: ab ! a0b0, North:
dc! d0c0

state in form of �pD N
T C 
 NT closes the system (1), in which the bar denotes the
state around which we have linearized. Moreover the matrices in (1) are

OAD

0
BBBB@

Nu Nc=p� 0 0

Nc=p� Nu 0
q

��1
�
Nc

0 0 Nu 0

0
q

��1
�
Nc 0 Nu

1
CCCCA;
OBD

0
BBBB@

Nv 0 Nc=p� 0

0 Nv 0 0

Nc=p� 0 Nv
q

��1
�
Nc

0 0
q

��1
�
Nc Nv

1
CCCCA: (11)

The deforming domain is chosen to be a portion of a ring-shaped geometry
where the boundaries are moving while always coinciding with a coordinate line
in the corresponding polar coordinate system. We transform the deforming domain
from Cartesian coordinates, x; y, into polar coordinates, r; �, and scale the polar
coordinates such that ˝ D Œ0; 1� � Œ0; 1�, see Fig. 1, as

�.x; y; t/ D r.x;y;t/�r0.t/
r1.t/�r0.t/

; 	.x; y; t/ D �.x;y;t/��0.t/
�1.t/��0.t/ : (12)

4.1 Order of Accuracy

We move the boundaries by the transformation

r0.t/ D 1 � 0:1
2�

sin.2�t/; �0.t/ D � 0:52� sin.2�t/;
r1.t/ D 2C 0:2

2�
sin.2�t/; �1.t/ D �

2
C 0:5

2�
sin.2�t/;

(13)
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Table 1 Convergence rates
at TD 1, for a sequence of
mesh refinements, SBP63 in
space, SBP84 in time
(L D 201)

N;M 21 31 41 51 61 71


 5:780 4:681 4:502 4:379 4:320 4:296

u 6:120 4:531 4:585 4:588 4:575 4:558

v 6:138 4:300 4:179 4:215 4:249 4:268

p 5:701 4:124 4:267 4:340 4:380 4:402

and construct the matrices OA and OB for a state where Nu D 1, Nv D 1, N
 D 1, N� D 1:4
and Nc D 2. To verify the order of accuracy of our method, we use the method of
manufactured solution [9], and impose the characteristic boundary conditions as
derived in (5).

The numerical solution for a scheme with SBP63 in space and SBP84 in time,
converges to the exact solution at T D 1 with the convergence rate presented in
Table 1. Moreover, the scheme is tested with SBP21 and SBP42 and the convergence
rates are quantified as 2 and 3 respectively [5].

4.2 The Sound Propagation Application

We consider a deforming domain where the west boundary is moving, see Figs. 2
and 3. Note that these schematics are for illustration purposes only, the numerical
experiments are carried out on finer meshes. The movements are defined by

r0.t/ D 1C sin.4�t/=.4�/; �0.t/ D �=4;
r1.t/ D 5; �1.t/ D 3�=4: (14)

We choose � D 1:4, Nc D 2, N
 D 1 and manufacture Nu and Nv such that the mean
flow satisfies the solid wall no-penetration condition at the moving boundary by

Nu D x�= exp.�/; Nv D y�= exp.�/: (15)

Consider the eigenvalue matrix, C D XXT at the west boundary, in which  D
R1 diag . O!; O!; O! � Nc; O! C Nc/, where O! D �.J�t C J�x Nub C J�y Nvb/=R1 and R1 Dp
.J�x/2 C .J�y/2. The no-penetration condition for the mean flow at the moving

boundary results in O! D 0, which takes (6) to

jjV.T; �; 	/jj2J D jj f .�; 	/jj2 �
Z T

0

Z 1

0

Nc. Qv24 � Qv23/ d	C BT: (16)

In (16), QV D XTV D Œ Qv1; Qv2; Qv3; Qv4�T ; and BT is the contribution at the other
boundaries. Any boundary condition of the form Qv3 D ˙Qv4 is well-posed. We
choose Qv3 C Qv4 D 0, which is the no-penetration boundary condition. Also we
impose characteristic boundary conditions with zero data at the other boundaries,
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Fig. 2 A schematic of the deforming mesh at different times, sound propagation
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Fig. 3 A schematic of the fixed mesh at different times, sound propagation

and initialize the solution with zero data for density and velocities, together with an
initial pressure pulse centered at .�1:5; 3:5/. We have used N D M D 50, L D 100
and SBP42 in space and time. The velocity field at two different time levels, with
non-penetrating flow close to the solid wall, are presented in Figs. 4, 5, 6, and 7.
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Fig. 5 A blow-up of the velocity field.
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The reference domain in Figs. 4, 5, 6, and 7 illustrate the movements of the
south boundary relative to its initial location. As seen in the figures, the flow stays
tangential to the moving solid boundary all the time, as it should for an Euler
solution.

5 Summary and Conclusions

We have considered a constant coefficient hyperbolic system of equations in time-
dependent curvilinear coordinates. The system is transformed into a fixed coordinate
frame, resulting in variable coefficient system. We show that the energy method
applied to the transformed systems together with time-dependent appropriate
boundary conditions leads to strongly well-posed problem.

By using a special splitting technique, summation-by-parts operators in space
and time, weak imposition of the boundary and initial conditions and the discrete
energy method, a fully-discrete strongly stable and high order accurate numerical
scheme is constructed. The fully-discrete energy estimate is similar to the continu-
ous one with small added damping terms. Furthermore, by the use of SBP operators
in time, the Geometric Conservation Law is shown to hold numerically.

We have tested the scheme for high order accurate SBP operators in space and
time using the method of manufactured solution. Numerical calculations corroborate
the stability and accuracy of the fully-discrete approximations. Finally, as an
application, sound propagation by the linearized Euler equations in a deforming
domain is illustrated.
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Stabilized Spectral Element Approximation
of the Saint Venant System Using the Entropy
Viscosity Technique

R. Pasquetti, J.L. Guermond, and B. Popov

Abstract We consider the Saint Venant system (shallow water equations), i.e. an
approximation of the incompressible Euler equations widely used to describe river
flows, flooding phenomena or erosion problems. We focus on problems involving
dry-wet transitions and propose a solution technique using the Spectral Element
Method (SEM) stabilized with a variant of the Entropy Viscosity Method (EVM)
that is adapted to treat dry zones.

1 Introduction

Because high-order methods are known to produce spurious oscillations in shocks,
solving non-linear hyperbolic systems of conservation equations with high accuracy
is a challenging task. Assuming that an entropy does exist for the considered
physical problem, the Entropy Viscosity Method (EVM) offers an elegant way to
stabilize various numerical discretizations, including the standard Finite Element
Method or Spectral Element Method (SEM) and even Fourier expansions [4]. The
basic idea consists of introducing in the governing equations a nonlinear viscous
term based on the residual of the Partial Differential Equation (PDE) that governs the
evolution of the entropy and to bound from above this term by a first order viscosity.

We consider in the present paper the Saint Venant system, i.e. a simplified form
of the incompressible Euler equations well adapted to describe free surface flows
like rivers or flooding phenomena. We especially focus on problems involving dry-
wet transitions, e.g. the classical dram break problem. This class of problems is
generally addressed in the finite volume literature by using Godunov-type methods,
i.e. Riemann solvers together with flux or slope limiters, see e.g. [6] for a review.
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We introduce a new ingredient in the EVM that enables the method to handle the
dry-wet transition problem satisfactorily. The numerical discretization is based on
the SEM in space and on a standard forth order Runge-Kutta (RK4) scheme in time.
Although all the numerical simulations shown in the paper are one-dimensional, the
method is a priori multi-dimensional. Finally, the proposed approach can be used to
treat problems in gas dynamics with vacuum.

The paper is organized as follows. We introduce the Saint Venant system
and recall its basic properties in Sect. 2. The SEM approximation and the EVM
stabilization are described and discussed in Sect. 3. Some examples of applications,
all of them involving dry-wet transitions, are presented in Sect. 4.

2 The Saint Venant System

The Saint-Venant system (shallow water equations) is an approximation of the
incompressible Euler equations assuming that the pressure is hydrostatic and
the free surface perturbations are small compared to the water height. The one-
dimensional version of this system is

@thC @x.hu/ D 0 (1)

@t.hu/C @x.hu2 C gh2=2/C gh@xz D 0; (2)

where h.x; t/ is the water height, u.x; t/ the horizontal velocity, g the gravity
acceleration, z.x/ the topography, for which it is assumed that @xz  1. The
independent variables are time t 2 .0; tF/ and space x 2 D D .xinf; xsup/. These
PDEs are obtained by integrating the mass and momentum conservation equations
in the Euler system over the vertical direction. This nonlinear two equations system
has the following properties:

• The system is hyperbolic, which means that discontinuities may develop;
• Assuming that the inlet flow-rate equals the outlet flow-rate, the total mass is

preserved: dt
R

D h dx D 0;
• The height h is nonnegative:8x; t; h.x; t/ � 0;
• Rest solutions are stable: u D 0; h.x; t/C z.x/ D constant;
• There exists a convex entropy (actually the energy E) such that:

@tEC @x..EC gh2=2/u/ � 0; E D hu2=2C gh2=2C ghz: (3)

3 Stabilized SEM Approximation

The EVM-stabilization is obtained via the introduction of nonlinear viscous terms
in the governing equations. The entropy viscosity is computed from the residual of
the entropy inequality and bounded from above by a first order viscosity. In case



Stabilized SEM Approximation of the Saint Venant System Using the EVM 399

of a scalar conservation law, with ıx for the grid size, we generally set, see [4] for
details:

� D S.min.�max; �E// where (4)

�max D ˛max
loc
j f 0.u/jıx (5)

�E D ˇıx2jrEj=�E (6)

where rE is the residual of the entropy inequality; f .u/; f 0.u/ are the flux and
derivative of the flux; ˛ and ˇ are user defined parameters;�E is a scaling parameter
equal to the amplitude of variations of the entropy. The local maximum is generally
based on the computational cell. S is a smoothing operator required by the fact that
at the discrete level the residual rE is oscillatory. For hyperbolic systems f 0.u/ is
the Jacobian matrix of f , and j f 0j is defined to be the absolute value of the largest
eigenvalue of f 0.u/.

Discretization of the Saint Venant system: Set q D hu and, for any t, let hN.x; t/
(resp. qN.x; t/) to be the continuous piecewise polynomial approximation of degree
N of h.x; t/ (resp. q.x; t/) built on a discretization of D D .xinf; xsup/; i.e. we use
the standard SEM for the space approximation, see e.g. [5] . Then we propose the
following EVM-stabilized weak formulation of the Saint Venant system:

Z
D
.@thN C @xqN/vN D �

Z
D
�@xhN @xvN (7)

Z
D
.@tqN C @x.q

2
N=hN C gh2N=2/C ghNzx/wN D �

Z
D
�@xqN @xwN ; (8)

where vN ;wN are test functions spanning the approximation space and � is the
entropy viscosity, still to be defined. As usual, the viscous (stabilization) terms
have been integrated by parts. Note that a viscous stabilization is added to the
mass equation and that the stabilization is done on q instead of u in the momentum
equation. This differs from the physically and mathematically well justified viscous
form of the Saint-Venant system, which makes only use of @x.h�@xu/ in the
momentum equation [2]. In [3], where the Euler system is addressed, it is however
outlined that the physical stabilization may not be the best suited one for numerical
purposes.

Time is approximated using an explicit RK4 scheme.
Entropy viscosity for the Saint-Venant system: First we define the viscosity

�E associated to the residual of the entropy equation. Using the expression (3) leads
to a viscosity �E that depends on z, i.e. on the choice of the coordinate system. To
avoid this arbitrariness, we take into account the mass conservation equation in (3)
to derive an expression that only depends on @xz and governs the evolution of an
entropy QE which satisfies:

@t QEC @x.. QEC gh2=2/u/C ghu@xz � 0; QE D hu2=2C gh2=2: (9)
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The evaluation of the entropy viscosity is done at each time step before entering the
RK explicit time scheme. This is done at time tn by using a Backward Difference
Formula (e.g. BDF2) for the approximation of @t QEN ; more precisely, denoting by
� QEN=�t the approximation of @t QEN , we compute

rE D � QEN=�tC @x.. QEN C gh2N=2/qN=hN/C gqN@xz (10)

with QEN D q2N=.2hN/C gh2N=2, and we set

�E D ˇjrEj=�ENıx
2 ; �EN D max

D
EN �min

D
EN (11)

where the grid size ıx is that of the Gauss-Lobatto-Legendre (GLL) mesh.
The first order viscosity �max for the Saint Venant system must be based on a

wave speed that should be larger than �˙ D u˙pgh. We set

�max D ˛max
D
.jqN=hNj C

p
ghN/ıx (12)

where again ıx is the GLL grid-size.
The viscosity is then defined by � D min.�max; �E/. This viscosity is additionally

smoothed by using a two-step procedure:

• first locally (in each element), e.g. .�i�1 C 2�i C �iC1/=4! �i

• then globally, by projection onto the space of the C0 piecewise polynomial of
degree N. Note that this is easy to do, since the SEM mass matrix is diagonal.

We now finally recall how to adjust the values of the EVM control parameters:

• First, one solves the problem with the viscosity �max and adjust ˛ to obtain a
smooth solution.

• Second, one solves with the entropy viscosity � and adjust ˇ.

Properties of the approximation: The following properties are expected from
the SEM/EVM approximation:

• Mass conservation: Setting vN D 1 in the equation for hN yields

Z
D
.@thN C @xqN/ dx D

Z
D
@thN dxC 0 D dt

Z
D

hN dx D 0 (13)

if qN.xsup/ � qN.xinf/ D 0, which means that the total mass is preserved. Indeed,
the GLL quadratures are here exact.

• Conservation of energy for smooth solutions. There is no guaranty here, because
the equation for the energy involves non-linear terms that are approximated by
the GLL quadratures.

• Positivity of h. Here again, one may expect difficulties as soon as N > 1, i.e.
when the space approximation is not simply piecewise linear. For problems
in which we are interested in, i.e. involving dry-wet transitions, numerical
difficulties systematically occur when using the standard form of the EVM. To
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overcome these difficulties, we suggest to use the first order viscosity as soon as
the fluid height becomes small. We thus supplement the EVM with the following
step:

� D �max if hN < hthres (14)

where the threshold height hthres is small, i.e. typically 10�3 of the mean fluid
height. Moreover, we have not based �max on a local but on a global maximum of
the wave speed, see Eq. (12).

4 Examples of Applications

The following test-cases have been considered: (1) Lake at rest with an emerged
bump. The surface water should remain flat. This is what one usually expects of
a well balanced scheme. (2) Oscillations in a parabolic cup. The solution to this
problem being smooth, the energy should remain constant over time. (3) Dam break
on a dry domain. The main problem here is to get the right velocity at the front of
the water wave. (4) Dam break on a sinusoidal topography. This problem combines
different aspects previously mentioned. It should be remarked that all these test-
cases have dry-wet transitions. The first three test cases have analytical solutions,
see e.g. [1].

Lake at rest with an emerged bump: In this test the free surface should remain
flat and the velocity must be zero at all times. Figure 1 shows the EVM solution as
well as the entropy viscosity. As desired, the viscosity is maximal in the dry part of
the bump. The result is satisfactory, even if one observes (on an animation) some
traveling waves with very low amplitude.

Fig. 1 Bump problem: D D .8; 12/, tF D 400, 60 elements, N D 4, ˛ D 1, ˇ D 10, hthres D
10�4. EVM solution and entropy viscosity at time tF D 400
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Fig. 2 Cup problem: D D .0; 4/, tF D 50, 60 elements, N D 4, ˛ D 1, ˇ D 10, hthres D 10�3.
EVM and exact solutions, entropy viscosity at time tF D 50

Fig. 3 Cup problem: Time-variations of the total energy for the solutions obtained with the
entropy viscosity and with the first order viscosity

Oscillations in a cup: The topography is a parabolic bowl. The fluid level, hC z,
at the initial time is defined by an inclined line. Since the solution to the problem is
smooth there is no dissipation and the fluid oscillates indefinitely. Figure 2 compares
the exact solution with the computed one at the final time, tF D 50. The entropy
viscosity is also shown.

It is interesting for this problem to verify how well the energy is conserved.
Figure 3 shows the time evolution of the total energy for both the EVM and the
first order viscosity solutions. One observes some oscillations, especially for the
first order viscosity solution, and there is a slight increase in energy for the EVM
solution. The result is however satisfactory since the oscillatory motion is well
maintained, i.e. there is no significant artificial dissipation of the energy.
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Fig. 4 Dam break problem: D D .0; 10/, tF D 120, 60 elements, N D 4, ˛ D 2, ˇ D 20,
hthres D 10�6. EVM and exact solutions, entropy viscosity at tF D 11. The initial condition is also
shown

Fig. 5 Dam/bump problem: D D .0; 10/, tF D 600, 60 elements, N D 4, ˛ D 1:5, ˇ D 30,
hthres D 10�5. EVM solution and entropy viscosity at t D 129. Initial condition: hC z D 0:003 if
x < 2, h D 0 if x > 2

Dam break: The dam break on dry domain is a classical test-case. It is especially
of interest to verify whether the velocity of the leading wave is correct. Figure 4
shows that the results from the EVM are satisfactory, even if some slight differences
can be observed at the upper left and bottom right parts of the expansion wave.

Dam break over bumps: We now solve the dam break problem on a dry
domain with a sinusoidal topography. Figure 5 shows a snapshot of the solution.
At the end of the computation one recovers the situation met previously for the cup
problem, i.e. the fluid oscillates between the two bumps and remains trapped therein
indefinitely.
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A Windowed Fourier Method for Approximation
of Non-periodic Functions on Equispaced Nodes

Rodrigo B. Platte

Abstract A windowed Fourier method is proposed for approximation of non-
periodic functions on equispaced nodes. Spectral convergence is obtained in most
of the domain, except near the boundaries, where polynomial least-squares is
used to correct the approximation. Because the method can be implemented
using partition of unit and domain decomposition, it is suitable for adaptive and
parallel implementations and large scale computations. Computations can be carried
out using fast Fourier transforms. Comparisons with Fourier extension, rational
interpolation and least-squares methods are presented.

1 Introduction

The recovery of a function from a finite set of its values is a common problem in
scientific computing and is one of the main underlying problems in the numerical
solution of partial differential equations. This manuscript focuses on the special case
of approximating functions from values sampled at evenly distributed points.

It is known that polynomial interpolants of smooth functions at equally spaced
points do not necessarily converge, even if the function is analytic. Instead one
may see wild oscillations near the endpoints, an effect known as the Runge
phenomenon. Associated with this phenomenon is the exponential growth of the
condition number of the interpolation process. Several other methods have been
proposed for recovering smooth functions from uniform data, such as polynomial
least-squares, rational interpolation, and radial basis functions; to name but a few.
It is now known that these methods cannot converge at geometric (exponential)
rates and remain stable for large data sets [11]. In practice, however, some methods
perform remarkably well.

In this work we present a hybrid method based on windowed Fourier (WF)
approximations combined with polynomial least-squares corrections near bound-
aries. The algorithm is an adaptation of the method presented in [10], in which
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a hybrid grid was used in the approximations—uniform nodes in the interior of
the domain combined with Chebyshev points near the endpoints. In contrast, the
algorithm proposed here relies strictly on equispaced grids. Besides describing
a criterium for choosing parameters in the algorithm (window size, boundary
layer correction, and polynomial degree), a generalized version of Hermite’s error
formula is used to compare the accuracy of the proposed algorithm with other known
methods for the approximation of analytic functions.

The WF scheme can be closely related with Fourier continuation (or exten-
sion/embedding) methods [4, 6], which have been extensively explored recently.
It is important to point out that Fourier extension requires a periodic continuation
of the target function outside the domain of interest. The extension is not unique
and different strategies have been presented in the literature to generate them. In
[6], for example, an SVD based least squares approximation is used, while in [3]
polynomials are used to periodically extend the function. Although an FFT based
implementation is available for the SVD approach [8], it is restricted to extended
domains that are at least twice as large (in 1D) as the domain of interest, a limitation
that has implications on the oversampling rate for stable approximations. A detailed
study of the tradeoffs between amount of oversampling and numerical stability has
been recently presented in [1, 2]. The WF method, on the other hand, does not
require least-squares approximations on the interior of the domain, with Fourier
coefficients being computed by interpolation.

Along these lines, several other methods have been proposed to approximate
functions from equispaced nodes with spectral-like accuracy. Examples can be
found, for instance, in [5, 11]. Here we focus on describing the WF method and
providing numerical experiments to demonstrate its performance.

2 Background and Algorithm

For simplicity, we describe the scheme for approximations on a bounded interval.
Computations in higher dimensions are carried out using tensor products. The WF
method for equispaced points is motivated by Platte and Gelb [10], where a similar
strategy was proposed as an alternative to traditional spectral methods. In that
paper, polynomial approximations near the edges of the domain were computed
on Chebyshev nodes, as the main focus was the solution of partial differential
equations. In the present work, we replace polynomial interpolation with least-
squares, and relax the restriction on the node distribution near the boundary.

A windowed Fourier approximation is illustrated in Fig. 1. To approximate a
non-periodic function u, using Fourier expansions, a smooth window function w
is used. The window and its derivatives are close to zero at boundary points and the
product uw can be accurately approximated by a truncated trigonometric series. The
function u can be recovered from this approximation by dividing it by w. Since w is
close to zero near the boundaries, errors are amplified in that region. To correct the
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Fig. 1 From left to right: the function u.x/ D exp.x=�/ C exp.�50x2/ (dashed), the window
function w (solid), the product uw, and the Fourier approximation of uw divided by w

approximation near the ends of the interval, local polynomial approximations are
used.

Although not pursued here, it is also possible to take advantage of the windowing
process to decompose the domain if variable resolution is required. There are
many possible window functions. As in [10], the method proposed here uses super-
Gaussian window functions, w.x/ D exp

��˛.x=�/2�� ; x 2 Œ��; ��; where � is
a positive integer and ˛ � 52 ln 2 is used in double precision. This choice of ˛
ensures that w.˙�/ � 2�52, which is the machine epsilon.

The difficulty in finding a suitable window is that a nonzero function that
has all derivatives vanishing at a point cannot be analytic on any neighborhood
of the interval in consideration. There must be a compromise between enforcing
periodicity and the stiffness of the product uw. This aspect is investigated in
detail in [10]. Figure 2 shows super-Gaussian window functions for � D 2; 5;

and 20. Notice that � D 20 gives large support for the Fourier approximation
but also stiff gradients near the boundaries. Although super-Gaussians are not
compactly supported in infinite precision, we found that their Fourier sums have
better convergence properties than C1 compactly supported window functions,
such as exp.�1=.1 � .x=�/2/�/. The lack of exact periodicity in derivatives in the
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Fig. 2 Super-Gaussian
window functions:
exp.�32.x=�/2�/
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case of super-Gaussians only affects convergence rates once the error falls below
machine precision and their Fourier sums converge geometrically (exponentially)
for all practical purposes.

Throughout this work we consider the truncated Fourier series,

FN Œu�.x/ D
NX

nD�N

0 Oun exp.inx/; �� � x � �; (1)

where the coefficients Oun are computed so that u.xj/ D FN Œu�.xj/ at 2N equally
spaced nodes. The prime indicates that the terms n D ˙N are multiplied by 1

2
. It

is well known that the series converges exponentially fast, as N ! 1, to smooth
periodic functions.

The accuracy and performance of the WF method depends on how well the
product uw is approximated. Analysis presented in [10] shows that the number of
modes in (1) required to approximate w, to a fixed accuracy, is linearly proportional
to �. In particular, approximations of w accurate to almost machine precision can
be obtained with N > 12�. This linear dependence can be explained using standard
error estimates for Fourier interpolation and we refer to [10] for details.

Once the product uw is approximated, the recovery of u can be obtained by a
point-wise division by w. Notice that the magnitude of the error in this process is
inversely proportional to the values of w.x/, i.e.

ju.x/� FN Œuw�.x/=w.x/j D ju.x/w.x/� FN Œuw�.x/j =w.x/:

Therefore, if corrections are made to the approximation in the regions where w.x/ <
0:05, the error at the cutoff points would be about twenty times larger than at the
center of the interval. Choosing the cutoff points, xa and xb, to satisfy w.xa/ D
w.xb/ D 0:05, gives

xa D �� ..ln 20/=˛/1=2� and xb D � ..ln 20/˛/1=2� : (2)
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Asymptotically, this means that the number of nodes in the correction regions
remains nearly constant as N !1.

For the 1-D case, the algorithm can be summarized as follows.

• Given 2N equispaced nodes on Œ��; ��, choose � to be N=12.
• Set the cutoff points according to (2).
• Approximate the product wu using (1). The approximation in Œxa; xb� is then given

by .FN Œuw�.x//=w.x/.
• Correct approximations in Œ��; xa� and Œxb; �� using polynomial least-squares.

Here we choose the polynomial degree to be half the number of nodes in the
correction regions.

The rate of convergence of scheme is limited by the least-squares polynomial
correction near the ends of the domain. That region, however, shrinks as N is
increased. Spectral accuracy is attained in most of the domain and fast convergence
is expected for functions free of singularities or steep gradients near the boundary.

3 Accuracy for Analytic Functions

In this section we use a generalization of Hermite’s error formula to compare
the accuracy of different methods. To this end, we consider a general linear
approximation of an analytic function f from its data values as

Lf ;N.x/ WD
NX

jD1
f .xj/Lj.x/; (3)

where the Lj are bounded functions. In the case of interpolation, Lj would be a
cardinal functions.

Theorem 1 Suppose f is analytic in a closed simply connected region R and C is a
simple, closed, rectifiable curve that lies in R and encloses the interpolation points
xj, j D 1; : : : ;N. The error at x in the approximation (3) is

f .x/ � Lf ;N.x/ D 1

2�i

Z
C

f .z/

z � x
rN.z; x/dz; (4)

rN.z; x/ D 1 � .z� x/
NX

jD1

Lj.x/

z � xj
: (5)

From (5) we can see that rN.z; x/ can be interpreted as the relative error at x
in approximating the function 1=.z � x/ with (3). Additional details, including the
proof, can be found in [9].
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Using (4) we can bound the error. Under the assumptions of Theorem 1, assume
that x and all interpolation points are in Œ�1; 1�, then

�� f � Lf ;N

��
Œ�1;1� � Mf max

x2Œ�1;1� jrN.z; x/j; where Mf D
arclength.C/ max

z2C
j f .z/j

2� min
x2Œ�1;1�; z2C

jz� xj :

Notice that Mf depends only on the function being approximated and the accuracy
of the approximating scheme, including node distribution, is captured in rN .

Figure 3 shows the contour levels of RN.z/ WD maxx2Œ�1;1� jrN.z; x/j. Results are
shown for N D 200 and are qualitatively similar for other values of N. The top
panel in Fig. 3 shows R200 for the WF method. It shows that approximations are
very accurate in the interior of the domain. As could be expected, RN decays more
slowly near the end points due to the local polynomial correction in that region.

For reference, the bottom panel of Fig. 3 shows the corresponding values of
RN for three other methods: polynomial least-squares, rational interpolation, and
Fourier continuation. These methods are known to work well on equispaced nodes.
For the least-squares approximation, the degree of the polynomial was chosen to
be approximately 4

p
N to ensure stable results (see e.g. [11, 12]). The rational

interpolation approximation is computed using the method presented Floater and
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Fig. 3 Top: Level curves of RN.z/ D maxx2Œ�1;1� jrN.z; x/j in a log scale for WF with N D 200.
Contours shown correspond to 10�11; 10�10; : : : ; 1. Bottom: Same as the top plot, but with three
other methods for comparison
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Hormann in [7] with degree 15. The Fourier continuation scheme was computed
using the SVD approach and oversampled least-squares [8]. Extended domains were
twice as large as each subdomain (see [2, 8] for details). Notice that the WF method
compares favorably to all three methods as RN takes smaller values in a larger part of
the complex plane. This figure also shows that RN is similar for the WF and rational
interpolation methods.

Finally, we use four functions to test the performance of the WF method. Figure 4
shows the error as a function of N, the number of equispaced nodes, for each
function. For reference, the error in polynomial interpolation on N Chebyshev
nodes is also included. As predicted by the contours in Fig. 3, WF and rational
interpolation present similar accuracy. Due to better resolution in the interior of the
domain, the WF approximation of f2 converges faster than polynomial interpolation
on Chebyshev nodes. While Fourier continuation outperforms WF approximations
for the oscillatory function f1, WF is significantly more accurate for f2 and f3. Notice
that f4 has a singularity close to a boundary point, at x D 1:05, and as a consequence
all methods converge at sub-geometric rates (and are much less accurate than
interpolation at Chebyshev points). This result is also in good agreement with Fig. 3.

f1(x) = sin(100x) f2(x) = 1=(1+100x2)
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4 Concluding Remarks

It is important to point out that the WF method is not exponentially convergent for
all analytic functions. The results presented in Fig. 4 do not contradict the theorem
in [11], which asserts that stable methods cannot converge at geometric rates for
all functions that analytic in regions enclosing the interval of approximation. This
is evident in the approximation of f4.x/ D

p
1:05C x, where the error plot shows

sub-geometric decay for all methods (except for Chebyshev interpolation).
The approximation order of the method presented here is dominated by the

polynomial least-squares approximation near the endpoints. Because the number
of nodes on these regions is nearly constant (the size of boundary layer shrinks as
the overall number of points is increased), the polynomial degree remains nearly
constant as N ! 1. For the parameters used to generate the plots in Fig. 4,
the degree for the polynomial corrections is 21 when N � 150. The algebraic
convergence near the endpoints of the interval is reflected in the lobes of Fig. 3.
Although the formal convergence of the method is sub-geometric, in many practical
cases, the error decays exponentially fast for practical values of N . In the case of
f2.x/ D 1=.1 C 100x2/, for instance, the approximation error is dictated by the
singularity near x D 0 and the correction regions are very accurately approximated
by a high order polynomial.

In contrast to the other three numerical schemes used to obtain Fig. 4, the
polynomial correction step in the algorithm being proposed here leads to an
approximation that is not continuous. The jump size in the resulting approximation
is of the order of the approximation error and can be a source of instability
when solving PDEs. This issue has been partially addressed in [10], when the
polynomial correction is carried out using Chebyshev interpolation, but has not yet
been addressed when equispaced nodes are used.
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Smoothness-Increasing Accuracy-Conserving
(SIAC) Filters in Fourier Space

Liangyue Ji and Jennifer K. Ryan

Abstract It has been noted in the past that discontinuous Galerkin methods
can be viewed as a low order multi-domain Spectral method with penalty term
(Hesthaven et al., Spectral methods for time-dependent problems, Cambridge
University Press, Cambridge, 2007). It is then logical to first ask how to relate
filters in Spectral Methods to Smoothness-Increasing Accuracy-Conservin (SIAC)
filters, which are typically applied to approximations obtained via the discontinuous
Galerkin methods. In this article we make a first effort to relate Smoothness-
Increasing Accuracy-Conserving filtering to filtering for Spectral Methods. We
frame this discussion in the context of Vandeven (J Sci Comput 6:159–192,
1991).

1 Background

In Fourier Spectral methods [5], we expect that the approximation to a given partial
differential equation will have exponential accuracy if the solution is analytic.
However, the convergence deteriorates if the solution is less smooth, with a discon-
tinuous solution leading to Gibbs phenomenon. We can overcome the deteriorated
convergence with the use of a filter. In general, a filter can reduce oscillations in the
vicinity of a discontinuity and recover the appropriate accuracy order. In this article
we analyze filters from the perspective of Vandeven [11] and apply this analysis
to Smoothness-Increasing Accuracy-Conserving Filters that are typically applied
to discontinuous Galerkin approximations [3], which were developed based on [1–
4, 10, 12].
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We frame our discussion in the context of a one-dimensional time-dependent
PDE with periodic boundary conditions,

ut D Lu; 0 � x � 2�; (1)

u.x; 0/ D u0.x/; (2)

u.0; t/ D u.2�; t/: (3)

In the Fourier Spectral method, we seek an approximate solution of the form

v.x; t/ D
NX

`D�N

C`.t/e
i`x; (4)

where v.x; t/ is an approximation to the exact solution of Eq. (1). There are a few
methods of determining the coefficients C`.t/: For example, if we apply the Fourier-
Galerkin method, v.x; t/ satisfies Eq. (1) weakly. If we apply the Fourier-Collocation
method, v.x; t/ satisfied Eq. (1) strongly at the grid points.

2 The Fourier Spectral Approximation

The unfiltered Fourier Spectral approximation is given by

uN.x; t/ D
NX

`D�N

u.`/.t/ei`x; u.`/.t/ D 1

2�

Z 2�

0

u.y; t/e�i`y dy: (5)

From [11], we know that we can write the filtered approximation as

uN.x; t/ D
NX

`D�N

�

�
`

N

	
u.`/.t/ei`x; (6)

where �
�
`
N

�
u.`/.t/ are the filtered coefficients. Note that this allows us to rewrite

the filtered approximation as

u�N.x; t/ D
1

2�

Z 2�

0

u.y; t/KN.x � y/ dy; (7)
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where KN is a convolution kernel given as

KN.x/ D 1C
NX
`D1

�

�
`

N

	
cos.`x/: (8)

In [11] a generalised definition of filters is given:

Definition 1 A filter � of order p is a smooth even function whose support is Œ�1; 1�
and such that

�.0/ D 1 and �.˛/.0/ D 0; 1 � ˛ � p � 1; (9)

�.˛/.1/ D 0; 1 � ˛ � p � 1: (10)

Some classical filters given in [5] are the Lanczos filter, raised cosine, sharpened
raised cosine and exponential cutoff. They are defined in the following manner:

Lanczos

p D 1; �1 D sin.�x/

�x
:

Raised cosine

p D 2; �2 D 1C cos.�x/

2
:

Sharpened raised cosine

p D 7; �3 D �42 .35� 84�2 C 70�22 � 20�32 /:

Exponential cutoff

f .x/ D
(
1; x � xc

e�ˇ.jxj�xc/
4
; xc � x � 1: (11)

In Fig. 1 the difference in the Fourier expansion of a saw-tooth function and the
filtered solution is shown. We can see that the filter removes the majority of the
oscillations, with a few oscillations remaining at the discontinuity.



418 L. Ji and J.K. Ryan

Fig. 1 Left: Fourier expansion of a saw-tooth function. Right: Filtered Fourier expansion using
the Lanczos filter. The exact function is given in red and the approximation is given in blue

3 Smoothness-Increasing Accuracy-Conserving (SIAC)
Filters

We now focus on the SIAC filter [6–9], which is typically implemented for
approximations obtained using the discontinuous Galerkin (DG) method. The DG
method can be viewed as a low-order, multi-domain Spectral method [5].

3.1 The DG Approximation and SIAC Filters in Physical Space

The discontinuous Galerkin approximation is obtained much like the Spectral
Galerkin approximation. That is by multiplying Eq. (1) by a test function and
integrating by parts. The difference is that the DG approximation is formed over one
element and the Spectral approximation is formed globally, over the entire domain.
Additionally, the approximation space for the DG solution is defined as piecewise
polynomials of degree less than or equal to k on each element,

�
.`/
j .x/ 2 Vk

h D fv 2 L2.˝/ W v 2 P
k.Ij/; j D 1; : : : ;Ng; (12)

where Ij are the elements. The DG approximation can then be written as

uh.x; t/ D
kX

`D0
u.`/j .t/�

.`/
j .x/; x 2 Ij; j D 1; : : : ;N: (13)



Smoothness-Increasing Accuracy-Conserving (SIAC) Filters in Fourier Space 419

The SIAC filtered DG solution is then given by

u�.x; t/ D 1

h

Z
R

K

x � y

h

�
uh.y; t/ dy; (14)

with the convolution kernel having the form

KrC1;`.x/ D
rX

�D0
crC1;`
�  .`/.x � x� /; (15)

where x� depends on the location of the point being post-processed. More details
are given in [6]. Note that Bramble and Schatz [1] and Cockburn et al. [4] originally
introduced this as a post-processor to enhance the accuracy of finite element and
discontinuous Galerkin solutions respectively. Typically, r D 2k; ` D k C 1 and
x� D � � k: The coefficients, crC1;`

� ; satisfy K � xp D xp; p D 0; 1; � � � ; r; and
 .`/ is a central B-spline obtained by convolving the �Œ� 1

2 ;
1
2 �

with itself ` � 1
times.

3.2 SIAC Filters in Fourier Space

An interesting question to ask is what is the Fourier transform of the SIAC filter?
Interestingly enough, it is very similar to Eq. (8) and is given by

OK.�/ D
�

sin.�=2/

.�=2/

	kC1
0
@c0 C 2

kX
�D1

c2.kC1/;kC1� cos.��/

1
A : (16)

More specifically, for k D 1 we have

OK.�/ D
�

sin.�=2/

.�=2/

	2 �
7

6
� 1
6

cos.�/

	

and for k D 2;

OK.�/ D
�

sin.�=2/

.�=2/

	3 �
437

320
� 97

240
cos.�/C 37

960
cos.2�/

	
:
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Fig. 2 SIAC filters for k D 1 (left) and k D 2 (right) written in Fourier space
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Fig. 3 The Fourier SIAC filter for k D 1 (left) and k D 2 (right) applied to the saw-tooth function

Plots of these kernels in Fourier space are shown in Fig. 2. We can see as k
increases the oscillations away from zero decrease. Further, the Fourier SIAC filter
for k D 1 and k D 2 applied to the saw-tooth function is shown in Fig. 3. Similar
to the Spectral filters, it reduces the oscillations away from the discontinuity. A
comparison of the errors with the Lanczos filter is given in Fig. 4. We can see that
for increasing k, the errors for the Fourier SIAC filtered solution decay faster away
from the discontinuity.
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Fig. 4 A comparison of errors for the Lanczos filter and the Fourier SIAC filter for k D 1; 2

applied to the saw-tooth function

4 Fourier SIAC Filter

Theorem 1 The Fourier SIAC Filter is a filter of order p D 2kC 2 and is around
one,

OK.�/ D 1C O.�2kC2/: (17)

Further, we have

d

dx
OK.0/ D � � � D d2kC1

dx2kC1 OK.0/ D 0: (18)

Proof In order to show that the Fourier SIAC filter is a filter of order kC1;we must
show that the kernel is around one and that the derivatives up to order k vanish.

To show the Fourier form of the SIAC filter is around one we begin by noting that
the Fourier form of the filter was studied by Thomeé in [10]. He in fact suggested
that

OK.�/ D 1C O.�2kC2/:



422 L. Ji and J.K. Ryan

We can confirm this by writing polynomial reproduction property of SIAC filters
(that it reproduces polynomials up to order 2kC 1) in Fourier space:

OK.�/Ffxpg D Ffxpg: (19)

with

Ffxpg D
�

i

2�

	p

ı
.p/
0 .�/; (20)

where ı.p/0 .�/ the p-th derivative of Dirac delta function ı0: Hence we have

OK.�/ı.p/0 .�/ D ı.p/0 .�/; p D 0; 1; � � � ; 2k: (21)

We note that for any element g 2 S.R/ in the Schwartz space


 OKı.p/0 ; g
�
D


ı
.p/
0 ; g OK

�
D


ı
.p/
0 ; g

�
: (22)

Therefore,

.�1/p.g OK/.p/j�D0D .�1/pg.p/j�D0: (23)

Now let g be a smooth function on R that is equal to one when jxj � 1 and equal to
zero for jxj > 2; then we obtain

OK.0/ D 1 and OK.p/j.0/ D g.p/j.0/ D 0; p D 1; 2; � � � ; 2k: (24)

Consider the Taylor expansion of OK.�/;

OK.�/ D
1X

nD0
dn�

n D d0 C d1� C d2�
2 C � � � C dn�

n C � � � : (25)

By (24), d0 D 1 and dn D 0; n D 1; � � � ; 2k: Additionally, OK is even function, so all
the odd terms vanish, which means d2kC1 D 0: Hence

OK.�/ D 1C O.�2kC2/:

and

d

dx
OK.0/ D � � � D d2kC1

dx2kC1 OK.0/ D 0:

Using Definition 1 of the filter, we have now demonstrated that the Fourier SIAC
filter is a filter of order p D 2kC 2:
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5 Conclusion and Future Work

This is a first attempt at relating Spectral filters to SIAC filters. We have demon-
strated that the Fourier SIAC filter is indeed a filter of order 2kC 1 by the definition
of Vandeven [11]. We hope that this will give more incite into the properties of
SIAC filters and filters in general. Equally, instead of investigating the use of SIAC
filters for accuracy enhancement, we will explore whether they are suitable to apply
to approximations where there are discontinuities for removing oscillations in those
regions.
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Algorithms for Higher-Order Mimetic
Operators

Eduardo Sanchez, Christopher Paolini, Peter Blomgren, and Jose Castillo

Abstract We present an algorithm that reformulates existing methods to construct
higher-order mimetic differential operators. Constrained linear optimization is the
key idea of this resulting algorithm. The authors exemplified this algorithm by
constructing an eight-order-accurate one-dimensional mimetic divergence operator.
The algorithm computes the weights that impose the mimetic condition on the
constructed operator. However, for higher orders, the computation of valid weights
can only be achieved through this new algorithm. Specifically, we provide insights
on the computational implementation of the proposed algorithm, and some results
of its application in different test cases. Results show that for all of the proposed
test cases, the proposed algorithm effectively solves the problem of computing valid
weights, thus constructing higher-order mimetic operators.

1 Methods and Algorithms to Construct Mimetic
Differential Operators

The construction of discrete differential operators that satisfy the mathematical
properties of their continuous counterparts is a topic of intense research. These types
of discrete differential operators are said to be mimetic [1–4].

The Castillo–Grone (CGM) is a method for the construction of mimetic
operators that yield approximations with the same order of accuracy at the boundary
and the interior of the domain [5]. The construction of higher-order accurate CGM-
based mimetic operators has been studied thus far. Specifically, second-, fourth-,
and sixth-order-accurate mimetic gradient and divergence operators have been fully
tested and implemented in diverse problems [3, 4]. In this work, we base our study
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on a variant of the CGM first presented in [2, 5]. We will refer to this variant
as the Castillo–Runyan Method (CRM). Theoretical aspects of mimetic finite
differences have also been studied in [6, 7].

Previous works from the authors presented the theory of an algorithm that
reformulates the CRM. In [8], the authors address the construction of an algorithm
implementing the CRM. Specifically, important general concepts are presented that
generalize the CRM to construct mimetic differential operators as a function of
any required (even) order of numerical accuracy. We will refer to this algorithm
implementing the CRM as the Castillo–Runyan–Sanchez (CRS) algorithm. Fur-
ther theoretical details of the CRM and the CRS algorithm are given in [9].

Numerical experiments on the CRS algorithm revealed a problem on both the
CGM and the CRM [9]. The algorithm computes the weights that impose the
mimetic condition on the constructed operator. However, for orders higher or equal
than eight, the CRS algorithm yields negative weights. This violates the definition
of the weighted norms used to impose the mimetic conditions on the constructed
operators. The solution to this problem implies a modification on the original
methods thus yielding a new algorithm. We will refer to this second and improved
algorithm as the Castillo–Blomgren–Sanchez (CBS) algorithm. The authors detail
the CBS algorithm as well as its benefits on a particular test case in [9].

In this work, we first explain the main objective of the CRS algorithm, and we
explain the core of its problem. We then review the math of the CBS algorithm.
We continue the work presented in [9]. Specifically, we provide insights on
the computational implementation of the CBS algorithm and some results of its
application in different test cases.

2 The Castillo–Runyan–Sanchez (CRS) Algorithm

A detailed explanation of this algorithm is given in [8]. The general purpose of both
the CGM and the CRM, and therefore of both the CRS and the CBS algorithms is
to construct a matrix, implementing a k-th order mimetic operator (Algorithm 1),
over a one-dimensional uniform staggered grid. We denote such matrix as MDk

x, and,
in general, it has the following structure:

MDk
x D

2
6666666664

0 � � � � � � 0
A 0 � � � � � � 0
0 � � � � � � 0

0 � � � 0 s1 s2 � � � sk 0 0 0 � � � 0
0 � � � 0 0

: : :
: : : � � �

: : : 0 0 � � � 0
0 � � � 0 0 0 s1 s2 � � � sk 0 � � � 0
0 � � � � � � 0
0 � � � � � � 0 A0

0 � � � � � � 0

3
7777777775
; (1)
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Algorithm 1: Common approach of the CRS and the CBS algorithms to
construct a 1D, k-th-order mimetic operator, MDk

x

1 begin

2 Compute the k coefficients approximating at the interior of the grid with a numerical
accuracy of k-th order: fsigkiD1

3 Compute the coefficients approximating at the west boundary of the one-dimensional

grid. These coefficient are the elements of a submatrix, A, of MDk
x.

4 Exploit the center-skew-symmetry property of the resulting operator, to compute the
coefficients approximating at the east boundary of the grid. These coefficient are the
elements of a submatrix, A0, of MDk

x.
5 end

where fsigkiD1 are the values for an stencil vector approximating the divergence
at the interior cells, and A is a sub-matrix approximating the values at the west
boundary. In this work, we will focus our attention to divergence operator, however,
the technique can easily be applied to compute gradient operators. The matrices
A and A0 are related by the center-skew-symmetry property of the operator. A
thorough explanation can be found in [3]. Therefore, our explanations only refer
to the computation of the values for A.

Numerical experiments on the CRS algorithm have successfully computed
mimetic matrix operators (see [3] for more details) for lower orders. For example,
for k D 6:

MD6
x D

2
6666666666664

d11 d12 d13 d14 d15 d16 d17 d18 d19 0 � � �
d21 d22 d23 d24 d25 d26 d27 d28 d29 0 � � �
� 9
1920

125
1920

� 2250
1920

2250
1920

� 125
1920

9
1920

0 0 0 0 � � �
0 � 9

1920
125
1920

� 2250
1920

2250
1920

� 125
1920

9
1920

0 0 0 � � �
0 0 � 9

1920
125
1920

� 2250
1920

2250
1920

� 125
1920

9
1920

0 0 � � �
0 0 0 � 9

1920
125
1920

� 2250
1920

2250
1920

� 125
1920

9
1920

0 � � �
: : :

: : :
: : :

: : :
: : :

: : :

3
7777777777775

;

(2)

where, for the first row, we have:

d11 D � 10773971273920
d12 D 15668474643803

32472850116480
d13 D 49955527

39491520

d14 D � 2536979319745760
d15 D 12220145

15796608
d16 D � 2133442178983040

d17 D 460217
9872880

d18 D � 101017
39491520

d19 D 3369
26327680

;
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and for the second row, we have:

d21 D 31
960

d22 D � 687640 d23 D 129
128

d24 D 19
192

d25 D � 3
32

d26 D 21
640

d27 D � 3
640

d28 D 0 d29 D 0:
Those weights will be computed, in the CRS algorithm, as part of the solution to

a system, …q D h, where the construction of the … matrix, as well as the solution
approach, are the main difference between the CRS and the CBS algorithm. The
solution for this system has the form q D Œq1; : : :qk; �1; : : :�.k=2/�1�T , where fqigkiD1
are the weights we require, and f�ig.k=2/�1iD1 are the scalars that arise as a consequence
of the CRS algorithm’s attempt to impose the mimetic condition, i.e. complying with
an extended version of Gauss Divergence Theorem, as we shall briefly described
on [9].

However, when the CRS algorithm is used to generate an eight-order mimetic
divergence operator, the attained collection of weights, includes a negative one:

qkD8 D Œq1 q2 q3 q4 q5 q6 q7 q8 j �1 �2 �3� D (3)

D
�
29059

23224

13735

23224

71826

25805
�7678657

6635520
24991643

9289728

4301443

25804800

286984471

232243200

225451487

232243200

7621

107520

159

17920

5

7168

�

The existence of negative weights violates the mimetic conditions, since these
conditions stem from a discrete version of the Extended Gauss’ Theorem, described
in [3]. This discrete version reads as follows: h MG Qf ; Qv�xiP C h Qf ; MDQv�xiQ D
h Qf ; MBQvi. Here, matrices P and Q are the weighting, strictly diagonal, matrices, that
approximate the inner products as numerical . It is clear then that these matrices
should be positive-definite (because they are strictly diagonal). This is the same as
requesting for their values (the weights) to be strictly positive.

3 The Castillo–Blomgren–Sanchez (CBS) Algorithm

The CBS algorithm is a modification on the CRS algorithm that focuses on
computing the weights as the solution to a constrained linear optimization (CLO)
problem, rather than as a solution to a system of linear algebraic equations.

In the CBS algorithm, we propose to exploit the logical equivalence, between
a system of linear algebraic equations and a CLO problem. This equivalence is
mathematically described in [9].

Specifically, given the relatively small size of this problem’s potential instances,
as well as its linearity, we use the Simplex Method, to try to solve a modified form
of the system producing the weights. However, as already discussed, the solution
vector in the original q-system built by the CRM is not exclusively comprised of the
target weights, but it includes the f�ig.k=2/�1iD1 scalars.
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Fig. 1 Proposed modification to the CRS algorithm yielding the CBS algorithm. The CRM
algorithm constructs a matrix … in order to compute the weights (left). However, in the CBS
algorithm, this matrix is constructed differently, as in the right. We call this matrix ˆ, instead

The CBS algorithm proposes a modification of this system, based on the
permutation of the elements of kernels of the boundary and near-the-boundary
nodes, to construct a different … matrix, and a different RHS vector, thus reducing
the dimensionality of this system, by getting rid of the f�ig.k=2/�1iD1 . Figure 1 renders
the idea of this modification.

We have replaced the columns that were preventing the decoupling of the
f�ig.k=2/�1iD1 , by an arrangement of the approximating coefficients near and at the
boundary. We denote this new matrix, or better stated, set of rows, as ˆ.

Once the matrix has been modified like this, we define the following CLO
problem, Let

Qh D
�
�1 0 0 0 0 � 5

7168

159

17920
� 7621

107520

30251

26880

�T

: (4)

Let K be the matrix whose columns are the computed elements for a rational
basis of the kernel of the Vandermonde matrices that are different than 1 or 0. That
is, for k D 8, let:

K D

2
66666666666664

�1 �9 �45
9 80 396

�36 �315 �1540
84 720 3465

�126 �1050 �4950
126 1008 4620

�84 �630 �2772
36 240 990

�9 �45 �165

3
77777777777775

(5)
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Also, let � 2 R
dim.ker.Vi///, where Vi is the i-th Vandermonde matrix to

approximate the operator near and at the boundary, and i 2 Œ1; k=2�1� to be defined
as: � D Œ�1�2�3�T . Finally, define the new RHS for the modified system, as:

� , .�1/K�C Qh: (6)

In the CBS algorithm, the CLO problem we have just built can be written as:

Find LQq such that (minimize) rT
i
LQq D min

Qq2Rk
ri. Qq/ D min

Qq2Rk
rT Qq (7)

subject to Q̂ i
LQq � �i; (8)

with LQq � 0; (9)

with ri, LQq 2 R
k�1, Q̂ i 2 R

k�k, �i 2 R
k�1, and i 2 Œ3; kC 1�.

Specifically, the objective function will be the difference between any rows of
the resulting matrix and its correspondent value in the RHS. If we consider row 1,
for example, our objective residual function will be defined as:

r1.q/ D �1423
1792

q1 C 2689

107520
q2 � 59

17920
q3 C 5

7168
q4 � 5

7168
q6 C

59

17920
q7 � 2689

107520
q8 C �1 C 9 �2 C 45 �3 � 1; (10)

where, as previously stated, the f�ig.k=2/�1iD1 values are known. The tilde symbolize
the new matrix, without the objective function.

4 Results

The results were computed by integrating the CBS algorithm into the Mimetic Meth-
ods Toolkit (MTK), a C++11 software library for mimetic numerical methods [10].
For this stage we used the GLPK to solve the linear programming problems. The
GLPK (GNU Linear Programming Kit) package is a software library used to solve
large-scale linear programming problems. Figure 2 visually renders the first set of
results.

These results are computed considering the concept of a mimetic tolerance. Let
� denote the mimetic threshold which can be interpreted as a measure of how
mimetic the operator can get while preserving a uniform order of numerical accu-
racy. Specifically, we let � be used as a surplus quantity in the linear programming
problem.
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Fig. 2 Computed value of the weights according to the selected objective function. For this figure,
an eight-order divergence was built. We also plot the average of all of the values, and the values
using the CRS algorithm. It can be seen that q4 is negative for this case, but through the CBS
algorithm is then made equal to �

Figure 2 renders the values of the weights according to the selected objective
function. These values are given in Table 1. Table 1 shows, at the bottom row,
the values produced by executing the CBS algorithm with the constraint of q > 0

excluded. These are claimed to be the real mimetic values since these satisfy Gauss’
Extended Theorem the best. However, these are not positive-definite, which is why
we must include this constraint on the CBS algorithm. We then select different
objective functions and compute the weights. The relative error is included in the last
column. We can see that in the case of the row number 2, we can not compute any
feasible set. On the other cases, the negative weights become equal to the mimetic
threshold, � , which for this case was set to 1.00E�06. Table 2 generalizes these
results for higher orders of accuracy. We set � D 1.00E�06. We executed the CRS
algorithm to construct operators of order 8, 10, and 12. Computationally speaking,
the construction of higher orders involves a multi-scale problem since the involved
Vandermonde matrices include terms that spam k orders of numerical magnitude.
We can see that the CRS algorithm yields more negative values as we increase
k. However, through the CBS algorithm, we are capable to make the negative
weight with the highest numerical value equal to the mimetic threshold, and from
there, other weights turn to a positive value with a numerical magnitude inversely
proportional to that of its negative counterpart from the CRS algorithm.
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5 Summary, Concluding Remarks, and Directions
of Future Work

We have discussed further results of the CBS algorithm, which is an algorithm cre-
ated to circumvent a limitation on previous methods (CGM, CRM) and algorithms
(CRS) to construct higher order mimetic operators. Results were positive, and the
CBS algorithm can successfully compute positive weights where other methods
can not. If we chose the natural lexicographical order to index the elements of
the 2D staggered grid, we can build the 2D counterparts to higher-order mimetic
operators, as follows [9]: MGk

xy D ŒGx Gy�
T , and MDk

xy D
�
Dx Dy


, where each auxiliary

discretization matrix along each spatial dimension can be computed from the 1D
mimetic operator, as follows Gx D OIT

n ˝ MGk
x, Gy D MGk

y ˝ OIT
m, Dx D OIn ˝ MDk

x,

Dy D MDk
y ˝ OIm. Similarly, we can compute the 3D operators: MGk

xyz D ŒGx Gy Gz�
T ,

where: Gx D OIT
n ˝ OIT

m ˝ MGk
x , Gy D OIT

n ˝ MGk
y ˝ OIT

k , and Gz D MGk
z ˝ OIT

m ˝ OIT
k .

Finally, MDk
xyz D ŒDx Dy Dz�, with: Dx D OIn ˝ OIm ˝ MDk

x, Dy D OIn ˝ MDk
y ˝ OIk, and

Dz D MDk
z ˝ OIm˝ OIk. Our immediate future work is to implement the construction of

higher-order operators using the CBS to explore their accuracy in solving problems
of a physical nature. These implementations will be integrated in the MTK.
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Exponential Convergence of Simplicial hp-FEM
for H1-Functions with Isotropic Singularities

Christoph Schwab

Abstract For functions u 2 H1.˝/ in an open, bounded polyhedron ˝ � R
d

of dimension d D 1; 2; 3, which are analytic in ˝nS with point singularities
concentrated at the set S � ˝ consisting of a finite number of points in ˝ , the
exponential rate exp.�b dC1

p
N/ of convergence of hp-version continuous Galerkin

finite element methods on families of regular, simplicial meshes in ˝ can be
achieved. The simplicial meshes are assumed to be geometrically refined towards
S and to be shape regular, but are otherwise unstructured.

1 Introduction

Many nonlinear PDEs admit solutions with are analytic but exhibit isolated point
singularities at a set S . We mention only nonlinear Schrödinger equations with self-
focusing, density functional models in electron structure calculations (e.g. [2, 4, 10]
and the references there), nonlinear parabolic PDEs with critical growth (e.g. [19]
and the references there), or continuum models of crystalline solids with isolated
point defects. (e.g. [17] and the references there).

The hp-version of the Finite Element Method (“hp-FEM” for short) is known to
deliver exponential convergence for such problems; we refer to [8, 12, 20] for such
results in space dimension d D 1, to [23] and the references there for theory in d D
1; 2 space dimensions, to [21] for exponential convergence of conforming hp-FEM
on geometric meshes of hexahedra, and to [9, 11] for details on implementational
aspects and numerical experiments.

In the present note, we state an exponential convergence result for C0-conforming
hp-FEM on regular, simplicial mesh families with isotropic, geometric refinement
towards the singular point(s) c 2 S . These meshes are in addition required to
be shape-regular. This type of mesh arises for example in adaptive bisection-tree
refinements. Specifically, for singular solutions u 2 H1.˝/ where ˝ � Rd, d D
2; 3 belonging to a countably normed space with radial weights introduced in [7],

C. Schwab (�)
SAM, ETH, CH-8092 Zürich, Switzerland
e-mail: schwab@math.ethz.ch

© Springer International Publishing Switzerland 2015
R.M. Kirby et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2014, Lecture Notes in Computational Science
and Engineering 106, DOI 10.1007/978-3-319-19800-2_40

435

mailto:schwab@math.ethz.ch


436 C. Schwab

we construct a continuous, piecewise polynomial interpolant Ihpu which exhibits
exponential convergence: there exist constants b;C > 0 which depend on˝ and on
u, in general, such that

ku � IhpukH1.˝/ � C exp.�bN1=.dC1// : (1)

Here, d D 2; 3 denotes the space dimension and N denotes the number of degrees
of freedom in the hp-FE approximation. This rate coincides, in space dimensions
d D 1; 2, with the bounds obtained in [12, 13] for corner singularities on structured
geometric meshes, and in [25] on unstructured, simplicial geometric meshes. In
space dimension d D 3, this generalizes the hp-approximations in [22, Sect. 5.2.2]
in the case of vertex singularities to unstructured, tetrahedral meshes with geometric
refinement towards S .

The structure of the note is as follows: in Sect. 2, we introduce a model problem,
the geometric assumptions on the singularities, and precise the analytic regularity
in countably normed, weighted Sobolev spaces with radial weight functions. In
Sect. 3, we introduce the hp-version FEM; we specify in particular the assumptions
on the simplicial, geometric meshes, on the elemental polynomial degrees, and on
the definition of the hp FE spaces. Section 4 outlines a proof of the exponential
convergence bound in H1.˝/ on regular, simplicial geometric mesh families, with
details given in [24].

2 Analytic Regularity

Analytic regularity is characterized in countably normed weighted Sobolev spaces
which have been introduced and used in exponential convergence estimates in a
number of references; we only mention [1, 7, 12–15] and the references there. Here,
we denote by S � ˝ the set of singular points c; we consider solutions u 2 H1.˝/

which are smooth in ˝nS so that the singular support of u coincides with S . We
work under the following separation assumption on S .

The singular set S consist of a finite number of isolated points c 2 ˝ . (2)

Assumption (2) implies ".˝;S / WD minfdist.c; c0/ W c; c0 2 S ; c ¤ c0g > 0,
and allows to partition the set ˝ into jS j many disjoint neighborhoods !c of the
singularities c 2 S . We set ˝S WD Sc2S !c and denote˝0 WD ˝nSc2S !c.

We characterize analytic regularity of singular solutions by weighted Sobolev
spaces. To define these, we introduce distance functions:

rc.x/ D dist.x; c/ ; x 2 ˝ ; c 2 S : (3)
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With c 2 S we collect all singular exponents ˇc 2 R in the “multi-exponent”

ˇ D fˇc W c 2 S g 2 R
jS j : (4)

We assume (ˇ > s and ˇ ˙ s being understood componentwise for s 2 R) that
in space dimension d D 3 (the results and ranges of weight exponents in space
dimension d D 2 are analogous; cp. [7])

b WD �1 � ˇ 2 .0; 1=2/ ; i.e. � 1 > ˇ > �3=2 : (5)

Consider the semi-norms (cp. [7, Definition 6.2 and Eq. (6.9)], [1, 14]),

juj2
Mk
ˇ.˝/
D juj2Hk.˝0/

C
X
c2S

X
˛2N

d
0

j˛jDk

��rˇcCj˛j
c D˛u

��2
L2.!c/

; k 2 N0 :
(6)

We define the norm kukMm
ˇ .˝/

by kuk2Mm
ˇ .˝/

D Pm
kD0 juj2Mk

ˇ.˝/
. Here, jujHm.˝0/

is the usual Sobolev semi-norm of integer order m on ˝0, and D˛ denotes the
partial derivative of order ˛ 2 N

d
0. The space Mm

ˇ .˝/ is the weighted Sobolev

space obtained as the closure of C10 .˝/ with respect to the norm k�kMm
ˇ .˝/

.

Under (5), for ˝ � R
3 holds M2

ˇ.˝/ � H1C� .˝/ for some � > 1=2: choose

�.ˇ/ D 1 � ˇm � " in [14, Theorem 3.5] with ˇm WD �1 � ˇc 2 .0; 1=2/, and
0 < " < 1=2 � ˇm D 3=2 C ˇc. In dimension d D 2, i.e. for ˝ � R

2, we
find under (5) that M2

ˇ.˝/ � H1C� .˝/ for some � > 0, so that for d D 2 holds

M2
ˇ.˝/ � C0.˝/ with continuous embedding. With Mk

ˇ.˝/ in (6), the analytic

class in [7, Definition 6.3] reads

Aˇ.S I˝/ D
�

u 2
\
k�0

Mk
ˇ.˝/ W 9Cu > 0 s.t. jujMk

ˇ.˝/
� CkC1

u kŠ 8 k 2 N0

�
:

(7)

Several application problems have solutions in this class, cp. [10] for electron
structure models, [1, 7] for elliptic problems in polyhedral domains.

3 hp-Finite Element Spaces

For two parameters 0 < �; � < 1, we consider families M�;� D fM .`/g`�1 of
geometric meshes M .`/ 2 M�;� . The meshes M 2 M�;� are regular partitions
of the polyhedron ˝ into a finite number of open simplices (triangles in space
dimension d D 2, tetrahedra in space dimension d D 3) T 2 M .`/. Here, regular
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means that for every M 2 M�;� , the intersections of closures of any two distinct
T;T 0 2 M are either empty, a vertex v, an entire edge e or an entire face f . We
assume the family M� to be uniformly �-shape regular: for a simplex T 2 M .`/,
we denote by hT D diam.T/ its diameter and by 
T D supf
 > 0jB
 � Tg, the
radius of the largest ball B
 that can be inscribed into T. For a regular, simplicial
mesh M , the (nondimensional) shape parameter �.M / D maxfhT=
T jT 2 M g is
well defined. A collection fM .`/g`�1 of regular, simplicial meshes is called �-shape
regular, if sup`�1 �.M .`// � � <1.

Each simplex T 2 M` is the image of the reference simplex, defined by OT WD
fOx 2 R

d W Oxi > 0;
Pd

iD1 Oxi < 1g, under the affine element map FT , i.e.

T D FT. OT/; T 3 x D FT.Ox/ D BT OxC bT ; Ox 2 OT : (8)

For a regular, simplicial triangulation M of ˝ with �.M / <1, the affine element
maps are nondegenerate: the Jacobians BT D DFT in (8) are nonsingular, and
kBTkF � �.M /, see, e.g., [3, Sect. II]. The reference simplex OT is contained in
the unit cube OK D .0; 1/d; with each T 2 M , we associate a parallelepiped via
KT D FT. OK/ and assume that KT � ˝ . Here, for T 2 M the local polynomial
approximation space P

p.T/ D spanfx˛ W j˛j � pg is the linear space of all
multivariate polynomials on T 2 M whose total degree does not exceed p. The
space P

p.T/ is invariant under the affine mapping FT , i.e. u 2 P
p.T/ if and only if

Ou WD u ı FT 2 P
p. OT/. On parallelepipeds K, Qp.K/ is the affine image of Qp. OK/,

OK D OId with OI D .0; 1/,

Q
p. OK/ D span f Ox˛ W 0 � ˛i � p; 1 � i � d g : (9)

For each parallelepiped KT associated with a tetrahedron T 2 M (resp. a triangle
if ˝ � R

2), with associated affine element mapping FT W OK ! KT and polynomial
degree p � 0, we set

Q
p.KT/ D

n
v 2 L2.KT / W .vjKT ı FT/ 2 Q

p. OK/
o
: (10)

For polynomial degree p � 1, and for a family of regular, simplicial triangulations
M .`/ 2M�;� of ˝ , we introduce the finite element spaces

Sp.M .`// D ˚ u 2 H1.˝/ W ujT 2 P
p.T/; T 2M .`/

�
: (11)

hp-FEM are obtained when the level ` of geometric mesh refinement is tied to the
polynomial degree p.

Mesh Layers A key ingredient in exponential convergence proofs of hp-FEM is
geometric mesh refinement towards the set S of singularities. We call a regular,
simplicial mesh family M�;� D fM .`/g`�1 �-geometrically refined towards S �
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˝ if there exists 0 < � < 1 such that for every T 2M .`/ W T\S D ;, ` D 1; 2; : : :
holds

0 < � < 
.TIS / WD diam.T/

dist.T;S /
<
1

�
: (12)

We tag members of a �-geometric family M�;� by a subscript � , i.e. we write M .`/
� .

Proposition 1 Consider a regular, nested and �-geometrically refined, �-shape
regular simplicial mesh family M�;� in ˝ . Then, all elements T 2 M .`/

� for every
` � 1, can be grouped in mesh-layers: there exists a partition

[
`�1

M .`/
� D L1

:[ L2
:[ : : : : (13)

and a constant c.M�;� / � 1 with

8k � 1 W #.Lk/ � c.M�;� / (14)

and such that, for every T 2 Lk and every k � 1,

0 <
1

c.M�;� /
� diam.T/

�k
� c.M�;� / : (15)

Proof The proof is by induction over `.

Based on Proposition 1, for ` sufficiently large, there exists a constant cT.�; �/ > 0
independent of `, so that every mesh M

.`/
� 2M�;� may be partitioned into

M .`/
� D O.`/

�

:[ T.`/� ; (16)

where

O.`/
� WD O.`�1/

�

:[ L` D L1
:[ L2

:[ : : : :[ L` ;

and such that for all ` holds

S �
[

T2T.`/�
T ; dist.S ;O.`// � cT�

` : (17)

The terminal mesh layers T.`/� �M
.`/
� in (16) satisfy the following properties.

Proposition 2 There exists a constant cT.�; �/ > 0 such that for every M
.`/
� 2

M�;� , the set T.`/� has the following properties: for all ` � 1 holds (1) #.T.`/� / �
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cT.�; �/, (2) 8c 2 C W jT.`/� \ !cj � cT.�; �/�d`, (3) 8T 2 T
.`/
� W hT �

cT.�; �/�`.

4 Exponential Convergence

4.1 Statement of the Exponential Convergence Result

Theorem 1 Let u 2 M2�1�ˇ.˝/ with weight vector ˇ as in (5) in a bounded

polyhedron˝ � R
d, d D 2; 3.

Then, for every sequence M�;� .S / of nested, regular simplicial meshes in ˝
which are �-geometrically refined towards S and which are � shape-regular, there
exist continuous projectors ˘ p

�;� W M2�1�ˇ.˝/! Sp.M
.p/
� / and constants b;C > 0

(depending on �, Cu, du in (7) and on �) such that there holds the error bound

��u �˘ p
�;�u

��
H1.˝/

� C exp.�b dC1
p

N/ : (18)

Here, N D dim.Sp.M .p/
� // D O.pdC1/.

4.2 Outline of Proof

The proof of the approximation result Theorem 1 is based on constructing the
projectors ˘ p

�;� ; the construction in [24] consists in several steps and is detailed
there for d D 3, the case d D 2 being a (minor) modification. First, from [22,
Sect. 5] we obtain a family of univariate hp-projections with error bounds which
are explicit in the polynomial degree as well as in the regularity of the functions
to be approximated. A corresponding family of polynomial projectors on the unit
cube OK D .0; 1/3 with analogous consistency error bounds is then obtained as in
[22, Sect. 5] by tensorization and scaling. We use these bounds for a tetrahedron
T 2 O

.`/
� � M

.`/
� 2 M�;� as follows. By Proposition 1, T 2 Lk for some

1 � k � `�1. The (up to orientation) unique parallelepiped KT D FT. OK/ associated
with T 2 Lk has the same scaling properties as T, in particular (15) also holds
for KT . For u belonging to the analytic class (7) with weight vector satisfying (5),
u 2 C0.˝/\ C1.˝nS /. For T 2 O

.`/
� , the pullback OuT D ujKT ı FT satisfies on OK

the same analytic derivative bounds as ujT ı FT on OT (with possibly larger constant
Cu, depending on �, but independent of ` and of T). The tensorized hp interpolation
operator from [22], [24, Proposition 3] on OK is therefore well-defined and allows to
construct a polynomial approximation Oup

T 2 Q
p. OK/ with analytic consistency error

bounds on OK; since OT � OK, and since Q
p. OT/ � P

pd. OT/, the pushforwards of the
restrictions Oup

T j OT under the affine mapping FT W OT ! T will be local polynomial
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approximations of degree pd with exponential convergence estimates in H1.T/.
Moreover, since the tensorized interpolant is nodally exact in the vertices of OK, and
since the set of vertices of OT is a subset of the set of vertices of OK, the pushforwards
of Oup

T j OT under FT are nodally exact in the vertices of T. By the continuity of
u 2 Aˇ.S I˝/ on ˝nS , the resulting global, piecewise polynomial interpolant

is nodally exact (and, in particular, continuous) in all vertices of T 2 O
.p/
� , but

has polynomial jump discontinuities across edges and (in space dimension d D 3)
faces of T 2 O

.p/
� which we remove by polynomial trace liftings, preserving the

exponential convergence estimates. We refer to [18] and [24, Sect. 4.2] for details.

5 Concluding Remarks

We presented an exponential convergence rate (18) estimate for continuous hp-FE
approximations on � shape-regular, simplicial meshes with geometric refinement to
analytic functions with isolated point singularities at a finite set S in a bounded
domain D � R

d, of dimension d D 1; 2; 3. Apart from �-shape regularity and �-
geometric mesh refinement the proof did not assume further structural assumptions
on the triangulations. In particular, simplicial partitions which are obtained by
successive bisection tree refinement in the course of adaptive subdivisions are
admissible. The approximation results imply the exponential convergence rate
exp.�b 3

p
N/ for second order, elliptic PDEs in polygons D � R

2 (where S
denotes the set of corners of D) which are considered, for example, in [1, 6, 15].
Theorem 1 also implies the exponential convergence rate exp.�b 4

p
N/ for hp-

approximations of electron densities in DFT, due to the quasioptimality of Galerkin
approximations shown, for example, in [2, 4] and the references there. In this
application, S denotes the set of nuclei, whose centers c 2 S are assumed known.
Unlike other approaches such as plane waves, hp-approximations do not, apriori,
impose any specific functional form of the electron densities. Due to the locality of
approximation and the separation (2) of the points c 2 S , we may apply Theorem 1
in each neighborhood !c implying that the total number of degrees of freedom to
achieve accuracy " > 0 in the norm H1.D/ scales as O.#.S /j log "j4/, i.e. linear
scaling in the number #.S / of nuclei and polylogarithmic scaling in the target
accuracy ". This is analogous to what is reported recently for discontinuous Galerkin
discretizations in [16]: [24, Proposition 4] can be used as starting point of proof
of an exponential convergence result on tetrahedral meshes; for geometric meshes
of hexahedra, analogous results can be found in [22, Sect. 5.2.2]. Exponentially
convergent quadrature algorithms for the (singular) electron-pair integrals are
available in [5]. The results in the present note are confined to space dimension
d � 3. The approach generalizes, however, directly to hp-approximations of point
singularities in any dimension d with exponential rate exp.�b dC1

p
N/. Likewise, the

result remains true for linear polynomial degree vectors (with larger constant b > 0
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in the exponent) and, more generally, for polynomial degree vectors of bounded
variation as introduced in [22]. The details will be reported elsewhere.

Acknowledgements This work is supported by grant ERC AdG STAHDPDE 247277.

References

1. I. Babuška, B.Q. Guo, Regularity of the solution of elliptic problems with piecewise analytic
data. I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math.
Anal. 19(1), 172–203 (1988)

2. G. Bao, G. Hu, D. Liu, An h-adaptive Finite Element solver for the calculation of the electronic
structures. J. Comput. Phys. 231, 4967–4979 (2012)

3. D. Braess, Finite Elements, 5th edn. (Cambridge University Press, Cambridge, 2011)
4. E. Cances, R. Chakir, Y. Maday, Numerical analysis of the planewave discretization of some

orbital-free and Kohn-Sham models. ESAIM: Math. Model. Numer. Anal. 46(02), 341–388
(2012)

5. A. Chernov, T. von Petersdorff, C. Schwab, Exponential convergence of hp quadrature for
integral operators with Gevrey kernels. ESAIM: Math. Model. Numer. Anal. 45, 387–422
(2011)

6. M. Costabel, M. Dauge, C. Schwab, Exponential convergence of hp-FEM for Maxwell’s
equations with weighted regularization in polygonal domains. Math. Models Methods Appl.
Sci. 15(4), 575–622 (2005)

7. M. Costabel, M. Dauge, S. Nicaise, Analytic regularity for linear elliptic systems in polygons
and polyhedra. Math. Models Methods Appl. Sci. 22(8), 12500–12515 (2012)

8. W. Dahmen, K. Scherer, Best approximation by piecewise polynomials with variable knots and
degrees. J. Approx. Theory 26(1), 1–13 (1979)

9. L. Demkowicz, J.J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz, A. Zdunek, Computing with
hp-adaptive finite elements, in Frontiers: Three Dimensional Elliptic and Maxwell Problems
with Applications. Chapman and Hall/CRC Applied Mathematics and Nonlinear Science
Series, vol. 2 (Chapman and Hall/CRC, Boca Raton, FL, 2007)

10. S. Fournais, T.O. Sørensen, M. Hoffmannn-Ostenhof, T. Hoffmann-Ostenhof, Non-isotropic
cusp conditions and regularity of the electron density of molecules at the nuclei. Ann. Inst.
Henri Poincaré 8, 731–748 (2007)

11. P. Frauenfelder, hp-finite element methods on anisotropically, locally refined meshes in three
dimensions with stochastic data. Ph.D. thesis, Swiss Federal Institute of Technology. (2004)
http://e-collection.library.ethz.ch/

12. W. Gui, I. Babuška, The h; p and h-p versions of the finite element method in 1 dimension. II.
The error analysis of the h- and h-p versions. Numer. Math. 49(6), 613–657 (1986)

13. B.Q. Guo, I. Babuška, The hp-version of the finite element method. Part I: the basic
approximation results, Part II: general results and applications. Comput. Mech. 1, 21–41;
203–220 (1986)

14. B.Q. Guo, I. Babuška, Regularity of the solutions for elliptic problems on nonsmooth domains
in R

3. I. Countably normed spaces on polyhedral domains. Proc. R. Soc. Edinb. Sect. A 127(1),
77–126 (1997)

15. B.Q. Guo, C. Schwab, Analytic regularity of Stokes flow on polygonal domains in countably
weighted Sobolev spaces. J. Comput. Appl. Math. 119, 487–519 (2006)

16. L. Lin, J. Lu, L. Ying, E. Weinan, Adaptive local basis set for Kohn-Sham density functional
theory in a discontinuous Galerkin framework I: total energy calculation. J. Comput. Phys.
231(4), 4515–4529 (2012)

17. M. Luskin, C. Ortner, Atomistic-to-continuum coupling, Acta Numerica 22, 397–508 (2013)

http://e-collection.library.ethz.ch/


hp-FEM for Isotropic Singularities 443

18. R. Munoz-Sola, Polynomial liftings on a tetrahedron and applications to the hp-FEM in three
dimensions. SIAM J. Numer. Anal. 34, 282–314 (1997)

19. A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, Blow-Up in Quasilinear
Parabolic Equations. de Gruyter Expositions in Mathematics, vol. 19 (Translated from the
1987 Russian original by Michael Grinfeld and revised by the authors) (Walter de Gruyter &
Co., Berlin, 1995)

20. K. Scherer, On optimal global error bounds obtained by scaled local error estimates. Numer.
Math. 36, 257–277 (1981)

21. D. Schötzau, C. Schwab, Exponential convergence for hp-version and spectral finite element
methods for elliptic problems in polyhedra. Math. Models Methods Appl. Sci. 25(9), 1617–
1661 (2015)

22. D. Schötzau, C. Schwab, T.P. Wihler, hp-dGFEM for elliptic problems in polyhedra. II:
exponential convergence. SIAM J. Numer. Anal. 51/4, 2005–2035 (2013). (Extended version
in Technical Report 2009–29, Seminar for Applied Mathematics, ETH Zürich)

23. C. Schwab, p and hp-FEM (Oxford University Press, Oxford, 1998)
24. C. Schwab, Exponential convergence of simplicial hp-FEM for H1-functions with isotropic

singularities. Technical Report 2014–15, Seminar for Applied Mathematics, ETH Zürich, 2014
25. T.P. Wihler, P. Frauenfelder, C. Schwab, Exponential convergence of the hp-DGFEM for

diffusion problems. Comput. Math. Appl. 46, 183–205 (2003)



Higher Order Quasi Monte-Carlo Integration
in Uncertainty Quantification

Josef Dick, Quoc Thong Le Gia, and Christoph Schwab

Abstract We review recent results on dimension-robust higher order conver-
gence rates of Quasi-Monte Carlo Petrov-Galerkin approximations for response
functionals of infinite-dimensional, parametric operator equations which arise in
computational uncertainty quantification.

1 Introduction

Computational uncertainty quantification (UQ) for partial differential equations
(PDEs) with uncertain distributed input data gives rise, upon uncertainty
parametrization, to the task of numerically approximating the solution of parametric,
deterministic operator equations. Due to the distributed nature of uncertain inputs,
the number of parameters (and, hence, the dimension of the parameter spaces) in
such UQ problems is infinite. The computation of response statistics corresponding
to distributed uncertain inputs of PDEs involves, in addition, numerical quadrature
of all possible ‘uncertain scenarios’, i.e., over the entire, infinite-dimensional
parameter space.

This has lead to the widespread use of sampling, in particular Monte-Carlo (MC)
and Markov-Chain Monte-Carlo (MCMC) methods, in the numerical treatment of
these problems: MC methods afford convergence rates which are independent of the
parameter dimension if the variance of the integrand can be bounded independently
of this dimension (the computational work of MC methods, of course, increases
linearly with the space dimension). This dimension robustness of MC methods is
purchased at the cost of low order: the convergence rate of simple MC methods is,
generically, limited to 1=2: variance reduction and other devices can only reduce
the constant, but not the rate in the convergence bounds. At the same time, however,
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the parametric regularity required of integrand functions by MC methods is very
moderate: mere square integrability with respect to a probability measure on the
parameter space of the integrand functions is required for the convergence rate
1=2 (subject to evaluations of the integrand functions being defined everywhere).
In UQ for problems whose solutions exhibit propagation of singularities (as, e.g.,
nonlinear hyperbolic conservation laws with random inputs, see e.g. [15] and the
references therein), such low regularity is the best that can be expected in general. In
other applications, the parametric dependence of the response maps is considerably
more regular: the solutions’ dependence on the parameters is, in fact, analytic. This
observation has been the basis for the widespread use of spectral- and polynomial
chaos based numerical methods in such problems (see e.g. [1–3, 10] and the
references therein).

Straightforward application of standard spectral techniques entails, however, the
curse of dimensionality: the spectral- or even exponential convergence rate afforded
by analytic parameter dependence is not realized in computational practice as soon
as the number of parameters is just moderately large. High order numerical methods
for infinite-dimensional problems require, therefore, a more refined analysis of ana-
lytic parameter dependence where, for dimension-independent convergence rates,
the size of the domains of analyticity must increase with the problem dimension.

The purpose of the paper is to present recent advances in the analysis of higher
order Quasi Monte-Carlo (QMC) methods, which were proposed initially in [4]
(see also [5]), from [6, 7]. The presented results imply, for a large class of operator
equations with random coefficients, dimensionally robust high order convergence
rates. The convergence rates are, in fact, only limited by a certain sparsity measure
of the uncertain input.

2 Affine Parametric Operator Equations

We present a model setting of affine parametric operator equations, and their Petrov-
Galerkin (PG) discretizations, following the setting in [7]. We denote by X and
Y two separable and reflexive Banach spaces over R (all results will hold with
the obvious modifications also for spaces over C) with (topological) duals X 0 and
Y 0, respectively. By L .X ;Y 0/, we denote the set of bounded linear operators
A W X ! Y 0. We consider affine-parametric operator equations: given f 2 Y 0,
for every parameter sequence y in the parameter domain U find u.y/ 2X such that

A. y/ u.y/ D f : (1)

For such parametrizations, the parametric operator A.y/ depends on y in an affine
manner, i.e., there exists a sequence fAjgj�0 � L .X ;Y 0/ such that

8y 2 U W A.y/ D A0 C
X
j�1

yj Aj : (2)
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After possibly rescaling, we restrict ourselves to the bounded (infinite-dimensional)
parameter domain U D Œ� 1

2
; 1
2
�N. For every f 2 Y 0 and for every y 2 U, we solve

the parametric operator equation (1), where the operator A.y/ 2 L .X ;Y 0/ is of
affine parameter dependence, see (2). We associate to the operators Aj the bilinear
forms aj.�; �/ WX � Y ! R defined by

8v 2X ; w 2 Y W aj.v;w/ D Y 0hAjv;wiY ; j D 0; 1; 2; : : : :

Similarly, we associate with the affine-parametric operator family A.y/, y 2 U, the
parametric family of bilinear forms a.yI �; �/ WX � Y ! R, y 2 U, via

8v 2X ; w 2 Y W a.yI v;w/ D Y 0hA.y/v;wiY :

In order for the sum in (2) to converge, we impose

Assumption 1 The sequence fAjgj�0 � L .X ;Y 0/ in (2) satisfies:

1. A0 2 L .X ;Y 0/ is boundedly invertible, i.e., there exists �0 > 0 such that

inf
0¤v2X

sup
0¤w2Y

a0.v;w/

kvkX kwkY � �0 ; inf
0¤w2Y

sup
0¤v2X

a0.v;w/

kvkX kwkY � �0 :

2. The fluctuation operators fAjgj�1 are small with respect to A0 in the following
sense: there exists a constant 0 < � < 2 such that

X
j�1

ˇ0;j � � < 2 ; where ˇ0;j WD kA�10 AjkL .X ;X / ; j D 1; 2; : : : :
(3)

Theorem 1 ([17, Theorem 2]) Under Assumption 1, for every realization y 2 U of
the parameter vector, the affine parametric operator A.y/ given by (2) is boundedly
invertible, with inverse bounded uniformly with respect to y. In particular, for every
f 2 Y 0 and for every y 2 U, the parametric operator equation

find u.y/ 2X W a.yI u.y/;w/ D Y 0h f ;wiY 8w 2 Y (4)

admits a unique solution u.y/ which satisfies the a-priori estimate

ku.y/kX � 1

�
k fkY 0 ; with � D .1 � �=2/ �0 :
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2.1 Single-Level and Multi-Level Algorithms

The Quantity of Interest (QoI) in our study is the expected value of a linear
functional G WX ! R of the solution u,

I.G.u// D
Z

U
G.u.y// dy:

In the following we discuss the approximation of the QoI by the algorithm
QN;s.G.uh

s //, where QN;s is a quadrature rule (QMC rule) and uh
s is the Petrov-

Galerkin (PG) approximation of the dimension truncated problem, which means that
the set of parameters y 2 U is restricted to y of the form .y1; y2; : : : ; ys; 0; 0; : : :/.
The combined error of this single-level algorithm can be expressed as

I.G.u//�QN;s.G.u
h
s //

D I.G.u//� I.G.us//„ ƒ‚ …
truncation error

C I.G.us// �QN;s.G.us//„ ƒ‚ …
integration error

CQN;s.G.us � uh
s //„ ƒ‚ …

PG error

;

(5)

where ‘PG error’ stands for the Petrov-Galerkin discretization error. We discuss the
three errors and the necessary background in the subsequent sections.

To reduce the computational cost required to achieve the same error, a novel
multi-level algorithm was introduced and analyzed in [14]. It takes the form

QL�.G.u// WD
LX
`D0

Qs`;N`.G.u
h`
s`
� uh`�1

s`�1
// : (6)

In [14] the authors considered the case where each Qs`;N` is a randomly shifted lat-
tice rule with N` points in s` dimensions, and where uh�1

s�1
WD 0, whereas in the higher

order version of (6) in [7] the authors used an interlaced polynomial lattice rule.
It is well-known [6] that under suitable smoothness assumptions the PG error

of functionals G.�/ 2 X 0
t0 admits the asymptotic error bound (as h ! 0 for some

smoothness orders 0 < t; t0)
ˇ̌
G.u.y//�G.uh.y//

ˇ̌ � C htCt0 kfkY 0
t
kGkX 0

t0
: (7)

2.2 Parametric and Spatial Regularity of Solutions

First we establish the regularity of the solution u.y/ of the parametric, variational
problem (4) with respect to the parameter vector y. This is important in order for the
integration error of a QMC rule to admit a dimension-independent error bound.
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In the following, let NN

0 denote the set of sequences � D .�j/j�1 of non-negative
integers �j, and let j�j WDP

j�1 �j. For j�j <1, we denote the partial derivative of
order � of u with respect to y by

@�
y u.y/ WD @j�j

@
�1
y1 @

�2
y2 � � �

u.y/; y 2 U :

Theorem 2 ([2, 11]) Parametric Regularity. Under Assumption 1, there exists a
constant C0 > 0 such that for every f 2 Y 0 and for every y 2 U, the partial
derivatives of the parametric solution u.y/ of the parametric operator equation (1)
with affine parametric, linear operator (2) satisfy the bounds

k@�
y u.y/kX � C0 j�jŠˇ�

0 kfkY 0 for all � 2 N
N

0 with j�j <1 ;

where 0Š WD 1, ˇ�
0 WD

Q
j�1 ˇ

�j

0;j, with ˇ0;j as in (3).

Spatial regularity is expressed in scales of smoothness spaces fXtgt�0, fYtgt�0, i.e.

X D X0 �X1 �X2 � � � � ; Y D Y0 � Y1 � Y2 � � � � ; and

X 0 D X 0
0 �X 0

1 �X 0
2 � � � � ; Y 0 D Y 00 � Y 01 � Y 02 � � � � :

For self-adjoint operators, usually Xt D Yt. For Multi-Level QMC, we require

Assumption 2 (See [7, Assumption 2]) There exists Nt � 0 such that:

1. For every t; t0 satisfying 0 � t; t0 � Nt, we have

sup
y2U
kA.y/�1kL .Y 0

t ;Xt/ <1 and sup
y2U
k.A�.y//�1kL .X 0

t0
;Yt0 /

<1 : (8)

Moreover, there exist summability exponents 0 � p0 � pt � pNt < 1 such that

X
j�1
kAjkpt

L .Xt;Y
0

t /
<1 : (9)

2. Let u.y/ D .A.y//�1f and w.y/ D .A�.y//�1G. For 0 � t; t0 � Nt, there exist
constants Ct;Ct0 > 0 such that for every f 2 Y 0t and G 2 X 0

t0 holds

sup
y2U
ku.y/kXt � CtkfkY 0

t
and sup

y2U
kw.y/kYt0

� Ct0kGkX 0

t0
:

Moreover, for every 0 � t � Nt there exists a sequence ˇt D .ˇt;j/j�1 satisfying

X
j�1

ˇ
pt
t;j < 1 ;
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such that for every 0 � t; t0 � Nt and for every � 2 N
N

0 with j�j <1 we have

sup
y2U
k@�

y u.y/kXt � Ct j�jŠˇ�
t kfkY 0

t
;

sup
y2U
k@�

y w.y/kYt0
� Ct0 j�jŠˇ�

t0 kGkX 0
t0
:

3. The operators Aj are enumerated so that the sequence ˇ0 in (3) satisfies

ˇ0;1 � ˇ0;2 � � � � � ˇ0;j � � � � : (10)

2.3 Dimension Truncation

We truncate the infinite sum in (2) to s terms and solve the corresponding operator
equation (1) approximately using Galerkin discretization from two dense, one-
parameter families fX hg � X , fY hg � Y of subspaces of X and Y : for s 2 N

and y 2 U, we define

as.yI v;w/ WDY 0 hA.s/.y/v;wiY ; with A.s/.y/ WD A0 C
sX

jD1
yjAj:

For 0 < h � h0 and y 2 U, the dimension truncated PG-solution is defined by

find uh
s .y/ 2X h W as.yI uh

s .y/;w
h/ DY 0 hf ;whiY 8wh 2 Y h : (11)

By choosing y D .y1; : : : ; ys; 0; 0; : : :/, the PG discretization error bound (7) remains
valid for the dimensionally truncated problem (11).

Theorem 3 ([6, Theorem 2.6]) Under Assumption 1, for every f 2 Y 0, for every
G 2 X 0, for every y 2 U, for every s 2 N and for every h > 0, the variational
problem (11) admits a unique solution uh

s .y/ which satisfies

jI.G.uh// � I.G.uh
s //j � C kfkY 0 kGkX 0

� X
j�sC1

ˇ0;j

	2

for some constant C > 0 independent of f , G and of s where ˇ0;j is defined in (3). In
addition, if (9) and (10) hold with p0 < 1, then

X
j�sC1

ˇ0;j � min

�
1

1=p0 � 1; 1
	�X

j�1
ˇ

p0
0;j

	1=p0

s�.1=p0�1/ :



Higher Order QMC for UQ 451

3 Quasi Monte-Carlo Quadrature

In [13], Quasi-Monte Carlo (QMC for short) rules of the form QN;s.G.uh
s // D

1
N

PN�1
nD0 G.uh

s .yn � 1
2 //, where yn 2 Œ0; 1�s, have been used to approximate the

dimension truncated integral I.G.uh
s // (see also [12]). The QMC rules considered

therein are so-called randomly shifted lattice rules. Using the so-called “product and
order-dependent (POD) weights” a convergence rate of order O.N�min.1=p0�1;1�ı//,
for any ı > 0, with O.�/ independent of s and N was shown.

Noting that the integrand is actually analytic, the authors of [6] used interlaced
polynomial lattice rules, as introduced in [9] (which are a special type of higher
order digital net [4]), to obtain improved rates of convergence. The rules can be
constructed using the fast component-by-component approach of [16]. A new func-
tion space setting was introduced in [6] based on Banach spaces with smoothness
driven product and order dependent (SPOD) weights, to show the following result.

Theorem 4 ([6, Theorem 3.1]) Let s � 1 and N D bm for m � 1 and prime b. Let
� D .�j/j�1 be a sequence of positive numbers, let �s D .�j/1�j�s, and assume

9 0 < p � 1 W
1X

jD1
�

p
j <1 :

Suppose we have an integrand F whose partial derivatives satisfy

8 � 2 f0; 1; : : : ; ˛gs W j.@�
y F/.y/j � c j�jŠ��

s

for some constant c > 0. Then, an interlaced polynomial lattice rule of order ˛ WD
b1=pc C 1 with N points can be constructed using a fast component-by-component
algorithm, with cost O.˛ s N log N C ˛2 s2N/ operations, such that, as N !1,

jIs.F/� QN;s.F/j � C˛;� ;b;p N�1=p ;

where C˛;� ;b;p <1 is a constant independent of s and of N.

4 Combined Error Bound

In the case of the single level algorithm, the combined error (5) satisfies the
following error bound (see [8] for numerical results).

Theorem 5 ([6, Theorem 4.1]) Under Assumption 1 and conditions (8), G 2 X 0
t0

and (10), the integration error using an interlaced polynomial lattice rule of order
˛ D b1=p0c C 1 with N D bm points (with b prime) in s dimensions, combined with
a Petrov-Galerkin method in the domain D with one common subspace X h with
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Mh D dim.X h/ degrees of freedom and with linear cost O.Mh/, satisfies

jI.G.u//� QN;s.G.u
h
s //j � C



s�2.1=p0�1/ C N�1=p0 C htCt0

�
;

where the constant implied in O is independent of s, h and N.

The multi-level algorithm QL� in (6) additionally requires the stronger Assump-
tion 2. The corresponding combined error bound using interlaced polynomial lattice
rules is of the form (see [7, Theorem 3.4])

jI.G.u//�QL�.G.uh
s //j � C

 
s�2.1=p0�1/
L C htCt0

L C
LX
`D0

N�1=pt
`



s�.1=p0�1=pt/

`�1 C htCt0

`�1
�!

:

The s` and N` in (6) can be optimized using a Lagrange multiplier argument [7, 14],
which, in most cases, yields an improvement compared to the single-level algorithm.
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Summation by Parts Finite Difference
Approximations for Seismic
and Seismo-Acoustic Computations

Björn Sjögreen and N. Anders Petersson

Abstract We develop stable finite difference approximations for a multi-physics
problem that couples elastic wave propagation in one domain to acoustic wave
propagation in another domain. The approximation consists of one finite difference
scheme in each domain together with discrete interface conditions that couple the
two schemes. The finite difference approximations use summation-by-parts (SBP)
operators, which lead to stability of the coupled problem. Furthermore, we develop
a new way to enforce boundary conditions for SBP discretizations of first order
problems. The new method, which uses ghost points to enforce the boundary
conditions, is a flexible alternative to the more established projection and SAT
methods.

1 Introduction

Near surface seismic events emit both elastic waves traveling in the earth and
acoustic waves propagating in the atmosphere. Acoustic waves can also occur
because of other events, such as bolides or volcanic eruptions. Elastic and acoustic
waves are recorded by seismographs and by infrasound instruments at various
locations around the world. A coupled seismo-acoustic modeling capability is of
relevance to many applications in order to analyze and understand seismograms and
infrasound recordings.

We here model seismic wave propagation by the elastic wave equation. Acoustic
infrasound is described by the linearized Euler equations of compressible gas
dynamics. The elastic and acoustic domains are coupled by interface conditions
that enforce continuity of normal stresses and of normal velocities. We here develop
finite difference discretizations based on the summation-by-parts (SBP) principle
[4], which make the coupled seismo-acoustic problem stable.
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In [3], we made use of ghost points to enforce physical boundary conditions on
SBP discretizations of the elastic wave equation in second order formulation. For
first order hyperbolic PDEs, boundary conditions in the SBP context have tradition-
ally been imposed by either projection or penalty term (simultaneous approximation
term (SAT) [1, 2]). In this paper, we develop ghost point enforced boundary
conditions also for SBP discretizations of problems in first order formulation.

2 SBP Operators

Let D be a standard summation by parts finite difference operator for approximating
a first derivative. D can be represented as a real N by N matrix acting on grid
functions u D .u1; u2; u3; : : : ; uN/. The grid functions are defined on a domain
0 � x � 1, with uniformly distributed grid points xj D . j � 1/h, j D 1; 2; : : : ;N,
where h D 1=.N � 1/ is the grid spacing. When ghost points are present they are
located at the points j D 0 and j D N C 1. The standard SBP identity,

.u;Dv/h D �.Du; v/h � u1v1 C uNvN ; (1)

is assumed to hold in a scalar product

.u; v/h D h
NX

jD1
!jujvj; (2)

where !j are positive weights. We extend the difference operator D to handle ghost
points by adding an operator to the first and last row of D. The resulting operator,
QD, can be represented as a rectangular matrix with N rows and N C 2 columns. We
denote the extended grid function by

Qu D .u0; u1; u2; : : : ; uN ; uNC1/T ;

and define

QDQu D DuC 1

h
e1.BQu1/� 1

h
eN.C QuN/; (3)

where e1 D .1; 0; : : : ; 0/T and eN D .0; : : : ; 0; 1/T . At the first grid point, Du1 is
replaced by Du1 C 1

h BQu1, where BQu1 D ˇ0u0 C ˇ1u1 C : : :C ˇrur Similarly, at the
last grid point, the modified difference approximation becomes DuN � 1

h C QuN , where
C QuN D ˇ0uNC1 C ˇ1uN C : : :C ˇruN�rC1.

Lemma 1 The difference operator QD satisfies the SBP-like identity

.u; QD Qv/h D �.Du; v/h � u1.v1 � !1B Qv1/C uN.vN � !NC QvN/: (4)
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Proof The definition of QD in (3) and (1) give

.u; QD Qv/h D �.Du; v/h � u1v1 C uNvN C u1!1B Qv1 � uN!NC QvN ;

which leads to (4).

To illustrate the usage of (4), we consider the initial boundary value problem

ut C a.x/ux D 0; 0 � x � 1; t > 0; (5)

u.0; t/ D g.t/; t > 0; (6)

where a.x/ is a real-valued function. We assume a.0/ > 0 and a.1/ > 0. We can
write (5) as

ut D �1
2

a.x/ux � 1
2
.au/x C

1

2
axu:

Multiplying this equation by u and integrating over 0 � x � 1 gives the estimate

1

2

d

dt
kuk2 D 1

2
.u; axu/C 1

2

�
a.0/u.0; t/2 � a.1/u.1; t/2



� 1

2
˛kuk2 C 1

2
a.0/g.t/2; (7)

where ˛ D jaxj1. Here, .u; v/ and jjujj denote the L2 scalar product and norm.
Let vj.t/ be the semi-discrete approximation of u.xj; t/. We discretize (5) in space

by mixing the standard and extended SBP operators,

dv

dt
D �1

2
a QD Qv � 1

2
D .av/C 1

2
D.a/v: (8)

To derive an energy estimate, we form the scalar product between v and (8),

.v; vt/h D �1
2
.v; a QD Qv/h � 1

2
.v;D.av//h C 1

2
.v;D.a/v/h:

We set w D av in the first term on the right hand side. The SBP property (4) gives

.w; QD Qv/h D �.Dw; v/h � w1.v1 � !1B Qv1/C wN.vN � !NC QvN/:

Therefore,

.v; vt/h D 1

2
.v;D.a/v/h C 1

2
Œa1v1.v1 � !1B Qv1/� aNvN.vN � !NC QvN/� :
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We can write

v1.v1 � !1B Qv1/ D


v1 � !1

2
B Qv1

�2 � !21
4
.B Qv1/2;

and the estimate for the semi-discrete problem becomes

1

2

djjvjj2h
dt

D 1

2
.v;D.a/v/h C a1

2

�

v1 � !1

2
B Qv1

�2 � !21
4
.B Qv1/2

�

� aN

2

�

vN � !N

2
C QvN

�2 � !2N
4
.C QvN/

2

�
: (9)

The boundary data at x D 0 (inflow) can be enforced by choosing the ghost point
value v0 such that

v1 � !1
2

B Qv1 D g.t/: (10)

At x D 1 (outflow), we choose the ghost point value vNC1 such that

C QvN D 0; (11)

which is an extrapolation formula. With the boundary conditions (10) and (11), we
arrive at the estimate

1

2

dkvk2h
dt
� 1

2
˛hkvk2h C

a1
2

g.t/2;

where ˛h D maxj jD.a/jj. This corresponds to the estimate (7) for (5)–(6).
If, for example, we use a diagonal norm SBP operator that is sixth order accurate

in the interior of the domain, and third order near the boundary, the solution can not
be expected to be more than fourth order accurate. It is then reasonable to choose

B Qv1 D �.v0 � 4v1 C 6v2 � 4v3 C v4/; (12)

C QvN D �.vNC1 � 4vN C 6vN�1 � 4vN�2 C vN�3/; (13)

where � is a tunable parameter. With this choice 1
h B Qv D O.h3/, i.e., QD Qv has a third

order truncation error on the boundary. Furthermore, (10) imposes the Dirichlet
boundary condition to fourth order accuracy. Inserting (12) and (13) into (10)
and (11), respectively, lead to the boundary conditions

v0 D 2.v1 � g.t//

�!1
C 4v1 � 6v2 C 4v3 � v4;

vNC1 D 4vN � 6vN�1 C 4vN�2 � vN�3:
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Remark 1 In this simple example the ghost point value vNC1 is only used to
set C QvN D 0. We could therefore have defined QD without the term eN.C QvN/,
leading to the standard SBP procedure where no boundary condition is explicitly
needed at outflow boundaries. Furthermore, if the ghost point v0 is eliminated
from (8) for j D 1, it turns out that the term �a1

v1�g
h!1

appears. Hence, for this
simple semi-discrete problem the proposed technique is equivalent with an SAT
method.

3 Elastic-Acoustic Coupled Problem

We consider a one dimensional domain of length 2L, �L � x � L, with an elastic-
acoustic interface at x D 0. The domain to the left, �L � x � 0, is a solid described
by the wave equation


ewtt D .�wx/x C g; t > 0; �L � x � 0; (14)

where w is the displacement, 
e.x/ is the density of the solid,�.x/ its shear modulus,
and g D g.x; t/ is a given forcing function. The domain to the right, 0 � x � L, is
acoustic and described by the linearized and symmetrized Euler equations,

qt C A.x/qx D E.x/qC f; (15)

where q D .s; u; r/, with

s D 1

O
Ocp � OcO

; r D 1

O
Ocp;

and where 
, u, and p are the density, velocity, and pressure perturbations in the air.
The hat variables denote a given, steady, background field . O
.x/; Ou.x/; Oc.x//, where
the background sound speed is given by Oc D p

� Op= O
. Here � is a constant, usually
taken to be 1.4 in air. The matrices are given by

A D
0
@Ou 0 00 Ou Oc
0 Oc Ou

1
A E D

0
B@
Oux � 3 OuOc Ocx C OuOp Opx

��1
O
Oc Opx C 2Ocx .� � 1/Oux C 2 OuOc Ocx

1
O
Oc Opx Oux

��1
O
Oc Opx � Ocx

0 1
O
Oc Opx � Oux � OuOc Ocx C OuOp Opx

1
CA

where we note that A.x/ is symmetric. The function f D f.x; t/ is a given forcing
function. At the interface, the background velocity is assumed to vanish, Ou.0/ D 0.
At the interface we impose continuity of stress, �wx.0; t/ D �p.0; t/, and velocity,
wt.0; t/ D u.0; t/.

A grid with grid spacing h, xj D jh discretizes the domain. The interface is
located at x0 D 0. Here, x�1 is a ghost point for the acoustic domain, and x1 is a
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1 2−1 0

0 1−1−2

3

Fig. 1 Grid xj D jh near the interface at j D 0. The elastic domain (red) uses a ghost point at
j D 1. The acoustic domain (blue) has a ghost point at j D �1

ghost point for the elastic domain. Figure 1 shows the grid points of the acoustic
(blue) and elastic (red) domains near the interface.

Similarly to the scalar problem in Sect. 2, the acoustic equations are discretized
in space by

d

dt
qj D �1

2
Aj QD Qqj � 1

2 O
j
D. O
Aq/j C Fjqj C fj (16)

for j D 0; 1; : : : ;N with ghost points at j D �1 and j D N C 1. The matrix F D
E C 1

O
 . O
A/x. Here Aj denotes the matrix A.xj/, and similarly for Fj, fj, and O
j. The
density weighting in the splitting is introduced to ensure that the scaling of the
boundary terms at the interface matches the scaling of the boundary term from the
wave equation in the elastic domain. Denote the SBP scalar product on the acoustic
domain by .u; v/hC D h

PN
jD0 !

C
j uT

j vj, where !Cj are the SBP norm weights. The
spatial discretization satisfies the estimate (if we set f D 0),

1

2

d

dt
. O
q;q/hC D .q; O
qt/hC D �1

2
.q; O
A QD Qq/hC� 1

2
.q;D. O
Aq//hCC.q; O
Fq/hC

D 1

2
qT
0 O
0A0.q0 � B Qq0/� 1

2
qT

N O
NAN.qN � C QqN/C .q; O
Fq/hC: (17)

This equality follows by straightforward generalization of the scalar identity (4) and
by using the symmetry of A. Here, the boundary operator B Qq0 is defined component
wise, B Qq D .BQs; BQu; BQr/T , and similarly for C QqN . Due to the numbering of the
ghost point, note that BQu0 DPr�1

kD�1 ˇkC1uk. The assumption Ou.0/ D 0 implies that
the boundary term at x D x0 can be written

1

2
qT
0 O
0A0.q0 � B Qq0/ D .u0 � BQu0/. p0 � O
0 Oc0BQr0/� .BQu0/. O
0 Oc0BQr0/:

In order to advance in time with the same method in the acoustic and elastic
domains, we rewrite (14) as a system of two equations with first derivatives in time.
After discretizing in space we obtain,


e
dvj

dt
D G.�;w/j C gj

dwj

dt
D vj; (18)
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for j D �N; : : : ; 0. The spatial discretization G.�;w/ is the SBP operator
approximating .�ux/x, developed in [3]. It satisfies, in the SBP scalar product
.v;w/h�,

.v;G.�;w//h� D �.Dv; �Dw/h��.v;Pw/h��v�N��NSw�NCv0�0Sw0; (19)

where P is a positive semi-definite operator that is small and Sw0 is a high order
approximation of wx.x0/ using the stencil w�m; : : : ;w1, for some stencil width mC2.

The energy norm, NE , of the solution over both domains satisfies

1

2

dNE

dt
D 1

2

d

dt
..wt; 
ewt/h� C .Dw; �Dw/h� C .w;Pw/h� C .q; O
q/hC/

D .v; 
evt/h� C .Dv; �Dw/h� C .v;Pw/h� C .q; O
qt/hC

D v0�0Sw0 C 1

2
qT
0 O
0A0.q0 � B Qq0/C .q; O
Fq/hC C T2; (20)

which can be seen by combining (17) and (19). Here, T2 denotes boundary terms
from the boundaries at x D ˙L, and we have set g D 0 in (18). The interface
conditions are stable if the boundary terms at the interface do not contribute to any
norm increase, i.e., if

v0�0Sw0 C .u0 � BQu0/. p0 � O
0 Oc0BQr0/� .BQu0/. O
0 Oc0BQr0/ D 0: (21)

We enforce the discrete interface condition (21), by setting

BQr0 D 0 (22)

�0Sw0 D �. p0 � O
0 Oc0BQr0/ (23)

v0 D u0 � BQu0: (24)

Here (22) determines r�1, (23) determines w1, and (24) determines u�1. This means
that stress and velocity are required to be continuous across the interface.

Alternatively, the approximation for the acoustic equations can be done without
use of ghost points. In that case, the operator QD in (16) is replaced by D, and the
extra boundary operator B D 0, which gives

�0Sw0 D �p0 and v0 D u0:

These two conditions are used to determine w1 and u0, respectively. Hence, the
acoustic velocity u0 is set by direct injection, which is equivalent with the projection
method, and therefore also leads to a stable method. The projection method is
straightforward and easy to use for simple Dirichlet conditions. We prefer using
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the ghost point method for the elastic equation because it is very easy to implement
and conceptually simpler than the SAT method.

4 Numerical Experiments

The semi-discrete acoustic-elastic problem (16), (18) with interface conditions (22)–
(24) is integrated in time by the fourth order accurate Runge-Kutta method. The
SBP first derivative operator D of interior order six and third order on the boundary
is used in (16). The SBP operator G.�;w/, developed in [3], which has fourth order
interior and second order boundary accuracy, is used in (18).

The domain is �L � x � L, with L D 1000. The grid near the interface is as
outlined in Fig. 1. The acoustic background state is

. O
; Ou; Oc/ D .1C cos.kmxC �1/=5; 10 sin.kmx/; 340� 30 sin.kmxC �2//;

and the elastic material is


e D 2600C 150 cos.kxC �2/; � D 
ec2; c D 1000C 400 sin.kxC �1/:

These material properties have sizes that are realistic for a seismo-acoustic compu-
tation. The manufactured solution for the elastic domain is

w.x; t/ D sin.210kt � �1/ cos.�2k.x � 200t/� �1/

and the acoustic manufactured solution is

0
@
u

p

1
A D

0
@cos.kx/ sin.k.x � 150t//=20

sin.kxC �1/ cos.420kt/
200 sin.kx/ sin.170ktC �2/

1
A

The parameters have the values k D 0:023, km D 0:021, �1 D 0:17, and �2 D 0:08.
The forcing functions f.x; t/ and g.x; t/ are determined such that (15) and (14) are
solved by the manufactured solution. Forcing functions are also inserted into the
interface conditions. These are needed to enforce the jump in the manufactured
solutions across the interface. The convergence under grid refinement is shown
in Fig. 2. Fourth order convergence is observed in all variables except in the
acoustic density, which converges somewhere between third and fourth order. This
is probably due to the interface being a characteristic boundary for the acoustic
equations, since recovery of fourth order convergence from the third order truncation
error on the boundary is not guaranteed at such boundaries.
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Fig. 2 Maximum norm errors of the manufactured solution at t D 1 vs. grid spacing. Left subplot
shows the error in the elastic variable w, the right subplot shows errors in the acoustic density
(blue), velocity (black), and pressure (red). Thin black lines show fourth order convergence rate
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Transparent Boundary Conditions for the Wave
Equation: High-Order Approximation
and Coupling with Characteristic NRBCs

I. Sofronov and L. Dovgilovich

Abstract We propose and numerically investigate two approaches for extending
the application area of transparent boundary conditions (TBCs) for the wave
equation: a method for generating finite-difference approximations of TBCs with
the fourth and sixth order in space, and a coupling procedure of TBCs on the top
boundary of a cubical computational domain with characteristic BCs at the neighbor
side boundaries.

1 Introduction

An important application of the wave equation in cubical computational domains
comes from geophysics when considering marine and land surface seismic
problems. The corresponding full waveform modeling requires using high-order
accurate finite-difference schemes (FDS) and non-reflecting boundary conditions
(NRBCs) at open boundaries; very often, the top boundary must have high-quality
NRBCs to suppress so-called multiples. A known approach of providing NRBCs
for the wave equation consists of using analytical transparent boundary conditions
(TBCs) derived for both spherical/circular boundaries and waveguide cross sections
(including the half-plane limit case) [1–3]. Corresponding ways of approximating
TBCs developed in the cited papers and [4] permit closing the explicit time-
integration schemes and obtaining stable and efficient second-order accurate
methods.

In this paper, we address the questions of wider use of TBCs for cubical com-
putational domains. First, we describe an approach of increasing the approximation

I. Sofronov (�)
Schlumberger, Pudovkina 13, Moscow, Russia

MIPT, 9 Institutskiy per. Dolgoprudny, Russia
e-mail: isofronov@slb.com

L. Dovgilovich
Schlumberger, Pudovkina 13, Moscow, Russia
e-mail: ldovgilovich@slb.com

© Springer International Publishing Switzerland 2015
R.M. Kirby et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations ICOSAHOM 2014, Lecture Notes in Computational Science
and Engineering 106, DOI 10.1007/978-3-319-19800-2_43

465

mailto:isofronov@slb.com
mailto:ldovgilovich@slb.com


466 I. Sofronov and L. Dovgilovich

order of TBCs to match accuracy with high-order accurate spatial schemes inside
domains. In particular, we consider the wave propagation problem in a rectangular
waveguide and approximate TBCs with 6th spatial order of accuracy [5]. Second,
we propose a way of coupling TBCs at the top boundary with characteristic NRBCs
at neighboring side boundaries.

We also mention that there are other approaches that can provide high-order
accurate closures at the waveguide open cross section: PML [6] and extended
domain absorbing layers (see [7] as example of recent results on this classic idea).

2 High-Order Approximation of TBCs at the Waveguide
Cross Section

For some X;Y;Z > 0, we consider an initial boundary value problem

�
utt � c2

�
uxx C uyy C uzz

� D S .t; x/ ; x 	 .x; y; z/ 2 %; t > 0
ujzD�Z D 0; @u

@n

ˇ̌
&
D 0; u jtD0 D W0 .x/ ; ut jtD0 D W1 .x/ :

(1)

in a semi-infinite waveguide % D f�Z � z <1; 0 � x � X; 0 � y � Yg for a
function u 	 u .t; x/. Here, & D @%n fz D �Zg is the side boundary; n is the
outer normal; c(x), S, and W0, W1 are sufficiently smooth functions of the sound
speed, source, and initial data matching the boundary conditions of (1), respectively.
We suppose that S D W0 D W1 D 0, and c D const outside the domain
%1 D % \ fz � 0g. Our aim is to provide highly accurate NRBCs at the boundary
&2 D f0 � x � X; 0 � y � Y; z D 0g so that solution of (1) is approximated by
the solution of the same governing equations in the reduced domain%1.

2.1 Solution Continuation

To generate such NRBCs, we use formulas of solution continuation into the
truncated external domain %2 D %n%1, according to the TBC idea [1]. Denoting
'˛;ˇ .x; y/ D cos . ˛x=X/ cos . ˇy=Y/ ; ˛; ˇ D 0; : : : ;1, we calculate the
Fourier coefficients

u˛;ˇ .t; z/ D .Qu/j˛;ˇ 	
4�˛�ˇ

XY

Y�
0

X�
0

u .t; x/ '˛;ˇ .x; y/ dxdyI �˛¤0 D 1; �0 D 0:5;

(2)

to continuing them from z D 0 to any z > 0, t > z=c, by

bu .t; z/ Dbu .t � z=c; 0/� z

c

t�z=c�
0

bu �t0; 0�bK �t � t0; z
�

dt0 (3)
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where

bK .t; z/ D c2b�2 J1



cb�pt2 � z2=c2
�

cb�pt2 � z2=c2
; b� D sqrt

 
 ˛
X

�2 C
�
 ˇ

Y

	2!
; (4)

and J1.z/ is the Bessel function; the hat is used instead of «˛,ˇ»;bK D 0 ifb� D 0. A
straightforward application of (2), (3), and the inverse Fourier transformation Q�1
gives the formulas of solution continuation to (1) from &2 in %2. Note that TBCs at
&2 are derived while taking the limit of (3) as z! 0 [2, 5].

Let us derive an approximation to (3) for fast numerical computations. This is
possible because we are using solution continuation for z D ph, p D 1;2;3, where
h > 0 is a (small) grid spacing. First, we factorize the convolution kernel (4) by
functions depending separately on z and t; this allows using the same convolution
kernels of t for any h. We approximate the kernel (4) by the Taylor series. After
some transformations involving well-known relations for the Bessel functions, we
obtain

bKappr .t; z/ D c2b�2
pX

mD1
Km



cb�t
� 
b�z

�2m�2

2m�1 .m � 1/Š ; Km.t/ 	 Jm.t/

tm
:

that provides accuracy bK .t; z/ D bKappr .t; z/ C O

�
b�z
�2p
	

. Second, we approxi-

mate the convolution kernels by sums of exponentials:

bKexp
appr .t; z/ D c2b�2

pX
mD1

Kexp
m



cb�t
� 
b�z

�2m�2

2m�1 .m � 1/Š ; Kexp
m .t/ D

LmX
lD1

am;l exp .bm;lt/:

(5)

We have generated sets fam;l; bm;lg such that numerically proven accuracy of
exponential kernels "m D max

t�0
ˇ̌
Km.t/ � Kexp

m .t/
ˇ̌

is estimated by "1 < 4:0e � 6,

"2 < 2:0e � 7, and "3 < 6:0e � 8 for L1 D 64, L2 D 32, and L3 D 16, respectively.
Thus, we use the following approximate formula instead of (3):

bu .t; z/ Dbu .t � z=c; 0/� z

c

t�z=c�
0

bu �t0; 0�bKexp
appr

�
t � t0; z

�
dt0 : (6)
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2.2 Discretization Aspects

Generation of approximate TBCs on the basis of the described solution continuation
is illustrated on the example of the conventional O

�
�2 C h2p

�
order explicit central

FDS for (1) with a .6pC 1/� point spatial stencil on a uniform grid; the boundary
grid points belong to the physical boundaries of %1. To implement boundary
conditions, we use p ghost grid layers for each boundary. Consider the case of the
open boundary &2. Suppose that we know a difference solution uh 	 uh .tn; xh/ at
&h

2 , the grid counterpart of &2; tn D n� . It is required to continue this solution
into the grid points with z D h; : : : ; ph at the time level tnC1. Denote np D
max .2p; Œ ph= .c�/�/. The following sequential steps describe the continuation
procedure of uh with accuracy O

�
�2p C h2p

�
:

1) Apply the discrete counterpart of Fourier expansion (2) to uh at &h
2 and obtain

the coefficients setsbuh(t(, 0) at time levels � D n; : : : ; n � np.
2) For z D h; : : : ; ph compute each coefficientbu h �tnC1; z

�
by (6) as follows:

(2a) Compute bu h �tnC1 � z=c; 0
�

by using the Lagrange interpolation of 2p

degree with respect to time of the grid function b̊u h
.t�; 0/; � D n; : : : ; n�

np
�
.

(2b) Compute the convolution integral by recurrence formulas, using the fact
that the kernel consists of a sum of exponentials; the remaining integration
ofbuh(t, 0) over the interval Œt � z=c � �; t � z=c� is made by the explicit

formulas using the same interpolation of
nbu h

.t� ; 0/ ; � D n; : : : ; n � np

o
as in (2a).

3) Apply the summation of the discrete Fourier harmonics with the computed
coefficientsbuh �tnC1; z

�
to obtain u h

�
tnC1; xh

�
at z D h; : : : ; ph.

Estimates of both memory and operations volumes needed for the described
ghost layers TBCs operator show that they are similar to application of explicit FDS

in some additional grid layer having C0



np C 0:25
Xp

1
Lm

�
grid points in the z

direction; the coefficient C0 depends on the source code implementation quality.

2.3 Numerical Experiments

We consider a 2D test problem governed by (1) with omitted dependence on y. Let
x and z be the horizontal and vertical axes, respectively. We take X D Z D 1,
c D 1, W0 D W1 D 0, and define a point source with the time wavelet S.t/ D

1 � 2 2�2.t � 2=�/2

�
e� 2�2.t�2=�/2 , � D 5, located at x D 0:5, z D �0:08, i.e.,

very close to the TBCs boundary. A square uniform grid is used with I cells in each
direction. The solution absolute value snapshots for the parameters I D 100; p D 2
at time points t D 0:75 and t D 1:0 are shown in Fig. 1.
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Fig. 1 Solution norm snapshots at t D 0:75 (left) and t D 1:0 (right) for a point source. TBCs are
at the top boundary; Neumann BCs are at the side boundaries

To check the accuracy of the proposed TBCs, we introduce the relative error
norm " Œu; v; !� .t/ D max

x2! ju � vj = max
x2!; t�T

juj and consider reference solutions uref

calculated on the extended domain �Z � z � Z with TBCs operator at z D Z.

Denote �I D max
t�T
"
h
uh

ref ; u
h; %h

1

i
.t/, T D 1. The numerically estimated order

of the solution accuracy log2.�I=�2I/ is 2.2, 4.3, and 6.0 for p D 1; 2; and 3,
respectively; I D 200, the number of discrete Fourier harmonics is I/4.

To verify the stability for large simulation time, we calculated the problem with
TBCs up to T D 100. Figure 2 shows "Œuh; 0; %h

1�.t/ (blue), "[uh
ref ; 0; %

h
1](t)

(green), and "[uh
ref ; uh; %h

1](t) (red).

3 Coupling TBCs at the Top Boundary with Characteristic
NRBCs

Consider now the case of characteristic NRBCs [8]

@u

@t
C c

@u

@n
D 0 (7)

on the side boundary & in (1). Evidently, the immediate generating of TBCs with
help of Fourier transformation over the open boundary &2 cannot be done because
of the time derivative in (7).

To apply conventional TBCs for this case, we propose using an auxiliary
wider waveguide in the external domain z > 0 with the cross section &D D
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Fig. 2 Solution norm vs time for the original (blue) and extended (green) domains. Also norm of
the solution relative difference is shown (red). ID 100, pD 2

f�D � x � X C D; �D � y � Y C D; z D 0g, D > 0, so that &2 � &D. Accord-
ing to this approach, the solution continuation in the ghost layers points z D
h; : : : ; ph is computed by applying TBCs formulas at &D; the extra efforts consist
in developing a special technique to prolong waveforms from &2 onto &D. The
proposed prolongation technique is as follows. We consider an initial boundary
value problem on &Dn&2 for the reduced 2D wave equation utt � c2

�
uxx C uyy

� D 0
with a Dirichlet condition at boundaries of &2. Solution of this auxiliary problem
supplies an approximation of the required prolongation of waveforms. The corre-
sponding numerical implementation is made straightforwardly by explicit FDS. As
an example, we introduce a uniform rectangular grid in &D (grid in &2 is its subgrid).
The solution at grid points of &Dn&2 is updated by auxiliary explicit FDS with a
five-point spatial operator for utt � c2

�
uxx C uyy

� D 0 using Dirichlet data at the
boundary of &2; the solution at &2 grid points (including these Dirichlet data) is
updated by FDS for (1).

3.1 Numerical Experiments

Accuracy and stability of approximate TBCs generated by the proposed approach
are analyzed on 2D tests similar to those in Sect. 2. We take D D 1, X D 1, Z D 2,
I � 2I grid cells, I D 400, and 300 Fourier harmonics for &D D f�1 � x � 2g.
Second-order approximation of all equations including TBCs is used (p D 1).

The solution absolute value snapshots at time points t D 1:0 and t D 1:1 are
drawn in Fig. 3. One can see that no reflections from the top boundary with TBCs are
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Fig. 3 Solution norm snapshot at t D 1:0 (left) and t D 1:1 (right). TBCs are at the top boundary
and characteristic NRBCs are at the side boundaries

observed. The main distortions originate near the side boundaries, which is expected
as simple characteristic boundary conditions (7) are used here; the distortions are
stronger for t D 1:1 because of bigger deviation of the incidence angle from
the normal direction (z D �0:6). However, despite approximate prolongation of
waveforms in &D, the introduced error only slightly influences the accuracy of
TBCs; this is due to the practically normal incidence angle of waveforms to the
side boundaries in the near top surface region (z D 0).

For the quantitative accuracy analysis, we compare our solution uh of the above
problem versus the reference solution uh

ref calculated on the extended domain �Z �
z � 1 with TBCs operator at z D 1, and versus uh

open, the solution calculated in a
very large computational domain in all directions, i.e., without any reflections from
boundaries.

To exclude strong influence of side boundaries on the accuracy, we consider
a little narrower domain %0 D f0:15 � x � 0:85;�1:0 � z � 0:0g for estimating
error norms. Figure 4 shows "[uh

open; uh; %h
0] (blue) and "[uh

open, uh
ref ; %

h
0] (green).

The error "[uh
open, uh

ref ; %
h
0](t) is indicative of the level of reflections from the side

boundaries, visible after time point t D 0:95. Let us analyze "[uh
open; uh; %h

0](t).
We distinguish two intervals of interest. First, from t D 0:3 to t D 0:95, the
residuals are determined by reflections from the top of the computational domain,
where we have TBCs. Then, from t D 0:95, the residuals include side reflections
(from characteristic boundary conditions) as well as top reflections. Since the
errors "[uh

open; uh; %h
0] and "[uh

open; uh
ref ; %

h
0] are practically equal to each other after

t D 0:95, we conclude that the reflections from the top boundary are smaller than
those from the side boundaries. Comparing the level of errors before t D 0:95 and
after t D 1:2, we determine that the TBC errors are smaller than the errors from
characteristic boundary conditions by a factor of about 100.
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Fig. 4 Norms of solution relative errors vs time: "[uh
open, uh

ref ; %
h
0](t) (red) and

"[uh
open; uh; %h

0](t) (green)

Fig. 5 Solution norm uh in%h
0 vs time

To check the stability of the algorithm with TBCs, we run computations up to
t D 400, see norm of "Œuh; 0; %h

0](t) in Fig. 5.

4 Conclusions

We developed and numerically investigated two approaches of expanding the
scope of the application of TBCs for modeling wave propagation problems in
computational domains with open boundaries. The first approach is a high-order
accuracy approximation of TBCs aimed to match high-order FD schemes in the
interior. Test numerical calculations confirm the expected 2-nd, 4-th, and 6-th order
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of convergence. The second approach is coupling of TBCs with characteristic
NRBCs at neighbor boundaries of a cubical domain. Again, test problems confirm
the expected accuracy of the “TBCs boundary”, at least until spurious reflections of
“NRBCs boundaries” reach the domain of interest. In all cases, the computations
are stable for large simulation time.

Due to use of convolution kernels approximated by Taylor series and sum of
exponentials with respect to spatial and time variables, respectively, the computa-
tional resources required for the TBCs operator are similar to the application of FDS
in some additional grid layer with a fixed number of grid intervals in the normal
direction.
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Comparison of Clenshaw–Curtis and Leja
Quasi-Optimal Sparse Grids for the
Approximation of Random PDEs

Fabio Nobile, Lorenzo Tamellini, and Raul Tempone

Abstract In this work we compare different families of nested quadrature points,
i.e. the classic Clenshaw–Curtis and various kinds of Leja points, in the context of
the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical
evidence suggests that both families perform comparably within such framework.

1 Introduction

While it is nowadays widely acknowledged that Uncertainty Quantification prob-
lems can be conveniently tackled with polynomial approximation schemes when-
ever the output quantities of interest depend smoothly on a moderate number of
random parameters, the search for algorithms whose performance is resilient with
respect to the number of such random parameters is a very active research area.

In the context of sparse grid approximation [1, 4, 13], this has lead on the one
hand to the development of more efficient sparse grid algorithms, which exploit
the anisotropic structure of the problem (either via an “a-priori” analysis, see e.g.
[2, 3, 11], or with an “a-posteriori” adaptation, see [6, 8, 12]), and on the other hand
to the study of appropriate univariate collocation points to be used as a basis for the
sparse grid construction.

To maximize the efficiency of the sparse grids, such collocation points are
typically chosen to be nested. Clenshaw–Curtis points are a classical choice in
this sense; more recently, an increasing attention has been devoted to the study
of the performance of the so-called Leja points (see [5, 6, 10, 12]), which are
promising since the cardinality of Leja quadrature rules grows slower than that of
Clenshaw–Curtis rules when increasing the approximation level. In the literature,
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Leja points have only been applied to “a-posteriori” adaptive sparse grids [6, 10, 12]:
the aim of this work is to test their performance in the context of the quasi-optimal
“a-priori/a-posteriori” sparse grids that we have proposed in a series of papers [2, 3,
11], focusing on the case of elliptic PDEs with diffusion coefficients parametrized
by uniform random variables.

The rest of this work is organized as follows. The general problem setting will be
introduced in Sect. 2, and quasi-optimal sparse grids in Sect. 3. Clenshaw–Curtis and
Leja points will be discussed in Sect. 4, while numerical tests and some conclusions
will be presented in Sect. 5.

2 Problem Setting

Let N 2 N and � � R
N be an N-dimensional hyper-rectangle � D �1 � : : : �

�N , and assume that each �n is endowed with a uniform probability measure
%n.yn/dyn D 1

j�njdyn, so that %.y/dy D QN
nD1 %n.yn/dyn is a uniform probability

measure on � and .�;B.� /; %.y/dy/ is a probability space, B.� / being the Borel
�-algebra on� . Given a convex polygonal domain D in R

d, d D 1; 2; 3, we consider
the following problem:

Problem 1 Find a real-valued function u W D � � ! R, such that %.y/dy-almost
everywhere there holds:

(
� div.a.x; y/ru.x; y//D f .x/ x 2 D;

u.x; y/ D 0 x 2 @D;

where the operators div and r imply differentiation with respect to the physical
coordinates only, and a W D � � ! R is such that

0 < amin � a.x; y/ � amax <1 (1)

for some positive and bounded constants amin; amax.

By introducing the Hilbert space V D H1
0.D/, the above problem is well-posed in

the Bochner space L2%.� IV/ D
n
u W � ! V s.t.

R
� ku.y/k2V %.y/dy <1

o
, due to

the boundedness assumption (1). Moreover, under additional assumptions on a (e.g.
y-linearity or mild assumptions on the growth of its y-derivatives), it can be shown
that the map y! u.�; y/ is analytic, see [2, 7].
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3 Quasi-Optimal Sparse Grid Approximation

Let Pr.�n/ be the set of polynomials of degree at most r over �n, C0.�n/ the
set of continuous functions over �n, and for a given interpolation level in let
Um.in/

n W C0.�n/ ! Pm.in/�1.�n/ be the Lagrangian interpolant operator over m.in/
points, with m W N ! N a non-decreasing function, the so-called “level-to-nodes”
function. Next, for any multi-index with non-zero components i 2 N

NC let us

define the “hierarchical surplus” operator 	m.i/ D NN
nD1.Um.in/

n � Um.in�1/
n /, and

let fI.w/gw2N denote a sequence of index sets with non-zero components with
I.0/ D Œ1; 1; : : : ; 1�, I.w/ � I.w C 1/ and

S
w2N I.w/ D N

NC. The sparse grid
approximation of u is then written as

Sm
I.w/Œu�.y/ D

X
i2I.w/

	m.i/Œu�.y/; (2)

where one usually requires the sets I.w/ to be downward closed sets,1 see e.g. [8].
In practice, to build a sparse grid one has to specify (a) the family of interpolation
nodes, that should be chosen according to the probability measure over � (as
previously mentioned, in this work we will use Leja and Clenshaw–Curtis points,
which are suitable for uniform measures), (b) the function m.�/, and (c) the sequence
of index sets I.w/.

To detail the choice of the sequence I.w/, let us now denote by �E.i/ the
error reduction obtained by adding a given hierarchical surplus 	m.i/ to the sparse
grid approximation of u and by �W.i/ the associated cost, i.e. the number of
interpolation points added to the sparse grid by 	m.i/, and let us define the profit
P.i/ of each 	m.i/ as the ratio P.i/ D �E.i/

�W.i/ . The optimal sequence I.w/ should then
progressively add to the sparse grid approximation of u the hierarchical surpluses
	m.i/ ordered by decreasing profits, see [2, 8, 9, 11],

I.w/ D ˚i 2 N
NC W P.i/ � �w

�
; (3)

with f�wgw2N a positive sequence decreasing to 0. Note that I.w/ in (3) may not be
a downward closed set, and this condition will have to be explicitly enforced.

The above criterion (3) can be implemented either by an “a-posteriori” adaptive
procedure (see e.g. [6, 8, 12]) that explores the space of hierarchical surpluses and
adds to I.w/ the most profitable one, or, as we have previously detailed in [2, 3, 11],
with a procedure based on a-priori estimates of �E.i/ and �W.i/, tuned to the
problem at hand by some cheap preliminary computations (“a-priori/a-posteriori”
approach); in this work, we consider the latter approach. Of course, if on the
one hand the “a-priori/a-posteriori” approach saves the computational cost of the

1Also known as admissible sets or lower sets, i.e. such that 8 i 2 I.w/ and 8 j 2 N
N
C

s.t. j � i,
there holds j 2 I.w/, where the inequality is to be understood component-wise.
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exploration of the space of hierarchical surpluses, on the other hand it will be
effective only if the estimates of �E.i/ and �W.i/ are sufficiently sharp.

The work contribution�W.i/ can actually be computed exactly if the points used
in the sparse grid construction are nested (as it is the case in this work) and I.w/ is
downward closed:

�W.i/ D
NY

nD1
.m.in/� m.in � 1//: (4)

As for the error contribution �E.i/, we propose to use certain problem-dependent
estimates that we will specify later on.

4 Leja and Clenshaw–Curtis Quadrature Rules

A Leja sequence on a generic compact set X is defined recursively, by first choosing
x1 2 X and then letting xn D argminx2X

Qn�1
kD1.x�xk/; see e.g. [5, 6, 10, 12], while the

corresponding quadrature weights are computed by enforcing the maximal degree
of polynomial exactness. More specifically, we will consider the following families
of Leja points:

Line Leja: Let X D Œ�1; 1� and x1 D �1. Then x2 D 1, x3 D 0, and xn D
argmin.�1;1/

Qn�1
kD1.x � xk/.

Sym-Line Leja: Let x1 D 0, x2 D 1, x3 D �1, xn D argmin.�1;1/
Qn�1

kD1.x � xk/

for n even, and xnC1 be the symmetric point of xn with respect to 0. Observe that
this is not a Leja sequence according to the definition above.

P-Disk Leja: Let xk D cos�k, with �1 D 0, �2 D � , �3 D �=2, �2kC2 D �kC2

2
,

and �2kC3 D �2kC2 C � . These points correspond to the projection on the real
axis (with no repetitions) of the Leja sequence obtained with x1 D 1 and X the
complex unit ball (see [5]), and are not a Leja sequence.

We will test the Leja families above with two different level-to-nodes functions,
i.e. ms.in/ D in and mt.in/ D 2in � 1. The latter “two-stepping” rule has been
introduced in the adaptive context (see e.g. [12]), where the error contributions
�E.i/ are estimated via successive differences of the integral of u (or of its
approximation by e.g. finite elements) over the parameter space: indeed, observe
that whenever one point is added to a symmetric quadrature rule, the corresponding
quadrature weight will be zero, by symmetry; hence if one were using the “single-
stepping” rule ms.in/, two consecutive integrals may be equal (up to numerical
roundoff) and the algorithm might prematurely stop. Finally, Clenshaw–Curtis
points (cf. e.g. [11]) are defined as

xj D cos

�
. j � 1/�
m.in/� 1

	
; 1 � j � m.in/;



Clenshaw–Curtis and Leja Quasi-Optimal Sparse Grids for Random PDEs 479

together with the following level-to-nodes relation md.in/, that ensures their nest-
edness2: md.0/ D 0, md.1/ D 1, md.in/ D 2in�1 C 1. Observe md.in/ grows
exponentially in in, while ms.in/ and mt.in/ grow linearly; quoting [10], we say that
Leja points have a much finer “granularity”.

5 Numerical Tests

In this section we consider two different examples of Problem 1; in both cases, we
will introduce a bounded linear functional� W V ! R, and monitor the convergence
of the quantity

" D
s
E

�

�.Sm

I.w/Œu�/ ��.u/
�2�

; (5)

with respect to the number of sparse grid points, that will converge with the same

rate as the full error E
h�Sm

I.w/Œu�� u
�2i1=2

, given the linearity of�. In practice, we

have estimated (5) with a Monte Carlo sampling (see Fig. 1 for the sample size for
each test); we underline that the sample sizes have been verified to be sufficient for
our purposes.

In the first test, we consider �n D Œ�1; 1�, D D .0; 1/ and two different
expressions of a.x; y/, both complying with condition (1), that is a1.x; y/ D
4 C y1 C 0:2 sin.�x/y2 C 0:04 sin.2�x/y3 C 0:008 sin.3�x/y4, and log a2.x; y/ D
y1C 0:2 sin.�x/y2C 0:04 sin.2�x/y3C 0:008 sin.3�x/y4. We also set f .x/ D 1 and
�.u/ D u.0:7/. For this case, the estimate for the error contribution�E.i/ in (3) is
(cf. [2])

�E.i/ � Ce�
PN

nD1 gnm.in�1/
 

NY
nD1

L
m.in/
n

!
jm.i/jŠ
m.i/Š

;

where C is a positive constant, Lm.in/
n is the Lebesgue constant associated to the

interpolation scheme Um.in/
n that can either be computed numerically or estimated

a-priori (cf. [11]), m.i/Š D Q
n m.in/Š, jm.i/j D

�P
n m.in/

�
Š, and gn can be tuned

with cheap preliminary computations, see e.g. [2].
In the second test, we consider instead �n D Œ�0:99; 0:99�, D D Œ0; 1�2 and

a.x; y/ D 1CPN
nD1 �n�n.x/yn; for N D 4; 8. Here �n.x/ are the indicator functions

of the disjoint circular sub-domains Dn � D as in Fig. 1, and �n are real coefficients
such that (1) holds true; more specifically, we consider both an isotropic setting,
�n D 1 for each subdomain, and an anisotropic setting, see Fig. 1 for the values of

2When 2m C 1 p-Disk Leja points are computed, they coincide with the Clenshaw–Curtis points.
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Fig. 1 Left: domains for test 2 with N D 4 and N D 8, with values of the coefficients �n for the
anisotropic settings. Right: sample size for the Monte Carlo estimate of (5) for each test
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Fig. 2 Convergence of error (5) vs. sparse grids cardinality. The suffix “2s” refers to the “two-
stepping” function for Leja points

�n in this latter setting. Finally, we set f .x/ D 100�F.x/ and �.u/ D R
F u.x/dx. In

this case, the estimate for the error contribution�E.i/ in (3) is

�E.i/ D Ce�
PN

nD1 gnm.in�1/
 

NY
nD1

L
m.in/
n

!
;

see [11], where we also provide a convergence estimate for the resulting sparse grid.
Numerical results for the different cases are shown in Fig. 2. It can be seen

that Sym-Line Leja points with “two-stepping” seem to have the same (or slightly
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Fig. 3 Convergence of quadrature error for�.u/ vs. sparse grids cardinality. The suffix “2s” refers
to the “two-stepping” function for Leja points

better) performance than Clenshaw–Curtis points, while the other families of Leja
points present slight improvements in some cases but underperform in other tests.
Additional tests carried out to monitor the quadrature error for �.u/ rather than the
interpolation error (5) (see Fig. 3), show again that the performance of Sym-Leja
points with two-stepping is comparable to that of Clenshaw–Curtis, while this time
the other Leja families always show a slight performance deterioration. This is likely
due to the fact that Leja points are designed to minimize the Lebesgue constant,
hence more suited for interpolation than for quadrature. Similar results have been
found in [10].

In conclusion, these tests seem to suggest that Leja points do not exhibit
significative advantages over Clenshaw–Curtis points in the framework of the
quasi-optimal sparse grids; moreover, despite the little granularity of the univariate
Clenshaw–Curtis points, the number of points in the resulting sparse grids grows
similarly to that of grids built with Leja points, due to the fact the quasi-optimal
construction adds only one or few hierarchical surpluses per level.
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From Rankine-Hugoniot Condition
to a Constructive Derivation of HDG Methods

Tan Bui-Thanh

Abstract This chapter presents a constructive derivation of HDG methods for
convection-diffusion-reaction equation using the Rankine-Hugoniot condition. This
is possible due to the fact that, in the first order form, convection-diffusion-
reaction equation is a hyperbolic system. As such it can be discretized using the
standard upwind DG method. The key is to realize that the Rankine-Hugoniot
condition naturally provides an upwind HDG framework. The chief idea is to first
break the uniqueness of the upwind flux across element boundaries by introducing
single-valued new trace unknowns on the mesh skeleton, and then re-enforce the
uniqueness via algebraic conservation constraints. Essentially, the HDG framework
is a redesign of the standard DG approach to reduce the number of coupled
unknowns. In this work, an upwind HDG method with one trace unknown is
systematically constructed, and then extended to a family of penalty HDG schemes.
Various existing HDG methods are rediscovered using the proposed framework.

1 Introduction

The high-order discontinuous Galerkin (DG) method was originally developed by
Reed and Hill [12] for the neutron transport equation, first analyzed in [8, 9], and
then has been extended to other problems governed by partial differential equations
(PDEs) [2]. Roughly speaking, DG combines advantages of classical finite volume
and finite element methods. However, for steady state problems or time-dependent
ones that require implicit time-integrators, DG methods typically have many more
(coupled) unknowns compared to the other existing numerical approaches, and
hence more expensive in general.

Recently, Cockburn and his coworkers have introduced a hybridizable (also
known as hybridized) discontinuous Galerkin (HDG) methods for various type of
PDEs including Poisson equation [4, 5], and convection-diffusion equation [3, 11].
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The beauty of the HDG method is that it reduces the number of coupled unknowns
substantially while retaining all other attractive properties of the DG counterpart.
The coupled unknowns are in fact unknown traces introduced on the mesh skeleton,
i.e. the faces, to hybridize the numerical flux. Once they are solved for, the usual
DG unknowns can be recovered in an element-by-element fashion, completely
independent of each other. Thus, the HDG methods are well suited for current and
future supercomputing systems. Existing HDG constructions however vary from
one type of PDE to another, though they do share some similarities. Moreover,
they are parameter-dependent method. Consequently, practitioners may be wary of
deriving/applying the HDG approach to a new PDE.

In this chapter we seek to develop a systematic and constructive hybridized
discontinuous Galerkin (HDG) methods for partial differential equations. For
concreteness and clarity of the exposition we choose to present our development for
convection-diffusion-reaction equation, though it can be extended to other PDEs.
This paper is a continuation of our recent effort [1] on unifying the construction
and theory HDG method. Unlike [1], in which we construct HDG schemes from
the Godunov approach with upwind flux, in this work we discover a new way
to unify HDG methods using the Rankine-Hugoniot jump condition. In fact, we
shall show that Rankine-Hugoniot jump condition is, perhaps, the most natural
way to construct HDG schemes. In the following, we provide step-by-step the
construction of our new unified HDG framework and we refer the readers to
[1, 3–5, 11] for a complete description of HDG methodology, its novelties, and its
efficiency.

2 Upwind HDG Method and Its Variants
for Convection-Diffusion-Reaction Equation

In this section we will systematically devise an upwind HDG scheme for
convection-diffusion-reaction in the following first order form

"�1
 Cru D 0 in ˝; and r � 
 Cr � .ˇ � u/C �u D f in ˝ (1)

where ˝ � R
d, and we take d D 3 for concreteness; the velocity field ˇ is

assumed to be continuous; " is the diffusion coefficient; � is the reaction parameter;
and f is the forcing term. Since the boundary condition plays no role in the basic
construction and understanding of our upwind HDG framework, it will be ignored.

If we define u WD Œ
 ; u� we can rewrite (1) in a more compact form as

r �F .u/C Cu D f; in ˝; (2)

where f WD Œ0; f �, and C is a 4 � 4 matrix with C .1; 1/ D C .2; 2/ D C .3; 3/ D
"�1, C .4; 4/ D � and C .i; j/ D 0 otherwise. Here, the flux tensor F is given by



HDG Methods for Convection-Diffusion-Reaction Equations 485

F .u/ WD A u and A is a tensor with three components defined as

A 1 WD

2
664
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 ˇ1

3
775 ; A 2 WD

2
664
0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 ˇ2

3
775 ; and A 3 WD

2
664
0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 ˇ3

3
775 :

Now, let n WD �n1;n2;n3 be an arbitrary unit vector, we observe that

A WD A � n D

2
664
0 0 0 n1

0 0 0 n2

0 0 0 n3

n1 n2 n3 ˇ � n

3
775 (3)

has four eigenvalues Œc1; c2; c2; c3�:

Œc1; c2; c2; c3� WD

2
64ˇ � n

2
�
q
jˇ � nj2 C 4

2
; 0; 0;

ˇ � n
2
C
q
jˇ � nj2 C 4

2

3
75 :

It can be inspected that the eigen-values are real and eigen-vectors are independent.
Consequently, (1) is a steady state hyperbolic system (see, e.g., [13] for definition
of hyperbolicity), though the original convection-diffusion-reaction is not purely
hyperbolic (in fact elliptic if ˇ D 0). As such, it can be discretized and solved using
upwind numerical methods such as DG.

The goal of this section is to provide a systematic construction of an upwind
HDG framework for convection-diffusion-reaction equation (1). Let us begin by
introducing some notations and conventions. The domain ˝ is partitioned into Nel

non-overlapping elements Kj; j D 1; : : : ;Nel with Lipschitz boundaries such that
˝h WD [Nel

jD1Kj and˝ D ˝h. We denote the skeleton of the mesh by Eh WD [Nel
jD1@Kj;

it is the set of all (uniquely defined) faces e. We conventionally identify the normal
vector n� on the boundary @K of the element K under consideration (also denoted
as K�) and nC D �n� as the normal of the boundary of a neighboring element
(also denoted as KC). On the other hand, we use n to denote either n� or nC in
an expression that is valid for both cases, and this convention is also used for other
quantities (restricted) on e 2 Eh. For the sake of convenience, we denote by E @

h the
sets of all boundary faces and define E o

h WD Eh n E @
h the set of all interior faces.

For simplicity in writing we define .�; �/K as the L2-inner product on a domain
K 2 R

d and h�; �iK as the L2-inner product on a domain K if K 2 R
d�1. We shall

use bold-face lowercase/uppercase letters for vector-valued functions and in that
case the inner product is defined as .u; v/K WD

Pm
iD1

�
ui; vi

�
K

, and similarly as
hu; viK WD

Pm
iD1

˝
ui; vi

˛
K , where m is the number of components (ui; i D 1; : : : ;m)

of u. We also employ upper case calligraphic letter, e.g. F , to denote tensors. It is
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our convention that superscripts are used to denote the components of vector, matrix,
and tensor. We shall not distinguish row and column vectors in what follows.

We define Pp .K/ as the space of polynomials of degree at most p on the domain
K. Next, we introduce two discontinuous piecewise polynomial spaces

Vh .˝h/ WD
n
v 2 �L2 .˝/m W vjK 2 ŒPp .K/�m ;8K 2 ˝h

o
;

h .Eh/ WD
˚
� 2 L2 .Eh/ W �je 2Pp .e/ ;8e 2 Eh

�
;

and similarly for Vh .K/, and �h .e/ by replacing˝h with K and Eh with e. If m D 1,
i.e. scalar-valued functions, we define

Vh .˝h/ WD
˚
v 2 L2 .˝/ W vjK 2Pp .K/ ;8K 2 ˝h

�
:

From now on we conventionally use u for DG solution. We would like to find
local finite element solution u 2 Vh .K/ on each element K 2 ˝h. To that end,
multiplying (2) by v and integrating by parts we have

� .F .u/ ;rv/K C hF .u/ � n; vi@K C .Cu; v/K D .f; v/K ; 8v 2 Vh .K/: (4)

At this point, the flux F .u/ �n on e 2 @K is not well-defined since the traces of both
u� of element K� and uC of element KC co-exist on e. Godunov’s type methods
[6] resolves this by introducing some (typically upwind, see e.g. [10, 13]) numerical
flux F �

�
u�;uC

�
to replace F .u/ on the boundary term in (4) so that (4) becomes

� .F .u/ ;rv/K C
˝
F�

�
u�;uC

� � n; v˛
@K
C .Cu; v/K D .f; v/K : (5)

It should be pointed out that for simplicity in writing we have ignored the fact (5)
must hold for all test functions v 2 Vh .K/; to the end of the chapter, this should be
implicitly understood.

It is the upwind numerical flux F� that couples local unknowns on elements KC
and K� that share a face e 2 @K. Consequently, local unknowns on all elements are
coupled (for steady state problems or time-dependent problem with implicit time-
integrators), and they must be solved together. This leads to the “usual complaint”
that DG has so many coupled unknowns, and hence is expensive, though it has many
attractive properties.

What we are going to do next is to remove this coupling by introducing new
trace unknowns that live on the mesh skeleton. The beauty of this approach
is that the actual globally coupled unknowns are those newly introduced trace
unknowns, and hence the resulting system is substantially smaller and sparser.
Once the trace unknowns are computed, the local DG unknown u is computed
locally element-by-element independent of each other. We shall show that the
Rankine-Hugoniot condition (see, e.g. [13]) provides all the necessary ingredients
for accomplishing this decoupling task. To that end, let us sketch in Fig. 1 the wave
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Fig. 1 The wave structure in
the Riemann problem for first
order form of
convection-diffusion-reaction
equation (1) with
pseudo-time �

structure of the Riemann problem for the first order PDE system (1) along the
normal direction of the interface between K� and KC. Here, � is the pseudo-time.

Applying the Rankine-Hugoniot condition across each wave we obtain

.A � � n�/ Qu� � .A � � n�/ u� D c1 . Qu� � u�/ ; (6a)
�
A C � n�� QuC � .A � � n�/ Qu� D 0; (6b)
�
A C � n��uC � �A C � n�� QuC D c3

�
uC � QuC� : (6c)

On the other hand, from definition of A and the continuity of ˇ we have

A � D A C D A ; and .A � n/ u D Œun; 
 � nC ˇ � nu�

which, together with (6b), imply

u� WD Qu� D QuC; and 
 � � n WD Q
� � n D Q
C � n

where u� WD Œ
 �; u�� is defined as the upwind state, which is also the Riemann
solution in this case [see (10a) and (10b)]. The upwind flux is then defined as

F � � n WD .A � n/ u�:

Using the definition of c1, c3, and A , we can rewrite both (6a) and (6c) in a general
form, referring to either K� or KC, as

F � � n D
�

unC 1
2
.˛ � ˇ � n/ .
 � 
 �/

ˇ � nuC 
 � nC 1
2
.˛ � ˇ � n/ .u � u�/

�
; (7)

with ˛ given by ˛ WD
q
jˇ � nj2 C 4. Since the first three components of left hand

sides of (7) is a vector parallel to n, the tangent component of the corresponding
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vector consisting of the first three components of right hand side must vanish. This
observation allows us to rewrite the Rankine-Hugoniot conditions (7) as

F� � n D
�

unC 1
2
.˛ � ˇ � n/ .
 � 
 �/ � n n

ˇ � nuC 
 � nC 1
2
.˛ � ˇ � n/ .u � u�/

�
: (8)

Since F � � n is the upwind flux, it obviously satisfies

ŒŒF � � n�� D 0; (9)

where we have defined the “jump” operator as ŒŒ.�/�� WD .�/� C .�/C. We also define
“average” operator as ff.�/gg WD 1

2
ŒŒ.�/��.

Lemma 1 The following hold true:

i) The upwind state u� satisfies

u� D ffugg C ˇ � n
2˛

ŒŒun�� � nC 1

˛
ŒŒ
 � n��; (10a)


 � � n D ff
 gg � nC 1

˛
ŒŒun�� � n � ˇ � n

2˛
ŒŒ
 � n��; (10b)

ii) The upwind flux is given by

F� � n D
�

u�n1; u�n2; u�n3; ˇ � nuC 
 � nC 1

2
.˛ � ˇ � n/ �u � u�

��
;

(11)

where

u� D uC 2

˛

�

 � 
 �

� � nC ˇ � n
˛

�
u � u�

�
: (12)

Proof We know that the conservation (9) gives us four equations for the upwind
state u�. Solving for u� and 
 � � n in terms of u and 
 we obtain the desired
result. The second assertion immediately follows by substituting (10) into (8) and
inspecting that (12) is true.

Up to this point, we have used the exact upwind state u� and the upwind flux
F� �n to derive identities in Lemma 1. In particular, we have shown that the upwind
flux of the form (11) naturally arises from the Rankine-Hugoniot condition. The
appealing feature of this form is that the upwind flux depends on the DG unknowns
of only one side of a face e 2 @K and the single-valued upwind state u�. As such,
it is completely determined using only information from either side (K� or KC) of
the face e 2 @K, as long as u� is (either exactly or approximately) provided. More
importantly, this in turn shows that we can solve Eq. (5) for u element-by-element
independent of each other. This observation suggests that we should treat u� as the
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extra unknown and solve for it on the skeleton of the mesh instead of using the
upwind value which couples the local unknown u on elements. To signify this step,
let us rename u� to Ou and F � to OF , i.e.,

OF � n D
�
Oun1; Oun2; Oun3; ˇ � nuC 
 � nC 1

2
.˛ � ˇ � n/ .u � Ou/

�
; (13)

where Ou is the single-valued trace unknown on the mesh skeleton that needs to be
solve for.

An immediate question that arises is how to compute Ou. To answer this question,
we note that Ou is a new unknown that is introduced on @K so that (5) can be solved
in an element-by-element fashion. To ensure the well-posedness of our formulation,
we need to introduce an extra equation on @K. Clearly, at this point Ou is not the
upwind state and hence identity (9) is in general no longer satisfied for OF . It is
therefore natural to use (9) as the extra equation. This additional algebraic equation
ensures that what coming out from element K through its boundary @K must enter
the neighboring elements that share (part of) the boundary @K. This is the statement
of conservation and it is exactly conveyed by (9). Due to the single-valued nature
of Ou, the first three components of our HDG flux (13) automatically satisfy the
conservation condition (9). For the fourth one, enforcing (9) weakly is sufficient
for local conservation, i.e., 8e 2 E o

h :

�
ŒŒˇ � nuC 
 � nC 1

2
.˛ � ˇ � n/ .u � Ou/��; �

�
e

D 0; 8� 2 h .e/ : (14)

In summary, we define an upwind HDG method by hybridizing the upwind flux
of the standard DG scheme. In particular, it has the usual DG local unknown u
and the extra “trace” unknown Ou. These unknowns can be solved for using the
global conservation constraint (14) and the local solver (5) with F � replaced
by OF .

We now generalize our upwind HDG approach to a class of penalty HDG
schemes, a member of which is the upwind HDG itself. To that end, we first observe
that u � Ou is the mismatch between the volume unknown restricted on the mesh
skeleton and trace unknown. This mismatch vanishes for the exact solution, but
converges to zero for the HDG solution as the mesh (or solution order) is refined.
This suggests that one can control the mismatch by introducing a penalty parameter
� to form a penalized family of HDG fluxes as follows

OF � n D ŒOun1; Oun2; Oun3; ˇ � nuC 
 � nC � .u � Ou/� : (15)

Clearly, when � D 1
2
.˛ � ˇ � n/ we recover the proposed upwind HDG scheme.

Next, we discuss the relation of our penalty HDG family, and hence upwind
HDG, with other existing HDG ones. It is necessary brief since a more detailed
discussion can be found in our previous work [1]. To begin, we observe that, for
general convection-diffusion-reaction problem (and similarly for pure convection
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problem), if we replace � by � � ˇ � n in the HDG flux (15), we obtain

OF � n D ŒOun1; Oun2; Oun3; ˇ � nOuC 
 � nC � .u � Ou/� :

This is exactly the HDG scheme proposed in [11].
For the Poisson equation, our penalty HDG flux (15) simplifies to

OF � n D ŒOun1; Oun2; Oun3; 
 � nC � .u � Ou/� ; (16)

which is exactly the HDG method originally proposed in [4]. It is important to point
out that since the differential part of the Helmholtz equation is the same as that of
the Poisson equation, HDG flux for the Helmholtz equation using our framework is
identical to (16). That is, we have also recovered the HDG scheme for Helmholtz
equation proposed in [7]. Finally, we refer to [1, 3–5, 7, 11] for a rigorous analysis
of all HDG methods presented in this chapter.

3 Conclusions

We have presented a constructive methodology to derive HDG methods for
convection-diffusion-reaction equation. In particular, we have shown that the
Rankine-Hugoniot condition, in its primitive form, is already a hybridization of
the upwind flux. The chief idea is to first break the uniqueness of the upwind
flux across element boundaries by introducing single-valued trace unknowns on
the mesh skeleton, and then re-enforce the uniqueness via algebraic conservation
constraints. We have devised in details the construction of our upwind HDG method
and extended it to a family of penalty HDG schemes. The proposed framework
allows one to rediscover many existing HDG methods. Ongoing work is to apply
the proposed framework to constructively derive HDG methods for other PDEs.
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Numerical Simulation of Two-Phase Flows Using
Fourier Pseudospectral Method

Mariana Fernandes dos Santos Villela, Felipe Pamplona Mariano,
and Aristeu da Silveira-Neto

Abstract The present work proposes the extension of the IMERSPEC methodol-
ogy for numerical simulations of two-phase flows. This methodology consists of
the fusion between the Fourier pseudospectral method and the immersed boundary
method for non-periodical problems. This method was originally developed for
single-phase and incompressible flows (Mariano et al., Comput Model Eng Sci
59:181–216, 2010). In the present paper, we extend this methodology for two-phase
flows using the front-tracking method to model the fluid-fluid interface. The results
involving the spurious currents, mass conservation and analysis through numerical
experimental bubbles rise, show that the proposed method can be considered
validated and promising to computational fluid dynamics (CFD).

1 Introduction

Multiphase flows have a significant role in a vast area of geophysics and industrial
processes. All of these applications stimulate the research of bubbles. One of the
main issues is to understand how a bubble moves in flow and as the continuous
phase is affected by the dispersed phase. Experimental studies of rising gas bubbles
in a static fluid began in the decade 60 with the works of [4] and others. Some years
later, Clift et al. [2] proposed to unify the treatment of solid, liquid droplets and gas
bubbles.

The improvement of computers has allowed the direct numerical simulation of
flows, using the Navier-Stokes equations as another way to perform experiments.
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This methodology becomes a powerful tool for validating results, and make possible
the extension to complex cases of fluid dynamics. The search for more accurate and
low computational cost for the simulation of two-phase flow methods is of great
interest for industry, since they require information from the flows with higher level
of accuracy.

The Fourier pseudospectral method is a methodology with a high rate of
numerical convergence, providing high accuracy at a low computational cost,
when compared with other high accuracy methodologies, owing to the use of Fast
Fourier Transform (FFT). It is also observed that for the Navier-Stokes equations,
considering incompressible flow in spectral space, the projection method is used to
eliminate the pressure gradient term, leading to uncoupling of the pressure-velocity
fields and eliminating the need to solve the Poisson equation for the pressure.
The major limitation of this methodology is in the boundary conditions, which are
required to be periodical, an exigence of the Fourier spectral method, [1]. However,
[5] overcame this limitation by coupling the Fourier pseudospectral method with
the immersed boundary method, which allowed to simulate non-periodic problems,
using Fourier pseudospectral method.

Thus, the purpose of the present paper is to show a proposition of a new
mathematical and computational methodology to solve two-phase flows problems
which provides at the same time, high computational efficiency and high accuracy.
For this, we used Fourier pseudospectral method (FSM) coupled with immersed
boundary (IB) and with the Front-Tracking method (FTM). Results obtained by
analysis through numerical experiment of rising bubbles show that the proposed
method can be considered validated and very promising.

2 Mathematical Modeling for Two Phase-Flow

The present work is based on the merging FPSM, IBM and FTM method. The fluid
as a whole is represented by ˝ D ˝1 [ ˝2 domain. The interface � is called
Lagrangian, which can move and deform. The subdomains ˝1 and ˝2 represent
the outside and inside of the interface � , respectively. Variables with uppercase
letters are related to Lagrangian domain .� / whereas a lowercase letter is related to
Eulerian domain .˝/.

The mathematical model for incompressible and isothermal flows of Newtonian
fluids with variable physical properties are composed by mass conservation and
Navier-Stokes equations, Eqs. (1) and (2), respectively. Such equations present
source terms that model the boundary conditions for momentum and the interface
force.

@ul

@xl
D 0; (1)
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�
@ul

@t
C @uluk

@xk

	
D � 1


.�/

@p

@xl
C 1


.�/

@

@xk

�
�.�/

�
@ul

@xk
C @uk

@xl

	�
C gl C 1


.�/
f�l

C 1


.�/
fFIl ; (2)

where 
.�/ and �.�/ are, respectively, the density and the coefficient of dynamic
viscosity of the fluid; � is used as phase indicator; ul is the component l of the
velocity vector; p is the pressure field; gl is the component l of the gravitational
acceleration vector and xl, with l D 1; 2, for two-dimensional problems, are the
spatial coordinates and t is the time.

The source term fFIl models non-periodic boundary conditions for momentum
equation through multi-direct-forcing method, as presented by Mariano et al. [5].
The source term f�l represents the interface and its equation is given by:

fl.x; t/ D
Z
�

Fl.X; t/ı.x� X/dX; (3)

where ı.x�X/ is the Dirac delta function. Fl.X; t/ is the component l of the interface
force vector calculated at � and Xl is the component l of the position vector of the
interface .� / (see Fig. 1).

The discretization process of the ı function is replaced by a smooth function Dh,
Eq. (4), [6]:

Dh.x � X/ D 1

h2
Wcos

�
X � x

h

	
Wcos

�
Y � y

h

	
; (4)

Wcos.r/ D
(
1
4

h
1C cos



�jrj
2

�i
se 0 ¤ jrj < 2

0 se 2 � jrj
; (5)

Fig. 1 Representation of
Eulerian domains
˝ D ˝1 [˝2 and
Lagrangian � interface
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where r D X�x
h , and h spacing of discrete domain, �x e �y [5]. It has a behavior

similar to a Gaussian and attend the property unitary integral in the range Œ�1;1�.
An indicator function �.x; t/ is used to determine the distribution of the Eulerian

physical properties, such as the density 
 and the dynamic viscosity�. This function
is calculated at each time step solving a Poisson equation, which does not require
the solution of a linear system when using the spectral Fourier method, reducing the
computational cost. The values of the Eulerian physical properties range from 0 for
continuous phase to 1 for the dispersed phase. Whenever �.x; t/ is obtained, 
.x; t/
and �.x; t/ are determined.

3 Mathematical Modeling for Interfacial Force

The interface � is represented parametrically by .X.s; t/;Y.s; t//, where X and Y are
the Lagrangian coordinates, and s is the arc length parameter, 0 � s � Lb, where
1 � q � NL, NL is the total number of Lagrangian points and Lb is the total length
of the interface (Fig. 2).

The modeling of the Lagrangian density force F�l , is given by a balance of forces
on an arbitrary point of the segment of interface and we obtain:

F�l D ��nl; (6)

y

x

Yq +1

Yq

Sq +1
q +1

q
0°

Sq

Xq +1Xq

Ñ

s

Fig. 2 Parameter s for an interface � represented by a closed curve
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where � is the mean curvature of the interface, � is the surface tension coefficient
and nl is a component l the normal unit vector of the interface, nl and � are given
by:

nl D @�l

@s
= k @�l

@s
k; (7)

� Dk @�l

@s
k = k @Xl

@s
k; (8)

where �l D @Xl
@s = k @Xl

@s k is a component l the tangent unit vector of the interface.

4 Mathematical Modeling for Fourier Spectral Method

The Navier-Stokes and continuity equations must be transformed to the Fourier
spectral space. For incompressible flows, the projection method for decoupling the
velocity from the pressure is used. Further, the properties of the Fourier transform
are applied [1]. Rewriting Eqs. (1) and (2) in the Fourier spectral space, results:

iklbul D 0; (9)

b@ul

@t
D }lm

"
�1TNLm C1DIFm C bgm C 1

b
.�/
�cf�m C

1

b
.�/
�bfFIm

#
; (10)

where bTNLl is the nonlinear term of the Navier-Stokes equation .ikk
1.uluk// and bDIFl

is the diffusive term of the Navier-Stokes equation


1
O
 � ikk � Œ O� � .ikkbul C iklbuk/�

�
and the symbol � represent the convolution product.

The resolution of the convolution product undergoes a convolution integral that
is the result of processing the product of two functions. It is not feasible to solve
computationally. Therefore, use is made of Fourier pseudospectral method, that is
the multiplication of two functions in the physical space [8].

In Eq. (10) pressure field term vanishes on the right hand side. However, this term
can be recovered using the equation:

p.x; t/ D IFT

(
ikm

k2

"
O
 �
 
1TNLm �1DIFm � bgm � 1

b
.�/
�cf�m �

1

b
.�/
�bfFIm

!#)
;

(11)

where IFT is inverse Fourier transform.
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5 Results

5.1 Code Verification

Code verification is a study of the computer program which is to ensure that the
equations chosen for a given model are resolved correctly and in quantifying the
numerical errors of the solution. It is a purely mathematical exercise and no physical
realism needs to be satisfied. Good practice of the code verification is to simulate a
problem that has exact solution that mimics the physical problem of interest. This
kind of accurate solution can be obtained by the method of manufactured solutions
(MMS), which is based on the introduction of source terms in the governing
equations, creating an unrealistic problem, but an analytical solution [3].

To verify the implementation of the Navier-Stokes equations with variable
physical properties is done through the MMS and the analytical solutions for the
horizontal and vertical velocity fields, u, v, the pressure field p and the density .
e/

and the viscosity .�e/ variables are given by Eq. (12), [8]:

ue.x; t/ D sin2.2�xC 2�yC t/; (12)

ve.x; t/ D cos2.2�xC 2�yC t/; (13)

pe.x; t/ D cos.2�xC 2�yC t/; (14)


e.x; t/ D 1C c.sin2.2�xC 2�yC t//; (15)

�e.x; t/ D 1C c.cos2.2�xC 2�yC t//: (16)

The Table 1 presents the results of the standard error L2, given by:

L2 D
sPnx

iD1
Pny

jD1. e
ij �  ij/2

nxny
; (17)

Table 1 Standard error L2
for u, v and p with 
 and �
variables at t D 5Œs�

Meshes Variables Standard error L2
32� 32 u 5:3265 � 10�15

v 5:3222 � 10�15

p 3:9150 � 10�15

64� 64 u 1:5811 � 10�15

v 1:5637 � 10�15

p 2:7136 � 10�15

128 � 128 u 1:1230 � 10�15

v 1:1084 � 10�15

p 2:9079 � 10�15
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obtained for uniform meshes and periodic boundary conditions to the variables D
u, v and p.

The Table 1 shows that the error given by the L2 norm, reaches round-off error
machine when using double precision. This fact that demonstrates the high accuracy
of FPSM.

5.2 Rising Bubbles

To validate the methodology proposed by numerical simulation of the rise of a single
bubble in a two-dimensional domain. We assume a fluid at rest. The numbers of
ERotvRos and Morton [2], are provided. From these numbers we obtain the density
and dynamic viscosity which we use in order to compare the Reynolds number
and geometrical shapes in the steady state. The geometric shape of the bubble is
compared with experimental data diagram of [2].

Table 2 presents a comparison between the Reynolds number in steady state of
the present work with the experiment of the [2] and numerical simulations of the
[7]. The comparison shows a good approximation of the present work with the
experimental result, demonstrating that the methodology proposed in the present
work is able to simulate the two-phase flows problems.

The Fig. 3 shows the evolution of the vorticity during the simulation of the
Wobbling regime, performed in the present work, using the proposed methodology.

Table 2 Reynolds number
observed in the experiments
of Clift et al. [2], and
numerical simulations from
Villar [7] and obtained in the
present work

Clift et al. [2] Villar [7] Present work

Eo D 0;50

M D 5;00� 10�3 Re D 0;29 Re D 0;39

Re D 0;36

Eo D 5;0

M D 5;0� 10�7 Re D 69;14 Re D 100;34

Re D 125;00

Eo D 5;09

M D 5;0� 10�10 Re D 475;65 Re D 599;00

Re D 900; 00

Eo D 50;00

M D 5;0� 10�4 Re D 53;07 Re D 77;53

Re D 85;00

Eo D 410;00

M D 5;0� 10�6 Re D 641;15 Re D 1055;57

Re D 1200;00

Eo D 5;09

M D 5;10� 10�10 Re D 475;65 Re D 599;99

Re D 900;00
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(a) (b) (c) (d)

Fig. 3 Vorticity: (a) t D 0; (b) t D 4; 02; (c) t D 7; 23; (d) t D 12; 88

These results is the last case shown in Table 2. The shape and trajectory of bubble
evolutes along the time. The bubble undergoes changes in its shape and vortices are
released in agreement with these phases of transient displacement. We notice in the
figure 3 that physical details are shown.

6 Conclusions

As conclusion of the present work, a new methodology for two-phase flows was
proposed and implemented. The results is in good agreement with experimental
results and the proposed methodology is considered validated.
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FAPEG, CAPES/PROEX, CNPq, UFU and UFG for the support for the present work development.
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Multiwavelets and Jumps in DG Approximations

Mathea J. Vuik and Jennifer K. Ryan

Abstract In general, solutions of nonlinear hyperbolic PDEs contain shocks or
develop discontinuities. One option for improving the numerical treatment of the
spurious oscillations that occur near these artifacts is through the application of
a limiter. The cells where such treatment is necessary are referred to as troubled
cells. In this article, we discuss the multiwavelet troubled-cell indicator that was
introduced by Vuik and Ryan (J Comput Phys 270:138–160, 2014). We focus
on the relation between the highest-level multiwavelet coefficients and jumps in
(derivatives of) the DG approximation. Based on this information, we slightly
modify the original multiwavelet troubled-cell indicator. Furthermore, we show one-
dimensional test cases using the modified multiwavelet troubled-cell indicator.

1 Introduction

In general, solutions of nonlinear hyperbolic PDEs contain shocks or develop
discontinuities. One option for improving the numerical treatment of the spurious
oscillations that occur near these artifacts is through the application of a limiter. The
cells where such treatment is necessary are referred to as troubled cells.

In [11], a multiwavelet troubled-cell indicator was introduced, which is used to
detect discontinuities in (the derivatives of) the DG approximation. This indicator
used the global DG approximation to detect troubled cells. However, because
discontinuities are local phenomena, it is useful to find the relation between jumps
in (derivatives of) the DG approximation and multiwavelet coefficients.
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In this paper, we investigate the relation between the multiwavelet expansion
and the DG formulation, [2, 3, 11]. We show that the multiwavelet coefficients are
related to the jumps in (derivatives of) the DG approximation. Furthermore, we use
this information to slightly modify the multiwavelet troubled-cell indicator [11].
We demonstrate the robust performance of this indicator on one-dimensional test
problems, using the moment limiter in the identified troubled cells [9].

The outline of this paper is as follows: in Sect. 2, the relation between DG
approximations and multiwavelet coefficients and the definition of the modified
multiwavelet troubled-cell indicator are given. The effectivity of this method is
presented in Sect. 3. We conclude with a discussion and future work in Sect. 4.

2 DG Approximations and Multiwavelet Coefficients

In this section, we present the relation between a DG approximation on 2n elements
and the coefficients of the multiwavelet expansion. Here, we only investigate the
one-dimensional domain Œ�1; 1�. This derivation can be easily extended to general
domains in one and two dimensions [11].

For the sake of brevity, we neglect discussion of the DG scheme [4–7].

2.1 Multiwavelet Decomposition

In [11], it was shown that any global one-dimensional DG approximation of degree
k can be written as

uh.x/ D 2� n
2

2n�1X
jD0

kX
`D0

u.`/j �
n
`j.x/;

where �n
`j are the scaling functions related to the scaled Legendre polynomials. The

corresponding multiwavelet decomposition is

uh.x/ D
kX

`D0
s0`0�`.x/C

n�1X
mD0

2m�1X
jD0

kX
`D0

dm
`j 

m
`j .x/;

where s0`0 are the scaling-function coefficients belonging to uh, and dm
`j are the

corresponding multiwavelet coefficients, [3, 11]. The multiwavelets  ` have been
developed by Alpert [1], and are also explained in [8].

It is useful to note that this expansion has n levels, where level 0 gives only coarse
details and level n�1 gives the finest details. Level n�1 is the most important level
for the multiwavelet decomposition, since the multiwavelet contribution at this level
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Fig. 1 Multiwavelet  n�1
`j is

a piecewise polynomial on In
2j

and In
2jC1

| |
In−1
j

| | |
In2 j In2 j+1

x2 j+1=2

is used in the multiwavelet troubled-cell indicator, see Sect. 2.4 and [11]. Using
dilation and translation, the multiwavelets at level n � 1 are defined as

 n�1
`j .x/ D 2.n�1/=2 `.2n�1.xC 1/� 2j� 1/; x 2 In�1

j ; (1)

where

In�1
j D .�1C 2�nC2j;�1C 2�nC2. jC 1/�: (2)

By construction, multiwavelets  ` are piecewise polynomials on Œ�1; 0� and Œ0; 1�.
Extending this relation to level n � 1,  n�1

`j is a piecewise polynomial on In
2j and

In
2jC1, as visualized in Fig. 1. Note that these elements are in the DG mesh.

Note that the DG approximation in In�1
j is discontinuous at the boundary

x2jC1=2 D �1C 2�nC2. jC 1=2/ WD yj: (3)

2.2 Multiwavelets and Vanishing Moments

Multiwavelets have a vanishing-moment property. Using a DG approximation space
of degree k, each multiwavelet  `, ` 2 f0; : : : ; kg, is a piecewise polynomial of
degree k, and its first `C kC 1 moments vanish:

Z 1

�1
xm `.x/ dx D 0; m D 0; : : : ; `C k; (4a)

[1, 8]. This means that

Z 0

�1
xm `.x/ dx D �

Z 1

0

xm `.x/ dx; (4b)

and that the value in Eq. (4b) is only nonzero if xm `.x/ is odd.
In the following lemma, the vanishing-moment property is extended to the

decomposition level n � 1.
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Lemma 1 Let uh be the DG approximation of degree k on Œ�1; 1�, using 2n

elements, and let f `gk`D0 be the corresponding multiwavelet basis. Then, the
following relation holds:

Z
In�1
j

.x � yj/
m n�1

`j .x/ dx D 0; m D 0; : : : ; kC `; j D 0; : : : ; 2n�1 � 1; (5)

where  n�1
`j , In�1

j and yj are defined as in Eqs. (1)–(3).

Proof Using Eqs. (1)–(3), the left-hand side of Eq. (5) equals

2
n�1
2

Z �1C2�nC2. jC1/

�1C2�nC2j

�
xC 1 � 2�nC2

�
jC 1

2

		m

 `.2
n�1.xC 1/� 2j� 1/ dx:

(6)

Applying the transformation z D 2n�1.x C 1/ � 2j � 1, Eqs. (5) and (6) transform
into

Z
In�1
j

.x � yj/
m n�1

`j .x/ dx D 2.mC1=2/.�nC1/ �
Z 1

�1
zm `.z/ dz D 0; (7)

using the relation in Eq. (4a). ut
A direct consequence of Lemma 1 is the following result:

Corollary 1

Z yj

�1C2�nC2 j
.x � yj/

m n�1
`j .x/ dx D �

Z �1C2�nC2. jC1/

yj

.x � yj/
m n�1

`j .x/ dx: (8)

This property will be used in Sect. 2.3 in order to derive the relation between
multiwavelets and jumps in (the derivatives of) the DG approximation.

2.3 Jumps in DG Approximations and Multiwavelet
Coefficients

In this section, it will be shown that the multiwavelet coefficients on level n � 1 are
related to jumps in (derivatives of) the DG approximation. In Walnut [12], the ideas
were explained for the Haar wavelet system, and general functions f .
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The multiwavelet coefficient dn�1
`j is computed by a projection of the DG

approximation onto the space of multiwavelets [3]:

dn�1
`j D

Z
In�1
j

uh.x/ 
n�1
`j .x/ dx: (9)

Below we relate the value of this coefficient to the DG approximation.

Theorem 1 Let uh be a DG approximation of degree k on Œ�1; 1�, using 2n elements.
Then the multiwavelet coefficients on level n � 1 of the decomposition are equal to

dn�1
`j D 2�

n�1
2

kX
mD0

cn
m` �



u.m/h .yCj / � u.m/h .y�j /

�
; (10a)

with

cn
m` D

2.�nC1/m

mŠ
�
Z 1

0

xm `.x/ dx; (10b)

` D 0; : : : ; k, j D 0; : : : ; 2n�1 � 1.

Proof In general, the DG approximation, uh, is a piecewise polynomial of degree
k on element In�1

j , with a discontinuity at yj (see Fig. 1). This means that we can

express uh as a Taylor polynomial about y�j in element In
2j and about yCj in In

2jC1:

uh.x/ D uh.y
�
j /C u0h.y�j /.x � yj/C : : :C 1

kŠ
u.k/h .y

�
j /.x � yj/

k; x 2 In
2j; (11a)

uh.x/ D uh.y
C
j /C u0h.yCj /.x � yj/C : : :C 1

kŠ
u.k/h .y

C
j /.x � yj/

k; x 2 In
2jC1:

(11b)

Using this relation in Eq. (9), multiwavelet coefficient dn�1
`j can be expressed as

dn�1
`j D

kX
mD0

1

mŠ
u.m/h .y�j /

Z yj

�1C2�nC2 j
.x � yj/

m n�1
`j .x/ dx

C
kX

mD0

1

mŠ
u.m/h .yCj /

Z �1C2�nC2. jC1/

yj

.x � yj/
m n�1

`j .x/ dx: (12)
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Using Corollary 1, we arrive at

dn�1
`j D

kX
mD0

1

mŠ



u.m/h .yCj /� u.m/h .y�j /

� Z �1C2�nC2. jC1/

yj

.x � yj/
m n�1

`j .x/ dx:

(13)

Note that the integral in Eq. (13) is equal to the integral in the left-hand side of
Eq. (7), except for the lower integration limit. Using the same transformation as in
Eq. (7), the theorem is proved. ut
This theorem gives a direct relation between multiwavelet coefficients dn�1

`j on
level n � 1 and jumps in (derivatives of) the DG approximation over the element
boundary x2jC1=2. Since the DG method adopts a discontinuous nature at element
boundaries, the wavelet coefficients are in general never exactly equal to zero.
However, when the underlying function is sufficiently smooth, the inter-element
jumps in the approximation and its derivatives will be noticeably smaller than when
a discontinuity (in one of the derivatives) is present. This information can be used
to detect troubled cells. In theory, it is possible that large jumps are cancelled in the
summation of Eq. (10a). In practice, however, this will not occur at more than one
successive time step and therefore, the impact will be negligible.

By the vanishing-moment property, cn
m` is only nonzero when xm `.x/ is an

odd function [Eq. (4)]. Because  k is an odd function [1], coefficient cn
0k is always

nonzero [Eqs. (4) and (10)]. Therefore, dn�1
kj contains information about the jump

uh.y
C
j / � uh.y�j /, and this coefficient will be used for indication.

2.4 Modified Multiwavelet Troubled-Cell Indicator

In this section we discuss a slight modification to the multiwavelet troubled-cell
indicator introduced in [11].

Note that dn�1
kj contains information about boundary x2jC1=2, j D 0; : : : ; 2n�1�1.

In order to also investigate boundaries x2j�1=2, we virtually renumber the internal
elements, I1; : : : ; I2n�2, to I0; : : : ; I2n�3, and apply the decomposition procedure on
these elements as well.

Similar to [11], we detect an element as troubled when

jdn�1
kj j > C �maxfjdn�1

kj j; j D 0; : : : ; 2n � 1g; C 2 Œ0; 1�: (14)

The element where jdn�1
kj j is maximal, is assumed to be the element where the

strongest shock occurs. If C D 1, then no element will be detected. In this way,
the value of C is a useful tool to prescribe the strictness of the limiter. The lower the
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value of C, the more cells are limited. For each problem, the optimal value of C will
be obtained by using several tests. This troubled-cell indicator is combined with the
moment limiter [9].

Notice that this approach is much faster than the original approach in [11]. Here,
we do not need to compute multiwavelet averages over each element. Furthermore,
the new procedure is more accurate, as all boundaries are investigated by the
indicator.

3 Numerical Results

In [11], many numerical test cases are used to show the effectivity of the multi-
wavelet troubled-cell indicator, both in one and two dimensions. In this section, we
present the results using the modified multiwavelet troubled-cell indicator for Sod’s
shock tube [10] and the blast-wave problem [13]. The moment limiter [9] is applied
in the troubled cells. In Figs. 2 and 3, time-history plots of detected troubled cells
are shown, together with the approximations at the final time.

For Sod’s shock tube, it is clearly visible that both the shock and the contact
discontinuity are detected. Note that also one end point of the rarefaction wave
(where the derivative of the approximation is discontinuous) is detected for k D 1.
This means that our indicator is very accurate if the value of C is chosen properly.

The blast-wave problem is extremely nonlinear. However, it should be noted that
only a few elements should be limited in order to get nonoscillatory results. Our
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Fig. 2 Sod’s shock tube, troubled cells and approximation at T D 2, using C D 0:1, 256 elements.
(a) k D 1. (b) k D 2. (c) k D 3. (d) k D 1. (e) k D 2. (f) k D 3
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Fig. 3 Blast-wave problem, troubled cells and approximation at T D 0:038, using C D 0:05, 512
elements. (a) k D 1. (b) k D 2. (c) k D 3. (d) k D 1. (e) k D 2. (f) k D 3

parameter C is a useful tool to prevent limiting too many elements. The multiwavelet
indicator detects regions that are visible in the exact shock solution, which was given
by Woodward et al. [13].

The proper choice of C is ongoing work.

4 Conclusions

In this paper we have explained the relation between jumps in (derivatives of)
the DG approximation and the multiwavelet expansion in order to identify trou-
bled cells. Furthermore, a modified multiwavelet troubled-cell indicator has been
constructed, which is less computationally expensive and more accurate than the
original detector in [11]. In the numerical results, we demonstrated that this
technique performs well, even in the vicinity of a strong shock with weaker local
shocks.

Future work will be to see if we can improve upon the performance in detecting
local structures, to decide in advance which value of the parameter we should use,
and to extend this to unstructured meshes.
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Efficient and High-Order Explicit Local Time
Stepping on Moving DG Spectral Element
Meshes

Andrew R. Winters and David A. Kopriva

Abstract We outline and extend results for an explicit local time stepping (LTS)
strategy designed to operate with the discontinuous Galerkin spectral element
method (DGSEM). The LTS procedure is derived from Adams-Bashforth multirate
time integration methods. The new results of the LTS method focus on paralleliza-
tion and reformulation of the LTS integrator to maintain conservation. Discussion
is focused on a moving mesh implementation, but the procedures remain applicable
to static meshes. In numerical tests, we demonstrate the strong scaling of a parallel,
LTS implementation and compare the scaling properties to a parallel, global time
stepping (GTS) Runge-Kutta implementation. We also present time-step refinement
studies to show that the redesigned, conservative LTS approximations are spectrally
accurate in space and have design temporal accuracy.

1 Introduction

In this work we describe and evaluate a high-order local time stepping (LTS)
integrator designed for use with the nodal discontinuous Galerkin spectral element
methods (DGSEM). In particular, this paper serves as an update to the work in [13].
We will demonstrate the parallelizability of the LTS procedure on moving meshes as
well as refactor the LTS strategy to ensure the approximation remains conservative.
The LTS method [13] is similar to that presented by Gödel et al. [5] where we use
an Adams-Bashforth time integrator as a base for the LTS strategy and compute
intermediate coupling terms with polynomial interpolants in time. The method of
Gödel et al. constructs a time interpolant of the entire time derivative (RHS) term to
compute the coupling between time scales [5]. Our method differs as we construct a
time interpolant of the solution along element boundaries and use the reconstructed
solution value to compute the time derivative at intermediate times [13]. Both LTS
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integrators are non-conservative, but the structure of our time interpolation strategy
allows us to derive a conservative version here.

The paper is organized as follows: Sect. 2 provides a brief overview of the mov-
ing domain, arbitrary Lagrangian-Eulerian semi-discrete discontinuous Galerkin
spectral element approximation (ALE-DGSEM). In Sect. 3 we discuss the LTS
procedure of [13], extending the strategy with respect to parallelization and
conservation. We give numerical results in Sect. 4 that show strong scaling of the
parallel LTS procedure and a time-step refinement study to show the design accuracy
of the new conservative LTS scheme. Section 5 presents concluding remarks.

2 Semi-discrete DG Approximation of an ALE Conservation
Law

We study the approximation of problems modeled by a system of conservation laws

qt Cr �F D 0; (1)

on the moving domain˝t.
The development of an ALE-DGSEM approximation has the following steps:

The moving physical domain is decomposed into multiple elements with moving
boundaries. Each moving element is mapped onto a static reference element E D
Œ�1; 1�d, d is the number of spatial dimensions, where a strong form of the equations
still applies [4, 10, 11],

Qqt Cr� � F D 0; (2)

with

Qq D J q;

F D J ai � .F � qxt/;
(3)

and

J ai
n D �Oxi � r� � .xlr�xm/; i D 1; 2; 3I n D 1; 2; 3I .n;m; l/ cyclic;

J D a1 � .a2 � a3/:
(4)

For complete details on the ALE transformation of the conservation law see
Acosta and Kopriva [1]. Notice that in the transformed variables (3) the solution
Qq incorporates the time-dependent Jacobian J and the flux F incorporates the mesh
velocity xt.
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The divergence-free form of the contravariant basis vectors (4) is particularly
important to prevent spurious oscillations generated by the mesh in the solution on
curved sided hexahedral elements [8]. However, for two dimensional problems and
straight-sided hexahedral meshes the less computationally intensive, cross product
formulation [9]

J ai D Jr� i D aj � ak .i; j; k/ cyclic; (5)

is sufficient to prevent the generation of spurious waves [8].
A nodal DG method approximation imposes that the solution and fluxes are

approximated by polynomials of degree less than or equal to N in each element,
i.e., Qq � QQ 2 P

N and F � QF 2 P
N . It starts with the weak form of the Eq. (2)

Z
E
. QQt Cr � QF/' d� D 0: (6)

There is no continuity of ' 2 P
N assumed between elements. We then integrate by

parts and replaces boundary fluxes with the solution of a Riemann solver to obtain
the DG approximation on the reference element

Z
E

QQt' d� C
Z
@E

QF� � On�' dS �
Z

E

QF � r' d� D 0: (7)

To complete the spatial discretization, we choose the test function and location of
the nodes in the approximation. For the test function,', we select the Lagrange basis
that interpolates the Legendre-Gauss nodes. We approximate the integrals in (7) with
Legendre-Gauss quadrature and arrive at the semi-discrete approximation of (2)

d QQijk

dt
C

3X
nD1

D�n QFn
ijk D 0; (8)

where

D�1
QF1ijk D

"
QF�.1; 	j; �k/

`i.1/

!
.�/
i

� QF�.�1; 	j; �k/
`i.�1/
!
.�/
i

#
C

NX
mD0
QFmjk OD.�/

im ; (9)

etc., and OD is the transpose of the derivative matrix scaled by the quadrature weights
[9].

The primary work in the approximation (9) is to compute the fluxes QFn
ijk from the

solution and to evaluate the Riemann solver at element faces, e.g. QF�.�1; 	j; �k/.
Apart from the solution of the Riemann problem, the components of (9) are
computed locally on each element.
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3 Local Time Stepping Strategy

To integrate (8) in time we select the explicit local time stepping (LTS) method
using an Adams-Bashforth linear multistep method described in [13], where the
motivation and analysis of the LTS method is explored at length.

The crux of the LTS procedure lies in the locality of a DG approximation.
The only coupling is through the Riemann problem which must be solved at the
boundary of each element. The LTS strategy can integrate elements at different time
scales. Thus, it may occur that the solution in an element and a neighbor reside at
different times. To reconstruct the solution in the neighbor to be at the same time as
the solution in the current element the LTS procedure uses a polynomial interpolant
in time. Now it is possible to solve the Riemann problem in the current element and
integrate forward one local time step.

Though this LTS strategy is computationally efficient [13], it has two important
aspects which deserve consideration: parallelization and conservation. As the LTS
integrator exploits the locality of the DGSEM approximation, the computation
remains highly localized. So, the LTS integrator does not change the fact that the
DGSEM is an embarrassingly parallel procedure [3]. We describe the parallelization
and a particular load balancing of the LTS integrator in Sect. 3.1. The use of
interpolants in time to recover the solution on neighboring elements renders the
LTS method non-conservative. However, we redesign the method of [13] to maintain
conservation in Sect. 3.2.

3.1 Parallelization

Due to the weak coupling the DGSEM approximation is inherently parallel. In
fact, for a global time stepping integrator, the naïve approach of load balancing
by partitioning a mesh into equally sized sub-meshes leads to a highly efficient
implementation [2, 3].

The parallelization of the LTS-DGSEM is largely the same as a global time
stepping integrator. First the computation is partitioned into subproblems. Next, one
breaks the computation into components along partition edges and components in
the partition interior. While sending necessary neighbor data to other processes,
local calculations can be performed to hide the latency. The only difference arises in
whether one sends the current solution on a given element (if the neighbor’s solution
is at the same point in time) or if one sends the solution that is reconstructed using
a time interpolant.

The major change for the parallel LTS procedure is in the load balancing. At
the beginning of the LTS procedure elements of similar size are placed into groups.
Because small elements are integrated in time more often than large elements, we
do not want to pack many small elements into a single partition. A simple strategy
to balance the load of a parallel LTS computation is to weight elements in the
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partitioning process by size [6]. We show strong scaling of a unstructured mesh,
parallel LTS implementation using this load balancing strategy on a small cluster
in Sect. 4. However, for parallel implementations on structured meshes or those
with sophisticated data structures to assist with latency hiding, e.g. [2], weighting
elements according to size may result in a suboptimal strategy to balance the
load. For large clusters we may want to limit the number of and/or volume of
communications between partitions [2, 6, 7].

3.2 Conservation

Next we address the issue of conservation loss in the LTS procedure. To simplify
the discussion we make the assumption that the approximation has only two time
scales, but the new, conservative LTS procedure easily generalizes to an arbitrary
number.

To redesign the LTS strategy and maintain conservation of the DGSEM we
abandon the use of polynomial interpolants to recover an unknown solution value
at an intermediate time. Instead, we use an idea of Tirupathi et al. [12] where we
redefine the Adams-Bashforth method to allow the solution to evolve in the small
time scale at any time interfaces. Then, the boundary flux terms at the half time step
required by the Riemann solver in the small time scale neighbor are available.

The approximation in the small time scale remains conservative, but the large
time scale does not. The update to the solution in the large time scale is missing the
numerical flux contribution at the half time step, QF�nC1=2. Because the boundary and
interior terms of the DGSEM approximation are decoupled, we adjust the boundary
terms to integrate at the small time scale at the temporal interface. For instance,
integrating the boundary flux in the x-direction on the right edge of an element that
borders the small time scale we have

Z tnC1

tn

Iijk ds D
Z tnC1

tnC1=2

Iijk dsC
Z tnC1=2

tn

Iijk ds; (10)

where

Iijk D QF�.1; 	j; �k/
`i.1/

!
.�/
i

: (11)

By separating the time integral of the surface contributions (10) to include the
intermediate time tnC1=2 we can ensure that the LTS method remains conservative
because the boundary flux terms at half time steps are incorporated into the large
time scale approximation. So, at each time, the interface fluxes are defined uniquely
for adjacent elements.
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4 Numerical Results

We provide three numerical examples that combine the ALE-DGSEM spatial
discretization with the LTS time integrator. The first solves a two-dimensional
moving mesh problem to demonstrate the strong scaling of the parallelized LTS
method on up to 200 processors. Second, we compare the scaling properties of
a parallel LTS integrator and a parallel global time stepping (GTS) Runge-Kutta
method. The final test problem shows the spectral convergence and design time
accuracy of the newly described, conservative LTS method from Sect. 3.2 on a static,
one dimensional mesh with local refinement.

We solve the classical wave equation written as a conservation law, e.g. in two
dimensions

2
4p

u
v

3
5

t

C
2
4�xt 
c2 0

1=
 �xt 0

0 0 �xt

3
5
2
4p

u
v

3
5

x

C
2
4�yt 0 
c2

0 �yt 0

1=
 0 �yt

3
5
2
4p

u
v

3
5

y

D 0; (12)

where xt D .xt; yt/ is the mesh velocity incorporated from the ALE transformations.
We choose initial and boundary conditions so that the solution is a Gaussian plane
wave

2
4p

u
v

3
5 D

2
64
1
kx

c
ky


c

3
75 e�

.kx.x�x0/
2Cky.y�y0/

2�ct/2

d2 ; (13)

with the wavevector k normalized to satisfy k2x C k2y D 1. We take c D 1, 
 D 1,
and vary x0 and y0 to adjust the initial position. For the parallel speedup examples
in Sect. 4.1, we take d D !=2pln.2/, ! D 0:2, and choose x0 D 0:0, y0 D �0:5 in
the wave form (13).

4.1 Moving Mesh, Parallel Local Time Stepping

We show that the ALE-DGSEM with LTS remains embarrassingly parallel. To
balance the computational load we assign each element in the mesh a weight
according to size in METIS [6]. For the LTS parallel speedup test we consider a
moving domain of 5000 elements with polynomial order N D 7 in each direction
on each element. We integrate the solution to the wave equation (12) up to T D 1:0.
We run the calculation on up to 200 processors and show the speedup versus a serial
implementation of the LTS algorithm in Fig. 1. For a large number of processors
the parallel implementation of LTS has 93 % efficiency. For a small number of
processors we see that speedup can be super linear due to cache effects [3].
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Fig. 1 Speedup of a moving mesh 2D ALE-DGSEM approximation with LTS

From previous work by Kelly and Giraldo [7] it is not surprising that we
observe strong scaling for the LTS-DGSEM approximation. The test problem
we consider, seventh order polynomial approximation in each spatial direction
on each of 5000 elements for each governing equation, means that dividing the
work among 200 processors yields 1600 grid points per processor per equation.
The volume of computation, in this case, was enough to hide the latency of
the communication. Kelly and Giraldo [7] developed a geometric predictor of
scalability that uses a ratio of the volume of communication to the surface area
of partition edges that defines the computational cost. They determined that, if the
ratio of the on-processor work to communication is � 100 then the communication
is overwhelmed by the computation and we observe strong scalability. For two-
dimensional approximations this ratio is given by

RN
P D

VN
P

SN
P

�
�

K

P

	 1
3

.N C 1/2; (14)

where K is the number of elements, P is the number of processors, and N is the
polynomial order of the approximation. We find for the parallel LTS test problem
that R7

200 � 187 and therefore would expect to see strong scaling of the parallel
approximation [7].

Next we compare the LTS and GTS parallel implementations. To balance the load
for the GTS computation we divide the workload into equal pieces using METIS.
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The load balancing for the LTS implementation is the same as the previous example.
For the computation we solve the wave equation on a moving domain with 394
elements with polynomial order N D 7 in each direction on each element. The
calculation was distributed up to a maximum of 12 processors.

We note that the parallel LTS speedup compounds with the natural speedup
gained when one switches from a GTS to the LTS integrator. We see that both the
global and local time integrator implementations present strong scaling, but the LTS
can offer significant speedup without a large number of processors. For instance,
we found that, for 12 processors, the parallel GTS integrator has a speedup of 13.3
and the LTS integrator a parallel speedup of 12.45. Previously, we found that the
LTS integrator can achieve a factor of 10.5 speedup between global and local time
stepping on a moving mesh [13]. Intuitively, the speedup of the LTS method depends
on the level of mesh refinement and the ratio of large to small elements. A detailed
theoretical and computational analysis of meshes that present the greatest speedup
for the LTS integrator is provided in [13]. So, the parallel LTS integrator has a
total speedup of (10.5)(12.45) = 130.7. Thus, the parallel LTS algorithm offers a
competitive choice when one wants to solve large problems in parallel without the
use of a large cluster. Figure 2 shows the comparison of the total speedup of a
parallel, LTS implementation and a parallelized GTS integrator on up to twelve
processors.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

140

Fig. 2 Comparison between the parallel implementations of a LTS and GTS integrator. The LTS
results present the total speedup, which combine the speedup of the parallel implementation and
the speedup observed between the LTS and GTS integrators. Both methods are compared to the
GTS serial implementation
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Fig. 3 Spectral convergence (left) and design third order time accuracy (right) of the conservative
LTS integrator. (Bottom) The one-dimensional mesh with three element sizes used for convergence
testing

4.2 Conservative Local Time Stepping

We demonstrate that the new, conservative LTS-DGSEM integrator retains spectral
accuracy in space and design accuracy in time. We consider a one-dimensional
problem on the domain˝ D Œ�3; 3�. We divide the domain into a mesh of K D 30
elements with three element sizes, shown in Fig. 3. For the one-dimensional wave
equation, we choose the same plane wave parameters and final time T as the parallel
test cases, except x0 D �0:5.

The left of Fig. 3 shows exponential convergence in space until N D 17, where
the error is dominated by time integrator errors. Here �t is the time step in the
largest group of elements. We see that when the value of �t is halved the error in
the approximation is reduced by a factor of 8.

The right plot of Fig. 3 demonstrates design third order temporal accuracy in each
group of elements. To produce the plot, we fixed N D 20, T D 1:0 and let �t range
from 1=2500 to 1=5000.

5 Conclusion

In this paper we demonstrated that the LTS integrator derived in [13] remains embar-
rassingly parallel and, with a slight restructure of the time integral approximation,
can be made conservative. For the explicit LTS and GTS parallel implementations
and test problems studied in this paper, we have found that the LTS method to be
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highly parallelizable and competitive with a GTS method on a small cluster. We
redesigned the LTS integrator to maintain conservation and showed this redesign
did not affect the method’s accuracy. Though promising, the issue of load balancing
a parallel LTS method of this type remains an open question on very large scale
computations.
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