
Chapter 11
How To Best Sample a Solution Manifold?

Wolfgang Dahmen

Abstract Model reduction attempts to guarantee a desired “model quality,”
e.g. given in terms of accuracy requirements, with as small a model size as possible.
This chapter highlights some recent developments concerning this issue for the
so-called Reduced Basis Method (RBM) for models based on parameter-dependent
families of PDEs. In this context the key task is to sample the solution manifold
at judiciously chosen parameter values usually determined in a greedy fashion.
The corresponding space growth concepts are closely related to the so-called weak
greedy algorithms in Hilbert and Banach spaces which can be shown to give rise
to convergence rates comparable to the best possible rates, namely the Kolmogorov
n-width rates. Such algorithms can be interpreted as adaptive sampling strategies
for approximating compact sets in Hilbert spaces. We briefly discuss the results
most relevant for the present RBM context. The applicability of the results for weak
greedy algorithms has however been confined so far essentially to well-conditioned
coercive problems. A critical issue is therefore an extension of these concepts to a
wider range of problem classes for which the conventional methods do not work
well. A second main topic of this chapter is therefore to outline recent developments
of RBMs that do realize n-width rates for a much wider class of variational problems
covering indefinite or singularly perturbed unsymmetric problems. A key element
in this context is the design of well-conditioned variational formulations and their
numerical treatment via saddle point formulations. We conclude with some remarks
concerning the relevance of uniformly approximating the whole solution manifold
also when the quantity of interest is only the value of a functional of the parameter-
dependent solutions.
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11.1 Introduction

Many engineering applications revolve around the task of identifying a configura-
tion that in some sense best fits certain objective criteria under certain constraints.
Such design or optimization problems typically involve (sometimes many) parame-
ters that need to be chosen so as to satisfy given optimality criteria. An optimization
over such a parameter domain usually requires a frequent evaluation of the
states under consideration which typically means to frequently solve a parameter-
dependent family of operator equations

Byu D f ; y 2 Y: (11.1)

In what follows the parameter set Y is always assumed to be a compact subset
of R

p for some fixed p 2 N and By should be thought of as a (linear) partial
differential operator whose coefficients depend on the parameters y 2 Y . Moreover,
By is viewed as an operator taking some Hilbert space U one-to-one and onto the
normed dual V 0 of some (appropriate) Hilbert space V where U and V are identified
through a variational formulation of (11.1) as detailed later, see for instance (11.30).
Recall also that the normed dual V 0 is endowed with the norm

kwkV0 WD sup
v2V;v¤0

hw; vi
kvkV

; (11.2)

where h�; �i denotes the dual pairing between V and V 0.
Given a parametric model (11.1) the above mentioned design or optimization

problems concern now the states u.y/ 2 U which, as a function of the parameters
y 2 Y , form what we refer to as the solution manifold

M WD fu.y/ WD B�1
y f W y 2 Yg: (11.3)

Examples of (11.1) arise, for instance, in geometry optimization when a transfor-
mation of a variable finitely parametrized domain to a reference domain introduces
parameter-dependent coefficients of the underlying partial differential equation
(PDE) over such domains, see, e.g., [14]. Parameters could describe conductivity,
viscosity, or convection directions, see, e.g., [10, 23, 25]. As an extreme case,
parametrizing the random diffusion coefficients in a stochastic PDE, e.g., by
Karhunen-Loew or polynomial chaos expansions, leads to a deterministic paramet-
ric PDE involving, in principle, even infinitely many parameters, p D 1, see, e.g.,
[7] and the literature cited there. We will, however, not treat this particular problem
class here any further since, as will be explained later, it poses different conceptual
obstructions than those in the focus of this chapter, namely the absence of ellipticity
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which makes conventional strategies fail. In particular, we shall explain why for
other relevant problem classes, e.g., those dominated by transport processes, M is
not “as visible” as for elliptic problems and how to restore “full visibility.”

11.1.1 General Context - Reduced Basis Method

A conventional way of searching for a specific state in M or optimize over M is to
compute approximate solutions of (11.1) possibly for a large number of parameters
y. Such approximations would then reside in a sufficiently large trial space UN � U
of dimension N , typically a finite element space. Ideally one would try to assure
that UN is large enough to warrant sufficient accuracy of whatever conclusions
are to be drawn from such a discretization. A common terminology in reduced
order modeling refers to UN as the truth space providing accurate computable
information. Of course, each such parameter query in UN is a computationally
expensive task so that many such queries, especially in an online context, would
be practically infeasible. On the other hand, solving for each y 2 Y a problem in
UN would just treat each solution u.y/ as some “point” in the infinite-dimensional
space U, viz. in the very large finite-dimensional space UN . This disregards the fact
that all these points actually belong to a possibly much thinner and more coherent
set, namely the low-dimensional manifold M which, for compact Y and well-posed
problems (11.1), is compact. Moreover, if the solutions u.y/, as functions of y 2 Y ,
depend smoothly on y there is hope that one can approximate all elements of M
uniformly over Y with respect to the Hilbert space norm k � kU by a relatively small
but judiciously chosen linear space Un. Here “small” means that n D dim Un is
significantly smaller than N D dim UN , often by orders of magnitude. As detailed
later the classical notion of Kolmogorov n-widths quantifies how well a compact
set in a Banach space can be approximated in the corresponding Banach norm by
a linear space and therefore can be used as a benchmark for the effectiveness of a
model reduction strategy.

Specifically, the core objective of the Reduced Basis Method (RBM) is to find
for a given target accuracy " a possibly small number n D n."/ of basis functions
�j; j D 0; : : : ; n; whose linear combinations approximate each u 2 M within
accuracy at least ". This means that ideally for each y 2 Y one can find coefficients
cj.y/ such that the expansion

un.x; y/ WD
n."/X

jD0

cj.y/�j.x/ (11.4)

satisfies

ku.y/ � un.y/kU � "; y 2 Y: (11.5)

Thus projecting (11.1) into the small space Un WD span f�0; : : : ; �ng reduces each
parameter query to solving a small n�n system of equations where typically n � N .
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11.1.2 Goal Orientation

Recall that the actual goal of reduced modeling is often not to recover the full fields
u.y/ 2 M but only some quantity of interest I.y/ typically given as a functional
I.y/ WD `.u.y// of u.y/ where ` 2 U0. Asking just the value of such a functional
is possibly a weaker request than approximating all of u.y/ in the norm k � kU .
In other words, one may have j`.u.y// � `.un.y//j � " without insisting on the
validity of (11.5) for a tolerance of roughly the same size. Of course, one would
like to exploit this in favor of online efficiency. Duality methods as used in the
context of goal-oriented finite element methods [3] are indeed known to offer ways
of economizing the approximate evaluation of functionals. Such concepts apply in
the RBM context as well, see, e.g., [16, 21]. However, as we shall point out later,
guaranteeing that j`.u.y// � `.un.y//j � " holds for y 2 Y ultimately reduces to
tasks of the type (11.5) as well. So, in summary, understanding how to ensure (11.5)
for possibly small n."/ remains the core issue and therefore guides the subsequent
discussions.

Postponing for a moment the issue of how to actually compute the �j, it is
clear that they should intrinsically depend on M rendering the whole process
highly nonlinear. To put the above approach first into perspective, viewing u.x; y/

as a function of the spatial variables x and of the parameters y, (11.4) is just
separation of variables where the factors cj.y/, �j.x/ are a priori unknown. It is
perhaps worth stressing though that, in contrast to other attempts to find good tensor
approximations, in the RBM context explicit representations are only computed for
the spatial factors �j while for each y the weight cj.y/ has to be computed by solving
a small system in the reduced space Un. Thus the computation of f�0; : : : ; �n."/g
could be interpreted as dictionary learning and, loosely speaking, n D n."/ being
relatively small for a given target accuracy, means that all elements in M are
approximately sparse with respect to the dictionary f�0; : : : ; �n; : : :g.

The methodology just outlined has been pioneered by Y. Maday, T.A. Patera, and
collaborators, see, e.g., [6, 21, 23, 25]. As indicated before, RBM is one variant of
a model order reduction paradigm that is specially tailored to parameter dependent
problems. Among its distinguishing constituents one can name the following. There
is usually a careful division of the overall computational work into an offline phase,
which could be computationally intense but should remain manageable, and an
online phase, which should be executable with highest efficiency taking advantage
of a precomputed basis and matrix assemblations during the offline phase. It is
important to note that while the offline phase is accepted to be computationally
expensive it should remain offline feasible in the sense that a possibly extensive
search over the parameter domain Y in the offline phase requires for each query
solving only problems in the small reduced space. Under which circumstances this
is possible and how to realize such division concepts has been worked out in the
literature, see, e.g., [23, 25]. Here we are content with stressing that an important
role is played by the way how the operator By depends on the parameter y, namely
in an affine way as stated in (11.18) later below. Second, and this is perhaps the
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most distinguishing constituent, along with each solution in the reduced model one
strives to provide a certificate of accuracy, i.e., computed bounds for incurred error
tolerances [23, 25].

11.1.3 Central Objectives

When trying to quantify the performance of such methods aside from the above-
mentioned structural and data organization aspects, among others, the following
questions come to mind:

(i) for which type of problems do such methods work very well in the sense that
n."/ in (11.5) grows only slowly when " decreases? This concerns quantifying
the sparsity of solutions.

(ii) How can one compute reduced bases f�0; : : : ; �n."/g for which n."/ is nearly
minimal in a sense to be made precise below?

Of course, the better the sparsity quantified by (i) the better could be the payoff
of an RBM. However, as one may expect, an answer to (i) depends strongly on the
problem under consideration. This is illustrated also by the example presented in
§11.5.4. Question (ii), instead, can be addressed independently of (i) in the sense
that, no matter how many basis functions have to be computed in order to meet a
given target accuracy, can one come up with methods that guarantee generating a
nearly minimal number of such basis functions? This has to do with how to sample
the solution manifold and is the central theme in this chapter.

The most prominent way of generating the reduced bases is a certain greedy
sampling of the manifold M. Contriving greedy sampling strategies that give
rise to reduced bases of nearly minimal length, in a sense to be made precise
below, also for noncoercive or unsymmetric singularly perturbed problems is the
central objective in this chapter. We remark though that a greedy parameter search
in its standard form is perhaps not suitable for very high-dimensional parameter
spaces without taking additional structural features of the problem into account.
The subsequent discussions do therefore not target specifically the large amount of
recent work on stochastic elliptic PDEs, since while greedy concepts are in principle
well understood for elliptic problems they are per se not necessarily adequate for
infinitely many parameters without exploiting specific problem-dependent structural
information.

First, we recall in §11.2 a greedy space growth paradigm commonly used in
all established RBMs. To measure its performance in the sense of (ii) we follow
[6] and compare the corresponding distances distU.M; Un/ to the smallest possible
distances achievable by linear spaces of dimension n, called Kolmogorov n-widths.
The fact that for elliptic problems the convergence rates for the greedy errors
are essentially those of the n-widths, and hence rate-optimal, is shown in §11.3
to be ultimately reduced to analyzing the so-called weak greedy algorithms in
Hilbert spaces, see also [4, 13]. However, for indefinite or strongly unsymmetric
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and singularly perturbed problems this method usually operates far from optimality.
We explain why this is the case and describe in §11.4 a remedy proposed in [10].
A pivotal role is played by certain well-conditioned variational formulations
of (11.1) which are then shown to lead again to an optimal outer greedy sampling
strategy also for non-elliptic problems. An essential additional ingredient consists of
certain stabilizing inner greedy loops, see §11.5. The obtained rate-optimal scheme
is illustrated by a numerical example addressing convection-dominated convection-
diffusion problems in §11.5.4. We conclude in §11.6 with applying these concepts
to the efficient evaluation of quantities of interest.

11.2 The Greedy Paradigm

The by far most prominent strategy for constructing reduced bases for a given
parameter-dependent problem (11.1) is the following greedy procedure, see,
e.g., [23]. The basic idea is that, having already constructed a reduced space
Un of dimension n, find an element unC1 D u.ynC1/ in M that is farthest away from
the current space Un, i.e., that maximizes the best approximation error from Un and
then grow Un by setting UnC1 WD Un C span funC1g. Hence, denoting by PU;Un the
U-orthogonal projection onto Un,

ynC1 WD argmaxy2Y ku.y/ � PU;Un u.y/kU; unC1 WD u.ynC1/: (11.6)

Unfortunately, determining such an exact maximizer is computationally way too
expensive even in an offline phase because one would have to compute for a
sufficiently dense sampling of Y the exact solution u.y/ of (11.1) in U (in practice in
UN ). Instead one tries to construct more efficiently computable surrogates R.y; Un/

satisfying

ku.y/ � PU;Un u.y/kU � R.y; Un/; y 2 Y: (11.7)

Recall that “efficiently computable” in the sense of offline feasibility means that
for each y 2 Y , the surrogate R.y; Un/ can be evaluated by solving only a problem
of size n in the reduced space Un. Deferring an explanation of the nature of such
surrogates, Algorithm 1 described below is a typical offline feasible surrogate-based
greedy algorithm (SGA). Clearly, the maximizer in (11.8) below is not necessarily
unique. In case several maximizers exist it does not matter which one is selected.

Strictly speaking, the scheme SGA is still idealized since:

(a) computations cannot be carried out in U;
(b) one cannot parse through all of a continuum Y to maximize R.y; Un/.

Concerning (a), as mentioned earlier computations in U are to be understood
as synonymous to computations in a sufficiently large truth space UN satisfying
all targeted accuracy tolerances for the underlying application. Solving problems in
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Algorithm 1 Surrogate-based greedy algorithm
1: function SGA
2: Set U0 WD f0g, nD 0,
3: while argmaxy2Y R.y; Un/ � tol do
4:

ynC1 WD argmaxy2Y R.y; Un/;

unC1 WD u.ynC1/;

UnC1 WD span
˚
Un; fu.ynC1/g� D span fu1; : : : ; unC1g

(11.8)

5: end while
6: end function

UN is strictly confined to the offline phase and the number of such solves should
remain of the order of n D dim Un. We will not distinguish in what follows between
U and UN unless such a distinction matters.

As for (b), the maximization is usually performed with the aid of a exhaustive
search over a discrete subset of Y . Again, we will not distinguish between a
possibly continuous parameter set and a suitable training subset. In fact, continuous
optimization methods that would avoid a complete search have so far not proven
to work well since each greedy step increases the number of local maxima of the
objective functional. Now, how fine such a discretization for a exhaustive search
should be, depends on how smoothly the u.y/ depend on y. But even when such a
dependence is very smooth a coarse discretization of a high-dimensional parameter
set Y would render a exhaustive search infeasible so that, depending on the problem
at hand, one has to resort to alternate strategies such as, for instance, random
sampling. However, since it seems that (b) can only be answered for a specific
problem class we will not address this issue in this chapter any further.

Instead, we focus on general principles which guarantee the following. Loosely
speaking the reduced spaces based on sampling M should perform optimally in the
sense that the resulting spaces Un have the (near) “smallest dimension” needed to
satisfy a given target tolerance while the involved offline and online cost remains
feasible in the sense indicated above. To explain first what is meant by “optimal” let
us denote the greedy error produced by SGA as

�n.M/U WD max
v2M infNu2Un

kv � NukU D max
y2Y ku.y/ � PU;Un u.y/kU: (11.9)

Note that if we replace in (11.9) the space Un by any linear subspace Wn � U and
infimize the resulting distortion over all subspaces of U of dimension at most n, we
obtain the classical Kolmogorov n-widths dn.M/U quantifying the “thickness” of a
compact set, see (11.21). One trivially has

dn.M/U � �n.M/U; n 2 N: (11.10)

Of course, it would be best if one could reverse the above inequality. We will discuss
in the next section to what extent this is possible.
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To prepare for such a discussion we need more information about how the
surrogate R.y; Un/ relates to the actual error ku.y/ � PU;Un u.y/kU because the
surrogate drives the greedy search and one expects that the quality of the snapshots
found in SGA depends on how “tight” the upper bound in (11.7) is.

To identify next the essential conditions on a “good” surrogate it is instructive to
consider the case of elliptic problems. To this end, suppose that

hByu; vi D by.u; v/ D hf ; vi; u; v 2 U;

is a uniformly U-coercive bounded bilinear form and f 2 U0, i.e., there exist
constants 0 < c1 � C1 < 1 such that

c1kvk2
U � by.v; v/; jby.u; v/j � C1kukUkvkU ; u; v 2 U; y 2 Y; (11.11)

holds uniformly in y 2 Y . The operator equation (11.1) is then equivalent to: given
f 2 U0 and a y 2 Y , find u.y/ 2 U such that

by.u.y/; v/ D hf ; vi; v 2 U: (11.12)

Ellipticity has two important well-known consequences. First, since (11.11) implies
kBykU!U0 � C1, kB�1

y kU0!U � c�1
1 the operator By W U ! U0 has a finite condition

number

�U;U0.By/ WD kBykU!U0kB�1
y kU0!U � C1=c1 (11.13)

which, in particular, means that residuals in U0 are uniformly comparable to errors
in U

C�1
1 kf � By NukU0 � ku.y/ � NukU � c�1

1 kf � By NukU0 ; Nu 2 U; y 2 Y: (11.14)

Second, by Céa’s Lemma, the Galerkin projection …y;Un onto Un is up to a constant
as good as the best approximation, i.e., under assumption (11.11)

ku.y/ � …y;Un u.y/kU � C1

c1

inf
v2Un

ku.y/ � vkU : (11.15)

(When by.�; �/ is in addition symmetric C1=c1 can be replaced by .C1=c1/
1=2.) Hence,

by (11.14) and (11.15),

R.y; Un/ WD c�1
1 sup

v2U

hf ; vi � by.…y;Unu.y/; v/

kvkU
(11.16)

satisfies more than just (11.7), namely it provides also a uniform lower bound

c1

C1

R.y; Un/ � ku.y/ � PU;Un u.y/kU; y 2 Y: (11.17)
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Finally, suppose that by.�; �/ depends affinely on the parameters in the sense that

by.u; v/ D
MX

kD1

�k.y/bk.u; v/; (11.18)

where the �k are smooth functions of y 2 Y and the bilinear forms bk.�; �/ are
independent of y. Then, based on suitable precomputations (in UN ) in the offline
phase, the computation of …y;Un u.y/ reduces for each y 2 Y to the solution of
a rapidly assembled .n � n/ system, and R.y; Un/ can indeed be computed very
efficiently, see [16, 23, 25].

An essential consequence of (11.7) and (11.17) can be formulated as follows.

Proposition 2.1. Given Un � U, the function unC1 generated by (11.8) for R.y; Un/

defined by (11.16) has the property that

kunC1 � PU;Un unC1kU � c1

C1

max
v2M minNu2Un

kv � NukU : (11.19)

Hence, maximizing the residual based surrogate R.y; Un/ (over a suitable discretiza-
tion of Y) is a computationally feasible way of determining, up to a fixed factor
� WD c1=C1 � 1, the maximal distance between M and Un and performs in
this sense almost as well as the “ideal” but computationally infeasible surrogate
R�.�; Un/ WD ku.y/ � PU;Un u.y/kU.

Proof of Proposition 2.1. Suppose that Ny D argmaxy2Y R.y; Un/; y� WD argmaxy2Yku.y/ � PU;Un u.y/kU so that unC1 D u.Ny/. Then, keeping (11.17) and (11.15) in
mind, we have

kunC1 � PU;Un unC1kU D ku.Ny/ � PU;Un u.Ny/kU � c1

C1

R.Ny; Un/ � c1

C1

R.y�; Un/

� c1

C1

ku.y�/ � PU;Un u.y�/kU D c1

C1

max
y2Y

ku.y/ � PU;Un u.y/kU ;

where we have used (11.7) in the second but last step. This confirms the claim. �

Property (11.19) turns out to play a key role in the analysis of the performance
of the scheme SGA.

11.3 Greedy Space Growth

Proposition 2.1 allows us to view the algorithm SGA as a special instance of the
following scenario. Given a compact subset K of a Hilbert space H with inner
product .�; �/ inducing the norm k � k2 D .�; �/, consider the weak greedy Algorithm 2
(WGA) below.
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Algorithm 2 Weak greedy algorithm
1: function WGA
2: Set H0 WD f0g, nD 0, u0 WD 0, fix any 0 < � � 1,
3: given Hn, choose some unC1 2 K for which

min
vn2Hn
kvn � unC1k � � max

v2K
min

vn2Un
kv � vnk DW ��n.K/H ; (11.20)

and set HnC1 WD Hn C span funC1g.
4: end function

Note that again the choice of unC1 is not necessarily unique and what follows
holds for any choice satisfying (11.20).

Greedy strategies have been used in numerous contexts and variants. The current
version is not to be confused though with the weak orthogonal greedy algorithm
introduced in [26] for approximating a function by a linear combination of n terms
from a given dictionary. In contrast, the scheme WGA described in Algorithm 2
aims at constructing a (problem dependent) dictionary with the aid of a PDE model.
While greedy function approximation is naturally compared with the best n-term
approximation from the underlying dictionary (see [2, 26] for related results), a
natural question here is to compare the corresponding greedy errors

�n.K/H WD max
v2K min

vn2Un
kv � vnk DW max distH.K; Un/

incurred when approximating a compact set K with the smallest possible deviation
of K from any n-dimensional linear space, given by the Kolmogorov n-widths

dn.K/H WD inf
dimVDn

sup
v2K

inf
vn2V

kv � vnk D inf
dimVDn

max distH.K; V/; (11.21)

mentioned earlier in the preceding section. One trivially has dn.K/H � �n.K/H for
all n 2 N and the question arises whether there actually exists a constant C such that

�n.K/H � Cdn.K/H ; n 2 N: (11.22)

One may doubt such a relation to hold for several reasons. First, orthogonal greedy
function approximation performs in a way comparable to best n-term approximation
only under rather strong assumptions on the underlying given dictionary. Intuitively,
one expects that errors made early on in the iteration are generally hard to correct
later although this intuition turns out to be misleading in the case of the present set
approximation. Second, the spaces Un generated by the greedy growth are restricted
by being generated only from snapshots in K while the best spaces can be chosen
freely, see the related discussion in [4].

The comparison (11.22) was addressed first in [6] for the ideal case � D 1. In
this case a bound of the form �n.K/H � Cn2ndn.K/H could be established for some
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absolute constant C. This is useful only for cases where the n-widths decay faster
than n�12�n which indeed turns out to be possible for elliptic problems (11.12) with
a sufficiently smooth affine parameter dependence (11.18). In fact, in such a case the
u.y/ can be even shown to be analytic as a function of y, see [7] and the literature
cited there. It was then shown in [4] that the slightly better bound

�n.K/H � 2nC1

p
3

dn.K/H ; n 2 N; (11.23)

holds. More importantly, these bounds cannot be improved in general. Moreover,
the possible exponential loss in accuracy is not due to the fact the greedy spaces are
generated by snapshots from K. In fact, denoting by Ndn.K/H the restricted “inner”
widths, obtained by allowing only subspaces spanned by snapshots of K in the
competition, one can prove that Ndn.K/H � ndn.K/H , n 2 N, which is also sharp
in general [4].

While these findings may be interpreted as limiting the use of reduced bases
generated in a greedy fashion to problems where the n-widths decay exponentially
fast the situation turns out to be far less dim if one does not insist on a direct
comparison of the type (11.22) with n being the same on both sides of the inequality.
In [4, 13] the question is addressed whether a certain convergence rate of the
n-widths dn.K/H implies some convergence rate of the greedy errors �n.K/H . The
following result from [4] gave a first affirmative answer.

Theorem 3.1. Let 0 < � � 1 be the parameter in (11.20) and assume that
d0.K/H � M for some M > 0. Then

dn.K/H � Mn�˛; n 2 N;

for some ˛ > 0, implies

�n.K/H � CMn�˛; n > 0; (11.24)

where C WD q
1
2 .4q/˛ and q WD d2˛C1��1e2.

This means that the weak greedy scheme may still be highly profitable even
when the n-widths do not decay exponentially. Moreover, as expected, the closer
the weakness parameter � is to one, the better, which will later guide the sampling
strategies for constructing reduced bases.

Results of the above type are not confined to polynomial rates. A sub-exponential
decay of the dn.K/H with a rate e�cn˛

, ˛ � 1 is shown in [4] to imply a rate

�n.K/H � C.˛; �/e�Qcn Q̨

; Q̨ D ˛=.1 C ˛/; n 2 N: (11.25)

The principle behind the estimates (11.24), (11.25) is to exploit a “flatness” effect
or what one may call “conditional delayed comparison.” More precisely, given any
� 2 .0; 1/ and defining q WD d2.��/�1e2, one can show that ([4, Lemma 2.2])

�nCqm.K/H � ��n.K/H ) �n.K/H � q1=2dm.K/H ; n 2 N:
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Thus a comparison between greedy errors and n-widths is possible when the greedy
errors do not decay too quickly. This is behind the diminished exponent Q̨ in (11.25).

These results have been improved upon in [13] in several ways employing differ-
ent techniques yielding improved comparisons. Abbreviating �n WD �n.K/H ; dn WD
dn.K/H , a central result in the present general Hilbert space context states that for
any N � 0; K � 1, 1 � m < K one has

KY

iD1

�2
NCi � ��2K

� K

M

�m� K

K � m

�K�m
�2m

NC1d2.K�m/
m : (11.26)

As a first important consequence, one derives from these inequalities a nearly direct
comparison between �n and dn without any constraint on the decay of �n or dn. In
fact, taking N D 0; K D n, and any 1 � m < n in (11.26), using the monotonicity of

the �n, one shows that �2n
n � ��2n

�
n
m

�m�
n

n�m

�n�m
d2.n�m/

m from which one deduces

�n � p
2��1 min

1�m<n
d

n�m
n

m ; n 2 N: (11.27)

This, in particular, gives the direct unconditional comparison

�2n.K/H � ��1
p

2dn.K/H ; n 2 N:

The estimate (11.27) is then used in [13] to improve on (11.25) establishing the
bounds

dn.K/H � C0e�c0n˛ ) �n.K/H �
p

2C0�
�1e�c1n˛

; n 2 N; (11.28)

i.e., the exponent ˛ is preserved by the rate for the greedy errors. Moreover, one can
recover (11.24) from (11.26) (with different constants).

Although not needed in the present context the second group of results in [13]
should be mentioned that concerns the extension of the weak greedy algorithm
WGA to Banach spaces X in place of the Hilbert space H. Remarkably, a direct
comparison between �n.K/X and dn.K/X similar to (11.26) is also established in
[13]. The counterpart to (11.27) reads �2n � 2��1

p
ndn, i.e., one loses a factor

p
n

which is shown, however, to be necessary in general.
All the above results show that the smaller the weakness parameter � the stronger

the derogation of the rate of the greedy errors in comparison with the n-widths.

11.4 What are the Right Projections?

As shown by (11.24) and (11.28), the weak greedy algorithm WGA realizes
optimal rates for essentially all ranges of interest. A natural question is under
which circumstances a surrogate-based greedy algorithm SGA is in this sense also
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rate-optimal, namely ensures the validity of (11.24) and (11.28). Obviously, this is
precisely the case when new snapshots generated through maximizing the surrogate
have the weak greedy property (11.20). Note that Proposition 2.1 says that the
residual-based surrogate (11.16) in the case of coercive problems does ensure the
weak-greedy property so that SGA is indeed rate-optimal for coercive problems.
Note also that the weakness parameter � D c1=C1 is in this case the larger the
smaller the condition number of the operator By is, see (11.13). Obviously, the key
is that the surrogate not only yields an upper bound for the best approximation
error but also, up to a constant, a lower bound (11.17), and the more tightly the
best approximation error is sandwiched by the surrogate the better the performance
of SGA. Therefore, even if the problem is coercive for a very small � D c1=C1,
as is the case for convection-dominated convection-diffusion problems, in view of
the dependence of the bounds in (11.24) and (11.28) on ��1, one expects that the
performance of a greedy search based on (11.16) degrades significantly.

In summary, as long as algorithm SGA employs a tight surrogate in the sense
that

cSR.y; Un/ � inf
v2Un

ku.y/ � vkU � R.y; Un/; y 2 Y; (11.29)

holds for some constant cS > 0, independent of y 2 Y , algorithm SGA is rate-
optimal in the sense of (11.24), (11.28), i.e., it essentially realizes the n-width rates
over all ranges of interest, see [10]. We refer to c�1

S WD �n.R/ as the condition
of the surrogate R.�; Un/. In the RBM community the constant c�1

S is essentially
the stability factor which is usually computed along with an approximate reduced
solution. Clearly, the bounds in §11.3 also show that the quantitative performance
of SGA is expected to be the better the smaller the condition of the surrogate, i.e.,
the larger cS.

As shown so far, coercive problems with a small condition number �U;U0.By/

represent an ideal setting for RBM and standard Galerkin projection combined
with the symmetric surrogate (11.16), based on measuring the residual in the
dual norm k � kU0 of the “error norm” k � kU , identifies rate-optimal snapshots
for a greedy space growth. Of course, this marks a small segment of relevant
problems. Formally, one can still apply these projections and surrogates for any
variational problem (11.12) for which a residual can be computed. However, in
general, for indefinite or unsymmetric singularly perturbed problems, the tightness
relation (11.29) may no longer hold for surrogates of the form (11.16) or, if it
holds the condition �n.R/ becomes prohibitively large. In the latter case, the upper
bound of the best approximation error is too loose to direct the search for proper
snapshots. A simple example is the convection-diffusion problem: for f 2 .H1

0.�//0
find u 2 H1

0.�/, � � R
d, such that

".ru; rv/ C .Eb � ru; v/ C .cu; v/ DW by.u; v/ D hf ; vi; v 2 H1
0.�/; (11.30)

where, for instance, y D ."; Eb/ 2 Y WD Œ"0; 1	 � Sd�1, Sd�1 the .d � 1/-sphere.
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Remark 4.1. It is well known that when c � 1
2
divEb � 0 problem (11.30) has for

any f 2 H�1.�/ WD .H1
0.�//0 a unique solution. Thus for U WD H1

0.�/ (11.11)
is still valid but with �U;U0 .By/ 	 "�1 which becomes arbitrarily large for a
correspondingly small diffusion lower bound "0.

The standard scheme SGA indeed no longer performs nearly as well as in the
well-conditioned case. The situation is even less clear when " D 0 (with modified
boundary conditions) where no “natural” variational formulation suggests itself (we
refer to [10] for a detailed discussion of these examples). Moreover, for indefinite
problems the Galerkin projection does generally perform like the best approximation
which also adversely affects tightness of the standard symmetric residual based
surrogate (11.16).

Hence, to retain rate-optimality of SGA also for the above-mentioned extended
range of problems one has to find a better surrogate than the one based on the
symmetric residual bound in (11.16). We indicate in the next section that such
better surrogates can indeed be obtained at affordable computational cost for a wide
range of problems through combining Petrov-Galerkin projections with appropriate
unsymmetric residual bounds. The approach can be viewed as preconditioning
the continuous problem already on the infinite-dimensional level.

11.4.1 Modifying the Variational Formulation

We consider now a wider class of (not necessarily coercive) variational problems

b.u; v/ D hf ; vi; v 2 V; (11.31)

where we assume at this point only for each f 2 V 0 the existence of a unique solution
u 2 U, i.e., the operator B W U ! V 0, induced by b.�; �/, is bijective. This is well
known to be equivalent to the validity of

8
<̂

:̂

inf
w2W

sup
v2V

b.w; v/

kwkUkvkV
� ˇ; sup

v2V
sup
w2U

b.w; v/

kwkUkvkV
� Cb;

for v 2 V 9 w 2 W; such that b.w; v/ ¤ 0;

(11.32)

for some constants ˇ; Cb. However, one then faces two principal obstructions
regarding an RBM based on the scheme SGA:

(a) first, as in the case of (11.30) for small diffusion, �U;V0.B/ � Cb=ˇ could be
very large so that the corresponding error-residual relation

ku � vkU � ˇ�1kf � BvkV0 ; v 2 U; (11.33)

renders a corresponding residual-based surrogate ill conditioned.
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(b) When b.�; �/ is not coercive, the Galerkin projection does, in general, not
perform as well as the best approximation.

The following approach has been used in [10] to address both (a) and (b). The
underlying basic principle is not new, see [1], and variants of it have been used for
different purposes in different contexts such as least squares finite element methods
[18] and, more recently, in connection with discontinuous Petrov Galerkin methods
[9, 11, 12]. In the context of RBMs the concept of natural norms goes sort of half
way by sticking in the end to Galerkin projections [25]. This marks an essential
distinction from the approach in [10] discussed later below.

The idea is to change the topology of one of the spaces so as to (ideally) make
the corresponding induced operator an isometry, see also [9]. Following [10], fixing
for instance, k � kV , one can define

kwk OU WD sup
v2V

b.w; v/

kvkV
D kBwkV0 ; w 2 U; (11.34)

which means that one has for Bu D f

ku � wk OU D kf � BwkV0 ; w 2 U; (11.35)

a perfect error-residual relation. It also means that replacing k�kU in (11.32) by k�k OU
yields the inf-sup constant Ǒ D 1. Alternatively, fixing k � kU , one may set

kvk OV WD sup
w2U

b.w; v/

kwkU
D kB�vkU0 ; v 2 V; (11.36)

to again arrive at an isometry B W U ! OV 0, meaning

ku � wkU D kf � Bwk OV0 ; w 2 U: (11.37)

Whether the norm for U or for V is prescribed depends on the problem at hand and
we refer to [8–10] for examples of both types.

Next note that for any subspace W � U one has

uW D argmin
w2W

ku � wk OU D argmin
w2W

kf � BwkV0 ; (11.38)

and analogously for the pair .U; OV/, i.e., the best approximation in the OU norm is a
minimum residual solution in the V 0 norm.

To use residuals in V 0 as surrogates requires fixing a suitable discrete projection
for a given trial space. In general, in particular when V ¤ U, the Galerkin projection
is no longer appropriate since inf-sup stability of the infinite-dimensional problem
is no longer inherited by an arbitrary pair of finite-dimensional trial and test spaces.
To see which type of projection would be ideal, denote by RU W U0 ! U the Riesz
map defined for any linear functional ` 2 U0 by

h`; wi D .RU`; w/U ; w 2 U:
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Then, by (11.34), for any w 2 W � U, taking v WD RVBw 2 V one has

b.w; v/ D hBw; vi D hBw; RVBwi D .Bw; Bw/V0 D .w; w/ OU :

Thus, in particular,

b.u � uh; RVBw/ D .u � uh; w/ OU ;

i.e., given W � U, using VW WD RVB.W/ as a test space in the Petrov-Galerkin
scheme

b.uh; v/ D hf ; vi; v 2 VW WD RVB.W/; (11.39)

is equivalent to computing the OU-orthogonal projection of the exact solution u
of (11.31) and hence the best OU approximation to u. One readily sees that this also
means

inf
w2W

sup
v2V.W/

b.w; v/

kwk OUkvkV
D 1; (11.40)

i.e., we have a Petrov-Galerkin scheme for the pair of spaces W; VW with perfect
stability and the Petrov-Galerkin projection is the best OU-projection. Unfortunately,
this is not of much help yet, because computing the ideal test space VW D
RVB.W/ D B��R�1

OU .W/ is not numerically feasible. Nevertheless, it provides a
useful orientation for finding good and practically realizable pairs of trial and test
spaces, as explained next.

11.4.2 A Saddle Point Formulation

We briefly recall now from [9, 10] an approach to deriving from the preceding
observations a practically feasible numerical scheme which, in particular, fits into
the context of RBMs. Taking (11.38) as point of departure we notice that the
minimization of kf � BwkV0 over W is a least squares problem whose normal
equations read: find uW 2 W such that (with RV0 D R�1

V )

0 D .f � BuW ; Bw/V0 D hRV.f � BuW/; Bwi; w 2 W: (11.41)

Introducing the auxiliary variable r WD RV.f � BuW/ which is equivalent to

hRV0r; vi D .r; v/V D hf � Buw; vi; v 2 VW D RVB.W/; (11.42)

the two relations (11.41) and (11.42) can be rewritten in form of the saddle point
problem
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.r; v/V C b.uW ; v/ D hf ; vi; v 2 VW :

b.w; r/ D 0; w 2 W:
(11.43)

The corresponding inf-sup constant is still one (since the supremum of b.w; v/ over
VW equals for each w 2 W the supremum over all of V) and .�; �/V is a scalar product
so that (11.43) has a unique solution uW , see e.g. [5]. Taking for any w 2 W the test
function v D RVBw 2 VW in the first line of (11.43), one obtains

.r; v/V D .r; RVBw/V D hr; Bwi D b.w; r/ D 0;

by the second line in (11.43) so we see that hf ; RVBwi D b.uW ; RVBw/ holds for
all w 2 W which means that uW solves the ideal Petrov-Galerkin problem (11.39).
Thus (11.43) is equivalent to the ideal Petrov Galerkin scheme (11.39).

Of course, (11.43) is still not realizable since the space VW is still not computable
at affordable cost. One more step to arrive at a realizable scheme is based on the
following: given the finite-dimensional space W, replacing VW in (11.43) by some
(accessible) space Z � V , amounts to a Petrov-Galerkin formulation with test space
PV;ZVW , where again PV;Z denotes the V-orthogonal projection to Z. Thus, when Z is
large enough the (computable) projection PV;ZVW is close enough to VW so that one
obtains a stable finite-dimensional saddle point problem which is the same as saying
that its inf-sup constant is safely bounded away from zero. Since Z D V would yield
perfect stability the choice of Z � V can be viewed as a stabilization. To quantify
this we follow [10] and say that for some ı 2 .0; 1/, Z � V is ı-proximal for W � U
if Z is sufficiently close to the ideal test space VW D RVB.W/ in the sense that

k.I � PV;Z/RVBwkV � ıkRV BwkV ; w 2 W: (11.44)

The related main findings from [10] can be summarized as follows.

Theorem 4.2. (i) The pair .uW;Z ; rW;Z/ 2 W � Z � U � V solves the saddle point
problem

.rW;Z ; v/V C b.uW;Z; v/ D hf ; vi; v 2 Z;

b.w; uW;Z/ D 0; w 2 W;
(11.45)

if and only if uW;Z solves the Petrov-Galerkin problem

b.uW;Z; v/ D hf ; vi; v 2 PV;Z.RVB.W//: (11.46)

(ii) If Z is ı-proximal for W, (11.46) is solvable and one has

ku � uW;Zk OU � 1
1�ı

infw2W kuW;Z � wk OU ;

ku � uW;Zk OU C krW;ZkV � 2
1�ı

infw2W kuW;Z � wk OU :
(11.47)

(iii) Z is ı-proximal for W if and only if

inf
w2W

sup
v2Z

b.w; v/

kwk OUkvkV
�

p
1 � ı2: (11.48)
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Note that (11.45) involves ordinary bilinear forms and finite-dimensional spaces
W; Z and (iii) says that the V-projection of the ideal test space RVB.W/ onto Z is a
good test space if and only if Z is ı-proximal for W. Loosely speaking, Z is large
enough to “see” a substantial part of the ideal test space RVB.W/ under projection.
The perhaps most important messages to be taken home regarding the RBM context
read as follows.

Remark 4.3. (i) The Petrov-Galerkin scheme (11.46) is realized through the
saddlepoint problem (11.45) without explicitly computing the test space
PV;Z.RVB.W//.

(ii) Moreover, given W, by compactness and (11.44), one can in principle enlarge
Z so as to make ı as small as possible, a fact that will be exploited later.

(iii) The solution component uW;Z is a near best approximation to the exact solution
u in the OU norm.

(iv) rW;Z can be viewed as a lifted residual which tends to zero in V when W grows
and can be used for a posteriori error estimation, see [9]. In the Reduced Basis
context this can be exploited for certifying the accuracy of the truth solutions
and for constructing computationally feasible surrogates for the construction
of the reduced bases.

11.5 The Reduced Basis Construction

We point out next how to use the preceding results for sampling the solution
manifold M of a given parametric family of variational problems: given y 2 Y ,
f 2 V 0y, find u.y/ 2 Uy such that

by.u.y/; v/ D hf ; vi; v 2 Vy; (11.49)

in a way that the corresponding subspaces are rate-optimal. We will always assume
that the dependence of the bilinear form by.�; �/ on y 2 Y is affine in the sense
of (11.18).

As indicated by the notation the spaces Uy; Vy for which the variational problems
are well posed in the sense that the induced operator By W Uy ! V 0y is bijective,
could depend on y through y-dependent norms. However, to be able to speak of a
“solution manifold” M as a compact subset of some “reference Hilbert space,” the
norms k � kUy should be uniformly equivalent to some reference norm k � kU which
has to be taken into account when formulating (11.49). In fact, under this condition,
as shown in [10], for well-posed variational formulations of pure transport problems
the dependence of the test spaces Vy on y 2 Y is essential, in that

V WD
\

y2Y
Vy (11.50)
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is a strict subset of each individual Vy. This complicates the construction of a tight
surrogate. We refer to [10] for ways of dealing with this obstruction and confine the
subsequent discussion for simplicity to cases where the test norms k � kVy are also
uniformly equivalent to a single reference norm k � kV , see the example later below.

Under the above assumptions, the findings of the preceding section will be used
next to contrive a well-conditioned tight surrogate even for non-coercive or severely
ill-conditioned variational problems which is then in general unsymmetric, i.e.,
Vy ¤ Uy. These surrogates will then be used in SGA. To obtain such a residual-
based well-conditioned surrogate in the sense of (11.29), we first renorm the pairs
of spaces Uy or Vy according to (11.34) or (11.36). In anticipation of the example
below, for definiteness we concentrate on (11.34) and refer to [10] for a discussion
of (11.36). As indicated above, we assume further that the norms k � k OUy

; k � kVy are
equivalent to reference norms k � k OU ; k � kV , respectively.

11.5.1 The Strategy

Suppose that we have already constructed a pair of spaces Un � Uy; Vn � Vy, y 2 Y ,
such that for a given ı < 1

inf
w2Un

sup
v2Vn

by.w; v/

kwk OUy
kvkVy

�
p

1 � ı2; y 2 Y; (11.51)

i.e., Vn � V is ı-proximal for Un � U. Thus, by Theorem 4.2, the parametric saddle
point problem

.rn.y/; v/Vy C by.un.y/; v/ D hf ; vi; v 2 Vn;

b.w; rn.y// D 0; w 2 Un;
(11.52)

has for each y 2 Y a unique solution .un.y/; rn.y// 2 Un � Vn. By the choice of
norms we know that

ku.y/ � un.y/k OUy
D kf � B�un.y/kV0

y
; y 2 Y; (11.53)

i.e.,

R.y; Un � Vn/ WD kf � B�un.y/kV0

y
; y 2 Y; (11.54)

suggests itself as a surrogate. There are some subtle issues about how to evaluate
R.y; Un � Vn/ in the dual V 0N of a sufficiently large truth space VN � Vy, y 2 Y , so
as to faithfully reflect errors in OU�, not only in the truth space UN � Uy but also in
OU, and how these quantities are actually related to the auxiliary variable krn.y/kVy

which is computed anyway. As indicated before, these issues are aggravated when
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the norms k � kVy are not all equivalent to a single reference norm. We refer to
a corresponding detailed discussion in [10, §5.1] and continue working here for
simplicity with the idealized version (11.54) and assume its offline feasibility.

Thus we can evaluate the errors ku.y/�un.y/k OUy
and can determine a maximizing

parameter ynC1 for which

ku.ynC1/ � un.ynC1/k OUy
D max

y2Y kf � B�un.y/kV0

y
: (11.55)

Now relation (11.47) in Theorem 4.2 tells us that for each y 2 Y
ku.y/ � un.y/k OUy

� .1 � ı/�1 inf
w2Un

ku.y/ � wk OUy
; (11.56)

i.e., un.y/ is a near best approximation to u.y/ from Un which is, in fact, the closer to
the best approximation the smaller ı. By (11.53) and (11.56), the surrogate (11.54)
is indeed well conditioned with condition number close to one for small ı.

A natural strategy is now to enlarge Un to UnC1 WD Un C span fu.ynC1/g.
In fact, this complies with the weak greedy step (11.20) in §11.3 with weakness
parameter � D .1 � ı/ as close to one as one wishes, when ı is chosen accordingly
small, provided that the pair of spaces Un; Vn satisfies (11.51). A repetition would
therefore, in principle, be a realization of Algorithm 1, SGA, establishing rate-
optimality of this RBM. Obviously, the critical condition for such a procedure to
work is to ensure at each stage the validity of the weak greedy condition (11.20)
which in the present situation means that the companion space Vn is at each stage
ı-proximal for Un. So far we have not explained yet how to grow Vn along with Un

so as to ensure ı-proximality. This is explained in the subsequent section.

Remark 5.1. One should note that, due to the possible parameter dependence of
the norms k � k OUy

; k � kVy on y, obtaining tight surrogates with the aid of an explicit
Petrov-Galerkin formulation would be infeasible in an RBM context because one
would have to recompute the corresponding (parameter dependent) test basis for
each parameter query which is not online feasible. It is therefore actually crucial to
employ the saddle point formulation in the context of RBMs since this allows us to
determine a space Vn of somewhat larger dimension than Un which stabilizes the
saddle point problem for all y simultaneously.

11.5.2 A Greedy Stabilization

A natural option is to enlarge Vn by the second component rn.ynC1/ of (11.52).
Note though that the lifted residuals rn tend to zero as n ! 1. Hence, the solution
manifold of the (y-dependent version of the) saddle point formulation (11.43) has
the form

M � f0g;
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where M is the solution manifold of (11.49) (since r.y/ D 0 for y 2 Y). Thus
the spaces Vn are not needed to approximate the solution manifold. Instead the
sole purpose of the space Vn is to guarantee stability. At any rate, the grown pair
UnC1; Vn C span frn.ynC1/g DW V0

nC1 may fail to satisfy now (11.51).
Therefore, in general one has to further enrich V0

nC1 by additional stabilizing
elements again in a greedy fashion until (11.51) holds for the desired ı. For problems
that initially arise as natural saddle point problems such as the Stokes system,
enrichments by the so-called supremizers (to be defined in a moment) have been
proposed already in [14, 15, 22]. In these cases it is possible to enrich V0

nC1 by a
fixed a priori known number of such supremizers to guarantee inf-sup stability. As
shown in [10], this is generally possible when using fixed (parameter independent)
reference norms k � k OU , k � kV for U and V . For the above more general scope of
problems a greedy strategy was proposed and analyzed in [10], a special case of
which is also considered in [15] without analysis. The strategy in [10] adds only as
many stabilizing elements as are actually needed to ensure stability and works for a
much wider range of problems including singularly perturbed ones. In cases where
not all parameter-dependent norms k � kVy are equivalent such a strategy is actually
necessary and its convergence analysis is then more involved, see [10].

To explain the procedure, suppose that after growing Un to UnC1 we have
already generated an enrichment Vk

nC1 of V0
nC1 (which could be, for instance, either

V0
nC1 WD Vn C span frn.ynC1/g or V0

nC1 WD Vn) but the pair UnC1; Vk
nC1 still fails to

satisfy (11.51) for the given ı < 1. To describe the next enrichment from Vk
nC1 to

VkC1
nC1 we first search for a parameter Ny 2 Y and a function Nw 2 UnC1 for which the

inf-sup condition (11.51) is worst, i.e.,

sup
v2Vk

nC1

bNy. Nw; v/

kvkVNy k Nwk OUNy

D inf
y2Y

0

@ inf
w2UnC1

sup
v2Vk

nC1

by.w; v/

kvkVy kwk OUy

1

A : (11.57)

If this worst case inf-sup constant does not exceed yet
p

1 � ı2, the current space
Vk

nC1 does not contain an effective supremizer for Ny; Nw, yet. However, since the
truth space satisfies the uniform inf-sup condition (11.51) there must exist a good
supremizer in the truth space which can be seen to be given by

Nv D argmaxv2VNy

bNy. Nw; v/

kvkVNy k Nwk OUNy

; (11.58)

providing the next enrichment

VkC1
nC1 WD spanfVk

nC1; Nvg: (11.59)

We defer some comments on the numerical realization of finding Ny; Nv
in (11.57), (11.58) to the next section.
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This strategy can now be applied recursively until one reaches a satisfactory
uniform inf-sup condition for the reduced spaces. Again, the termination of this
stabilization loop is easily ensured when (11.18) holds and the norms k � k OUy

, k � kVy

are uniformly equivalent to reference norms k � k OU , k � kV , respectively, but is more
involved in the general case [10].

11.5.3 The Double Greedy Scheme and Main Result

Thus, in summary, to ensure that the greedy scheme SGA with the particular
surrogate (11.54), based on the corresponding outer greedy step for extending Un

to UnC1, has the weak greedy property (11.20), one can employ an inner stabilizing
greedy loop producing a space VnC1 D Vk�

nC1 which is ı-proximal for UnC1. Here
k� D k�.ı/ is the number of enrichment steps needed to guarantee the validity
of (11.51) for the given ı. A sketchy version of the corresponding “enriched” SGA,
developed in [10], looks is given below in Algorithm 3.

As indicated above, both Algorithm 1, SGA, and Algorithm 3, SGA-DOU, are
surrogate-based greedy algorithms. The essential difference is that for non-coercive
problems or problems with an originally large variational condition number in
SGA-DOU an additional interior greedy loop provides a tight well-conditioned
(unsymmetric) surrogate which guarantees the desired weak greedy property (with
weakness constant � as close to one as one wishes) needed for rate-optimality.

Of course, the viability of Algorithm SGA-DOU hinges mainly on two questions:

(a) how to find the worst inf-sup constant in (11.57) and how to compute the
supremizer in (11.58)?

(b) does the inner greedy loop terminate (early enough)?

As for (a), it is well known that, fixing bases for Un; Vk
n , finding the worst inf-

sup constant amounts to determine for y 2 Y the cross-Gramian with respect to
by.�; �/ and compute its smallest singular value. Since these matrices are of size
n�.nCk/ and hence (presumably) of “small” size, a search over Y requires solving
only problems in the reduced spaces and are under assumption (11.18) therefore

Algorithm 3 Double greedy algorithm
1: function SGA-DOU

2: Initialize U1; V0
1 , ı 2 .0; 1/, target accuracy tol, n 1,

3: while �n.M/ > tol do
4: while Un; V0

n fail to satisfy (11.51) do
5: compute Vn with the aid of the inner stabilizing greedy loop,
6: end while
7: given Un; Vn, satisfying (11.51), compute UnC1; V0

nC1 with the aid of the outer greedy
step 4, (11.8) in algorithm SGA for the surrogate (11.54),

8: end while
9: end function
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offline feasible. The determination of the corresponding supremizer Nv in (11.58), in
turn, is based on the well-known observation that

argmaxv2VNy

bNy. Nw; v/

kvkVNy

D RVNyBNy Nw;

which is equivalent to solving the Galerkin problem

. Nv; z/VNy D bNy. Nw; z/; z 2 VNy:

Thus each enrichment step requires one offline Galerkin solve in the truth space.
A quantitative answer to question (b) is more involved. We are content here with

a few related remarks and we refer to a detailed discussion of this issue in [10].
As mentioned before, when all the norms k � k OUy

; k � kVy , y 2 Y , are equivalent to
reference norms k � k OU ; k � kV , respectively, the inner loop terminates after at most
the number of terms in (11.18). When the norms k � kVy are no longer uniformly
equivalent to a single reference norm termination is less clear. Of course, since all
computations are done in a truth space which is finite dimensional, compactness
guarantees termination after finitely many steps. However, the issue is that the
number of steps should not depend on the truth space dimension. The reasoning
used in [10] to show that (under mild assumptions) termination happens after a
finite number of steps, independent of the truth space dimension, is based on the
following fact. Defining U1

n.y/ WD fw 2 Un W kwk OUy
D 1g, solving the problem

.Ny; Nw/ WD argmax
y2YIw2U1

n .y/

inf
�2Vk

n

kRVy Byw � �kVy ; (11.60)

when all the k �k OUy
norms are equivalent to a single reference norm, can be shown to

be equivalent to a greedy step of the type (11.57) and can hence again be reduced to
similar small eigenvalue problems in the reduced space. Note, however, that (11.60)
is similar to a greedy space growth used in the outer greedy loop and for which some
understanding of convergence is available. Therefore, successive enrichments based
on (11.60) are studied in [10] regarding their convergence. The connection with the
inner stabilizing loop based on (11.57) is that

argmax
y2YIw2U1

n.y/

inf
�2Vk

n

kRVNyBNyw � �kVNy � ı

just means

inf
�2Vk

n

kRVyByw � �kVy � ıkRVyBykVy D ıkwk OUy
; w 2 Un; y 2 Y;

which is a statement on ı-proximality known to be equivalent to inf-sup stability,
see Theorem 4.2, and (11.44).

A central result from [10] can be formulated as follows, see [10, Theorem 5.5].



426 W. Dahmen

Theorem 5.2. If (11.18) holds and the norms k � k OUy
; k � kVy are all equivalent to a

single reference norm k�k OU ; k�kV , respectively, and the surrogates (11.54) are used,
then the scheme SGA-DOU is rate-optimal, i.e., the greedy errors �n.M/ OU decay at
the same rate as the n-widths dn.M/ OU, n ! 1.

Recall that the quantitative behavior of the greedy error rates are directly related
to those of the n-widths by � D cS, see Theorem 3.1. This suggests that a fast decay
of dn.M/ OU is reflected by the corresponding greedy errors already for moderate
values of n which is in the very interest of reduced order modeling. This will be
confirmed by the examples below. In this context an important feature of SGA-DOU

is that through the choice of the ı-proximality parameter the weakness parameter
� can be driven toward one, of course, at the expense of somewhat larger spaces
VnC1. Hence, stability constants close to one are built into the method. This is to be
contrasted by the conventional use of SGA based on surrogates that are not ensured
to be well conditioned and for which the computation of the certifying stability
constants tends to be computationally expensive, see e.g. [21].

11.5.4 A Numerical Example

The preceding theoretical results are illustrated next by a numerical example that
brings out some of the main features of the scheme. While the double greedy scheme
applies to noncoercive or indefinite problems (e.g., see [10] for pure transport) we
focus here on a classical singularly perturbed problem because it addresses also
some principal issues for RBMs regarding problems with small scales. Specifically,
we consider the convection-diffusion problem (11.30) on � D .0; 1/2 for a simple
parameter-dependent convection field

Eb.y/ WD
�

cos y
sin y

�
; y 2 Œ0; 2
/; c D 1;

keeping for simplicity the diffusion level " fixed but allowing it to be arbitrarily
small. All considerations apply as well to variable and parameter-dependent diffu-
sion with any arbitrarily small but strictly positive lower bound. The “transition”
to a pure transport problem is discussed in detail in [10, 28]. Parameter-dependent
convection directions mark actually the more difficult case and are, for instance, of
interest with regard to kinetic models.

Let us first briefly recall the main challenges posed by (11.30) for very
small diffusion ". The problem becomes obviously dominantly unsymmetric and
singularly perturbed. Recall that for each positive " the problem possesses for each
y 2 Y a unique solution u.y/ in U D H1

0.�/ that has a zero trace on the boundary
@�. However, as indicated earlier, the condition number �U;U0.By/ of the underlying
convection-diffusion operator By, viewed as an operator from U D H1

0.�/ onto
U0 D H�1.�/, behaves like "�1, that is, it becomes increasingly ill conditioned.
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This has well known consequences for the performance of numerical solvers but
above all for the stability of corresponding discretizations.

We emphasize that the conventional mesh-dependent stabilizations like SUPG
(cf. [17]) do not offer a definitive remedy because the corresponding condition,
although improved, remains very large for very small ". In [19] SUPG stabilization
for the offline truth calculations as well as for the low-dimensional online Galerkin
projections are discussed for moderate Peclét numbers of the order of up to 103. In
particular, comparisons are presented when only the offline phase uses stabilization
while the un-stabilized bilinear form is used in the online phase, see also the
references in [19] for further related work.

As indicated earlier, we also remark in passing that the singularly perturbed
nature of the problem poses an additional difficulty concerning the choice of the
truth space UN . In fact, when " becomes very small one may not be able to
afford resolving correspondingly thin layers in the truth space which increases the
difficulty of capturing essential features of the solution by the reduced model.

This problem is addressed in [10] by resorting to a weak formulation that does
not use H1

0.�/ (or a renormed version of it) as a trial space but builds on the
results from [8]. A central idea is to enforce the boundary conditions on the outflow
boundary �C.y/ only weakly. Here �C.y/ is that portion of @� for which the
inner product of the outward normal and the convection direction is positive. Thus
solutions are initially sought in the larger space H1

0;��.y/.�/ DW U�.y/ enforcing
homogeneous boundary conditions only on the inflow boundary ��.y/. Since the
outflow boundary and hence also the inflow boundary depend on the parameter y,
this requires subdividing the parameter set into smaller sectors, here four, for which
the outflow boundary �C D �C.y/ remains unchanged. We refer in what follows
for simplicity to one such sector denoted again by Y .

The following prescription of the test space falls into the category (11.34) where
the norm for U is adapted. Specifically, choosing

sy.u; v/ WD 1

2

�hByu; vi C hByv; ui�;

kvk2
Vy

WD sy.v; v/ D �jvj2H1.�/
C

			
�

c � 1

2
div Eb.y/

�1=2

v
			

2

L2.�/
;

in combination with a boundary penalization on �C, we follow [8, 28] and define

kuk2NUy
WD k NByuk2NV0

y
D k NByuk2

V0

y
C kuk2

Hb.�/;

where Hb.y/ D H1=2
00 .�C.y//, NVy WD Vy�Hb.y/0 and NBy denotes the operator induced

by this weak formulation over NUy WD H1
0;��.y/.�/ � Hb.y/. The corresponding

variational formulation is of minimum residual type (cf. (11.38)) and reads

u.y/ D argmin
w2U�.y/

˚k NByw � f k2
V0

y
C kwk2

Hb.y/

�
: (11.61)
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Fig. 11.1 Left: " D 2�5; n D 6; nV D 13; middle: " D 2�7; n D 7; nV D 20; right:
"D 2�26; nD 20; nV D 57.

One can show that its (infinite-dimensional) solution, whenever being sufficiently
regular, solves also the strong form of the convection diffusion problem (11.30).
Figure 11.1 illustrates the effect of this formulation where we set n D dim Un; nV WD
dim Vn.

The shaded planes shown in Figure 11.1 indicate the convection direction for
which the snapshot is taken. For moderately large diffusion the boundary layer
at �C is resolved by the truth space discretization and the boundary conditions
at the outflow boundary are satisfied exactly. For smaller diffusion in the middle
example the truth space discretization can no longer resolve the boundary layer and
for very small diffusion (right) the solution is close to the one for pure transport.
The rationale of (11.61) is that all norms commonly used for convection-diffusion
equations resemble the one chosen here, for instance in the form of a mesh-
dependent “broken norm,” which means that most part of the incurred error of
an approximation is concentrated in the layer region, see, e.g., [24, 27]. Hence,
when the layers are not resolved by the discretization, enforcing the boundary
conditions does not improve accuracy and, on the contrary, may degrade accuracy
away from the layer by causing oscillations. The present formulation instead avoids
any nonphysical oscillations and enhances accuracy in those parts of the domain
where this is possible for the afforded discretization, see [8, 10, 28] for a detailed
discussion. The following table quantifies the results for the case of small diffusion
" D 2�26 and a truth discretization whose a posteriori error bound is 0:002.

Columns 3 and 8 show the ı governing the condition of the saddle point problems
(and hence of the corresponding Petrov-Galerkin problems), see (11.51), the greedy
space growth is based upon (Table 11.1). Hence, the surrogates are very tight giving
rise to weakness parameters very close to one. As indicated in Remark 4.3 one can
use also an a posteriori bound for the truth solution based on the corresponding
lifted residual. Columns 5 and 10 show therefore the relative accuracy of the current
reduced model and the truth model. This corresponds to the stability constants
computed by conventional RBMs. Even for elliptic problems these latter ones are
significantly larger than the ones for the present singularly perturbed problem which
are guaranteed to be close to one by the method itself. Based on the a posteriori
bounds for the truth solution (which are also obtained with the aid of tailored
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Table 11.1 Convection-diffusion equation, " D 2�26, maximal a posteriori error
0:00208994

n nV ı Surrogate Surr/a-post n nV ı Surrogate Surr/a-post

2 5 1.36e-03 2.10e-01 1.01e+02 14 39 1.17e-04 8.15e-03 3.90e+00

4 9 1.10e-02 7.51e-02 3.59e+01 16 45 9.79e-05 7.56e-03 3.62e+00

6 15 1.75e-03 4.95e-02 2.37e+01 18 51 6.32e-05 7.40e-03 3.54e+00

8 21 9.16e-04 2.34e-02 1.12e+01 20 57 4.74e-05 6.09e-03 2.92e+00

10 27 3.65e-04 2.05e-02 9.82e+00 22 63 2.36e-05 5.43e-03 2.60e+00

12 33 3.34e-04 1.56e-02 7.45e+00 24 65 2.36e-05 4.73e-03 2.27e+00

0 5 10 15 20 25
0

0.1

0.2

reduced basis trial dimension

Fig. 11.2 Convection-diffusion equation, "D 2�26, maximal a posteriori error 0:00208994

well-conditioned variational formulations, see [8]), the greedy space growth is
stopped when the surrogates reach the order of the truth accuracy. As illustrated in
Figure 11.2, in the present example this is essentially already the case for � 20

trial reduced basis functions and almost three times as many test functions. To
show this “saturation effect” we have continued the space growth formally up to
n D 24 showing no further significant improvement which is in agreement with the
resolution provided by the truth space. These relations agree with the theoretical
predictions in [10]. Figure 11.2 illustrates also the rapid gain of accuracy by the
first few reduced basis functions which supports the fact that the solution manifold
is “well seen” by the Petrov-Galerkin surrogates. More extensive numerical tests
shown in [10] show that the achieved stability is independent of the diffusion but the
larger the diffusion the smaller become the dimensions n D dim Un; nV D dimVn

for the reduced spaces. This indicates the expected fact that the larger the diffusion
the smoother is the dependence of u.y/ on the parameter y. In fact, when " ! 0 one
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approaches the regime of pure transport where the smoothness of the parameter
dependence is merely Hölder continuity requiring for a given target accuracy a
larger number of reduced basis functions, see [10].

11.6 Is it Necessary to Resolve All of M?

The central focus of the preceding discussion has been to control the maximal
deviation

�n.M/U D max
y2Y ku.y/ � PU;Un u.y/kU (11.62)

and to push this deviation below a given tolerance for n as small as possible.
However, in many applications one is not interested in the whole solution field
but only in a quantity of interest I.y/, typically of the form I.y/ D `.u.y// where
` 2 U0 is a bounded linear functional. Looking then for some desired optimal state
I� D `.u.y�// one is interested in a guarantee of the form

j`.un.y// � `.u.y//j � tol; y 2 Y; (11.63)

where the states un.y/ belong to a possibly small reduced space Un in order to be
then able to carry out the optimization over y 2 Y in the small space Un � U.
Asking only for the values of just a linear functional of the solution seems to be
much less demanding than asking for the whole solution and one wonders whether
this can be exploited in favor of even better online efficiency.

Trying to reduce computational complexity by exploiting the fact that retrieving
only a linear functional of an unknown state - a scalar quantity - may require
less information than recovering the whole state is the central theme of goal-
oriented adaptation in finite element methods, see [3]. Often the desired accuracy is
indeed observed to be reached by significantly coarser discretizations than needed
to approximate the whole solution within a corresponding accuracy. The underlying
effect, sometimes referred to as “squared accuracy” is well understood and exploited
in the RBM context as well, see [16, 21]. We briefly sketch the main ideas for the
current larger scope of problems and point out that, nevertheless, a guarantee of
the form (11.63) ultimately requires controlling the maximal deviation of a reduced
space in the sense of (11.62). Hence, an optimal sampling of a solution manifold
remains crucial.

First, a trivial estimate gives for ` 2 U0

j`.un.y// � `.u.y//j � k`kU0kun.y/ � u.y/kU (11.64)

so that a control of �n.M/U would indeed yield a guarantee. However, the n needed
to drive k`kU0 �n.M/U below tol is usually larger than necessary.
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To explain the principle of improving on (11.64) we consider again a variational
problem of the form (11.31) (suppressing any parameter dependence for a moment)
for a pair of spaces U; V where we assume now that �U;V0.B/ � Cb=cb is already
small, possibly after renorming an initial less favorable formulation through (11.34)
or (11.36). Let u 2 U again denote the exact solution of (11.31). Given a ` 2 U0 we
wish to approximate `.u/, using an approximate solution Nu 2 W � U defined by

b.Nu; v/ D hf ; vi; v 2 QVW � V; (11.65)

where QVW is a suitable test space generated by the methods discussed in §11.4.1. In
addition we will use the solution z 2 V of the dual problem:

b.w; z/ D �`.w/; w 2 U; (11.66)

together with an approximation Nz 2 Z � V defined by

b.w; Nz/ D �`.w/; w 2 QWZ � U; (11.67)

again with a suitable test space QWZ . Recall that we need not determine the test spaces
QVW ; QWZ explicitly but rather realize the corresponding Petrov-Galerkin projections
through the equivalent saddle-point formulations with suitable ı-proximal auxiliary
spaces generated by a greedy stabilization.

Then, defining the primal residual functional

rNu.v/ WD r.Nu; v/ WD b.u � Nu; v/ D hf ; vi � b.Nu; v/ (11.68)

and adapting the ideas in [16, 21] for the symmetric case V D U to the present
slightly more general setting, we claim that

Ò.Nu/ WD `.Nu/ � r.Nu; Nz/ (11.69)

is an approximation to the true value `.u/ satisfying

j Ò.Nu/ � `.u/j � C inf
w2W

ku � wkU inf
v2Z

kz � vkV ; (11.70)

where C depends only on the inf-sup constant of the finite-dimensional problems.
In fact, since by (11.66),

`.u/ � `.Nu/ D b.Nu � u; z/ D �r.Nu; z/;

one has `.u/ D `.Nu/ � r.Nu; z/ and hence

j Ò.Nu/ � `.u/j D j`.Nu/ � r.Nu; Nz/ � `.Nu/ C r.Nu; z/j D jr.Nu; z � Nz/j D jb.u � Nu; z � Nz/j
� Cbku � NukUkz � NzkV ;

which confirms the claim since Nu, Nz are near best approximations due to the asserted
inf-sup stability of the finite-dimensional problems.
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Clearly, (11.70) says that in order to approximate `.u/ the primal approximation
in U need not resolve u at all as long as the dual solution z is approximated well
enough. Moreover, when ` is a local functional, e.g., a local average approximating
a point evaluation, z is close to the corresponding Green’s function with (near)
singularity in the support of `. In the elliptic case z would be very smooth away
from the support of ` and hence well approximable by a relatively small number of
degrees of freedom concentrated around the support of `. Thus it may very well be
more profitable to spend less effort on approximating u than on approximating z.

Returning to parameter-dependent problems (11.49), the methods in §11.5 can
now be used as follows to construct possibly small reduced spaces for a frequent
online evaluation of the quantities I.y/ D `.u.y//. We assume that we already
have properly renormed families of norms k � kUy ; k � kVy , y 2 Y , with uniform
inf-sup constants close to one. We also assume now that both families of norms
are equivalent (by compactness of Y uniformly equivalent) to reference norms
k � kU ; k � kV , respectively. Hence, we can consider two solution manifolds

Mpr WD fu.y/ D B�1
y f ; y 2 Yg � U; Mdual WD fz.y/ WD B��y `; y 2 Yg � V;

and use Algorithm 3, SGA-DOU, to generate (essentially in parallel) two sequences
of pairs of reduced spaces

.Un; Vn/; .Zn; Wn/; n 2 N:

Here Vn � V; Wn � U are suitable stabilizing spaces such that for m < n and for
the corresponding reduced solutions um.y/ 2 Um; zn�m.y/ 2 Zn�m the quantity

In;m.y/ WD `.um.y// � r.um.y/; zn�m.y// (11.71)

satisfies

jI.y/ � In;m.y/j � C�m.Mpr/U�n�m.Mdual/V ; (11.72)

with a constant C independent of n; m. The choice of m < n determines how to
distribute the computational effort for computing the two sequences of reduced
bases and their stabilizing companion spaces. By Theorem 5.2, one can see that
whichever n-width rate dn.Mpr/U or dn.Mdual/V decays faster one can choose
m < n to achieve for a total of dim Um C dim Zn�m D n the smallest error
bound. Of course, the rates are not known and one can use the tight surrogates
to bound and estimate the respective errors very accurately. For instance, when

dn.Mpr/U � Cn�˛ , dn.Mdual/V � Cn�ˇ , m D
j�

˛
˛Cˇ

�
n
k

yields an optimal

distribution with a bound

jI.y/ � In;m.y/j � C
�˛ C ˇ

ˇ

�ˇ�˛ C ˇ

˛

�˛

n�.˛Cˇ/: (11.73)
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In particular, when ˇ > ˛ the dimensions on the reduced bases for the dual problem
should be somewhat larger but essentially using the same dimensions for the primal
and dual reduced spaces yields the rate n�.˛Cˇ/ confirming the “squaring” when
˛ D ˇ. In contrast, as soon as either one of the n-width rates decays exponentially
it is best to grow only the reduced spaces for the faster decay while keeping a fixed
space for the other side.

11.7 Summary

We have reviewed recent developments concerning reduced basis methods with
the following main focus. Using Kolmogorov n-width as a benchmark for the
performance of reduced basis methods in terms of minimizing the dimensions
of the reduced models for a given target accuracy, we have shown that this
requires essentially to construct tight well-conditioned surrogates for the underlying
variational problem. We have explained how renormation in combination with inner
stabilization loops can be used to derive such residual-based surrogates even for
problem classes not covered by conventional schemes. This includes in a fully robust
way indefinite as well as ill-conditioned (singularly perturbed) coercive problems.
Greedy strategies based on such surrogates are then shown to constitute an optimal
sampling strategy, i.e., the resulting snapshots span reduced spaces whose distances
from the solution manifold decay essentially at the same rate as the Kolmogorov
n-widths. This means, in particular, that stability constants need not be determined
by additional typically expensive computations but can be pushed by the stabilizing
inner greedy loop as close to one as one wishes. Finally, we have explained why the
focus on uniform approximation of the entire solution manifold is equally relevant
for applications where only functionals of the parameter-dependent solutions have
to be approximated.
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