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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental
relationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.
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Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory

Fast algorithms Spectral estimation
Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis

Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
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adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’étre of the ANHA series!

College Park, MD, USA John J. Benedetto






Preface

renaissance [...]

enthusiastic and vigorous activity along literary, artistic, and cultural lines distin-
guished by a revival of interest in the past, by an increasing pursuit of learning, and by
an imaginative response to broader horizons generally [...]

a return of youthful vigor, freshness, zest, or productivity a renewal of life or interest
in some aspect of it [...]

Webster’s Third New International Dictionary

Sampling theory has played a central role in mathematics, science, and engi-
neering for over 75 years now. The original quest of identifying a continuous
function on Euclidean space from discrete data is addressed in the classical sampling
theorem, commonly attributed to Cauchy, Kotelnikov, Ogura, Raabe, Shannon,
and/or Whittaker. It states that a bandlimited function can be recovered in full
from values measured on a regular sampling grid whenever the bandlimitation is
described by an interval whose length does not exceed the density of the sampling
grid. A multitude of variants and extensions of this result have cemented the
extensive role of sampling theory in engineering and science during the second half
of the 20th century.

Today, the original emphasis on recovery from samples is complemented by the
need for efficient digital representations of signals and images by various kinds of
available, but at first sight insufficient, measurements. In addition, fast and noise
resistant algorithms aimed at recovering from such measurements are of increasing
importance. The assumption that a signal is bandlimited in the classical setting is
commonly replaced by possibly nonlinear constraints on the objects at hand; and
the need to efficiently obtain reliable nonredundant representations of such objects
may involve a nonlinear measurement procedure as well.

Such and related considerations have lately reenergized the area of sampling
theory and inspired the rapid growth of new interdisciplinary research areas such
as compressive sensing and phase retrieval.

ix
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Compressive sensing is based on the observation that many practical signals like
images, speech, music, radar signals, ultrasound signals, and man-made commu-
nication signals are well characterized by a relatively small number of relevant
parameters when compared to the dimension of the ambient space. That is, we
assume that the signal is contained in — or is well approximated by a signal in — the
union of low-dimensional subspaces of a high dimensional space; the signal depends
on a sparse set of parameters and the difficulty lies in realizing which parameters
are active and which ones can be ignored. For example, if a high dimensional
signal is known to have few nonzero Fourier coefficients of unknown locations,
then compressive sensing algorithms exploit this sparsity assumption and recover
the signal from samples far below the Nyquist rate.

In compressive sensing, the nonlinearity of the signal space leads to challenging
mathematical problems when attempting to prove performance guarantees for
realistic recovery algorithms such as Basis Pursuit or Orthogonal Matching Pursuit.
State-of-the-art results control the recovery probability of sparse signals when the
number of required measurements grows only linearly in the number of nonzero
parameters and logarithmically in the ambient dimension.

The second example of a flourishing research area in sampling theory is
motivated by X-ray crystallography where, in essence, only magnitudes of Fourier
coefficients of an image are measured. In order to reconstruct the image, some
additional insights on the image need to be utilized to recover the phase of each
Fourier coefficient and thereby the original image. To achieve this in a provably
numerically stable manner remains an open problem to date. This being said, the
described problem spearheaded the novel research area of phase retrieval. The
question addressed herein is the following: in which settings and for what kind of
measurements can we design algorithms that recover images or other signals from
magnitudes of those measurements?

Compressed sensing and phase retrieval are just two examples that illustrate the
influx of new ideas and paradigms in sampling theory; they form the foundation of
the sampling theory renaissance that we enjoy today in mathematics, science, and
engineering.

The contributed chapters in this volume are authored by invited speakers and
session organizers of the 10th International Conference on Sampling Theory and
Applications (SampTA) which took place on July 1st to 5th, 2013, in Bremen,
Germany. The authors’ contributions are organized into five parts, “Random
Measurements of High Dimensional Data,” “Finite and Structured Frames,” “Band-
limitation and Generalizations,” “Sampling and Parametric Partial Differential
Equations,” and “Data Acquisition,” thereby representing a good portion of research
areas discussed at SampTA 2013.

The success of the conference was made possible through the enthusiasm and
commitment of a number of colleagues working in the vast area of sampling theory.
Foremost, I would like to thank my colleagues on the local organization team,
Peter Oswald, Werner Henkel, Peter Maa3, Peter Massopust, Anja Miiller, and
Holger Rauhut, as well as my technical program co-chairs Yonina Eldar, Laurent
Fesquet, Gitta Kutyniok, Pina Marziliano, and Bruno Torrésani. The support by the
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SampTA steering committee, Akram Aldroubi, John Benedetto, Paul Butzer, Hans
Feichtinger, Paulo Ferreira, Karlheinz Grochenig, Rowland Higgins, Abdul Jerri,
Yuri Lyubarskii, Farokh Marvasti, Gerhard Schmeifler, Bruno Torrésani, Michael
Unser, and Ahmed Zayed, is greatly appreciated.

Preparation of SampTA as well as of this volume was carried out in part during
my sabbatical stay at the Mathematics Department and the Research Laboratory of
Electronics at the Massachusetts Institute of Technology in Spring 2012, my visit as
John von Neumann Visiting Professor at the Technical University Munich in Spring
2014, and my one semester visit to the Catholic University Eichstitt-Ingolstadt
in Fall 2014. T would like to thank the three institutions, in particular, my hosts
Laurent Demanet, Vivek Goyal, Massimo Fornasier, and Rene Grothmann for their
hospitality and the great working conditions that I enjoyed during my stays. Last
but not least, I would like to thank my mathematics mentors, Hermann Pfander and
John Benedetto, for their continued support.

Jacobs University, Bremen Gotz E. Pfander
15.10.2015
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Chapter 1
Estimation in High Dimensions: A Geometric
Perspective

Roman Vershynin

Abstract This tutorial provides an exposition of a flexible geometric framework
for high-dimensional estimation problems with constraints. The tutorial develops
geometric intuition about high-dimensional sets, justifies it with some results of
asymptotic convex geometry, and demonstrates connections between geometric
results and estimation problems. The theory is illustrated with applications to
sparse recovery, matrix completion, quantization, linear and logistic regression, and
generalized linear models.

1.1 Introduction

1.1.1 Estimation with constraints

This chapter provides an exposition of an emerging mathematical framework for
high-dimensional estimation problems with constraints. In these problems, the goal
is to estimate a point x which lies in a certain known feasible set K € R”, from
a small sample yy,...,y, of independent observations of x. The point x may
represent a signal in signal processing, a parameter of a distribution in statistics,
or an unknown matrix in problems of matrix estimation or completion. The feasible
set K is supposed to represent properties that we know or want to impose on x.

The geometry of the high-dimensional set K is a key to understanding estimation
problems. A powerful intuition about what high-dimensional sets look like has been
developed in the area known as asymptotic convex geometry [6, 32]. The intuition
is supported by many rigorous results, some of which can be applied to estimation
problems. The main goals of this chapter are:

Partially supported by NSF grant DMS 1265782 and USAF Grant FA9550-14-1-0009.

R. Vershynin (P<)

Department of Mathematics, University of Michigan, 530 Church Street,
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4 R. Vershynin

(a) develop geometric intuition about high-dimensional sets;

(b) explain results of asymptotic convex geometry which validate this intuition;

(c) demonstrate connections between high-dimensional geometry and high-
dimensional estimation problems.

This chapter is not a comprehensive survey but is rather a tutorial. It does
not attempt to chart vast territories of high-dimensional inference that lie on the
interface of statistics and signal processing. Instead, this chapter proposes a useful
geometric viewpoint, which could help us find a common mathematical ground for
many (and often dissimilar) estimation problems.

1.1.2 Quick examples

Before we proceed with a general theory, let us mention some concrete examples
of estimation problems that will be covered here. A particular class of estimation
problems with constraints is considered in the young field of compressed sensing
[15, 19, 26, 39]. There K is supposed to enforce sparsity; thus K usually consists of
vectors that have few nonzero coefficients. Sometimes more restrictive structured
sparsity assumptions are placed, where only certain arrangements of nonzero
coefficients are allowed [5, 61]. The observations y; in compressed sensing are
assumed to be linear in x, which means that y; = (a;,x). Here a; are typically
i.i.d. vectors drawn from some known distribution in R” (for example, normal).

Another example of estimation problems with constraints is the matrix comple-
tion problem [12, 13, 34, 37, 63, 68] where K consists of matrices with low rank,
and yy, ...,y is a sample of matrix entries. Such observations are still linear in x.

In general, observations do not have to be linear; good examples are binary
observations y; € {—1, 1}, which satisfy y; = sign({a;,x)), see [10, 36, 57, 59],
and more generally Ey; = 6({a;, x)), see [2, 58, 60].

In statistics, these classes of estimation problems can be interpreted as linear
regression (for linear observations with noise), logistic regression (for binary obser-
vations), and generalized linear models (for more general non-linear observations).

All these examples, and more, will be explored in this chapter. However, our
main goal is to advance a general approach, which would not be tied to a particular
nature of the feasible set K. Some general estimation problems of this nature
were considered in [3, 47] for linear observations and in [2, 58—60] for nonlinear
observations.

1.1.3 Plan of the chapter

In Section 1.2.1, we introduce a general class of estimation problems with con-
straints. We explain how the constraints (given by feasible set K) represent
low-complexity structures, which could make it possible to estimate x from few
observations.
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In Section 1.3, we make a short excursion into the field of asymprotic convex
geometry. We explain intuitively the shape of high-dimensional sets K and state
some known results supporting this intuition. In view of estimation problems, we
especially emphasize one of these results—the so-called M* bound on the size of
high-dimensional sections of K by a random subspace E. It depends on the single
geometric parameter of K that quantifies the complexity of K; this quantity is called
the mean width. We discuss mean width in some detail, pointing out its connections
to convex geometry, stochastic processes, and statistical learning theory.

In Section 1.4, we apply the M™ bound to the general estimation problem with
linear observations. We formulate an estimator first as a convex feasibility problem
(following [47]) and then as a convex optimization problem.

In Section 1.5, we prove a general form of the M* bound. Our proof borrowed
from [59] is quite simple and instructive. Once the M* bound is stated in the lan-
guage of stochastic processes, it follows quickly by application of symmetrization,
contraction, and rotation invariance.

In Section 1.6, we apply the general M* bound to estimation problems; obser-
vations here are still linear but can be noisy. Examples of such problems include
sparse recovery problems and linear regression with constraints, which we explore
in Section 1.7.

In Section 1.8, we extend the theory from Gaussian to sub-Gaussian observations.
A sub-Gaussian M™* bound (similar to the one obtained in [47]) is deduced from
the previous (Gaussian) argument followed by an application of a deep comparison
theorem of X. Fernique and M. Talagrand (see [71]).

In Section 1.9, we pass to exact recovery results, where an unknown vector x
can be inferred from the observations y; without any error. We present a simple
geometric argument based on Y. Gordon’s “escape through a mesh” theorem [33].
This argument was first used in this context for sets of sparse vectors in [66],
was further developed in [53, 69], and pushed forward for general feasible sets in
[3, 16, 72].

In Section 1.10, we explore matrix estimation problems. We first show how the
general theory applies to a low-rank matrix recovery problem. Then we address a
matrix completion problem with a short and self-contained argument from [60].

Finally, we pass to nonlinear observations. In Section 1.11, we consider single-bit
observations y; = sign (a;,x). Analogously to linear observations, there is a clear
geometric interpretation for these as well. Namely, the estimation problem reduces
in this case to a pizza cutting problem about random hyperplane tessellations of K.
We discuss a result from [59] on this problem, and we apply it to estimation by
formulating it as a feasibility problem.

Similarly to what we did for linear observations, we replace the feasibility
problem by optimization problem in Section 1.12. Unlike before, such replacement
is not trivial. We present a simple and self-contained argument from [58] about
estimation from single-bit observations via convex optimization.

In Section 1.13, we discuss the estimation problem for general (not only single
bit) observations following [60]. The new crucial step of estimation is the metric
projection onto the feasible set; this projection was studied recently in [17] and [60].
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In Section 1.14, we outline some natural extensions of the results for general
distributions and to a localized version of mean width.

1.1.4 Acknowledgements

The author is grateful to Vladimir Koltchinskii, Shahar Mendelson, Renato
Negrinho, Robert Nowak, Yaniv Plan, Elizaveta Rebrova, Joel Tropp, and especially
the anonymous referees for their helpful discussions, comments, and corrections,
which lead to a better presentation of this chapter.

1.2 High-dimensional estimation problems

1.2.1 Estimating vectors from random observations

Suppose we want to estimate an unknown vector x € R”. In signal processing, x
could be a signal to be reconstructed, while in statistics x may represent a parameter
of a distribution. We assume that information about x comes from a sample of
independent and identically distributed observations yi,...,y, € R, which are
drawn from a certain distribution which depends on x:

y; ~ distribution(x), i=1,...,m.
So we want to estimate x € R” from the observation vector

y=01.-..ym) € R™.
One example of this situation is the classical linear regression problem in statistics,
y=XB+v, (1.1)
in which one wants to estimate the coefficient vector 8 from the observation vector

y. We will see many more examples later; for now let us continue with setting up
the general mathematical framework.



1 Estimation in High Dimensions: A Geometric Perspective 7

; ling
'~ "y

T estimation
Rn R?’n

Fig. 1.1 Estimation problem in high dimensions

1.2.2 Low complexity structures

It often happens that we know in advance, believe in, or want to enforce some prop-
erties of the vector x. We can formalize such extra information as the assumption
that

xekK

where K is some fixed and known subset of R”, a feasible set. This is a very general
and flexible assumption. At this point, we are not stipulating any properties of the
feasible set K.

To give a quick example, in regression problem (1.1), one often believes that
B is a sparse vector, i.e., among its coefficients only few are nonzero. This is
important because it means that a few explanatory variables can adequately explain
the dependent variable. So one could choose K to be a set of all s-sparse vectors in
R"—those with at most s nonzero coordinates, for a fixed sparsity level s < n. More
examples of natural feasible sets K will be given later.

Figure 1.1 illustrates the estimation problem. Sampling can be thought of as a
map taking x € K toy € R"; estimation is a map fromy € R tox € K and is
ideally the inverse of sampling.

How can a prior information encoded by K help in high-dimensional estimation?
Let us start with a quick and non-rigorous argument based on the number of degrees
of freedom. The unknown vector x has n dimensions and the observation vector y
has m dimensions. So in principle, it should be possible to estimate x from y with

m = 0O(n)

observations. Moreover, this bound should be tight in general.

Now let us add the restriction that x € K. If K happens to be low dimensional,
with algebraic dimension dim(K) = d < n, then x has d degrees of freedom.
Therefore, in this case the estimation should be possible with fewer observations,

m = 0(d) = o(n).
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It rarely happens that feasible sets of interest literally have small algebraic
dimension. For example, the set of all s-sparse vectors in R” has full dimension 7.
Nevertheless, the intuition about low dimensionality remains valid. Natural feasible
sets, such as regression coefficient vectors, images, adjacency matrices of networks,
do tend to have low complexity. Formally K may live in an n-dimensional space
where n can be very large, but the actual complexity of K, or “effective dimension”
(which we will formally quantify in Section 1.3.5.6), is often much smaller.

This intuition motivates the following three goals, which we will discuss in detail
in this chapter:

1. Quantify the complexity of general subsets K of R".

2. Demonstrate that estimation can be done with few observations as long as the
feasible set K has low complexity.

3. Design estimators that are algorithmically efficient.

We will start by developing intuition about the geometry of sets K in high
dimensions. This will take us a short excursion into high-dimensional convex
geometry. Although convexity assumption for K will not be imposed in most results
of this chapter, it is going to be useful in Section 1.3 for developing a good intuition
about geometry in high dimensions.

1.3 An excursion into high-dimensional convex geometry

High-dimensional convex geometry studies convex bodies K in R”" for large n; those
are closed, bounded, convex sets with nonempty interior. This area of mathematics
is sometimes also called asymptotic convex geometry (referring to n increasing to
infinity) and geometric functional analysis. The tutorial [6] could be an excellent
first contact with this field; the survey [30] and books [4, 32, 52, 56] cover more
material and in more depth.

1.3.1 What do high-dimensional convex bodies look like?

A central problem in high-dimensional convex geometry is—what do convex bodies
look like in high dimensions? A heuristic answer to this question is—a convex body
K usually consists of a bulk and outliers. The bulk makes up most of the volume of
K, but it is usually small in diameter. The outliers contribute little to the volume, but
they are large in diameter.

If K is properly scaled, the bulk usually looks like a Euclidean ball. The
outliers look like thin, long tentacles. This is best seen Figure 1.2a, which depicts
V. Milman’s vision of high-dimensional convex sets [51]. This picture does not look
convex, and there is a good reason for this. The volume in high dimensions scales
differently than in low dimensions—dilating of a set by the factor 2 increases its



1 Estimation in High Dimensions: A Geometric Perspective 9

a b

2/v/n

A general convex set The ¢; ball

Fig. 1.2 V. Milman’s “hyperbolic” drawings of high-dimensional convex sets

volume by the factor 2”. This is why it is not surprising that the tentacles contain
exponentially less volume than the bulk. Such behavior is best seen if a picture looks
“hyperbolic.” Although not convex, pictures like Figure 1.2 more accurately reflect
the distribution of volume in higher dimensions.

Example 3.1 (The £, ball). To illustrate this heuristic on a concrete example,
consider the set

K=B={xeR": |x|; <1},
i.e., the unit £; ball in R”. The inscribed Euclidean ball in K, which we will denote

by B, has diameter 2/./n. One can then check that volumes of B and of K are
comparable:!

1
vol,(B)'/" < vol,(K)"/" =< =
n

Therefore, B (perhaps inflated by a constant factor) forms the bulk of K. It is round,
makes up most of the volume of K, but has small diameter. The outliers of K are
thin and long tentacles protruding quite far in the coordinate directions. This can be
best seen in a hyperbolic drawing, see Figure 1.2b.

1.3.2 Concentration of volume

The heuristic representation of convex bodies just described can be supported by
some rigorous results about concentration of volume.

"Here a, < b, means that there exists positive absolute constants ¢ and C such that ca, < b, <
Ca, for all n.
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These results assume that K is isotropic, which means that the random vector X
distributed uniformly in K (according to the Lebesgue measure) has zero mean and
identity covariance:

EX=0 EXX' =1, (1.2)

Isotropy is just an assumption of proper scaling—one can always make a convex
body K isotropic by applying a suitable invertible linear transformation.

With this scaling, most of the volume of X is located around the Euclidean sphere
of radius +/n. Indeed, taking traces on both sides of the second equation in (1.2), we
obtain

E|IX]3 = n.

Therefore, by Markov’s inequality, at least 90% of the volume of K is contained
in a Euclidean ball of size O(4/n). Much more powerful concentration results are
known—the bulk of K lies very near the sphere of radius /z and the outliers have
exponentially small volume. This is the content of the two major results in high-
dimensional convex geometry, which we summarize in the following theorem.

Theorem 3.2 (Distribution of volume in high-dimensional convex sets). Ler K
be an isotropic convex body in R", and let X be a random vector uniformly
distributed in K. Then the following is true:

1. (Concentration of volume) For every t > 1, one has

P{[X]l2 > 1v/n} < exp(~ct/n).

2. (Thin shell) For every ¢ € (0, 1), one has

P {’||X||2 — ﬁ] > gﬁ} < Cexp(—ce*n'/?).

Here and later in this chapter, C, ¢ denote positive absolute constants.

The concentration part of Theorem 3.2 is due to G. Paouris [54]; see [1] for an
alternative and shorter proof. The thin shell part is an improved version of a result
of B. Klartag [38], which is due to O. Guedon and E. Milman [35].

1.3.3 Low-dimensional random sections

The intuition about bulk and outliers of high-dimensional convex bodies K can
help us to understand what random sections of K should look like. Suppose E is a
random subspace of R” with fixed dimension d, i.e., E is drawn at random from the
Grassmanian manifold G, 4 according to the Haar measure. What does the section
K N E look like on average?
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E
Fig. 1.3 Random section of a high-dimensional convex set

If d is sufficiently small, then we should expect E to pass through the bulk of
K and miss the outliers, as those have very small volume. Thus if the bulk of K is
a round ball,”> we should expect the section K N E to be a round ball as well; see
Figure 1.3.

There is a rigorous result which confirms this intuition. It is known as Dvoret-
zky’s theorem [23, 24], which we shall state in the form of V. Milman [48];
expositions of this result can be found, e.g., in [32, 56]. Dvoretzky—Milman’s
theorem has laid a foundation for the early development of asymptotic convex
geometry. Informally, this result says that random sections of K of dimension
d ~ logn are round with high probability.

Theorem 3.3 (Dvoretzky’s theorem). Let K be an origin-symmetric convex body
in R" such that the ellipsoid of maximal volume contained in K is the unit Euclidean
ball B. Fix ¢ € (0,1). Let E be a random subspace of dimension d = ce~*logn
drawn from the Grassmanian G, 4 according to the Haar measure. Then there exists
R > 0 such that with high probability (say, 0.99) we have

(1—¢)B(R) CKNEC(1+¢)BR).

Here B(R) is the centered Euclidean ball of radius R in the subspace E.

Several important aspects of this theorem are not mentioned here—in particular
how, for a given convex set K, to compute the radius R and the largest dimension d of
round sections of K. These aspects can be found in modern treatments of Dvoretzky
theorem such as [32, 56].

2This intuition is a good approximation to truth, but it should be corrected. While concentration of
volume tells us that the bulk is contained in a certain Euclidean ball (and even in a thin spherical
shell), it is not always true that the bulk is a Euclidean ball (or shell); a counterexample is the unit
cube [—1, 1]". In fact, the cube is the worst convex set in the Dvoretzky theorem, which we are
about to state.
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1.3.4 High-dimensional random sections?

Dvoretzky’s Theorem 3.3 describes the shape of low-dimensional random sections
KNE, those of dimensions d ~ logn. Can anything be said about high-dimensional
sections, those with small codimension? In this more difficult regime, we can no
longer expect such sections to be round. Instead, as the codimension decreases, the
random subspace E becomes larger and it will probably pick more and more of the
outliers (tentacles) of K. The shape of such sections K N E is difficult to describe.

Nevertheless, it turns out that we can accurately predict the diameter of K N E.
A bound on the diameter is known in asymptotic convex geometry as the low M*
estimate, or M* bound. We will state this result in Section 1.3.6 and prove it in
Section 1.5. For now, let us only mention that M* bound is particularly attractive
in applications as it depends only on two parameters—the codimension of E and a
single geometric quantity, which informally speaking, measures the size of the bulk
of K. This geometric quantity is called the mean width of K. We will pause briefly
to discuss this important notion.

1.3.5 Mean width

The concept of mean width captures important geometric characteristics of sets in
R". One can mentally place it in the same category as other classical geometric
quantities like volume and surface area.

Consider a bounded subset K in R". (The convexity, closedness, and nonempty
interior will not be imposed from now on.) The width of K in the direction of a given
unit vector n € S"~! is defined as the width of the smallest slab between two parallel
hyperplanes with normal # that contains K; see Figure 1.4.

Analytically, we can express the width in the direction of  as

sup (n,u —v) = sup (9,z)
u,veK z€EK—K

Fig. 1.4 Width of K in the direction of 5
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where K—K = {u—v : u,v € K} is the Minkowski sum of K and —K. Equivalently,
we can define the width using the standard notion of support function of K, which
is hx(n) = sup,ck (1, u), see [64]. The width of K in the direction of » can be
expressed as hg(n) + hg(—n).

Averaging over n uniformly distributed on the sphere S"~!, we can define the
spherical mean width of K:

w(K):=E sup (n,z).
z€EK—K

This notion is standard in asymptotic geometric analysis.

In other related areas, such as high-dimensional probability and statistical
learning theory, it is more convenient to replace the spherical random vector n ~
Unif(S"~") by the standard Gaussian random vector g ~ N(0, I,). The advantage is
that g has independent coordinates while » does not.

Definition 3.4 (Gaussian mean width). The Gaussian mean width of a bounded
subset K of R” is defined as

w(K):=E sup (g,u), (1.3)
u€eK—K

where g ~ N(0, I,,) is a standard Gaussian random vector in R”. We will often refer
to Gaussian mean width as simply the mean width.

1.3.5.1 Simple properties of mean width

Observe first that the Gaussian mean width is about /n times larger than the
spherical mean width. To see this, using rotation invariance we realize y as n =
g/llgll2. Next, we recall that the direction and magnitude of a standard Gaussian
random vector are independent, so 7 is independent of ||g||». It follows that

w(K) = E|lg|l2 - w(K).

Further, the factor E ||g||» is of order +/n; this follows, for example, from known
bounds on the x? distribution:

cv/n<E|gl> < Vn (1.4)

where ¢ > 0 is an absolute constant. Therefore, the Gaussian and spherical versions
of mean width are equivalent (up to scaling factor /n), so it is mostly a matter
of personal preference which version to work with. In this chapter, we will mostly
work with the Gaussian version.

Let us observe a few standard and useful properties of the mean width, which
follow quickly from its definition.
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Proposition 3.5. The mean width is invariant under translations, orthogonal trans-
formations, and taking convex hulls. O

Especially useful for us will be the last property, which states that
w(conv(K)) = w(K). (1.5)

This property will come handy later, when we consider convex relaxations of
optimization problems.

1.3.5.2 Computing mean width on examples

Let us illustrate the notion of mean width on some simple examples.

Example 3.6. 1f K is the unit Euclidean ball B}, or sphere S"=!, then

w(K) =E|gl. < vn

and also w(K) > c4/n, by (1.4).

Example 3.7. Let K be a subset of B) with linear algebraic dimension d. Then K
lies in a d-dimensional unit Euclidean ball, so as before we have

w(K) < 2+/d.
Example 3.8. Let K be a finite subset of Bj. Then
w(K) < C+/log|K]|.

This follows from a known and simple computation of the expected maximum of
k = |K| Gaussian random variables.

Example 3.9 (Sparsity). Let K consist of all unit s-sparse vectors in R”"—those with
at most s nonzero coordinates:

K={xeR": |xll=1, [x]o < s}.

Here ||x||o denotes the number of nonzero coordinates of x. A simple computation
(see, e.g., [58, Lemma 2.3]) shows that

cv/slog(2n/s) < w(K) < C+/slog(2n/s).

Example 3.10 (Low rank). Let K consist of d; x d, matrices with unit Frobenius
norm and rank at most r:

K ={X e R"% ;| X||r = 1, rank(X) < r}.
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We will see in Proposition 10.4,

w(K) < Cy/r(d) + db).

1.3.5.3 Computing mean width algorithmically

Can we estimate the mean width of a given set K fast and accurately? Gaussian
concentration of measure (see [42, 43, 56]) implies that, with high probability, the
random variable

w(K,g) = sup (g,u)
uckK—K

is close to its expectation w(K). Therefore, to estimate w(K), it is enough to generate
a single realization of a random vector g ~ N(0,1,) and compute w(K,g); this
should produce a good estimator of w(K).

Since we can convexify K without changing the mean width by Proposition 3.5,
computing this estimator is a convex optimization problem (and often even a linear
problem if K is a polytope).

1.3.5.4 Computing mean width theoretically

Finding theoretical estimates on the mean width of a given set K is a nontrivial
problem. It has been extensively studied in the areas of probability in Banach spaces
and stochastic processes.

Two classical results in the theory of stochastic processes—Sudakov’s inequality
(see [43, Theorem 3.18]) and Dudley’s inequality (see [43, Theorem 11.17])—relate
the mean width to the metric entropy of K. Let N(K, t) denote the smallest number
of Euclidean balls of radius r whose union covers K. Usually N(K, t) is referred to
as a covering number of K, and log N(K, t) is called the metric entropy of K.

Theorem 3.11 (Sudakov’s and Dudley’s inequalities). For any bounded subset K
of R", we have

o0
c supt+/logN(K,t) < w(K) < C/ V1ogN(K, 1) dt.
0

>0

The lower bound is Sudakov’s inequality and the upper bound is Dudley’s inequality.

Neither Sudakov’s nor Dudley’s inequality is tight for all sets K. A more
advanced method of generic chaining produces a tight (but also more complicated)
estimate of the mean width in terms of majorizing measures; see [71].

Let us only mention some other known ways to control mean width. In some
cases, comparison inequalities for Gaussian processes can be useful, especially
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Slepian’s and Gordon’s; see [43, Section 3.3]. There is also a combinatorial
approach to estimating the mean width and metric entropy, which is based on VC
dimension and its generalizations; see [44, 65].

1.3.5.5 Mean width and Gaussian processes

The theoretical tools of estimating mean width we just mentioned, including
Sudakov’s, Dudley’s, Slepian’s, and Gordon’s inequalities, have been developed in
the context of stochastic processes. To see the connection, consider the Gaussian
random variables G, = (g,u) indexed by points # € R”. The collection of
these random variables (G, ),ex—x forms a Gaussian process, and the mean width
measures the size of this process:

w(K) =E sup G,.
uckK—K

In some sense, any Gaussian process can be approximated by a process of this form.
We will return to the connection between mean width and Gaussian processes in
Section 1.5 where we prove the M* bound.

1.3.5.6 Mean width, complexity, and effective dimension

In the context of stochastic processes, Gaussian mean width (and its non-Gaussian
variants) plays an important role in statistical learning theory. There it is more
natural to work with classes F of real-valued functions on {1,...,n} than with
geometric sets K C R”. (We identify a vector in R" with a function on {1,...,n}.)
The Gaussian mean width serves as a measure of complexity of a function class in
statistical learning theory, see [45]. It is sometimes called Gaussian complexity and
is usually denoted y,(F).

To get a better feeling of mean width as complexity, assume that K lies in the
unit Euclidean ball B)}. The square of the mean width, w(K)?, may be interpreted
as the effective dimension of K. By Example 3.7, the effective dimension is always
bounded by the linear algebraic dimension. However, unlike algebraic dimension,
the effective dimension is robust—a small perturbation of K leads to a small change
in w(K)?.

1.3.6 Random sections of small codimension: M* bound

Let us return to the problem we posed in Section 1.3.4 — bounding the diameter of
random sections K N E where E is a high-dimensional subspace. The following
important result in asymptotic convex geometry gives a good answer to this
question.



1 Estimation in High Dimensions: A Geometric Perspective 17

Theorem 3.12 (M* bound). Let K be a bounded subset of R". Let E be a random
subspace of R" of a fixed codimension m, drawn from the Grassmanian G, ,—p
according to the Haar measure. Then

Ediam(K N E) < Cb%{).

We will prove a stronger version of this result in Section 1.5. The first variant of
M* bound was found by V. Milman [49, 50]; its present form is due to A. Pajor and
N. Tomczak-Jaegermann [55]; an alternative argument which yields tight constants
was given by Y. Gordon [33]; an exposition of M™* bound can be found in [43, 56].

To understand the M* bound better, it is helpful to recall from Section 1.3.5.1
that w(K)/+/n is equivalent to the spherical mean width of K. Heuristically, the
spherical mean width measures the size of the bulk of K.

For subspace E of not very high dimension, where m = Q(n), the M* bound
states that the size of the random section K N E is bounded by the spherical mean
width of K. In other words, subspace E of proportional dimension passes through
the bulk of K and ignores the outliers (“tentacles”), just as Figure 1.3 illustrates.
But when the dimension of the subspace E grows toward n (so the codimension m
becomes small), the diameter of K N E also grows by a factor of y/n/m. This gives
a precise control of how E in this case interferes with the outliers of K.

1.4 From geometry to estimation: linear observations

Having completed the excursion into geometry, we can now return to the high-
dimensional estimation problems that we started to discuss in Section 1.2. To recall,
our goal is to estimate an unknown vector

xeKCR!
that lies in a known feasible set K, from a random observation vector
y=01,...,ym) € R™,
whose coordinates y; are random i.i.d. observations of x.
So far, we have not been clear about possible distributions of the observations
yi. In this section, we will study perhaps the simplest model—Gaussian linear
observations. Consider i.i.d. standard Gaussian vectors

a; ~ N(O, In)

and define
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®)

Fig. 1.5 Estimating x by any vector X in the intersection of K with the affine subspace
{x' 1 Ax' =y}

Thus the observation vector y depends linearly on x. This is best expressed in a
matrix form:

y = Ax.

Here A is an m x n Gaussian random matrix, which means that the entries of A are
i.i.d. N(0, 1) random variables; the vectors a; form the rows of A.

The interesting regime is when the number of observations is smaller than the
dimension, i.e., when m < n. In this regime, the problem of estimating x € R” from
y € R is ill posed. (In the complementary regime, where m > n, the linear system
y = Ax is well posed since A has full rank almost surely, so the solution is trivial.)

1.4.1 Estimation based on M* bound

Recall that we know two pieces of information about x:

1. x lies in a known random affine subspace {x' : Ax' =y};
2. x lies in a known set K.

Therefore, a good estimator of x can be obtained by picking any vector X from the
intersection of these two sets; see Figure 1.5. Moreover, since just these two pieces
of information about x are available, such estimator is best possible in some sense.

How good is such estimate? The maximal error is, of course, the distance
between two farthest points in the intersection of K with the affine subspace
{x : Ax’ = y}. This distance in turn equals the diameter of the section of K by
this random subspace. But this diameter is controlled by M* bound, Theorem 3.12.
Let us put together this argument more rigorously.

In the following theorem, the setting is the same as above: K C R” is a bounded
subset, x € K is an unknown vector, and y = Ax is the observation vector, where A
is an m x n Gaussian matrix.

Theorem 4.1 (Estimation from linear observations: feasibility program).
Choose X to be any vector satisfying

xeK and Ax =y. (1.6)
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Then

N Cw(K)
Esup X — x|, < .
xX€K 2 «/%

Proof. We apply the M* bound, Theorem 3.12, for the set K — K and the subspace
E = ker(A). Rotation invariance of Gaussian distribution implies that E is uniformly
distributed in the Grassmanian G,, ,,—,,, as required by the M* bound. Moreover, it is
straightforward to check that w(K — K) < 2w(K). It follows that

Ediam((K —K) NE) < Cj(n_lf).

It remains to note that since x,x € K and Ax = Ax = y, we havex—x € (K—K)NE.
O

The argument we just described was first suggested by S. Mendelson, A. Pajor,
and N. Tomczak-Jaegermann [47].

1.4.2 Estimation as an optimization problem

Let us make one step forward and replace the feasibility program (1.6) by a more
flexible optimization program.

For this, let us make an additional (but quite mild) assumption that K has
nonempty interior and is star-shaped. Being star-shaped means that together with
each point, the set K contains the segment joining that point to the origin; in other
words,

tK C K for allt e [0,1].

For such set K, let us revise the feasibility program (1.6). Instead of intersecting
a fixed set K with the affine subspace {x’ : Ax’ = y}, we may blow up K (i.e.,
consider a dilate tK with increasing 7 > 0) until it touches that subspace. Choose X
to be the touching point, see Figure 1.6. The fact that K is star-shaped implies that X
still belongs to K and (obviously) the affine subspace; thus x satisfies the same error
bound as in Theorem 4.1.

T
)
K

Fig. 1.6 Estimating x by blowing up K until it touches the affine subspace {x’ : Ax’ =y}
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To express this estimator analytically, it is convenient to use the notion of
Minkowski functional of K, which associates to each point x € R" a nonnegative
number ||x||x defined by the rule

lellx =inf{A >0: A"'x € k).

Minkowski functionals, also called gauges, are standard notions in geometric
functional analysis and convex analysis. Convex analysis textbooks such as [64]
offer thorough treatments of this concept. We just mention here a couple of
elementary properties. First, the function x +— ||x|x is continuous on R” and it
is positive homogeneous (that is, ||ax|x = a|lx||x for a > 0). Next, a closed set K
is the 1-sublevel set of its Minkowski functional, that is,

K={x:|xllx =1}

A typical situation to think of is when K is a symmetric convex body (i.e. K is closed,
bounded, has nonempty interior, and is origin symmetric); then ||x|| ¢ defines a norm
on R” with K being the unit ball.

Let us now accurately state an optimization version of Theorem 4.1. It is valid
for an arbitrary bounded star-shaped set K with nonempty interior.

Theorem 4.2 (Estimation from linear observations: optimization program).
Choose X to be a solution of the program

minimize||x’||x  subjectto Ax’ =y. (1.7)
Then
. Cw(K)
Esup ||x — x|, < .
k=

Proof. It suffices to check that ¥ € K; the conclusion would then follow from
Theorem 4.1. Both x and x satisfy the linear constraint Ax’ = y. Therefore, by
choice of x, we have

X < llx]x < 1;

the last inequality is nothing else than our assumption that x € K. Thus ¥ € K as
claimed. O
1.4.3 Algorithmic aspects: convex programming

What does it take to solve the optimization problem (1.7) algorithmically? If
the feasible set K is convex, then (1.7) is a convex program. In this case, to



1 Estimation in High Dimensions: A Geometric Perspective 21

solve this problem numerically one may tap into an array of available convex
optimization solvers, in particular interior-point methods [8] and proximal-splitting
algorithms [7].

Further, if K is a polytope, then (1.7) can be cast as a linear program, which
widens an array of algorithmic possibilities even further. For a quick preview, let us
mention that examples of the latter kind will be discussed in detail in Section 1.7,
where we will use K to enforce sparsity. We will thus choose K to be a ball of £,
norm in R”, so the program (1.7) will minimize ||x’||; subject to Ax" = y. This is a
typical linear program in the area of compressed sensing.

If K is not convex, then we can convexify it, thereby replacing K with its convex
hull conv(K). Convexification does not change the mean width according to the
remarkable property (1.5). Therefore, the generally nonconvex problem (1.7) can be
relaxed to the convex program

minimize||x’||convx)  Subjectto  Ax’ =y, (1.8)

without compromising the guarantee of estimation stated in Theorem 4.2. The
solution X of the convex program (1.8) satisfies

¢ K)) _ Cw(K
Esup||f — x|, <E sup |&—x|» < w(conv(K)) _ Cw( ).
x€K

x€conv(K) «/ﬁ ﬁ

Summarizing, we see that in any case, whether K is convex or not, the estimation
problem reduces to solving an algorithmically tractable convex program. Of course,
one needs to be able to compute ||z||conv(x) algorithmically for a given vector z € R”.
This is possible for many (but not all) feasible sets K.

1.4.4 Information-theoretic aspects: effective dimension

If we fix a desired error level, for example if we aim for

E sup ||x — x|, < 0.01,

x€K

then
m ~ w(K)?

observations will suffice. The implicit constant factor here is determined by the
desired error level.

Notice that this result is uniform. By Markov’s inequality, with probability,
say 0.9 in A (which determines the observation model) the estimation is accurate
simultaneously for all vectors x € K. Moreover, as we observed in Section 1.5.2,
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the actual probability is much better than 0.9; it converges to 1 exponentially fast in
the number of observations m.

The square of the mean width, w(K)?, can be thought of an effective dimension
of the feasible set K, as we pointed out in Section 1.3.5.6.

We can summarize our findings as follows.

Using convex programming, one can estimate a vector x in a general feasible set K from

m random linear observations. A sufficient number of observations m is the same as the
effective dimension of K (the mean width squared), up to a constant factor.

1.5 High-dimensional sections: proof of a general M* bound

Let us give a quick proof of the M* bound, Theorem 3.12. In fact, without much
extra work we will be able to derive a more general result from [59]. First, it would
allow us to treat noisy observations of the form y = Ax + v. Second, it will be
generalizable for non-Gaussian observations.

Theorem 5.1 (General M* bound). Let T be a bounded subset of R". Let A be an
m X n Gaussian random matrix (with i.i.d. N(0, 1) entries). Fix ¢ > 0 and consider
the set

1
T, = {u eT: —|Auf; < g}. (1.9)

Then?

8 T
Esup |ul, </ — Esup|{g,u)|+ ./ =¢, (1.10)
ueT, m  yer 2

where g ~ N(0, 1,,) is a standard Gaussian random vector in R".

To see that this result contains the classical M* bound, Theorem 3.12, we can
apply it for T = K — K, ¢ = 0, and identify ker(A) with E. In this case,

T.=(K—-K)NE.

It follows that T, 2 (K N E) — (K N E), so the left-hand side of (1.10) is
bounded below by diam(K N E). The right-hand side of (1.10) by symmetry equals
V87 /mw(K). Thus we recover Theorem 3.12 with C = +/87.

Our proof of Theorem 5.1 will be based on two basic tools in the theory of
stochastic processes—symmetrization and contraction.

3Conclusion (1.10) is stated with the convention that sup,er, llull2 = 0 whenever T, = 0.
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A stochastic process is simply a collection of random variables (Z(¢));er on the
same probability space. The index space T can be arbitrary; it may be a time interval
(such as in Brownian motion) or a subset of R” (as will be our case). To avoid
measurability issues, we can assume that 7 is finite by discretizing it if necessary.

Proposition 5.2. Consider a finite collection of stochastic processes Z,(t), ...,
Z,(t) indexed by t € T. Let ¢; be independent Rademacher random variables (that
is, &; independently take values —1 and 1 with probabilities 1/2 each). Then we have
the following:

(i) (Symmetrization)

3

Esup| Y Z(t)—]EZi(t)]‘ < 2Est161Tp‘Ze,-Z,~(t)‘.
i=1

er 15

(ii) (Contraction)
]Esup‘ 8,'|Zi(t)|‘ < 2]Esup‘ e,Zi(t)).

Both statements are relatively easy to prove even in greater generality. For
example, taking the absolute values of Z;(¢) in the contraction principle can be
replaced by applying general Lipschitz functions. Proofs of symmetrization and
contraction principles can be found in [43, Lemma 6.3] and [43, Theorem 4.12],
respectively.

1.5.1 Proof of Theorem 3.12

Let a;r denote the rows of A; thus a; are independent N (0, I,) random vectors. The
desired bound (1.10) would follow from the deviation inequality

1 m
ZZ ah |_\/7||u||2 S_Esup|(ga )| (111)
i=1

Esup

u€T

u€T

Indeed, if this inequality holds, then same is true if we replace T by the smaller
set T, on the left-hand side of (1.11). But for u € T, we have % Yo anu) | =

L)|Au|; < ¢, and the bound (1.10) follows by triangle inequality.
The rotation invariance of Gaussian distribution implies that

2
1 faa) | = >l (1.12)
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Thus using symmetrization and then contraction inequalities from Proposition 5.2,
we can bound the left-hand side of (1.11) by
1 m
<— Z &a;, u> .
m
i=1
Here ¢; are independent Rademacher variables.
Conditioning on &; and using rotation invariance, we see that the random vector

1 m
8= ﬁ ;81'“[

has distribution N (0, 7,,). Thus (1.13) can be written as

4E sup |—

ueT

Ze, a;,u) | =4Esup

u€T

(1.13)

4
ﬁEsupI (g.u)|.

u€T

This proves (1.11) and completes the proof of Theorem 5.1. O

1.5.2 From expectation to overwhelming probability

The M* bound that we just proved and in fact all results in this survey are stated
in terms of expected value for simplicity of presentation. One can upgrade them
to estimates with overwhelming probability using concentration of measure, see
[42]. We will illustrate this method with a couple of examples; the reader can apply
similar reasoning for several other results we have proved.

Let us first obtain a high-probability version of the deviation inequality (1.11)
using the Gaussian concentration inequality. We will consider the deviation

z(4) = sup—Z|a,, |—\/g||u||2)

ueT

as a function of the matrix A € R"". Let us show that it is a Lipschitz function
on R"™" equipped with Frobenius norm || - || (which is the same as the Euclidean
norm on R™"). Indeed, two applications of the triangle inequality followed by two
applications of the Cauchy—Schwarz inequality imply that for matrices A and B with
rows a] and b], respectively, we have
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1 m
|Z(A) — Z(B)| < sup— ) | (a; —b;,u) |
ueT M i=1

< )Zna, bl (whered(T) = max [l

< “Dyap,.

Thus the function A — Z(A) has Lipschitz constant bounded by d(K)//m. We
may now bound the deviation probability for Z using the Gaussian concentration
inequality (see [43, Equation 1.6]) as follows:

[2
P{zZ-EZ| > 1} < 2exp<— %)

This is a high-probability version of the deviation inequality (1.11).
Using this inequality, one quickly deduces a corresponding high-probability
version of Theorem 5.1. It states that

8
sup [lull2 </ — Esup|(g.u) |+ ,/ (e+1)
ucT, m ueT

with probability at least 1 — 2 exp(—mt>/2d(T)?).
As before, we obtain from this the following high-probability version of the M*
bound, Theorem 5.1. It states that

K
diam(K N E) < CW—() + Ct
A/ m

with probability at least 1 — 2 exp(—m#?/2 diam(K)?).

1.6 Consequences: estimation from noisy linear observations

Let us apply the general M* bound, Theorem 5.1, to estimation problems. This will
be even more straightforward than our application of the standard M* bound in
Section 1.4. Moreover, we will now be able to treat noisy observations.

Like before, our goal is to estimate an unknown vector x that lies in a known
feasible set K C R”, from a random observation vector y € R™. This time we
assume that, for some known level of noise ¢ > 0, we have

l l m
=Ax + v, — =— il = e 1.14
y v [vil E [vi| <e (1.14)

i=1



26 R. Vershynin

Here A is an m x n Gaussian matrix as before. The noise vector v may be unknown
and have arbitrary structure. In particular, v may depend on A, so even adversarial
errors are allowed. The £; constraint in (1.14) can clearly be replaced by the stronger
£, constraint

1 2 RS 2 2
—lvil; = — E vy =
” ”2 p i —

The following result is a generalization of Theorem 4.1 for noisy observations
(1.14). As before, it is valid for any bounded set K C R”.

Theorem 6.1 (Estimation from noisy linear observations: feasibility program).
Choose X to be any vector satisfying

1
€K and —|Ax—y|; <e. (1.15)
m
Then

- w(K)
Esup ¢ — ]2 < J_(f )

Proof. We apply the general M* bound, Theorem 5.1, for the set T = K — K, and
with 2¢ instead of €. It follows that

K
E sup uls < |7 Bsup| fg.u) | + V27 e = Vi (M+)
u€Tre \/ﬁ

The last inequality follows from the definition of mean width and the symmetry
of T.
To finish the proof, it remains to check that

X —x e Ty (1.16)

To prove this, first note that x,x € K, sox —x € K — K = T. Next, by triangle
inequality, we have

1 N | | 1

—[[AE —x)[li = —[|Ax —y + v[li <= —[|[Ax —y[i + —|v]i =2e.

m m m m
The last inequality follows from (1.14) and (1.15). We showed that the vector u =
X — x satisfies both constraints that define T», in (1.9). Hence (1.16) holds, and the
proof of the theorem is complete. O
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And similarly to Theorem 4.2, we can cast estimation as an optimization (rather
than feasibility) program. As before, it is valid for any bounded star-shaped set
K C R" with nonempty interior.

Theorem 6.2 (Estimation from noisy linear observations: optimization pro-
gram). Choose X to be a solution to the program

1
minimize|x'||x subjectto —||Ax' —y|; < e. (1.17)
m
Then

. (K)
Esup|x — x|, < vV8n (W— +e¢e).
sup [ —xl = Vi (=

Proof. Tt suffices to check that ¥ € K; the conclusion would then follow from
Theorem 6.1. Note first that by choice of X we have %HA)? —ylli < &, and by
assumption (1.14) we have %HAx —ylh = %||v||1 < ¢. Thus both X and x satisfy
the constraint in (1.17). Therefore, by choice of X, we have

%x < [lxllx < 1

the last inequality is nothing else than our assumption that x € K. It follows X € K
as claimed. O

The remarks about algorithmic aspects of estimation made in Sections 1.4.3
and 1.4.4 apply also to the results of this section. In particular, the estimation from
noisy linear observations (1.14) can be formulated as a convex program.

1.7 Applications to sparse recovery and regression

Remarkable examples of feasible sets K with low complexity come from the notion
of sparsity. Consider the set K of all unit s-sparse vectors in R”. As we mentioned
in Example 3.9, the mean width of K is

w(K) ~ slog(n/s).

According to the interpretation we discussed in Section 1.4.4, this means that the
effective dimension of K is of order slog(n/s). Therefore,

m ~ slog(n/s)
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observations should suffice to estimate any s-sparse vector in R”. Results of this
type form the core of compressed sensing, a young area of signal processing, see
[15, 19, 26, 39].

In this section, we consider a more general model, where an unknown vector x
has a sparse representation in some dictionary.

We will specialize Theorem 6.2 to the sparse recovery problem. The convex
program will in this case amount to minimizing the £; norm of the coefficients. We
will note that the notion of sparsity can be relaxed to accommodate approximate, or
“effective,” sparsity. Finally, we will observe that the estimate X is most often unique
and m-sparse.

1.7.1 Sparse recovery for general dictionaries

Let us fix a dictionary of vectors dy, ...,dy € R", which may be arbitrary (even
linearly dependent). The choice of a dictionary depends on the application; common
examples include unions of orthogonal bases and more generally tight frames (in
particular, Gabor frames). See [18, 20, 21, 62] for an introduction to sparse recovery
problems with general dictionaries.

Suppose an unknown vector x € R" is s-sparse in the dictionary {d;}. This means
that x can be represented as a linear combination of at most s dictionary elements,
ie.,

N
X = Z o;d; with at most s nonzero coefficients «; € R. (1.18)
i=1

As in Section 1.6, our goal is to recover x from a noisy observation vectory € R”
of the form

y=Ax+v, —||v||1 - Zm <e.

1—1

Recall that A is a known m x n Gaussian matrix, and v is an unknown noise vector,
which can have arbitrary structure (in particular, correlated with A).
Theorem 6.2 will quickly imply the following recovery result.

Theorem 7.1 (Sparse recovery: general dictionaries). Assume for normalization
that all dictionary vectors satisfy ||d;||» < 1. Choose X to be a solution to the convex
program

N
1
minimize|e’||; such that x’ = Za;di satisfies —||Ax" —y||; < e. (1.19)
m

i=1
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Then

R slog N
E[&—x|,<C ,f Nlaellz + V27 e

Proof. Consider the sets
K :=conv{+d;}¥ |, K := |« -K.

Representation (1.18) implies that x € K, so it makes sense to apply Theorem 6.2
for K.

Let us first argue that the optimization program in Theorem 6.2 can be written
in the form (1.19). Observe that we can replace ||x’||x by ||x||z in the optimization
problem (1.17) without changing its solution. (This is because ||x||z = |lee||1 - [|[x' ||k
and ||e||; is a constant value.) Now, by definition of K, we have

N
I¥'llg = min {lla’ 1 = ¥ = )" edsf.
i=1

Therefore, the optimization programs (1.17) and (1.19) are indeed equivalent.
Next, to evaluate the error bound in Theorem 6.2, we need to bound the mean
width of K. The convexification property (1.5) and Example 3.8 yield

w(K) = llee]ls - w(K) < Clle|l: - y/logN.

Putting this into the conclusion of Theorem 6.2, we obtain the error bound

n log N
Esup it —xl, < V87 €/~ - lal; + V27 e,
m

x€K

To complete the proof, it remains to note that

leelly < /s [lee]l2. (1.20)

since « is s-sparse, i.e., it has only s nonzero coordinates. O

1.7.2 Remarkable properties of sparse recovery

Let us pause to look more closely at the statement of Theorem 7.1.
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1.7.2.1 General dictionaries

Theorem 7.1 is very flexible with respect to the choice of a dictionary {d;}. Note
that there are essentially no restrictions on the dictionary. (The normalization
assumption ||d;||; < 1 can be dispensed of at the cost of increasing the error bound
by the factor of max; ||d;||».) In particular, the dictionary may be linearly dependent.

1.7.2.2 Effective sparsity

The reader may have noticed that the proof of Theorem 7.1 used sparsity in a quite
mild way, only through inequality (1.20). So the result is still true for vectors x
that are approximately sparse in the dictionary. Namely, Theorem 7.1 will hold if
we replace the exact notion of sparsity (the number of nonzero coefficients) by the
more flexible notion of effective sparsity, defined as

effective sparsity (o) 1= (||e||1/|e]l2)>.

It is now clear how to extend sparsity in a dictionary (1.18) to approximate sparsity.
We can say that a vector x is effectively s-sparse in a dictionary {d;} if it can be
represented as x = Zflzl a;d; where the coefficient vector a = («y,...,ay) is
effectively s-sparse.

The effective sparsity is clearly bounded by the exact sparsity, and it is robust
with respect to small perturbations.

1.7.2.3 Linear programming

The convex programs (1.19) and (1.22) can be reformulated as linear programs. This

can be done by introducing new variables uy, ..., uy; instead of minimizing |le’||;
in (1.19), we can equivalently minimize the linear function ) _,_, u; subject to the
additional linear constraints —u; < otlf <u;,i=1,...,N.In a similar fashion, one

can replace the convex constraint %HAx’ —y|l1 < ¢ein(1.19) by n linear constraints.

1.7.2.4 Estimating the coefficients of sparse representation

It is worthwhile to notice that as a result of solving the convex recovery program
(1.19), we obtain not only an estimate x of the vector x but also an estimate & of the
coefficient vector in the representation x = Y _ o;d;.
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1.7.2.5 Sparsity of solution

The solution of the sparse recovery problem (1.19) may not be exact in general,
that is, X 7 x can happen. This can be due to several factors—the generality of the
dictionary, approximate (rather than exact) sparsity of x in the dictionary, and the
noise v in the observations. But even in this general situation, the solution x is still
m-sparse, in all but degenerate cases. We will now state and prove this known fact
(see [26]).

Proposition 7.2 (Sparsity of solution). Assume that a given convex recovery
program (1.19) has a unique solution & for the coefficient vector. Then & is m-
sparse, and consequently X is m-sparse in the dictionary {d;}. This is true even in
presence of noise in observations, and even when no sparsity assumptions on x are
in place.

Proof. The result follows by simple dimension considerations. First note that the
constraint on ¢ in the optimization problem (1.19) can be written in the form

1 i
EIIADOL -yl <=, (1.21)

where D is the n x N matrix whose columns are the dictionary vectors d;. Since
matrix AD has dimensions m x N, the constraint defines a cylinder in RN whose
infinite directions are formed by the kernel of AD, which has dimension at least
N — m. Moreover, this cylinder is a polyhedral set (due to the £; norm defining it),
so it has no faces of dimension smaller than N — m.

On the other hand, the level sets of the objective function |e’|; are also
polyhedral sets; they are dilates of the unit £, ball. The solution & of the optimization
problem (1.19) is thus a point in RV where the smallest dilate of the £; ball touches
the cylinder. The uniqueness of solution means that a touching point is unique. This
is illustrated in Figure 1.7.

Consider the faces of these two polyhedral sets of smallest dimensions that
contain the touching point; we may call these the touching faces. The touching face
of the cylinder has dimension at least N —m, as all of its faces do. Then the touching

/

Nt

Fig. 1.7 Illustration for the proof of Proposition 7.2. The polytope on the left represents a level set
of the £; ball. The cylinder on the right represents the vectors &’ satisfying constraint (1.21). The
two polyhedral sets touch at point &.

N



32 R. Vershynin

face of the £; ball must have dimension at most m, otherwise the two touching faces
would intersect by more than one point. This translates into the m-sparsity of the
solution &, as claimed. |

In view of Proposition 7.2, we can ask when the solution & of the convex program
(1.19) is unique. This does not always happen; for example, this fails if d| = d5.

Uniqueness of solutions of optimization problems like (1.19) is extensively
studied [26]. Let us mention here a cheap way to obtain uniqueness. This can be
achieved by an arbitrarily small generic perturbation of the dictionary elements,
such as adding a small independent Gaussian vector to each d;. Then one can see
that the solution & (and therefore X as well) are unique almost surely. Invoking
Proposition 7.2 we see that X is m-sparse in the perturbed dictionary.

1.7.3 Sparse recovery for the canonical dictionary

Let us illustrate Theorem 7.1 for the simplest example of a dictionary—the
canonical basis of R":

n _ n
itz = leiiz,
In this case, our assumption is that an unknown vector x € R” is s-sparse in the usual

sense, meaning that x has at most s nonzero coordinates, or effectively s-sparse as
in Section 1.7.2.2. Theorem 7.1 then reads as follows.

Corollary 7.3 (Sparse recovery). Choose X to be a solution to the convex program
o , . 1 ,
minimize||x’|; subject to —||Ax" —y||; < e&. (1.22)
m
Then

. slogn
Elf—xlr<Cy 2" x|, + v2re. O
m

Sparse recovery results like Corollary 7.3 form the core of the area of compressed
sensing, see [15, 19, 26, 39].

In the noiseless case (¢ = 0) and for sparse (rather than effectively sparse)
vectors, one may even hope to recover x exactly, meaning that ¥ = x with high
probability. Conditions for exact recovery are now well understood in compressed
sensing. We will discuss some exact recovery problems in Section 1.9.

We can summarize Theorem 7.1 and the discussion around it as follows:

Using linear programming, one can approximately recover a vector x that is s-sparse (or

effectively s-sparse) in a general dictionary of size N, from m ~ slogN random linear
observations.
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1.7.4 Application: linear regression with constraints

The noisy estimation problem (1.14) is equivalent to linear regression with con-
straints. So in this section, we will translate the story into the statistical language. We
present here just one class of examples out of a wide array of statistical problems;
we refer the reader to [11, 74] for a recent review of high-dimensional estimation
problems from a statistical viewpoint.

Linear regression is a model of linear relationship between one dependent
variable and n explanatory variables. It is usually written as

y=XB+v.

Here X is an n x p matrix which contains a sample of n observations of p explanatory
variables; y € R" represents a sample of n observations of the dependent variable;
B € R? is a coefficient vector; v € R” is a noise vector. We assume that X and y are
known, while 8 and v are unknown. Our goal is to estimate .

We discussed a classical formulation of linear regression. In addition, we often
know, believe, or want to enforce some properties about the coefficient vector 8 (for
example, sparsity). We can express such extra information as the assumption that

BekK

where K C R” is a known feasible set. Such problem may be called a linear
regression with constraints.

The high-dimensional estimation results we have seen so far can be translated
into the language of regression in a straightforward way. Let us do this for
Theorem 6.2; the interested reader can make a similar translation or other results.

We assume that the explanatory variables are independent N(0, 1), so the matrix
X has all i.i.d. N(0, 1) entries. This requirement may be too strong in practice;
however see Section 1.8 on relaxing this assumption. The noise vector v is allowed
to have arbitrary structure (in particular, it can be correlated with X). We assume
that its magnitude is controlled:

Lot = 13 o <
—|\vih = - Vi| S €
n n“ '
i=1
for some known noise level €. Then we can restate Theorem 6.2 in the following
way.

Theorem 7.4 (Linear regression with constraints). Choose ﬁ to be a solution to
the program

1
minimize|8||x subjectto —||XB' —y|; <e.
n
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Then

Ezggllﬁ—ﬂllzf«/ﬁ(%+s). O

1.8 Extensions from Gaussian to sub-Gaussian distributions

So far, all our results were stated for Gaussian distributions. Let us show how to
relax this assumption. In this section, we will modify the proof of the M* bound,
Theorem 5.1, for general sub-Gaussian distributions, and indicate the consequences
for the estimation problem. A result of this type was proved in [47] with a much
more complex argument.

1.8.1 Sub-Gaussian random variables and random vectors

A systematic introduction into sub-Gaussian distributions can be found in Sections
5.2.3 and 5.2.5 of [73]; here we briefly mention the basic definitions. According to
one of the several equivalent definitions, a random variable X is sub-Gaussian if

Eexp(X*/y?) < e

for some ¢ > 0. The smallest ¥ is called the sub-Gaussian norm and is
denoted [|X]|y,. Normal and all bounded random variables are sub-Gaussian, while
exponential random variables are not.

The notion of sub-Gaussian distribution transfers to higher dimensions as
follows. A random vector X € R” is called sub-Gaussian if all one-dimensional
marginals (X,u), u € R", are sub-Gaussian random variables. The sub-Gaussian
norm of X is defined as

I1XIly, == sup || (X, u)[ly, (1.23)

uesn—!

where, as before, $"~! denotes the Euclidean sphere in R”. Recall also that the
random vector X is called isotropic if

EXX'=1,.

Isotropy is a scaling condition; any distribution in R” which is not supported
in a low-dimensional subspace can be made isotropic by an appropriate linear
transformation. To illustrate this notion with a couple of quick examples, one can
check that N(0,I,) and the uniform distribution on the discrete cube {—1, 1}" are
isotropic and sub-Gaussian distributions.
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1.8.2 M?* bound for sub-Gaussian distributions

Now we state and prove a version of M* bound, Theorem 5.1, for general sub-
Gaussian distributions. It is a variant of a result from [47].

Theorem 8.1 (General M* bound for sub-Gaussian distributions). Let T be a
bounded subset of R". Let A be an m x n matrix whose rows a; are i.i.d., mean zero,
isotropic, and sub-Gaussian random vectors in R". Choose ¥ > 1 so that

lailly, <. i=1.....m. (1.24)

Fix ¢ > 0 and consider the set
1
T, = {u eT: —|lAu|; < e}.
m
Then

1
& sup ull2 = Cy* (= Bsupl tg.u) | +¢).
ue

ueT,

where g ~ N(0, 1,) is a standard Gaussian random vector in R".

A proof of this result is an extension of the proof of the Gaussian M* bound,
Theorem 5.1. Most of that argument generalizes to sub-Gaussian distributions in a
standard way. The only nontrivial new step will be based on the deep comparison
theorem for sub-Gaussian processes due to X. Fernique and M. Talagrand, see [71,
Section 2.1]. Informally, the result states that any sub-Gaussian process is dominated
by a Gaussian process with the same (or larger) increments.

Theorem 8.2 (Fernique-Talagrand’s comparison theorem). Let T be an arbi-
trary set* Consider a Gaussian random process (G(t))er and a sub-Gaussian
random process (H(t))ier. Assume that EG(t) = EH(t) = 0 forallt € T. Assume
also that for some M > 0, the following increment comparison holds:’

|H(s) — H(t) ||y, <M (E||G(s) — G(t)|3)"/* foralls,teT.
Then

Esup H(t) < CM Esup G(?).

teT teT

“We can assume T to be finite to avoid measurability complications and then proceed by
approximation; see, e.g., [43, Section 2.2].

3The increment comparison may look better if we replace the L, norm on the right-hand side by
> norm. Indeed, it is easy to see that [|G(s) — G(®) ||y, < (E [|G(s) — G®)[13)"/%.
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This theorem is a combination of a result of X. Fernique [25] that bounds
E sup,c H(f) above by the so-called majorizing measure of T, and a result of
M. Talagrand [70] that bounds E sup,.; G(f) below by the same majorizing measure
of T.

Proof of Theorem 8.1. Let us examine the proof of the Gaussian M* bound, The-
orem 5.1, check where we used Gaussian assumptions, and try to accommodate
sub-Gaussian assumptions instead.

The first such place is identity (1.12). We claim that a version of it still holds for
the sub-Gaussian random vector @, namely

lul> < Coy’® Eq | {a,u) | (1.25)

where Cj is an absolute constant.”

To check (1.25), we can assume that ||, = 1 by dividing both sides by ||u/||»
if necessary. Then Z := (a,u) is sub-Gaussian random variable, since according
to (1.23) and (1.24), we have ||Z|ly, < l|lally, < ¥. Then, since sub-Gaussian
distributions have moments of all orders (see [73, Lemma 5.5]), we have (E Z3) 13 <
Cil|Z|ly, < C1¥, where C| is an absolute constant. Using this together with isotropy
and Cauchy—-Schwarz inequality, we obtain

1= ]EZZ — EZI/223/2 < (EZ)I/Z(]EZ3)1/2 < (]EZ)I/Z(C]w):;/z

Squaring both sides implies (1.25), since we assumed that [|ulj, = 1.

The next steps in the proof of Theorem 5.1—symmetrization and contraction—
go through for sub-Gaussian distributions without change. So (1.13) is still valid in
our case.

Next, the random vector

1 m
h.=— ga;
I
is no longer Gaussian as in the proof of Theorem 5.1. Still, & is sub-Gaussian with

Ay, < Coyr (1.26)

due to the approximate rotation invariance of sub-Gaussian distributions, see [73,
Lemma 5.9].

In the last step of the argument, we need to replace the sub-Gaussian random
vector k by the Gaussian random vector g ~ N(0, 1,,), i.e., prove an inequality of
the form

SWe should mention that a reverse inequality also holds: by isotropy, one has E, | {a,u)| <
(Baq (@, u)*)"/? = ||u]|,. However, this inequality will not be used in the proof.
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Esup|(h,u)| < Esup|(g,u)|.

ueT ueT

This can be done by applying the comparison inequality of Theorem 8.2 for the
processes

Hu) = (h,u) and G@u) = (g,u), weTU(-T).
To check the increment inequality, we can use (1.26), which yields
IH@) —H@)lly, = Il (h.u—v) |y, < llklly, |u—v]2 = GV [lu—v]>.
On the other hand,
E |G@w) — G@)[5)"? = [lu—v]|>.

Therefore, the increment inequality in Theorem 8.2 holds with M = C, . It follows
that

E sup (hu)<Cy E sup (g.u).
ueTU(=T) u€TU(=T)

This means that

Esup|(h,u)| < C3y Esup| (g, u)|

u€Tl u€T
as claimed.
Replacing all Gaussian inequalities by their sub-Gaussian counterparts discussed
above, we complete the proof just like in Theorem 5.1. O

1.8.3 Estimation from sub-Gaussian linear observations

It is now straightforward to generalize all recovery results we developed before from
Gaussian to sub-Gaussian observations. So our observations are now

yi=(ai,x)+v,-, i=1,...,m
where a; are i.i.d., mean zero, isotropic, and sub-Gaussian random vectors in R”.

As in Theorem 8.1, we control the sub-Gaussian norm with the parameter ¥ > 1,
choosing it so that

lailly, <¥, i=1,....m
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We can write observations in the matrix form as in (1.14), i.e.,
y =Ax + v,

where A is the m x n matrix with rows a;. As before, we assume some control on the
error:

1 1<

=l = _Z|Vi| =&
m m

i=1

Let us state a version of Theorem 6.1 for sub-Gaussian observations. Its proof
is the same, except we use the sub-Gaussian M* bound, Theorem 8.1, where
previously a Gaussian M* bound was used.

Theorem 8.3 (Estimation from sub-Gaussian observations). Choose X to be any
vector satisfying

1
xeK and —|Ax—y|| <e.
m
Then

. w(K)
Esupllx —x|, < C 4(—+8).I:I
sup [ —xl = €yt (=

In a similar fashion, one can generalize all other estimation results established
before to sub-Gaussian observations. We leave this to the interested reader.

1.9 Exact recovery

In some situations, one can hope to estimate vector x € K from y exactly, without
any error. Such results form the core of the area of compressed sensing [19, 26, 39].
Here we will present an approach to exact recovery based on Y. Gordon’s “escape
through a mesh” theorem [33]. This argument goes back to [66] for the set of sparse
vectors, it was further developed in [53, 69] and was pushed forward for general
feasible sets in [2, 16, 72].

In this tutorial we will present the most basic result; the reader will find a more
complete picture and many more examples in the papers just cited.

We will work here with Gaussian observations

y = Ax,

where A is an m x n Gaussian random matrix. This is the same model as we
considered in Section 1.4.
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1.9.1 Exact recovery condition and the descent cone

When can x be inferred from y exactly? Recall that we only know two things about
x—that it lies in the feasible set K and in the affine subspace

E,:={x': Ax' =y)}.

This two pieces of information determine x uniquely if and only if these two sets
intersect at the single point x:

KNE, = {x}. (1.27)

Notice that this situation would go far beyond the M* bound on the diameter of
K N E (see Theorem 3.12)—indeed, in this case the diameter would equal zero!

How can this be possible? Geometrically, the exact recovery condition (1.27)
states that the affine subspace E, is tangent to the set K at the point x; see Figure 1.8a
for illustration.

This condition is local. Assuming that K is convex for better understanding,
we see that the tangency condition depends on the shape of K in an infinitesimal
neighborhood of x, while the global geometry of K is irrelevant. So we would not
lose anything if we replace K by the descent cone at point x, see Figure 1.8b. This
set is formed by the rays emanating from x into directions of points from K:

D(K,x):={t(z—x): z€ K, t > 0}.
Translating by —x, can we rewrite the exact recovery condition (1.27) as
(K —x) N (Ey —x) = {0}.

Replacing K —x by the descent cone (a bigger set) and noting that E, —x = ker(A),
we rewrite this again as

D(K,x) Nker(A) = {0}.

The descent cone can be determined by its intersection with the unit sphere, i.e., by’

S(K,x) := D(K,x)ﬂS”_lz{ LT :zeK}, (1.28)

lz — x|

Thus we arrive at the following equivalent form of the exact recovery condition
(1.27):

7In definition (1.28), we adopt the convention that 0/0 = 0.
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a
E, ker(A)
T
Sn—l
Exact recovery condition Picture translated by —a:
(9.1): affine subspace E, is tan- subspace ker(A) is tangent to de-
gent to K at @ scent cone D(K,x) at 0

Fig. 1.8 Illustration of the exact recovery condition (1.27)

S(K,x) Nker(A) = @;

see Figure 1.8b for an illustration.

1.9.2 Escape through a mesh and implications
Jor exact recovery

It remains to understand under what conditions the random subspace ker A misses a
given subset S = S(K,x) of the unit sphere. There is a remarkably sharp result in
asymptotic convex geometry that answers this question for general subsets S. This
is the theorem on escape through a mesh, which is due to Y. Gordon [33]. Similarly
to the other results we saw before, this theorem depends on the mean width of S,
defined as®

w(S) = Esup (g,u), where g~ N(0,1,).

ues

Theorem 9.1 (Escape through a mesh). Let S be a fixed subset of S"~'. Let E be
a random subspace of R" of a fixed codimension m, drawn from the Grassmanian
Gp.n—m according to the Haar measure. Assume that

w(S) < /m.

8The only (minor) difference with our former definition (1.3) of the mean width is that we take
supremum over S instead of § — S, so w(S) is a smaller quantity. The reason we do not need to
consider S — S because we already subtracted x in the definition of the descent cone.
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Then
SNE=O

with high probability, namely 1 —2.5exp [ — (m/~/m + 1 — w(S))?/18].

Before applying this result to high-dimensional estimation, let us see how a
slightly weaker result follows from the general M* bound, Theorem 5.1. Indeed,
applying the latter theorem for 7 = S, E = ker(A), and ¢ = 0, we obtain

8 8
E sup flul </~ Esup|(g.u)| </ — w(S). (1.29)
ueSNE m ues m

Since § C §"~!, the supremum on the left-hand side equals 1 when S N E # @ and
zero otherwise. Thus the expectation in (1.29) equals P {S NE # Q)}. Further, one

can easily check that Esup, ¢ | (g.u) | < w(S) + /2/m, see [57, Proposition 2.1].

Thus we obtain
P{SNE # 0} < \/%(V_V(S) + \/g)

In other words, S N E = @ with high probability if the codimension m is sufficiently
large so that w(S) <« +/m. Thus we obtain a somewhat weaker form of Escape
Theorem 9.1.

Now let us apply Theorem 9.1 for the descent S = S(K, x) and E = ker(A). We
conclude by the argument above that the exact recovery condition (1.27) holds with
high probability if

m > w(S)>.

How can we algorithmically recover x in these circumstances? We can do the
same as in Section 1.4.1, either using the feasibility program (1.6) or, better yet,
the optimization program (1.7). The only difference is that the diameter of the
intersection is now zero, so the recovery is exact. The following is an exact version
of Theorem 4.2.

Theorem 9.2 (Exact recovery from linear observations). Choose X to be a
solution of the program

minimize||x’||x subjectto Ax' =}y.
Assume that the number of observations satisfies

m > w(S)? (1.30)
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where S = S(K, x) is the spherical part of the descent cone of K, defined in (1.28).
Then

X=x

with high probability (the same as in Theorem 9.1). O

Note the familiar condition (1.30) on m which we have seen before, see, e.g.,
Section 1.4.3. Informally, it states the following:

Exact recovery is possible when the number of measurements exceeds the effective
dimension of the descent cone.

Remarkably, condition (1.30) does not have absolute constant factors which we had
in results before.

1.9.3 Application: exact sparse recovery

Let us illustrate how Theorem 9.2 works for exact sparse recovery. Assume that x is
s-sparse, i.e. it has at most s nonzero coefficients. For the feasible set, we can choose
K = ||x|[B} = {x": ||x'|l1 < |lx||:}. One can write down accurately an expression
for the descent cone and derive a familiar bound on the mean width of § = S(K, x):

w(S) < C+/slog(2n/s).

This computation goes back to [66]; see that paper and also [3, 16, 69] for estimates
with explicit absolute constants.

We plug this into Theorem 9.2, where we replace ||x'||x in the optimization
problem by the proportional quantity ||x’||;. This leads to the following exact version
of Corollary 7.3:

Theorem 9.3 (Exact sparse recovery). Assume that an unknown vector x € R" is
s-sparse. Choose X to be a solution to the convex program

minimize ||x'||; subjectto Ax =y.
Assume that the number of observations satisfies m > Cslogn. Then
X=x

with high probability, namely 1 — 3e™™. O

Due to the remarkable sharpness of Gordon’s theorem, one may hope to obtain
sharp conditions on the number of observations m, without any losses in absolute
constants. This was done in [22] for the sparse recovery problem (using geometry
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of polytopes rather than Gordon’s theorem) and more recently in [3] for general
feasible cones. The latter paper proposes a notion of statistical dimension, which is
a close relative of mean width, and establishes a variant of Gordon’s theorem for
statistical dimension.

1.10 Low-rank matrix recovery and matrix completion

1.10.1 Background: matrix norms

The theory we developed so far concerns estimation of vectors in R”. It should not
be surprising that this theory can also be applied for matrices. Matrix estimation
problems were studied recently, in particular in [12-14, 37, 63].

Let us recall some basic facts about matrices and their norms. We can identify
dy x dy matrices with vectors in R¥*%2_ The £, norm in R?*“2 is then nothing else
than Frobenius (or Hilbert—Schmidt) norm of matrices:

di  d

IXIr = (323 1XP)

i=1 j=1

1/2

The inner product in R¥*% can be written in matrix form as follows:
(X,Y) =tr(X"Y).
Denote d = min(d,, d;). Let
51(X) = 52(X) = -+- = 54(X) = 0

denote the singular values of X. Then Frobenius norm has the following spectral
representation:

d

11 = (3 sx?)

i=1
Recall also the operator norm of X, which is

IXul,
max =
ueRN\{0} |lul|2 i=1,.0d

IX1 =

Finally, the nuclear norm of X is defined as
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d
X = 3 si(X).

i=1

Spectrally, i.e., on the level of singular values, the nuclear norm is a version of
£1 norm for matrices, the Frobenius norm is a version of £, norm for matrices, and
the operator norm is a version of £, norm for matrices. In particular, the following
inequality holds:

IXIF < 11Xl < 11Xl

The reader should be able to derive many other useful inequalities in a similar way,
for example,

IX]l« = rank(X) - [|X[|r, [IX]lr < v/rank(X) - | X]| (1.31)

and

(X.Y) < IXI[- 1Y [l (1.32)

1.10.2 Low-rank matrix recovery

We are ready to formulate a matrix version of the sparse recovery problem from
Section 1.7. Our goal is to estimate an unknown d; X d, matrix X from m linear
observations given by

vi=(ALX), i=1...,m (1.33)

Here A; are independent d; x d, Gaussian matrices with all i.i.d. N(0O, 1) entries.

There are two natural matrix versions of sparsity. The first version is the sparsity
of entries. We will be concerned with the other, spectral, type of sparsity, where
there are only a few nonzero singular values. This simply means that the matrix has
low rank. So let us assume that the unknown matrix X satisfies

rank(X) < r (1.34)

for some fixed (and possibly unknown) r < n.
The following is a matrix version of Corollary 7.3; for simplicity we are stating
it in a noise-free setting (¢ = 0).

Theorem 10.1 (Low-rank matrix recovery). Choose X to be a solution to the
convex program
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minimize|| X’ | «subjectto (Ai,X’) =y, i=1,...,m. (1.35)

Then

r(dl + dz)
RN

Esup |X — X||r < 4v/7
X
Here the supremum is taken over all di x d, matrices X of rank at most r.

The proof of Theorem 10.1 will closely follow its vector prototype, that of
Theorem 7.1; we will just need to replace the £; norm by the nuclear norm. The
only real difference will be in the computation of the mean width of the unit ball
of the nuclear norm. This computation will be based on Y. Gordon’s bound on the
operator norm of Gaussian random matrices, see Theorem 5.32 in [73].

Theorem 10.2 (Gordon’s bound for Gaussian random matrices). Let G be a
dy x dy matrix whose entries are i.i.d., mean zero random variables. Then

E|G| < vVd + V.

Proposition 10.3 (Mean width of the unit ball of nuclear norm). Consider the
unit ball in the space of d, x d, matrices corresponding to the nuclear norm:

By = {X e R ¢ X, < 1}.
Then

w(Bs) < 2(Vd + V).

Proof. By definition and symmetry of B, we have

wB)=E sup (G,X)=2E sup (G,X),
X€EBx—Bx XEB«

where G is a d; x d, Gaussian random matrix with N(0, 1) entries. Using inequality
(1.32) and definition of B,, we obtain

w(Bx) = 2K sup [|G] - [|X[lx < 2E|G].
X€EBx

(The reader may notice that both these inequalities are in fact equalities, although
we do not need this in the proof.) To complete the proof, it remains to apply
Theorem 10.2. o

Let us mention an immediate consequence of Proposition 10.3, although it will
not be used in the proof of Theorem 10.1.
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Proposition 10.4 (Mean width of the set of low-rank matrices). Let
D ={X e R : ||X||r = 1, rank(X) < r}.
Then
w(D) < 2+/2r(d, + dy).

Proof of Proposition 10.4. The bound follows immediately from Proposition 10.3
and the first inequality in (1.31), which implies that D C /7 - Bx. O

Proof of Theorem 10.1. The argument is a matrix version of the proof of Theorem
7.1. We consider the following subsets of d; x d, matrices:

Ki=X: Xl <1}, K:=|X|.-K.

Then obviously X € K, so it makes sense to apply Theorem 6.2 (with ¢ = 0) for K.
It should also be clear that the optimization program in Theorem 6.2 can be written
in the form (1.35).

Applying Theorem 6.2, we obtain

A K
Esup |X —X|lp < V27 - M
X

Recalling the definition of K and using Proposition 10.3 to bound its mean width,
we have

w(K) = w(K) - [|X|l« <2vV2Vdi +d> - ||X]|x.
It follows that

d\ + d»

Esup |X — X|r < 47 [1X
X

It remains to use the low-rank assumption (1.34). According to the first inequality
in (1.31), we have

IX1 < VrlX]F.

This completes the proof of Theorem 10.1. O
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1.10.3 Low-rank matrix recovery: some extensions
1.10.3.1 From exact to effective low rank

The exact low-rank assumption (1.34) can be replaced by approximate low-rank
assumption. This is a matrix version of a similar observation about sparsity which
we made in Section 1.7.2.2. Indeed, our argument shows that Theorem 10.1 will
hold if we replace the rank by the more flexible effective rank, defined for a matrix
X as

r(X) = (IXI/1X11)*.

The effective rank is clearly bounded by the algebraic rank, and it is robust with
respect to small perturbations.

1.10.3.2 Noisy and sub-Gaussian observations

Our argument makes it easy to allow noise in the observations (1.33), i.e., consider
observations of the form y; = (A;, X) + v;. We leave details to the interested reader.

Further, just like in Section 1.8, we can relax the requirement that A; be Gaussian
random matrices, replacing it with a sub-Gaussian assumption. Namely, it is enough
to assume that the columns of A; are i.i.d., mean zero, isotropic, and sub-Gaussian
random vectors in R, with a common bound on the sub-Gaussian norm. We again
leave details to the interested reader.

We can summarize the results about low-rank matrix recovery as follows.

Using convex programming, one can approximately recover a dy X d, matrix which has rank
(or effective rank) r, from m ~ r(d, + dy) random linear observations.

To understand this number of observations better, note that it is of the same order
as the number of degrees of freedom in the set of d; x d, matrices or rank r.

1.10.4 Matrix completion

Let us now consider a different, and perhaps more natural, model of observations of
matrices. Assume that we are given a small random sample of entries of an unknown
matrix X. Our goal is to estimate X from this sample. As before, we assume that X
has low rank. This is called a matrix completion problem, and it was extensively
studied recently [12, 13, 37, 63].

The theory we discussed earlier in this chapter does not apply here. While
sampling of entries is a linear operation, such observations are not Gaussian or
sub-Gaussian (more accurately, we should say that the sub-Gaussian norm of such
observations is too large). Nevertheless, it is possible to derive a matrix completion
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result in this setting. Our exposition will be based on a direct and simple argument
from [60]. The reader interested in deeper understanding of the matrix completion
problem (and in particular exact completion) is referred to the papers cited above.

Let us formalize the process of sampling the entries of X. First, we fix the average
size m of the sample. Then we generate selectors §; € {0, 1} for each entry of X.
Those are i.i.d. random variables with

Our observations are given as the d; x d, matrix ¥ whose entries are
Therefore, the observations are randomly and independently sampled entries of X

along with the indices of these entries; the average sample size is fixed and equals
m. We will require that

m>d, log d, m=>d, log ds. (1.36)
These restrictions ensure that, with high probability, the sample contains at least one
entry from each row and each column of X (recall the classical coupon collector’s
problem).
As before, we assume that

rank(X) < r.

The next result shows that X can be estimated from Y using low-rank approximation.

Theorem 10.5 (Matrix completion). Choose X to be best rank-r approximation’

of p~'Y. Then
1 ~ [r(d) + dy)
E X—X||r £Cy/ ——— || Xl 00> 1.37

where || X||oo = max;; [X;].

To understand the form of this estimate, note that the left-hand side of (1.37)
measures the average error per entry of X:

Formally, consider the singular value decomposition p~'Y = Y, s,-uiv;r with nonincreasing
singular values s;. We define X by retaining the r leading terms of this decomposition, i.e.,
% T
X = erzl Siuiv; .
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dy d

1 N 1 N 1/2
—— X=Xl = (— xi-—xi-z) .
¥ =Xl = (- 23 K=

i=1 j=1

So Theorem 10.5 allows to make the average error per entry arbitrarily smaller than
the maximal entry of the matrix. Such estimation succeeds with a sample of m ~
r(d, + d,) entries of X.

The proof of Theorem 10.5 will be based on a known bound on the operator norm
of random matrices, which is more general than Y. Gordon’s Theorem 10.2. There
are several ways to obtain general bounds; see [73] for a systematic treatment of this
topic. We will use one such result due to Y. Seginer [67].

Theorem 10.6 (Seginer’s bound for general random matrices). Let G be a di x
d> matrix whose entries are i.i.d., mean zero random variables. Then

E|G] < ¢(Emax||Gill + Emax [G'])
i J

where the maxima are taken over all rows G; and over all columns G of G,
respectively.

Proof of Theorem 10.5. We shall first control the error in the operator norm. By
triangle inequality,

IX = X|| < |X—p~ 'Yl + [Ip7'Y = X]. (1.38)

Since X is the best rank-r approximation to p~'Y, and both X and X are rank-r
matrices, the first term in (1.38) is bounded by the second term. Thus

S _ 2
IX = x|l <2lp~'Y - X|| = I;IIY—PX||~ (1.39)

The matrix ¥ — pX has independent mean zero entries, namely

(Y = pX)j = (8 — p)Xyj.
So we can apply Y. Seginer’s Theorem 10.6, which yields
E|lY - pX|| = C(Emax |(¥ = pX)ills + Emax || (¥ = pXY].).  (1.40)
i<di J=d>
It remains to bound the £, norms of rows and columns of ¥ — pX. Let us do this

for rows; a similar argument would control the columns. Note that

dp

dy
1Y = pX)ill3 =D 65— p)*IXu* < D6 —p)* - IX11%. (1.41)

j=1 j=1
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where || X||oo = max;; |X;| is the £ norm of X considered as a vector in RY1*%_ To
further bound the quantity in (1.41) we can use concentration inequalities for sums
of independent random variables. In particular, we can use Bernstein’s inequality
(see [9]), which yields

d>

P Z(S,J —p)? > pdot y < exp(—cpdat), t>2.
j=1

The first restriction in (1.36) guarantees that pd, > logd;. This enables us to use
the union bound over i < d;, which yields

d
Emax[ 36, -] < 1V
j=1

i<d;

This translates into the following bound for the rows of ¥ — pX:
ETITE]’I‘ (Y —pX)ill2 < Ci1v/pda [ Xl oo-

Repeating this argument for columns and putting the two bounds into (1.40), we
obtain

E Y —pX| < Cov/p(di + d2) || X]| 0o

Substituting into (1.39), we conclude that

- di+d
EIX =X = G5\ |7 Xl (1.42)

It remains to pass to the Frobenius norm. This is where we use the low-
rank assumption on X. Since both X and X have ranks bounded by r, we have
rank(X — X) < 2r. Then, according to the second inequality in (1.31),

IX —X|r < v2r | X - X||.

Combining this with (1.42) and recalling that p = m/(d,d,) by definition, we arrive
at the desired bound (1.37). ad

Remark 10.7 (Noisy observations). One can easily extend Theorem 10.5 for noisy
sampling, where every observed entry of X is independently corrupted by a mean
zero noise. Formally, we assume that the entries of the observation matrix Y are

Yj = 8;(Xy + vy)
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where v;; are independent and mean zero random variables. Let us further assume
that |v;| < M almost surely. Then a slight modification of the proof of Theorem 10.5
yields the following error bound:

1 - r(d, + d»)
E—=I[X—-X|r < Cy/——— ([X]loo + M).
T KXl = O === (IXloo + M)

We leave details to the interested reader.

1.11 Single-bit observations via hyperplane tessellations

It may perhaps be surprising that a theory of similar strength can be developed for
estimation problems with nonlinear observations, in which the observation vector
y € R™ depends nonlinearly on the unknown vector x € R".

In this and next sections, we explore an example of extreme non-linearity—
the one given by the sign function. In Section 1.13, we will extend the theory to
completely general nonlinearities.

1.11.1 Single-bit observations

As before, our goal is to estimate an unknown vector x that lies in a known feasible
set K C R”, from a random observation vector y = (yy,...,y,) € R™. This time,
we will work with single-bit observations y; € {—1, 1}. So we assume that

y; = sign{a;,x), i=1,...,m, (1.43)

where a; are standard Gaussian random vectors, i.e., @; ~ N(0, I,,). We can represent
the model in a matrix form:

y = sign(Ax),

where A is an m x n Gaussian random matrix with rows a;, and where our convention
is that the sign function is applied to each coordinate of the vector Ax.

The single-bit model represents an extreme quantization of the linear model we
explored before, wherey = Ax. Only one bit is retained from each linear observation
yi. Yet we hope to estimate x as accurately as if all bits were available.

The model of single-bit observations was first studied in this context in [10]. Our
discussion will follow [59].
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K

Fig. 1.9 A tessellation of the feasible set K by hyperplanes. The cell containing x is highlighted.

1.11.2 Hyperplane tessellations

Let us try to understand single-bit observations y; from a geometric perspective.
Each y; € {—1, 1} represents the orientation of the vector x with respect to the
hyperplane with normal a;. There are m such hyperplanes. The observation vector
y = (v1, ..., ym) represents orientation of x with respect to all these hyperplanes.

Geometrically, the m hyperplanes induce a tessellation of R" by cells. A cell is
a set of points that have the same orientation with respect to all hyperplanes; see
Figure 1.9. Knowing y is the same as knowing the cell where x lies.

How can we estimate x? Recall that we know two pieces of information about x:

1. x lies in a known cell of the hyperplane tessellation;
2. x lies in a known set K.

Therefore, a good estimator of x can be obtained by picking any vector X from the
intersection of these two sets. Moreover, since just these two pieces of information
about x are available, such an estimator is best possible in some sense.

1.11.3 M?* bound for random tessellations

How good is such an estimate? The maximal error is of course the diameter of the
intersection of the cell with K. So in order to bound the error, we need to prove that
this diameter is small.

Note that our strategy is parallel to what we have done for linear observations in
Section 1.4.1. The only piece we are missing is a version of M* bound for random
tessellations instead of random subspaces. Informally, we need a result about the
following question:

Question 11.1 (Pizza cutting). How many random hyperplanes would cut a given
set K into pieces that are at most ¢ in size?

A result about this problem was proved in [59].

Theorem 11.2 (M* bound for random tessellations). Consider a set K € §"~!

and m independent random hyperplanes drawn uniformly from the Grassmanian
Gun—1. Then
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CW(K)]U}, (1.44)

]Emcaxdiam(l( Nne) < [

where the maximum is taken over all cells C of the hyperplane tessellation."”

Apart from the exponent 1/2 which is unlikely to be optimal, this result is indeed
a version of the M* bound, Theorem 3.12. To further highlight the similarity, note
that when m < n, the intersection of the m random hyperplanes is a random linear
subspace E of codimension m. This subspace lies in each cell of the tessellation. So
in particular, Theorem 11.2 controls the quantity E diam(K N E) appearing in the
standard M™* bound, Theorem 3.12.

1.11.4 Estimation based on M* bound for random tessellations

Now we can apply Theorem 11.2 for the estimation problem. Based on our
discussion in Section 1.11.2, this result immediately implies the following.

Theorem 11.3 (Estimation from single-bit observations: feasibility program).
Assume the unknown vector x lies in some known set K C S, and the single-bit
observation vectory is given by (1.43). Choose X to be any vector satisfying

X €K and sign(Ax) =y. (1.45)

Then

Cw(K)q1/3
Esup ||lx —x 5[ ] .
xeg | [l2 Jm

We assumed in this result that feasible set K lies on the unit sphere. This is
because the magnitude ||x||, is obviously lost in the single-bit observations. So we
can only hope to estimate the direction of x, which is the vector x/|x||, on the unit
sphere.

A good news is that estimation can be made from m ~ w(K)? single-bit
observations, the same as for linear observations. So perhaps surprisingly, the
essential information about x is contained in a single bit of each observation.

Bad news is that the feasibility program (1.45) is not convex. When K is restricted
to lie on the sphere, it can never be convex or be convexified. One can get around
this issue, for example, by lifting the restriction; see [59] for pizza cutting of general
sets in R”.

10A high-probability version of Theorem 11.2 was proved in [59]. Namely, denoting by § the right-
hand side of (1.44), we have max¢ diam(K NC) < § with probability at least 1 —2 exp(—c§2m), as
long as m > C8§~%w(K)?2. The reader will easily deduce the statement of Theorem 11.2 from this.
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But a better idea will be to replace the feasibility problem (1.45) by an
optimization problem—ijust like we did in Section 1.4.2—which will work for
general sets K in the unit ball B rather than the unit sphere. Such sets can be
convexified. We will do this in the next section.

1.12 Single-bit observations via optimization
and applications to logistic regression

Our goal remains the same as we described in Section 1.11.1. We would like to
estimate a vector x that lies in a known feasible set K C R”, from single-bit
observations given as

y = sign(Ax) € {—1, 1}".

Instead of formulating estimation as a feasibility problem (1.45), we will now
state it as an optimization problem, as follows:

maximize (Ax’, y) subject tox” € K. (1.46)

This program tries to fit linear observations Ax’ to the single-bit observations y. It
does so by maximizing the correlation between linear and single-bit observations
while searching inside the feasible set K.

If K is a convex set, (1.46) is a convex program. Otherwise one can convexify K
as we did several times before.

The following result from [58] provides a guarantee for such estimator.

Theorem 12.1 (Estimation from single-bit observations: optimization pro-
gram). Assume the unknown vector x € R" satisfies ||x|l, = 1 and x lies in some
known set K C Bj. Choose X to be a solution to the program (1.46). Then

Cw(K)
T

E|[|# —x|3 <
Here C = +/8m ~ 5.01.

Our proof of Theorem 12.1 will be based on properties of the loss function, which
we define as

Le(x)) = ! (Ax'.y) = L yilai.x').
m m
i=1

The index x indicates that the loss function depends on x through y. The negative
sign is chosen so that program (1.46) minimizes the loss function over K.
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We will now compute the expected value and the deviation of the loss function
for fixed x and x’.

Lemma 12.2 (Expectation of loss function). Letx € S"~' and x' € R". Then

EL(x) = —\/g (x,x').

EL:(x') = —Ey (a;.x") = —Esign((a;.x)) {a;.x').

Proof. We have

It remains to note that {@;,x) and (a;,x’) are normal random variables with zero
mean, variances ||x||3 = 1 and |x'||3, respectively, and covariance (x,x’). A simple
calculation renders the expectation above as — {x, x’)-E sign(g)g where g ~ N(0, 1).
It remains to recall that E sign(g)g = E |g| = /2/7. O

Lemma 12.3 (Uniform deviation of loss function). We have

E sup |Liw)—ELi@w)]| < 2%

uekK—K

(1.47)

Proof. Due to the form of loss function, we can apply the symmetrization inequality
of Proposition 5.2, which bounds the left-hand side of (1.47) by

—E sup ‘Ze,y, (a;,u ‘:—]E sup )<Ze,y,a,, >‘ (1.48)

uekK—K uekK—K

By symmetry and since y; € {—1, 1}, the random vectors {;y;a;} are distributed
identically with {a;}. In other words, we can remove ¢;y; from (1.48) without
changing the value of the expectation.

Next, by rotation invariance, Y ;- a; is distributed identically with \/mg, where
g ~ N(0,1,). Therefore, the quantity in (1.48) equals

i 2w(K)
S ey | ==

This completes the proof. O

Proof of Theorem 12.1. Fixx’ € K. Letus try to bound ||x —x’||, in terms of L, (x)—
L, (x’). By linearity of the loss function, we have

Lix)—L(x)=L(x—x) =EL.(x —x') + Dy (1.49)

where the deviation
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D, = sup |Lx(u) _ELx(u)l
uekK—K

will be controlled using Lemma 12.3 a bit later.
To compute the expected value in (1.49), we can use Lemma 12.2 along with the
conditions |lx|l, = 1, [x"[l2 < 1 (the latter holds since x' € K C Bj). This way we

obtain
2 1 /2
EL(x—x) = — = frox—x) < SV e — (13-

Putting this into (1.49), we conclude that

Le(x) — Le(x') < — ¢ —x'|13 + Dx. (1.50)

2

This bound holds for any fixed x” € K and for any point in the probability space
(i.e., for any realization of the random variables appearing in this bound). Therefore,
(1.50) must hold for the random vector x’ = X, again for any point in the probability
space.

The solution X was chosen to minimize the loss function; thus L,(X) < L,(x).
This means that for x’ = %, the left-hand side of (1.50) is non-negative. Rearranging
the terms, we obtain

I = 2[5 < V27 Dx.
It remains to take expectation on both sides and use Lemma 12.3. This yields

2w(K)
N

This completes the proof of Theorem 12.1. O

Ellx — %[5 < v2n

1.12.1 Single-bit observations with general nonlinearities

The specific nonlinearity of observations that we considered so far—the one given
by sign function—did not play a big role in our argument in the last section. The
same argument, and surprisingly the same optimization program (1.46), can serve
any nonlinearity in the observations.

So let us consider a general model of single-bit observationsy = (yi,...,Vm) €
{—1, 1}, which satisfy

Ey; = 0((a;.x)), i=1,....m (1.51)
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Here 6 : R — R is some link function, which describes nonlinearity of observations.
We assume that y; are independent given a;, which are standard Gaussian random
vectors as before. The matrix form of this model can be written as

Ey = 6(Ax),

where A is an m x n Gaussian random matrix with rows a;, and where our convention
is that 0 is applied to each coordinate of the vector Ax.

To estimate x, an unknown vector in a known feasible set K, we will try to use the
same optimization program (1.46) in the last section. This may be surprising since
the program does not even need to know the nonlinearity 0, nor does it attempt to
estimate 6. Yet, this idea works in general as nicely as for the specific sign function.
The following result from [58] is a general version of Theorem 12.1.

Theorem 12.4 (Estimation from single-bit observations with general nonlinear-
ity). Assume the unknown vector x € R" satisfies |x||, = 1 and x lies in some
known set K C Bj. Choose X to be a solution to the program (1.46). Then

4w(K)
Am

p 2
Elx—x|; <

Here we assume that
A:=E0(g)g >0 forg~N(Q,1). (1.52)

Proof. The argument follows very closely the proof of Theorem 12.1. The only
different place is the computation of expected loss function in Lemma 12.2. When
the sign function is replaced by a general nonlinearity 6, one easily checks that the
expected value becomes

EL(x") = —A{x.x').

The rest of the argument is the same. O

For 6(z) = sign(z), Theorem 12.4 is identical with Theorem 12.1. However,
the new result is much more general. Virtually no restrictions are imposed on the
nonlinearity 0. In particular, 6 need not be continuous or one to one.

The parameter A simply measures the information content retained through the
nonlinearity. It might be useful to express A as

A =E0(a;,x)) {a;,x),

so A measures how much the nonlinear observations 6({a;,x)) are correlated with
linear observations (a;, x).

The assumption that A > 0 is made for convenience; if A < 0 we can switch
the sign of 6. However, if A = 0, the nonlinear and linear measurements are
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uncorrelated, and often no estimation is possible. An extreme example of the latter
situation occurs when 6 is a constant function, which clearly carries no information
about x.

1.12.2 Logistic regression and beyond

For the link function 6(z) = tanh(z/2), the estimation problem (1.51) is equivalent
to logistic regression with constraints. In the usual statistical notation explained in
Section 1.7.4, logistic regression takes the form

Ey = tanh(X8/2).

The coefficient vector B is constrained to lie in some known feasible set K. We
will leave it to the interested reader to translate Theorem 12.4 into the language of
logistic regression, just like we did in Section 1.7.4 for linear regression.

The fact that Theorem 12.4 applies for general and unknown link function should
be important in statistics. It means that one does not need to know the non-linearity
of the model (the link function) to make inference. Be it the tanh function specific to
logistic regression or (virtually) any other non-linearity, the estimator g is the same.

1.13 General nonlinear observations via metric projection

Finally, we pass to the most general model of observations y = (y1, ..., yn), which
are not necessarily linear or single bit. In fact, we will not even specify a dependence
of y; on x. Instead, we only require that y; be i.i.d. random variables, and

each observation y; may depend on a; only through (a;, x). (1.53)

Technically, the latter requirement means that, given (a;,x), the observation y; is
independent from a;. This type of observation models are called single-index models
in statistics.

How can we estimate x € K from such general observation vector y? Let us look
again at the optimization problem (1.46), writing it as follows:

maximize (x', ATy) subject tox” € K.

It might be useful to imagine solving this program as a sequence of two steps: (a)
compute a linear estimate of x, which is
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xlm = _AT = Zytau (154)

and then (b) fitting Xy, to the feasible set K, which is done by choosing a point in K
that is most correlated with Xj;,.

Surprisingly, almost the same estimation procedure succeeds for the general
single-index model (1.53). We just need to adjust the second, fitting, step. Instead
of maximizing the correlation, let us metrically project Xy, onto the feasible set K,
thus choosing X to be a solution of the program

minimize||x’ — %y, ||2 subject tox” € K. (1.55)

Just like in the previous section, it may be surprising that this estimator does not
need to know the nature of the nonlinearity in observations y. To get a heuristic
evidence of why this knowledge may not be needed, one can quickly check (using
rotation invariance) that

Exi = Eyia; = Ax, where x =x/|x|, A =Ey (a,x).

So despite not knowing the nonlinearity, Xy, already provides an unbiased estimate
of x, up to scaling.

A result from [60] provides a guarantee for the two-step estimator (1.54), (1.55).
Let us state this result in a special case where K is a cone, i.e., tK = K for all t > 0.
A version for general sets K is not much more difficult, see [60] for details.

Since cones are unbounded sets, the standard mean width (as defined in (1.3))
would be infinite. To get around this issue, we should consider a local version of
mean width, which we can define as

wi(K)=FE sup (g.u), g~ N(@O,I,).

ue(K—K)NB}
Theorem 13.1 (Estimation from nonlinear observations). Assume the unknown

vector x lies in a known closed cone K in R". Choose x to be a solution to the
program (1.55). Let x = x/||x||2. Then

Mwi(K
Ei=2% and E[f—g], < T&
m

Here we assume that
A=Ey (a.¥) >0 and M = v2x[Ey]+ Var(y (al’.i))]l/z'

The proof of Theorem 13.1 is given in [60, Theorem 2.1]. It is not difficult, and
is close in spirit to the arguments we saw here; we will not reproduce it.
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The role of parameters A and M is to determine the correct magnitude and
deviation of the estimator; one can think of them as constants that are usually easy
to compute or estimate. By rotation invariance, A and M depend on the magnitude
|lx||2 (through y,) but not on the direction ¥ = x/||x||, of the unknown vector x.

We can summarize results of this and previous section as follows.

One can estimate a vector x in a general feasible set K from m ~ w(K)? random nonlinear
observations, even if the nonlinearity is not known. If K is convex, estimation can be done
using convex programming.

1.13.1 Examples of observations

To give a couple of concrete examples, consider noisy linear observations
yi = (@i, x) + v;.
We already explored this model in Section 1.6, where v; were arbitrary numbers
representing noise. This time, let us assume v; are independent random variables
with zero mean and variance 0. A quick computation gives
A=lxl2, M=C(xll2 + 0).
Theorem 13.1 then yields the following error bound:

Cwi(K)
N

Let us give one more example, for the single-bit observations

Elx—x|, < (IIxll2 + o).

y; = sign (a;, x) .

We explored this model in Sections 1.11 and 1.12. A quick computation gives

2
A==, M=cC.
T

Theorem 13.1 then yields the following error bound:

. 2 Cwi(K)
E|x — \/;xnz < #
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1.13.2 Examples of feasible cones

To give a couple of concrete examples of feasible cones, consider the set K of s-
sparse vectors in R", those with at most s nonzero coordinates. As we already noted
in Example 3.9,

wi(K) ~ +/slog(2n/s).

Further, solving the program (1.55) (i.e., computing the metric projection of Xy,
onto K) amounts to hard thresholding of x’. The solution X is obtained from Xy,
by keeping the s largest coefficients (in absolute value) and zeroing out all other
coefficients.

So Theorem 13.1 in this case can be stated informally as follows:

One can estimate an s-sparse vector x in R" from m ~ slogn nonlinear observations y,

even if the nonlinearity is not known. The estimation is given by the hard thresholding of

-i\:lin = milATy.

Another popular example of a feasible cone is a set of low-rank matrices. Let K
be the set of d; x d, matrices with rank at most r. Proposition 10.4 implies that

wi(K) < Cy/rdy + dy).

Further, solving the program (1.55) (i.e., computing the metric projection of x’
onto K) amounts to computing the best rank-r approximation of Xj;,. This amounts
to hard thresholding of singular values of Xy, i.e., keeping the leading s terms of the
singular value decomposition. Recall that we already came across this thresholding
in the matrix completion problem, Theorem 10.5.

So Theorem 13.1 in this case can be stated informally as follows:

One can estimate a dy X d, matrix with rank r from m ~ r(d, 4 d) nonlinear observations,
even if the nonlinearity is not known. The estimation is given by the hard thresholding of
singular values of Xy.

1.14 Some extensions

1.14.1 From global to local mean width

As we have seen, the concept of Gaussian mean width captures the complexity
of a feasible set K quite accurately. Still, it is not exactly the optimal quantity in
geometric and estimation results. An optimal quantity is the local mean width, which
is a function of radius r > 0, defined as
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w(K) =E sup (g, u), g~N(@O,I,).

u€(K—K)NrBj
Comparing with Definition 3.4 of the usual mean width, we see that
w,(K) < w(K) forallr.

The usefulness of local mean width was noted in asymptotic convex geometry by
A. Giannopoulos and V. Milman [27-29, 31]. They showed that the function w,(K)
completely describes the diameter of high dimensional sections K N E, thus proving
two-sided versions of the M* bound (Theorem 3.12). An observation of a similar
nature was made recently by S. Chatterjee [17] in the context of high-dimensional
estimation. He noted that a variant of local mean width provides optimal error rates
for the metric projection onto a feasible set considered in Section 1.13.

For most results discussed in this survey, one can replace the usual mean width by
a local mean width, thus making them stronger. Let us briefly indicate how this can
be done for the M™* bound (Theorem 3.12); see [28, 29, 31, 47] for a more detailed
discussion.

Such localization is in a sense automatic; it can be done as a “post-processing” of
the M™* estimate. The conclusion of the general M* bound, Theorem 5.1, for TNrBj,
is that

1
sup fulh = C(—=E sup |(g.u)|+e) (1.56)
ueT:NrB} vm u€TNrBy

with high probability (see also Section 1.5.2). Let us show that the intersection with
the ball 7B’ can be automatically removed from the left side. Since

sup |y = min (sup ||, r),
uGTgﬂrB; ueT,

it follows that if SUPy e, /B |2 < rthen sup,er, [lull2 < r. Thus, if the right-hand
side of (1.56) is smaller than r, then sup, ¢ [lull> < r.

When applied to the classical M* bound, Theorem 3.12, this argument localizes
it as follows:

(K . . .
wr(K) <c+/m implies diam(KNE) <r

with high probability.

1.14.2 More general distributions

For simplicity of exposition, the estimation results in this survey were stated for
isotropic Gaussian vectors a;. We showed in Section 1.8 how to extend the M*
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bound and the corresponding linear estimation results for line for sub-Gaussian
distributions. For more heavy-tailed distributions, a version of M* bound was proved
recently in [46]; compressed sensing for such distributions was examined in [40, 41].

For single-bit observations of Section 1.12, a generalization for sub-Gaussian
distributions is discussed in [2]. Some results can be formulated for anisotropic
Gaussian distributions, where a; ~ N(0, X) with ¥ # I, see, e.g., [58, Section 3.4].

Results for extremely heavy-tailed distributions, such as samples of entries and
random Fourier measurements, exist currently only for special cases of feasible
sets K. When K consists of sparse vectors, reconstruction of x from Fourier
measurements (random frequencies of x) was extensively studied in compressed
sensing [15, 19, 26, 39]. Reconstruction of a matrix from a random sample of entries
was discussed in Section 1.10.4 in the context of matrix completion problem.

There are currently no results, for instance, about reconstruction of x € K from
random Fourier measurements, where K is a general feasible set. It is clear that
K needs to be incoherent with the Fourier basis of exponentials, but this is yet to
be quantified. In the special case where K is a set of sparse vectors, basic results
of compressed sensing quantify this incoherence via a restricted isometry property
[15, 19, 26, 39].
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Chapter 2

Convex Recovery of a Structured Signal
from Independent Random Linear
Measurements

Joel A. Tropp

Abstract This chapter develops a theoretical analysis of the convex programming
method for recovering a structured signal from independent random linear mea-
surements. This technique delivers bounds for the sampling complexity that are
similar to recent results for standard Gaussian measurements, but the argument
applies to a much wider class of measurement ensembles. To demonstrate the power
of this approach, the chapter presents a short analysis of phase retrieval by trace-
norm minimization. The key technical tool is a framework, due to Mendelson and
coauthors, for bounding a nonnegative empirical process.

2.1 Motivation

Signal reconstruction from random measurements is a central preoccupation in
contemporary signal processing. In this problem, we acquire linear measurements
of an unknown, structured signal through a random sampling process. Given these
random measurements, a standard method for recovering the unknown signal is
to solve a convex optimization problem that enforces our prior knowledge about
the structure. The basic question is how many measurements suffice to resolve a
particular type of structure.

Recent research has led to a comprehensive answer when the measurement
operator follows the standard Gaussian distribution [1, 6, 10, 22, 24-26, 29, 31, 33].
The literature also contains satisfying answers for sub-Gaussian measurements [22]
and subexponential measurements [18]. Other types of measurement systems are
quite common, but we are not aware of a simple approach that allows us to analyze
general measurements in a unified way.

This chapter describes an approach that addresses a wide class of convex signal
reconstruction problems involving random sampling. To understand these questions,
the core challenge is to produce a lower bound on a nonnegative empirical process.
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For this purpose, we rely on a powerful framework, called the Small Ball Method,
that was developed by Shahar Mendelson and coauthors in a sequence of papers,
including [14, 16, 19-21].

To complete the estimates required by Mendelson’s Small Ball Method, we
propose a technique based on conic duality. One advantage of this approach is
that we can exploit the same insights and calculations that have served so well
in the Gaussian setting. We refer to this little argument as the bowling scheme
in honor of David Gross’s golfing scheme [13]. We anticipate that it will offer
researchers an effective way to analyze many signal recovery problems with random
measurements.

2.1.1 Roadmap

The first half of the chapter summarizes the established analysis of convex signal
reconstruction with a Gaussian sampling model. In Section 2.2, we introduce a
convex optimization framework for solving structured signal recovery problems
with linear measurements, and we present a geometric formulation of the optimality
conditions. Section 2.3 specializes to the case where the measurements come from a
Gaussian model, and we explain how classical results for Gaussian processes lead to
a sharp bound for the number of Gaussian measurements that suffice. These results
are framed in terms of a geometric parameter, the conic Gaussian width, associated
with the convex optimization problem. Section 2.4 explains how to use duality to
obtain a numerically sharp bound for the conic Gaussian width, and it develops two
important examples in detail.

In the second half of the chapter, we consider more general sampling models.
Section 2.5 introduces Mendelson’s Small Ball Method and the technical arguments
that support it. As a first application, in Section 2.6, we use this strategy to analyze
signal reconstruction from sub-Gaussian measurements. Section 2.7 presents the
bowling scheme, which merges the conic duality estimates with Mendelson’s Small
Ball Method. This technique allows us to study more general types of random
measurements. Finally, in Section 2.8, we demonstrate the vigor of these ideas by
applying them to the phase retrieval problem.

2.2 Signal reconstruction from linear measurements

We begin with a framework that describes many convex optimization methods for
recovering a structured signal from linear measurements. Examples include the ¢,
minimization approach for identifying a sparse vector and the Schatten 1-norm
minimization approach for identifying a low-rank matrix. We develop a simple error
bound for convex signal reconstruction by exploiting the geometric formulation
of the optimality conditions. This analysis leads us to study the minimum conic
singular value of a matrix.
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2.2.1 Linear acquisition of data

Let x! € R? be an unknown but “structured” signal. Suppose that we observe a
vector y in R™ that consists of m linear measurements of the unknown:

y=&x"+e. (2.1)

We assume that ® is a known m x d sampling matrix, and e € R™ is a vector of
unknown errors. Expression (2.1) offers a model for data acquisition that describes
a wide range of problems in signal processing, statistics, and machine learning. Our
goal is to compute an approximation of the unknown x! by exploiting our prior
knowledge about its structure.

2.2.2 Reconstruction via convex optimization

Convex optimization is a popular approach for recovering a structured vector from
linear measurements. Let f : R — R be a proper convex function' that reflects the
“complexity” of a signal. Then we can frame the convex program

minimize f(x) subjectto || ®Px—y| <7 (2.2)
x€Rd

where ||-|| denotes the Euclidean norm and 7 is a specified bound on the norm of the
error e. In words, the optimization problem (2.2) searches for the most structured
signal x that is consistent with the observed data y. In practice, it is common to
consider the Lagrangian formulation of (2.2) or to consider a problem where the
objective and constraint are interchanged. We can often solve (2.2) and its variants
efficiently using standard algorithms.

Remark 2.1 (Alternative programs). The optimization problem (2.2) is not the only
type of convex method for signal reconstruction. Suppose that f : R — R is a
gauge, i.e., a function that is nonnegative, positively homogeneous, and convex.
Then we may consider the convex program

minimize f(x) subjectto f° (@'(®x —y)) <n,
x€R

where f° denotes the polar of the gauge [28, Chap. 15] and ! denotes transposition.
This reconstruction method submits to an analysis similar to the approach in this
note. For example, see [4, Thm. 1].

!The extended real numbers R := R U {3-00}. A proper convex function takes at least one finite
value but never the value —oo.
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2.2.3 Examples

Before we continue, let us mention a few structures that arise in applications and the
complexity measures that are typically associated with these structures.

Example 2.2 (Sparse vectors). A vector x! € R? is sparse when many or most of
its entries are equal to zero. We can promote sparsity by minimizing the £; norm
[Ill, - This heuristic leads to a problem of the form

minimize |[|x|,, subjectto || ®x —y| < 7. (2.3)
x€R4

Sparsity has become a dominant modeling tool in statistics, machine learning, and
signal processing.

Example 2.3 (Low-rank matrices). We say that a matrix X’ € R4*% has low rank
when its rank is small compared with minimum of d; and d,. Suppose that we have
acquired noisy measurements

y=®X") +e, (2.4)

where @ is a linear operator that maps a matrix in R“*% to a vector in R”. To
reconstruct the unknown low-rank matrix X ”, we can minimize the Schatten 1-norm
[-ls,» which returns the sum of the singular values of a matrix. This heuristic
suggests that we consider an optimization problem of the form

minimize ||X|s, subjectto [[®(X) —y| <. (2.5)

XeRA >
In recent years, this approach to fitting low-rank matrices has become common.

It is possible to consider many other types of structures. For instance, see [6, 10].

2.2.4 A deterministic error bound for convex recovery

We can obtain a deterministic error bound for the convex reconstruction
method (2.2) using a standard geometric analysis. Recall that a cone is a set
K C R that is positively homogeneous: K = K for all T > 0. A convex cone is a
cone that is also a convex set. Let us introduce the cone of descent directions of a
convex function.

Definition 2.4 (Descent cone). Let f : R — R be a proper convex function. The
descent cone 9(f,x) of the function f at a point x € R? is defined as

2(f,x) ;== U {u eRY: f(x + Tu) §f(x)}.
>0

The descent cone of a convex function is always a convex cone, but it may not be
closed.
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We are interested in the behavior of the measurement matrix ® when it is
restricted to a descent cone.

Definition 2.5 (Minimum conic singular value). Let ® be an m x d matrix, and
let K be a cone in R, The minimum singular value of ® with respect to the cone K
is defined as

Amin(®: K) = inf { | @u| :u € K N S*"}

where S?~! is the Euclidean unit sphere in RY.

The terminology originates in the fact that A, (®; RY) coincides with the usual
minimum singular value.
With these definitions at hand, we reach the following basic result.

Proposition 2.6 (A deterministic error bound for convex recovery). Let x! be a
signal in RY, let ® be an m X d measurement matrix, and lety = ®x’ + e bea
vector of measurements in R™. Assume that |le|| < 1, and let X, be any solution to
the optimization problem (2.2). Then

2n
min((b; _@(f,xn)) '

£l
l#y 2] <

This statement is adapted from [6]. For completeness, we include the short proof.

Proof. Tt is natural to write the decision variable x in the convex program (2.2)
relative to the true unknown: u := x — x'. Using expression (2.1) for the
measurement vector y, we obtain the equivalent problem

minimdize f(x"+u) subjectto || Pu—e| <. (2.6)
ueR

Owing to the bound ||e|| < 7, the point u = 0 is feasible for (2.6). Therefore, each
optimal point & verifies f(x" + &) < f(x"). In summary, any optimal point of (2.6)
satisfies two conditions:

aePFf.x") and |®a—e| <.

As a consequence, we simply need to determine how far we can travel in a descent
direction before we violate the bound constraint. See Figure 2.1 for an illustration
of the geometry.

To complete the argument, assume that u is a nonzero point in Z(f, x") that is
feasible for (2.6). Then

(@ (7 ) < 120l 1Pu—el+lel _ 21
Jul Jul Jul
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null(®d)

.

IDull <27

(w: f(x'+u) < f(xh)

2(f,x%

Fig. 2.1 [Geometry of convex recovery] This diagram illustrates the geometry of the optimiza-
tion problem (2.6). The cone Z(f,x") contains the directions u in which f is decreasing at x".
Assuming that |le|| < 5, the diagonal tube contains every point u that satisfies the bound constraint
||[®u + e|| < 5. Each optimal point & for (2.6) lies in the intersection of the tube and the cone.

The first inequality follows from Definition 2.5 of the conic singular value. The
second relation is the triangle inequality. The last bound holds because u satisfies
the constraint in (2.6), and we have assumed that ||e|| < 7. Finally, rearrange the
display, and rewrite u in terms of the original decision variable x. O

Although Proposition 2.6 is elegant, it can be difficult to apply because we must
calculate the minimum conic singular value of a matrix ® with respect to a descent
cone. This challenge becomes less severe, however, when the matrix ® is drawn at
random.

2.3 A universal error bound for Gaussian measurements

We will study the prospects for convex recovery when the sampling matrix
® is chosen at random. This modeling assumption arises in signal processing
applications where the matrix describes a data-acquisition system that can extract
random measurements. This kind of model also appears in statistics and machine
learning when each row of the matrix tabulates measured variables for an individual
subject in an experiment.
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2.3.1 Standard Gaussian measurements

In this section, we treat one of the simplest mathematical models for the m x d
random measurement matrix ®. We assume that each of the m rows of ® is drawn
independently from the standard Gaussian distribution NORMAL(0, I;), where the
covariance I; is the d-dimensional identity matrix. For this special case, we can
obtain a sharp estimate for the minimum conic singular value A, (®; K) for any
convex cone K.

2.3.2 The conic Gaussian width

The analysis of Gaussian sampling depends on a geometric summary parameter for
cones.

Definition 3.1 (Conic Gaussian width). Let K C R? be a cone, not necessarily
convex. The conic Gaussian width w(K) is defined as

w(K) := E sup,egnsi—1 (8. u)
where g ~ NORMAL(0, 1)) is a standard Gaussian vector in R?.

The Gaussian width plays a central role in asymptotic convex geometry [17,
23, 27]. Most of the classical techniques for bounding widths are only accurate
up to constant factors (or worse). In contrast, ideas from the contemporary signal
processing literature frequently allow us to produce numerically sharp estimates for
the Gaussian width of a cone. These techniques were developed in the papers [1, 6,
10, 24, 31]. We will outline one of the methods in Section 2.4.

Remark 3.2 (Statistical dimension). The conic Gaussian width w(K) is a conve-
nient functional because it arises from the probabilistic tools that we use. The theory
of conic integral geometry, however, delivers a better summary parameter [1]. The
statistical dimension §(K) of a convex cone K can be defined as

8(K) := E[(sup,cxnpe (& u))’]:

where B? is the Euclidean unit ball in R? and g ~ NORMAL(O, I;). The statistical
dimension canonically extends the dimension of a subspace to the class of convex
cones, and it satisfies many elegant identities [1, Prop. 3.1]. For some purposes,
the two parameters are interchangeable because of the following comparison [1,
Prop. 10.2]:

w?(K) < 8(K) < w?(K) + 1.

As a consequence, we can interpret w?(K) as a rough measure of the “dimension”
of a cone.
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2.3.3 Conic singular values and conic Gaussian widths

As it turns out, the conic Gaussian width w(K) controls the minimum conic singular
value A, (®; K) when @ follows the standard normal distribution.

Proposition 3.3 (Minimum conic singular value of a Gaussian matrix). Let
K C R? be a cone, not necessarily convex, and let ® be an m x d matrix
whose rows are independent vectors drawn from the standard Gaussian distribution
NORMAL(0, L;). Then

Amin(q);K) > vm—1 _W(K) —t

with probability at least 1 — e /2,

In essence, this result dates to the work of Gordon [11, 12]. We have drawn the
proof from the survey [8, Sec. 3.2] of Davidson & Szarek; see also [6, 22, 29, 31].
Note that the argument relies on special results for Gaussian processes that do not
extend to other distributions.

Proof sketch. We can express the minimum conic singular value as

Amin(®;K) = inf sup (v, du)
uekKNSd—1 pesm—1

It is a consequence of Gordon’s comparison inequality [11, Thm. 1.4] that

E inf sup (v, Pu)>E sup {g/, v)-E sup (g, u)=E ||g'|-w(K),

uekNSI=! | cgm—1 vesm—I uekNsd—1

where g’ ~ NORMAL(0, I,,) and g ~ NORMAL(0, I;). Itis well known thatE ||g’| >

+/m — 1, and therefore
EAnin(®;K) > vVm—1—w(K). 2.7
To complete the argument, note that the map

Amin(5K) :A— inf |Au|
uekNsd—!

is 1-Lipschitz with respect to the Frobenius norm. The usual Gaussian concentration
inequality [3, Sec. 5.4] implies that

P{Amin (@ K) < E Apin(®:K) — 1} <e™/2 (2.8)

Introduce the lower bound (2.7) for the expectation of the minimum conic singular
value into (2.8) to reach the advertised result. O
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Remark 3.4 (Sharpness for convex cones). It is a remarkable fact that the bound in
Proposition 3.3 is essentially sharp. For any cone K, we can reinterpret the statement
as saying that

Amin(®;K) > 0 with high probability when m > w?(K) + Cw(K).

(The letter C always denotes a positive absolute constant, but its value may change
from place to place.) Conversely, for a convex cone K, it holds that

Amin(®;K) = 0 with high probability when m < w?(K) — Cw(K). 2.9)

Result (2.9) follows from research of Amelunxen et al. [1, Thm. I and Prop. 10.2].
This claim can also be derived by supplementing the proof of Proposition 3.3
with a short polarity argument. It is productive to interpret the pair of estimates
in this remark as a phase transition for convex signal recovery; see [1] for more
information.

2.3.4 An error bound for Gaussian measurements

Combining Proposition 2.6 and Proposition 3.3, we obtain a general error bound for
convex recovery from Gaussian measurements.

Corollary 3.5 (Signal recovery from Gaussian measurements). Let x' be a
signal in R, Let ® be an m x d matrix whose rows are independent random vectors
drawn from the standard Gaussian distribution NORMAL(0, 1), and lety = ®x"+e
be a vector of measurements in R™. With probability at least 1 —e /2 the following
statement holds. Assume that ||e|| < n, and let X, be any solution to the optimization
problem (2.2). Then

2n
[Vm—T1—-w(2(f.x") — t]+'

&) =" <

The operation [a]+ := max{a, 0} returns the positive part of a number.

The overall argument that leads to this result was proposed by Rudelson &
Vershynin [29, Sec. 4]; the statement here is adapted from [6].

Corollary 3.5 provides for stable recovery of the unknown x” when the number
m of measurements satisfies

m > wz(.@(f,xu)) + Cw(@(f,xu)).

In view of Remark 3.4, Corollary 3.5 provides a refined estimate for the amount
of information that suffices to identify a structured vector from Gaussian measure-
ments via convex optimization.
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Remark 3.6 (The normal error model). 1t is possible to improve the error bound
in Corollary 3.5 if we instate a Gaussian model for the error vector e. See the
papers [25, 26, 33] for an analysis of this case.

2.4 Controlling the width of a descent cone via polarity

As soon as we know the conic Gaussian width of the descent cone, Corollary 6.4
yields error bounds for convex recovery of a structured signal from Gaussian
measurements. To make use of this result, we need technology for calculating
these widths. This section describes a mechanism, based on polarity, that leads
to extremely accurate estimates. We can trace this method to the papers [24, 31],
where it is couched in the language of duality for cone programs. The subsequent
papers [1, 6] rephrase these ideas in a more geometric fashion. It can be shown
that the approach in this section gives sharp results for many natural examples;
see [1, Thm. 4.3] or [10, Prop. 1]. Although polar bounds for widths are classic
in asymptotic convex geometry [17, 23, 27], the refined arguments here are just a
few years old.

2.4.1 Polarity and weak duality for cones

We begin with some classical facts about conic geometry.
Fact 4.1 (Polarity). Let K be a general cone in R?. The polar cone K° is the closed
convex cone

K° = {v eR?: (v, x) <Oforallx EK}.

It is easy to verify that K C (K°)°.
Recall that the distance from a point x € R? to a set E C R is defined by the
relation

dist(x, E) := ing lx —u]| .
uec

With these definitions, we reach the following weak duality result.
Proposition 4.2 (Weak duality for cones). Let K be a general cone in RY. For
x eRY

sup  (x, u) <dist(x, K°).
u€KNSI—1
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Proof. The argument is based on a simple duality trick. First, write

dist(x, K°) = inf |x—v| = inf sup (x—v, u).
veEK® vEK® | cqd—1

Apply the inf-sup inequality:
dist(x,K°) > sup inf (x —v, u) = sup |:(x u) — sup (v, u)i|
uesd—1 vEK® ueSd—1 veK®

By definition of polarity, the inner supremum takes the value oo unless u € (K°)°.
We determine that

dist(x, K°) > sup (x, u) > sup (x, u).
ue(K°)°nsd—1 uekNSsd—!

The last inequality holds because K C (K°)°. |

Remark 4.3 (Strong duality for cones). If K is a convex cone and we replace the
sphere with a ball, then we have strong duality instead:

sup {x, u) = dist(x, K°).
ueknB4

The proof uses Sion’s minimax theorem [30] and the bipolar theorem [28,
Thm. 14.1].

2.4.2 The conic Gaussian width of a descent cone

We can use Proposition 4.2 to obtain an effective bound for the width of a descent
cone. This approach is based on a classical polarity correspondence [28, Thm. 23.7].

Fact 4.4 (Polarity for descent cones). The subdifferential of a proper convex
function f : R? — R at a point x € R? is the closed convex set

f(x) := {v eRY:fy) = f(x)+ (v, y—x) forally € Rd}.

Assume that the subdifferential 0f (x) is nonempty and does not contain the origin.
Then

9(f.x)° = cone(df (x)) := closure | | ]z -3fx) | . (2.10)
>0

Combining Proposition 4.2 and Fact 4.4, we reach a bound for the conic Gaussian
width of a descent cone.
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Proposition 4.5 (The width of a descent cone). Let f : RY — R be a proper
convex function, and fix a point x € R?. Assume that the subdifferential 9f (x) is
nonempty and does not contain the origin. Then

w(2(f.x)) <E 11;1; dist? (g, - I (x))

Several specific instances of Proposition 4.5 appear in [6, App. C], while the
general statement here is adapted from [1, Sec. 4.1]. Sections 2.4.3 and 2.4.4 exhibit
how Proposition 4.5 works.

Proof. Proposition 4.2 implies that

w(2(f.x)) =E sup (g. u) <Edist(g, Z2(f.x)°).
U€EP(f x)NS4—1

Expression (2.10) for the polar of a descent cone implies that

w(@(f,x)) < E dist | g, closure U T-df(x) =E ;Izlg dist (g, T- 8f(x)).

>0

Indeed, the distance to a set is the same as the distance to its closure, and the distance
to a union is the infimal distance to one of its members. Square the latter display and
apply Jensen’s inequality to complete the argument. O

2.4.3 Example: Sparse vectors

Suppose that x? is a vector in R? with s nonzero entries. Let ® be an m x d matrix
whose rows are independent random vectors distributed as NORMAL(0, 1), and
suppose that we acquire a vector y = ®x" + e consisting of m noisy measurements.
We can solve the £;-minimization problem (2.3) in an attempt to reconstruct x5,

How many measurements are sufficient to ensure that this approach succeeds?
We will demonstrate that

w 2| llg, . x") < 2slog(d/s) + 2s. (2.11)

Therefore, Corollary 3.5 implies that m > 2slog(d/s) measurements are enough for
us to recover x! approximately. When s < d, the first term in (2.11) is numerically
sharp because of [10, Prop. 1].

2.4.3.1 The width calculation

Let us establish the width bound (2.11). This analysis is adapted from [6, App. C]
and [1, App. D.2]; see also [10, App. B]. The result [1, Prop. 4.5] contains a more
complicated formula for the width that is sharp for all choices of the sparsity s.
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When estimating widths, a useful strategy is to change coordinates so that
the calculations are more transparent. The £; norm is invariant under signed
permutation, o

2|l ,xh =Pt DIl ,Px") where P is a signed permutation.

The distribution of a standard Gaussian random variable is invariant under signed
permutation, so the conic Gaussian width has the same invariance. Therefore,

W(Z (N, -x) = wlP' 2 lle, - Px)) = w(Z (g, - Px?))-
We will use this type of transformation several times without detailed justification.
As a consequence of the argument in the last paragraph, we may assume that x”
takes the form
xl = ()cl,...,xx,O,...,O)t eR?Y where x; >--->x, > 0.
Proposition 4.5 ensures that

w (2()|ly, .x%) < E dist® (g, v~ 9|x"|,, ) foreacht >0 (2.12)

where g ~ NORMAL(0, I;). The subdifferential of the £; norm at x" satisfies

3 X, :%B‘}GR":HyHEOOfl} where 1,:=(1,...,1)! e R".

Therefore,
K 5 d 5
E dis(g. -0 x",) =D E(g—17)" + > E[lgl—z];. (2.13)
j=1 Jj=s+1

As usual, [a]+ := max{a, 0}. For 1 <j < s, a direct calculation gives
E(g—1) =1+ (2.14)

For s < j < d, we apply a familiar tail bound for the standard normal variable to
obtain

E[|gj|2_f]i =/ 2(a—1)"P{|gj| = a} da

o0 2
< / 2a <‘/ Za! e_az/z) da
. T

= 2P {|gjl| > 7} < 2e7/ (2.15)
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Combine (2.12), (2.13), (2.14), and (2.15) to obtain
. —z2
w (2l x)) < E dist*(g, - [lx"]|,,) =s- (1 + %) + (d—s) - 27"/~

Choose 72> = 21og(d/s) and simplify to reach (2.11).

2.4.4 Example: Low-rank matrices

Let X! be a matrix in RY*% with rank r. Let ® : R“*% — R be a linear operator
whose matrix has independent standard Gaussian entries. Suppose we acquire m
noisy measurements of the formy = ® (X t1) + e. We can solve the S;-minimization
problem (2.5) to reconstruct X"

How many measurements are enough to guarantee that this approach works? We
will prove that

w (2| ll, . X") < 3r-(di + dy — 7). (2.16)

As a consequence, Corollary 3.5 implies that m > 3r - (d, + d, — r) measurements
allow us to identify X" approximately.

2.4.4.1 The width calculation

Let us establish the width bound (2.16). This analysis is adapted from [6, App. C]
and [1, App. D.3]; see also [10, App. E]. The result [1, Prop. 4.6] contains a more
complicated formula for the width that is sharp whenever the rank r is proportional
to the dimension min{d;, d,}.

The Schatten 1-norm is unitarily invariant, so we may also select a coordinate
system where

0 . .
X”:[O 0i| where X = diag(oy,...,0,) and o;>O0forj=1,...,r.

Let G be a d; x d, matrix with independent standard normal entries, partitioned as

G= [G” G”] where Gyisrxr and Gais(di —r) X (dr —r).
Gy Gn

Define a random parameter T = |Gy||, where ||| denotes the spectral norm.
Proposition 4.5 ensures that

w (2 lls, . X)) < E dist} (G, 7-0 | X", ). (2.17)
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Note that we must calculate distance with respect to the Frobenius norm ||:||g.
According to [37, Ex. 2], the subdifferential of the Schatten 1-norm takes the form

ad ||X”||S] = % |})’ g] e R . |y|| <1 where I, is the r X r identity matrix.

We may calculate that

E dist (G, v+ |X'|s,) =E |Gi1 — - L]} + E [Guallp

+E Gl +E inf Gt YIE.  218)

Our selection of T ensures that the last term on the right-hand side of (2.18) vanishes.
By direct calculation,

E |G|+ E |Gy |E = r- (d) + dy —2r). (2.19)

To bound the first term on right-hand side of (2.18), observe that
E |G —t-L|fg =7 +r-E7? (2.20)
because the random variable 7 is independent of G;;. We need to compute

E2=E ||Gzz||%. A short argument [8, Sec. 2.3] based on the Slepian comparison
inequality shows that

E ||G22|| < \/d] —r+ \/dz—rf \/2(611 +d2—2r).

The spectral norm is 1-Lipschitz, so the Gaussian Poincaré inequality [3, Thm. 3.20]
implies

E |G |? — (EIG2| )’ = Var (1G] ) < 1.
Combining the last two displays,
Et’> =E |Gyl < (E |Gnl )} +1<2(d +dy—2r) + 1. 2.21)

Finally, we incorporate (2.18), (2.19), (2.20), (2.21) into the width bound (2.17) to
reach

W (25, . XD) < 3r- (dy +dy—2r) + 7 + 7.

Simplify this expression to obtain result (2.16).
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2.5 Mendelson’s Small Ball Method

In Sections 2.2-2.4, we analyzed a convex programming method for recover-
ing structured signals from standard Gaussian measurements. The main result,
Corollary 3.5, is appealing because it applies to any convex complexity measure f.
Proposition 4.5 allows us to instantiate this result because it provides a mechanism
for controlling the Gaussian width of a descent cone. On the other hand, this
approach only works when the sampling matrix ® follows the standard Gaussian
distribution.

For other sampling models, researchers use a variety of ad hoc techniques to
study the recovery problem. It is common to see a separate and intricate argument
for each new complexity measure f and each new distribution for ®. It is natural
to wonder whether there is a single approach that can address a broad class of
complexity measures and sampling matrices.

The primary goal of this chapter is to analyze convex signal reconstruction
with more general random measurements. Our argument is based on Mendelson’s
Small Ball Method, a powerful strategy for establishing a lower bound on a
nonnegative empirical process [14, 16, 19-21]. This section contains an overview
of Mendelson’s Small Ball Method. Section 2.6 uses this technique to study sub-
Gaussian measurement models. In Section 2.7, we extend these ideas to a larger
class of sampling distributions. In Section 2.8, we conclude with an application to
the problem of phase retrieval.

2.5.1 The minimum conic singular value as a nonnegative
empirical process

Suppose that ¢ is a random vector on R?, and draw independent copies @, ..., ®,,
of the random vector ¢. Form an m x d sampling matrix ® whose rows are these
random vectors:

@
o= : | 2.22)
o,
Fix a cone K € R? not necessarily convex, and define the set E := K N S¢!,

Then we can express the minimum conic singular value A, (®; K) of the sampling
matrix as a nonnegative empirical process:

m 1/2
. . o ) 2
Ain(®: K) = inf (; (@, u)l ) . (2.23)
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When the sampling matrix is Gaussian, we can use Gordon’s theorem [11, Thm. 1.4]
to obtain a lower bound for expression (2.23), as in Proposition 3.3. The challenge is
to find an alternative method for producing a lower bound in a more general setting.

2.5.2 A lower bound for nonnegative empirical processes

The main technical component in Mendelson’s Small Ball Method is a remarkable
estimate that was developed in the paper [20]. This result delivers an effective lower
bound for a nonnegative empirical process.

Proposition 5.1 (Lower bound for a nonnegative empirical process [20,
Thm. 5.4]). Fixaset E C R?. Let @ be a random vector on R4, and let Pl @
be independent copies of ¢. Define the m x d matrix ® as on (2.22). Introduce the
marginal tail function

0:(E; @) := inf P{|(p, u)| = £} where & = 0.

Let €1, ...,¢&, be independent Rademacher random variables,? independent of
everything else, and define the mean empirical width of the set:

1 m
Wu(E; @) :=E sup (h, u) where h:=— £iQ;. (2.24)
w(E: @ sup (h. u) T ; ¢

Then, for any € > 0 and t > 0,

m 1/2
inf (Z|(¢, u)|2) > E/m Qe (E; ) — 2W, (E: @) — &1
i=1

uck

with probability at least 1 — e /2,

The proof appears below in Section 2.5.5. In the sequel, we usually lighten our
notation for Q¢ and W,, by suppressing the dependence on ¢.

Before we continue, it may be helpful to remark on this result. The marginal tail
function Qg (E) reflects the probability that the random variable [{¢, u)| is close
to zero for any fixed vector u € E. When Q¢(E) is bounded away from zero
for some &, the nonnegative empirical process is likely to be large. Koltchinskii
& Mendelson [14] point out that the marginal tail function reflects the absolute
continuity of the distribution of ¢, so Q¢ may be quite small when ¢ is “spiky.”

2 A Rademacher random variable takes the two values =1 with equal probability.
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The mean empirical width W,,(E) is a distribution-dependent measure of the
size of the set E. When ¢ follows a standard Gaussian distribution, W,,(E) reduces
to the usual Gaussian width W(E) := E sup,cr (g, u). As the number m tends
to infinity, the distribution of the random vector k converges in distribution to a
centered Gaussian variable with covariance E[p¢@*]. Therefore, W,,(E) — W(E)
when ¢ is centered and isotropic.

2.5.3 Mendelson’s Small Ball Method

Proposition 5.1 shows that we can obtain a lower bound for (2.23) by performing
two simpler estimates. To achieve this goal, Mendelson has developed a general
strategy, which consists of three steps:

MENDELSON’S SMALL BALL METHOD

(1) Apply Proposition 5.1 to bound the minimum conic singular value
)&min(<1>; K) below in terms of the marginal tail function Q> (E; ¢) and
the mean empirical width W, (E; ¢). The index set E := K N S~

(2) Bound the marginal tail function Q¢ (E;¢) below using a Paley—
Zygmund inequality.

(3) Bound the mean empirical width W,,(E; ¢) above by imitating tech-
niques for controlling the Gaussian width of E.

This presentation is distilled from the corpus [14, 16, 19-21]. A more sophisti-
cated variant of this method appears in [20, Thm. 5.3]. Later in this chapter, we will
encounter several concrete applications of this strategy.

2.5.4 Expected Scope

Mendelson’s Small Ball Method provides lower bounds for (2.23) in many sit-
uations, but it does not offer a universal prescription. Let us try to delineate
the circumstances where this approach is likely to be useful for signal recovery
problems.

* Mendelson’s Small Ball Method assumes that the sampling matrix @ has
independent, identically distributed rows. Although this model describes many
of the sampling strategies in the literature, there are some examples, such as
random filtering [34], that do not conform to this assumption.
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* A major advantage of Mendelson’s Small Ball Method is that it applies to
sampling distributions with heavy tails. On the other hand, the random vector
@ cannot be too “spiky,” or else it may not be possible to produce a good lower
bound for the marginal tail function Q»¢ (E). This requirement indicates that the
approach may require significant improvements before it applies to problems
like matrix completion.

There are a number of possible extensions of Mendelson’s Small Ball Method
that could expand its bailiwick. For example, it is easy to extend Proposition 5.1
to address the case where the random vector ¢ is complex valued. A more difficult,
but very useful, modification would allow us to block the measurements into groups.
This revision could reduce the difficulties associated with spiky distributions, but it
seems to demand some additional ideas.

2.5.5 Proof of Proposition 5.1

Let us establish the Mendelson bound for a nonnegative empirical process. First, we
introduce a directional version of the marginal tail function:

O:(u) :=P{|(p. u)| = &} foruc Eand§ > 0.
Lyapunov’s inequality and Markov’s inequality give the numerical bounds
(l > lion u>|2)1/2 LS ol = £ 3" 1o ] = &)
e g, e

We write 1A for the 0—1 random variable that takes the value one when the event A
takes place. Add and subtract Q¢ (u) inside the sum and then take the infimum over
u € E to reach the inequality

m 1/2
) 1 2 )
inf (E Zl: (@, u)] ) = § inf Qo (u)

S m
—=su Or(u) — 1 »ou)| > .
o2 20 = 1{tps w2 )]
(2.25)
To control the supremum in probability, we can invoke the bounded difference

inequality [3, Sec. 6.1]. Observe that each summand is independent and bounded
in magnitude by one. Therefore,
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sup > [Qaw) — 1 (g, u)| = &}]
uek =1
<Esup Y [0x) - 1{|{p; x)| = £}] + t/m (2.26)

uck i=1

with probability at least 1 — /2.

Next, we simplify the expected supremum. Introduce a soft indicator function:

0, |s| <&
Ve :R—[0,1] where y:(s):= q(]s| —£)/E, & < |s| <2¢
1, 28 < |s].

We need two properties of the soft indicator. First, the soft indicator is bracketed by
two hard indicators: 1{|s| > 2&} < Ye(s) < 1{|s| > &} for all s € R. Second, £
is a contraction, i.e., a 1-Lipschitz function on R that fixes the origin. Therefore, we
can make the following calculation:

m

E sup Z[ng(u) —1{|{g; u)| > &}]

u€kE i=1

=Esup Y [EL{[{g. u)| = 26} — 1{|{p;. u)| = &}]

uck i=1

<Esup ) [Eve((g, u) — ve((g;, u))]
1

u€kE i=

<2E sup Z&'T//s((%’v u))

uck i=1

< g]E sup Zsi (p;, u). (2.27)

uckE i=1

In the first line, we write the marginal tail function as an expectation and then we

bound the two indicators using the soft indicator function. The next inequality is

the Giné—Zinn symmetrization [35, Lem. 2.3.1]. The last line follows from the

Rademacher comparison principle [17, Eqn. (4.20)] because £ is a contraction.
Combine the inequalities (2.25), (2.26), and (2.27) to reach

uckE ucek

m 1/2 m
inf (n% > e u>|2) > £l O ) — = E Esup Y ei (g, u) + W} .

i=1
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Define h := m™ /2y | £;¢, and clear the factor y/m to conclude that

m 1/2
inf (;uw u>|2> > £/m inf Qo (u) — 2 sup (. u) — .

uck

with probability at least 1 — e /2, Identify the marginal tail function Q»¢(E) and
the empirical width W,,(E) to establish Proposition 5.1.

2.6 A universal error bound for sub-Gaussian measurements

In this section, we invoke Mendelson’s Small Ball Method to study convex signal
recovery from independent sub-Gaussian measurements. This class of examples
provides a wide generalization of standard Gaussian measurements. We will
establish a variant of the Gaussian recovery result, Corollary 3.5, in this setting.

2.6.1 Sub-Gaussian measurements

Let us set out the conditions we require for the sampling matrix. Suppose that ¢ is
a random vector in R? that has the following properties:

* [Centering] The vector has zero mean: E ¢ = 0.
* [Nondegeneracy] There is a positive constant « for which
o <E |(p, u)| foreachu e S
* [Sub-Gaussian marginals] There is a positive constant o for which
P{ (g, u)| =1} < 2¢77/2"  foreachu € S9!,
¢ [Low eccentricity] The eccentricity p := o/« of the distribution should be

small.

Finally, we construct a random m X d sampling matrix ® whose rows are
independent copies of ¢!, as in expression (2.22).
A few examples of sub-Gaussian distributions may be helpful.

Example 6.1 (Nonstandard Gaussian matrices). Suppose that ¢ € R? follows the
NORMAL(0, X) distribution where the covariance ¥ satisfies Zo> < u'Xu < o for
each vector u € S9!, Then the required conditions follow from basic facts about a
normal distribution.
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Example 6.2 (Independent bounded entries). Let X be a symmetric random vari-
able whose magnitude is bounded by o. Suppose that each entry of ¢ is an
independent copy of X.

The vector ¢ inherits centering from X. Next, ¢ is nondegenerate with o >
2712 |X| because of the Khintchine inequality [15] and a convexity argument.
Finally, ¢ has sub-Gaussian marginals with the parameter o because of Hoeffding’s
inequality [3, Sec. 2.6].

2.6.2 The minimum conic singular value of a sub-Gaussian
matrix

The main result of this section gives a lower bound for the minimum conic singular
value of a matrix ® that satisfies the conditions in Section 2.6.1.

Theorem 6.3 (Minimum conic singular value of a sub-Gaussian matrix). Sup-
pose ® is an m x d random matrix that satisfies the conditions in Section 2.6.1. Let
K C RY be a cone, not necessarily convex. Then

Amin(®; K) > cap™ - /m— Co - w(K) — at

. .7 —f2 .. .
with probability at least 1 — e™". The quantities ¢ and C are positive absolute
constants.

Observe that, when the eccentricity p has constant order, the bound in Theorem
6.3 matches the result for Gaussian matrices in Proposition 3.3. A similar result
appears in the paper [22], so we do not claim any novelty. We establish Theorem 6.3
below in Section 2.6.4.

2.6.3 An error bound for sub-Gaussian measurements

Combining Proposition 2.6 and Theorem 6.3, we reach an immediate consequence
for signal recovery from sub-Gaussian measurements.

Corollary 6.4 (Signal recovery from sub-Gaussian measurements). Ler x! be
a signal in RY. Let ® be an m x d random matrix that satisfies the conditions
in Section 2.6.1, and lety = ®x' + e be a vector of measurements in R™. With
probability at least 1 — e~ the Sfollowing statement holds. Assume that |le|| < n,
and let X, be any solution to the optimization problem (2.2). Then

2n
[cap=2- /m—Co-w(2(f.xh) — at]+ '

%) =" =
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The quantities ¢ and C are positive absolute constants. The operation [a]+ =
max{a, 0} returns the positive part of a number.

Corollary 6.4 provides for stable recovery of x" as soon as the number 1 of sub-
Gaussian measurements satisfies

m> C'p® - W (2(f,xY)).

How accurate is this result? Note that standard Gaussian measurements satisfy the
assumptions of the corollary with p constant, and we need at least w? (_@(f , x”))
standard normal measurements to recover the structured signal x” with the com-
plexity measure f. Therefore, the bound is correct up to the constant factor C’ and
the precise dependence on the eccentricity p.

2.6.4 Proof of Theorem 6.3: Setup and Step 1

To establish Theorem 6.3, we rely on Mendelson’s Small Ball Method. The
argument also depends on some deep ideas from the theory of generic chaining [32],
but we only use these results in a naive way.

Fix a cone K in R? and define the set E := K N S?~!. Suppose that ¢ is a random
vector in RY that satisfies the conditions set out in Section 2.6.1 and construct an
m % d random matrix ¢ whose rows are independent copies of ¢. Proposition 5.1
implies that

Amin(®: K) > £5/m Qo (E) —2W,,(E) — 1 with probability > 1 —e /2. (2.28)

This result holds for all § > 0 and ¢ > 0. To establish Theorem 6.3, we must develop
a constant lower bound for the marginal tail function Q¢ (E), and we also need to
compare the mean empirical width W,,(E) with the conic Gaussian width w(K).

2.6.5 Step 2: The marginal tail function

We begin with the lower bound for the marginal tail function Qy¢. This result is an
easy consequence of the second moment method, also known as the Paley—Zygmund
inequality. Let u# be any vector in E. One version of the second moment method
states that

[E (. u)| —2¢]"

Pllle w26} = ==

(2.29)
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To control the denominator on the right-hand side of (2.29), we use the sub-Gaussian
marginal condition to estimate that

Ellg. = [ 25-Plllg. ull = s} ds = 40>

To bound the numerator on the right-hand side of (2.29), we use the nondegeneracy
assumption: E |(¢, u)| > «. Combining these results and taking the infimum over
u € E, we reach

(« —28)°

0 (E) = inf P{l(p, u)| > 2} > — —

(2.30)

for any & that satisfies 2§ < «.

2.6.6 Step 3: The mean empirical width

Next, we demonstrate that the empirical width W,,(E) is controlled by the conic
Gaussian width w(K). This argument requires sophisticated results from the theory
of generic chaining [32]. First, observe that the vector b = m~'/2 YL, €@, inherits
sub-Gaussian marginals from the centered sub-Gaussian distribution ¢. Indeed,

P{|(h, u)| =1} < Cie™"/*" for eachu € S¢'.

See [36, Sec. 5.2.3] for an introduction to sub-Gaussian random variables. In
particular, we have the bound

P{ [{(h, u—v)| > t} < C1e_""2/(“2””_””2) forallu,v € RY,

Under the latter condition, the generic chaining theorem [32, Thm. 1.2.6] asserts
that

Wi(E) = E sup (h, u) < Cy0 - y2(E, {2)

uck

where y; is a geometric functional. The precise definition of y; is not important for
our purposes because the majorizing measure theorem [32, Thm. 2.1.1] states that

Y2(E, £5) < C3-E sup (g, u)

uck

where g ~ NORMAL(0, 1). It follows that

Wu(E) < C40 - E sup (g, u) = C40 - w(K). (2.31)

u€ek

We have recalled that E = K N S%~! to identify the conic Gaussian width w(K).
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2.6.7 Combining the bounds

Combine the bounds (2.28), (2.30), and (2.31) to discover that

—_2§)?
Amin(®:K) > E/m - (014—25) —2C40 w(K) — £t with probability > 1 — e"/2,
o

provided that 2§ < «. Select £ = /6 to see that
1 o o . . —2/2
Amin(®; K) > a-—zx/m—Cm w(K)—gt with probability > 1—e . (2.32)
o

Using the eccentricity p = o/«, we simplify expression (2.32) to reach a bound for
the minimum conic singular value of a sub-Gaussian random matrix ® that satisfies
the conditions set out in Section 2.6.1. This completes the proof of Theorem 6.3.

2.7 The bowling scheme

As we have seen in Theorem 6.3, sub-Gaussian sampling models exhibit behavior
similar to the standard Gaussian measurement model. Yet there are many interesting
problems where the random sampling matrix does not conform to the sub-Gaussian
assumption. In this section, we explain how to adapt Mendelson’s Small Ball
Method to a range of other sampling ensembles. The key idea is to use the conic
duality arguments from Section 2.4 to complete the estimate for the mean empirical
width.

2.7.1 The mean empirical width of a descent cone

Let us state a simple duality result for the mean empirical width of a descent cone.
This bound is based on the same principles as Proposition 4.5.

Proposition 7.1 (The mean empirical width of a descent cone). Letf : RY — R
be a proper convex function, and fix a point x € R?. Assume that the subdifferential
f (x) is nonempty and does not contain the origin. For any random vector ¢ € RY,

] m
d—1. : cof2 . — 0.
W (2(f.x) NS ,(p)f]Eglg dist? (h, T+ 3f(x)) where h: ﬁ;z?,(pl.

The mean empirical width W,, is defined in (2.24). The random vectors @, ..., ®,,
are independent copies of ¢, and €1, . .., &, are independent Rademacher random
variables.
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Proof. The argument is identical with the proof of Proposition 4.5 once we replace
the Gaussian vector g with the random vector h. O

2.7.2 The bowling scheme

We are now prepared to describe a general approach for convex signal recovery from
independent random measurements.

The setup is similar to previous sections. Consider an unknown structured signal
x! € R? and a complexity measure f : R — R that is proper and convex. Let
® be a known m x d sampling matrix, and suppose that we acquire m noisy linear
measurements of the form y = ®x! + e. We wish to analyze the performance of the
convex recovery method (2.2). Proposition 2.6 shows that we can accomplish this
goal by finding a lower bound for the minimum conic singular value of the descent
cone:

Amin(®; 2(f,xY) > 22? ) (2.33)

We want to produce a bound of the form (2.33) when the rows of the mea-
surement matrix ® are independent copies of a random vector ¢. This problem
falls within the scope of Mendelson’s Small Ball Method. Introduce the index set
E := 2(f,x") N S%~! In light of (2.23),

m 1/2
. . 1) = j 2
Amm((ba @(f’x )) - ;Ielg (; |(‘pi7 u)| ) .

We follow Mendelson’s general strategy to control the minimum conic singular
value, but we propose a specific technique for bounding the mean empirical width
that exploits the structure of the index set E.

THE BOWLING SCHEME

(1) Apply Proposition 5.1 to bound the minimum conic singular value
Amin(®: Z(f,x") below in terms of the marginal tail function Q» (E; ¢)
and the mean empirical width W,,(E; ¢). The index set E := 2(f;x") N
gL

(2) Bound the marginal tail function Q:(E;¢) below using a Paley—
Zygmund inequality.

(3") Apply Proposition 7.1 to control the mean empirical width W,,(E; ¢).

In other words, Step (3) of Mendelson’s framework has been specialized to
Step (3').
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We refer to this instance of Mendelson’s Small Ball Method as the bowling
scheme. The name is chosen as a salute to David Gross’s golfing scheme. Whereas
the golfing scheme is based on dual optimality conditions for the signal recovery
problem (2.2), the bowling scheme is based on the primal optimality condition
through Proposition 2.6. In the bowling scheme, duality enters only when we are
ready to estimate the mean empirical width.

In our experience, this idea has been successful whenever we understand how to
bound the conic Gaussian width of the descent cone. The main distinction is that the
random vector @ may not share the rotational invariance of the standard Gaussian
distribution.

2.8 Example: Phase retrieval

To demonstrate how the bowling scheme works, we consider the question of phase
retrieval. In this problem, we collect linear samples of an unknown signal, but we are
only able to observe their magnitudes. To reconstruct the original signal, we must
resolve the uncertainty about the phases (or signs) of the measurements. There is a
natural convex program that can achieve this goal, and the bowling scheme offers
an easy way to analyze the number of measurements that are required.

2.8.1 Phase retrieval by convex optimization

In the phase retrieval problem, we wish to recover a signal x* € R? from a family of
measurements of the form

yi= (g, xD fori=1,2,3,....m. (2.34)

The sampling ensemble ¥, ..., ¥,, consists of known vectors in R?. For clarity of
presentation, we do not consider the case where the samples are noisy or complex-
valued.

Although the samples do not initially appear linear, we can apply a lifting method
proposed by Balan et al. [2]. Observe that

(¥, x)]> = ¥'x - x'y = trace (xx' - yy!).

In view of this expression, it is appropriate to introduce the rank-one positive-
semidefinite matrices

X' =D eR™ and ¥, =y, ¥l e R fori=1,2,3,...,m.
(2.35)



94 J.A. Tropp

Then we can express the samples y; as linear functions of the matrix X":
yi = trace (X*- W) fori=1,2,3,...,m. (2.36)

Expression (2.36) coincides with the measurement model (2.1) we have been
considering.

We can use convex optimization to reconstruct the unknown matrix X It s
natural to minimize the Schatten 1-norm to promote low rank, but we also want
to enforce the fact that X? is positive semidefinite [9]. To that end, we consider the
convex program

minir;lidze trace(X) subjectto X >0 and y; = trace (X\II,)
XeRd>

foreachi =1,2,3,...,m. 2.37)

This formulation involves the lifted variables (2.35). We say that the optimization
problem (2.37) recovers x" if the matrix X T is the unique minimizer. Indeed, in
this case, we can reconstruct the original signal by factorizing the solution to the
optimization problem.

Remark 8.1 (Citation for convex phase retrieval). Formulation (2.37) was devel-
oped by a working group at the meeting “Frames for the finite world: Sampling,
coding and quantization,” which took place at the American Institute of Mathemat-
ics in Palo Alto in August 2008. Most of the recent literature attributes this idea
incorrectly.

2.8.2 Phase retrieval from Gaussian measurements

Recently, researchers have started to consider phase retrieval problems with random
data; see [5] for example. In the simplest instance, we choose each sampling vector
¥, independently from the standard normal distribution on R?:

¥, ~ NORMAL(0,1,).

Then each sampling matrix ¥; = ¢ ,»10} follows a Wishart distribution. These ran-
dom matrices do not have sub-Gaussian marginals, so we cannot apply Corollary 6.4
to study the performance of the optimization problem (2.37). Nevertheless, we can
make short work of the analysis by using the bowling scheme.

Theorem 8.2 (Phase retrieval from Gaussian measurements). Lerx! be a signal
in R Let ; ~ NORMAL(0,1,) be independent standard Gaussian vectors, and
consider random measurements y; = |(¥;, x”)|2f0r i =1,2,3,...,m Assuming
that m > Cd, the convex phase retrieval problem (2.37) recovers x" with probability
at least 1 — e~ ™. The numbers ¢ and C are positive absolute constants.
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The sampling complexity m > Cd established in Theorem 8.2 is qualitatively
optimal. Indeed, a dimension-counting argument shows that we need at least m > d
nonadaptive linear measurements to reconstruct a general vector in x’ € R?.

Remark 8.3 (Extensions). There are a number of obvious improvements to
Theorem 8.2 that follow with a little more effort. For example, it is clear that the
convex phase retrieval method is stable. The exceedingly high success probability
also allows us to establish uniform results for all d-dimensional vectors by means
of net arguments and union bounds. Furthermore, the Gaussian assumption
is inessential; it is possible to establish similar theorems for other sampling
distributions. We leave these refinements for the avid reader.

2.8.3 Proof of Theorem 8.2: Setup

Let us rewrite the optimization problem (2.37) in a form that is more conducive
to our methods of analysis. First, introduce the inner product space RZ;‘IS ofdxd
symmetric matrices, equipped with the trace inner product (A, B) := trace(AB)
and the Frobenius norm ||-||z. Define the linear operator
® :ROY —R" where [®(X)]; = (¥, X) fori=123,....m.

Collect the measurements into a vectory = (yi,...,y,)! € R” and observe that
y = ®(X") because of expression (2.36). Next, define the convex indicator function
of the positive-semidefinite cone:

— 0, X is positive semidefinite
L R’:;nf — R where ((X) = P .
+00, otherwise.

Introduce the convex regularizer

fiR¥™ 5 R where f(X)= trace(X) + t(X).

sym
With this notation, we can write (2.37) in the form

minimize f(X) subjectto y = ®(X). (2.38)

dxd
XeRYK

Formulation (2.38) matches our core problem (2.2) with the error vector e = 0 and
error tolerance n = 0.
Proposition 2.6 demonstrates that X ¥ is the unique solution of (2.38) whenever

Amin (@5 2(F,X%) > 0.

We must determine how many measurements m suffice for this event to hold with
high probability.
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2.8.4 Step 1: The nonnegative empirical process bound

Define the set

E:={Ue 2(,X%) : |U|lp = 1} C R

sym *

Proposition 5.1 demonstrates that

m 1/2
Amin(®: 2. X)) = inf (; (¥, U>|2) = £/ Qae (E) = 2 W, (E) — &1
(2.39)

with probability at least 1 — e™/2. In this setting, the marginal tail function is
defined as

O3 (E) := inf P{[(¥), U)| = 2§}.

The mean empirical width is defined as

1 m
Wu(E) :=E sup (H, UY where H:= — &V,
yep (. ) T

Here, {¢;} is an independent family of Rademacher random variables, independent
of everything else.

2.8.5 Step 2: The marginal tail function

We can use the Paley—Zygmund inequality to show that

0\(E) = inf P{|(¥1, U)| = 1} = co. (2.40)

We have implicitly chosen § = %, and ¢ is a positive absolute constant.

2.8.5.1 The tail bound

To perform this estimate, we apply the Paley—Zygmund inequality in the form

1 (El(w, 0)PY)’
IR

PI(¥, U)|22 1 . O)f°
l’

HE|(®, U)P); =
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The easiest way to treat the expectation in the denominator is to invoke Gaussian
hypercontractivity [17, Sec. 3.2]. Indeed,

1/4 1/2

(E [(,, 1)) < o (E|(¥,, U)]?)

because (¥, U) is a second-order polynomial in the entries of ¥,. Combine the
last two displays to obtain

1
4-C3

P{I(‘Iﬁ, U)> = 3(E (¥, U)|2)} > = ¢

We can bound the remaining expectation by means of an explicit calculation.
Assuming that U € E,

2
> 2.

m m

E[(W, U =3 lual” +2 Y lugl” +
i=1

ij=1

m

Ujj
1

i=

We have used the fact that U is a symmetric matrix with unit Frobenius norm. In
conclusion,

IP’{|(\111, U)|2 > l} >c¢o foreachU € E.

This inequality implies (2.40).

2.8.6 Step 3': The mean empirical width of the descent cone
We can apply Proposition 7.1 to demonstrate that the mean empirical width satisfies
W (E) < Civ/d form > Cad. (2.41)

The numbers C; and C, are positive, absolute constants.

2.8.6.1 The width bound

The bound holds trivially when X b= 0, so we may assume that the unknown matrix
is nonzero. Select a coordinate system where

f a0 dxd
X = 00 € Ry, wherea>0.
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Recall that the matrix H = m~'/2Y " &W, where ¥; = y,¢! and ¢, ~
NORMAL(0, I;). Partition H conformally with X":

H = |:h11 ht21] .
hy Hy

Define the random parameter T = ||Hy;||.

1/2
W,(E) = E sup (H, U) < (]E dist (H. - Bf(X”))) . (2.42)
UEE

Using standard calculus rules for subdifferentials [28, Chap. 23], we determine that

9 N 10t dxd .
) =10y | € RS ) 1

We write A« denotes the maximum eigenvalue of a symmetric matrix. Proposi-
tion 7.1 delivers the width bound,

E distg (H, of(X")) = E (h1 — 1) + 2 E [[ho|* + E ) i?ny1 |H» — 7 - Y|7.
(2.43)

By construction, the third term on the right-hand side of (2.43) is zero. By direct
calculation, the second term on the right-hand side of (2.43) satisfies

E [hy|® =d— 1. (2.44)

Finally, we turn to the first term on the right-hand side of (2.43). Relatively crude
bounds suffice here. By interlacing of singular values,

Z Si'ﬁi'ﬁ}
i=1

Standard net arguments, such as those in [36, Sec. 5.4.1], demonstrate that

T = |Hx| < [|H| =

1
Jm

P{|H|| = C; \/E} <e 1 provided that m > C»d.
Together, the last two displays imply that E t? < Cy4d. Therefore,
E (hi; —1)* < Csd. (2.45)

Introducing (2.43), (2.44), and (2.45) into (2.42), we arrive at the required
bound (2.41).
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Remark 8.4 (Other sampling distributions). The only challenging part of the calcu-
lation is the bound on ||H||. For more general sampling distributions, we can easily
obtain the required estimate from the matrix moment inequality [7, Thm. A.1].

2.8.7 Combining the bounds

Assume that m > C»d. Combine the estimates (2.39), (2.40), and (2.41) to reach
Amin(q); Q(f,Xn)) > Czﬂ— CG«/E_ %t

with probability at least 1 — e /2, Choosing t = c34/m, we find that the
minimum conic singular value is positive with probability at least 1 —e™4". In this
event, Proposition 2.6 implies that X ¥ is the unique solution to the phase retrieval
problem (2.37). This observation completes the proof of Theorem 8.2.
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Chapter 3
Low Complexity Regularization of Linear
Inverse Problems

Samuel Vaiter, Gabriel Peyré, and Jalal Fadili

Abstract Inverse problems and regularization theory is a central theme in imaging
sciences, statistics, and machine learning. The goal is to reconstruct an unknown
vector from partial indirect, and possibly noisy, measurements of it. A now standard
method for recovering the unknown vector is to solve a convex optimization
problem that enforces some prior knowledge about its structure. This chapter
delivers a review of recent advances in the field where the regularization prior
promotes solutions conforming to some notion of simplicity/low complexity. These
priors encompass as popular examples sparsity and group sparsity (to capture the
compressibility of natural signals and images), total variation and analysis sparsity
(to promote piecewise regularity), and low rank (as natural extension of sparsity
to matrix-valued data). Our aim is to provide a unified treatment of all these
regularizations under a single umbrella, namely the theory of partial smoothness.
This framework is very general and accommodates all low complexity regularizers
just mentioned, as well as many others. Partial smoothness turns out to be the
canonical way to encode low-dimensional models that can be linear spaces or more
general smooth manifolds. This review is intended to serve as a one stop shop toward
the understanding of the theoretical properties of the so-regularized solutions. It
covers a large spectrum including (i) recovery guarantees and stability to noise,
both in terms of ¢2-stability and model (manifold) identification; (ii) sensitivity
analysis to perturbations of the parameters involved (in particular the observations),
with applications to unbiased risk estimation; (iii) convergence properties of the
forward-backward proximal splitting scheme that is particularly well suited to solve
the corresponding large-scale regularized optimization problem.
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3.1 Inverse Problems and Regularization

In this chapter, we deal with finite-dimensional linear inverse problems.

3.1.1 Forward Model

Let xo € R" be the unknown vector of interest. Suppose that we observe a vector
y € R of P linear measurements according to

y= dxg+ w, 3.1

where w € RF is a vector of unknown errors contaminating the observations. The
forward model (3.1) offers a model for data acquisition that describes a wide range
of problems in data processing, including signal and image processing, statistics,
and machine learning. The linear operator @ : RY — R”, assumed to be known, is
typically an idealization of the acquisition hardware in imaging science applications,
or the design matrix in a parametric statistical regression problem. The noise w can
be either deterministic (in this case, one typically assumes to know some bound on
its £2 norm ||w||) or random (in which case its distribution is assumed to be known).
Except in Sections 3.4.4 and 3.5.3 where the noise is explicitly assumed random, w
is deterministic throughout the rest of the chapter. We refer to [189] and [22] for a
comprehensive account on noise models in imaging systems.

Solving an inverse problem amounts to recovering xy, to a good approximation,
knowing y and @ according to (3.1). Unfortunately, the number of measurements P
can be much smaller than the ambient dimension N of the signal. Even when P = N,
the mapping @ is in general ill conditioned or even singular. This entails that the
inverse problem is in general ill posed. In signal or image processing, one might
for instance think of @ as a convolution with the camera point-spread function,
or a subsampling accounting for low-resolution or damaged sensors. In medical
imaging, typical operators represent a (possibly subsampled) Radon transform (for
computerized tomography), a partial Fourier transform (for magnetic resonance
imaging), a propagation of the voltage/magnetic field from the dipoles to the sensors
(for electro- or magnetoencephalography). In seismic imaging, the action of @
amounts to a convolution with a wavelet-like impulse response that approximates
the solution of a wave propagation equation in media with discontinuities. For
regression problems in statistics and machine learning, @ is the design matrix whose
columns are P covariate vectors.
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3.1.2 Variational Regularization

As argued above, solving an inverse problem from observations (3.1) is in general
ill posed. In order to reach the land of well-posedness, it is necessary to restrict
the inversion process to a well-chosen subset of RY containing the plausible
solutions including xy, e.g., a linear space or a union of subspaces. A closely related
procedure, that we describe next, amounts to adopting a variational framework
where the sought-after solutions are those where a prior penalty/regularization
function is the smallest. Though this approach may have a maximum a posteriori
Bayesian interpretation, where a random prior is placed on xy, this is not the only
interpretation. In fact, we put no randomness whatsoever on the class of signals we
look for. We will not elaborate more on these differences in this chapter, but the
reader may refer to [119] for an insightful discussion.

The foundations of regularization theory can be traced back to the pioneering
work of the Russian school, and in particular of Tikhonov in 1943 when he
proposed the notion of conditional well-posedness. In 1963, Tikhonov [216, 217]
introduced what is now commonly referred to as Tikhonov (or also Tikhonov-
Phillips) regularization, see also the book [218]. This corresponds, for A > 0, to
solving an optimization problem of the form

1
x* € Argmin — ||®x — y||* + J(x). (Zy1)
XERN 22

3.1.2.1 Data fidelity

In (£ ), |Px — y||2 stands for the data fidelity term. If the noise happens to be
random, then using a likelihood argument, an appropriate fidelity term conforming
to the noise distribution can be used instead of the quadratic data fidelity. Clearly,
it is sufficient then to replace the latter by the negative log-likelihood of the
distribution underlying the noise. Think for instance of the Csiszar’s I-divergence
for Poisson noise. We would also like to stress that many of the results provided
in this chapter extend readily when the quadratic loss in the fidelity term, i.e.,
w e ly-— pL||2, is replaced by any smooth and strongly convex function, see in
particular Remark 13. To make our exposition concrete and digestible, we focus in
the sequel on the quadratic loss.

3.1.2.2 Regularization

The function J : RY — R is the regularization term which is intended to promote
some prior on the vector to recover. We will consider throughout this chapter that
J is a convex finite-valued function. Convexity plays an important role at many
locations, both on the recovery guarantees and the algorithmic part. See for instance
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Section 3.6 which gives a brief overview of recent algorithms that are able to tackle
this class of convex optimization problems. It is however important to realize that
non-convex regularizing penalties, as well as non-variational methods (e.g., greedy
algorithms), are routinely used for many problems such as sparse or low-rank recov-
ery. They may even outperform in practice their convex counterparts/relaxation. It
is however beyond the scope of this chapter to describe these algorithms and the
associated theoretical performance guarantees. We refer to Section 3.2.1 for a brief
account on non-convex model selection approaches.

The scalar A > 0 is the regularization parameter. It balances the trade-off between
fidelity and regularization. Intuitively, and anticipating on our theoretical results
hereafter, this parameter should be adapted to the noise level ||w|| and the known
properties of the vector xj to recover. Selecting optimally and automatically A for
a given problem is however difficult in general. This is at the heart of Section 3.5,
where unbiased risk estimation strategies are shown to offer a versatile solution.

Note that since @ is generally not injective and J is not coercive, the objective
function of (£, ) is neither coercive nor strictly convex. In turn, there might
be existence (of minimizers) issues, and even if minimizers exist, they are not unique
in general.

Under mild assumptions, problem (£ ,) is formally equivalent to the con-
strained formulations

min{J(x) ; |ly — ®x|| < &}, (2),)
min {||y — @x|| : J(x) <y}, (2},

in the sense that there exists a bijection between each pair of parameters among
(A,&,y) so that the corresponding problems share the same set of solutions.
However, this bijection is not explicit and depends on y, so that both from an
algorithmic point of view and a theoretical one, each problem may need to be
addressed separately. See the recent paper [60] and references therein for a detailed
discussion, and [154, Theorem 2.3] valid also in the non-convex case. We focus
in this chapter on the penalized/Tikhonov formulation (%, ;), though most of the
results stated can be extended to deal with the constrained ones ( 9)1,_5) and (@f y)
(the former is known as the residual method or Mozorov regularization and the latter
as Ivanov regularization in the inverse problems literature).

The value of A should typically be an increasing function of ||w||. In the special
case where there is no noise, i.e., w = 0, the fidelity to data should be perfect,
which corresponds to considering the limit of (%, ;) as A — 07T. Thus, assuming
that y € Im(@®), as is the case when w = 0, it can be proved that the solutions
of () converge to the solutions of the following constrained problem [196, 216]

x* € Argmin J(x) subjectto @x = y. (Py0)

x€RN
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3.1.3 Notations

For any subspace T of R, we denote Py the orthogonal projection onto T, x; =
Pr(x) and @y = @ Py. For a matrix A, we denote A* its transpose, and A7 its
Moore-Penrose pseudoinverse. For a convex set E, aff(E) denotes its affine hull
(i.e., the smallest affine space containing it) and lin(E) its linear hull (i.e., the linear
space parallel to aff(E)). Its relative interior ri(E) is the interior for the topology of
aff(E) and rbd(E) is its relative boundary. For a manifold .#, we denote .7 4 (x) the
tangent space of .# at x € .#. A good source on smooth manifold theory is [143].

A function J : R¥Y — R U {+o0} is said to be proper if it is not identically
+oo0. It is said to be finite valued if J(x) € R for all x € RV, We denote dom(J)
the set of points x where J(x) € R is finite. J is said to be closed if its epigraph
{(x,y) ; J(x) <y} is closed. For a set C C R", the indicator function ¢ is defined
astc(x) = 0ifx € C and (c(x) = +o00 otherwise.

We recall that the subdifferential at x of a proper and closed convex function
J:RY — R U {400} is the set

Ax)={neRY; Vs R, J(x+8) = J(x) + (n, §)}.

Geometrically, when J is finite at x, dJ(x) is the set of normals to the hyperplanes
supporting the graph of J and tangent to it at x. Thus, dJ(x) is a closed convex
set. It is moreover bounded, hence compact, if and only if x € int(dom(J)). The
size of the subdifferential at x € dom(J) reflects in some sense the degree of non-
smoothness of J at x. The larger the subdifferential at x, the larger the “kink” of the
graph of J at x. In particular, if J is differentiable at x, then dJ(x) is a singleton and
aJ(x) = {VJ(x)}.
As an illustrative example, the subdifferential of the absolute value is

VxeR, 9]-|(x) = % sign(x) if x#£0, (3.2)

[—1,1] otherwise.

The ¢! norm

N
VxeRY, |, =) |xl

i=1

is a popular low complexity prior (see Section 3.2.3.1 for more details). For-
mula (3.2) is extended by separability to obtain the subdifferential of the £! norm

Al ) ={neR": [l <1 and Viel sign(n) = sign(x;)j (3.3)

where I = supp(x) = {i ; x; # 0}. Note that at a point x € R" such that x; # 0 for
all 4, ||-||, is differentiable and 0 ||-||; (x) = {sign(x)}.
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3.2 Low Complexity Priors

A recent trend in signal and image processing, statistics, and machine learning is to
make use of large collections of the so-called models to account for the complicated
structures of the data to handle. Generally speaking, these are manifolds .# (most
of the time linear subspaces), and hopefully of low complexity (to be detailed later),
that capture the properties of the sought after signal, image, or higher dimensional
data. In order to tractably manipulate these collections, the key idea underlying this
approach is to encode these manifolds in the nonsmooth parts of the regularizer J.
As we detail here, the theory of partial smoothness turns out to be natural to provide
a mathematically grounded and unified description of these regularizing functions.

3.2.1 Model Selection

The general idea is thus to describe the data to recover using a large collection of
models Ml = {#}_yem, which are manifolds. The “complexity” of elements in
such a manifold .# is measured through a penalty pen(.#). A typical example
is simply the dimensionality of .#, and it should reflect the intuitive notion of
the number of parameters underlying the description of the vector xo € .# that
one aims at recovering from the noisy measurements of the form (3.1). As popular
examples of such low complexity, one thinks of sparsity, piecewise regularity, or low
rank. Penalizing in accordance to some notion of complexity is a key idea, whose
roots can be traced back to the statistical and information theory literature, see for
instance [2, 161].

Within this setting, the inverse problem associated to measurements (3.1) is
solved by restricting the inversion to an optimal manifold as selected by pen(.#).
Formally, this would correspond to solving (£, ;) with the combinatorial regular-
izer

J(x) = inf{pen(A); # €M and xe .4}. (3.4)

A typical example of such a model selection framework is that with sparse
signals, where the collection M corresponds to a union of subspaces, each of the
form

M ={xeR"; supp(x) C1}.
Here I € {1,...,N} indexes the supports of signals in .# and can be arbitrary. In

this case, one uses pen(.#) = dim(.#) = |I|, so that the associated combinatorial
penalty is the so-called £° pseudonorm

J(x) = |xllp = [supp)| = [{i € {1.....N}: xi # O} |. (3.5)
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Thus, solving (£, ) is intended to select a few active variables (corresponding to
nonzero coefficients) in the recovered vector.

These sparse models can be extended in many ways. For instance, piecewise
regular signals or images can be modeled using manifolds .# that are parameterized
by the locations of the singularities and some low-order polynomial between these
singularities. The dimension of .# thus grows with the number of singularities,
hence the complexity of the model.

Literature review. The model selection literature [11, 17, 18] proposes many
theoretical results to quantify the performance of these approaches. However, a
major bottleneck of this class of methods is that the corresponding J function
defined in (3.4) is non-convex, and even not necessarily closed, thus typically
leading to highly intractable combinatorial optimization problems. For instance, in
the case of £° penalty (3.5) and for an arbitrary operator @, (£, 1) is known to be
NP-hard, see, e.g., [167].

It then appears crucial to propose alternative strategies which allow us to deploy
fast computational algorithms. A first line of work consists in finding stationary
points of () using descent-like schemes. For instance, in the case of £0
pseudo-norm, this can be achieved using iterative hard thresholding [20, 210], or
iterative reweighting schemes which consist of solving a sequence of weighted
£'- or £2>-minimization problems where the weights used for the next iteration are
computed from the values of the current solution, see for instance [45, 72, 187] and
references therein. Another class of approaches is that of greedy algorithms. These
are algorithms which explore the set of possible manifolds .# by progressively,
actually in a greedy fashion, increasing the value of pen(.#). The most popular
schemes are matching pursuit [160] and its orthogonal variant [73, 179], see also
the comprehensive review [168] and references therein. The last line of research,
which is the backbone of this chapter, consists in considering convex regularizers
which are built in such a way that they promote the same set of low complexity
manifolds M. In some cases, the convex regularizer proves to be the convex hull
of the initial (restricted) non-convex combinatorial penalty (3.4). But these convex
penalties can also be designed without being necessarily convexified surrogates of
the original non-convex ones.

In the remainder of this section, we describe in detail a general framework that
allows model selection through the general class of convex partly smooth functions.

3.2.2 Encoding Models into Partly Smooth Functions

Before giving the precise definition of our class of convex priors, we define formally
the subspace 7.

Definition 1 (Model tangent subspace). For any vector x € R", we define the
model tangent subspace of x associated to J
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T, = lin(dJ(x))*.

In fact, the terminology “tangent” originates from the sharpness property of
Definition 2(ii) below, when x belongs to the manifold .Z .

When J is differentiable at x, i.e., 3J(x) = {VJ(x)}, one has T, = RM. On
the contrary, when J is not smooth at x, the dimension of 7Y is of a strictly smaller
dimension, and J essentially promotes elements living on or close to the affine space
x+ T,

We can illustrate this using the £! norm J = |||, defined in (3.2). Using
formula (3.3) for the subdifferential, one obtains that

T, = {u € R ; supp(u) C supp(x)}.

which is the set of vector having the same sparsity pattern as x.

Toward the goal of studying the recovery guarantees of problem (3.4), our central
assumption is that J is a partly smooth function relative to some manifold .# . Partial
smoothness of functions was originally defined [145]. Loosely speaking, a partly
smooth function behaves smoothly as we move on the manifold .#, and sharply if
we move normal to it. Our definition hereafter specializes that of [145] to the case
of finite-valued convex functions.

Definition 2. Let J be a finite-valued convex function. J is partly smooth at x
relative to a set ./ containing x if

(i) (Smoothness) .# is a C?-manifold around x and J restricted to .# is C?
around x.
(i1) (Sharpness) The tangent space 7 4 (x) is T.
(iii) (Continuity) The set-valued mapping dJ is continuous at x relative to .Z .

J is said to be partly smooth relative to a set # if .4 is a manifold and J is partly
smooth at each point x € . relative to .# . J is said to be locally partly smooth at x
relative to a set # if ./ is a manifold and there exists a neighborhood U of x such
that J is partly smooth at each point of .# N U relative to .Z .

Remark 1 (Uniqueness of ./ ). In the previous definition, .# needs only to be
defined locally around x, and it can be shown to be locally unique, see [131,
Corollary 4.2]. In the following we will thus often denote .#, any such a manifold
for which J is partly smooth at x.

Taking once again the example of / = |-||,, one sees that in this case, .#, = T\
because this function is polyhedral. Section 3.2.3.6 below defines functions J for
which ., differs in general from 7.
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3.2.3 Examples of Partly Smooth Regularizers

We describe below some popular examples of partly smooth regularizers that are
widely used in signal and image processing, statistics, and machine learning. We
first expose basic building blocks (sparsity, group sparsity, anti-sparsity) and then
show how the machinery of partial smoothness enables a powerful calculus to create
new priors (using pre- and post-composition, spectral lifting, and positive linear
combinations).

3.2.3.1 ¢! Sparsity

One of the most popular nonquadratic convex regularization is the £! norm

N
JE) = |xlly = Y il
i=1

which promotes sparsity. Indeed, it is easy to check that J is partly smooth at x
relative to the subspace

My =T, ={uecR"; supp(u) C supp(x)}.

Another equivalent way to interpret this £' prior is that it is the convex envelope
(restricted to the £2-ball) of the £° pseudonorm (3.5), in the sense that the £!-unit
ball is the convex hull of the restriction of the unit ball of the £° pseudonorm to the
£2-unit ball.

Literature review. The use of the £' norm as a sparsity-promoting regularizer
traces back several decades. An early application was deconvolution in seismology
[61, 195, 211]. Rigorous recovery results began to appear in the late 1980s [80, 81].
In the mid-1990s, ¢! regularization of least-square problems has been popularized
in the signal processing literature under the name Basis Pursuit [58] and in the
statistics literature under the name Lasso [212]. Since then, the applications and
understanding of £! minimization have continued to increase dramatically.

3.2.3.2 ¢! — £2 Group Sparsity

To better capture the sparsity pattern of natural signals and images, it is useful
to structure the sparsity into nonoverlapping groups % such that | J,cpb =
{1,...,N}. This group structure is enforced by using typically the mixed £! — >
norm
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J@) = lxll g = Y Il (3.6)
bR
where x, = (x;)iep € R/®!, Unlike the £! norm, and except the case |b| = 1 for all

b € A, the {' — 2 norm is not polyhedral, but is still partly smooth at x relative to
the linear manifold

My =Ty ={u; suppgz(u) C suppz(x)} where suppg(x) = U {b; xp # 0}.

Literature review. The idea of group/block sparsity has been first proposed
by [31, 125, 126] for wavelet block shrinkage, i.e., when @ = Id. For overdeter-
mined regression problems of the form (3.1), it has been introduced by [9, 242].
Group sparsity has also been extensively used in machine learning in, e.g., [7]
(regression and multiple kernel learning) and [174] (for multitask learning). The
wavelet coefficients of a natural image typical exhibit some group structure,
see [159] and references therein on natural image modeling. Indeed, edges and
textures induce strong dependencies between coefficients. In audio processing, it
has proved useful to structure sparsity in multi-channel data [122]. Group sparsity
is also at the heart of the so-called multiple measurements vector (MMYV) model,
see for instance [57, 69]. It is possible to replace the £> norm with more general
functionals, such as £” norms for p > 1, see for instance [169, 224, 236].

3.2.3.3 £°° Anti-sparsity

In some cases, the vector to be reconstructed is expected to be flat. Such a prior can
be captured using the £°° norm

J@) = log = _max |z,

It can be readily checked that this regularizer is partly smooth (in fact polyhedral)
relative to the subspace

My =T, ={u; uy = px;forsome p € R}, where I={i;x = |x|o}-

Literature review. The ¢ regularization has found applications in computer
vision, such as for database image retrieval [136]. For this application, it is indeed
useful to have a compact signature of a signal x, ideally with only two values
+ ||x||, (thus achieving optimal anti-sparsity since dim(7,) = 1 in such a case).
An approach proposed in [137] for realizing this binary quantification is to compute
these vectors as solutions of (#,;) for J = |||, and a random &. A study of
this regularization is done in [108], where an homotopy-like algorithm is provided.
The use of this £*° regularization is also connected to Kashin’s representation [156],
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which is known to be useful in stabilizing the quantization error for instance. Other
applications such as wireless network optimization [209] also rely on the £°° prior.

3.2.3.4 Synthesis Regularizers

Sparsity or more general low complexity regularizations are often used to model
coefficients o € R? describing the data x = D in a dictionary D € RV*C of Q
atoms in RY. Given a partly smooth function Jo : R — R, we define the following
synthesis-type prior J : R¥ — R as the pre-image of J, under the linear mapping D

J(x) = min Jo(o) s.t. Do =x
a€RC

Since Jy is bounded below and convex, J is convex. If D is surjective (as in
most cases with redundant dictionaries), then J is also finite valued. The initial
optimization (£, ;) can equivalently been solved directly over the coefficients
domain to obtain x* = Da* where

1
a* € Argmin — ||y — @Da||* 4 Jo(cx) (3.7)

a€R? A

which can be interpreted as a regularized inversion of the operator @D using the
prior Jy.

It is possible to study directly the properties of the solutions «* to (3.7),
which involves directly partial smoothness of Jy. A slightly different question is
to understand the behavior of the solutions x* = Da* of (&, ;), which requires to
study partial smoothness of J itself. In the case where D is invertible, both problems
are completely equivalent.

Literature review. Sparse synthesis regularization using Jo = ||-||; is popular
in signal and image processing to model natural signals and images, see for
instance [159, 205] for a comprehensive account. The key problem to achieve good
performance in these applications is to design a dictionary to capture sparse repre-
sentations of the data to process. Multiscale dictionaries built from wavelet pyramids
are popular to sparsely represent transient signals with isolated singularities and
natural images [158]. The curvelet transform is known to provide nonadaptive near-
optimal sparse representation of piecewise smooth images away from smooth edges
(the so-called cartoon images) [34]. Gabor dictionaries (made of localized and
translated Fourier atoms) are popular to capture locally stationary oscillating signals
for audio processing [3]. To cope with richer and diverse contents, researchers
have advocated to concatenate several dictionaries to solve difficult problems in
signal and image processing, such as component separation or inpainting, see
for instance [98]. A line of current active research is to learn and optimize the
dictionary from exemplars or even from the available data themselves. We refer
to [97, Chapter 12] for a recent overview of the relevant literature.
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3.2.3.5 Analysis Regularizers

Analysis-type regularizers (following the terminology introduced in [99]) are of the
form

J(x) = Jo(D*x) ,

where D € R¥*? is a linear operator. Such a prior controls the low complexity (as
measured by Jy) of the correlations between the columns of D and the signal x. If
Jo is partly smooth at z = D*x for the manifold ///ZO, then it is shown in [145,
Theorem 4.2] that J is partly smooth at x relative to the manifold

My = {u eRY: D*ue ///ZO}
provided that the following transversality condition holds [143, Theorem 6.30(a)]
Ker(D) N T 40(2)" = {0} <= Im(D*) + T 40(z) =R" .

Literature review. A popular example is when Jy = |:||; and D* is a finite-
difference discretization of the derivative of a 1-D signal or a 2-D image. This
defines the anisotropic total variation semi-norm, which promotes piecewise con-
stant signals or images [194]. The 2-D isotropic total variation semi-norm can be
interpreted as taking Jo = ||-||; , with blocks of size two. A comprehensive review
of total variation regularization can be found in [53]. TV regularization has been
extended in several ways to model piecewise polynomial functions, see in particular
the Total Generalized Variation prior [28].

One can also use a wavelet dictionary D which is shift invariant, such that the
corresponding regularization J can be seen as a kind of multiscale total variation.
This is typically the case of the Haar wavelet dictionary [206]. When using higher
order wavelets, the corresponding priors favor models .# composed of discrete
piecewise polynomials.

The Fused Lasso [215] corresponds to Jy being the ¢! norm and D is the
concatenation of the identity and the adjoint of a finite-difference operator. The
corresponding models .# are composed of disjoint blocks over which the signals
are constant.

Defining a block extracting operator D*x = (x;)pc % allows to rewrite the group
£'—¢? norm (3.6), even with overlapping blocks (i.e., (b, b') € %* with bNb' # 0),
as J = Jy o D* where Jy = ||-||,, without overlap, see [32, 138, 182, 244]. To
cope with correlated covariates in linear regression, analysis-type sparsity-enforcing
priors were proposed in [118, 191] using Jy = |||, the nuclear norm (as defined in
Section 3.2.3.6).

For unitary D, the solutions of (%, ;) with synthesis and analysis regularizations
are obviously the same. In the general case (e.g., D overcomplete), however, these
two regularizations are different. Some authors have reported results comparing
these two priors for the case where Jj is the £' norm [99, 197]. A first discussion on
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the relation and distinction between analysis and synthesis £'-sparse regularizations
can be found in [99]. But only very recently, some theoretical recovery results and
algorithmic developments on £'- analysis regularization (so-called cosparse model)
have begaun to be developed, see, e.g., [166, 229].

3.2.3.6 Spectral Functions

The natural extension of low complexity priors to matrix-valued data x € RNo*No
(where N = N}) is to impose the low complexity on the singular values of the
matrix. We denote x = U, diag(A,)V; an SVD decomposition of x, where A, €
Rﬁ’_‘). If j : RM — R is a permutation-invariant closed convex function, then one can
consider the function

J(x) = j(A)

which can be shown to be a convex function as well [146]. When restricted to the
linear space of symmetric matrices, j is partly smooth at A, for a manifold m,_, if
and only if J is partly smooth at x relative to the manifold

My = {Udiag(A)U* ; Aemy,UE€ Oy},

where Oy, C RNo*M is the orthogonal group. The proof of this assertion can be
found in [70, Theorem 3.19], which builds upon the work of [71] on manifold
smoothness transfer under spectral lifting. This result can be extended to non-
symmetric matrices by requiring that j is an absolutely permutation-invariant closed
convex function, see [70, Theorem 5.3].

Literature review. The most popular spectral prior is obtained for j = ||||,. This
defines the nuclear norm, or 1-Schatten norm, as

J@) = lxlle = 1Al - (3.8)

It can be shown that the nuclear norm is the convex hull of the rank function with
respect to the spectral norm ball, see [102, 132]. It then corresponds to promoting a
low-rank prior. Moreover, the nuclear norm can be shown to be partly smooth at x
relative to the set [147, Example 2]

My, = {u ; rank(u) = rank(x)}

which is a manifold around x.

The nuclear norm has been used in signal and image processing, statistics,
and machine learning for various applications, including low-rank matrix com-
pletion [38, 188, 203], principal component pursuit [47], model reduction [103],
and phase retrieval [49]. It is also used for some imaging applications, see for
instance [151].
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3.2.3.7 Mixed Regularizations

Starting from a collection of convex functions {Jy}rew, Z = {1,...,L}, it is
possible to design a convex function as

Jew = Y pede(®).

e

where p; > 0 are weights. If each J; is partly smooth at x relative to a manifold ///)f,
then it is shown in [145, Corollary 4.8] that J is also partly smooth at x for

%xz ﬂ %xﬁ s
e

with the proviso that the manifolds .#’ intersect transversally [143, Theo-
rem 6.30(b)], i.e. the sum of their respective tangent spaces 7 Lt (x) spans the
whole ambient space RY.

Literature review. A popular example is to impose both sparsity and low rank of
a matrix, when using J, = ||-||, and J, = |||, see for instance [114, 176].

3.2.3.8 Separable Regularization

Let {J¢beew, £ = {1,...,L}, be afamily of convex functions. If J; is partly smooth
at x, relative to a manifold ///x‘“; , then the separable function

J(xchee) = ) Jolxe)

e

is partly smooth at (xi, ..., x.) relative to ///xll X - X ///xLL [145, Proposition 4.5].

Literature review. One fundamental problem that has attracted a lot of interest in
the recent years in data processing involves decomposing an observed object into
a linear combination of components/constituents x¢, £ € £ = {1,...,L}. One
instance of such a problem is image decomposition into texture and piecewise-
smooth (cartoon) parts. The corresponding forward model can be cast in the

X
form (3.1), where xy = ( 1), x1 and x, are the texture and cartoon components,
X

and @ = [Id 1d]. The decomposition is then achieved by solving the variational
problem (2, ,), where J; is designed to promote the discontinuities in the image
and J; to favor textures; see [6, 181, 204] and references therein. Another example
of decomposition is principal component pursuit, proposed in [47], to decompose a
matrix which is the superposition of a low-rank component and a sparse component.
In this case J; = ||-||; and J, = ||| -
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3.3 42 Stability

In this section, we assume that J is a finite-valued convex function, but it is not
assumed to be partly smooth.

The observations y are in general contaminated by noise, as described by the
forward model (3.1). It is thus important to study the ability of (£, ) to recover
Xo to a good approximation in presence of such a noise w and to assess how the
reconstruction error decays as a function of the noise level. In this section, we
present a generic result ensuring a so-called linear convergence rate in terms of
£-error between a recovered vector and x, (see Theorem 1), which encompasses a
large body of literature from the inverse problems community.

3.3.1 Dual Certificates

It is intuitively expected that if (2, ) is good at recovering an approximation of
X in presence of noise, then (o) should be able to identify x, uniquely when the
noise vanishes, i.e., y = @xp. For this to happen, the solution to (%, o) has to satisfy
some nondegeneracy condition. To formalize this, we first introduce the notion of
dual certificate.

Definition 3 (Dual certificates). For any vector x € RV, the set of dual certificates
at x is defined as

P(x) = Im(®*) N dJ(x) .

The terminology “dual certificate” was introduced in [38]. One can show that the
image by @* of the set of solutions of the Fenchel-Rockafellar dual to (£, ) is
precisely Z(x).

It is also worth noting that xy being a solution of (£ ) for y = ®xy is equivalent
to P(x9p) # 0. Indeed, this is simply a convenient rewriting of the first-order
optimality condition for (2 ).

To ensure stability of the set of minimizers (%, ;) to noise perturbing the
observations @x, one needs to introduce the additional requirement that the dual
certificates should be strictly inside the subdifferential of J at xo. This is precisely
the nondegeneracy condition mentioned previously.

Definition 4 (Nondegenerate dual certificates). For any vector x € R", we define
the set of nondegenerate dual certificates of x

2(x) = Im(@*) N1i(dJ (%)) .
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3.3.2 Stability in £* Norm

The following theorem, proved in [101], establishes a linear convergence rate valid
for any regularizer J, without any particular assumption beside being a proper closed
convex function. In particular, it does not assume partial smoothness of J. This
generic result encompasses many previous works, as discussed in Section 3.3.3.

Theorem 1. Assume that
Ker(®) N Ty, = {0} and P (xo) # @ (3.9)

and consider the choice A = c |w||, for some ¢ > 0. Then we have for all minimizers
x* of (Zy2)

Ix* = xoll < Cliwll (3.10)

where C > 0 is a constant (see Remark 4 for details).

In plain words, this bound tells us that the distance of xy to the set of minimizers
of (£, ) is within a factor of the noise level, which justifies the terminology “linear
convergence rate.”

Remark 2 (The role of nonsmoothness). The injectivity of @ when restricted to T,
is intimately related to the fact that J is nonsmooth at xy. The higher the degree of
nonsmoothness, the lower the dimension of the subspace T,, and hence the more
likely the restricted injectivity. If J is smooth around x, (e.g., quadratic regularizers),
however, the restricted injectivity condition cannot be fulfilled, unless @ is itself
injective. The reason is that Ty, is the whole R" at the smoothness points. For
smooth regularizations, it can be shown that the convergence rate is slower than
linear, we refer to [196] for more details.

Remark 3 (Uniqueness). One can show that condition (3.9) implies that x, is the
unique solution of (£, ) for y = ®xo. This condition however does not imply in
general that (#, ;) has a unique minimizer for A > 0.

Remark 4 (Stability constant). Result (3.10) ensures that the mapping y — x* (that
might be set valued) is C-Lipschitz-continuous at y = @x,. Condition P(xo) # 0
is equivalent to the existence of some 7 € Z(x0). The value of C (in fact an upper
bound) can be found in [101]. It depends on @, T, c and the chosen nondegenerate
dual certificate 7. In particular, the constant degrades critically as 1 gets closer to the
relative boundary of 2 (x0), which reflects the intuition of how far is n from being a
nondegenerate certificate.

Remark 5 (Source condition). The condition Z(xy) # @ is often called “source
condition” or “range condition” in the literature of inverse problems. We refer to
the monograph [196] for a general overview of this condition and its implications.
It is an abstract condition, which is not easy to check in practice, since exhibiting a
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valid nondegenerate certificate is not trivial. We give in Section 3.4.1 further insights
about this in the context of compressed sensing. Section 3.4.1 describes a particular
construction of a good candidate (the so-called linearized pre-certificate) for being
such an n € Z(xo), and it is shown to govern stability of the manifold .#,, for partly
smooth regularizers.

Remark 6 (Infinite dimension). It is important to remind that, in its full general
form, Theorem 1 only holds in finite dimension. The constant C indeed may
depend on the ambient dimension N, in which case the constant can blow up as
the discretization grid of the underlying continuous problem is made finer (i.e., as
N grows). We detail below some relevant literature where similar results are shown
in infinite dimension.

3.3.3 Related Works
3.3.3.1 Convergence Rates

For quadratic regularizations of the form J = ||D*-|| for some linear operator D*,
the ¢2-error decay can be proved to be O(+/||w||), which is not linear, see [196,
Chapter 3] for more details and extensions to infinite-dimensional Hilbert spaces.
For nonsmooth priors, in [30], the authors show the Bregman distance between
x* and xo exhibits a linear convergence rate for both the Lagrangian (£, ;) and
the constrained (?]}1,.8) problems under the source condition Z(xy) # 0. These
results hold more generally over infinite-dimensional Banach spaces. They have
been subsequently generalized to ill-posed nonlinear inverse problems by [190]
and [133]. It is important to observe that in order to prove convergence rates in terms
of {?-error, as done in (3.10), it is necessary to strengthen the source condition to its
nondegenerate version, i.e., Z(x) # 0.

In [153], the authors consider the case where J is a £ norm with 1 <
p < 2 and establish convergence rates of | ®xy— @x*|| in O(||w||) and of
|x* —xo| in O(y/|lwl||). [117] prove Theorem 1 for J = |-||;. They show that
the nondegeneracy condition is also necessary for linear convergence and draw
some connections with the restricted isometry property (RIP), see below. Under
a condition that bears similarities with (3.9), linear convergence with respect to
J, ie., J(x* — x9) = O(||w|]), is proved in [116] for positively homogeneous
regularizers. This result is equivalent to Theorem 1 but only when J is coercive,
which precludes many important regularizers, such as for instance analysis-type
regularizers including total variation.
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3.3.3.2 RIP-based Compressed Sensing

The recovery performance of compressed sensing (i.e., when @ is drawn from
suitable random ensembles) for / = ||-||; has been widely analyzed under the so-
called restricted isometry property (RIP) introduced in [41, 43, 44]. For any integer
k = 0, the kth order restricted isometry constant of a matrix @ is defined as the
smallest §; = 0 such that

(1 =80 IIxll* < x> < (1 + &) 1],

for all vectors x such that ||x||, < k. It is shown [43] that if 8y + 63 < 1, then
for every vector xo with |xo]|, < k, there exists a nondegenerate certificate [40,
Lemma 2.2], see also the discussion in [117]. In turn, this implies linear convergence
rate and is applied in [44] to show ¢2-stability to noise of compressed sensing. This
was generalized in [46] to analysis sparsity J = | D*:||;, where D is assumed to
be a tight frame, structured sparsity in [46], and matrix completion in [37, 188]
using J = ||-||,. The goal is then to design RIP matrices @ with constants such that
82k + 03¢ (or a related quantity) is small enough. This is possible if @ is drawn from
an appropriate random ensemble for some (hopefully optimal) scaling of (N, P, k).
For instance, if @ is drawn from the standard Gaussian ensemble (i.e., with i.i.d.
zero-mean standard Gaussian entries), there exists a constant C such that the RIP
constants of @ /+/P obey 8y + 83 < 1 with overwhelming probability provided
that

P = Cklog(N/k) . @3.11)

see for instance [41]. This result remains true when the entries of @ are drawn
independently from a subgaussian distribution. When @ is a structured random
matrix, e.g., random partial Fourier matrix, the RIP constants of @/ /P can also
satisfy the desired bound, but at the expense of polylog terms in the scaling (3.11),
see [105] for a comprehensive treatment. Note that in general, computing the RIP
constants for a given matrix is an NP-hard problem [10, 219].

3.3.3.3 RIP-less Compressed Sensing

RIP-based guarantees are uniform, in the sense that the recovery holds with high
probability for all sparse signals. There is a recent wave of work in RIP-less analysis
of the recovery guarantees for compressed sensing. The claims are nonuniform,
meaning that they hold for a fixed signal with high probability on the random matrix
@. This line of approaches improves on RIP-based bounds providing typically
sharper constants. When @ is drawn from the Gaussian ensemble, it is proved
in [193] for J = ||+, that if the number of measurements P obeys P = Cklog(N/k)
for some constant C > 0, where k = |xo||,, then condition (3.9) holds with
high probability on @. This result is based on Gordon’s comparison principle for
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Gaussian processes and depends on a summary parameter for convex cones called
the Gaussian width. Equivalent lower bounds on the number of measurements for
matrix completion from random measurements by minimizing the nuclear norm
were provided in [42] to ensure that (3.9) holds with high probability. This was used
to prove £2-stable matrix completion in [35].

The authors in [54] have recently showed that the Gaussian width-based approach
leads to sharp lower bounds on P required to solve regularized inverse problems
from Gaussian random measurements. For instance, they showed for J = ||-||, that

P > 2klog(N/k) (3.12)

guarantees exact recovery from noiseless measurements by solving (£, ). An
overhead in the number of measurements is necessary to get linear convergence of
the {?-error in presence of noise by solving (2},) with & = ||w]|, i.e., xo is feasible.
Their results handle for instance the case of group sparsity (3.6) and the nuclear
norm (3.8). In the polyhedral case, it can be shown that (3.12) implies the existence
of a non-degenerate dual certificate, i.e., (3.9), with overwhelming probability. The
Gaussian width is closely related to another geometric quantity called the statistical
dimension in conic integral geometry. The statistical dimension canonically extends
the linear dimension to convex cones, and has been proposed in [4] to deliver reliable
predictions about the quantitative aspects of the phase transition for exact noiseless
recovery from Gaussian measurements.

To deal with non-Gaussian matrix measurements (such as for instance partial
Fourier matrices), [123] introduced the “golfing scheme” for noiseless low-rank
matrix recovery guarantees using J = |-||,.. The golfing scheme is an iterative pro-
cedure to construct an (approximate) nondegenerate certificate. This construction is
also studied in [36] for noiseless and noisy sparse recovery withJ = ||-||;. In another
chapter of this volume [220], the author develops a technique, called the “bowling
scheme,” which is able to deliver bounds on the number of measurements that are
similar to the Gaussian width-based bounds for standard Gaussian measurements,
but the argument applies to a much wider class of measurement ensembles.

3.4 Model Stability

In the remainder of this chapter, we assume that J is finite-valued convex and locally
partly smooth around xy, as defined in Section 3.2.2. This means in particular that the
prior J promotes locally solution which belongs to the manifold .#Z = .#,,. In the
previous section, we were only concerned with £2-stability guarantees and partial
smoothness was not necessary then. Owing to the additional structure conveyed
by partial smoothness, we will be able to provide guarantees on the identification
of the correct .# = ., by solving (£, ,), i.e., whether the (unique) solution
x* of (£,,) satisfies x* € .#. Such guarantees are of paramount importance for
many applications. For instance, consider the case where ¢! regularization is used
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to localize some (sparse) sources. Then x* € .# means that one perfectly identifies
the correct source locations. Another example is that of the nuclear norm for low-
rank matrix recovery. The correct model identification implies that x* has the correct
rank, and consequently that the eigenspaces of x* have the correct dimensions and
are close to those of xg.

3.4.1 Linearized Pre-certificate

We saw in Section 3.3.2 that £>-stability of the solutions to (2, ;) is governed by the
existence of a nondegenerate dual certificate p € 17 (x0). It turns out that not all dual
certificates are equally good for stable model identification, and toward the latter,
one actually needs to focus on a particular dual certificate, which we call “minimal
norm” certificate.

Definition 5 (Minimal norm certificate). Assume that xo is a solution of (2, ).
We define the “minimal-norm certificate” as

no = ®@* argmin ||p| . (3.13)
D*pedl(xy)

A remarkable property, stated in Proposition 1 below, is that, as long as one is
concerned with checking whether 7 is nondegenerate, i.e., 1o € ri(dJ(xg)), one can
instead use the vector 1y defined below, which can be computed in closed form.

Definition 6 (Linearized pre-certificate). Assume that
Ker(®) N Ty, = {0}. (3.14)
We define the “linearized pre-certificate” as

np=®* argmin |p|. (3.15)
@ *peaff(dJ(xp))

Remark 7 (Well-posedness of the definitions). Note that the hypothesis that x is a
solution of () is equivalent to saying that Z(xo) is a nonempty convex compact
set. Hence in (3.13), the optimal p is the orthogonal projection of 0 on a nonempty
closed convex set, and thus 7 is uniquely defined. Similarly, the hypothesis (3.14)
implies that the constraint set involved in (3.15) is a nonempty affine space, and thus
nr is also uniquely defined.

Remark 8 (Certificate vs. pre-certificate). Note that the only difference between

(3.13) and (3.15) is that the convex constraint set dJ(xp) is replaced by a simpler
affine constraint. This means that 1 does not always qualify as a valid certificate,
i.e.,, nr € dJ(xp), hence the terminology “pre-certificate” is used. This condition is
actually at the heart of the model identification result exposed in Theorem 2.
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From now on, let us remark that 5 is actually simple to compute, since it
amounts to solving a linear system in the least-squares sense.

Proposition 1. Under condition (3.14), one has
N = qﬁ*qbg(;*exo where ey, = Pr, (3J(x0)) € R". (3.16)

Remark 9 (Computating e,). The vector e, appearing in (3.16) can be computed in
closed form for most of the regularizers discussed in Section 3.2.2. For instance, for
J = |ll, ex = sign(x). For J = ||-||; g, it reads e, = (ep)pez, Where e, = x3,/ || x|
if x, # 0, and ¢, = 0 otherwise. For J/ = |||, and a SVD decomposition x =
U, diag(A,)V}, one has e, = U, V.

The following proposition, whose proof can be found in [232], exhibits a precise
relationship between 1y and ng. In particular, it implies that nr can be used in place
of 1y to check whether 7 is nondegenerate, i.e., o € ri(dJ(xp)).

Proposition 2. Under condition (3.14), one has

nr €ri(dJ(x0)) = nF = N0,
no € ri(dJ(x0)) == nF = No.

3.4.2 Model Identification

The following theorem provides a sharp sufficient condition to establish model
selection. It is proved in [232]. It encompasses as special cases many previous works
in the signal processing, statistics, and machine learning literatures, as we discuss
in Section 3.4.5.1.

Theorem 2. Let J be locally partly smooth at xy relative to M = My, Assume
that

Ker(®) NT,, = {0} and np € ri(dJ(xp)). 3.17)
Then there exists C such that if
max(A, |[w]| /A) < C, (3.18)
the solution x* of (2 ) from measurements (3.1) is unique and satisfies
x*e# and |xo—x*|| = O(max(A, ||w]])). (3.19)

Remark 10 (Linear convergence rate vs. model identification). Obviously, assump-
tions (3.17) of Theorem 2 imply those of Theorem 1. They are of course stronger,
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but imply a stronger result, since uniqueness of x* and model identification (i.e.,
x* € ) are not guaranteed by Theorem 1 (which does not even need J to be
partly smooth). A chief advantage of Theorem 2 is that its hypotheses can be
easily checked and analyzed for a particular operator @. Indeed, computing ng only
requires solving a linear system, as clearly seen from formula (3.16).

Remark 11 (Minimal signal-to-noise ratio). Another important distinction between
Theorems 1 and 2 is the second assumption (3.18). In plain words, it requires that the
noise level is small enough and that the regularization parameter is wisely chosen.
Such an assumption is not needed in Theorem 2 to ensure linear convergence of the
£2-error. In fact, this condition is quite natural. To see this, consider for instance
the case of sparse recovery where J = ||-||;. If the minimal signal-to-noise ratio is
low, the noise will clearly dominate the amplitude of the smallest entries, so that
one cannot hope to recover the exact support, but it is still possible to achieve a low
{2-error by forcing those small entries to zero.

Remark 12 (Identification of the manifold). For all the regularizations considered
in Section 3.2.3, the conclusion of Theorem 2 is even stronger as it guarantees that
My = A . The reason is that for any x and nearby points x’ with x’ € .#,, one has
My = M.

Remark 13 (General loss/data fidelity). It is possible to extend Theorem 2
to account for general loss/data fidelity terms beyond the quadratic one, i.e.,
% ly — ®x]||>. More precisely, this result holds true for loss functions of the form
F(®x,y), where F : RP x RF — R is a C? strictly convex function in its first
argument, VF is C! in the second argument, with VF(y,y) = 0, where VF is
the gradient with respect to the first variable. In this case, expression (3.16) of ng
becomes simply

=T,
=I'(PrI'Pr)te, wh o
Mp = D®rITPr)Tey where ) 1 oo p( @, o) |
and where 9°F is the Hessian with respect to the first variable (which is a positive
definite operator). We refer to [232] for more details.

3.4.3 Sharpness of the Model Identification Criterion

The following proposition, proved in [232], shows that Theorem 2 is in some sense
sharp, since the hypothesis nr € ri(dJ(xp)) (almost) characterizes the stability
of /.

Proposition 3. We suppose that x, is the unique solution of (Zy) fory = ®x
and that
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Ker(®) NT,, = {0}, and nr ¢ dJ(xo). (3.20)

Then there exists C > 0 such that if (3.18) holds, then any solution x* of (£, ) for
A > 0obeys x* ¢ M.

In the particular case where w = 0 (no noise), this result shows that the manifold
A is not correctly identified when solving (£, ;) for y = ®x¢ and for any A > 0
small enough.

Remark 14 (Critical case). The only case not covered by neither Theorem 2 nor
Proposition 3 is when 1y € rbd(dJ(x¢)), where rbd stands for the boundary relative
to the affine hull. In this case, one cannot conclude, since depending on the noise
w, one can have either stability or non-stability of .#. We refer to [229] where an
example illustrates this situation for the 1-D total variation J = ||D]’§IF- \» Where
Dy is a finite-difference discretization of the 1-D derivative operator.

3.4.4 Probabilistic Model Consistency

Theorem 2 assumes a deterministic noise w, and the operator @ is fixed. For
applications in statistics and machine learning, it makes sense to rather assume
a random model for both @ and w. The natural question is then to assert that
the estimator defined by solving (£, ;) is consistent in the sense that it correctly
estimates xo and possibly the model .#,, as the number of observations P — +o00.
This requires to handle operators @ with an increasing number of rows, and thus
to also assess sensitivity of the optimization problem (Z, ;) to perturbations of @
(and not only to (w, A) as done previously).

To be more concrete, in this section, we work under the classical setting where
N an xy are fixed as the number of observations P — +oo. The data (¢;, w;) are
assumed to be random vectors in RY x R, where @; is the ith row of @ for i =
1,...,P. These vectors are supposed independent and identically distributed (i.i.d.)
samples from a joint probability distribution such that E (w;|¢;) = 0, finite fourth-

order moments, i.e., E (W?) < 4ooand E (||<p,-||4) < +o00. Note that in general, w;

and ¢; are not necessarily independent. It is possible to consider other distribution
models by weakening some of the assumptions and strengthening others, see, e.g.,
[7, 142, 243]. Let us denote I' = E(¢/¢;) € RV*N, where ¢; is any row of . We
do not make any assumption on the invertibility of I".

In this setting, a natural extension of 7y defined by (3.16) in the deterministic
case is

ir =TTy ey
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where I'r, = Pr, I' Pr, , and we use the fact that I, is symmetric and Im(FT;) C
T,,. It is also implicitly assumed that Ker(I") N Ty, = {0} which is the equivalent
adaptation of the restricted injectivity condition in (3.17) to this setting.

To make the discussion clearer, the parameters (A = Ap, @ = ®p,w = wp)
are now indexed by P. The estimator x; obtained by solving (£, ,,) for yp =
®Dpxg + wp is said to be consistent for xg if

lim Pr(x} is uni =1
plim Pr (x} is unique)

and x}, — xo in probability. The estimator is said to be model consistent if

lim Pr(x; e #) =1,
Jlim_Pr(5; < .4)
where .# = .#,, is the manifold associated to x.

The following result, whose proof can be found in [232], guarantees model
consistency for an appropriate scaling of up. It generalizes several previous works
in the statistical and machine learning literature as we review in Section 3.4.5.1.

Theorem 3. If
Ker(I')NT,, = {0} and fjp € ri(dJ(xo)), (3.21)
and
Ap=o0(P) and Ay' =o(P7?), (3.22)

then the estimator x}, of xo is model consistent.

3.4.5 Related Works
3.4.5.1 Model Consistency

Theorem 2 is a generalization of a large body of results in the literature. For the
Lasso, i.e. J = |||, to the best of our knowledge, this result was initially stated
in [107]. In this setting, result (3.19) corresponds to the correct identification of the
support, i.e., supp(x*) = supp(xo). Condition (3.21) for J = ||-||, is known in the
statistics literature under the name “irrepresentable condition” (generally stated in
a nongeometrical form), see, e.g., [243]. [142] have shown estimation consistency
for Lasso for fixed N and x( and asymptotic normality of the estimates. The authors
in [243] prove Theorem 3 for J = ||-||,, though under slightly different assumptions
on the covariance and noise distribution. A similar result is established in [140]
for the elastic net, i.e., J = |||, + p|-||5 for p > 0. In [7] and [8], the author
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proves Theorem 3 for two special cases, namely the group Lasso and nuclear norm
minimization. Note that these previous works assume that the asymptotic covariance
I' is invertible. We do not impose such an assumption and only require the weaker
restricted injectivity condition Ker({") N T = {0}. In a previous work [229], we
have proved an instance of Theorem 2 when J(x) = ||D*x||,, where D € R¥*? is an
arbitrary linear operator. This covers as special cases the discrete anisotropic total
variation or the fused Lasso. This result was further generalized in [228] when J
belongs to the class of partly smooth functions relative to linear manifolds .#, i.e.,
M = T,. Typical instances encompassed in this class are the £! — £> norm, or its
analysis version, as well as polyhedral gauges including the £°° norms. Note that the
nuclear norm (and composition of it with linear operators as proposed for instance
in [118, 191]), whose manifold is not linear, does not fit into the framework of [228],
while it is covered by Theorem 2. Lastly, a similar result is proved in [89] for a
continuous (infinite-dimensional) sparse recovery problem over the space of Radon
measures normed by the total variation of a measure J (not to be confused with
the total variation of functions). In this continuous setting, an interesting finding is
that, when 1y € 1i(dJ(xp)), 1o is not equal to np but to a different certificate (called
“vanishing derivative” certificate in [89]) that can also be computed by solving a
linear system.

3.4.5.2 Stronger Criteria for £!

Many sufficient conditions have been proposed in the literature to ensure that ng
is a nondegenerate certificate, and hence to guarantee stable identification of the
support (i.e., model). We illustrate this here for J/ = |-||,, but similar reasoning can
be carried out for [|-]|; g or -] ,.

The strongest criterion makes use of mutual coherence, first considered in [78]

pu(®) = max |(¢;, ¢;)]
i#j

where each column ¢; of @ is assumed normalized to a unit > norm. Mutual
coherence measures the degree of ill conditioning of @ through the correlation of

its columns (¢;)1<i<y- Mutual coherence is always lower bounded by }%,
equality holds if and only if (¢;)1<;<n 1S an equiangular tight frame, see [208]. Finer
variants based on cumulative coherences have been proposed in [24, 120]. To take
into account the influence of the support I = supp(xp) of the vector x, to recover,

Tropp introduced in [221] the Exact Recovery Condition (ERC), defined as

and

ERC(/) = H rp

ML AT B

where |||, o 1S the matrix operator norm induced by the £*° vector norm, ®; =
(¢i)ier, and I€ is the complement of the set I. @; is assumed injective which, in view
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of Section 3.2.3.1, is nothing but a specialization to £! of the restricted injectivity
condition in (3.17). A weak ERC criterion, which does not involve matrix inversion,
is derived in [83]

max Y e, (@i, ¢))]

ek
1— r;léalx Zi;éjel (@i, @)

wERC(I) =

Given the structure of the subdifferential of the £! norm, it is easy to check that
nF e i) = IC(x) = H @D sign(xo.) H <1
o0

The right-hand side in the equivalence is precisely what is called the irrepresentable
condition in statistics and machine learning. Clearly, IC(xy) involves both the sign
vector and the support of xy. The following proposition gives ordered upper bounds
of IC(xo) in terms of the cruder criteria ERC, wERC, and mutual coherence. A more
elaborate discussion of them can be found in [159].

Proposition 4. Assume that @; is injective and denote k = |I| = ||xo||,. Then,

ki (P)

IC(xp) < ERC(/) < wERC(J) < W

3.4.5.3 Linearized Pre-certificate for Compressed Sensing Recovery

Stable support identification has been established in [84, 239] for the Lasso problem
when @ is drawn from the Gaussian ensemble. These works show that for k =
lIxo0llo» if

P > 2klog(N)

then indeed nr € ri(dJ(xp)), and this scaling can be shown to be sharp. This
scaling should be compared with (3.12) ensuring that there exists a nondegenerate
certificate. The gap in the log term indicates that there exists vectors that can be
stably recovered by £' minimization in {>-error sense, but whose support cannot
be stably identified. Equivalently, for these vectors, there exists a nondegenerate
certificate but it is not ng.

The pre-certificate np is also used to ensure exact recovery of a low-rank matrix
from incomplete noiseless measurements by minimizing the nuclear norm [38, 42].
This idea is further generalized by [39] for a family of decomposable norms
(including in particular £!-¢?> norm and the nuclear norm), which turns to be a
subset of partly smooth regularizers. In these works, lower bounds on the number
of random measurements needed for nr to be a nondegenerate certificate are
developed. In fact, these measurement lower bounds combined with Theorem 2
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allow us to conclude that matrix completion by solving (£, ;) with J = |||,
identifies the correct rank at high signal-to-noise levels.

3.4.5.4 Sensitivity Analysis

Sensitivity analysis is a central theme in variational analysis. Comprehensive
monographs on the subject are [23, 165]. The function to be analyzed underlying
problems (£, ») and (&) is

S lly = @x|? +J(x) i A >0

fx0) = Lo, (%) + J(x) if A=0"

(3.23)

where 4, = {y ; ®x =y} and where the parameters are = (A,y, @) for A = 0.
Theorems 2 and 3 can be understood as a sensitivity analysis of the minimizers of f
at a point (x = xg, 6 = 6y = (0, Dxp, D)).

Classical sensitivity analysis of nonsmooth optimization problems seeks condi-
tions to ensure smoothness of the mapping 8 — xg where xp is a minimizer of
f (-, 0), see for instance [23, 192]. This is usually guaranteed by the nondegenerate
source condition and restricted injectivity condition (3.9), which, as already exposed
in Section 3.3.2, ensure linear convergence rate, and hence Lipschitz behavior of this
mapping. The analysis proposed by Theorem 2 goes one step further, by assessing
that .#,, is a stable manifold (in the sense of [240]), since the minimizer x, is unique
and remains in ./, for € close to 6. Our starting point for establishing Theorem 2
is the inspiring work of Lewis [145] who first introduced the notion of partial
smoothness and showed that this broad class of functions enjoys a powerful calculus
and sensitivity theory. For convex functions (which is the setting considered in our
work), partial smoothness is closely related to % — #'-decompositions developed
in [144]. In fact, the behavior of a partly smooth function and of its minimizers (or
critical points) depend essentially on its restriction to the manifold, hence offering
a powerful framework for sensitivity analysis theory. In particular, critical points
of partly smooth functions move stably on the manifold as the function undergoes
small perturbations [148]. An important and distinctive feature of Theorem 2 is that
partial smoothness of J at xj relative to .# transfers to f(-,0) for A > 0, but not
when A = 0 in general. In particular, [145, Theorem 5.7] does not apply to prove
our claim.

3.5 Sensitivity Analysis and Parameter Selection

In this section, we study local variations of the solutions of (%, ;) considered as
functions of the observations y. In a variational-analytic language, this corresponds
to analyzing the sensitivity of the optimal values of (%7, ;) to small perturbations
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of y seen as a parameter. This analysis will have important implications, and we
exemplify one of them by constructing unbiased estimators of the quadratic risk,
which in turn will allow us to have an objectively guided way to select the optimal
value of the regularization parameter A.

As argued in Section 3.4.5.4, assessing the recovery performance by solv-
ing (£, ) for w and A small amounts to a sensitivity analysis of the minimizers of f
in (3.23) at (x = x¢, 60 = 6y = (0, Dxp, @)). This section involves again sensitivity
analysis of (3.23) to perturbations of y but for A > 0. Though we focus our attention
on sensitivity to y, our arguments extend to any parameters, for instance A or @.

Similarly to the previous section, we suppose here that J is a finite-valued convex
and partly smooth function. For technical reasons, we furthermore assume that the
partial smoothness manifold is linear, i.e., .#, = T,. We additionally suppose that
the set of all possible models .7 = {T\},cgv is finite. All these assumptions hold
true for the regularizers considered in Section 3.2.3, with the notable exception of
the nuclear norm, whose manifolds of partial smoothness are nonlinear.

3.5.1 Differentiability of Minimizers

Let us denote x* (y) a minimizer of (£, ;) for a fixed value of A > 0. Our main goal
is to study differentiability of x* (y) and find a closed-form formula of the derivative
of x*(y) with respect to the observations y. Since x*(y) is not necessarily a unique
minimizer, such a result means actually that we have to single out one solution
x*(y), which hopefully should be a locally smooth function of y. However, as J is
non-smooth, one cannot hope for such a result to hold for any observation y € RF.
For applications to risk estimation (see Section 3.5.3), it is important to characterize
precisely the smallest set .7 outside of which x*(y) is indeed locally smooth. It
turns out that one can actually write down an analytical expression of such a set .77,
containing points where one cannot find locally a smooth parameterization of the
minimizers. This motivates our definition of what we coin a “transition space.”

Definition 7 (Transition space). We define the transition space 7 as

A = | bd4),
TeT

where bd(C) is the boundary of a set C, and
Hr={yeR"; IeT, 27'®f(Px—y) € 1bd(0J (x))}

where 7 = {x e RV ; T, = T}.

The set 7 contains the observations y € R” such that the model subspace Tz
associated to a well-chosen solution X(y) of (£ ,) is not stable with respect to
small perturbations of y. In particular, when J = ||-||;, it can be checked that .77
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is a finite union of hyperplanes and when J = ||-||, , it is a semi-algebraic set (see
Definition 8). This stability is not only crucial to prove smoothness of X(y), it is also
important to be able to write down an explicit formula for the derivative, as detailed
in the following theorem whose proof is given in [226].

Theorem 4. Lety ¢ ¢ and x* a solution of (2, ) such that
Ker @7 N Ker D*J;(x*) = {0} (F)

where T = Ty. Then, there exists an open neighborhood v C RY of y, and a
mapping x : V' — T such that

1. foreveryy € ¥, X(y) is a solution of () 3), and X(y) = x* ;
2. the mapping % is C' (¥') and

Vie ¥, Di() = (Pfdr + ADr(x*) " dr.

Here D?J; is the Hessian (second order derivative) of J restricted to 7. This Hessian
is surely well defined owing to partial smoothness, see Definition 2(i).

3.5.2 Semi-algebraic Geometry

Our goal now is to show that the set 5 is in some sense “small” (in particular
to show that it has zero Lebesgue measure), which will entail differentiability of
y — x* Lebesgue almost everywhere. For this, additional geometrical structure on
J is needed. Such a rich class of functions is provided by the notion of a semi-
algebraic subset of R to be defined shortly. Semi-algebraic sets and functions have
been broadly applied to various areas of optimization. The wide applicability of
semi-algebraic functions follows largely from their stability under many mathe-
matical operations. In particular, the celebrated Tarski-Seidenberg theorem states,
loosely, that the projection of a semi-algebraic set is semi-algebraic. These stability
properties are crucial to obtain the following result, proved in [226].

Definition 8 (Semi-algebraic set and function). A set E is semi-algebraic if it
is a finite union of sets defined by polynomial equations and (possibly strict)
inequalities. A function f : E — F is semi-algebraic if E and its graph
{(u,f(u)) ; u € E} are semi-algebraic sets.

Remark 15 (From semi-algebraic to o-minimal geometry). The class of semi-
algebraic functions is large, and subsumes, for instance, all the regularizers J
described in Section 3.2.3. The qualitative properties of semi-algebraic functions are
shared by a much bigger class called functions definable in an o-minimal structure
over R, or simply definable functions. O-minimal structures over R correspond in
some sense to an axiomatization of some of the prominent geometrical properties of
semi-algebraic geometry [68] and particularly of the stability under projection. For
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example, the function J(x) = ), |x;|*, for an arbitrary s > 0, is semi-algebraic
only for rational s € Q, while it is always definable in an o-minimal structure
[235]. Due to the variety of regularizations J that can be formulated within the
framework of o-minimal structures, all our results stated in this section apply to
definable functions, see [226] for a detailed treatment.

Semi-algebraic functions are stable for instance under (sub)differentiation and
projection. These stability properties are crucial to obtain the following result,
proved in [226].

Proposition 5. IfJ is semi-algebraic, the transition space ¢ is semi-algebraic and
has zero Lebesgue measure.

3.5.3 Unbiased Risk Estimation

A problem of fundamental practical importance is to automatically adjust the
parameter A to reach the best recovery performance when solving (&, 5 ). Parameter
selection is a central theme in statistics, and is intimately related to the question of
model selection, as introduced in Section 3.2.1.

We then adopt a statistical framework in which the observation model (3.1)
becomes

Y=&x +W (3.24)

where W is random noise having an everywhere strictly positive probability density
function, assumed to be known. Though the forthcoming results can be stated for
a large family of distributions, for the sake of concreteness, we only consider the
white Gaussian model where W ~ .47 (0, 02Idpxp), with known variance o2.

Under the observation model (3.24), the ideal choice of A should be the
one which minimizes the quadratic estimation risk Ey (]x*(Y) — xo||*). This is
obviously not realistic as xy is not available, and in practice, only one realization
of Y is observed. To overcome these obstacles, the traditional approach is to replace
the quadratic risk with some estimator that solely depends on Y. The risk estimator
is also expected to enjoy nice statistical properties among which unbiasedness is
highly desirable.

However, it can be shown, see, e.g., [100, Section IV], that the quadratic risk
Ew ([x*(Y) — xo/|*) cannot be reliably estimated on Ker(®). Nonetheless, we may
still obtain a reliable assessment of the part that lies in Im(®*) = Ker(®)* or any
linear image of it. For instance, the most straightforward surrogate of the above risk
is the so-called prediction risk Ey (]| u(Y) — ;L0||2), where

o = Pxp and u(y) = dx*(y),
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where x*(y) is any solution of (£, ;). One can easily show that u(y) € R is
well defined as a single-valued mapping and thus does not depend on the particular
choice of x*(y), see [226]. Consequently, Theorem 4 shows that y > u(y) is a C!
mapping on RY \ 7.

3.5.4 Degrees of Freedom

The degrees of freedom (DOF) quantifies the model “complexity” of a statistical
modeling procedure [95]. It is at the heart of several risk estimation procedures.
Therefore, in order to design estimators of the prediction risk, an important step is
to get an estimator of the corresponding DOF.

Definition 9 (Empirical DOF). Suppose that y — u(y) is differentiable Lebesgue
almost everywhere, as is the case when it is Lipschitz-continuous (Rademacher’s
theorem). The empirical number of degrees of freedom is defined as

df(y) = div() ) = r(Dp()),

where the derivative is to be understood in the weak sense, i.e., to hold Lebesgue
almost everywhere (a.e.).

An instructive example to get the gist of this formula is the case where p is the
orthogonal projection onto some linear subspace V. We then get easily that df(y) =
dim(V), which is in agreement with the intuitive notion of the number of DOF.

The following result delivers the closed-form expression of df(y), valid on a
full Lebesgue measure set, for u(y) = @x*(y) and x*(y) an appropriate solution
of (). At this stage, it is important to realize that the main difficulty does
not lie in showing almost everywhere differentiability of w(y); this mapping is
in fact Lipschitz-continuous by classical arguments of sensitivity analysis applied
to (Z1). Rather, it is the existence of such a formula and its validity Lebesgue a.
e. that requires more subtle arguments obtained owing to partial smoothness of J.
For this, we need also to rule out the points y where (%~ ) does not hold. This is the
rationale behind the following set.

Definition 10 (Non-injectivity set). We define the Non-injectivity set G as
¢ ={y ¢ A : (F) does not hold for any minimizer x* of(2,,)} .
Theorem 5. For everyy ¢ 5 U ¥, there is x* such that (2, ;) holds and

df(y) = (A (3))  where A (y) = B o (D" Pr + ADr(x*)) ™ 0 &7,
(3.25)

where T = Ty».
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Remark 16 (Non-injectivity set). It turns out that ¢ is in fact empty for many
regularizers. This is typically the case for J = |-||; [85], J = ||D*:||; [227], and
the underlying reasoning can be more generally extended to polyhedral regularizers.
The same result was also shown for J = ||-||; , in [230]. More precisely, in all these
works, it was shown that for each y ¢ S, there exists a solution x* of (£, ;) that
fulfills (-%»). The proof is moreover constructive allowing to build such a solution
starting from any other one.

3.5.5 Stein Unbiased Risk Estimator (SURE)

We now have all necessary ingredients at hand to design an estimator of the
prediction risk.

Definition 11. Suppose that y + wu(y) is differentiable Lebesgue almost every-
where, as is the case when it is Lipschitz-continuous. The SURE is defined as

SURE(®y) = ||y — u(y)||* 4 202 df(y) — Po>. (3.26)

In this definition, we have anticipated on unbiasedness of this estimator. In fact,
this turns out to be a fundamental property owing to the celebrated lemma of
Stein [207], which indeed asserts that the SURE (3.26) is an unbiased estimator
of the prediction risk. Therefore, putting together Theorem 5, Proposition 5, and
Stein’s lemma, we get the following.

Theorem 6. Suppose that J is semi-algebraic and 9 is of zero Lebesgue measure.
Then,

Ew(SURE(Y)) = Ew(||1(¥) — pol?)

where (3.25) is plugged into (3.26), and u(Y) = ox*(Y).

Remark 17 (Parameter selection). A practical usefulness of the SURE is its ability
to provide an objectively guided way to select a good A from a single observation y
by minimizing SURE(y). While unbiasedness of the SURE is guaranteed, it is hard
to control its variance and hence its consistency. This is an open problem in general,
and thus little can be said about the actual theoretical efficiency of such an empirical
parameter selection method. It works however remarkably well in practice, see the
discussion in Section 3.5.6.5 and references therein.

Remark 18 (Projection risk). The SURE can be extended to unbiasedly estimate
other risks than the predicted one. For instance, as argued in Section 3.5.3, one can
estimate the so-called projection risk defined as Ew (|| Pger(a)L (x* (¥) —xo) |?). This
is obviously than the prediction risk as a surrogate for the estimation risk.
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3.5.6 Related Works
3.5.6.1 Sensitivity Analysis

In Section 3.4.5.4, we reviewed the relevant literature pertaining to sensitivity anal-
ysis for partly smooth functions, which is obviously very connected to Theorem 4.
See also [21] for the case of linear optimization over a convex semi-algebraic partly
smooth feasible set, where the authors prove a sensitivity result with a zero-measure
transition space. A distinctive feature of our analysis toward proving unbiasedness
of the SURE is the need to ensure that sensitivity analysis can be carried out on a
full Lebesgue measure set. In particular, it necessitates local stability of the manifold
M~ associated to an appropriate solution x*, and this has to hold Lebesgue almost
everywhere. Thus the combination of partial smoothness and semi-algebraicity is
the key.

3.5.6.2 Risk Estimators

In this section, we put emphasis on the SURE as an unbiased estimator of the
prediction risk. There are other alternatives in the literature which similarly rely
on estimator of the DOF. One can think for instance of the generalized cross-
validation (GCV) [115]. Thus our results apply equally well to such risk estimators.
Extensions of the SURE to independent variables from a continuous exponential
family are considered in [134]. [100] generalizes the SURE principle to continuous
multivariate exponential families, see also [180, 227] for the multivariate Gaussian
case. The results described here can be extended to these setting as well, see [226].

3.5.6.3 Applications of SURE in Statistics and Imaging

Applications of SURE emerged for choosing the parameters of linear estimators
such ridge regression or smoothing splines [149]. After its introduction in the
wavelet community through the SURE-Shrink estimator [79], it has been exten-
sively used for various image restoration problems, e.g., with sparse regularization
[19, 33, 55, 155, 180, 184—-186, 237] or with nonlocal means [75, 90, 233, 234].

3.5.6.4 Closed-form Expressions for SURE
For the Lasso problem, i.e., J = ||-||,, the divergence formula (3.25) reads
df(y) = [supp(x”)|.

where x* is a solution of (£, ;) such that (#+) holds, i.e., @Pgpp(+) has full rank.
This result is proved in [245] for injective @ and in [85] for arbitrary @. This result
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is extended to analysis £!-sparsity, i.e., J = ||D*-||;, in [214, 227]. A formula for
the DOF in the case where x*(y) is the orthogonal projection onto a partly smooth
convex set C is proved in [141]. This work extends that of [163] which treats the
case where C is a convex polyhedral cone. These two works allow one to compute
the degrees of freedom of estimators defined by solving (@3),) in the case where
@ is injective. [127] studied the DOF of the metric projection onto a closed set
(nonnecessarily convex), and gave a precise representation of the bias when the
projection is not sufficiently differentiable.

A formula of an estimate of the DOF for the group Lasso, i.e.,J = ||-||; , when @
is orthogonal within each group was conjectured in [242]. An estimate is also given
by [200] using heuristic derivations that are valid only when @ is injective, though
its unbiasedness is not proved. [225] derived an estimator of the DOF of the group
Lasso and proved its unbiasedness when @ is injective. Closed-form expression of
the DOF estimate for denoising with the nuclear norm, i.e., @ = Id and J = ||-||,,,
was concurrently provided in [48, 77].

3.5.6.5 Numerical Methods for SURE

Deriving the closed-form expression of the DOF is in general challenging and has to
be addressed on a case-by-case basis. The implementation of the divergence formula
such as (3.25) can be computationally expensive in high dimension. But since only
the trace of the Jacobian is needed, it is possible to speed up these computations
through Monte Carlo sampling, but at the price of mild approximations. If the
Jacobian is not known in closed-form or prohibitive to compute, one may appeal to
finite-difference approximations along Monte Carlo sampled directions [199, 241],
see [111, 184] for applications to imaging problems.

In practice, the analytical formula (3.25) might be subject to serious numerical
instabilities, and thus cannot always be applied safely when the solution x* is only
known approximately. Think for instance of the case where x* is approximated by
an iterate computed after finitely many iterations of an algorithm as detailed in
Section 3.6. A better practice is then to directly compute the DOF, hence the SURE,
recursively from the iterates themselves, as proposed by [76, 112, 237].

3.6 Proximal Splitting for Structured Optimization

Though problems (2, ,), (Zy0), (9\{8), and (@iy) are nonsmooth, they enjoy
enough structure to be solved by efficient algorithms. The type of algorithm to be
used depends in particular on the properties of J. We first briefly mention some
popular nonsmooth optimization schemes in Section 3.6.1 and focus our attention
on proximal splitting schemes afterward.
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3.6.1 Convex Optimization for Regularized Inverse Problems
3.6.1.1 (Sub)gradient Descent

Consider for example problem (7, ;). This is a convex composite optimization
problem where one of the functions is smooth with a Lipschitz-continuous gradient.
If J were smooth enough, then a simple gradient (or possibly (quasi-)Newton)
descent method could be used. However, as detailed in Section 3.2.2, low com-
plexity regularizers J are intended to be nonsmooth in order to promote models .#
of low intrinsic dimension, and J is precisely nonsmooth transverse to .# . One can
think of replacing gradients by subgradients (elements of the subdifferential), since
J is assumed finite-valued (hence closed) convex, which are bounded. This results in
a subgradient descent algorithm which is guaranteed to converge but under stringent
assumptions on the descent step sizes, which in turn makes their global convergence
rate quite slow, see [171].

3.6.1.2 Interior Point Methods

Clearly, the key to getting efficient algorithms is to exploit the structure of the
optimization problems at hand while handling nonsmoothness properly. For a large
class of regularizers J, such as those introduced in Section 3.2.3, the corresponding
optimization problems can be cast as conic programs. The cone constraint can be
enforced using a self-concordant barrier function, and the optimization problem can
hence be solved using interior point methods, as pioneered by [173], see also the
monograph [25]. This class of methods enjoys fast convergence rate. Each iteration
however is typically quite costly and can become prohibitive as the dimension
increases.

3.6.1.3 Conditional Gradient

This algorithm is historically one of the first methods for smooth constrained convex
optimization (a typical example being (fz )) and was extensively studied in the
70s. It is also known as Frank-Wolfe algorlthm since it was introduced by [106] for
quadratic programming and extended in [88]. The conditional gradient algorithm
is premised on being able to easily solve (at each iteration) linear optimization
problems over the feasible region of interest. This is in contrast to other first-order
methods, such as forward-backward splitting and its variants (see Section 3.6.3),
which are premised on being able to easily solve (at each iteration) a projection
problem. Moreover, in many applications the solutions to the linear optimization
subproblem are highly structured and exhibit particular sparsity and/or low-rank
properties. These properties have renewed interest in the conditional gradient
method to solve sparse recovery ({1 and total variation), low-rank matrix recovery
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(nuclear norm minimization), anti-sparsity recovery, and various other problems in
signal processing and machine learning; see, e.g., [62, 87, 128, 135, 198].

3.6.14 Homotopy/Path-following

Homotopy and path-following-type methods have been introduced in the case of
£!-minimization to solve (2, ,) by [175]. They were then adapted to analysis £!,
ie,J = ||D*|, in [213], and £°° regularization, |||, in [108]. One can in fact
show that these methods can be applied to any polyhedral regularization (see [231])
because these methods only rely on the crucial fact that the solution path A — x7,
where x7 is a solution of (1), is piecewise affine. The LARS algorithm [96] is an
accelerated version of homotopy which computes an approximate homotopy path
for J = |||, along which the support increases monotonically along the course
of iterations. In the noiseless compressed sensing case, with @ drawn from the
Gaussian ensemble, it is shown in [82] that if x( is k-sparse with P > 2klog(N),
the homotopy method reaches xj in only k iterations. This k-solution property was
empirically observed for other random matrix ensembles, but at different thresholds
for P. In [157], the authors proved that in the worst case, the number of segments in
the solution path is exponential in the number of variables, and thus the homotopy
method can then take as many iterations to converge.

As for interior points, the cost per iteration of homotopy-like methods, without
particular ad hoc optimization, scales badly with the dimension, thus preventing
them to be used for large-scale problems such as those encountered in imaging.
This class of solvers is thus a wise choice for problems of medium size, and
when high accuracy (or even exact computation up to machine precision for the
homotopy algorithm) is needed. Extensions of these homotopy methods can deal
with progressive changes in the operator @ or the observations y, and are thus
efficient for these settings, see [5].

3.6.1.5 Approximate Message Passing

In the last five years, ideas from graphical models and message passing and
approximate message passing algorithms have been proposed to solve large-scale
problems of the form (£, ,) for various regularizers J, in particular £', ¢! — ¢2,
and the nuclear norm. A comprehensive review is given in [164]. However, rigorous
convergence results have been proved so far only in the case in which @ is standard
Gaussian, though numerical results show that the same behavior should apply for
broader random matrix ensembles.
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3.6.2 Proximal Splitting Algorithms

Proximal splitting methods are first-order iterative algorithms that are tailored to
solve structured nonsmooth (essentially convex) optimization problems. The first
operator splitting method has been developed from the 70s. Since then, the class
of splitting methods has been regularly enriched with increasingly sophisticated
algorithms, as the structure of problems to handle becomes more complex.

To make our discussion more concrete, consider the general problem of minimiz-
ing the proper closed convex function

K

f=h+ng0Ak

k=1

where # : RY — R is convex and smooth, the Ay : RY — RM are linear operators,
and g; : R — R are proper closed convex functions for which the so-called
proximity operator (to be defined shortly) can be computed easily (typically in
closed form). We call such a function g; “simple.”

Definition 12. The proximity operator of a proper closed convex function g is
defined as, for y > 0,

1
prox,,(x) = argmin > lx — ul* + yg(u).

u€RN

The proximal operator generalizes the notion of orthogonal projection onto a
nonempty closed convex set C that one recovers by taking g = ¢¢.

Proximal splitting algorithms may evaluate (possibly approximately) the indi-
vidual operators (e.g., gradient of /), the proximity operators of the g;s, the linear
operators Ay, all separately at various points in the course of iteration, but never
those of sums of functions nor composition by a linear operator. Therefore, each
iteration is cheap to compute for large-scale problems. They also enjoy rigorous
convergence guarantees, stability to errors, with possibly quantified convergence
rates and iteration complexity bounds on various quantities. This justifies their
popularity in contemporary signal and image processing or machine learning,
despite that their convergence is either sublinear or at best linear.

It is beyond the scope of this chapter to describe thoroughly the huge literature
on proximal splitting schemes, as it is a large and extremely active research field in
optimization theory. Good resources and reviews on the subject are [13, 16, 64, 177].
We instead give a brief classification of the most popular algorithms according to
the class of structured objective functions they are able to handle:

e Forward-Backward (FB) algorithm [66, 162, 178]. It is designed to mini-
mize (3.6.2) when & has a Lipschitz-continuous gradient, K = 1, A; = Id,
and g; is simple. There are accelerated (optimal) variants of FB, such as the
popular Nesterov [172] and Fista [15], but the convergence of the iterates is no
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longer guaranteed for these schemes. FB and its variants are good candidates to
solve (. ;). We will further elaborate on FB in Section 3.6.3.

* Douglas-Rachford (DR) algorithm [86, 152]. It is designed to minimize (3.6.2)
forh = 0, K = 2, Ay = Id, and g; is simple for k = 1,2. It can be easily
extended to the case of K > 2 by either lifting to a product space, see, e.g., [63],
or through projective splitting [94]. DR can be used to solve (<, ), (f@y'f),
or (322 ,) for certain operators @.

. Genemlzzed Forward-Backward (GFB) algorithm [183]. It can handle the case
of an arbitrary K with Ay = Id, g simple and & has a Lipschitz-continuous
gradient. It can be interpreted as hybridization of FB scheme and the DR scheme
on a product space.

e Alternate Direction Method of Multipliers (ADMM) algorithm [104, 109, 110,
113]. It is adapted to minimize (3.6.2) for h = 0, K = 2 withA; = Id and A, is
injective. It can be shown [93, 110] that ADMM is equivalent to DR applied to
the Fenchel-Rockafellar dual problem min, g} o —A3 (1) + g5 (1), where g} is
the Legendre-Fenchel conjugate of g;. While DR applies when g; and g, o A,
are simple, ADMM is a better alternative whereas both g; o —AJ and g3 are
simple. Extension to the case K > 2 was proposed for instance in [92].

« Dykstra algorithm [91]. It is able to solve the case where h(x) = |lx — y|°,
Ay = Id, and the g; are simple functions. It was initially introduced by [91]
in the case where the g; are indicator functions of closed convex sets, and is
generalized in [12] to arbitrary convex functions. It is also extended in [14, 51]
to the case where / is a Bregman divergence.

* Primal-Dual schemes. Recently, primal-dual splitting algorithms have been
proposed to minimize (3.6.2) in its full generality, and even more complex
objectives, see for instance [29, 52, 56, 65, 67, 201, 222, 238]. Primal-dual
schemes can be used to solve (2, 1), (Z0), (92;8), or (@iy).

3.6.3 Finite Model Identification with Forward Backward

The FB algorithm is a good candidate to solve (%, ;) when J is simple. Starting
from some x® € R", the FB iteration applied to (P, 1) reads

XD = Prox, ;; (x(”) +1,9*(y — cbx(”))) ,

where the step-size sequence should satisfy 0 < © < 7, < T < 2/ ||@|]* to ensure
convergence of the sequence x to a minimizer of (Zy2).

In fact, owing to partial smoothness of J, much more can be said about the iterates
of the FB algorithm. More precisely, after a finite number of iterations, Forward-
Backward algorithm correctly identifies the manifold .#. This is made formal in
the following theorem whose proof can be found in [150].
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Theorem 7. Under the assumptions of Theorem 2, xX™ € .# for n large enough.

This result sheds some light on the convergence behavior of this algorithm in
the favorable case where condition (3.14) holds and (||w|| /A, A) are sufficiently
small. In fact, it is shown in [150] that FB identifies in finite time the manifold of
any nondegenerate minimizer x*. As a corollary, if condition (3.14) holds at x, and
(Jlw]l /A, A) are sufficiently small, then we recover Theorem 7. These results shed
light on the typical convergence behavior of FB observed in such circumstances
(e.g., in compressed sensing problems).

Remark 19 (Local linear convergence). The FB generally exhibits a global sublin-
ear O(1/n) convergence rate in terms of the objective function. However, under
partial smoothness of J, it is shown in [150] that once the active manifold is
identified, the FB algorithm enters a local linear convergence regime (Q-linear in
general and R-linear if ./ is a linear manifold), whose rate can be characterized
precisely in terms of the condition number of @7, .

3.6.4 Related Works

Finite support identification and local R-linear convergence of FB to solve (2, 1)
is established in [26] under either a very restrictive injectivity assumption or a
nondegeneracy assumption that is a specialization of ours to the £; norm. A
similar result is proved in [124]. The £; norm is a partly smooth function and
is therefore covered by Theorem 7. [170] proved Q-linear convergence of FB
to solve (£, ,) with a data fidelity satisfying restricted smoothness and strong
convexity assumptions, and J a so-called convex decomposable regularizer. Again,
the latter falls within the class of partly smooth functions, and their result is then
subsumed by our analysis.

For general programs, a variety of algorithms, such as proximal and projected-
gradient schemes, were observed to have the finite identification property of the
active manifold. In [130, 131], the authors have shown finite identification of
manifolds associated to partly smooth functions via the (sub)gradient projection
method, Newton-like methods, and the proximal point algorithm. Their work
extends that of e.g., [240] on identifiable surfaces from the smooth constrained
convex case to a general nonsmooth setting. Using these results, [129] considered
the algorithm [223] to solve (3.6.2) when £ is C?,K=1,A; =1d, and g, is simple
and partly smooth, but not necessarily convex, and proved finite identification of
the active manifold. However, the convergence rates remain an open problem in all
these works.
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3.7 Summary and Perspectives

In this chapter, we have reviewed work covering a large body of literature on the
regularization of linear inverse problems. We also showed how these previous works
can all be seen as particular instances of a unified framework, namely sensitivity
analysis for minimization of convex partly smooth functions. We believe this general
framework is the one that should be adopted as long as one is interested in studying
fine properties and guarantees of these regularizers, and in particular when the
stability of the low complexity manifold associated to the data to recover is at stake.

This analysis is however only the tip of the iceberg, and there is actually a flurry
of open problems to go beyond the theoretical results presented in this chapter. We
list here a few ones that we believe are important avenues for future works:

* Non-convexity and/or nonfiniteness: in this chapter, for the sake of simplicity,
we focused on smooth convex fidelity terms and finite-valued convex regu-
larizers. All the results stated in this chapter extend readily to proper lower
semicontinuous convex regularizers, since any such a function is subdifferen-
tially regular. Generalizations of some of the results to non-convex regularizers
is possible as well, though some regularity assumptions are needed. This is of
practical importance to deal with settings where @ is not a linear operator, or to
impose more aggressive regularization (for instance when using £” functional
with 0 < p < 1 instead of the £' norm). There are however many difficulties to
tackle in this case. For instance, regularity properties that hold automatically for
the convex case have to be either imposed or proved. Another major bottleneck
is that some of the results presented here, if extended verbatim, will only assess
the recovery of a stationary/critical point. The latter is not a local minimum in
general, and even less global.

* Dictionary learning: a related non-convex sensitivity analysis problem is to
understand the recovery of the dictionary D in synthesis regularization (as
defined in Section 3.2.3.4) when solving problems of the form

1 2
min — |y — @Day||” + AJo(x
o in Ek 3 lly ll o(o)

where the (y;); are a set of input exemplars and & stands for the set of
constraints imposed on the dictionary to avoid trivial solutions. Such a non-
convex variational problem is popular to compute adapted dictionaries, in
particular when Jo = |-||;, see [97] and references therein. Although the
dictionary learning problem has been extensively studied when Jo = |||,
most of the methods lack theoretical guarantees. The theory of dictionary
learning is only beginning to develop, see, e.g., [1, 121, 139, 202]. Tackling
other regularizers, including analysis £! of the form J = J; o D* is even more
difficult, see, e.g., [59] for some computational schemes.

e Infinite-dimensional problems: we dealt in this chapter with finite-dimensional
vector spaces. It is not straightforward to extend these results to infinite-
dimensional cases. As far as £,-stability is concerned, the constants involved in
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the upper bounds depend on the dimension N, and the scaling might diverge as
N — 4-00. We refer to Section 3.3.3 for previous works on convergence rates
of Tikhonov regularization in infinite-dimensional Hilbert or Banach spaces.
Extending Theorem 2 for possibly nonreflexive Banach spaces is however
still out of reach (nonreflexivity is a typical degeneracy when considering low
complexity regularization). There exists however some extensions of classical
stability results over spaces of measures, such as weak convergence [27], exact
recovery [50, 74], and stable support recovery [89].

Compressed sensing: as highlighted in Sections 3.3.3.3 and 3.4.5.3, the general
machinery of partly smooth regularizers (and the associated dual certificates)
is well adapted to derive optimal recovery bounds for compressed sensing.
Unfortunately, this analysis has been for now only applied to norms (|||,
[I-Ili > Ill4, and ||||o). Extending this framework for synthesis and analysis
regularizers (see Sections 3.2.3.4 and 3.2.3.5) is a difficult open problem.
Convergence and acceleration of the optimization schemes: Section 3.6.3
showed how partial smoothness can be used to achieve exact manifold iden-
tification after a finite number of iterations using the FB algorithm. This in
turn implies a local linear convergence of the iterates and raises the hope
of acceleration using either first-order or second-order information for the
function along the identified manifold (in which we recall it is C?). Studying
such accelerations and their guarantees as well as extending this idea to other
proximal splitting schemes is thus of practical importance to tackle more
complicated problems such as, e.g., (Zy.0), (2} ), or (P} ).
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Chapter 4

Noise-Shaping Quantization Methods

for Frame-Based and Compressive Sampling
Systems

Evan Chou, C. Sinan Giintiirk, Felix Krahmer, Rayan Saab,
and Ozgiir Yilmaz

Abstract Noise shaping refers to an analog-to-digital conversion methodology in
which quantization error is arranged to lie mostly outside the signal spectrum by
means of oversampling and feedback. Recently it has been successfully applied to
more general redundant linear sampling and reconstruction systems associated with
frames as well as non-linear systems associated with compressive sampling. This
chapter reviews some of the recent progress in this subject.

4.1 Introduction

Source coding via quantized linear representations, also known as transform coding,
is a classical and well-studied subject. Yet it is poorly understood outside the simple
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setting of orthogonal transforms, namely, for frame-based representations. The same
can also be said for partially nonlinear representations such as those based on
compressive sampling. The basic reason for the difficulty in solving the quantization
problem for these more general sampling and reconstruction systems is the lack of
an analog of Parseval’s identity which, more or less, dictates the best quantization
strategy for orthogonal systems. While some kind of basic reconstruction stability
can be ensured relatively easily, these results do not offer correct rate-distortion
trade-offs because of their inefficiency in utilizing redundancy, especially under
constraints that do not allow for high-resolution quantization.

Redundancy is a key concept of frame-based as well as compressive sampling
systems. It can be understood in terms of the sampling process (e.g., what part
of the coefficient space is taken up with the actual measurements) or in terms of
the reconstruction process (e.g., which perturbations of the measurements have the
smallest effect on the reconstruction). Efficient encoding via the first approach is
generally not practical because codewords cannot be easily placed arbitrarily in the
coefficient space. Indeed, quantized measurements are typically required to lie on a
finite rectangular grid. An alternative approach is then to seek ways of arranging the
quantization error in the coefficient space to lie in directions that are away from the
actual measurements, typically by means of some feedback process. Noise shaping
is the generic name of this quantization methodology. It has its roots in sigma-
delta modulation, which is used for oversampled analog-to-digital (A/D) conversion
[9, 25, 34, 41].

Let us explain the philosophy of noise shaping in more concrete terms. In both
frame-based and compressive sampling systems, we have a linear sampling operator
@ that can be inverted on a given space X of signals using some (possibly nonlinear)
reconstruction operator ¥. Given a signal x € X and its sampled version y = ®ux,
ordinarily we recover x exactly (or approximately, as in compressive sampling) as
Y (y). In the context of this paper, quantization of y will mean replacing it with a
vector ¢ which is of the same dimensionality as y and whose entries are chosen
from some given alphabet A. The goal is to choose g so that the approximate
reconstruction x* := W(q) is as close to x as possible as x varies over X.

In the context of finite frames, @ is a full-rank m xk matrix where m > k, and ¥ is
any left inverse of @. The rows of @ form the analysis frame and the columns of ¥
form a synthesis frame dual to this frame. With y = @x and x = ¥y as above, when
y is replaced by a quantized vector g, the reconstruction error e := x — x* is equal
to ¥ (y — q). Therefore the correct strategy to reduce the size of e is not to minimize
the Euclidean norm ||y — ¢|| as memoryless scalar quantization (MSQ) does, but to
minimize the semi-norm |y — g|y := ||¥(y — ¢)||. In other words, we seek g € A"
so that the quantization “noise” y — ¢ is close to ker(¥) in the above sense. This is
the basic principle of noise shaping. How this goal can be achieved (approximately),
i.e., the actual process of noise shaping, as well as what noise shaping can offer for
source coding are nontrivial questions that will be addressed in this article.

While the basic principle of noise shaping is formulated above for linear sam-
pling and reconstruction systems, its philosophy extends to compressive sampling
systems where the reconstruction operator is generally nonlinear. The simplest
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connection is made by considering strictly sparse signals. Let X} denote the
nonlinear space of N-dimensional vectors which have no more than k nonzero
entries. In the context of compressive sampling, @ is an m x N matrix where
m < N, which means that the sampling process is lossy for the whole of R".
However, note that Z,ﬁv is the union of (a large number of) k-dimensional linear
subspaces on each of which @ acts like a frame once m > k. This observation
opens up the possibility of noise shaping. Indeed, fixing any one of these subspaces
V, we can envision a noise shaping process associated with any of the linear
inverses (duals) of @ on V. However, it is not clear how one might organize all
of these individual noise shaping processes, especially given that these subspaces
are not directly available to the quantizer. What comes to the rescue is the notion
of an alternative dual. While we formulated noise shaping above as matching the
quantization operator to a given dual frame, it is also possible to consider matching
the dual frame to a given quantization operator. This results in the possibility of
“universal” quantization processes (i.e., independent of the signal subspace) which
become noise-shaping processes for suitable alternative duals. Even though finding
these suitable alternative duals may require extracting information about the signal
subspace, this duty purely belongs to the decoder and not the quantizer.

This article is organized as follows. In Section 4.2, we review the basics
of classical noise shaping in the setting of sigma-delta (X' A) modulation. In
Section 4.3, we extend the formulation of noise shaping and introduce various
notions of alternative duals for noise shaping in the setting of frames, followed
by their performance analysis for random frames in Section 4.4. We then discuss
noise-shaping quantization methods for compressive sampling in Section 4.5.

4.2 Classical noise shaping: Sigma-Delta Modulation

The Shannon-Nyquist sampling theorem for bandlimited functions provides the
natural framework of conventional A/D conversion systems. With the Fourier
transform normalized according to the “ordinary-frequency” convention

X(E) = /_ - x()e 2% dr,

let us define the space By, of bandlimited functions to be all x in L*(R) such that X is
supported in [—£2, §2]. The classical sampling theorem says that any x € B, can be
reconstructed perfectly from its time samples (x(n7)),ez according to the formula

x() =) _x(no)y (t—nr), 4.1)

nez
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where T < T 1= and V¥ is any function in L*(R)such that

1
20°
1§l = £,

vE =1, E> L.

4.2)

Hence, if we define the sampling operator (®x), := x(nt) and the reconstruction
operator ¥ (u) := t y_ u, V(- — nt) (on any space it makes sense), then ¥ is a left
inverse of @ on By, when 7 and ¥ satisfy the conditions stated above.

The value p := 1/t is called the sampling rate, and pei = 1/7ci = 282 is
called the critical (or Nyquist) sampling rate. Their ratio given by

0

Perit

A

4.3)

is called the oversampling ratio. According to the value of A, A/D converters are
broadly classified as Nyquist-rate converters (A & 1) or oversampling converters
A > 1).

Nyquist-rate converters set their sampling rate p slightly above the critical
frequency 2£2 so that ¥ may be chosen to decay rapidly enough to ensure
absolute summability of (4.1). Given any quantization alphabet A, the (nearly)
optimal quantization strategy in this (nearly) orthogonal setting is memoryless scalar
quantization (MSQ). This means that each sample y, := x(nt) is rounded to the
nearest quantization level g, € A. This process is also referred to as pulse-code
modulation (PCM). If each sample is quantized with error no more than §, i.e.,
Iy — ¢lloo < §, then the error signal

e(t) :=x(t) = (W) (1) = T ) (yu — ) ¥ (t = n7) (4.4)

n€Z

obeys the bound |e| Lo < C§ where C is independent of §. This is essentially the
best error bound one can expect for Nyquist-rate converters. Because setting § very
small is costly, Nyquist-rate converters are not very suitable for signals that require
high-fidelity such as audio signals.

Oversampling converters are designed to take advantage of the redundancy in the
representation (4.1) when t < 7. In this case, the interpolation operator ¥ has a
kernel which gets bigger as T — 0. Indeed, let 1}(5) = 0 for || > £2. It is easily
seen that Yu = 0 if

Zu”ez’””éE = 0 for |§] < 2. 4.5)

ne€z

This means that even though y — g may be large everywhere, e = ¥(y — ¢) can be
very small if y — g can be arranged to be spectrally disjoint from the (discretized)
reconstruction kernel v. This is the concrete form of noise shaping that we briefly
discussed in the Introduction.
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normalized frequency (cycles/sample)

Fig. 4.1 Illustration of classical noise shaping via ¥ A modulation: The superimposed Fourier
spectra of a bandlimited signal (in black), and the quantization error signals using MSQ (in red),
Ist order ¥’ A modulation (in magenta), and 2nd order ¥’ A modulation (in blue).

The main focus of an oversampling A/D converter is on its quantization
algorithm, which has to be non-local to be useful, but also causal so that it can
be implemented in real time. The assignment of each g, will therefore depend on y,
as well as a set of values (the states) that can be kept in an analog circuit memory,
while meeting the spectral constraints on y — g as described in the previous section.
X' A modulators operate according to these principles.

As can be seen in (4.5), the kernel of ¥ consists of high-pass sequences. Hence
the primary objective of ¥ A modulation is to arrange the quantization error y — g to
be an approximate high-pass sequence (see Fig. 4.1). This objective can be realized
by setting up a difference equation, the so-called canonical ¥ A equation, of the
form

y—qg=Au, (4.6)
where A denotes the finite difference operator defined by
(Aw), == wy, — wy—q, 4.7

r denotes the “order” of the scheme, and u is an appropriate auxiliary sequence
called the state sequence. This equation does not imply anything about g without
any constraint on u. The most useful constraint turns out to be boundedness.

In practice, the boundedness of u in (4.6) has to be attained through a recursive
algorithm. This means that given any input sequence (y,), the g, are found by a
given “quantization rule” of the form

Gn = F(Un—1,Un—2, ..., Y0, Yn—1,--.), (4.8)

and the u,, are updated via

! .
U, = Z(—l)" ! (k) Un—k + Vn — qn,» 4.9)
k=1
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which is a restatement of (4.6). In electrical engineering, such a recursive procedure
for quantization is called “feedback quantization” due to the role g, plays as a
feedback control term in (4.9). The role of the quantization rule F is to keep the
system stable, i.e., u bounded.

Stability is a crucial property. Indeed, it was shown in [13] that a stable rth order
scheme results in the error bound

lellzee < llullese Iy @i (4.10)

where /") denotes the rth order derivative of . The implicit £2- and the explicit -
dependence of this estimate can be replaced with a single A-dependence by setting
V(1) 1= R2v0(£21) where the prototype ¥o(£) equals 1 on [—1, 1] and vanishes for
€] = 1 + €, with 9 > O fixed. Let Cy := ||¥o||1. Bernstein’s inequality applied
to ¥ yields

llellLee < Collu]lge " (1 + €9)"A™", forall A > 1 + €. 4.11)

With this error bound, there are two goals in progression. The first is to keep u
bounded and the second is to keep the bound small. Ultimately, the best strategy is to
have, for each r, a quantization rule yielding a stable rth order scheme, and then for
any given A, to choose the best one (i.e., the one with the least error bound). This task
is significantly complicated by the fact that the bound on u has a strong dependence
on r, especially for small quantization alphabets A. In general it is not possible to
expect this dependence to be less than (cr)” for some constant ¢ that depends on the
given amplitude range p for x. This growth order is also what is needed to ensure
that the reconstruction error decays exponentially, i.e., as 27P* as a function of A,
which is the best possible due to Kolmogorov entropy estimates for bandlimited
functions [21]. The rate p of exponential decay that is achievable by the resulting
family of schemes is inversely proportional to ¢, and gets worse as p is increased.
The question of best achievable accuracy for oversampling converters in this setting
remains open. Currently, the best result in the one-bit case with A = {—1, 1} yields
lellzec = O(27P*) where p = 7/(6€*log2) ~ 0.1, and u ~ 0.06. Higher values
of p can be achieved with more levels in .A. For example, if A = {—1,0, 1}, then
p rises to 0.15 and p to 0.25 [15]. These are rigorously proven bounds and the
actual behavior of the error based on numerical experiments appears to be better.
For the details of the quantization rules which result in these exponentially accurate
X' A modulators, see [15, 21]. It has also been shown that no matter how the bits
are assigned the rate of the exponential decay cannot match that of Nyquist-rate
conversion [28].
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4.3 Generalized Noise-shaping Operators and Alternative
Duals of Frames for Noise Shaping

In this section, we will generalize the classical theory of XA modulation to
more general noise-shaping quantizers as well as sampling and reconstruction
systems. For conceptual clarity, we will separate the process of noise shaping
from the processes of sampling and reconstruction. While we will present these
generalizations in a finite-dimensional setting, extensions to infinite-dimensional
settings are usually possible. We will also discuss the notion of alternative duals of
frames which are associated with noise-shaping quantizers.

4.3.1 A general framework of noise shaping

The canonical X' A equation we saw in (4.6) is a special case of a more general
framework of noise shaping. Let A be a finite quantization alphabet and J be a
compact interval in R. Let & = (h;);>0 be a given sequence, finite or infinite,
where iy = 1. By a noise-shaping quantizer with the transfer filter 4, we mean
any sequence Q = (Q,,)° of maps Q,, : J” — A", m € N, where for each y € J",
the output g := Q,,(y) satisfies

y—g=h%*u 4.12)

where u € R™ and ||u||oo < C for some constant C which is independent of m. Here
h * u refers to the (finite) convolution of & and u defined by

(hsuy =Y hityj, 1 <n<m,

Jjz0

where it is assumed that u, := 0 for n < 0. Without any reference to a sampling
or a reconstruction operator, noise shaping in this setting refers to the fact that the
“quantization noise” y — ¢ is spectrally aligned with /. Note that the operator H :
u +— hxuis invertible on R” for any m, and therefore given any y and ¢, there exists
u € R™ which satisfies (4.12); this is trivial. However, the requirement that ||u| o
must be controlled uniformly in m imposes restrictions on what g can be for a given
y; these solutions are certainly non-trivial to find and may not always exist.

The operator H above (defined as convolution by #) is a lower triangular Toeplitz
matrix with unit diagonal. With this view, let us relax the notion of a noise-shaping
quantizer and assume that H is any lower triangular m x m matrix with unit diagonal.
We will refer to H as a noise-shaping transfer operator where the associated noise-
shaping relation is given by

y—¢q = Hu. (4.13)
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Suppose we are given a sequence (H,,){° of m x m noise-shaping transfer
operators. In this general setting, we say that an associated sequence (Q,,){° of
quantizer maps (for which g := Q,,(y) and u is determined by (4.13)) achieves
noise shaping for (H,), J, and A, if ||u||s < C for some constant C independent of
m. A slightly weaker assumption is to only require that [[u[cc = o(|H,,"[|co—o00)>
though we shall not need to work in this generality in this paper.

In many applications, one works with (H,,){° which are “progressive” (also
called “nested”) in the sense that

PmOHm—H OPm—H :HmoPma

where P,, is the restriction of a vector to its first m coordinates. Convolution is
a standard example. In this case, it may be natural to require that the (Q,,){° are
progressive as well. The classical X' A modulation we saw in Section 4.2 is of this
type. However, our general formulation does not impose progressiveness.

As indicated earlier, noise-shaping quantizers provide non-trivial solutions
to (4.13) and therefore do not exist unconditionally, though under certain suitable
assumptions on H, J, and A, they exist and can be implemented via recursive
algorithms. The simplest is the (non-overloading) greedy quantizer whose general
formulation is given below:

Proposition 1. Ler A := Ay s denote the arithmetic progression in R which is of
length L, spacing 28, and symmetric about 0. Assume that H = I — H, where H
is strictly lower triangular, and . > 0 such that |H| co—so00 + it/8 < L. Suppose
IVlloo < w. For eachn > 1, let

n—1

qn :=roundg | y, + ZHn,n—jun—j
j=1

and

n—1

Up = Yn + ZHn,n—jun—j — 4n-
=1

Then the resulting q satisfies (4.13) with ||u|lcc < 6.

This quantizer is called greedy because for all n, the selection of g, over A
is made so as to minimize |u,|. The proof of this basic result follows easily by
induction once we note that for any w € [—L3, L], we have |w — round 4 (w)| < 6,
hence the scalar quantizer round 4 is not overloaded. For details, see [11]. Note that
the greedy quantizer is progressive if (H,,){° is a progressive sequence of noise-
shaping transfer operators. In the special case Hu = h * u where hy = 1, we simply
have |H|lcos00 = ||2]li — 1. This special case is well-known and widely utilized
(e.g. [9, 21, 34, 41]).
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4.3.2 Canonical duals of frames for noise shaping

The earliest works on noise-shaping quantization in the context of finite frames
used X' A quantization and focused on canonical duals for reconstruction. Before we
begin our discussion of these contributions we remind the reader of our convention:
we identify an analysis frame with (the rows of) its analysis operator and a synthesis
frame with (the columns of) its synthesis operator.

Let @ be a finite frame and y = ®x be the frame measurements of a given
signal x. Assume that we quantize y using a noise-shaping quantizer with transfer
operator H. Any left-inverse (dual) ¥ of @ gives

x—Wqg=W(y—q) = VHu. (4.14)

Using this expression, and specializing to the case of first order X’ A quantization,
i.e., H = D where D is the lower bidiagonal matrix whose diagonal entries are 1
and subdiagonal entries are -1, [3] observed that the reconstruction error can be
bounded as

m

lx— ¥qll2 < flulloo Y I(¥D);ll2 (4.15)
j=1

where (¥D); denotes the jth column of ¥D. This led [3] to introduce the notion of
frame variation

Var(¥) := Y |15 — Y1l (4.16)

J=1

with ¥; denoting the jth column of ¥ and ,,+ defined to be zero. Using normalized
tight-frames, i.e., frames @ for which @*® = (m/k)I, this resulted in the error
bound

k
Ix— @Tqll> < — [l oo Var(%), (4.17)

where ¥ = &7 denotes the canonical dual of & defined (for an arbitrary frame
?) by

o= (o*0) lp*. (4.18)

Subsequently, similarly defined higher-order frame variations were used to study
the behavior of higher-order ¥’ A schemes (e.g., in [2] and [6]) with corresponding
generalizations of (4.17) and the conclusion that frames with lower variations lead
to better error bounds. This motivated considering frames obtained via uniform
sampling of smooth curves in R¥ (called frame paths). As it turned out, however,
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this type of analysis based on frame-variation bounds does not provide higher-
order reconstruction accuracy unless the frame path terminates smoothly. Smooth
termination of the frame path is not available for most of the commonly encountered
frames, and finding frames with this property can be challenging. Indeed, designing
such frames was a main contribution of [6] which showed a reconstruction error
bound decaying as m” for rth order X' A quantization of measurements using these
frames.

In practice, however, one must often work with a given frame rather than design
a frame of their choosing. In such cases there are frames, sampled from smooth
curves, for which reconstructing with the canonical dual yields reconstruction error
that is lower bounded by a term behaving like m™!, regardless of the X A scheme’s
order r > 3 (see, [31] for the details). Consequently, to achieve better error decay
rates one must seek either different quantization or different reconstruction schemes.
We will consider both routes to improving the error bounds in what follows.

4.3.3 Alternative duals of frames for noise shaping

The discussion in Section 4.3.2 was based on canonical duals and it involved
a particular method to bound the 2-norm of the reconstruction error x — ¥gq,
assuming u is bounded in the co-norm. It is possible to significantly improve the
reconstruction accuracy by allowing for more general duals, here called alternative
duals. To explain this route, we return to the general noise-shaping quantization
relation (4.14). We assume again that u is known to be bounded in the co-norm,
which is essentially the only type of bound available. Hence, the most natural
reconstruction error bound is given by

Ix = ¥4qllz < |¥H|lco—s2[ltt]| 0o- (4.19)

With this bound, the natural objective would be to employ an alternative dual
¥ of @ which minimizes ||¥H| co—2- An explicit solution for this problem is
not readily available mainly because there is no easily computable expression for
|A|lco—2 for a general k x m matrix A, so we replace it by a simpler upper bound.
In fact, this was already done in (4.15) because we have

lAlloosz = D 14112 (4.20)
j=1

where again A; denotes the jth column of A. (This upper bound is also known to be
the L, j-norm of A.) Another such bound which is often (but not always) better is
given by

1Alloo—2 < V/m[All2-2. 4.21)
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(Indeed, for a large random matrix with standard Gaussian entries, the upper bound
in (4.21) behaves as m + ~/mk whereas that of (4.20) behaves as m~/k. Both of these
upper bounds are easily seen to be less than /m||A||g;, however.)

With this upper bound, we minimize ||WH||,— over all alternative duals ¥ of
@. Then an explicit solution is available and is given by

Uy = H @) H. (4.22)

This idea was initially introduced specifically for X' A quantization [4, 31] with the
choice H = D’. The resulting alternative duals were called Sobolev duals and will
be discussed in the next subsection. The above generalized version was stated in [23]
where the notation ¥y and the term “H-dual” were introduced for the right hand side
of (4.22), but because of a further generalization we will discuss in Section 4.3.3.3,
we find it more appropriate to use the label H!.

Note that the no noise-shaping case of H = [ yields the canonical dual. In
general, we have

1
vy H = |(H'®)f =
[Wg—1H 2> = I( ) 22 o (D)
so that (4.19) and (4.21) yield the error bound
A m
X — Wp-1gll> = N[l .- (4.23)

O—min(H_lgp)

4.3.3.1 Sobolev Duals

In the case of X’ A modulation, H is defined by (4.6), and given in matrix form
by D" where the diagonal entries of the lower bidiagonal matrix D are 1 and the
subdiagonal entries are —1. Because ||¥ D’ ||, resembles a Sobolev norm on ¥,
the corresponding alternative dual was called the (rth order) Sobolev dual of @
in [4]. In this work, Sobolev duals of certain deterministic frames, such as the
harmonic frames, were studied. More precisely, [4] considered frames obtained
using a sufficiently dense sampling of vector-valued functions on [0, 1], which
had the additional property that their component functions were piecewise C! and
linearly independent. For such frames, it was shown that

Omin(D™"®) > e’ 2 (4.24)

hence with (4.23), the reconstruction error using the rth order Sobolev dual satisfies

c,
I = Wo-rglls = - o (429)
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with C, := 1/c,. Here, for a fixed stable X' A scheme, the constant C, depends only
on the order » and the vector-valued function from which the frame was sampled.
The main technique used in [4] to control the operator norm ||Wp—rD"||,—; is a
Riemann sum argument. The argument leverages the smoothness of the vector-
valued functions from which the frames are sampled to obtain a lower bound
on ||[D~"®x]||, over unit norm vectors x € R? and produces the stated lower
bound (4.24).

As mentioned before, error bounds similar to (4.25) had also been obtained in
[6], albeit for specific tight frames. Nevertheless, in both [4] and [6], the decay of
the error associated with ¥ A quantization is a polynomial function of the number
of measurements. The significance of this polynomial error decay stems from the
fact that for any frame, a lower bound on the reconstruction error associated with
MSQ is known to decay only linearly in m [20].

4.3.3.2 Refined Bounds Using Sobolev Duals

The analysis of [4] was refined in [29] in two special cases: harmonic frames, and
the so-called Sobolev self-dual frames. For these frames, [29] established an upper
bound on the reconstruction error that decays as a root-exponential function of the
number of measurements. More specifically, for harmonic frames, [29] explicitly
bounds the constant C, in (4.25) and, as in [21] and [15], optimizes the X' A
scheme’s order r as a function of the number of measurements. Quantizing with
a X A scheme of the optimal order rop (/1) and reconstructing with the associated
Sobolev dual results in a root-exponential error bound

lx — ¥promglly < cre v/ (4.26)

where the constants ¢; and ¢, depend on the quantization alphabet A, s and possibly
on k as well. This possible dependence on k is absent in the similar bound for
Sobolev self-dual frames. Sobolev self-dual frames are defined using the singular
value decomposition D" = UXV*. Here, the m X k matrix corresponding to a
Sobolev self-dual frame consists of the k columns of U associated with the smallest
singular values of D". This construction implies that the frame admits itself as both
a canonical dual and Sobolev dual of order r, hence the name. More importantly,
this construction also allows one to bound C, in (4.25) explicitly and optimize the
X' A scheme’s order r to obtain the error bound (4.26), without any dependence of
the constants on k.

While we have so far discussed deterministic constructions of frames, Gaussian
random frames were studied in [23], and later, sub-Gaussian random frames in [30].
We will discuss these random frames extensively in Section 4.4.1, though at this
point we note that, like the harmonic and Sobolev self-dual frames, these frames
also allow for root-exponential error decay when the order of the ¥’ A scheme is
optimized.
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In the context of ¥'A quantization of frame coefficients using a fixed alphabet
A, the number of measurements is proportional to the total number of bits. Hence,
the error bounds (4.25) and (4.26) can be interpreted as polynomially and root-
exponentially decaying in the total number of bits. While these bounds are certainly
a big improvement over the linearly decaying lower bound associated with MSQ,
they are still sub-optimal. To see this, one observes that the problem of quantizing
vectors in the unit ball of R* with a maximum reconstruction error of € is analogous
to covering the unit-ball with balls of radius €. A simple volume argument shows
that to quantize the unit ball of R* with an error of ¢, one needs at least klog, (1)
bits. Thus, the reconstruction error can at best decay exponentially in the number
of bits used. Moreover, since there exists a covering of the unit-ball with no
more than (g)k elements (see, e.g., [32]), in principle an exponential decay in the
error as a function of the number of bits used is possible. This exponential error
decay is predicated on a quantization scheme that has direct access to x and, more
importantly, the ability to compare x to each of the approximately ¢ * elements of
the covering, to assign it an appropriate binary label. The reconstruction scheme
for this quantization would then simply replace the binary label by the center of
the element of the covering associated with it. Of course, this setting is markedly
different from the noise-shaping quantization of frame coefficients considered in this
chapter, but it establishes exponential error decay in the number of bits as optimal.

To achieve exponential error decay in the number of bits, [26] proposed an
encoding scheme to follow rth order ¥'A quantization. The encoding scheme
consists of using an £ x m Bernoulli random matrix B, with £ slightly larger than
k, to embed the vector D™"¢ into a lower dimensional subspace. Since B serves as
a distance-preserving Johnson-Lindenstrauss embedding (see, [1, 27]), the vector
BD™"q effectively contains all the information needed for accurate reconstruction
of x, and it is the only quantity retained. Moreover, the number of bits required to
store BD™"q scales only logarithmically in m. Using (BD~"®)" as a reconstruction
operator (acting on BD™"g) and employing the properties of Johnson-Lindenstrauss
embeddings, [26] shows that the reconstruction error still decays as it would have
if no embedding had been employed. In particular, this means an error decay of
m~" for the frames discussed in this section. Combining these two observations,
i.e., logarithmic scaling of the number of bits with m, and polynomial decay of the
error, [26] obtains reconstruction error bounds that decay exponentially, i.e., near
optimally, in the number of bits.

It turns out that exponential decay of the reconstruction error (in the bit rate or in
the oversampling ratio m/k) can also be achieved by means of the “plain route” of
noise-shaping quantization and alternative dual reconstruction only, but with noise-
shaping unlike ¥’ A quantization and more like the conventional beta encoding [10,
11]. This method, called beta duals, is explained next for general frames, and later
in Section 4.4.2 for random frames.
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4.3.3.3 Further generalizations: V-duals

Given any m x k matrix ® whose rows are a frame for R¥, consider any p x m matrix
V (i.e., not necessarily square) such that V@ is also a frame for R¥. We will call

Uy = (VO)TV (4.27)

the V-dual of ®. (The square and invertible case of V = H~! was already discussed
at the beginning of this subsection.) When p < m, we call V& the V-condensation
of @.

With a V-dual, we have ¥yH = (V®)VH so that

||VH||00—>2 < \/I_7||VH||00—>00
O—min(V@) B Gmin(vq))

[VvH| o2 < (4.28)

For V = H~! (and therefore, p = m), combination of (4.19) with (4.28) agrees
with (4.23). However, as shown in [11], optimization of (4.28) over V can produce
a strictly smaller reconstruction error upper bound. A highly effective special case
is discussed next.

Beta duals

Beta duals have been recently proposed and studied in [10, 11]. They constitute a
special case of V-duals, while they relate strongly to classical beta expansions. (See
[12, 35] for the classical theory of beta expansions, and [14] for the use of beta
expansions in A/D conversion as a robust alternative to successive approximation.)
In order to illustrate the main construction of beta duals without technical details,
our presentation in this article will be restricted to certain dimensional constraints
as described below.

Let m > p > k and assume that A’ := m/p is an integer. For any 8 > 1, let hf be
the (length-2) sequence given by hg = 1 and h‘f = —f. Define H? to be the A’ x A’
noise-shaping transfer operator corresponding to 4#, and

vf =g B2 B
We set
H .= and V:= . 4.29)
HP vh

mxXm pXm
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Fig. 4.2 Comparative illustration of the various alternative duals described in this paper: Each plot
depicts the original frame in R? consisting of the 15th roots-of-unity along with one of its duals
(scaled up by a factor of two for visual clarity). For the computation of the alternative duals, the
analysis frame was ordered counter-clockwise starting from (1, 0).

In other words, H = I, ® H? and V = I, ® v# where ® denotes the Kronecker
product. It follows that VH = I, ® (v#HP). Since vfHP = [0 --- 0 B, we have
[VH || sos00 = B~ which, together with (4.19) and (4.28), yields

Pllloo 5oy (4.30)

— <
[lx vall2 < o (V®)

For certain special frames, such as the harmonic semi-circle frames, it is possible
to set p as low as k and turn the above bound into a near-optimal one in terms of its
bit-rate [11]. The case of random frames will be discussed in the next section.

In Fig. 4.2, we illustrate a beta dual of a certain “roots-of-unity” frame along with
the Sobolev duals of order O (the canonical dual), 1, and 2.

4.4 Analysis of Alternative Duals for Random Frames

In this section, we consider random frames, that is, frames whose analysis (or
synthesis) operator is a random matrix. Certain classes of random matrices have
become of considerable importance in high dimensional signal processing, par-
ticularly with the advent of compressed sensing. One main reason for this is that
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their inherent independence entails good conditioning of not only the matrix, but
also its submatrices. Because of the fast growing number of such submatrices with
dimension, the latter is very difficult to achieve with deterministic constructions.
This also means, however, that any two frame vectors are approximately orthogonal,
so frame path conditions that would imply recovery guarantees using canonical dual
frames will almost never hold. For this reason, it is crucial to work with alternative
duals. We separately consider the two main examples discussed above, Sobolev
duals and beta duals.

4.4.1 Sobolev duals of random frames

As noted above, the Sobolev dual of a frame is the dual frame ¥ that minimizes
the expression ||[¥D"||,—2, and the explicit minimizer is given by (4.22) with H =
D’. By (4.23), a bound for the error that arises when using this alternative dual to
reconstruct is governed by oy, (D~ ®). Thus a main goal of this subsection is to
discuss the behavior of this minimum singular value.

The matrix D™"® is the product of a deterministic matrix D~", whose singular
values are known to a sufficient approximation, and a random matrix @, whose
singular values are known to be well concentrated. Nevertheless, using a product
bound does not yield good results, mainly because the singular values of D" differ
tremendously, so any worst case bound will not be good enough. One approach to
provide a refined bound is to first provide lower bounds for the action of D™"® on a
single vector and then proceed via a covering argument. That is, one combines these
lower bounds for all of the vectors forming an e-net, obtaining a uniform bound for
the net. An approximation argument then allows to pass from the net to all vectors
in the sphere. In this way, [23] obtains the following result for Gaussian random
frames:

Theorem 1 ([23]). Let @ be an m X k random matrix whose entries are i.i.d. stan-
dard Gaussian variables. Given r € N and o € (0,1), there exist constants
strictly positive r-dependent constants c|, ¢;, and c3 such that if A = m/k >
(c1 logm)"/ =9 then with probability at least 1 — exp(—comA™),

Omin(D®) > ¢3(NAYT™2) /. 431)

In this approach, one explicitly uses the density of the Gaussian distribution.
Thus, as soon as the matrix entries fail to be exactly Gaussian, a completely different
approach is needed. In what follows, we will present the main idea of the method
used in [30] to tackle the case of random matrices with independent sub-Gaussian
entries as introduced in the following definition (for alternative characterizations
of sub-Gaussian random variables see, for example, [42]). This approach is also
related to the RIP-based analysis for quantized compressive sampling presented in
[18] (cf. Section 4.5 below).
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Definition 1. A random variable £ is sub-Gaussian with parameter ¢ > 0 if it
satisfies P(|€| > 1) < '™ for all # > 0.

As in the Gaussian case presented in [23], we employ the singular value
decomposition D" = UXV* where U and V are unitary and ¥ € R™" is a
diagonal matrix with entries s; > --- > s, > 0. Then

Umin(D_r<p) = O'min(UEV*@) = Omin(EV*(p),

as U is unitary. Furthermore, for P, : R” — R’ the projection onto the first £ entries,
£ < m, one has in the positive semidefinite partial ordering >

X >P Y = P[EP?P( > s¢Py.

Here the first inequality uses that Py is a projection, the following equality uses that
X is diagonal, and the last inequality uses that the diagonal entries of X' are ordered.

As a consequence, we find that 0y, (D7"®) > s¢0min(V*®). For Gaussian
matrix entries, this immediately yields Theorem 1, as standard Gaussian vectors
are rotation invariant, so P;V*@ is just a standard Gaussian matrix, whose singular
value distributions are well understood (see for example [42]). Applying the bound
for different values of £ yield the theorem for different choices of «.

For independent, zero mean, unit variance sub-Gaussian (rather than Gaussian)
matrix entries, one no longer has such a strong version of rotation invariance; while
the columns of V*@® will still be sub-Gaussian random vectors, its entries will,
in general, no longer be independent. There are also singular value estimates that
require only independent sub-Gaussian matrix columns rather than independent
entries (see again [42]), but such bounds require that the matrix columns are of
constant norm. Even if @ and hence also V*® has constant norm columns (such as
for example for Bernoulli matrices, @; € %1), the projection P, will typically map
them to vectors of different length.

In order to nevertheless bound the singular values, we again use a union bound
argument, first considering the action on one fixed vector x of unit norm. Then we
write

k m
||V*(D.X||§ = Z Z x,-<15j,-(VPZPgV*)jj/<1§j/i/x,~/.

i=1jj=1

Thus ||V*®x|)3 is a so-called chaos process, that is, a random quadratic form of the
form (&, ME), where £ is a random vector with independent entries (in this case, the
vectorization of @). Its expectation is given by

k m
ElV*®x|3 =YY GRS (VPFPV*); = ||xl3tr(VP} P V) = L.
i=1 j=1
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where the last equality uses the cyclicity of the trace. Its deviation from the
expectation can be estimated using the following refined version of the Hanson-
Wright inequality, which has been provided in [37] (see [24] for the original
version).

Theorem 2. Let £ = (§1,...,&,)) € R" be a random vector with independent
components &; which are sub-Gaussian with parameter ¢ and satisfy EE; = 0. Let A
be an n x n matrix. Then for everyt > 0,

2 t

T )

P{|(E. ME) — E(€. ME)| > 1} < 2exp (= Cymin (

where C4 is an absolute constant.

To obtain a deviation bound for the above setup, we thus need to estimate the
Frobenius norm |M|% := «M*M = Doiv i M(Zi.i/)_(j ) and the operator norm
[M|l2—2 := supyy,=1 [|My|> of the doubly-indexed matrix M given by M) v ) =
xixy (VP;P¢V*);. For the Frobenius norm, we write

M7 =" x5 (VPEP V) = |[VPEPVH || = te(VPFPV*VPEP V™) = ¢,
i’ g

where in the last equality, we used again the cyclicity of the trace, that V is unitary,
and that P} Py is a projection. For the operator norm, we note that

x0---0

T
YRRl R
0--- 0 xf

so as all these three factors have operator norm 1, the norm of their product is
bounded above by 1. On the other hand, applying M to the unit norm vector y
given by y;; = x;Vy; yields My = e, where e is the first standard basis vector,
showing that the norm is also lower bounded by 1. So one indeed has |M|;—, = 1.
Combining these bounds with Theorem 2 yields the following generalization of
Theorem 1 for sub-Gaussian frames.

Theorem 3 ([30]). Let @ be an m X k random matrix whose entries are zero mean,
unit variance, sub-Gaussian random variables with parameter c. Given r € N and
a € (0,1), there exist constants ¢ = c¢(r) > 0 and ¢ = /(r) > 0 such that if

A== ¢ then one has with probability at least 1 — exp(—c’'mA™%)

Omin (D" D) > 12072) /. (4.32)
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Combining (4.23) for H = D" with the lower bound of (4.31) or (4.32), the
Sobolev dual reconstruction ¥p—rg from ¥ A quantized frame coefficients y = ®x
results in the error bound

—a(—1
[x — ¥p—rgllr < CHAT"2) ||u| oo (4.33)

Thus the error decays polynomially in the oversampling rate A as long as the
underlying X' A scheme is stable. For the greedy quantization rule, stability follows
from Proposition 1, as long as ||y||cc < p for a suitable x whose range is constrained
by the quantization alphabet A; s and r. (It can be easily computed that for H = D,
we have |[H|lcosoo = 2" — 1. Hence we require L > 2" — 1, with the value of
8 assumed to be adjustable.) If we assume that ||x||; < 1, then controlling ||y||co
amounts to bounding | @200 < ||| 2—2 and thus to bounding the maximum
singular value of a rectangular matrix with independent sub-Gaussian entries. This is
a well-understood setup, it is known that the singular values of such a matrix are well
concentrated and one has | @500 < [|@|2»2 = O(/m) with high probability
(see again [42]). As a consequence, the X' A scheme is stable provided L is chosen
large enough and the quantizer level is adjusted accordingly. We conclude that sub-
Gaussian frame expansions quantized using a greedy r-th order X' A scheme allow
for reconstruction error bounds decaying polynomially in the oversampling rate,
where the decay order can be made arbitrarily large by choosing r large enough.

4.4.2 Beta duals of random frames

We return to the Gaussian distribution for the analysis of beta duals for random
frames. Based on the error bound (4.30) derived in Section 4.3.3.3, it now suffices
to give a probabilistic lower bound for o,y (V@). Note that the entries of the p x k
matrix V@ are i.i.d. Gaussian with variance

0 =B 44+ g (4.34)

At this point, a choice for the parameter p needs to be made. In [11], both choices
of p = k and p > k were studied in detail. The analysis of the former choice is
somewhat cleaner, but the strongest probabilistic estimates follow by choosing p
greater than k.

We will primarily be interested in the smallest singular value of V@ being near
zero. For p = k, the following well-known result suffices:

Theorem 4 ([36, Theorem 3.1], [17]). Let $2 be a k X k random matrix with entries
drawn independently from N'(0, 0%). Then for any & > 0,

P ({omin(.Q) < 80/\/%}) <s.
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Meanwhile, the stability of the greedy quantizer with alphabet A, s can be
ensured in a way similar to the case of Sobolev duals, noting that ||H||co—s00 = B-
Hence, we know that if 8 + /8 < L, then ||u|cc < J. By standard Gaussian
concentration results, i < 4./m is guaranteed with probability at least 1 — e~ 2",
Therefore, with (4.30) and Theorem 4 in which we set £2 = V@&, we obtain

e = Wvqll2 < kLe™'§7 (4.35)
with probability at least 1 — & — e~ ", where we have also used the simple chain
of inequalities 1/0y, < B < L. The value of § can be chosen arbitrarily close to L
with sufficiently large values of §. However, the optimal choice would result from
minimizing §8~"/* subject to B 4 /8 = L. For details, see [11].

For p > k, we have the following result:

Theorem 5 ([11, Theorem 4.3]). Let p > k and $2 be a p x k random matrix whose
entries are drawn independently from N (0, o). Then for any 0 < & < 1,

k
P ({Omin(.Q) < 80\/[_7/2}) < <10 + 8+/log 8_1) eP/2gP k.
The corresponding error bound
Ix — Pyqlla < 2Le™'8p~7 (4.36)

now holds with higher probability. The choices ¢ ~ B~""/7 for small  and p ~
(1 + 1)k turn out to be good ones. For details, again see [11].

4.5 Noise-shaping Quantization for Compressive Sampling

Compressive sampling (also called compressed sensing) has emerged over the last
decade as a novel sampling paradigm. It is based on the empirical observation that
various important classes of signals encountered in practice, such as audio and
images, admit (nearly) sparse approximations when expanded with respect to an
appropriate basis or frame, such as a wavelet basis or a Gabor frame. Seminal
papers by Candes, Romberg, and Tao [8], and by Donoho [16] established the
fundamental theory, specifying how to collect the samples (or measurements),
and the relation between the approximation accuracy and the number of samples
acquired (“sampling rate”) vis-a-vis the sparsity level of the signal. Since then
the literature has matured considerably, again focusing on the same issues, i.e.,
how to construct effective measurement schemes and how one can control the
approximation error as a function of the sampling rate, e.g., see [19].

By now compressive sampling is well-established as an effective sampling the-
ory. From the perspective of practicability, however, it also needs to be accompanied
by a quantization theory. Here, as in the case of frames, MSQ is highly limited as
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a quantization strategy in terms of its rate-distortion performance. Thus, efficient
quantization methods are needed for compressive sampling to live up to its name,
i.e., to provide compressed representations in the sense of source coding.

In this section, we will discuss how noise-shaping methods can be employed to
quantize compressive samples of sparse and compressible signals to vastly improve
the reconstruction accuracy compared to the default method of MSQ. We start with
the basic framework of compressive sampling as needed for our discussion.

4.5.1 Basics of Compressive Sampling

In the basic theory of compressive sampling, the signals of interest are finite (but
potentially high) dimensional vectors that are exactly or approximately sparse. More
precisely, we say that a signal x in RY is k-sparse if it is in X := {x € RV :
llxllo < k}. Here ||x||o denotes the number of non-zero entries of x. The signals we
encounter in practice are typically not sparse, but they can be well-approximated
by sparse signals. Such signals are referred to as compressible signals and roughly
identified as signals x with small 0y (x)¢,, the best k-term approximation error of x
in £, defined by

01, 1= min [lx— 2.
z€Xx)

Compressive sampling consists of acquiring linear, non-adaptive measurements
of sparse or compressible signals, possibly corrupted by noise, and recovering
(an approximation to) the original signal from the compressive samples via a
computationally tractable algorithm. In other words, the compressive samples
are obtained by multiplying the signal of interest by a compressive sampling
(measurement) matrix. The success of recovery algorithms relies heavily on certain
properties of this matrix. To state this dependence precisely, we next define the
restricted isometry constants of a matrix.

Definition 2. The restricted isometry constant (see, e.g., [8]) yx = yx(®) of a
matrix @ € R™ is the smallest constant for which

(1= yollxll3 < @3 < (1 + yo)lx13

forallx € X

Suppose that @ € R™V is used as a compressive sampling matrix. Here,
m denotes the number of measurements and is significantly smaller than N, the
ambient dimension of the signal. Let y := ®x + w denote the (possibly) perturbed
measurements of a signal x € RN, where the unknown perturbation w satisfies
|lw]l2 < €. A crucial result in the theory of compressive sampling states that if the
restricted isometry constants of @ are suitably controlled (e.g. as originally stated
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in [8], or more recently as in [7] which only assumes y, < /(a — 1)/a for some
a > 4/3), then there is an approximate recovery A{(®,y) of x which satisfies

|x — AS(®.9) |2 < Ce + Doy(x)e, /Vk. (4.37)

Here, A{(®,y) is found by mapping y to a minimizer of a tractable, convex opti-
mization problem—which is often called the “Basis Pursuit Denoise” algorithm—
given by

A{(@,7) := argmin ||z]|; subjectto [|[Pz—7|, <e.
Z

C and D are constants that depend on @, but can be made absolute by slightly
stronger assumptions on @.

Note that in the noiseless case, it follows from (4.37) that any k-sparse signal can
be exactly recovered from its compressive samples as A?(CD, ®x). In the general
case, the approximation error remains within the noise level and within the best k-
term approximation error of x in £;. Hence the recovery is robust with respect to the
amount of noise and stable with respect to violation of the exact sparsity assumption.
The decoder A{ is a robust compressive sampling decoder as defined next.

Definition 3 ([30, Definition 4.9]). Let ¢ > 0, let m, N be positive integers such
that m < N and suppose that @ € R™N We say that A : RN x R" — RV isa
robust compressive sampling decoder with parameters (k, a, y), k < m, and constant
Cif

[x — A(P, Px + )| < Ce, (4.38)

forall x € XV, |le]» < e, and all matrices @ with a restricted isometry constant
Yak <Y

Examples of robust decoders include A{ and its p-norm generalization A;, with
0 < p < 1 [8, 38], compressive sampling matching pursuit (CoSaMP) [33],
Orthogonal Matching Pursuit (OMP) [43], and iterative hard thresholding (IHT)
[5]. See also [19] for detailed estimates of the relevant parameters.

4.5.2 Noise-shaping Quantization of Compressive Samples

Even though noise shaping methods are tailored mainly for quantizing redundant
representations, perhaps surprisingly, they also provide efficient strategies for
quantizing compressive samples [18,22,23,30]. The approach, originally developed
in [23] specifically for X' A quantization, relies on the observation that when the
original signal is exactly sparse, compressed measurements are in fact redundant
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frame coefficients of the sparse signal restricted to its support. Since then it has
been extended for beta encoding and applied to compressible signals as well [10].
We start with the case of sparse signals.

4.5.2.1 Sparse signals

Letx € E,iv with supp(x) = T and @ € R™¥ be a compressive sampling matrix.
Then, we have

y=®x — y= Prxr,

where @7 is the submatrix of @ consisting of its columns indexed by 7" and x7 is the
restriction of x to 7. Accordingly, any quantization technique designed for frames
could be adopted to compressive sampling as follows:

Quantization: Since the compressive samples are in fact frame coefficients, apply
the noise-shaping quantization algorithm directly to the compressive samples y to
obtain the quantized samples, say, g. Note that the quantization process is blind to
the support of the sparse signal as well as to the sampling operator.

Reconstruction: Reconstruct via the following two-stage reconstruction algo-
rithm. To obtain an estimate x* of x from ¢:

1. Coarse Recovery: Solve
= A%(D,q) (4.39)

where € is an upper bound on ||y — ¢||», which depends on the quantization
scheme and is known explicitly. Note that the decoder ATQ above can be
replaced with any robust compressive sampling decoder A. Clearly, by (4.38)
|x — X|| will be small if € is small.

2. Fine Recovery: Obtain a support estimate, T, of x from X. A finer approxima-
tion for x is then given by reconstructing with an appropriate alternative dual of
the underlying frame @3 based on the noise-shaping operator that was employed
for quantization.

The success of the two-stage reconstruction algorithm relies on the accurate
recovery of the support of x. In turn, this can be guaranteed by a size condition
on the smallest-in-magnitude non-zero entry of x. To see this, note that foralli € T,
the robustness guarantee (4.38) yields |X; — x| < Cep, which, together with the
size condition min;er |x;| > 2Ceg, gives |X;| > Cep. Moreover, by (4.38) we have
|X;| < Ceg for all i € T¢. Consequently, the largest-in-magnitude k coefficients of X
are supported on 7. Thus, we have the following proposition.

Proposition 2. Suppose that x € XV with supp(x) = T, and let @ € R™N pe
a compressive sampling matrix so that (4.38) holds for A = ATQ with robustness
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constant C. Let X be as in (4.39) where |@x — ql|» < €g. If miner |x;| > 2Ce, then
the k largest-in-magnitude coefficients of X are supported on T.

By this observation, the coarse recovery stage not only yields an estimate X that
satisfies ||x—X||» < Cep, but it also gives an accurate estimate of the support of x (via
the support of the k-largest coefficients of x). It remains to show that reconstruction
techniques associated with noise shaping quantization for frames can be used in the
fine recovery stage to produce an estimate x* that is more accurate than X of the
coarse stage.

When ¢ results from a noise-shaping quantization scheme, accurate recovery
based on alternative duals can be guaranteed via (4.19). In particular, suppose that
H is the noise transfer operator of the quantizer. Conditioned on recovering T, let
W,—1 be the left inverse of @7 as defined in (4.22) and set x* := ¥,—14. We then
have, as before,

Jm

. S — 4.40
gy e (4:40)

lx = x*> <

where u is as in (4.13) .

Predominantly, compressed sensing matrices @ (hence their submatrices @r) are
random matrices. Thus, to uniformly control the reconstruction error via (4.40) one
needs lower bounds on the smallest singular values of the random matrices H~' @7
forall T C [N] :={l,...,N}, |T| = k, as well as a uniform upper bound on ||u|| -

We concentrate again on random matrices @ with independent and identically
distributed Gaussian or sub-Gaussian entries. In these cases, for each fixed support
T, @7 is a random frame of the type considered in Section 4.4 and a probabilistic
lower bound on o, (H~'®7) follows from Theorem 1 (for Gaussian entries) and
Theorem 3 (for sub-Gaussian entries).

A uniform lower bound on o, (H~!®7) over all support sets T of size k can
now be deduced via a union bound over the (IZ) support sets. Note that to obtain a
uniform bound over this rather large set of supports, one requires a relatively small
bound for the probability of failure on each potential support, and, consequently,
a larger embedding dimension m as compared to the case of a single frame. An
alternative approach based on the restricted isometry constant, essentially yielding
the same result, can be found in [18].

The approaches just outlined are general and can be applied in the case of any
noise shaping quantizer that allows exact recovery of the support of sparse vectors
via Proposition 2. In the following, however, we focus on the special case of rth-
order X' A quantization, where H = D™" and we obtain the following theorem.

Theorem 6 ([23,30]). Letr € Z™T, fixa € N, y < 1,and c,C > 0. Then there exist
constants Cy, C,, C3, C4 depending only on these parameters such that the following
holds.

Fix 0 < a < 1. Let @ be an m x N matrix with independent sub-Gaussian entries
that have zero mean, unit variance, and parameter c, let A be a robust compressive
sampling decoder and k € N is such that
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A= % > (c, log(eN/k))ﬁ.

Suppose that q is obtained by quantizing ®z, z € RY, via the rth order greedy

XY A scheme with the alphabet A s, and with L > [“gl/ﬁ + 2" + 1. Denote by
q the quantization output resulting from ®z where z € RN. Then with probability
exceeding 1 — 4e=Com' K forallx € XY having min |x;| > C38:

Jj€supp(x)

(i) The support of x, T, coincides with the support of the best k-term approximation
of A= J=q)-

(ii) Denoting by @1 and F the sub-matrix of @ corresponding to the support of z
and its rth order Sobolev dual respectively, and by xr € R the restriction of x
to its support, we have

lxr — Fglla < C4A™¢0=1/25,

We remark that in Theorem 6, the requirement that L > [Kkgl/ﬁ +2"+1

ensures stability of the XY’ A scheme while min( ) |xj] > C38 implies accurate
JjE€supp(x

support recovery.

4.5.2.2 Compressible signals

The two-stage reconstruction algorithm for sparse signals presented above applies
equally well to noise-shaping quantization based on beta encoding as discussed in
Section 4.3.3.3. However, it turns out that for beta encoding there is a more powerful
reconstruction algorithm which works for compressible signals as well.

Let @ now be an mxN compressive sampling matrix, and let H be the mxm noise
transfer operator and V be the p x m condensation operator as in (4.29), where again,
for simplicity, we have assumed that m/p is an integer. Note that the associated
noise-shaping quantization relation

®x—q = Hu
implies
V&x —Vq = VHu,

hence we may consider V@ as a new condensed measurement matrix and Vg =
V@x + VHu as the corresponding perturbed measurement. As before,

IVHu|> < VA lso—2llulloo < /BB ltt]loo,
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so that if the greedy quantization rule is stable (i.e., |u| 0 < &), then we can set
€:=/pp —m/P§ and consider the decoder

(q = ALV, Vg)).

As it follows from the discussion of (4.37), if for some @ > 0, Yo := yu(aVP) is
sufficiently small (say less than 1/3), then we have the estimate

ok(x)l

i

|x — AT(V®, Vg)||, < Cae +D

(4.41)

where C and D are now absolute constants.

For the random (Gaussian) case, the following result is implied by our discussion
above and other tools presented earlier in this paper (for a more detailed derivation
of a similar result, see [10]):

Theorem 7. Let @ be an m x N random matrix whose entries are i.i.d. standard
Gaussian variables. Let x € RN, ||x||, < 1, and let q be the result of quantizing the
measurements ®x with the noise transfer operator H from (4.29) and the alphabet
Aps where B + 2\/N/8 < L. Assume m > p > k are such that X' := m/p is an
integer and

A= % > CiA logN/k
for some numerical constant C. Let V be the p x m condensation matrix as in (4.29)
and € = Jﬁﬁ"’””& Then with probability exceeding 1 — e /€ for another
numerical constant C|, we have

Uk(x)l

T

We note that the optimal choice of the auxiliary parameters p and k in the above
theorem depends on the success probability as well as further information on the
amount of compressibility of x. A rule of thumb would be to balance the two error
terms above corresponding to quantization error and approximation error. Similarly,
the choice of 8, L, and § can be optimized. For example, if L > 2 is given and fixed,
but § is variable, then one would minimize the error bound (over p, k, f and &)
within a given probabilistic guarantee objective and a priori knowledge on x.

Finally, we end with the following remark: a recent work [39, 40] shows that
it is in fact possible to obtain an approximation from X' A quantized compressive
samples that is robust to additive noise and is stable for compressible signals. This
approximation is obtained via a one-stage reconstruction method based on solving
a simple convex optimization problem. Furthermore, by encoding the quantized
measurements via a Johnson- Lindenstrauss dimensionality reducing embedding as
in [26], one obtains near-optimal rate-distortion guarantees in the case of sparse
signals. For details, see [39, 40].

e — AS(VO, Vg)|l2 < CLS/p/m """ + D
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Chapter 5
Fourier Operators in Applied Harmonic
Analysis

John J. Benedetto and Matthew J. Begué

Abstract We present a panorama describing the pervasiveness of the short-time
Fourier transform (STFT) in a host of topics including the following: waveform
design and optimal ambiguity function behavior for radar and communications
applications; vector-valued ambiguity function theory for multi-sensor environ-
ments; finite Gabor frames for deterministic compressive sensing and as a back-
ground for the HRT conjecture; generalizations of Fourier frames and non-uniform
sampling; and pseudo-differential operator frame inequalities.

5.1 Introduction

5.1.1 The Short Time Fourier Transform (STFT)

Let Z denote the ring of integers and let C, respectively R, denote the field of
complex, respectively real, numbers. Given an integer N, let Z/NZ denote the ring
of integers modulo N. (We have chosen this well-defined notation, Z/NZ, and not
Zy, to denote the ring of integers mod N, since we shall deal with primes, p, and
Z, is universally used to denote the ring of p-adic integers.) Unless otherwise noted,
all of the vector spaces herein are complex vector spaces. Let L?(R¢) be the space
of square-integrable functions defined on the d-dimensional Euclidean space R4,
We let R? denote RY considered as the Fourier, or spectral, domain. We define the
Fourier transform of a Schwartz class function, f € .7 (R%), as

vy e R F(y) = / FOeTE dy.
R‘I
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The Fourier transform can be extended to the space .’ (R¥) of tempered distribu-
tions. In particular, the Fourier transform is well-defined on the Banach algebra
L'(R?) and, more generally, on the Banach algebra M,(R¢) of bounded Radon
measures. Some references on harmonic analysis are [13, 102, 103].

Let f, g € L*(RY). The short-time Fourier transform (STFT) of f with respect to
g is the function V,f defined on R* as

Vof (x, 0) = /Rdf(t)g(t — x)e 2T gy,

see [51, 52]. The STFT is uniformly continuous on R?*. Furthermore, if f,g €
L’>(RY), and F = f and G = g, then the fundamental identity of time-frequency
analysis is

Vof (x,0) = e 7" OVoF (w, —x).
If f, g € L>(RY), then it can be proved that

I ng”Lz(de) = fll 2 ey 181l 2 ey - (5.1

Thus, if ||g||;2(ge) = 1, then (5.1) allows us to assert that f is completely determined
by V,f. Furthermore, for a fixed “window” function g € L*(R¢) with | g|| ey = 1,

we can recover f € L*>(R?) from its STFT, V,f, by means of the vector-valued
integral inversion formula,

f =/ / Vof (x, w)e, Tog dw dx,
Rd Rd

where (e h)(t) = e*"h(t) and t,h(f) = h(t — x) represent modulation and
translation, respectively, see [51, p. 43].

Remark 1. a. Equation (5.1) is Moyal’s formula. This is a special case of a formu-
lation in 1949 due to José Enrique Moyal in the context of quantum mechanics
as a statistical theory. When written in terms of the Wigner distribution from
quantum mechanics (1932), this formulation is analogous to the orthogonality
relations, that give rise to (5.1) for the STFT. It should also be pointed out that
the Ville distribution for signal analysis also appeared in the late 1940s. These
ideas are closely related, e.g., see [36, Chapter 8] and [50].

b. Closely related to the STFT and the Wigner and Ville distributions is the narrow
band cross-correlation ambiguity function of v, w € L2(R), defined as

V(t, )/) eR x R, A(U, W)(t, )/) = / U(S + t)me*%[ixy ds.
R
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Note that A(v, w)(t,y) = ¥V, u(t,y). The narrow band radar ambiguity
function, A(v), of v € L*(R) is defined as

Viy) eRxR A@)(ty) = / ol + DTG ds
R

= " / v(s 4+ 5)v(s — é)e_z’”‘”’ ds.
R

P. M. Woodward (1953) introduced the function, A(v), to describe the effect
of range and Doppler on matched filter receivers in radar. Underlying the
function itself was his idea of using information theory to optimize resolution
in terms of radar waveforms. By comparison with Shannon, Woodward dealt
with the problem of mapping information into lower dimensions, prescient of
current dimension reduction methodologies. This leads to ambiguities whence,
the term, ambiguity function. Technical examples of such ambiguity abound in
the radar literature, e.g., [80, 100]. In Sections 5.3 and 5.4, we concentrate on
discrete versions of A(v).
Whereas the narrow band ambiguity function is essentially time-frequency
analysis, the wide band ambiguity function is essentially a wavelet transform,
e.g., [8, 64, 106].

c. The STFT can also be formulated in terms of so-called (X, 1) or continuous
frames, e.g., see [1, 2, 6, 45, 48].

5.1.2 Outline and theme

Our theme is to interleave and compare various related decompositions whose
coefficients are associated with sampled values of a given function. The tentacles
of this process are labyrinthine and diverse.

In Section 5.2 we give the necessary background from harmonic analysis.
We define balayage, sets of spectral synthesis and strict multiplicity, and provide
material from the theory of frames.

Motivated by radar and communications applications of waveform design,
Section 5.3 defines and discusses CAZAC sequences and optimal ambiguity
function behavior on Z/NZ, and states a basic result. Because of the importance
of dealing effectively with multi-sensor environments, Section 5.4 is devoted to
the development of the vector-valued Discrete Fourier Transform (DFT) and proper
definitions of vector-valued ambiguity functions. Perhaps surprisingly, this material
requires more than using bold-faced notation.

Section 5.5 treats two topics dealing with finite Gabor systems: deterministic
compressive sensing in terms of Gabor matrices and conditions to assert the linear
independence of finite Gabor sums. The former gives elementary results embedded
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in advanced material developed by others. The latter addresses the HRT (Heil,
Ramanathan, Topiwala) conjecture, and solves several special cases.

Sections 5.6 and 5.7 use the material on balayage, spectral synthesis, and strict
multiplicity to formulate frame inequalities for the STFT and pseudo-differential
operators, respectively. It builds on deep work of Beurling and Landau, and it is
developed in the spirit of Fourier frames and non-uniform sampling formulas.

We close with a brief appendix showing how the DFT can be used in practice
to compute Fourier transforms on R. We omit the required error estimates and
generalizations. On the other hand, we include the Appendix since this computation
requires the Classical Sampling Theorem (Theorem 17), thereby fitting naturally
into our theme.

All of the aforementioned topics are unified by the STFT. Further, most of
these topics have a long history with contributions by some of the most profound
harmonic analysts. Our presentation has to be viewed in that context. Furthermore,
our presentation is meant to integrate [5, 6, 15, 18-20, 22]. These references do
have a common author, who wants to record the relationships between these topics,
but who does not want to give the wrong impression about relative importance by
having so many of his papers listed in the references.

5.2 Background from harmonic analysis

5.2.1 Balayage, spectral synthesis, and multiplicity

Let M;(G) be the algebra of bounded Radon measures on the locally compact
abelian group (LCAG), G, with dual group denoted by G. The space, My(E),
designates those elements of M,(G) for which supp(u) S E, see [16]. We use
Beurling’s definition of balayage from his 1959-60 lectures.

Definition 1. Let E € G, and A C G be closed sets. Balayage is possible for
(E,A) CGxGif

Vi € My(G), v € My(E) such that ft = Don A.

The notion of balayage originated in potential theory by Christoffel in the early
1870s, see [32], and then by Poincaré in 1890, who used the idea of balayage as
a method to solve the Dirichlet problem, see [6] for historical background. The
set, A, of group characters is the analogue of the original role of A in balayage
as a collection of potential theoretic kernels. Kahane formulated balayage for the
harmonic analysis of restriction algebras, see [66].

We shall also require the definition of spectral synthesis due to Wiener and
Beurling.



5 Fourier Operators in Applied Harmonic Analysis 189

Definition 2. Let C,(G) be the set of bounded continuous functions on the
LCAG G. A closed set A C G is a set of spectral synthesis, or S-set, if

Y € My(G) and ¥f € Cy(G), supp(f) C Aandji =0on A —> /fdu =0,
G
(5.2)
see [12].

Remark 2. a. Let A(G) denote the Banach algebra of absolutely convergent
Fourier transforms on G, taken with the transported topology from L! (G); and
let A’/ (G) be its dual space. Equivalent to Definition 2, a closed set A C Gisaset
of spectral synthesis if for all T € A’ (G) and for all ¢ € A(G), if supp(T) € A
and ¢ = 0 on A, then T(¢) = 0. This equivalence follows from an elementary
functional analysis argument.

b. To determine whether or not A € G is a set of spectral synthesis is closely
related to the problem of determining the ideal structure of the convolution
algebra L'(G), and so a fundamental theorem about sets of spectral synthesis
can be thought of in the context of a Nullstellensatz of harmonic analysis. The
problem of characterizing S-sets emanated from Wiener’s Tauberian theorems
and was developed by Beurling in the 1940s. It is “synthesis” in that one wishes
to approximate f € L%°(G) in the o(L>®(G),L'(G)) (weak-*) topology by
finite sums of characters, y : L*°(G) — C, that is, each y is a continuous
homomorphism G — {z € C : |z| = 1} under multiplication. Further, y can
be considered an element of A with supp(d,) < supp(f‘), where supp(f‘) is the
so-called spectrum of f. Such an approximation is elementary to achieve with
convolutions of the measures §,,, but in this case we lose the essential property
that the spectra of the approximants be contained in the spectrum of f.

c¢. The annihilation property of (5.2) holds when f and p have balancing smooth-
ness and irregularity. For example, if fe RN L=¢ec.sRY, andp =0
on supp(f) then f (¢) = 0. Similarly, the same annihilation holds for the pairing
of M, (R9) and CO(R")

d. The sphere 52 C RR? is not an S-set (proven by Schwartz in 1947). Also, every
non-discrete G has non-S-sets (proven by Malliavin in 1959). Polyhedra are
S-sets while the 1/3-Cantor set is an S-set with non-S-subsets, see [12].

Definition 3. A closed set I" C R is a set of strict multiplicity if

A € My (") \ {0} such that | }lim |i(x)| =0,
X|[—>00

where £ is the inverse Fourier transform of p and [|lx|| denotes the standard
Euclidean norm of x € RY. This is also well-defined for G and G.

The notion of strict multiplicity was motivated by Riemann’s study of sets of
uniqueness for trigonometric series. In 1916 Menchov showed that there exist
aclosed ' € R/Z and u € M(I') \ {0} such that |[I'| = 0 and i(n) =
O((log |n|)~"/?) as |n| — oo (|I"| is the Lebesgue measure of I"). There have been
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intricate refinements of Menchov’s result by Bary (1927), Littlewood (1936), Salem
[97, 98], Ivasev-Mucatov (1957), and Beurling, et al. see [12].
The above concepts are used in the deep proof of the following theorem.

Theorem 1. Assume that A < RY is an S-set of strict multiplicity, and that
balayage is possible for (E, A) € R? x R Let A, = {y € R? : dist(y, A) < €.
There is €y > 0 such that if 0 < € < €, then balayage is possible for (E, A.).

5.2.2 Frames

Definition 4. Let H be a separable Hilbert space, e.g., H = L*(RY), R, or C%. A
sequence F = {x;};e; C H is a frame for H if there exist constants A, B > 0 such
that

VxeH. Alx]? <> [(x.x) < B x| (5.3)

i€l

The constants A and B are lower and upper frame bounds, respectively. In this paper
we shall assume that A is the largest of the lower frame bounds and B is the smallest
of the upper frame bounds. In this case, we refer to A and B as the lower and upper
frame bounds, respectively. If A = B, we say that F is a tight frame for H. If all the
elements of F are of equal norm, we refer to F' as an equal-norm tight frame. In the
case that the tight frame, F, consists of a finite number of elements all with norm
equal to 1, then F is a finite unit-norm tight frame or FUNTF.

Frames are a natural tool for dealing with numerical stability, over-completeness,
noise reduction, and robust representation problems. Frames were first defined by
Duffin and Schaeffer [39] in 1952 but appeared even earlier in Paley and Wiener’s
book [86] in 1934. Since then, significant contributions have been made by Beurling
[23, 24], Beurling and Malliavin [25, 26], Kahane [65], Landau [79], Jaffard [63],
and Seip [85, 99]. Recent expositions on the theory and applications of frames
include [34, 75, 76].

Theorem 2. If F = {x;};e; C H is a frame for H, then

VxeH, x= Z(x, S hxi)x = Z(x, xS L,

i€l i€l

where the map, S : H — H, x +— Z(x,x,-)x,-, is a well-defined topological
iel

isomorphism.

Theorem 2 illustrates the natural role that frames play in non-uniform sampling

formulas, see Example 1.
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Let A C R be a closed set. The Paley-Wiener space, PW 4, is defined as
PW, = {f € L*(RY) : supp(f) C A}.

Definition 5. Let A € R?bea compact set and let E = {x;};c; € R? be a sequence.
For each x € E, define f, = (e_,1 A)V € PW,, where 1 4 denotes the characteristic
function of the set A. The sequence {f; : x € E} is a Fourier frame for PW , if there
exist constants A, B > 0 such that

Vf € PWa, Alfl7ga < Y @I < BIFI g - (5.4)

x€E

In fact, (5.4) is a special case of (5.3) since f(x) is an inner product by the Fourier
inversion formula.

Definition 6. A sequence E C R is separated if
dr > 0 such that inf{||x — y|| : x,y € E and x # y} > r.

The following theorem due to Beurling gives a sufficient condition for the
existence of Fourier frames in terms of balayage. The proof uses Theorem 1, and its
history and structure are analyzed in [6] as part of a more general program.

Theorem 3 (Beurling). Assume that A C RY is an S-set of strict multiplicity and
that E C RY is a separated sequence. Further assume that for every y € A and
for every compact neighborhood N(y), A N N(y) is a set of strict multiplicity. If
balayage is possible for (E, A), then {(e—,1,)Y : x € E} is a Fourier frame for
PW,y.

A host of examples can be deduced satisfying the hypotheses of Theorem 3 as
well as Theorem 14 (ahead) from the constructions in [23, Section II].

Example 1. The conclusion of Theorem 3 is the assertion

VfePWa, f= fOST'(R) =D (.S R

X€EE X€EE

where S(f) = Y epf() (1)

5.3 Optimal ambiguity function behavior on Z/NZ

Definition 7. A function, u : Z/NZ — C, is Constant Amplitude Zero Autocorre-
lation (CAZAC) if

Vm e Z/NZ, |ulm]|=1, (CA)
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and
Vm € Z/NZ\ {0}, Zu[m + KJu[k] = 0. (ZAC).

Equation (CA) is the condition that u has constant amplitude 1. Equation (ZAC) is
the condition that u has zero autocorrelation for m € (Z/NZ) \ {0}, i.e., off the
DC-component.

The study of CAZAC sequences and other sequences related to optimal auto-
correlation behavior is deeply rooted in several important applications. One of the
most prominent applications is the area of waveform design associated with radar
and communications. See, e.g., [7, 21, 35,47, 49, 53,59, 72,73, 80, 84, 91, 93, 100,
108, 109]. There has been a striking recent application of low correlation sequences
to radar in terms of compressed sensing [60].

There are also purely mathematical roots for the construction of CAZAC
sequences. One example, that inspired the role of probability theory in the subject, is
due to Wiener, see [17]. Another originated in a question by Per Enflo in 1983 asking
about specific Gaussian sequences to deal with the estimation of certain exponential
sums, see [96] by Saffari for the role played by Bjorck, cf. [28, 29].

Do there exist only finitely many non-equivalent CAZAC sequences in Z/NZ?
The answer to this question is “yes” for N prime and “no” for N = MK?, see, e.g.,
[18, 96].

Definition 8. Let p be a prime number, and so Z/pZ is a field. A Bjorck CAZAC
sequence, b,, of length p is defined as

Vk=0,1,...,p—1, bylk] = ei0p(k),

where, forp = 1 (mod 4),

6,(k) = arccos (1 +l«/l—7) (S)

and, for p = 3 (mod 4),

0, (k) = 1 arccos (11 I_I;) [(1—68) (S) =+ 8-

Here, §y is the Kronecker delta and (f) is the Legendre symbol defined by

i 0, ifk=0 (mod p),
(—) =41, ifk=n? (mod p) for somen € Z,
p —1, ifk # n?> (mod p) foralln € Z.
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In [27] Bjorck proved that Bjorck sequences are CAZAC sequences, and there is
a longstanding collaboration of Bjorck and Saffari in the general area, see [29] for
references.

Definition 9. Let u : Z/NZ — C. The discrete narrow band ambiguity function,
An(u) : Z/NZ x Z/NZ — C, of u is defined as

N—1
V(m,n) € Z/NZ x ZINZ, Ay@u)[m,n] = % > " ulm + ku[kle "N (5.5)
k=0

The discrete autocorrelation of u is the function, Ay (v)[-,0] : Z/NZ — C.

The following estimate is proved in [22]. Notwithstanding the difficulty of proof,
its formulation was the result of observations by two of the authors of [22] based on
extensive computational work by one of them, viz., Woodworth.

Theorem 4. Let b, denote the Bjorck CAZAC sequence of prime length p, and let

Ap(by) be the discrete narrow band ambiguity function defined on Z/pZ x Z//\pZ
Then,

V(m,n) € (Z/pZ x Z]pZ) \ (0.0).
|A,(by,)[m n]|<i—i—i ifp=1 (mod 4)
p\Up ’ \/ﬁ p’ P = s

and

2 4 ,
|4, (bp)[m, n]| < 7 + e if p=3 (mod 4).

The proof of Theorem 4 requires Weil’s exponential sum bound [112], which is
a consequence of his proof of the Riemann Hypothesis for curves over finite fields
[113].

Theorem 4 establishes essentially optimal ambiguity function behavior for b, cf.
Example 2 and Section 5.5.1. In this regard, and by comparison, if u is any CAZAC
sequence of length p, then

1

< max{|A,)[m, n]| : (m,n) € (Z/pZ x Z/pZ) \ {(0,0)}}.

i

Example 2. a. Let p be a prime number. Alltop [3] defined the sequence, a,, of
length p as

Vk=0,1,...p—1, aylk] = AT
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Clearly, a, is of constant amplitude (CA). Alltop proved that
1
Vm € (Z/pZ) \ {0} and Vn € Z/pZ, |Ap(a,)[m,n]| = 7,
7

which is an excellent bound, cf. Theorem 4 and Section 5.5.1, but also
establishes that a, is nor a CAZAC sequence in contrast to b,,.

b. The structure of A,(b,) is also more complex than that of A,(a,) in that
|A,(Dp)| takes values smaller than 1/,/p, a feature that can be used in radar
and communications. This goes back to [22] with continuing work by one of
those authors and Nava-Tudela.

5.4 The vector-valued DFT and ambiguity functions

5.4.1 The vector-valued DFT

Let N > d. Form an N x d matrix using any d columns of the N x N DFT
matrix (¢>"*/N)N_1, The rows of this matrix, up to multiplication by 1/+/d, form
a FUNTF for C“.

Definition 10. Let N > d and let s : Z/dZ — 7Z/NZ be injective. The rows
{E,}N_{ of the N x d matrix,

(627rim s(n)/N)

mn’
form an equal-norm tight frame for C¢, that we call a DFT frame.

Definition 11. Let {£;}Y_) be a DFT frame for C?. Given u : Z/NZ — C%, we
define the vector-valued discrete Fourier transform of u by

N—1

VneZy, Fu)(n)=i(n) =) u(m)*E_,.

m=0
where * is pointwise (coordinatewise) multiplication. We have that
F: 0*(Z/NZ x 7.]dZ) — *(Z/NZ x 7.]d7Z)

is a linear operator.
The following inversion formula for the vector-valued DFT is proved in [5].
Theorem 5. The vector-valued Fourier transform is invertible if and only if s, the

function defining the DFT frame, has the property that

VneZ/dZ, (s(n),N)=1.
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The inverse is given by

N—1
1

Vm e Z/NZ, =Flam) = =Y i Epn.

m / u(m) u(m) N 2 u(n) =

In this case we also have that F*F = FF* = NI, where I is the identity operator.

In particular, the inversion formula is valid for N prime.
We also note here that vector-valued DFT uncertainty principle inequalities are
valid, similar to the results [33] in compressive sensing.

5.4.2 Vector-valued ambiguity functions and frame
multiplication

5.4.2.1 An ambiguity function for vector-valued functions

Givenu : Z/NZ — C¢.1f d = 1, then we can write the discrete ambiguity function,
Ay(u), as

N—1

D {ulm + k). u(k)en). (5.6)

k=0

1
Av()lm.n] = —
where recall e, = ¢*™"/N_ For d > 1, the problem of defining a discrete periodic
ambiguity function has two natural settings: either it is C-valued or C?-valued, i.e.,
A\)[m,n] € C or A%(u)[m,n] € C? The problem and its solutions were first
outlined in [19] (2008).

Let us consider the case Al (u)[m,n] € C. Motivated by (5.6), we must find a
sequence {E;} € C? and an operator, * : C¢ x C¢ — C?, so that

N—1
A\ (u)[m.n] = zlv > {ulm + k). u(k) x Ey) € C (5.7)
k=0

defines a meaningful ambiguity function.

To effect this definition, we shall make the following three ambiguity function
assumptions. First, we assume that there is a sequence {E;}}—) < C? and an
operation, *, with the property that E,, x E, = E,, for m,n € Z/NZ. Second, to
deal with u(k) * E, in (5.7), where u(k) € C?, we also assume that {E;}¥—} € C?
is a tight frame for C?. The multiplication nk is modular multiplication in Z/NZ.
Third, we assume that % : C¢ x C? — C¢ is bilinear, in particular,
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N—1 N—1 N—1N-1
Z CjEj * (Z dkEk) = Z Z dekEj * Ek.
j=0 k=0 Jj=0 k=0

Example 3. Let {Ej}jvzj]l C (¢ satisfy the three ambiguity function assumptions.
Then,

d2 N—1N—1

Enx By =53 ) (En E)En BBy (5.8)
j=0 k=0

Further, let {lEj};Vz_()l be a DFT frame, and let r designate a fixed column. Assume,
without loss of generality, that the N x d matrix for the frame consists of the first d
columns of the N x N DFT matrix. Then (5.8) gives

leri(m-i—n)r/N

(Em *En)(r) = T = m+n(r)-

Consequently, for DFT frames, * is componentwise multiplication in C? with a
factor of +/d. In particular, we have shown that if u : Z/NZ — C¢, then Al (u)
is well-defined and can be written explicitly for the case of DFT frames and
component-wise multiplication, *, in C%.

The definition of x* is intrinsically related to the “addition” defined on the indices
of the frame elements. In fact, it is not pre-ordained that this “addition” must be
modular addition on Z/NZ, as was the case in Example 3. Formally, we could have
E, x E, = E,., for some function e : Z/NZ x Z/NZ — 7Z/NZ. The following
example exhibits this phenomenon for the familiar case of cross products from the
calculus, see [19].

Example 4 (A}, (u) for cross product frames). Define x : C3 x C? — C3 to be the
cross product on C3. Let {i, j, k} be the standard basis for C?,e.g.,i = (1,0,0) € C.
Wehavethatixj =k, jxi = —k, kxi=jixk=—j,jxk =10kxj=—i,
ixi=jxj=kxk = 0. The union of tight frames and the zero vector is a tight
frame. In fact, {0, 1i,, k, —i, —j, —k} is a tight frame for C? with frame constant 2.
Let EQ = O, E] = i, E2 =j, E3 = k, E4 = —i, E5 = —j, and E@ = —k. The index
operation corresponding to the frame multiplication is the non-abelian operation
o:7/77 x Z.]7Z — 7./ 77, where we compute

le2 =23, le3 =5, 1le4 =0, le5 =06, leb6=2,

2e1 =06, 2e3 =1, 204 =23, 2¢5=0, 206 =4,

3el =2, 3e2=4, 3e4 =035, 3e5=1, 3¢6=0,
nen=020, ned0=0en=0, etc.

Thus, the ambiguity function assumptions are valid, with the verification of
bilinearity from the definition of the cross product being a tedious calculation. In
any case, we can now obtain the following formula:
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6
Z(M, Ej) (v, Ex)Eje.

1 k=1

6
Yu,v e C3, uxv=

J

Consequently, Ay (u) is well-defined for the case of this cross product frame and
associated bilinear operator, *.

5.4.2.2 Frame multiplication

The essential idea and requirement to define ambiguity functions for u : Z/NZ —
C? is to formulate an effective notion of frame multiplication. This was the purpose
of the exposition in Section 5.4.2.1 and of [19], where we further noted the
substantive role of group theory in this process.

In fact, the set {0, i, +j, 2k} of Example 4 is a quasi-group, and the quaternion
group of order 8, viz., {£1, £i, j, £k}, fits into our theory, see Andrews [4] who
develops frame multiplication theory for non-abelian finite groups.

We begin this subsection by defining frame multiplication along the lines
motivated in Section 5.4.2.1. Then we shall define frame multiplication associated
with a group. Our theory characterizes the groups for which frame multiplication
is possible; and, in this case, ambiguity functions can be defined for C4-valued
functions. We shall state some results when the underlying group is abelian, see
[5] for the full theory.

Definition 12. a. Let F = {x;};e; be a frame for a finite dimensional Hilbert
space, H, and let ® : [ x I — [ be a binary operation. We say e is a frame
multiplication for F if there is a bilinear map, * : H x H — H, such that

Vi,jel, Xj * Xj = Xej.

Thus, e defines a frame multiplication for F if and only if, for every x =
Diegaxiandy = ., bix;in H,

X*xy = Zaibjxi.j

ijel

is well-defined, independent of the frame representations of x and y.

b. Let (G, o) be a finite abelian group, and let F = {x,},cc be a frame for a finite
dimensional Hilbert space. We say (G, ) defines a frame multiplication for F
if there is a bilinear map, % : H x H — H, such that

Vg, h € G, Xg*Xp = Xgep.
Definition 13. Let (G, o) be a finite group. A finite tight frame F = {x,},cc for a

Hilbert space H is a G-frame if there exists & : G — % (H), a unitary representation
of G, such that
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Vg, heG, m(g)xn= Xgen.

Here, % (H) is the group of unitary operators on H.

Remark 3. The notion of G-frames [105] is a natural one with slightly varying
definitions. Definition 13 has been used extensively by Vale and Waldron [111].
Closely related, there are geometrically uniform frames, see Bolcskei and Eldar [30],
Forney [46], Heath and Strohmer [104], and Slepian [101], as well as a more general
formulation due to Han and Larson [54, 55].

The following theorem is proved in [5].

Theorem 6. Let (G, ) be a finite abelian group and let F = {x,},ec be a
tight frame for a finite dimensional Hilbert space H. Then G defines a frame
multiplication for F if and only if F is a G-frame.

Definition 14. a. Let (G, o) be a finite abelian group of order N. Thus, G has
exactly N characters, i.e., N group homomorphisms, y; : G — C*, where C* is
the multiplicative group, C \ {0}. For each i and j, y;(x;) is an Nth root of unity;
and the set {(y;(x;)))_, :j=1,...,N} € C" is an orthonormal basis for CV.

b. LetI C {1,..., N} have cardinality d. Then, for any U € U (CY,

F={U(yj(x))jer:i=1,...,N} € C?

is a frame for C?, and this is the definition of a harmonic frame, see [61, 110].
c. If (G, o) is Z/NZ with modular addition, and U is the identity, then F is a DFT-
FUNTE.
d. Tight frames F = {xg}gec and H = {yg}gec for C? are said to be unitarily
equivalent if there exist a unitary map U € % (C?) and constant ¢ > 0 such that

Vg e G, x,=cU(y,).
Using Schur’s lemma and Maschke’s theorem [107], we see the relationship

between frame multiplication and harmonic frames in the following result.

Theorem 7. Let (G, ®) be a finite abelian group and let F = {x,}4ec be a tight
frame for C. If (G, o) defines a frame multiplication for F, then F is unitarily
equivalent to a harmonic frame, and there exist U € % (C%) and ¢ > 0 such that

1 1 1
Vg, he G, —Ulxy*xp) = —Uxy)—U(xp),
c c c

where the product on the right side is vector pointwise multiplication.

Corollary 1. Let F = {xi}rez/nz. © C? be a tight frame for C?. If Z./NZ defines a
frame multiplication for F, then F is unitarily equivalent to a DFT frame.
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5.5 Finite Gabor systems
5.5.1 Gabor matrices

Definition 15. Let F = {x;}}' € C% N > d. The coherence of F, denoted by
W(F), is defined as

| x5 xi) |
W(F) = max ;————.
5 Tl Tl
It is well-known that
N—d \"?
< u(F) <1, 59
(d(N )) < p(F) < (5.9)

see [92, 114]. The expression on the left side of (5.9) is the Welch bound for F. If
Ww(F) = 1, then there are two elements Xj,xx € F that are aligned, and we have
maximal coherence. If w(F) is the Welch bound, then all of the x; € F are spread
out in C4, and we say that we have maximal incoherence or minimal coherence.

Remark 4. In the case that F is a FUNTEF, then wp(F) is the cosine of the smallest
angle between the lines spanned by the elements of the frame. This is not the
same as asserting that the coherence is the cosine of the smallest angle between the
elements of the frame. For example, in the frame for R2 that consists of the vectors
(1,0),(0,1), (—1,0), and (0, —1), the smallest angle between any two elements is
90 degrees but the smallest angle between any two of the lines spanned by the frame
is 0 degrees. Thus, taking the smallest cosine between elements of the frame yields
a coherence of 0, whereas taking the smallest cosine between the lines spanned by
the frame gives the correct coherence of 1.

A FUNTE, F = {xi}ier, with |{xj, x¢)| constant for all j # k is called an
equiangular frame. It can be shown that among all FUNTFs of N frame elements
in C?, the equiangular frames are those with minimal coherence. In fact, 1 (F)
is the Welch bound if the FUNTF is equiangular. Note that (5.9) implies that an
equiangular frame must satisfy N < d2, see [104].

Gabor analysis is centered on the interplay of the Fourier transform, translation
operators, and modulation operators. Recall that for a given a function g : Z/NZ —
C, we let 7jg(l) = g(l —j) and ex(l) = > /N forl = 0,1,...,N — 1, denote
translation and modulation on g, respectively. Let T denote the transpose operator.
The N x N? Gabor matrix, G, generated by g, is defined as

G(g) = [Go|G1] -+ |Gn-1], (5.10)

where each G; is the N x N matrix,

G = [eoTj—Ng|€1 7i-ng| - len—1 T,/‘—Ng] )
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and where each (ekrj_N)T is the N x 1 column vector, k = 0,1,...,N — 1.
Next, we introduce the notation,

(g)éc = & 5-ng = (ex(0)7-ng(0), ex(1)T—ng(1). .. .. ex(N — 1) Tj—ng(N — 1))T-

We identify the Gabor matrix G(g) with the set of all these vectors, and so we write
G, = {(g)]k Z/';IO'

This set, G, of vectors is referred to as the Gabor system generated by g, with
corresponding Gabor matrix G(g). Clearly, if g : Z/NZ — C, then G, consists
of N? vectors each of length N, corresponding to all N? time-frequency shifts in
7/NZ x Z/NZ.

The following is elementary to prove, see [87].

Theorem 8. Given g : Z/NZ — C, not identically zero. Then, G, is a tight frame
for CN.

In this case of Theorem 8, the Gabor system, G,, is called a Gabor frame for CV,
see [87].

Given g : Z/NZ — C, not identically zero. Then, for G,, the Gabor frame for
CV, (5.9) becomes

N-N 1
NN2—-1)  JN+1

The notion of coherence is useful in obtaining sparse solutions to systems of
equations. It is well known that for a full rank matrix A € C™™ with n < m, there
is an infinite number of solutions, x € C™, to the system Ax = b. One is interested,
especially in the context of signal processing and image compression, in finding the