
Applied and Numerical Harmonic Analysis

Götz E. Pfander
Editor

Sampling 
Theory, a 
Renaissance
Compressive Sensing and Other 
Developments





Applied and Numerical Harmonic Analysis

Series Editor
John J. Benedetto
College Park, Maryland, USA

Editorial Advisory Board

Akram Aldroubi
Vanderbilt University
TN, USA

Douglas Cochran
Arizona State University
AZ, USA

Hans G. Feichtinger
University of Vienna
Austria

Christopher Heil
Georgia Institute of Technology
GA, USA

Stéphane Jaffard
University of Paris XII
France

Jelena Kovačević
Carnegie Mellon University
PA, USA

Gitta Kutyniok
Technische Universität Berlin
Berlin, Germany

Mauro Maggioni
Duke University
NC, USA

Zuowei Shen
National University of Singapore
Singapore

Thomas Strohmer
University of California
CA, USA

Yang Wang
Michigan State University
MI, USA

More information about this series at http://www.springer.com/series/4968

http://www.springer.com/series/4968


Götz E. Pfander
Editor

Sampling Theory,
a Renaissance
Compressive Sensing and Other
Developments



Editor
Götz E. Pfander
School of Engineering and Science
Jacobs University Bremen
Bremen, Germany

ISSN 2296-5009 ISSN 2296-5017 (electronic)
Applied and Numerical Harmonic Analysis
ISBN 978-3-319-19748-7 ISBN 978-3-319-19749-4 (eBook)
DOI 10.1007/978-3-319-19749-4

Library of Congress Control Number: 2015953322

Mathematics Subject Classification (2010): 94A20, 94A12, 42C15, 41A45, 30H20

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental
relationship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.

v
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Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory

Biomedical signal processing Radar applications

Digital signal processing Sampling theory

Fast algorithms Spectral estimation

Gabor theory and applications Speech processing

Image processing Time-frequency and

Numerical partial differential equations time-scale analysis

Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
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adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

College Park, MD, USA John J. Benedetto





Preface

renaissance [...]

enthusiastic and vigorous activity along literary, artistic, and cultural lines distin-
guished by a revival of interest in the past, by an increasing pursuit of learning, and by
an imaginative response to broader horizons generally [...]
a return of youthful vigor, freshness, zest, or productivity a renewal of life or interest
in some aspect of it [...]

Webster’s Third New International Dictionary

Sampling theory has played a central role in mathematics, science, and engi-
neering for over 75 years now. The original quest of identifying a continuous
function on Euclidean space from discrete data is addressed in the classical sampling
theorem, commonly attributed to Cauchy, Kotelnikov, Ogura, Raabe, Shannon,
and/or Whittaker. It states that a bandlimited function can be recovered in full
from values measured on a regular sampling grid whenever the bandlimitation is
described by an interval whose length does not exceed the density of the sampling
grid. A multitude of variants and extensions of this result have cemented the
extensive role of sampling theory in engineering and science during the second half
of the 20th century.

Today, the original emphasis on recovery from samples is complemented by the
need for efficient digital representations of signals and images by various kinds of
available, but at first sight insufficient, measurements. In addition, fast and noise
resistant algorithms aimed at recovering from such measurements are of increasing
importance. The assumption that a signal is bandlimited in the classical setting is
commonly replaced by possibly nonlinear constraints on the objects at hand; and
the need to efficiently obtain reliable nonredundant representations of such objects
may involve a nonlinear measurement procedure as well.

Such and related considerations have lately reenergized the area of sampling
theory and inspired the rapid growth of new interdisciplinary research areas such
as compressive sensing and phase retrieval.

ix
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Compressive sensing is based on the observation that many practical signals like
images, speech, music, radar signals, ultrasound signals, and man-made commu-
nication signals are well characterized by a relatively small number of relevant
parameters when compared to the dimension of the ambient space. That is, we
assume that the signal is contained in – or is well approximated by a signal in – the
union of low-dimensional subspaces of a high dimensional space; the signal depends
on a sparse set of parameters and the difficulty lies in realizing which parameters
are active and which ones can be ignored. For example, if a high dimensional
signal is known to have few nonzero Fourier coefficients of unknown locations,
then compressive sensing algorithms exploit this sparsity assumption and recover
the signal from samples far below the Nyquist rate.

In compressive sensing, the nonlinearity of the signal space leads to challenging
mathematical problems when attempting to prove performance guarantees for
realistic recovery algorithms such as Basis Pursuit or Orthogonal Matching Pursuit.
State-of-the-art results control the recovery probability of sparse signals when the
number of required measurements grows only linearly in the number of nonzero
parameters and logarithmically in the ambient dimension.

The second example of a flourishing research area in sampling theory is
motivated by X-ray crystallography where, in essence, only magnitudes of Fourier
coefficients of an image are measured. In order to reconstruct the image, some
additional insights on the image need to be utilized to recover the phase of each
Fourier coefficient and thereby the original image. To achieve this in a provably
numerically stable manner remains an open problem to date. This being said, the
described problem spearheaded the novel research area of phase retrieval. The
question addressed herein is the following: in which settings and for what kind of
measurements can we design algorithms that recover images or other signals from
magnitudes of those measurements?

Compressed sensing and phase retrieval are just two examples that illustrate the
influx of new ideas and paradigms in sampling theory; they form the foundation of
the sampling theory renaissance that we enjoy today in mathematics, science, and
engineering.

The contributed chapters in this volume are authored by invited speakers and
session organizers of the 10th International Conference on Sampling Theory and
Applications (SampTA) which took place on July 1st to 5th, 2013, in Bremen,
Germany. The authors’ contributions are organized into five parts, “Random
Measurements of High Dimensional Data,” “Finite and Structured Frames,” “Band-
limitation and Generalizations,” “Sampling and Parametric Partial Differential
Equations,” and “Data Acquisition,” thereby representing a good portion of research
areas discussed at SampTA 2013.

The success of the conference was made possible through the enthusiasm and
commitment of a number of colleagues working in the vast area of sampling theory.
Foremost, I would like to thank my colleagues on the local organization team,
Peter Oswald, Werner Henkel, Peter Maaß, Peter Massopust, Anja Müller, and
Holger Rauhut, as well as my technical program co-chairs Yonina Eldar, Laurent
Fesquet, Gitta Kutyniok, Pina Marziliano, and Bruno Torrésani. The support by the
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SampTA steering committee, Akram Aldroubi, John Benedetto, Paul Butzer, Hans
Feichtinger, Paulo Ferreira, Karlheinz Gröchenig, Rowland Higgins, Abdul Jerri,
Yuri Lyubarskii, Farokh Marvasti, Gerhard Schmeißer, Bruno Torrésani, Michael
Unser, and Ahmed Zayed, is greatly appreciated.

Preparation of SampTA as well as of this volume was carried out in part during
my sabbatical stay at the Mathematics Department and the Research Laboratory of
Electronics at the Massachusetts Institute of Technology in Spring 2012, my visit as
John von Neumann Visiting Professor at the Technical University Munich in Spring
2014, and my one semester visit to the Catholic University Eichstätt-Ingolstadt
in Fall 2014. I would like to thank the three institutions, in particular, my hosts
Laurent Demanet, Vivek Goyal, Massimo Fornasier, and Rene Grothmann for their
hospitality and the great working conditions that I enjoyed during my stays. Last
but not least, I would like to thank my mathematics mentors, Hermann Pfander and
John Benedetto, for their continued support.

Jacobs University, Bremen Götz E. Pfander
15.10.2015
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Chapter 1
Estimation in High Dimensions: A Geometric
Perspective

Roman Vershynin

Abstract This tutorial provides an exposition of a flexible geometric framework
for high-dimensional estimation problems with constraints. The tutorial develops
geometric intuition about high-dimensional sets, justifies it with some results of
asymptotic convex geometry, and demonstrates connections between geometric
results and estimation problems. The theory is illustrated with applications to
sparse recovery, matrix completion, quantization, linear and logistic regression, and
generalized linear models.

1.1 Introduction

1.1.1 Estimation with constraints

This chapter provides an exposition of an emerging mathematical framework for
high-dimensional estimation problems with constraints. In these problems, the goal
is to estimate a point x which lies in a certain known feasible set K � R

n, from
a small sample y1; : : : ; ym of independent observations of x. The point x may
represent a signal in signal processing, a parameter of a distribution in statistics,
or an unknown matrix in problems of matrix estimation or completion. The feasible
set K is supposed to represent properties that we know or want to impose on x.

The geometry of the high-dimensional set K is a key to understanding estimation
problems. A powerful intuition about what high-dimensional sets look like has been
developed in the area known as asymptotic convex geometry [6, 32]. The intuition
is supported by many rigorous results, some of which can be applied to estimation
problems. The main goals of this chapter are:

Partially supported by NSF grant DMS 1265782 and USAF Grant FA9550-14-1-0009.

R. Vershynin (�)
Department of Mathematics, University of Michigan, 530 Church Street,
Ann Arbor, MI 48109, USA
e-mail: romanv@umich.edu

© Springer International Publishing Switzerland 2015
G.E. Pfander (ed.), Sampling Theory, a Renaissance, Applied and Numerical
Harmonic Analysis, DOI 10.1007/978-3-319-19749-4_1
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4 R. Vershynin

(a) develop geometric intuition about high-dimensional sets;
(b) explain results of asymptotic convex geometry which validate this intuition;
(c) demonstrate connections between high-dimensional geometry and high-

dimensional estimation problems.

This chapter is not a comprehensive survey but is rather a tutorial. It does
not attempt to chart vast territories of high-dimensional inference that lie on the
interface of statistics and signal processing. Instead, this chapter proposes a useful
geometric viewpoint, which could help us find a common mathematical ground for
many (and often dissimilar) estimation problems.

1.1.2 Quick examples

Before we proceed with a general theory, let us mention some concrete examples
of estimation problems that will be covered here. A particular class of estimation
problems with constraints is considered in the young field of compressed sensing
[15, 19, 26, 39]. There K is supposed to enforce sparsity; thus K usually consists of
vectors that have few nonzero coefficients. Sometimes more restrictive structured
sparsity assumptions are placed, where only certain arrangements of nonzero
coefficients are allowed [5, 61]. The observations yi in compressed sensing are
assumed to be linear in x, which means that yi D hai; xi. Here ai are typically
i.i.d. vectors drawn from some known distribution in R

n (for example, normal).
Another example of estimation problems with constraints is the matrix comple-

tion problem [12, 13, 34, 37, 63, 68] where K consists of matrices with low rank,
and y1; : : : ; ym is a sample of matrix entries. Such observations are still linear in x.

In general, observations do not have to be linear; good examples are binary
observations yi 2 f�1; 1g, which satisfy yi D sign.hai; xi/, see [10, 36, 57, 59],
and more generally E yi D �.hai; xi/, see [2, 58, 60].

In statistics, these classes of estimation problems can be interpreted as linear
regression (for linear observations with noise), logistic regression (for binary obser-
vations), and generalized linear models (for more general non-linear observations).

All these examples, and more, will be explored in this chapter. However, our
main goal is to advance a general approach, which would not be tied to a particular
nature of the feasible set K. Some general estimation problems of this nature
were considered in [3, 47] for linear observations and in [2, 58–60] for nonlinear
observations.

1.1.3 Plan of the chapter

In Section 1.2.1, we introduce a general class of estimation problems with con-
straints. We explain how the constraints (given by feasible set K) represent
low-complexity structures, which could make it possible to estimate x from few
observations.
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In Section 1.3, we make a short excursion into the field of asymptotic convex
geometry. We explain intuitively the shape of high-dimensional sets K and state
some known results supporting this intuition. In view of estimation problems, we
especially emphasize one of these results—the so-called M� bound on the size of
high-dimensional sections of K by a random subspace E. It depends on the single
geometric parameter of K that quantifies the complexity of K; this quantity is called
the mean width. We discuss mean width in some detail, pointing out its connections
to convex geometry, stochastic processes, and statistical learning theory.

In Section 1.4, we apply the M� bound to the general estimation problem with
linear observations. We formulate an estimator first as a convex feasibility problem
(following [47]) and then as a convex optimization problem.

In Section 1.5, we prove a general form of the M� bound. Our proof borrowed
from [59] is quite simple and instructive. Once the M� bound is stated in the lan-
guage of stochastic processes, it follows quickly by application of symmetrization,
contraction, and rotation invariance.

In Section 1.6, we apply the general M� bound to estimation problems; obser-
vations here are still linear but can be noisy. Examples of such problems include
sparse recovery problems and linear regression with constraints, which we explore
in Section 1.7.

In Section 1.8, we extend the theory from Gaussian to sub-Gaussian observations.
A sub-Gaussian M� bound (similar to the one obtained in [47]) is deduced from
the previous (Gaussian) argument followed by an application of a deep comparison
theorem of X. Fernique and M. Talagrand (see [71]).

In Section 1.9, we pass to exact recovery results, where an unknown vector x
can be inferred from the observations yi without any error. We present a simple
geometric argument based on Y. Gordon’s “escape through a mesh” theorem [33].
This argument was first used in this context for sets of sparse vectors in [66],
was further developed in [53, 69], and pushed forward for general feasible sets in
[3, 16, 72].

In Section 1.10, we explore matrix estimation problems. We first show how the
general theory applies to a low-rank matrix recovery problem. Then we address a
matrix completion problem with a short and self-contained argument from [60].

Finally, we pass to nonlinear observations. In Section 1.11, we consider single-bit
observations yi D sign hai; xi. Analogously to linear observations, there is a clear
geometric interpretation for these as well. Namely, the estimation problem reduces
in this case to a pizza cutting problem about random hyperplane tessellations of K.
We discuss a result from [59] on this problem, and we apply it to estimation by
formulating it as a feasibility problem.

Similarly to what we did for linear observations, we replace the feasibility
problem by optimization problem in Section 1.12. Unlike before, such replacement
is not trivial. We present a simple and self-contained argument from [58] about
estimation from single-bit observations via convex optimization.

In Section 1.13, we discuss the estimation problem for general (not only single
bit) observations following [60]. The new crucial step of estimation is the metric
projection onto the feasible set; this projection was studied recently in [17] and [60].
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In Section 1.14, we outline some natural extensions of the results for general
distributions and to a localized version of mean width.

1.1.4 Acknowledgements

The author is grateful to Vladimir Koltchinskii, Shahar Mendelson, Renato
Negrinho, Robert Nowak, Yaniv Plan, Elizaveta Rebrova, Joel Tropp, and especially
the anonymous referees for their helpful discussions, comments, and corrections,
which lead to a better presentation of this chapter.

1.2 High-dimensional estimation problems

1.2.1 Estimating vectors from random observations

Suppose we want to estimate an unknown vector x 2 R
n. In signal processing, x

could be a signal to be reconstructed, while in statistics x may represent a parameter
of a distribution. We assume that information about x comes from a sample of
independent and identically distributed observations y1; : : : ; ym 2 R, which are
drawn from a certain distribution which depends on x:

yi � distribution.x/; i D 1; : : : ;m:

So we want to estimate x 2 R
n from the observation vector

y D .y1; : : : ; ym/ 2 R
m:

One example of this situation is the classical linear regression problem in statistics,

y D Xˇ C �; (1.1)

in which one wants to estimate the coefficient vector ˇ from the observation vector
y. We will see many more examples later; for now let us continue with setting up
the general mathematical framework.
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Fig. 1.1 Estimation problem in high dimensions

1.2.2 Low complexity structures

It often happens that we know in advance, believe in, or want to enforce some prop-
erties of the vector x. We can formalize such extra information as the assumption
that

x 2 K

where K is some fixed and known subset of Rn, a feasible set. This is a very general
and flexible assumption. At this point, we are not stipulating any properties of the
feasible set K.

To give a quick example, in regression problem (1.1), one often believes that
ˇ is a sparse vector, i.e., among its coefficients only few are nonzero. This is
important because it means that a few explanatory variables can adequately explain
the dependent variable. So one could choose K to be a set of all s-sparse vectors in
R

n—those with at most s nonzero coordinates, for a fixed sparsity level s � n. More
examples of natural feasible sets K will be given later.

Figure 1.1 illustrates the estimation problem. Sampling can be thought of as a
map taking x 2 K to y 2 R

m; estimation is a map from y 2 R
m to Ox 2 K and is

ideally the inverse of sampling.
How can a prior information encoded by K help in high-dimensional estimation?

Let us start with a quick and non-rigorous argument based on the number of degrees
of freedom. The unknown vector x has n dimensions and the observation vector y
has m dimensions. So in principle, it should be possible to estimate x from y with

m D O.n/

observations. Moreover, this bound should be tight in general.
Now let us add the restriction that x 2 K. If K happens to be low dimensional,

with algebraic dimension dim.K/ D d � n, then x has d degrees of freedom.
Therefore, in this case the estimation should be possible with fewer observations,

m D O.d/ D o.n/:
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It rarely happens that feasible sets of interest literally have small algebraic
dimension. For example, the set of all s-sparse vectors in R

n has full dimension n.
Nevertheless, the intuition about low dimensionality remains valid. Natural feasible
sets, such as regression coefficient vectors, images, adjacency matrices of networks,
do tend to have low complexity. Formally K may live in an n-dimensional space
where n can be very large, but the actual complexity of K, or “effective dimension”
(which we will formally quantify in Section 1.3.5.6), is often much smaller.

This intuition motivates the following three goals, which we will discuss in detail
in this chapter:

1. Quantify the complexity of general subsets K of Rn.
2. Demonstrate that estimation can be done with few observations as long as the

feasible set K has low complexity.
3. Design estimators that are algorithmically efficient.

We will start by developing intuition about the geometry of sets K in high
dimensions. This will take us a short excursion into high-dimensional convex
geometry. Although convexity assumption for K will not be imposed in most results
of this chapter, it is going to be useful in Section 1.3 for developing a good intuition
about geometry in high dimensions.

1.3 An excursion into high-dimensional convex geometry

High-dimensional convex geometry studies convex bodies K in R
n for large n; those

are closed, bounded, convex sets with nonempty interior. This area of mathematics
is sometimes also called asymptotic convex geometry (referring to n increasing to
infinity) and geometric functional analysis. The tutorial [6] could be an excellent
first contact with this field; the survey [30] and books [4, 32, 52, 56] cover more
material and in more depth.

1.3.1 What do high-dimensional convex bodies look like?

A central problem in high-dimensional convex geometry is—what do convex bodies
look like in high dimensions? A heuristic answer to this question is—a convex body
K usually consists of a bulk and outliers. The bulk makes up most of the volume of
K, but it is usually small in diameter. The outliers contribute little to the volume, but
they are large in diameter.

If K is properly scaled, the bulk usually looks like a Euclidean ball. The
outliers look like thin, long tentacles. This is best seen Figure 1.2a, which depicts
V. Milman’s vision of high-dimensional convex sets [51]. This picture does not look
convex, and there is a good reason for this. The volume in high dimensions scales
differently than in low dimensions—dilating of a set by the factor 2 increases its
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Fig. 1.2 V. Milman’s “hyperbolic” drawings of high-dimensional convex sets

volume by the factor 2n. This is why it is not surprising that the tentacles contain
exponentially less volume than the bulk. Such behavior is best seen if a picture looks
“hyperbolic.” Although not convex, pictures like Figure 1.2 more accurately reflect
the distribution of volume in higher dimensions.

Example 3.1 (The `1 ball). To illustrate this heuristic on a concrete example,
consider the set

K D Bn
1 D fx 2 R

n W kxk1 � 1g;

i.e., the unit `1 ball in R
n. The inscribed Euclidean ball in K, which we will denote

by B, has diameter 2=
p

n. One can then check that volumes of B and of K are
comparable:1

voln.B/
1=n � voln.K/

1=n � 1

n
:

Therefore, B (perhaps inflated by a constant factor) forms the bulk of K. It is round,
makes up most of the volume of K, but has small diameter. The outliers of K are
thin and long tentacles protruding quite far in the coordinate directions. This can be
best seen in a hyperbolic drawing, see Figure 1.2b.

1.3.2 Concentration of volume

The heuristic representation of convex bodies just described can be supported by
some rigorous results about concentration of volume.

1Here an � bn means that there exists positive absolute constants c and C such that can � bn �
Can for all n.
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These results assume that K is isotropic, which means that the random vector X
distributed uniformly in K (according to the Lebesgue measure) has zero mean and
identity covariance:

EX D 0; EXXT D In: (1.2)

Isotropy is just an assumption of proper scaling—one can always make a convex
body K isotropic by applying a suitable invertible linear transformation.

With this scaling, most of the volume of K is located around the Euclidean sphere
of radius

p
n. Indeed, taking traces on both sides of the second equation in (1.2), we

obtain

E kXk22 D n:

Therefore, by Markov’s inequality, at least 90% of the volume of K is contained
in a Euclidean ball of size O.

p
n/. Much more powerful concentration results are

known—the bulk of K lies very near the sphere of radius
p

n and the outliers have
exponentially small volume. This is the content of the two major results in high-
dimensional convex geometry, which we summarize in the following theorem.

Theorem 3.2 (Distribution of volume in high-dimensional convex sets). Let K
be an isotropic convex body in R

n, and let X be a random vector uniformly
distributed in K. Then the following is true:

1. (Concentration of volume) For every t � 1, one has

P
˚kXk2 > t

p
n
� � exp.�ct

p
n/:

2. (Thin shell) For every " 2 .0; 1/, one has

P

nˇˇ̌kXk2 � p
n
ˇ
ˇ̌
> "

p
n
o

� C exp.�c"3n1=2/:

Here and later in this chapter, C; c denote positive absolute constants.

The concentration part of Theorem 3.2 is due to G. Paouris [54]; see [1] for an
alternative and shorter proof. The thin shell part is an improved version of a result
of B. Klartag [38], which is due to O. Guedon and E. Milman [35].

1.3.3 Low-dimensional random sections

The intuition about bulk and outliers of high-dimensional convex bodies K can
help us to understand what random sections of K should look like. Suppose E is a
random subspace of Rn with fixed dimension d, i.e., E is drawn at random from the
Grassmanian manifold Gn;d according to the Haar measure. What does the section
K \ E look like on average?
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Fig. 1.3 Random section of a high-dimensional convex set

If d is sufficiently small, then we should expect E to pass through the bulk of
K and miss the outliers, as those have very small volume. Thus if the bulk of K is
a round ball,2 we should expect the section K \ E to be a round ball as well; see
Figure 1.3.

There is a rigorous result which confirms this intuition. It is known as Dvoret-
zky’s theorem [23, 24], which we shall state in the form of V. Milman [48];
expositions of this result can be found, e.g., in [32, 56]. Dvoretzky–Milman’s
theorem has laid a foundation for the early development of asymptotic convex
geometry. Informally, this result says that random sections of K of dimension
d � log n are round with high probability.

Theorem 3.3 (Dvoretzky’s theorem). Let K be an origin-symmetric convex body
in R

n such that the ellipsoid of maximal volume contained in K is the unit Euclidean
ball Bn

2. Fix " 2 .0; 1/. Let E be a random subspace of dimension d D c"�2 log n
drawn from the Grassmanian Gn;d according to the Haar measure. Then there exists
R � 0 such that with high probability (say, 0:99) we have

.1 � "/B.R/ � K \ E � .1C "/B.R/:

Here B.R/ is the centered Euclidean ball of radius R in the subspace E.

Several important aspects of this theorem are not mentioned here—in particular
how, for a given convex set K, to compute the radius R and the largest dimension d of
round sections of K. These aspects can be found in modern treatments of Dvoretzky
theorem such as [32, 56].

2This intuition is a good approximation to truth, but it should be corrected. While concentration of
volume tells us that the bulk is contained in a certain Euclidean ball (and even in a thin spherical
shell), it is not always true that the bulk is a Euclidean ball (or shell); a counterexample is the unit
cube Œ�1; 1�n. In fact, the cube is the worst convex set in the Dvoretzky theorem, which we are
about to state.
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1.3.4 High-dimensional random sections?

Dvoretzky’s Theorem 3.3 describes the shape of low-dimensional random sections
K \ E, those of dimensions d � log n. Can anything be said about high-dimensional
sections, those with small codimension? In this more difficult regime, we can no
longer expect such sections to be round. Instead, as the codimension decreases, the
random subspace E becomes larger and it will probably pick more and more of the
outliers (tentacles) of K. The shape of such sections K \ E is difficult to describe.

Nevertheless, it turns out that we can accurately predict the diameter of K \ E.
A bound on the diameter is known in asymptotic convex geometry as the low M�
estimate, or M� bound. We will state this result in Section 1.3.6 and prove it in
Section 1.5. For now, let us only mention that M� bound is particularly attractive
in applications as it depends only on two parameters—the codimension of E and a
single geometric quantity, which informally speaking, measures the size of the bulk
of K. This geometric quantity is called the mean width of K. We will pause briefly
to discuss this important notion.

1.3.5 Mean width

The concept of mean width captures important geometric characteristics of sets in
R

n. One can mentally place it in the same category as other classical geometric
quantities like volume and surface area.

Consider a bounded subset K in R
n. (The convexity, closedness, and nonempty

interior will not be imposed from now on.) The width of K in the direction of a given
unit vector � 2 Sn�1 is defined as the width of the smallest slab between two parallel
hyperplanes with normal � that contains K; see Figure 1.4.

Analytically, we can express the width in the direction of � as

sup
u;v2K

h�;u � vi D sup
z2K�K

h�; zi

Fig. 1.4 Width of K in the direction of �
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where K�K D fu�v W u; v 2 Kg is the Minkowski sum of K and �K. Equivalently,
we can define the width using the standard notion of support function of K, which
is hK.�/ D supu2K h�;ui, see [64]. The width of K in the direction of � can be
expressed as hK.�/C hK.��/.

Averaging over � uniformly distributed on the sphere Sn�1, we can define the
spherical mean width of K:

Qw.K/ WD E sup
z2K�K

h�; zi :

This notion is standard in asymptotic geometric analysis.
In other related areas, such as high-dimensional probability and statistical

learning theory, it is more convenient to replace the spherical random vector � �
Unif.Sn�1/ by the standard Gaussian random vector g � N.0; In/. The advantage is
that g has independent coordinates while � does not.

Definition 3.4 (Gaussian mean width). The Gaussian mean width of a bounded
subset K of Rn is defined as

w.K/ WD E sup
u2K�K

hg;ui ; (1.3)

where g � N.0; In/ is a standard Gaussian random vector in R
n. We will often refer

to Gaussian mean width as simply the mean width.

1.3.5.1 Simple properties of mean width

Observe first that the Gaussian mean width is about
p

n times larger than the
spherical mean width. To see this, using rotation invariance we realize � as � D
g=kgk2. Next, we recall that the direction and magnitude of a standard Gaussian
random vector are independent, so � is independent of kgk2. It follows that

w.K/ D E kgk2 	 Qw.K/:

Further, the factor E kgk2 is of order
p

n; this follows, for example, from known
bounds on the �2 distribution:

c
p

n � E kgk2 � p
n (1.4)

where c > 0 is an absolute constant. Therefore, the Gaussian and spherical versions
of mean width are equivalent (up to scaling factor

p
n), so it is mostly a matter

of personal preference which version to work with. In this chapter, we will mostly
work with the Gaussian version.

Let us observe a few standard and useful properties of the mean width, which
follow quickly from its definition.
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Proposition 3.5. The mean width is invariant under translations, orthogonal trans-
formations, and taking convex hulls. ut

Especially useful for us will be the last property, which states that

w.conv.K// D w.K/: (1.5)

This property will come handy later, when we consider convex relaxations of
optimization problems.

1.3.5.2 Computing mean width on examples

Let us illustrate the notion of mean width on some simple examples.

Example 3.6. If K is the unit Euclidean ball Bn
2 or sphere Sn�1, then

w.K/ D E kgk2 � p
n

and also w.K/ � c
p

n, by (1.4).

Example 3.7. Let K be a subset of Bn
2 with linear algebraic dimension d. Then K

lies in a d-dimensional unit Euclidean ball, so as before we have

w.K/ � 2
p

d:

Example 3.8. Let K be a finite subset of Bn
2. Then

w.K/ � C
p

log jKj:

This follows from a known and simple computation of the expected maximum of
k D jKj Gaussian random variables.

Example 3.9 (Sparsity). Let K consist of all unit s-sparse vectors in R
n—those with

at most s nonzero coordinates:

K D fx 2 R
n W kxk2 D 1; kxk0 � sg:

Here kxk0 denotes the number of nonzero coordinates of x. A simple computation
(see, e.g., [58, Lemma 2.3]) shows that

c
p

s log.2n=s/ � w.K/ � C
p

s log.2n=s/:

Example 3.10 (Low rank). Let K consist of d1 
 d2 matrices with unit Frobenius
norm and rank at most r:

K D fX 2 R
d1�d2 W kXkF D 1; rank.X/ � rg:
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We will see in Proposition 10.4,

w.K/ � C
p

r.d1 C d2/:

1.3.5.3 Computing mean width algorithmically

Can we estimate the mean width of a given set K fast and accurately? Gaussian
concentration of measure (see [42, 43, 56]) implies that, with high probability, the
random variable

w.K; g/ D sup
u2K�K

hg;ui

is close to its expectation w.K/. Therefore, to estimate w.K/, it is enough to generate
a single realization of a random vector g � N.0; In/ and compute w.K; g/; this
should produce a good estimator of w.K/.

Since we can convexify K without changing the mean width by Proposition 3.5,
computing this estimator is a convex optimization problem (and often even a linear
problem if K is a polytope).

1.3.5.4 Computing mean width theoretically

Finding theoretical estimates on the mean width of a given set K is a nontrivial
problem. It has been extensively studied in the areas of probability in Banach spaces
and stochastic processes.

Two classical results in the theory of stochastic processes—Sudakov’s inequality
(see [43, Theorem 3.18]) and Dudley’s inequality (see [43, Theorem 11.17])—relate
the mean width to the metric entropy of K. Let N.K; t/ denote the smallest number
of Euclidean balls of radius t whose union covers K. Usually N.K; t/ is referred to
as a covering number of K, and log N.K; t/ is called the metric entropy of K.

Theorem 3.11 (Sudakov’s and Dudley’s inequalities). For any bounded subset K
of Rn, we have

c sup
t>0

t
p

log N.K; t/ � w.K/ � C
Z 1

0

p
log N.K; t/ dt:

The lower bound is Sudakov’s inequality and the upper bound is Dudley’s inequality.

Neither Sudakov’s nor Dudley’s inequality is tight for all sets K. A more
advanced method of generic chaining produces a tight (but also more complicated)
estimate of the mean width in terms of majorizing measures; see [71].

Let us only mention some other known ways to control mean width. In some
cases, comparison inequalities for Gaussian processes can be useful, especially
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Slepian’s and Gordon’s; see [43, Section 3.3]. There is also a combinatorial
approach to estimating the mean width and metric entropy, which is based on VC
dimension and its generalizations; see [44, 65].

1.3.5.5 Mean width and Gaussian processes

The theoretical tools of estimating mean width we just mentioned, including
Sudakov’s, Dudley’s, Slepian’s, and Gordon’s inequalities, have been developed in
the context of stochastic processes. To see the connection, consider the Gaussian
random variables Gu D hg;ui indexed by points u 2 R

n. The collection of
these random variables .Gu/u2K�K forms a Gaussian process, and the mean width
measures the size of this process:

w.K/ D E sup
u2K�K

Gu:

In some sense, any Gaussian process can be approximated by a process of this form.
We will return to the connection between mean width and Gaussian processes in
Section 1.5 where we prove the M� bound.

1.3.5.6 Mean width, complexity, and effective dimension

In the context of stochastic processes, Gaussian mean width (and its non-Gaussian
variants) plays an important role in statistical learning theory. There it is more
natural to work with classes F of real-valued functions on f1; : : : ; ng than with
geometric sets K � R

n. (We identify a vector in R
n with a function on f1; : : : ; ng.)

The Gaussian mean width serves as a measure of complexity of a function class in
statistical learning theory, see [45]. It is sometimes called Gaussian complexity and
is usually denoted �2.F/.

To get a better feeling of mean width as complexity, assume that K lies in the
unit Euclidean ball Bn

2. The square of the mean width, w.K/2, may be interpreted
as the effective dimension of K. By Example 3.7, the effective dimension is always
bounded by the linear algebraic dimension. However, unlike algebraic dimension,
the effective dimension is robust—a small perturbation of K leads to a small change
in w.K/2.

1.3.6 Random sections of small codimension: M� bound

Let us return to the problem we posed in Section 1.3.4 – bounding the diameter of
random sections K \ E where E is a high-dimensional subspace. The following
important result in asymptotic convex geometry gives a good answer to this
question.
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Theorem 3.12 (M� bound). Let K be a bounded subset of Rn. Let E be a random
subspace of Rn of a fixed codimension m, drawn from the Grassmanian Gn;n�m

according to the Haar measure. Then

E diam.K \ E/ � Cw.K/p
m

:

We will prove a stronger version of this result in Section 1.5. The first variant of
M� bound was found by V. Milman [49, 50]; its present form is due to A. Pajor and
N. Tomczak-Jaegermann [55]; an alternative argument which yields tight constants
was given by Y. Gordon [33]; an exposition of M� bound can be found in [43, 56].

To understand the M� bound better, it is helpful to recall from Section 1.3.5.1
that w.K/=

p
n is equivalent to the spherical mean width of K. Heuristically, the

spherical mean width measures the size of the bulk of K.
For subspace E of not very high dimension, where m D �.n/, the M� bound

states that the size of the random section K \ E is bounded by the spherical mean
width of K. In other words, subspace E of proportional dimension passes through
the bulk of K and ignores the outliers (“tentacles”), just as Figure 1.3 illustrates.
But when the dimension of the subspace E grows toward n (so the codimension m
becomes small), the diameter of K \ E also grows by a factor of

p
n=m. This gives

a precise control of how E in this case interferes with the outliers of K.

1.4 From geometry to estimation: linear observations

Having completed the excursion into geometry, we can now return to the high-
dimensional estimation problems that we started to discuss in Section 1.2. To recall,
our goal is to estimate an unknown vector

x 2 K � R
n

that lies in a known feasible set K, from a random observation vector

y D .y1; : : : ; ym/ 2 R
m;

whose coordinates yi are random i.i.d. observations of x.
So far, we have not been clear about possible distributions of the observations

yi. In this section, we will study perhaps the simplest model—Gaussian linear
observations. Consider i.i.d. standard Gaussian vectors

ai � N.0; In/

and define

yi D hai; xi ; i D 1; : : : ;m:
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Fig. 1.5 Estimating x by any vector Ox in the intersection of K with the affine subspace
fx0 W Ax0 D yg

Thus the observation vector y depends linearly on x. This is best expressed in a
matrix form:

y D Ax:

Here A is an m 
 n Gaussian random matrix, which means that the entries of A are
i.i.d. N.0; 1/ random variables; the vectors ai form the rows of A.

The interesting regime is when the number of observations is smaller than the
dimension, i.e., when m < n. In this regime, the problem of estimating x 2 R

n from
y 2 R

m is ill posed. (In the complementary regime, where m � n, the linear system
y D Ax is well posed since A has full rank almost surely, so the solution is trivial.)

1.4.1 Estimation based on M� bound

Recall that we know two pieces of information about x:

1. x lies in a known random affine subspace fx0 W Ax0 D yg;
2. x lies in a known set K.

Therefore, a good estimator of x can be obtained by picking any vector Ox from the
intersection of these two sets; see Figure 1.5. Moreover, since just these two pieces
of information about x are available, such estimator is best possible in some sense.

How good is such estimate? The maximal error is, of course, the distance
between two farthest points in the intersection of K with the affine subspace
fx0 W Ax0 D yg. This distance in turn equals the diameter of the section of K by
this random subspace. But this diameter is controlled by M� bound, Theorem 3.12.
Let us put together this argument more rigorously.

In the following theorem, the setting is the same as above: K � R
n is a bounded

subset, x 2 K is an unknown vector, and y D Ax is the observation vector, where A
is an m 
 n Gaussian matrix.

Theorem 4.1 (Estimation from linear observations: feasibility program).
Choose Ox to be any vector satisfying

Ox 2 K and AOx D y: (1.6)
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Then

E sup
x2K

kOx � xk2 � Cw.K/p
m

:

Proof. We apply the M� bound, Theorem 3.12, for the set K � K and the subspace
E D ker.A/. Rotation invariance of Gaussian distribution implies that E is uniformly
distributed in the Grassmanian Gn;n�m, as required by the M� bound. Moreover, it is
straightforward to check that w.K � K/ � 2w.K/. It follows that

E diam..K � K/ \ E/ � Cw.K/p
m

:

It remains to note that since Ox; x 2 K and AOx D Ax D y, we have Ox�x 2 .K�K/\E.
ut

The argument we just described was first suggested by S. Mendelson, A. Pajor,
and N. Tomczak-Jaegermann [47].

1.4.2 Estimation as an optimization problem

Let us make one step forward and replace the feasibility program (1.6) by a more
flexible optimization program.

For this, let us make an additional (but quite mild) assumption that K has
nonempty interior and is star-shaped. Being star-shaped means that together with
each point, the set K contains the segment joining that point to the origin; in other
words,

tK � K for all t 2 Œ0; 1�:

For such set K, let us revise the feasibility program (1.6). Instead of intersecting
a fixed set K with the affine subspace fx0 W Ax0 D yg, we may blow up K (i.e.,
consider a dilate tK with increasing t � 0) until it touches that subspace. Choose Ox
to be the touching point, see Figure 1.6. The fact that K is star-shaped implies that Ox
still belongs to K and (obviously) the affine subspace; thus Ox satisfies the same error
bound as in Theorem 4.1.

Fig. 1.6 Estimating x by blowing up K until it touches the affine subspace fx0 W Ax0 D yg
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To express this estimator analytically, it is convenient to use the notion of
Minkowski functional of K, which associates to each point x 2 R

n a nonnegative
number kxkK defined by the rule

kxkK D inf
˚
� > 0 W ��1x 2 K

�
:

Minkowski functionals, also called gauges, are standard notions in geometric
functional analysis and convex analysis. Convex analysis textbooks such as [64]
offer thorough treatments of this concept. We just mention here a couple of
elementary properties. First, the function x 7! kxkK is continuous on R

n and it
is positive homogeneous (that is, kaxkK D akxkK for a > 0). Next, a closed set K
is the 1-sublevel set of its Minkowski functional, that is,

K D fx W kxkK � 1g:

A typical situation to think of is when K is a symmetric convex body (i.e. K is closed,
bounded, has nonempty interior, and is origin symmetric); then kxkK defines a norm
on R

n with K being the unit ball.
Let us now accurately state an optimization version of Theorem 4.1. It is valid

for an arbitrary bounded star-shaped set K with nonempty interior.

Theorem 4.2 (Estimation from linear observations: optimization program).
Choose Ox to be a solution of the program

minimizekx0kK subjectto Ax0 D y: (1.7)

Then

E sup
x2K

kOx � xk2 � Cw.K/p
m

:

Proof. It suffices to check that Ox 2 K; the conclusion would then follow from
Theorem 4.1. Both Ox and x satisfy the linear constraint Ax0 D y. Therefore, by
choice of Ox, we have

kOxkK � kxkK � 1I

the last inequality is nothing else than our assumption that x 2 K. Thus Ox 2 K as
claimed. ut

1.4.3 Algorithmic aspects: convex programming

What does it take to solve the optimization problem (1.7) algorithmically? If
the feasible set K is convex, then (1.7) is a convex program. In this case, to
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solve this problem numerically one may tap into an array of available convex
optimization solvers, in particular interior-point methods [8] and proximal-splitting
algorithms [7].

Further, if K is a polytope, then (1.7) can be cast as a linear program, which
widens an array of algorithmic possibilities even further. For a quick preview, let us
mention that examples of the latter kind will be discussed in detail in Section 1.7,
where we will use K to enforce sparsity. We will thus choose K to be a ball of `1
norm in R

n, so the program (1.7) will minimize kx0k1 subject to Ax0 D y. This is a
typical linear program in the area of compressed sensing.

If K is not convex, then we can convexify it, thereby replacing K with its convex
hull conv.K/. Convexification does not change the mean width according to the
remarkable property (1.5). Therefore, the generally nonconvex problem (1.7) can be
relaxed to the convex program

minimizekx0kconv.K/ subject to Ax0 D y; (1.8)

without compromising the guarantee of estimation stated in Theorem 4.2. The
solution Ox of the convex program (1.8) satisfies

E sup
x2K

kOx � xk2 � E sup
x2conv.K/

kOx � xk2 � Cw.conv.K//p
m

D Cw.K/p
m

:

Summarizing, we see that in any case, whether K is convex or not, the estimation
problem reduces to solving an algorithmically tractable convex program. Of course,
one needs to be able to compute kzkconv.K/ algorithmically for a given vector z 2 R

n.
This is possible for many (but not all) feasible sets K.

1.4.4 Information-theoretic aspects: effective dimension

If we fix a desired error level, for example if we aim for

E sup
x2K

kOx � xk2 � 0:01;

then

m � w.K/2

observations will suffice. The implicit constant factor here is determined by the
desired error level.

Notice that this result is uniform. By Markov’s inequality, with probability,
say 0:9 in A (which determines the observation model) the estimation is accurate
simultaneously for all vectors x 2 K. Moreover, as we observed in Section 1.5.2,
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the actual probability is much better than 0:9; it converges to 1 exponentially fast in
the number of observations m.

The square of the mean width, w.K/2, can be thought of an effective dimension
of the feasible set K, as we pointed out in Section 1.3.5.6.

We can summarize our findings as follows.

Using convex programming, one can estimate a vector x in a general feasible set K from
m random linear observations. A sufficient number of observations m is the same as the
effective dimension of K (the mean width squared), up to a constant factor.

1.5 High-dimensional sections: proof of a general M� bound

Let us give a quick proof of the M� bound, Theorem 3.12. In fact, without much
extra work we will be able to derive a more general result from [59]. First, it would
allow us to treat noisy observations of the form y D Ax C �. Second, it will be
generalizable for non-Gaussian observations.

Theorem 5.1 (General M� bound). Let T be a bounded subset of Rn. Let A be an
m 
 n Gaussian random matrix (with i.i.d. N.0; 1/ entries). Fix " � 0 and consider
the set

T" WD
n
u 2 T W 1

m
kAuk1 � "

o
: (1.9)

Then3

E sup
u2T"

kuk2 �
r
8�

m
E sup

u2T
j hg;ui j C

r
�

2
"; (1.10)

where g � N.0; In/ is a standard Gaussian random vector in R
n.

To see that this result contains the classical M� bound, Theorem 3.12, we can
apply it for T D K � K, " D 0, and identify ker.A/ with E. In this case,

T" D .K � K/ \ E:

It follows that T" � .K \ E/ � .K \ E/, so the left-hand side of (1.10) is
bounded below by diam.K \ E/. The right-hand side of (1.10) by symmetry equalsp
8�=m w.K/. Thus we recover Theorem 3.12 with C D p

8� .
Our proof of Theorem 5.1 will be based on two basic tools in the theory of

stochastic processes—symmetrization and contraction.

3Conclusion (1.10) is stated with the convention that supu2T" kuk2 D 0 whenever T" D ;.
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A stochastic process is simply a collection of random variables .Z.t//t2T on the
same probability space. The index space T can be arbitrary; it may be a time interval
(such as in Brownian motion) or a subset of R

n (as will be our case). To avoid
measurability issues, we can assume that T is finite by discretizing it if necessary.

Proposition 5.2. Consider a finite collection of stochastic processes Z1.t/; : : : ;
Zm.t/ indexed by t 2 T. Let "i be independent Rademacher random variables (that
is, "i independently take values �1 and 1 with probabilities 1=2 each). Then we have
the following:

(i) (Symmetrization)

E sup
t2T

ˇ̌
ˇ

mX

iD1

�
Zi.t/ � E Zi.t/

�ˇ̌
ˇ � 2E sup

t2T

ˇ̌
ˇ

mX

iD1
"iZi.t/

ˇ̌
ˇ:

(ii) (Contraction)

E sup
t2T

ˇ̌
ˇ

mX

iD1
"ijZi.t/j

ˇ̌
ˇ � 2E sup

t2T

ˇ̌
ˇ

mX

iD1
"iZi.t/

ˇ̌
ˇ:

Both statements are relatively easy to prove even in greater generality. For
example, taking the absolute values of Zi.t/ in the contraction principle can be
replaced by applying general Lipschitz functions. Proofs of symmetrization and
contraction principles can be found in [43, Lemma 6.3] and [43, Theorem 4.12],
respectively.

1.5.1 Proof of Theorem 3.12

Let aT
i denote the rows of A; thus ai are independent N.0; In/ random vectors. The

desired bound (1.10) would follow from the deviation inequality

E sup
u2T

ˇ
ˇ̌ 1
m

mX

iD1
j hai;ui j �

r
2

�
kuk2

ˇ
ˇ̌ � 4p

m
E sup

u2T
j hg;ui j: (1.11)

Indeed, if this inequality holds, then same is true if we replace T by the smaller
set T" on the left-hand side of (1.11). But for u 2 T", we have 1

m

Pm
iD1 j hai;ui j D

1
m kAuk1 � ", and the bound (1.10) follows by triangle inequality.

The rotation invariance of Gaussian distribution implies that

E j hai;ui j D
r
2

�
kuk2: (1.12)
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Thus using symmetrization and then contraction inequalities from Proposition 5.2,
we can bound the left-hand side of (1.11) by

4E sup
u2T

ˇ̌
ˇ
1

m

mX

iD1
"i hai;ui

ˇ̌
ˇ D 4E sup

u2T

ˇ
ˇ̌
ˇ̌

*
1

m

mX

iD1
"iai;u

+ˇˇ̌
ˇ̌ : (1.13)

Here "i are independent Rademacher variables.
Conditioning on "i and using rotation invariance, we see that the random vector

g WD 1p
m

mX

iD1
"iai

has distribution N.0; In/. Thus (1.13) can be written as

4p
m

E sup
u2T

j hg;ui j:

This proves (1.11) and completes the proof of Theorem 5.1. ut

1.5.2 From expectation to overwhelming probability

The M� bound that we just proved and in fact all results in this survey are stated
in terms of expected value for simplicity of presentation. One can upgrade them
to estimates with overwhelming probability using concentration of measure, see
[42]. We will illustrate this method with a couple of examples; the reader can apply
similar reasoning for several other results we have proved.

Let us first obtain a high-probability version of the deviation inequality (1.11)
using the Gaussian concentration inequality. We will consider the deviation

Z.A/ WD sup
u2T

ˇ̌
ˇ
1

m

mX

iD1
j hai;ui j �

r
2

�
kuk2

ˇ̌
ˇ

as a function of the matrix A 2 R
m�n. Let us show that it is a Lipschitz function

on R
m�n equipped with Frobenius norm k 	 kF (which is the same as the Euclidean

norm on R
mn). Indeed, two applications of the triangle inequality followed by two

applications of the Cauchy–Schwarz inequality imply that for matrices A and B with
rows aT

i and bT
i , respectively, we have
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jZ.A/ � Z.B/j � sup
u2T

1

m

mX

iD1
j hai � bi;ui j

� d.T/

m

mX

iD1
kai � bik2 .whered.T/ D max

u2T
kuk2/

� d.T/p
m

kA � BkF:

Thus the function A 7! Z.A/ has Lipschitz constant bounded by d.K/=
p

m. We
may now bound the deviation probability for Z using the Gaussian concentration
inequality (see [43, Equation 1.6]) as follows:

P
˚jZ � E Zj � t

� � 2 exp
�

� mt2

2d.T/2

�
; t � 0:

This is a high-probability version of the deviation inequality (1.11).
Using this inequality, one quickly deduces a corresponding high-probability

version of Theorem 5.1. It states that

sup
u2T"

kuk2 �
r
8�

m
E sup

u2T
j hg;ui j C

r
�

2
."C t/

with probability at least 1 � 2 exp.�mt2=2d.T/2/.
As before, we obtain from this the following high-probability version of the M�

bound, Theorem 5.1. It states that

diam.K \ E/ � Cw.K/p
m

C Ct

with probability at least 1 � 2 exp.�mt2=2 diam.K/2/.

1.6 Consequences: estimation from noisy linear observations

Let us apply the general M� bound, Theorem 5.1, to estimation problems. This will
be even more straightforward than our application of the standard M� bound in
Section 1.4. Moreover, we will now be able to treat noisy observations.

Like before, our goal is to estimate an unknown vector x that lies in a known
feasible set K � R

n, from a random observation vector y 2 R
m. This time we

assume that, for some known level of noise " � 0, we have

y D Ax C �;
1

m
k�k1 D 1

m

mX

iD1
j	ij � ": (1.14)
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Here A is an m 
 n Gaussian matrix as before. The noise vector � may be unknown
and have arbitrary structure. In particular, � may depend on A, so even adversarial
errors are allowed. The `1 constraint in (1.14) can clearly be replaced by the stronger
`2 constraint

1

m
k�k22 D 1

m

mX

iD1
	2i � "2:

The following result is a generalization of Theorem 4.1 for noisy observations
(1.14). As before, it is valid for any bounded set K � R

n.

Theorem 6.1 (Estimation from noisy linear observations: feasibility program).
Choose Ox to be any vector satisfying

Ox 2 K and
1

m
kAOx � yk1 � ": (1.15)

Then

E sup
x2K

kOx � xk2 � p
8�

�
w.K/p

m
C "

�
:

Proof. We apply the general M� bound, Theorem 5.1, for the set T D K � K, and
with 2" instead of ". It follows that

E sup
u2T2"

kuk2 �
r
8�

m
E sup

u2T
j hg;ui j C p

2� " � p
8�

�
w.K/p

m
C "

�
:

The last inequality follows from the definition of mean width and the symmetry
of T .

To finish the proof, it remains to check that

Ox � x 2 T2": (1.16)

To prove this, first note that Ox; x 2 K, so Ox � x 2 K � K D T . Next, by triangle
inequality, we have

1

m
kA.Ox � x/k1 D 1

m
kAOx � y C �k1 � 1

m
kAOx � yk1 C 1

m
k�k1 � 2":

The last inequality follows from (1.14) and (1.15). We showed that the vector u D
Ox � x satisfies both constraints that define T2" in (1.9). Hence (1.16) holds, and the
proof of the theorem is complete. ut
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And similarly to Theorem 4.2, we can cast estimation as an optimization (rather
than feasibility) program. As before, it is valid for any bounded star-shaped set
K � R

n with nonempty interior.

Theorem 6.2 (Estimation from noisy linear observations: optimization pro-
gram). Choose Ox to be a solution to the program

minimizekx0kK subject to
1

m
kAx0 � yk1 � ": (1.17)

Then

E sup
x2K

kOx � xk2 � p
8�

�
w.K/p

m
C "

�
:

Proof. It suffices to check that Ox 2 K; the conclusion would then follow from
Theorem 6.1. Note first that by choice of Ox we have 1

m kAOx � yk1 � ", and by
assumption (1.14) we have 1

m kAx � yk1 D 1
m k�k1 � ". Thus both Ox and x satisfy

the constraint in (1.17). Therefore, by choice of Ox, we have

kOxkK � kxkK � 1I

the last inequality is nothing else than our assumption that x 2 K. It follows Ox 2 K
as claimed. ut

The remarks about algorithmic aspects of estimation made in Sections 1.4.3
and 1.4.4 apply also to the results of this section. In particular, the estimation from
noisy linear observations (1.14) can be formulated as a convex program.

1.7 Applications to sparse recovery and regression

Remarkable examples of feasible sets K with low complexity come from the notion
of sparsity. Consider the set K of all unit s-sparse vectors in R

n. As we mentioned
in Example 3.9, the mean width of K is

w.K/ � s log.n=s/:

According to the interpretation we discussed in Section 1.4.4, this means that the
effective dimension of K is of order s log.n=s/. Therefore,

m � s log.n=s/
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observations should suffice to estimate any s-sparse vector in R
n. Results of this

type form the core of compressed sensing, a young area of signal processing, see
[15, 19, 26, 39].

In this section, we consider a more general model, where an unknown vector x
has a sparse representation in some dictionary.

We will specialize Theorem 6.2 to the sparse recovery problem. The convex
program will in this case amount to minimizing the `1 norm of the coefficients. We
will note that the notion of sparsity can be relaxed to accommodate approximate, or
“effective,” sparsity. Finally, we will observe that the estimate Ox is most often unique
and m-sparse.

1.7.1 Sparse recovery for general dictionaries

Let us fix a dictionary of vectors d1; : : : ; dN 2 R
n, which may be arbitrary (even

linearly dependent). The choice of a dictionary depends on the application; common
examples include unions of orthogonal bases and more generally tight frames (in
particular, Gabor frames). See [18, 20, 21, 62] for an introduction to sparse recovery
problems with general dictionaries.

Suppose an unknown vector x 2 R
n is s-sparse in the dictionary fdig. This means

that x can be represented as a linear combination of at most s dictionary elements,
i.e.,

x D
NX

iD1
˛idi with at most s nonzero coefficients ˛i 2 R: (1.18)

As in Section 1.6, our goal is to recover x from a noisy observation vector y 2 R
m

of the form

y D Ax C �;
1

m
k�k1 D 1

m

mX

iD1
j	ij � ":

Recall that A is a known m 
 n Gaussian matrix, and � is an unknown noise vector,
which can have arbitrary structure (in particular, correlated with A).

Theorem 6.2 will quickly imply the following recovery result.

Theorem 7.1 (Sparse recovery: general dictionaries). Assume for normalization
that all dictionary vectors satisfy kdik2 � 1. Choose Ox to be a solution to the convex
program

minimizek˛0k1 such that x0 D
NX

iD1
˛0idi satisfies

1

m
kAx0 � yk1 � ": (1.19)
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Then

E kOx � xk2 � C

r
s log N

m
	 k˛k2 C p

2� ":

Proof. Consider the sets

NK WD convf˙digN
iD1; K WD k˛k1 	 NK:

Representation (1.18) implies that x 2 K, so it makes sense to apply Theorem 6.2
for K.

Let us first argue that the optimization program in Theorem 6.2 can be written
in the form (1.19). Observe that we can replace kx0kK by kx0k NK in the optimization
problem (1.17) without changing its solution. (This is because kx0k NK D k˛k1 	kx0kK

and k˛k1 is a constant value.) Now, by definition of NK, we have

kx0k NK D min
n
k˛0k1 W x0 D

NX

iD1
˛0idi

o
:

Therefore, the optimization programs (1.17) and (1.19) are indeed equivalent.
Next, to evaluate the error bound in Theorem 6.2, we need to bound the mean

width of K. The convexification property (1.5) and Example 3.8 yield

w.K/ D k˛k1 	 w. NK/ � Ck˛k1 	plog N:

Putting this into the conclusion of Theorem 6.2, we obtain the error bound

E sup
x2K

kOx � xk2 � p
8� C

r
log N

m
	 k˛k1 C p

2� ":

To complete the proof, it remains to note that

k˛k1 � p
s 	 k˛k2; (1.20)

since ˛ is s-sparse, i.e., it has only s nonzero coordinates. ut

1.7.2 Remarkable properties of sparse recovery

Let us pause to look more closely at the statement of Theorem 7.1.
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1.7.2.1 General dictionaries

Theorem 7.1 is very flexible with respect to the choice of a dictionary fdig. Note
that there are essentially no restrictions on the dictionary. (The normalization
assumption kdik2 � 1 can be dispensed of at the cost of increasing the error bound
by the factor of maxi kdik2.) In particular, the dictionary may be linearly dependent.

1.7.2.2 Effective sparsity

The reader may have noticed that the proof of Theorem 7.1 used sparsity in a quite
mild way, only through inequality (1.20). So the result is still true for vectors x
that are approximately sparse in the dictionary. Namely, Theorem 7.1 will hold if
we replace the exact notion of sparsity (the number of nonzero coefficients) by the
more flexible notion of effective sparsity, defined as

effective sparsity.˛/ WD .k˛k1=k˛k2/2:

It is now clear how to extend sparsity in a dictionary (1.18) to approximate sparsity.
We can say that a vector x is effectively s-sparse in a dictionary fdig if it can be
represented as x D PN

iD1 ˛idi where the coefficient vector a D .˛1; : : : ; ˛N/ is
effectively s-sparse.

The effective sparsity is clearly bounded by the exact sparsity, and it is robust
with respect to small perturbations.

1.7.2.3 Linear programming

The convex programs (1.19) and (1.22) can be reformulated as linear programs. This
can be done by introducing new variables u1; : : : ; uN ; instead of minimizing k˛0k1
in (1.19), we can equivalently minimize the linear function

PN
iD1 ui subject to the

additional linear constraints �ui � ˛0i � ui, i D 1; : : : ;N. In a similar fashion, one
can replace the convex constraint 1

m kAx0 � yk1 � " in (1.19) by n linear constraints.

1.7.2.4 Estimating the coefficients of sparse representation

It is worthwhile to notice that as a result of solving the convex recovery program
(1.19), we obtain not only an estimate Ox of the vector x but also an estimate Ǫ of the
coefficient vector in the representation x D P

˛idi.
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1.7.2.5 Sparsity of solution

The solution of the sparse recovery problem (1.19) may not be exact in general,
that is, Ox ¤ x can happen. This can be due to several factors—the generality of the
dictionary, approximate (rather than exact) sparsity of x in the dictionary, and the
noise 	 in the observations. But even in this general situation, the solution x is still
m-sparse, in all but degenerate cases. We will now state and prove this known fact
(see [26]).

Proposition 7.2 (Sparsity of solution). Assume that a given convex recovery
program (1.19) has a unique solution Ǫ for the coefficient vector. Then Ǫ is m-
sparse, and consequently Ox is m-sparse in the dictionary fdig. This is true even in
presence of noise in observations, and even when no sparsity assumptions on x are
in place.

Proof. The result follows by simple dimension considerations. First note that the
constraint on ˛0 in the optimization problem (1.19) can be written in the form

1

m
kAD˛0 � yk1 � "; (1.21)

where D is the n 
 N matrix whose columns are the dictionary vectors di. Since
matrix AD has dimensions m 
 N, the constraint defines a cylinder in R

N whose
infinite directions are formed by the kernel of AD, which has dimension at least
N � m. Moreover, this cylinder is a polyhedral set (due to the `1 norm defining it),
so it has no faces of dimension smaller than N � m.

On the other hand, the level sets of the objective function k˛0k1 are also
polyhedral sets; they are dilates of the unit `1 ball. The solution Ǫ of the optimization
problem (1.19) is thus a point in R

N where the smallest dilate of the `1 ball touches
the cylinder. The uniqueness of solution means that a touching point is unique. This
is illustrated in Figure 1.7.

Consider the faces of these two polyhedral sets of smallest dimensions that
contain the touching point; we may call these the touching faces. The touching face
of the cylinder has dimension at least N �m, as all of its faces do. Then the touching

Fig. 1.7 Illustration for the proof of Proposition 7.2. The polytope on the left represents a level set
of the `1 ball. The cylinder on the right represents the vectors ˛0 satisfying constraint (1.21). The
two polyhedral sets touch at point Ǫ .
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face of the `1 ball must have dimension at most m, otherwise the two touching faces
would intersect by more than one point. This translates into the m-sparsity of the
solution Ǫ , as claimed. ut

In view of Proposition 7.2, we can ask when the solution Ǫ of the convex program
(1.19) is unique. This does not always happen; for example, this fails if d1 D d2.

Uniqueness of solutions of optimization problems like (1.19) is extensively
studied [26]. Let us mention here a cheap way to obtain uniqueness. This can be
achieved by an arbitrarily small generic perturbation of the dictionary elements,
such as adding a small independent Gaussian vector to each di. Then one can see
that the solution Ǫ (and therefore Ox as well) are unique almost surely. Invoking
Proposition 7.2 we see that Ox is m-sparse in the perturbed dictionary.

1.7.3 Sparse recovery for the canonical dictionary

Let us illustrate Theorem 7.1 for the simplest example of a dictionary—the
canonical basis of Rn:

fdign
iD1 D feign

iD1:

In this case, our assumption is that an unknown vector x 2 R
n is s-sparse in the usual

sense, meaning that x has at most s nonzero coordinates, or effectively s-sparse as
in Section 1.7.2.2. Theorem 7.1 then reads as follows.

Corollary 7.3 (Sparse recovery). Choose Ox to be a solution to the convex program

minimizekx0k1 subject to
1

m
kAx0 � yk1 � ": (1.22)

Then

E kOx � xk2 � C

r
s log n

m
	 kxk2 C p

2� ": ut

Sparse recovery results like Corollary 7.3 form the core of the area of compressed
sensing, see [15, 19, 26, 39].

In the noiseless case (" D 0) and for sparse (rather than effectively sparse)
vectors, one may even hope to recover x exactly, meaning that Ox D x with high
probability. Conditions for exact recovery are now well understood in compressed
sensing. We will discuss some exact recovery problems in Section 1.9.

We can summarize Theorem 7.1 and the discussion around it as follows:

Using linear programming, one can approximately recover a vector x that is s-sparse (or
effectively s-sparse) in a general dictionary of size N, from m � s log N random linear
observations.
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1.7.4 Application: linear regression with constraints

The noisy estimation problem (1.14) is equivalent to linear regression with con-
straints. So in this section, we will translate the story into the statistical language. We
present here just one class of examples out of a wide array of statistical problems;
we refer the reader to [11, 74] for a recent review of high-dimensional estimation
problems from a statistical viewpoint.

Linear regression is a model of linear relationship between one dependent
variable and n explanatory variables. It is usually written as

y D Xˇ C �:

Here X is an n
p matrix which contains a sample of n observations of p explanatory
variables; y 2 R

n represents a sample of n observations of the dependent variable;
ˇ 2 R

p is a coefficient vector; � 2 R
n is a noise vector. We assume that X and y are

known, while ˇ and � are unknown. Our goal is to estimate ˇ.
We discussed a classical formulation of linear regression. In addition, we often

know, believe, or want to enforce some properties about the coefficient vector ˇ (for
example, sparsity). We can express such extra information as the assumption that

ˇ 2 K

where K � R
p is a known feasible set. Such problem may be called a linear

regression with constraints.
The high-dimensional estimation results we have seen so far can be translated

into the language of regression in a straightforward way. Let us do this for
Theorem 6.2; the interested reader can make a similar translation or other results.

We assume that the explanatory variables are independent N.0; 1/, so the matrix
X has all i.i.d. N.0; 1/ entries. This requirement may be too strong in practice;
however see Section 1.8 on relaxing this assumption. The noise vector � is allowed
to have arbitrary structure (in particular, it can be correlated with X). We assume
that its magnitude is controlled:

1

n
k�k1 D 1

n

nX

iD1
j	ij � "

for some known noise level ". Then we can restate Theorem 6.2 in the following
way.

Theorem 7.4 (Linear regression with constraints). Choose Ǒ to be a solution to
the program

minimizekˇ0kK subject to
1

n
kXˇ0 � yk1 � ":
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Then

E sup
ˇ2K

k Ǒ � ˇk2 � p
8�

�
w.K/p

n
C "

�
: ut

1.8 Extensions from Gaussian to sub-Gaussian distributions

So far, all our results were stated for Gaussian distributions. Let us show how to
relax this assumption. In this section, we will modify the proof of the M� bound,
Theorem 5.1, for general sub-Gaussian distributions, and indicate the consequences
for the estimation problem. A result of this type was proved in [47] with a much
more complex argument.

1.8.1 Sub-Gaussian random variables and random vectors

A systematic introduction into sub-Gaussian distributions can be found in Sections
5.2.3 and 5.2.5 of [73]; here we briefly mention the basic definitions. According to
one of the several equivalent definitions, a random variable X is sub-Gaussian if

E exp.X2= 2/ � e

for some  > 0. The smallest  is called the sub-Gaussian norm and is
denoted kXk 2 . Normal and all bounded random variables are sub-Gaussian, while
exponential random variables are not.

The notion of sub-Gaussian distribution transfers to higher dimensions as
follows. A random vector X 2 R

n is called sub-Gaussian if all one-dimensional
marginals hX;ui, u 2 R

n, are sub-Gaussian random variables. The sub-Gaussian
norm of X is defined as

kXk 2 WD sup
u2Sn�1

k hX;ui k 2 (1.23)

where, as before, Sn�1 denotes the Euclidean sphere in R
n. Recall also that the

random vector X is called isotropic if

EXXT D In:

Isotropy is a scaling condition; any distribution in R
n which is not supported

in a low-dimensional subspace can be made isotropic by an appropriate linear
transformation. To illustrate this notion with a couple of quick examples, one can
check that N.0; In/ and the uniform distribution on the discrete cube f�1; 1gn are
isotropic and sub-Gaussian distributions.
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1.8.2 M� bound for sub-Gaussian distributions

Now we state and prove a version of M� bound, Theorem 5.1, for general sub-
Gaussian distributions. It is a variant of a result from [47].

Theorem 8.1 (General M� bound for sub-Gaussian distributions). Let T be a
bounded subset of Rn. Let A be an m 
 n matrix whose rows ai are i.i.d., mean zero,
isotropic, and sub-Gaussian random vectors in R

n. Choose  � 1 so that

kaik 2 �  ; i D 1; : : : ;m: (1.24)

Fix " � 0 and consider the set

T" WD
n
u 2 T W 1

m
kAuk1 � "

o
:

Then

E sup
u2T"

kuk2 � C 4
� 1p

m
E sup

u2T
j hg;ui j C "

�
;

where g � N.0; In/ is a standard Gaussian random vector in R
n.

A proof of this result is an extension of the proof of the Gaussian M� bound,
Theorem 5.1. Most of that argument generalizes to sub-Gaussian distributions in a
standard way. The only nontrivial new step will be based on the deep comparison
theorem for sub-Gaussian processes due to X. Fernique and M. Talagrand, see [71,
Section 2.1]. Informally, the result states that any sub-Gaussian process is dominated
by a Gaussian process with the same (or larger) increments.

Theorem 8.2 (Fernique–Talagrand’s comparison theorem). Let T be an arbi-
trary set.4 Consider a Gaussian random process .G.t//t2T and a sub-Gaussian
random process .H.t//t2T . Assume that EG.t/ D EH.t/ D 0 for all t 2 T. Assume
also that for some M > 0, the following increment comparison holds:5

kH.s/ � H.t/k 2 � M .E kG.s/ � G.t/k22/1=2 for all s; t 2 T:

Then

E sup
t2T

H.t/ � CM E sup
t2T

G.t/:

4We can assume T to be finite to avoid measurability complications and then proceed by
approximation; see, e.g., [43, Section 2.2].
5The increment comparison may look better if we replace the L2 norm on the right-hand side by
 2 norm. Indeed, it is easy to see that kG.s/� G.t/k 2 � .E kG.s/� G.t/k22/1=2.
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This theorem is a combination of a result of X. Fernique [25] that bounds
E supt2T H.t/ above by the so-called majorizing measure of T , and a result of
M. Talagrand [70] that bounds E supt2T G.t/ below by the same majorizing measure
of T .

Proof of Theorem 8.1. Let us examine the proof of the Gaussian M� bound, The-
orem 5.1, check where we used Gaussian assumptions, and try to accommodate
sub-Gaussian assumptions instead.

The first such place is identity (1.12). We claim that a version of it still holds for
the sub-Gaussian random vector a, namely

kuk2 � C0 
3
Ea j ha;ui j (1.25)

where C0 is an absolute constant.6

To check (1.25), we can assume that kuk2 D 1 by dividing both sides by kuk2
if necessary. Then Z WD ha;ui is sub-Gaussian random variable, since according
to (1.23) and (1.24), we have kZk 2 � kak 2 �  . Then, since sub-Gaussian
distributions have moments of all orders (see [73, Lemma 5.5]), we have .E Z3/1=3 �
C1kZk 2 � C1 , where C1 is an absolute constant. Using this together with isotropy
and Cauchy–Schwarz inequality, we obtain

1 D E Z2 D E Z1=2Z3=2 � .E Z/1=2.E Z3/1=2 � .E Z/1=2.C1 /
3=2:

Squaring both sides implies (1.25), since we assumed that kuk2 D 1.
The next steps in the proof of Theorem 5.1—symmetrization and contraction—

go through for sub-Gaussian distributions without change. So (1.13) is still valid in
our case.

Next, the random vector

h WD 1p
m

mX

iD1
"iai

is no longer Gaussian as in the proof of Theorem 5.1. Still, h is sub-Gaussian with

khk 2 � C2 (1.26)

due to the approximate rotation invariance of sub-Gaussian distributions, see [73,
Lemma 5.9].

In the last step of the argument, we need to replace the sub-Gaussian random
vector h by the Gaussian random vector g � N.0; In/, i.e., prove an inequality of
the form

6We should mention that a reverse inequality also holds: by isotropy, one has Ea j ha;ui j �
.Ea ha;ui2/1=2 D kuk2. However, this inequality will not be used in the proof.
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E sup
u2T

j hh;ui j . E sup
u2T

j hg;ui j:

This can be done by applying the comparison inequality of Theorem 8.2 for the
processes

H.u/ D hh;ui and G.u/ D hg;ui ; u 2 T [ .�T/:

To check the increment inequality, we can use (1.26), which yields

kH.u/ � H.v/k 2 D k hh;u � vi k 2 � khk 2 ku � vk2 � C2 ku � vk2:

On the other hand,

.E kG.u/ � G.v/k22/1=2 D ku � vk2:

Therefore, the increment inequality in Theorem 8.2 holds with M D C2 . It follows
that

E sup
u2T[.�T/

hh;ui � C3 E sup
u2T[.�T/

hg;ui :

This means that

E sup
u2T

j hh;ui j � C3 E sup
u2T

j hg;ui j

as claimed.
Replacing all Gaussian inequalities by their sub-Gaussian counterparts discussed

above, we complete the proof just like in Theorem 5.1. ut

1.8.3 Estimation from sub-Gaussian linear observations

It is now straightforward to generalize all recovery results we developed before from
Gaussian to sub-Gaussian observations. So our observations are now

yi D hai; xi C �i; i D 1; : : : ;m

where ai are i.i.d., mean zero, isotropic, and sub-Gaussian random vectors in R
n.

As in Theorem 8.1, we control the sub-Gaussian norm with the parameter  > 1,
choosing it so that

kaik 2 �  ; i D 1; : : : ;m:
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We can write observations in the matrix form as in (1.14), i.e.,

y D Ax C �;

where A is the m 
 n matrix with rows ai. As before, we assume some control on the
error:

1

m
k�k1 D 1

m

mX

iD1
j	ij � ":

Let us state a version of Theorem 6.1 for sub-Gaussian observations. Its proof
is the same, except we use the sub-Gaussian M� bound, Theorem 8.1, where
previously a Gaussian M� bound was used.

Theorem 8.3 (Estimation from sub-Gaussian observations). Choose Ox to be any
vector satisfying

Ox 2 K and
1

m
kAOx � yk1 � ":

Then

E sup
x2K

kOx � xk2 � C 4

�
w.K/p

m
C "

�
:ut

In a similar fashion, one can generalize all other estimation results established
before to sub-Gaussian observations. We leave this to the interested reader.

1.9 Exact recovery

In some situations, one can hope to estimate vector x 2 K from y exactly, without
any error. Such results form the core of the area of compressed sensing [19, 26, 39].
Here we will present an approach to exact recovery based on Y. Gordon’s “escape
through a mesh” theorem [33]. This argument goes back to [66] for the set of sparse
vectors, it was further developed in [53, 69] and was pushed forward for general
feasible sets in [2, 16, 72].

In this tutorial we will present the most basic result; the reader will find a more
complete picture and many more examples in the papers just cited.

We will work here with Gaussian observations

y D Ax;

where A is an m 
 n Gaussian random matrix. This is the same model as we
considered in Section 1.4.
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1.9.1 Exact recovery condition and the descent cone

When can x be inferred from y exactly? Recall that we only know two things about
x—that it lies in the feasible set K and in the affine subspace

Ex WD fx0 W Ax0 D yg:

This two pieces of information determine x uniquely if and only if these two sets
intersect at the single point x:

K \ Ex D fxg: (1.27)

Notice that this situation would go far beyond the M� bound on the diameter of
K \ E (see Theorem 3.12)—indeed, in this case the diameter would equal zero!

How can this be possible? Geometrically, the exact recovery condition (1.27)
states that the affine subspace Ex is tangent to the set K at the point x; see Figure 1.8a
for illustration.

This condition is local. Assuming that K is convex for better understanding,
we see that the tangency condition depends on the shape of K in an infinitesimal
neighborhood of x, while the global geometry of K is irrelevant. So we would not
lose anything if we replace K by the descent cone at point x, see Figure 1.8b. This
set is formed by the rays emanating from x into directions of points from K:

D.K; x/ WD ft.z � x/ W z 2 K; t � 0g:

Translating by �x, can we rewrite the exact recovery condition (1.27) as

.K � x/ \ .Ex � x/ D f0g:

Replacing K � x by the descent cone (a bigger set) and noting that Ex � x D ker.A/,
we rewrite this again as

D.K; x/ \ ker.A/ D f0g:

The descent cone can be determined by its intersection with the unit sphere, i.e., by7

S.K; x/ WD D.K; x/ \ Sn�1 D
n z � x

kz � xk2 W z 2 K
o
: (1.28)

Thus we arrive at the following equivalent form of the exact recovery condition
(1.27):

7In definition (1.28), we adopt the convention that 0=0 D 0.
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Fig. 1.8 Illustration of the exact recovery condition (1.27)

S.K; x/ \ ker.A/ D ¿I

see Figure 1.8b for an illustration.

1.9.2 Escape through a mesh and implications
for exact recovery

It remains to understand under what conditions the random subspace ker A misses a
given subset S D S.K; x/ of the unit sphere. There is a remarkably sharp result in
asymptotic convex geometry that answers this question for general subsets S. This
is the theorem on escape through a mesh, which is due to Y. Gordon [33]. Similarly
to the other results we saw before, this theorem depends on the mean width of S,
defined as8

Nw.S/ D E sup
u2S

hg;ui ; where g � N.0; In/:

Theorem 9.1 (Escape through a mesh). Let S be a fixed subset of Sn�1. Let E be
a random subspace of Rn of a fixed codimension m, drawn from the Grassmanian
Gn;n�m according to the Haar measure. Assume that

Nw.S/ < p
m:

8The only (minor) difference with our former definition (1.3) of the mean width is that we take
supremum over S instead of S � S, so Nw.S/ is a smaller quantity. The reason we do not need to
consider S� S because we already subtracted x in the definition of the descent cone.
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Then

S \ E D ¿

with high probability, namely 1 � 2:5 exp
� � .m=pm C 1 � Nw.S//2=18�.

Before applying this result to high-dimensional estimation, let us see how a
slightly weaker result follows from the general M� bound, Theorem 5.1. Indeed,
applying the latter theorem for T D S, E D ker.A/, and " D 0, we obtain

E sup
u2S\E

kuk2 �
r
8�

m
E sup

u2S
j hg;ui j �

r
8�

m
Nw.S/: (1.29)

Since S � Sn�1, the supremum on the left-hand side equals 1 when S \ E ¤ ; and
zero otherwise. Thus the expectation in (1.29) equals P

˚
S \ E ¤ ;�. Further, one

can easily check that E supu2S j hg;ui j � Nw.S/Cp
2=� , see [57, Proposition 2.1].

Thus we obtain

P
˚
S \ E ¤ ;� �

r
8�

m

�
Nw.S/C

r
2

�

�
:

In other words, S \ E D ; with high probability if the codimension m is sufficiently
large so that Nw.S/ � p

m. Thus we obtain a somewhat weaker form of Escape
Theorem 9.1.

Now let us apply Theorem 9.1 for the descent S D S.K; x/ and E D ker.A/. We
conclude by the argument above that the exact recovery condition (1.27) holds with
high probability if

m > Nw.S/2:

How can we algorithmically recover x in these circumstances? We can do the
same as in Section 1.4.1, either using the feasibility program (1.6) or, better yet,
the optimization program (1.7). The only difference is that the diameter of the
intersection is now zero, so the recovery is exact. The following is an exact version
of Theorem 4.2.

Theorem 9.2 (Exact recovery from linear observations). Choose Ox to be a
solution of the program

minimizekx0kK subject to Ax0 D y:

Assume that the number of observations satisfies

m > Nw.S/2 (1.30)
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where S D S.K; x/ is the spherical part of the descent cone of K, defined in (1.28).
Then

Ox D x

with high probability (the same as in Theorem 9.1). ut
Note the familiar condition (1.30) on m which we have seen before, see, e.g.,

Section 1.4.3. Informally, it states the following:

Exact recovery is possible when the number of measurements exceeds the effective
dimension of the descent cone.

Remarkably, condition (1.30) does not have absolute constant factors which we had
in results before.

1.9.3 Application: exact sparse recovery

Let us illustrate how Theorem 9.2 works for exact sparse recovery. Assume that x is
s-sparse, i.e. it has at most s nonzero coefficients. For the feasible set, we can choose
K WD kxk1Bn

1 D fx0 W kx0k1 � kxk1g. One can write down accurately an expression
for the descent cone and derive a familiar bound on the mean width of S D S.K; x/:

Nw.S/ � C
p

s log.2n=s/:

This computation goes back to [66]; see that paper and also [3, 16, 69] for estimates
with explicit absolute constants.

We plug this into Theorem 9.2, where we replace kx0kK in the optimization
problem by the proportional quantity kx0k1. This leads to the following exact version
of Corollary 7.3:

Theorem 9.3 (Exact sparse recovery). Assume that an unknown vector x 2 R
n is

s-sparse. Choose Ox to be a solution to the convex program

minimize kx0k1 subject to Ax0 D y:

Assume that the number of observations satisfies m > Cs log n. Then

Ox D x

with high probability, namely 1 � 3e�m. ut
Due to the remarkable sharpness of Gordon’s theorem, one may hope to obtain

sharp conditions on the number of observations m, without any losses in absolute
constants. This was done in [22] for the sparse recovery problem (using geometry
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of polytopes rather than Gordon’s theorem) and more recently in [3] for general
feasible cones. The latter paper proposes a notion of statistical dimension, which is
a close relative of mean width, and establishes a variant of Gordon’s theorem for
statistical dimension.

1.10 Low-rank matrix recovery and matrix completion

1.10.1 Background: matrix norms

The theory we developed so far concerns estimation of vectors in R
n. It should not

be surprising that this theory can also be applied for matrices. Matrix estimation
problems were studied recently, in particular in [12–14, 37, 63].

Let us recall some basic facts about matrices and their norms. We can identify
d1 
 d2 matrices with vectors in R

d1�d2 . The `2 norm in R
d1�d2 is then nothing else

than Frobenius (or Hilbert–Schmidt) norm of matrices:

kXkF D
� d1X

iD1

d2X

jD1
jXijj2

�1=2
:

The inner product in R
d1�d2 can be written in matrix form as follows:

hX;Yi D tr.XTY/:

Denote d D min.d1; d2/. Let

s1.X/ � s2.X/ � 	 	 	 � sd.X/ � 0

denote the singular values of X. Then Frobenius norm has the following spectral
representation:

kXkF D
� dX

iD1
si.X/

2
�1=2

:

Recall also the operator norm of X, which is

kXk D max
u2Rnnf0g

kXuk2
kuk2 D max

iD1;:::;d si.X/:

Finally, the nuclear norm of X is defined as
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kXk� D
dX

iD1
si.X/:

Spectrally, i.e., on the level of singular values, the nuclear norm is a version of
`1 norm for matrices, the Frobenius norm is a version of `2 norm for matrices, and
the operator norm is a version of `1 norm for matrices. In particular, the following
inequality holds:

kXk � kXkF � kXk�:

The reader should be able to derive many other useful inequalities in a similar way,
for example,

kXk� �
p

rank.X/ 	 kXkF; kXkF �
p

rank.X/ 	 kXk (1.31)

and

hX;Yi � kXk 	 kYk�: (1.32)

1.10.2 Low-rank matrix recovery

We are ready to formulate a matrix version of the sparse recovery problem from
Section 1.7. Our goal is to estimate an unknown d1 
 d2 matrix X from m linear
observations given by

yi D hAi;Xi ; i D 1; : : : ;m: (1.33)

Here Ai are independent d1 
 d2 Gaussian matrices with all i.i.d. N.0; 1/ entries.
There are two natural matrix versions of sparsity. The first version is the sparsity

of entries. We will be concerned with the other, spectral, type of sparsity, where
there are only a few nonzero singular values. This simply means that the matrix has
low rank. So let us assume that the unknown matrix X satisfies

rank.X/ � r (1.34)

for some fixed (and possibly unknown) r � n.
The following is a matrix version of Corollary 7.3; for simplicity we are stating

it in a noise-free setting (" D 0).

Theorem 10.1 (Low-rank matrix recovery). Choose OX to be a solution to the
convex program
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minimizekX0k�subjectto
˝
Ai;X

0˛ D yi; i D 1; : : : ;m: (1.35)

Then

E sup
X

k OX � XkF � 4
p
�

r
r.d1 C d2/

m
	 kXkF:

Here the supremum is taken over all d1 
 d2 matrices X of rank at most r.

The proof of Theorem 10.1 will closely follow its vector prototype, that of
Theorem 7.1; we will just need to replace the `1 norm by the nuclear norm. The
only real difference will be in the computation of the mean width of the unit ball
of the nuclear norm. This computation will be based on Y. Gordon’s bound on the
operator norm of Gaussian random matrices, see Theorem 5.32 in [73].

Theorem 10.2 (Gordon’s bound for Gaussian random matrices). Let G be a
d1 
 d2 matrix whose entries are i.i.d., mean zero random variables. Then

E kGk �
p

d1 C
p

d2:

Proposition 10.3 (Mean width of the unit ball of nuclear norm). Consider the
unit ball in the space of d1 
 d2 matrices corresponding to the nuclear norm:

B� WD fX 2 R
d1�d2 W kXk� � 1g:

Then

w.B�/ � 2.
p

d1 C
p

d2/:

Proof. By definition and symmetry of B, we have

w.B/ D E sup
X2B��B�

hG;Xi D 2E sup
X2B�

hG;Xi ;

where G is a d1 
 d2 Gaussian random matrix with N.0; 1/ entries. Using inequality
(1.32) and definition of B�, we obtain

w.B�/ � 2E sup
X2B�

kGk 	 kXk� � 2E kGk:

(The reader may notice that both these inequalities are in fact equalities, although
we do not need this in the proof.) To complete the proof, it remains to apply
Theorem 10.2. ut

Let us mention an immediate consequence of Proposition 10.3, although it will
not be used in the proof of Theorem 10.1.
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Proposition 10.4 (Mean width of the set of low-rank matrices). Let

D D fX 2 R
d1�d2 W kXkF D 1; rank.X/ � rg:

Then

w.D/ � 2
p
2r.d1 C d2/:

Proof of Proposition 10.4. The bound follows immediately from Proposition 10.3
and the first inequality in (1.31), which implies that D � p

r 	 B�. ut
Proof of Theorem 10.1. The argument is a matrix version of the proof of Theorem
7.1. We consider the following subsets of d1 
 d2 matrices:

NK WD fX0 W kX0k� � 1g; K WD kXk� 	 NK:

Then obviously X 2 K, so it makes sense to apply Theorem 6.2 (with " D 0) for K.
It should also be clear that the optimization program in Theorem 6.2 can be written
in the form (1.35).

Applying Theorem 6.2, we obtain

E sup
X

k OX � XkF � p
2� 	 w.K/p

m
:

Recalling the definition of K and using Proposition 10.3 to bound its mean width,
we have

w.K/ D w. NK/ 	 kXk� � 2
p
2
p

d1 C d2 	 kXk�:

It follows that

E sup
X

k OX � XkF � 4
p
�

r
d1 C d2

m
	 kXk�:

It remains to use the low-rank assumption (1.34). According to the first inequality
in (1.31), we have

kXk� � p
rkXkF:

This completes the proof of Theorem 10.1. ut
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1.10.3 Low-rank matrix recovery: some extensions

1.10.3.1 From exact to effective low rank

The exact low-rank assumption (1.34) can be replaced by approximate low-rank
assumption. This is a matrix version of a similar observation about sparsity which
we made in Section 1.7.2.2. Indeed, our argument shows that Theorem 10.1 will
hold if we replace the rank by the more flexible effective rank, defined for a matrix
X as

r.X/ D .kXk�=kXkF/
2:

The effective rank is clearly bounded by the algebraic rank, and it is robust with
respect to small perturbations.

1.10.3.2 Noisy and sub-Gaussian observations

Our argument makes it easy to allow noise in the observations (1.33), i.e., consider
observations of the form yi D hAi;Xi C 	i. We leave details to the interested reader.

Further, just like in Section 1.8, we can relax the requirement that Ai be Gaussian
random matrices, replacing it with a sub-Gaussian assumption. Namely, it is enough
to assume that the columns of Ai are i.i.d., mean zero, isotropic, and sub-Gaussian
random vectors in R

d1 , with a common bound on the sub-Gaussian norm. We again
leave details to the interested reader.

We can summarize the results about low-rank matrix recovery as follows.

Using convex programming, one can approximately recover a d1�d2 matrix which has rank
(or effective rank) r, from m � r.d1 C d2/ random linear observations.

To understand this number of observations better, note that it is of the same order
as the number of degrees of freedom in the set of d1 
 d2 matrices or rank r.

1.10.4 Matrix completion

Let us now consider a different, and perhaps more natural, model of observations of
matrices. Assume that we are given a small random sample of entries of an unknown
matrix X. Our goal is to estimate X from this sample. As before, we assume that X
has low rank. This is called a matrix completion problem, and it was extensively
studied recently [12, 13, 37, 63].

The theory we discussed earlier in this chapter does not apply here. While
sampling of entries is a linear operation, such observations are not Gaussian or
sub-Gaussian (more accurately, we should say that the sub-Gaussian norm of such
observations is too large). Nevertheless, it is possible to derive a matrix completion
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result in this setting. Our exposition will be based on a direct and simple argument
from [60]. The reader interested in deeper understanding of the matrix completion
problem (and in particular exact completion) is referred to the papers cited above.

Let us formalize the process of sampling the entries of X. First, we fix the average
size m of the sample. Then we generate selectors ıij 2 f0; 1g for each entry of X.
Those are i.i.d. random variables with

E ıij D m

d1d2
DW p:

Our observations are given as the d1 
 d2 matrix Y whose entries are

Yij D ıijXij:

Therefore, the observations are randomly and independently sampled entries of X
along with the indices of these entries; the average sample size is fixed and equals
m. We will require that

m � d1 log d1; m � d2 log d2: (1.36)

These restrictions ensure that, with high probability, the sample contains at least one
entry from each row and each column of X (recall the classical coupon collector’s
problem).

As before, we assume that

rank.X/ � r:

The next result shows that X can be estimated from Y using low-rank approximation.

Theorem 10.5 (Matrix completion). Choose OX to be best rank-r approximation9

of p�1Y. Then

E
1p
d1d2

k OX � XkF � C

r
r.d1 C d2/

m
kXk1; (1.37)

where kXk1 D maxi;j jXijj.
To understand the form of this estimate, note that the left-hand side of (1.37)

measures the average error per entry of X:

9Formally, consider the singular value decomposition p�1Y D P
i siuiv

T
i with nonincreasing

singular values si. We define OX by retaining the r leading terms of this decomposition, i.e.,
OX DPr

iD1 siuiv
T
i .
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1p
d1d2

k OX � XkF D
� 1

d1d2

d1X

iD1

d2X

jD1
j OXij � Xijj2

�1=2
:

So Theorem 10.5 allows to make the average error per entry arbitrarily smaller than
the maximal entry of the matrix. Such estimation succeeds with a sample of m �
r.d1 C d2/ entries of X.

The proof of Theorem 10.5 will be based on a known bound on the operator norm
of random matrices, which is more general than Y. Gordon’s Theorem 10.2. There
are several ways to obtain general bounds; see [73] for a systematic treatment of this
topic. We will use one such result due to Y. Seginer [67].

Theorem 10.6 (Seginer’s bound for general random matrices). Let G be a d1 

d2 matrix whose entries are i.i.d., mean zero random variables. Then

E kGk � C
�
Emax

i
kGik2 C Emax

j
kGjk2

�

where the maxima are taken over all rows Gi and over all columns Gj of G,
respectively.

Proof of Theorem 10.5. We shall first control the error in the operator norm. By
triangle inequality,

k OX � Xk � k OX � p�1Yk C kp�1Y � Xk: (1.38)

Since OX is the best rank-r approximation to p�1Y , and both X and OX are rank-r
matrices, the first term in (1.38) is bounded by the second term. Thus

k OX � Xk � 2kp�1Y � Xk D 2

p
kY � pXk: (1.39)

The matrix Y � pX has independent mean zero entries, namely

.Y � pX/ij D .ıij � p/Xij:

So we can apply Y. Seginer’s Theorem 10.6, which yields

E kY � pXk � C
�
Emax

i�d1
k.Y � pX/ik2 C Emax

j�d2
k.Y � pX/jk2

�
: (1.40)

It remains to bound the `2 norms of rows and columns of Y � pX. Let us do this
for rows; a similar argument would control the columns. Note that

k.Y � pX/ik22 D
d2X

jD1
.ıij � p/2jXijj2 �

d2X

jD1
.ıij � p/2 	 kXk21; (1.41)
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where kXk1 D maxi;j jXijj is the `1 norm of X considered as a vector in R
d1�d2 . To

further bound the quantity in (1.41) we can use concentration inequalities for sums
of independent random variables. In particular, we can use Bernstein’s inequality
(see [9]), which yields

P

8
<

:

d2X

jD1
.ıij � p/2 > pd2t

9
=

;
� exp.�cpd2t/; t � 2:

The first restriction in (1.36) guarantees that pd2 � log d1. This enables us to use
the union bound over i � d1, which yields

Emax
i�d1

h d2X

jD1
.ıij � p/2

i1=2 � C1
p

pd2:

This translates into the following bound for the rows of Y � pX:

Emax
i�d1

k.Y � pX/ik2 � C1
p

pd2 kXk1:

Repeating this argument for columns and putting the two bounds into (1.40), we
obtain

E kY � pXk � C2
p

p.d1 C d2/ kXk1:

Substituting into (1.39), we conclude that

E k OX � Xk � C3

s
d1 C d2

p
kXk1: (1.42)

It remains to pass to the Frobenius norm. This is where we use the low-
rank assumption on X. Since both X and OX have ranks bounded by r, we have
rank. OX � X/ � 2r. Then, according to the second inequality in (1.31),

k OX � XkF � p
2r k OX � Xk:

Combining this with (1.42) and recalling that p D m=.d1d2/ by definition, we arrive
at the desired bound (1.37). ut
Remark 10.7 (Noisy observations). One can easily extend Theorem 10.5 for noisy
sampling, where every observed entry of X is independently corrupted by a mean
zero noise. Formally, we assume that the entries of the observation matrix Y are

Yij D ıij.Xij C 	ij/
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where 	ij are independent and mean zero random variables. Let us further assume
that j	ijj � M almost surely. Then a slight modification of the proof of Theorem 10.5
yields the following error bound:

E
1p
d1d2

k OX � XkF � C

r
r.d1 C d2/

m

	kXk1 C M


:

We leave details to the interested reader.

1.11 Single-bit observations via hyperplane tessellations

It may perhaps be surprising that a theory of similar strength can be developed for
estimation problems with nonlinear observations, in which the observation vector
y 2 R

m depends nonlinearly on the unknown vector x 2 R
n.

In this and next sections, we explore an example of extreme non-linearity—
the one given by the sign function. In Section 1.13, we will extend the theory to
completely general nonlinearities.

1.11.1 Single-bit observations

As before, our goal is to estimate an unknown vector x that lies in a known feasible
set K � R

n, from a random observation vector y D .y1; : : : ; ym/ 2 R
m. This time,

we will work with single-bit observations yi 2 f�1; 1g. So we assume that

yi D sign hai; xi ; i D 1; : : : ;m; (1.43)

where ai are standard Gaussian random vectors, i.e., ai � N.0; In/. We can represent
the model in a matrix form:

y D sign.Ax/;

where A is an m
n Gaussian random matrix with rows ai, and where our convention
is that the sign function is applied to each coordinate of the vector Ax.

The single-bit model represents an extreme quantization of the linear model we
explored before, where y D Ax. Only one bit is retained from each linear observation
yi. Yet we hope to estimate x as accurately as if all bits were available.

The model of single-bit observations was first studied in this context in [10]. Our
discussion will follow [59].
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Fig. 1.9 A tessellation of the feasible set K by hyperplanes. The cell containing x is highlighted.

1.11.2 Hyperplane tessellations

Let us try to understand single-bit observations yi from a geometric perspective.
Each yi 2 f�1; 1g represents the orientation of the vector x with respect to the
hyperplane with normal ai. There are m such hyperplanes. The observation vector
y D .y1; : : : ; ym/ represents orientation of x with respect to all these hyperplanes.

Geometrically, the m hyperplanes induce a tessellation of Rn by cells. A cell is
a set of points that have the same orientation with respect to all hyperplanes; see
Figure 1.9. Knowing y is the same as knowing the cell where x lies.

How can we estimate x? Recall that we know two pieces of information about x:

1. x lies in a known cell of the hyperplane tessellation;
2. x lies in a known set K.

Therefore, a good estimator of x can be obtained by picking any vector Ox from the
intersection of these two sets. Moreover, since just these two pieces of information
about x are available, such an estimator is best possible in some sense.

1.11.3 M� bound for random tessellations

How good is such an estimate? The maximal error is of course the diameter of the
intersection of the cell with K. So in order to bound the error, we need to prove that
this diameter is small.

Note that our strategy is parallel to what we have done for linear observations in
Section 1.4.1. The only piece we are missing is a version of M� bound for random
tessellations instead of random subspaces. Informally, we need a result about the
following question:

Question 11.1 (Pizza cutting). How many random hyperplanes would cut a given
set K into pieces that are at most " in size?

A result about this problem was proved in [59].

Theorem 11.2 (M� bound for random tessellations). Consider a set K � Sn�1
and m independent random hyperplanes drawn uniformly from the Grassmanian
Gn;n�1. Then
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Emax
C

diam.K \ C/ �
hCw.K/p

m

i1=3
; (1.44)

where the maximum is taken over all cells C of the hyperplane tessellation.10

Apart from the exponent 1=2 which is unlikely to be optimal, this result is indeed
a version of the M� bound, Theorem 3.12. To further highlight the similarity, note
that when m < n, the intersection of the m random hyperplanes is a random linear
subspace E of codimension m. This subspace lies in each cell of the tessellation. So
in particular, Theorem 11.2 controls the quantity E diam.K \ E/ appearing in the
standard M� bound, Theorem 3.12.

1.11.4 Estimation based on M� bound for random tessellations

Now we can apply Theorem 11.2 for the estimation problem. Based on our
discussion in Section 1.11.2, this result immediately implies the following.

Theorem 11.3 (Estimation from single-bit observations: feasibility program).
Assume the unknown vector x lies in some known set K � Sn�1, and the single-bit
observation vector y is given by (1.43). Choose Ox to be any vector satisfying

Ox 2 K and sign.AOx/ D y: (1.45)

Then

E sup
x2K

kOx � xk2 �
hCw.K/p

m

i1=3
: ut

We assumed in this result that feasible set K lies on the unit sphere. This is
because the magnitude kxk2 is obviously lost in the single-bit observations. So we
can only hope to estimate the direction of x, which is the vector x=kxk2 on the unit
sphere.

A good news is that estimation can be made from m � w.K/2 single-bit
observations, the same as for linear observations. So perhaps surprisingly, the
essential information about x is contained in a single bit of each observation.

Bad news is that the feasibility program (1.45) is not convex. When K is restricted
to lie on the sphere, it can never be convex or be convexified. One can get around
this issue, for example, by lifting the restriction; see [59] for pizza cutting of general
sets in R

n.

10A high-probability version of Theorem 11.2 was proved in [59]. Namely, denoting by ı the right-
hand side of (1.44), we have maxC diam.K\C/ � ı with probability at least 1�2 exp.�cı2m/, as
long as m � Cı�6w.K/2. The reader will easily deduce the statement of Theorem 11.2 from this.
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But a better idea will be to replace the feasibility problem (1.45) by an
optimization problem—just like we did in Section 1.4.2—which will work for
general sets K in the unit ball Bn

2 rather than the unit sphere. Such sets can be
convexified. We will do this in the next section.

1.12 Single-bit observations via optimization
and applications to logistic regression

Our goal remains the same as we described in Section 1.11.1. We would like to
estimate a vector x that lies in a known feasible set K � R

n, from single-bit
observations given as

y D sign.Ax/ 2 f�1; 1gm:

Instead of formulating estimation as a feasibility problem (1.45), we will now
state it as an optimization problem, as follows:

maximize
˝
Ax0; y

˛
subject to x0 2 K: (1.46)

This program tries to fit linear observations Ax0 to the single-bit observations y. It
does so by maximizing the correlation between linear and single-bit observations
while searching inside the feasible set K.

If K is a convex set, (1.46) is a convex program. Otherwise one can convexify K
as we did several times before.

The following result from [58] provides a guarantee for such estimator.

Theorem 12.1 (Estimation from single-bit observations: optimization pro-
gram). Assume the unknown vector x 2 R

n satisfies kxk2 D 1 and x lies in some
known set K � Bn

2. Choose Ox to be a solution to the program (1.46). Then

E kOx � xk22 � Cw.K/p
m

:

Here C D p
8�  5:01.

Our proof of Theorem 12.1 will be based on properties of the loss function, which
we define as

Lx.x0/ D � 1

m

˝
Ax0; y

˛ D � 1

m

mX

iD1
yi
˝
ai; x0

˛
:

The index x indicates that the loss function depends on x through y. The negative
sign is chosen so that program (1.46) minimizes the loss function over K.
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We will now compute the expected value and the deviation of the loss function
for fixed x and x0.

Lemma 12.2 (Expectation of loss function). Let x 2 Sn�1 and x0 2 R
n. Then

E Lx.x0/ D �
r
2

�

˝
x; x0

˛
:

Proof. We have

E Lx.x0/ D �E y1
˝
a1; x0

˛ D �E sign.ha1; xi/ ˝a1; x0
˛
:

It remains to note that ha1; xi and ha1; x0i are normal random variables with zero
mean, variances kxk22 D 1 and kx0k22, respectively, and covariance hx; x0i. A simple
calculation renders the expectation above as � hx; x0i	E sign.g/g where g � N.0; 1/.
It remains to recall that E sign.g/g D E jgj D p

2=� . ut
Lemma 12.3 (Uniform deviation of loss function). We have

E sup
u2K�K

jLx.u/ � E Lx.u/j � 2w.K/p
m
: (1.47)

Proof. Due to the form of loss function, we can apply the symmetrization inequality
of Proposition 5.2, which bounds the left-hand side of (1.47) by

2

m
E sup

u2K�K

ˇ̌
ˇ

mX

iD1
"iyi hai;ui

ˇ̌
ˇ D 2

m
E sup

u2K�K

ˇ̌
ˇ

*
mX

iD1
"iyiai;u

+ ˇ̌
ˇ: (1.48)

By symmetry and since yi 2 f�1; 1g, the random vectors f"iyiaig are distributed
identically with faig. In other words, we can remove "iyi from (1.48) without
changing the value of the expectation.

Next, by rotation invariance,
Pm

iD1 ai is distributed identically with
p

m g, where
g � N.0; In/. Therefore, the quantity in (1.48) equals

2p
m

E sup
u2K�K

j hg;ui j D 2w.K/p
m
:

This completes the proof. ut
Proof of Theorem 12.1. Fix x0 2 K. Let us try to bound kx�x0k2 in terms of Lx.x/�
Lx.x0/. By linearity of the loss function, we have

Lx.x/ � Lx.x0/ D Lx.x � x0/ D E Lx.x � x0/C Dx (1.49)

where the deviation
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Dx WD sup
u2K�K

jLx.u/ � E Lx.u/j

will be controlled using Lemma 12.3 a bit later.
To compute the expected value in (1.49), we can use Lemma 12.2 along with the

conditions kxk2 D 1, kx0k2 � 1 (the latter holds since x0 2 K � Bn
2). This way we

obtain

E Lx.x � x0/ D �
r
2

�

˝
x; x � x0

˛ � �1
2

r
2

�
kx � x0k22:

Putting this into (1.49), we conclude that

Lx.x/ � Lx.x0/ � � 1p
2�

kx � x0k22 C Dx: (1.50)

This bound holds for any fixed x0 2 K and for any point in the probability space
(i.e., for any realization of the random variables appearing in this bound). Therefore,
(1.50) must hold for the random vector x0 D Ox, again for any point in the probability
space.

The solution Ox was chosen to minimize the loss function; thus Lx.Ox/ � Lx.x/.
This means that for x0 D Ox, the left-hand side of (1.50) is non-negative. Rearranging
the terms, we obtain

kx � Oxk22 � p
2� Dx:

It remains to take expectation on both sides and use Lemma 12.3. This yields

E kx � Oxk22 � p
2�

2w.K/p
m
:

This completes the proof of Theorem 12.1. ut

1.12.1 Single-bit observations with general nonlinearities

The specific nonlinearity of observations that we considered so far—the one given
by sign function—did not play a big role in our argument in the last section. The
same argument, and surprisingly the same optimization program (1.46), can serve
any nonlinearity in the observations.

So let us consider a general model of single-bit observations y D .y1; : : : ; ym/ 2
f�1; 1gm, which satisfy

E yi D �.hai; xi/; i D 1; : : : ;m (1.51)
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Here � W R ! R is some link function, which describes nonlinearity of observations.
We assume that yi are independent given ai, which are standard Gaussian random
vectors as before. The matrix form of this model can be written as

E y D �.Ax/;

where A is an m
n Gaussian random matrix with rows ai, and where our convention
is that � is applied to each coordinate of the vector Ax.

To estimate x, an unknown vector in a known feasible set K, we will try to use the
same optimization program (1.46) in the last section. This may be surprising since
the program does not even need to know the nonlinearity � , nor does it attempt to
estimate � . Yet, this idea works in general as nicely as for the specific sign function.
The following result from [58] is a general version of Theorem 12.1.

Theorem 12.4 (Estimation from single-bit observations with general nonlinear-
ity). Assume the unknown vector x 2 R

n satisfies kxk2 D 1 and x lies in some
known set K � Bn

2. Choose Ox to be a solution to the program (1.46). Then

E kOx � xk22 � 4w.K/

�
p

m
:

Here we assume that

� WD E �.g/g > 0 forg � N.0; 1/: (1.52)

Proof. The argument follows very closely the proof of Theorem 12.1. The only
different place is the computation of expected loss function in Lemma 12.2. When
the sign function is replaced by a general nonlinearity � , one easily checks that the
expected value becomes

E Lx.x0/ D �� ˝x; x0˛ :

The rest of the argument is the same. ut
For �.z/ D sign.z/, Theorem 12.4 is identical with Theorem 12.1. However,

the new result is much more general. Virtually no restrictions are imposed on the
nonlinearity � . In particular, � need not be continuous or one to one.

The parameter � simply measures the information content retained through the
nonlinearity. It might be useful to express � as

� D E �.hai; xi/ hai; xi ;

so � measures how much the nonlinear observations �.hai; xi/ are correlated with
linear observations hai; xi.

The assumption that � > 0 is made for convenience; if � < 0 we can switch
the sign of � . However, if � D 0, the nonlinear and linear measurements are
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uncorrelated, and often no estimation is possible. An extreme example of the latter
situation occurs when � is a constant function, which clearly carries no information
about x.

1.12.2 Logistic regression and beyond

For the link function �.z/ D tanh.z=2/, the estimation problem (1.51) is equivalent
to logistic regression with constraints. In the usual statistical notation explained in
Section 1.7.4, logistic regression takes the form

E y D tanh.Xˇ=2/:

The coefficient vector ˇ is constrained to lie in some known feasible set K. We
will leave it to the interested reader to translate Theorem 12.4 into the language of
logistic regression, just like we did in Section 1.7.4 for linear regression.

The fact that Theorem 12.4 applies for general and unknown link function should
be important in statistics. It means that one does not need to know the non-linearity
of the model (the link function) to make inference. Be it the tanh function specific to
logistic regression or (virtually) any other non-linearity, the estimator Ǒ is the same.

1.13 General nonlinear observations via metric projection

Finally, we pass to the most general model of observations y D .y1; : : : ; ym/, which
are not necessarily linear or single bit. In fact, we will not even specify a dependence
of yi on x. Instead, we only require that yi be i.i.d. random variables, and

each observation yi may depend on ai only through hai; xi. (1.53)

Technically, the latter requirement means that, given hai; xi, the observation yi is
independent from ai. This type of observation models are called single-index models
in statistics.

How can we estimate x 2 K from such general observation vector y? Let us look
again at the optimization problem (1.46), writing it as follows:

maximize
˝
x0;ATy

˛
subject to x0 2 K:

It might be useful to imagine solving this program as a sequence of two steps: (a)
compute a linear estimate of x, which is



1 Estimation in High Dimensions: A Geometric Perspective 59

Oxlin D 1

m
ATy D 1

m

mX

iD1
yiai; (1.54)

and then (b) fitting Oxlin to the feasible set K, which is done by choosing a point in K
that is most correlated with Oxlin.

Surprisingly, almost the same estimation procedure succeeds for the general
single-index model (1.53). We just need to adjust the second, fitting, step. Instead
of maximizing the correlation, let us metrically project Oxlin onto the feasible set K,
thus choosing Ox to be a solution of the program

minimizekx0 � Oxlink2 subject to x0 2 K: (1.55)

Just like in the previous section, it may be surprising that this estimator does not
need to know the nature of the nonlinearity in observations y. To get a heuristic
evidence of why this knowledge may not be needed, one can quickly check (using
rotation invariance) that

E Oxlin D E y1a1 D �Nx; where Nx D x=kxk2; � D E y1 ha1; Nxi :

So despite not knowing the nonlinearity, Oxlin already provides an unbiased estimate
of x, up to scaling.

A result from [60] provides a guarantee for the two-step estimator (1.54), (1.55).
Let us state this result in a special case where K is a cone, i.e., tK D K for all t � 0.
A version for general sets K is not much more difficult, see [60] for details.

Since cones are unbounded sets, the standard mean width (as defined in (1.3))
would be infinite. To get around this issue, we should consider a local version of
mean width, which we can define as

w1.K/ D E sup
u2.K�K/\Bn

2

hg;ui ; g � N.0; In/:

Theorem 13.1 (Estimation from nonlinear observations). Assume the unknown
vector x lies in a known closed cone K in R

n. Choose Ox to be a solution to the
program (1.55). Let Nx D x=kxk2. Then

E Ox D �Nx and E kOx � �Nxk2 � Mw1.K/p
m

:

Here we assume that

� D E y1 ha1; Nxi > 0 and M D p
2�
�
E y21 C Var

	
y1 ha1; Nxi 
�1=2:

The proof of Theorem 13.1 is given in [60, Theorem 2.1]. It is not difficult, and
is close in spirit to the arguments we saw here; we will not reproduce it.
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The role of parameters � and M is to determine the correct magnitude and
deviation of the estimator; one can think of them as constants that are usually easy
to compute or estimate. By rotation invariance, � and M depend on the magnitude
kxk2 (through y1) but not on the direction Nx D x=kxk2 of the unknown vector x.

We can summarize results of this and previous section as follows.

One can estimate a vector x in a general feasible set K from m � w.K/2 random nonlinear
observations, even if the nonlinearity is not known. If K is convex, estimation can be done
using convex programming.

1.13.1 Examples of observations

To give a couple of concrete examples, consider noisy linear observations

yi D hai; xi C 	i:

We already explored this model in Section 1.6, where 	i were arbitrary numbers
representing noise. This time, let us assume 	i are independent random variables
with zero mean and variance 
2. A quick computation gives

� D kxk2; M D C.kxk2 C 
/:

Theorem 13.1 then yields the following error bound:

E kOx � xk2 � Cw1.K/p
m

.kxk2 C 
/:

Let us give one more example, for the single-bit observations

yi D sign hai; xi :

We explored this model in Sections 1.11 and 1.12. A quick computation gives

� D
r
2

�
; M D C:

Theorem 13.1 then yields the following error bound:

E
��Ox �

r
2

�
x
��
2

� Cw1.K/p
m

:
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1.13.2 Examples of feasible cones

To give a couple of concrete examples of feasible cones, consider the set K of s-
sparse vectors in R

n, those with at most s nonzero coordinates. As we already noted
in Example 3.9,

w1.K/ �
p

s log.2n=s/:

Further, solving the program (1.55) (i.e., computing the metric projection of Oxlin

onto K) amounts to hard thresholding of x0. The solution Ox is obtained from Oxlin

by keeping the s largest coefficients (in absolute value) and zeroing out all other
coefficients.

So Theorem 13.1 in this case can be stated informally as follows:

One can estimate an s-sparse vector x in R
n from m � s log n nonlinear observations y,

even if the nonlinearity is not known. The estimation is given by the hard thresholding of
Oxlin D m�1ATy.

Another popular example of a feasible cone is a set of low-rank matrices. Let K
be the set of d1 
 d2 matrices with rank at most r. Proposition 10.4 implies that

w1.K/ � C
p

r.d1 C d2/:

Further, solving the program (1.55) (i.e., computing the metric projection of x0
onto K) amounts to computing the best rank-r approximation of Oxlin. This amounts
to hard thresholding of singular values of Oxlin, i.e., keeping the leading s terms of the
singular value decomposition. Recall that we already came across this thresholding
in the matrix completion problem, Theorem 10.5.

So Theorem 13.1 in this case can be stated informally as follows:

One can estimate a d1�d2 matrix with rank r from m � r.d1Cd2/ nonlinear observations,
even if the nonlinearity is not known. The estimation is given by the hard thresholding of
singular values of Oxlin.

1.14 Some extensions

1.14.1 From global to local mean width

As we have seen, the concept of Gaussian mean width captures the complexity
of a feasible set K quite accurately. Still, it is not exactly the optimal quantity in
geometric and estimation results. An optimal quantity is the local mean width, which
is a function of radius r > 0, defined as
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wr.K/ D E sup
u2.K�K/\rBn

2

hg;ui ; g � N.0; In/:

Comparing with Definition 3.4 of the usual mean width, we see that

wr.K/ � w.K/ forallr:

The usefulness of local mean width was noted in asymptotic convex geometry by
A. Giannopoulos and V. Milman [27–29, 31]. They showed that the function wr.K/
completely describes the diameter of high dimensional sections K \ E, thus proving
two-sided versions of the M� bound (Theorem 3.12). An observation of a similar
nature was made recently by S. Chatterjee [17] in the context of high-dimensional
estimation. He noted that a variant of local mean width provides optimal error rates
for the metric projection onto a feasible set considered in Section 1.13.

For most results discussed in this survey, one can replace the usual mean width by
a local mean width, thus making them stronger. Let us briefly indicate how this can
be done for the M� bound (Theorem 3.12); see [28, 29, 31, 47] for a more detailed
discussion.

Such localization is in a sense automatic; it can be done as a “post-processing” of
the M� estimate. The conclusion of the general M� bound, Theorem 5.1, for T \rBn

2,
is that

sup
u2T"\rBn

2

kuk2 � C
� 1p

m
E sup

u2T\rBn
2

j hg;ui j C "
�

(1.56)

with high probability (see also Section 1.5.2). Let us show that the intersection with
the ball rBn

2 can be automatically removed from the left side. Since

sup
u2T"\rBn

2

kuk2 D min
	

sup
u2T"

kuk2; r


;

it follows that if supu2T"\rBn
2
kuk2 < r then supu2T" kuk2 � r. Thus, if the right-hand

side of (1.56) is smaller than r, then supu2T" kuk2 � r.
When applied to the classical M� bound, Theorem 3.12, this argument localizes

it as follows:

wr.K/

r
� c

p
m implies diam.K \ E/ � r

with high probability.

1.14.2 More general distributions

For simplicity of exposition, the estimation results in this survey were stated for
isotropic Gaussian vectors ai. We showed in Section 1.8 how to extend the M�
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bound and the corresponding linear estimation results for line for sub-Gaussian
distributions. For more heavy-tailed distributions, a version of M� bound was proved
recently in [46]; compressed sensing for such distributions was examined in [40, 41].

For single-bit observations of Section 1.12, a generalization for sub-Gaussian
distributions is discussed in [2]. Some results can be formulated for anisotropic
Gaussian distributions, where ai � N.0;†/with† ¤ In, see, e.g., [58, Section 3.4].

Results for extremely heavy-tailed distributions, such as samples of entries and
random Fourier measurements, exist currently only for special cases of feasible
sets K. When K consists of sparse vectors, reconstruction of x from Fourier
measurements (random frequencies of x) was extensively studied in compressed
sensing [15, 19, 26, 39]. Reconstruction of a matrix from a random sample of entries
was discussed in Section 1.10.4 in the context of matrix completion problem.

There are currently no results, for instance, about reconstruction of x 2 K from
random Fourier measurements, where K is a general feasible set. It is clear that
K needs to be incoherent with the Fourier basis of exponentials, but this is yet to
be quantified. In the special case where K is a set of sparse vectors, basic results
of compressed sensing quantify this incoherence via a restricted isometry property
[15, 19, 26, 39].
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Chapter 2
Convex Recovery of a Structured Signal
from Independent Random Linear
Measurements

Joel A. Tropp

Abstract This chapter develops a theoretical analysis of the convex programming
method for recovering a structured signal from independent random linear mea-
surements. This technique delivers bounds for the sampling complexity that are
similar to recent results for standard Gaussian measurements, but the argument
applies to a much wider class of measurement ensembles. To demonstrate the power
of this approach, the chapter presents a short analysis of phase retrieval by trace-
norm minimization. The key technical tool is a framework, due to Mendelson and
coauthors, for bounding a nonnegative empirical process.

2.1 Motivation

Signal reconstruction from random measurements is a central preoccupation in
contemporary signal processing. In this problem, we acquire linear measurements
of an unknown, structured signal through a random sampling process. Given these
random measurements, a standard method for recovering the unknown signal is
to solve a convex optimization problem that enforces our prior knowledge about
the structure. The basic question is how many measurements suffice to resolve a
particular type of structure.

Recent research has led to a comprehensive answer when the measurement
operator follows the standard Gaussian distribution [1, 6, 10, 22, 24–26, 29, 31, 33].
The literature also contains satisfying answers for sub-Gaussian measurements [22]
and subexponential measurements [18]. Other types of measurement systems are
quite common, but we are not aware of a simple approach that allows us to analyze
general measurements in a unified way.

This chapter describes an approach that addresses a wide class of convex signal
reconstruction problems involving random sampling. To understand these questions,
the core challenge is to produce a lower bound on a nonnegative empirical process.
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For this purpose, we rely on a powerful framework, called the Small Ball Method,
that was developed by Shahar Mendelson and coauthors in a sequence of papers,
including [14, 16, 19–21].

To complete the estimates required by Mendelson’s Small Ball Method, we
propose a technique based on conic duality. One advantage of this approach is
that we can exploit the same insights and calculations that have served so well
in the Gaussian setting. We refer to this little argument as the bowling scheme
in honor of David Gross’s golfing scheme [13]. We anticipate that it will offer
researchers an effective way to analyze many signal recovery problems with random
measurements.

2.1.1 Roadmap

The first half of the chapter summarizes the established analysis of convex signal
reconstruction with a Gaussian sampling model. In Section 2.2, we introduce a
convex optimization framework for solving structured signal recovery problems
with linear measurements, and we present a geometric formulation of the optimality
conditions. Section 2.3 specializes to the case where the measurements come from a
Gaussian model, and we explain how classical results for Gaussian processes lead to
a sharp bound for the number of Gaussian measurements that suffice. These results
are framed in terms of a geometric parameter, the conic Gaussian width, associated
with the convex optimization problem. Section 2.4 explains how to use duality to
obtain a numerically sharp bound for the conic Gaussian width, and it develops two
important examples in detail.

In the second half of the chapter, we consider more general sampling models.
Section 2.5 introduces Mendelson’s Small Ball Method and the technical arguments
that support it. As a first application, in Section 2.6, we use this strategy to analyze
signal reconstruction from sub-Gaussian measurements. Section 2.7 presents the
bowling scheme, which merges the conic duality estimates with Mendelson’s Small
Ball Method. This technique allows us to study more general types of random
measurements. Finally, in Section 2.8, we demonstrate the vigor of these ideas by
applying them to the phase retrieval problem.

2.2 Signal reconstruction from linear measurements

We begin with a framework that describes many convex optimization methods for
recovering a structured signal from linear measurements. Examples include the `1
minimization approach for identifying a sparse vector and the Schatten 1-norm
minimization approach for identifying a low-rank matrix. We develop a simple error
bound for convex signal reconstruction by exploiting the geometric formulation
of the optimality conditions. This analysis leads us to study the minimum conic
singular value of a matrix.
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2.2.1 Linear acquisition of data

Let x\ 2 R
d be an unknown but “structured” signal. Suppose that we observe a

vector y in R
m that consists of m linear measurements of the unknown:

y D ˆx\ C e: (2.1)

We assume that ˆ is a known m 
 d sampling matrix, and e 2 R
m is a vector of

unknown errors. Expression (2.1) offers a model for data acquisition that describes
a wide range of problems in signal processing, statistics, and machine learning. Our
goal is to compute an approximation of the unknown x\ by exploiting our prior
knowledge about its structure.

2.2.2 Reconstruction via convex optimization

Convex optimization is a popular approach for recovering a structured vector from
linear measurements. Let f W Rd ! R be a proper convex function1 that reflects the
“complexity” of a signal. Then we can frame the convex program

minimize
x2Rd

f .x/ subject to kˆx � yk � � (2.2)

where k	k denotes the Euclidean norm and � is a specified bound on the norm of the
error e. In words, the optimization problem (2.2) searches for the most structured
signal x that is consistent with the observed data y. In practice, it is common to
consider the Lagrangian formulation of (2.2) or to consider a problem where the
objective and constraint are interchanged. We can often solve (2.2) and its variants
efficiently using standard algorithms.

Remark 2.1 (Alternative programs). The optimization problem (2.2) is not the only
type of convex method for signal reconstruction. Suppose that f W R

d ! R is a
gauge, i.e., a function that is nonnegative, positively homogeneous, and convex.
Then we may consider the convex program

minimize
x2Rd

f .x/ subject to f ı
	
ˆt.ˆx � y/


 � �;

where f ı denotes the polar of the gauge [28, Chap. 15] and t denotes transposition.
This reconstruction method submits to an analysis similar to the approach in this
note. For example, see [4, Thm. 1].

1The extended real numbers R WD R[ f˙1g. A proper convex function takes at least one finite
value but never the value �1.
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2.2.3 Examples

Before we continue, let us mention a few structures that arise in applications and the
complexity measures that are typically associated with these structures.

Example 2.2 (Sparse vectors). A vector x\ 2 R
d is sparse when many or most of

its entries are equal to zero. We can promote sparsity by minimizing the `1 norm
k	k`1 . This heuristic leads to a problem of the form

minimize
x2Rd

kxk`1 subject to kˆx � yk � �: (2.3)

Sparsity has become a dominant modeling tool in statistics, machine learning, and
signal processing.

Example 2.3 (Low-rank matrices). We say that a matrix X\ 2 R
d1�d2 has low rank

when its rank is small compared with minimum of d1 and d2. Suppose that we have
acquired noisy measurements

y D ˆ.X\/C e; (2.4)

where ˆ is a linear operator that maps a matrix in R
d1�d2 to a vector in R

m. To
reconstruct the unknown low-rank matrix X\, we can minimize the Schatten 1-norm
k	kS1 , which returns the sum of the singular values of a matrix. This heuristic
suggests that we consider an optimization problem of the form

minimize
X2Rd1�d2

kXkS1 subject to kˆ.X/ � yk � �: (2.5)

In recent years, this approach to fitting low-rank matrices has become common.

It is possible to consider many other types of structures. For instance, see [6, 10].

2.2.4 A deterministic error bound for convex recovery

We can obtain a deterministic error bound for the convex reconstruction
method (2.2) using a standard geometric analysis. Recall that a cone is a set
K � R

d that is positively homogeneous: K D �K for all � > 0. A convex cone is a
cone that is also a convex set. Let us introduce the cone of descent directions of a
convex function.

Definition 2.4 (Descent cone). Let f W Rd ! R be a proper convex function. The
descent cone D.f ; x/ of the function f at a point x 2 R

d is defined as

D.f ; x/ WD
[

�>0

˚
u 2 R

d W f .x C �u/ � f .x/
�
:

The descent cone of a convex function is always a convex cone, but it may not be
closed.
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We are interested in the behavior of the measurement matrix ˆ when it is
restricted to a descent cone.

Definition 2.5 (Minimum conic singular value). Let ˆ be an m 
 d matrix, and
let K be a cone in R

d. The minimum singular value of ˆ with respect to the cone K
is defined as

�min.ˆI K/ WD inf
˚ kˆuk W u 2 K \ Sd�1�

where Sd�1 is the Euclidean unit sphere in R
d.

The terminology originates in the fact that �min.ˆIRd/ coincides with the usual
minimum singular value.

With these definitions at hand, we reach the following basic result.

Proposition 2.6 (A deterministic error bound for convex recovery). Let x\ be a
signal in R

d, let ˆ be an m 
 d measurement matrix, and let y D ˆx\ C e be a
vector of measurements in R

m. Assume that kek � �, and let Ox� be any solution to
the optimization problem (2.2). Then

�
�Ox� � x\

�
� � 2�

�min
	
ˆI D.f ; x\/


 :

This statement is adapted from [6]. For completeness, we include the short proof.

Proof. It is natural to write the decision variable x in the convex program (2.2)
relative to the true unknown: u WD x � x\. Using expression (2.1) for the
measurement vector y, we obtain the equivalent problem

minimize
u2Rd

f .x\ C u/ subject to kˆu � ek � �: (2.6)

Owing to the bound kek � �, the point u D 0 is feasible for (2.6). Therefore, each
optimal point Ou verifies f .x\ C Ou/ � f .x\/. In summary, any optimal point of (2.6)
satisfies two conditions:

Ou 2 D.f ; x\/ and kˆ Ou � ek � �:

As a consequence, we simply need to determine how far we can travel in a descent
direction before we violate the bound constraint. See Figure 2.1 for an illustration
of the geometry.

To complete the argument, assume that u is a nonzero point in D.f ; x\/ that is
feasible for (2.6). Then

�min
	
ˆI D.f ; x\/


 � kˆuk
kuk � kˆu � ek C kek

kuk � 2�

kuk :
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Fig. 2.1 [Geometry of convex recovery] This diagram illustrates the geometry of the optimiza-
tion problem (2.6). The cone D.f ; x\/ contains the directions u in which f is decreasing at x\.
Assuming that kek � �, the diagonal tube contains every point u that satisfies the bound constraint
kˆuC ek � �. Each optimal point Ou for (2.6) lies in the intersection of the tube and the cone.

The first inequality follows from Definition 2.5 of the conic singular value. The
second relation is the triangle inequality. The last bound holds because u satisfies
the constraint in (2.6), and we have assumed that kek � �. Finally, rearrange the
display, and rewrite u in terms of the original decision variable x. ut

Although Proposition 2.6 is elegant, it can be difficult to apply because we must
calculate the minimum conic singular value of a matrix ˆ with respect to a descent
cone. This challenge becomes less severe, however, when the matrix ˆ is drawn at
random.

2.3 A universal error bound for Gaussian measurements

We will study the prospects for convex recovery when the sampling matrix
ˆ is chosen at random. This modeling assumption arises in signal processing
applications where the matrix describes a data-acquisition system that can extract
random measurements. This kind of model also appears in statistics and machine
learning when each row of the matrix tabulates measured variables for an individual
subject in an experiment.
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2.3.1 Standard Gaussian measurements

In this section, we treat one of the simplest mathematical models for the m 
 d
random measurement matrix ˆ. We assume that each of the m rows of ˆ is drawn
independently from the standard Gaussian distribution NORMAL.0; Id/, where the
covariance Id is the d-dimensional identity matrix. For this special case, we can
obtain a sharp estimate for the minimum conic singular value �min.ˆI K/ for any
convex cone K.

2.3.2 The conic Gaussian width

The analysis of Gaussian sampling depends on a geometric summary parameter for
cones.

Definition 3.1 (Conic Gaussian width). Let K � R
d be a cone, not necessarily

convex. The conic Gaussian width w.K/ is defined as

w.K/ WD E supu2K\Sd�1 hg; ui
where g � NORMAL.0; Id/ is a standard Gaussian vector in R

d.

The Gaussian width plays a central role in asymptotic convex geometry [17,
23, 27]. Most of the classical techniques for bounding widths are only accurate
up to constant factors (or worse). In contrast, ideas from the contemporary signal
processing literature frequently allow us to produce numerically sharp estimates for
the Gaussian width of a cone. These techniques were developed in the papers [1, 6,
10, 24, 31]. We will outline one of the methods in Section 2.4.

Remark 3.2 (Statistical dimension). The conic Gaussian width w.K/ is a conve-
nient functional because it arises from the probabilistic tools that we use. The theory
of conic integral geometry, however, delivers a better summary parameter [1]. The
statistical dimension ı.K/ of a convex cone K can be defined as

ı.K/ WD E
�	

supu2K\Bd hg; ui 
2�;
where Bd is the Euclidean unit ball in R

d and g � NORMAL.0; Id/. The statistical
dimension canonically extends the dimension of a subspace to the class of convex
cones, and it satisfies many elegant identities [1, Prop. 3.1]. For some purposes,
the two parameters are interchangeable because of the following comparison [1,
Prop. 10.2]:

w2.K/ � ı.K/ � w2.K/C 1:

As a consequence, we can interpret w2.K/ as a rough measure of the “dimension”
of a cone.
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2.3.3 Conic singular values and conic Gaussian widths

As it turns out, the conic Gaussian width w.K/ controls the minimum conic singular
value �min.ˆI K/ when ˆ follows the standard normal distribution.

Proposition 3.3 (Minimum conic singular value of a Gaussian matrix). Let
K � R

d be a cone, not necessarily convex, and let ˆ be an m 
 d matrix
whose rows are independent vectors drawn from the standard Gaussian distribution
NORMAL.0; Id/. Then

�min.ˆI K/ � p
m � 1 � w.K/ � t

with probability at least 1 � e�t2=2.

In essence, this result dates to the work of Gordon [11, 12]. We have drawn the
proof from the survey [8, Sec. 3.2] of Davidson & Szarek; see also [6, 22, 29, 31].
Note that the argument relies on special results for Gaussian processes that do not
extend to other distributions.

Proof sketch. We can express the minimum conic singular value as

�min.ˆI K/ D inf
u2K\Sd�1

sup
v2Sm�1

hv; ˆui

It is a consequence of Gordon’s comparison inequality [11, Thm. 1.4] that

E inf
u2K\Sd�1

sup
v2Sm�1

hv; ˆui� E sup
v2Sm�1

hg0; vi�E sup
u2K\Sd�1

hg; uiD E kg0k�w.K/;

where g0 � NORMAL.0; Im/ and g � NORMAL.0; Id/. It is well known that E kg0k �p
m � 1, and therefore

E�min.ˆI K/ � p
m � 1 � w.K/: (2.7)

To complete the argument, note that the map

�min.	I K/ W A 7! inf
u2K\Sd�1

kAuk

is 1-Lipschitz with respect to the Frobenius norm. The usual Gaussian concentration
inequality [3, Sec. 5.4] implies that

P
˚
�min.ˆI K/ � E�min.ˆI K/ � t

� � e�t2=2: (2.8)

Introduce the lower bound (2.7) for the expectation of the minimum conic singular
value into (2.8) to reach the advertised result. ut
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Remark 3.4 (Sharpness for convex cones). It is a remarkable fact that the bound in
Proposition 3.3 is essentially sharp. For any cone K, we can reinterpret the statement
as saying that

�min.ˆI K/ > 0 with high probability when m � w2.K/C Cw.K/:

(The letter C always denotes a positive absolute constant, but its value may change
from place to place.) Conversely, for a convex cone K, it holds that

�min.ˆI K/ D 0 with high probability when m � w2.K/ � Cw.K/: (2.9)

Result (2.9) follows from research of Amelunxen et al. [1, Thm. I and Prop. 10.2].
This claim can also be derived by supplementing the proof of Proposition 3.3
with a short polarity argument. It is productive to interpret the pair of estimates
in this remark as a phase transition for convex signal recovery; see [1] for more
information.

2.3.4 An error bound for Gaussian measurements

Combining Proposition 2.6 and Proposition 3.3, we obtain a general error bound for
convex recovery from Gaussian measurements.

Corollary 3.5 (Signal recovery from Gaussian measurements). Let x\ be a
signal in R

d. Letˆ be an m 
 d matrix whose rows are independent random vectors
drawn from the standard Gaussian distribution NORMAL.0; Id/, and let y D ˆx\Ce
be a vector of measurements in R

m. With probability at least 1�e�t2=2, the following
statement holds. Assume that kek � �, and let Ox� be any solution to the optimization
problem (2.2). Then

�
�Ox� � x\

�
� � 2�

�p
m � 1 � w

	
D.f ; x\/


 � t
�
C
:

The operation Œa�C WD maxfa; 0g returns the positive part of a number.

The overall argument that leads to this result was proposed by Rudelson &
Vershynin [29, Sec. 4]; the statement here is adapted from [6].

Corollary 3.5 provides for stable recovery of the unknown x\ when the number
m of measurements satisfies

m � w2
	
D.f ; x\/


C Cw
	
D.f ; x\/



:

In view of Remark 3.4, Corollary 3.5 provides a refined estimate for the amount
of information that suffices to identify a structured vector from Gaussian measure-
ments via convex optimization.
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Remark 3.6 (The normal error model). It is possible to improve the error bound
in Corollary 3.5 if we instate a Gaussian model for the error vector e. See the
papers [25, 26, 33] for an analysis of this case.

2.4 Controlling the width of a descent cone via polarity

As soon as we know the conic Gaussian width of the descent cone, Corollary 6.4
yields error bounds for convex recovery of a structured signal from Gaussian
measurements. To make use of this result, we need technology for calculating
these widths. This section describes a mechanism, based on polarity, that leads
to extremely accurate estimates. We can trace this method to the papers [24, 31],
where it is couched in the language of duality for cone programs. The subsequent
papers [1, 6] rephrase these ideas in a more geometric fashion. It can be shown
that the approach in this section gives sharp results for many natural examples;
see [1, Thm. 4.3] or [10, Prop. 1]. Although polar bounds for widths are classic
in asymptotic convex geometry [17, 23, 27], the refined arguments here are just a
few years old.

2.4.1 Polarity and weak duality for cones

We begin with some classical facts about conic geometry.

Fact 4.1 (Polarity). Let K be a general cone in R
d. The polar cone Kı is the closed

convex cone

Kı WD ˚
v 2 R

d W hv; xi � 0 for all x 2 K
�
:

It is easy to verify that K � .Kı/ı.

Recall that the distance from a point x 2 R
d to a set E � R

d is defined by the
relation

dist.x;E/ WD inf
u2E

kx � uk :

With these definitions, we reach the following weak duality result.

Proposition 4.2 (Weak duality for cones). Let K be a general cone in R
d. For

x 2 R
d,

sup
u2K\Sd�1

hx; ui � dist.x;Kı/:
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Proof. The argument is based on a simple duality trick. First, write

dist.x;Kı/ D inf
v2Kı

kx � vk D inf
v2Kı

sup
u2Sd�1

hx � v; ui :

Apply the inf–sup inequality:

dist.x;Kı/ � sup
u2Sd�1

inf
v2Kı

hx � v; ui D sup
u2Sd�1

�
hx; ui � sup

v2Kı

hv; ui

:

By definition of polarity, the inner supremum takes the value C1 unless u 2 .Kı/ı.
We determine that

dist.x;Kı/ � sup
u2.Kı/ı\Sd�1

hx; ui � sup
u2K\Sd�1

hx; ui :

The last inequality holds because K � .Kı/ı. ut
Remark 4.3 (Strong duality for cones). If K is a convex cone and we replace the
sphere with a ball, then we have strong duality instead:

sup
u2K\Bd

hx; ui D dist.x;Kı/:

The proof uses Sion’s minimax theorem [30] and the bipolar theorem [28,
Thm. 14.1].

2.4.2 The conic Gaussian width of a descent cone

We can use Proposition 4.2 to obtain an effective bound for the width of a descent
cone. This approach is based on a classical polarity correspondence [28, Thm. 23.7].

Fact 4.4 (Polarity for descent cones). The subdifferential of a proper convex
function f W Rd ! R at a point x 2 R

d is the closed convex set

@f .x/ WD ˚
v 2 R

d W f .y/ � f .x/C hv; y � xi for all y 2 R
d
�
:

Assume that the subdifferential @f .x/ is nonempty and does not contain the origin.
Then

D.f ; x/ı D cone.@f .x// WD closure

0

@
[

��0
� 	 @f .x/

1

A : (2.10)

Combining Proposition 4.2 and Fact 4.4, we reach a bound for the conic Gaussian
width of a descent cone.
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Proposition 4.5 (The width of a descent cone). Let f W R
d ! R be a proper

convex function, and fix a point x 2 R
d. Assume that the subdifferential @f .x/ is

nonempty and does not contain the origin. Then

w2
	
D.f ; x/


 � E inf
��0 dist2

	
g; � 	 @f .x/




Several specific instances of Proposition 4.5 appear in [6, App. C], while the
general statement here is adapted from [1, Sec. 4.1]. Sections 2.4.3 and 2.4.4 exhibit
how Proposition 4.5 works.

Proof. Proposition 4.2 implies that

w
	
D.f ; x/


 D E sup
u2D.f ;x/\Sd�1

hg; ui � E dist
	
g; D.f ; x/ı



:

Expression (2.10) for the polar of a descent cone implies that

w
	
D.f ; x/


 � E dist

0

@g; closure

0

@
[

��0
� 	 @f .x/

1

A

1

A D E inf
��0 dist

	
g; � 	 @f .x/



:

Indeed, the distance to a set is the same as the distance to its closure, and the distance
to a union is the infimal distance to one of its members. Square the latter display and
apply Jensen’s inequality to complete the argument. ut

2.4.3 Example: Sparse vectors

Suppose that x\ is a vector in R
d with s nonzero entries. Let ˆ be an m 
 d matrix

whose rows are independent random vectors distributed as NORMAL.0; Id/, and
suppose that we acquire a vector y D ˆx\ C e consisting of m noisy measurements.
We can solve the `1-minimization problem (2.3) in an attempt to reconstruct x\.

How many measurements are sufficient to ensure that this approach succeeds?
We will demonstrate that

w2
	
D.k	k`1 ; x\/


 � 2s log.d=s/C 2s: (2.11)

Therefore, Corollary 3.5 implies that m & 2s log.d=s/measurements are enough for
us to recover x\ approximately. When s � d, the first term in (2.11) is numerically
sharp because of [10, Prop. 1].

2.4.3.1 The width calculation

Let us establish the width bound (2.11). This analysis is adapted from [6, App. C]
and [1, App. D.2]; see also [10, App. B]. The result [1, Prop. 4.5] contains a more
complicated formula for the width that is sharp for all choices of the sparsity s.



2 The bowling scheme 79

When estimating widths, a useful strategy is to change coordinates so that
the calculations are more transparent. The `1 norm is invariant under signed
permutation, so

D.k	k`1 ; x\/ D Pt D.k	k`1 ;Px\/ where P is a signed permutation:

The distribution of a standard Gaussian random variable is invariant under signed
permutation, so the conic Gaussian width has the same invariance. Therefore,

w
	
D.k	k`1 ; x\/


 D w
	
Pt D.k	k`1 ;Px\/


 D w
	
D.k	k`1 ;Px\/



:

We will use this type of transformation several times without detailed justification.
As a consequence of the argument in the last paragraph, we may assume that x\

takes the form

x\ D .x1; : : : ; xs; 0; : : : ; 0/
t 2 R

d where x1 � 	 	 	 � xs > 0:

Proposition 4.5 ensures that

w2
	
D.k	k`1 ; x\/


 � E dist2
	
g; � 	 @ kx\k`1



for each � � 0 (2.12)

where g � NORMAL.0; Id/. The subdifferential of the `1 norm at x\ satisfies

@ kx\k`1 D
��
1s

y


2 R

d W kyk`1
� 1

�
where 1s WD .1; : : : ; 1/t 2 R

s:

Therefore,

E dist2.g; � 	 @ kx\k`1/ D
sX

jD1
E
	
gj � �
2 C

dX

jDsC1
E
� jgjj � ��2C: (2.13)

As usual, Œa�C WD maxfa; 0g. For 1 � j � s, a direct calculation gives

E
	
gj � �
2 D 1C �2: (2.14)

For s < j � d, we apply a familiar tail bound for the standard normal variable to
obtain

E
� jgjj2 � ��2C D

Z 1

�

2.a � �/2 P˚ jgjj � a
�

da

�
Z 1

�

2a

 r
2

�
a�1 e�a2=2

!

da

D 2P fjgjk � �g � 2e��2=2 (2.15)
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Combine (2.12), (2.13), (2.14), and (2.15) to obtain

w2
	
D.k	k`1; x\/


 � E dist2.g; � 	 @ kx\k`1/ D s 	 	1C �2

C .d � s/ 	 2e��2=2:

Choose �2 D 2 log.d=s/ and simplify to reach (2.11).

2.4.4 Example: Low-rank matrices

Let X\ be a matrix in R
d1�d2 with rank r. Let ˆ W Rd1�d2 ! R

m be a linear operator
whose matrix has independent standard Gaussian entries. Suppose we acquire m
noisy measurements of the form y D ˆ.X\/C e. We can solve the S1-minimization
problem (2.5) to reconstruct X\.

How many measurements are enough to guarantee that this approach works? We
will prove that

w2
	
D.k	kS1 ;X

\/

 � 3r 	 .d1 C d2 � r/: (2.16)

As a consequence, Corollary 3.5 implies that m & 3r 	 .d1 C d2 � r/ measurements
allow us to identify X\ approximately.

2.4.4.1 The width calculation

Let us establish the width bound (2.16). This analysis is adapted from [6, App. C]
and [1, App. D.3]; see also [10, App. E]. The result [1, Prop. 4.6] contains a more
complicated formula for the width that is sharp whenever the rank r is proportional
to the dimension minfd1; d2g.

The Schatten 1-norm is unitarily invariant, so we may also select a coordinate
system where

X\ D
�
† 0

0 0


where † D diag.
1; : : : ; 
r/ and 
j > 0 for j D 1; : : : ; r:

Let G be a d1 
 d2 matrix with independent standard normal entries, partitioned as

G D
�

G11 G12

G21 G22


where G11 is r 
 r and G22 is .d1 � r/ 
 .d2 � r/:

Define a random parameter � D kG22k, where k	k denotes the spectral norm.
Proposition 4.5 ensures that

w2
	
D.k	kS1 ;X

\/

 � E dist2F

	
G; � 	 @ kX\kS1



: (2.17)
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Note that we must calculate distance with respect to the Frobenius norm k	kF.
According to [37, Ex. 2], the subdifferential of the Schatten 1-norm takes the form

@ kX\kS1 D
��

Ir 0

0 Y


2 R

d1�d2 W kYk � 1

�
where Ir is the r 
 r identity matrix:

We may calculate that

E dist2F
	
G; � 	 kX\kS1


 DE kG11 � � 	 Irk2F C E kG12k2F
C E kG21k2F C E inf

kYk�1
kG22 � � 	 Yk2F : (2.18)

Our selection of � ensures that the last term on the right-hand side of (2.18) vanishes.
By direct calculation,

E kG12k2F C E kG21k2F D r 	 .d1 C d2 � 2r/: (2.19)

To bound the first term on right-hand side of (2.18), observe that

E kG11 � � 	 Irk2F D r2 C r 	 E �2 (2.20)

because the random variable � is independent of G11. We need to compute
E �2 D E kG22k2F. A short argument [8, Sec. 2.3] based on the Slepian comparison
inequality shows that

E kG22k �
p

d1 � r C
p

d2 � r �
p
2.d1 C d2 � 2r/:

The spectral norm is 1-Lipschitz, so the Gaussian Poincaré inequality [3, Thm. 3.20]
implies

E kG22k2 � 	
E kG22k


2 D Var
	 kG22k


 � 1:

Combining the last two displays,

E �2 D E kG22k2 � 	
E kG22k


2 C 1 � 2 .d1 C d2 � 2r/C 1: (2.21)

Finally, we incorporate (2.18), (2.19), (2.20), (2.21) into the width bound (2.17) to
reach

w2
	
D.k	kS1 ;X

\/

 � 3r 	 .d1 C d2 � 2r/C r2 C r:

Simplify this expression to obtain result (2.16).
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2.5 Mendelson’s Small Ball Method

In Sections 2.2–2.4, we analyzed a convex programming method for recover-
ing structured signals from standard Gaussian measurements. The main result,
Corollary 3.5, is appealing because it applies to any convex complexity measure f .
Proposition 4.5 allows us to instantiate this result because it provides a mechanism
for controlling the Gaussian width of a descent cone. On the other hand, this
approach only works when the sampling matrix ˆ follows the standard Gaussian
distribution.

For other sampling models, researchers use a variety of ad hoc techniques to
study the recovery problem. It is common to see a separate and intricate argument
for each new complexity measure f and each new distribution for ˆ. It is natural
to wonder whether there is a single approach that can address a broad class of
complexity measures and sampling matrices.

The primary goal of this chapter is to analyze convex signal reconstruction
with more general random measurements. Our argument is based on Mendelson’s
Small Ball Method, a powerful strategy for establishing a lower bound on a
nonnegative empirical process [14, 16, 19–21]. This section contains an overview
of Mendelson’s Small Ball Method. Section 2.6 uses this technique to study sub-
Gaussian measurement models. In Section 2.7, we extend these ideas to a larger
class of sampling distributions. In Section 2.8, we conclude with an application to
the problem of phase retrieval.

2.5.1 The minimum conic singular value as a nonnegative
empirical process

Suppose that ' is a random vector on R
d, and draw independent copies '1; : : : ;'m

of the random vector '. Form an m 
 d sampling matrix ˆ whose rows are these
random vectors:

ˆ D

2

6
4

't
1
:::

't
m

3

7
5 : (2.22)

Fix a cone K 2 R
d, not necessarily convex, and define the set E WD K \ Sd�1.

Then we can express the minimum conic singular value �min.ˆI K/ of the sampling
matrix as a nonnegative empirical process:

�min.ˆI K/ D inf
u2E

 
mX

iD1
jh'i; uij2

!1=2
: (2.23)
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When the sampling matrix is Gaussian, we can use Gordon’s theorem [11, Thm. 1.4]
to obtain a lower bound for expression (2.23), as in Proposition 3.3. The challenge is
to find an alternative method for producing a lower bound in a more general setting.

2.5.2 A lower bound for nonnegative empirical processes

The main technical component in Mendelson’s Small Ball Method is a remarkable
estimate that was developed in the paper [20]. This result delivers an effective lower
bound for a nonnegative empirical process.

Proposition 5.1 (Lower bound for a nonnegative empirical process [20,
Thm. 5.4]). Fix a set E � R

d. Let ' be a random vector on R
d, and let '1; : : : ;'m

be independent copies of '. Define the m 
 d matrix ˆ as on (2.22). Introduce the
marginal tail function

Q .EI'/ WD inf
u2E

P
˚ jh'; uij � 

�
where  � 0:

Let "1; : : : ; "m be independent Rademacher random variables,2 independent of
everything else, and define the mean empirical width of the set:

Wm.EI'/ WD E sup
u2E

hh; ui where h WD 1p
m

mX

iD1
"i'i: (2.24)

Then, for any  > 0 and t > 0,

inf
u2E

 
mX

iD1
jh'i; uij2

!1=2
� 

p
m Q2.EI'/ � 2Wm.EI'/ � t

with probability at least 1 � e�t2=2.

The proof appears below in Section 2.5.5. In the sequel, we usually lighten our
notation for Q and Wm by suppressing the dependence on '.

Before we continue, it may be helpful to remark on this result. The marginal tail
function Q .E/ reflects the probability that the random variable jh'; uij is close
to zero for any fixed vector u 2 E. When Q .E/ is bounded away from zero
for some  , the nonnegative empirical process is likely to be large. Koltchinskii
& Mendelson [14] point out that the marginal tail function reflects the absolute
continuity of the distribution of ', so Q may be quite small when ' is “spiky.”

2A Rademacher random variable takes the two values˙1 with equal probability.
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The mean empirical width Wm.E/ is a distribution-dependent measure of the
size of the set E. When ' follows a standard Gaussian distribution, Wm.E/ reduces
to the usual Gaussian width W.E/ WD E supu2E hg; ui. As the number m tends
to infinity, the distribution of the random vector h converges in distribution to a
centered Gaussian variable with covariance EŒ''��. Therefore, Wm.E/ ! W.E/
when ' is centered and isotropic.

2.5.3 Mendelson’s Small Ball Method

Proposition 5.1 shows that we can obtain a lower bound for (2.23) by performing
two simpler estimates. To achieve this goal, Mendelson has developed a general
strategy, which consists of three steps:

MENDELSON’S SMALL BALL METHOD

(1) Apply Proposition 5.1 to bound the minimum conic singular value
�min

	
ˆI K



below in terms of the marginal tail function Q2.EI'/ and

the mean empirical width Wm.EI'/. The index set E WD K \ Sd�1.
(2) Bound the marginal tail function Q2.EI'/ below using a Paley–

Zygmund inequality.
(3) Bound the mean empirical width Wm.EI'/ above by imitating tech-

niques for controlling the Gaussian width of E.

This presentation is distilled from the corpus [14, 16, 19–21]. A more sophisti-
cated variant of this method appears in [20, Thm. 5.3]. Later in this chapter, we will
encounter several concrete applications of this strategy.

2.5.4 Expected Scope

Mendelson’s Small Ball Method provides lower bounds for (2.23) in many sit-
uations, but it does not offer a universal prescription. Let us try to delineate
the circumstances where this approach is likely to be useful for signal recovery
problems.

• Mendelson’s Small Ball Method assumes that the sampling matrix ˆ has
independent, identically distributed rows. Although this model describes many
of the sampling strategies in the literature, there are some examples, such as
random filtering [34], that do not conform to this assumption.
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• A major advantage of Mendelson’s Small Ball Method is that it applies to
sampling distributions with heavy tails. On the other hand, the random vector
' cannot be too “spiky,” or else it may not be possible to produce a good lower
bound for the marginal tail function Q2.E/. This requirement indicates that the
approach may require significant improvements before it applies to problems
like matrix completion.

There are a number of possible extensions of Mendelson’s Small Ball Method
that could expand its bailiwick. For example, it is easy to extend Proposition 5.1
to address the case where the random vector ' is complex valued. A more difficult,
but very useful, modification would allow us to block the measurements into groups.
This revision could reduce the difficulties associated with spiky distributions, but it
seems to demand some additional ideas.

2.5.5 Proof of Proposition 5.1

Let us establish the Mendelson bound for a nonnegative empirical process. First, we
introduce a directional version of the marginal tail function:

Q .u/ WD P
˚ jh'; uij � 

�
for u 2 E and  > 0:

Lyapunov’s inequality and Markov’s inequality give the numerical bounds

 
1

m

mX

iD1
jh'i; uij2

!1=2
� 1

m

mX

iD1
jh'i; uij � 

m

mX

iD1
1
˚ jh'i; uij � 

�
:

We write 1A for the 0–1 random variable that takes the value one when the event A
takes place. Add and subtract Q2.u/ inside the sum and then take the infimum over
u 2 E to reach the inequality

inf
u2E

 
1

m

mX

iD1
jh'i; uij2

!1=2
�  inf

u2E
Q2.u/

� 

m
sup
u2E

mX

iD1

�
Q2.u/ � 1

˚ jh'i; uij � 
��
:

(2.25)

To control the supremum in probability, we can invoke the bounded difference
inequality [3, Sec. 6.1]. Observe that each summand is independent and bounded
in magnitude by one. Therefore,
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sup
u2E

mX

iD1

�
Q2.u/ � 1

˚ jh'i; uij � 
��

� E sup
u2E

mX

iD1

�
Q2.u/ � 1

˚ jh'i; xij � 
��C t

p
m (2.26)

with probability at least 1 � e�t2=2.
Next, we simplify the expected supremum. Introduce a soft indicator function:

  W R ! Œ0; 1� where  .s/ WD

8
ˆ̂<

ˆ̂:

0; jsj � 

.jsj � /=;  < jsj � 2

1; 2 < jsj :

We need two properties of the soft indicator. First, the soft indicator is bracketed by
two hard indicators: 1fjsj � 2g �  .s/ � 1fjsj � g for all s 2 R. Second,  
is a contraction, i.e., a 1-Lipschitz function on R that fixes the origin. Therefore, we
can make the following calculation:

E sup
u2E

mX

iD1

�
Q2.u/ � 1

˚ jh'i; uij � 
��

D E sup
u2E

mX

iD1

�
E1

˚ jh'; uij � 2
� � 1

˚ jh'i; uij � 
��

� E sup
u2E

mX

iD1

�
E .h'; ui/ �  .h'i; ui/�

� 2E sup
u2E

mX

iD1
"i .h'i; ui/

� 2


E sup

u2E

mX

iD1
"i h'i; ui : (2.27)

In the first line, we write the marginal tail function as an expectation and then we
bound the two indicators using the soft indicator function. The next inequality is
the Giné–Zinn symmetrization [35, Lem. 2.3.1]. The last line follows from the
Rademacher comparison principle [17, Eqn. (4.20)] because   is a contraction.

Combine the inequalities (2.25), (2.26), and (2.27) to reach

inf
u2E

 
1

m

mX

iD1
jh'i; uij2

!1=2
�  inf

u2E
Q2.u/� 

m

"
2


E sup

u2E

mX

iD1
"i h'i; ui C t

p
m

#

:
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Define h WD m�1=2
Pm

iD1 "i'i and clear the factor
p

m to conclude that

inf
u2E

 
mX

iD1
jh'i; uij2

!1=2
� 

p
m inf

u2E
Q2.u/ � 2E sup

u2E
hh; ui � t:

with probability at least 1 � e�t2=2. Identify the marginal tail function Q2.E/ and
the empirical width Wm.E/ to establish Proposition 5.1.

2.6 A universal error bound for sub-Gaussian measurements

In this section, we invoke Mendelson’s Small Ball Method to study convex signal
recovery from independent sub-Gaussian measurements. This class of examples
provides a wide generalization of standard Gaussian measurements. We will
establish a variant of the Gaussian recovery result, Corollary 3.5, in this setting.

2.6.1 Sub-Gaussian measurements

Let us set out the conditions we require for the sampling matrix. Suppose that ' is
a random vector in R

d that has the following properties:

• [Centering] The vector has zero mean: E' D 0.
• [Nondegeneracy] There is a positive constant ˛ for which

˛ � E jh'; uij for each u 2 Sd�1:

• [Sub-Gaussian marginals] There is a positive constant 
 for which

P
˚ jh'; uij � t

� � 2e�t2=.2
2/ for each u 2 Sd�1:

• [Low eccentricity] The eccentricity � WD 
=˛ of the distribution should be
small.

Finally, we construct a random m 
 d sampling matrix ˆ whose rows are
independent copies of 't, as in expression (2.22).

A few examples of sub-Gaussian distributions may be helpful.

Example 6.1 (Nonstandard Gaussian matrices). Suppose that ' 2 R
d follows the

NORMAL.0;†/ distribution where the covariance† satisfies �
2
˛2 � ut†u � 
2 for

each vector u 2 Sd�1. Then the required conditions follow from basic facts about a
normal distribution.
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Example 6.2 (Independent bounded entries). Let X be a symmetric random vari-
able whose magnitude is bounded by 
 . Suppose that each entry of ' is an
independent copy of X.

The vector ' inherits centering from X. Next, ' is nondegenerate with ˛ �
2�1=2 E jXj because of the Khintchine inequality [15] and a convexity argument.
Finally, ' has sub-Gaussian marginals with the parameter 
 because of Hoeffding’s
inequality [3, Sec. 2.6].

2.6.2 The minimum conic singular value of a sub-Gaussian
matrix

The main result of this section gives a lower bound for the minimum conic singular
value of a matrix ˆ that satisfies the conditions in Section 2.6.1.

Theorem 6.3 (Minimum conic singular value of a sub-Gaussian matrix). Sup-
pose ˆ is an m 
 d random matrix that satisfies the conditions in Section 2.6.1. Let
K � R

d be a cone, not necessarily convex. Then

�min.ˆI K/ � c˛��2 	 p
m � C
 	 w.K/ � ˛t

with probability at least 1 � e�ct2 . The quantities c and C are positive absolute
constants.

Observe that, when the eccentricity � has constant order, the bound in Theorem
6.3 matches the result for Gaussian matrices in Proposition 3.3. A similar result
appears in the paper [22], so we do not claim any novelty. We establish Theorem 6.3
below in Section 2.6.4.

2.6.3 An error bound for sub-Gaussian measurements

Combining Proposition 2.6 and Theorem 6.3, we reach an immediate consequence
for signal recovery from sub-Gaussian measurements.

Corollary 6.4 (Signal recovery from sub-Gaussian measurements). Let x\ be
a signal in R

d. Let ˆ be an m 
 d random matrix that satisfies the conditions
in Section 2.6.1, and let y D ˆx\ C e be a vector of measurements in R

m. With
probability at least 1 � e�ct2 , the following statement holds. Assume that kek � �,
and let Ox� be any solution to the optimization problem (2.2). Then

��Ox� � x\
�� � 2�

�
c˛��2 	 p

m � C
 	 w
	
D.f ; x\/


 � ˛t
�
C
:
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The quantities c and C are positive absolute constants. The operation Œa�C WD
maxfa; 0g returns the positive part of a number.

Corollary 6.4 provides for stable recovery of x\ as soon as the number m of sub-
Gaussian measurements satisfies

m � C0�6 	 w2
	
D.f ; x\/



:

How accurate is this result? Note that standard Gaussian measurements satisfy the
assumptions of the corollary with � constant, and we need at least w2

	
D.f ; x\/




standard normal measurements to recover the structured signal x\ with the com-
plexity measure f . Therefore, the bound is correct up to the constant factor C0 and
the precise dependence on the eccentricity �.

2.6.4 Proof of Theorem 6.3: Setup and Step 1

To establish Theorem 6.3, we rely on Mendelson’s Small Ball Method. The
argument also depends on some deep ideas from the theory of generic chaining [32],
but we only use these results in a naïve way.

Fix a cone K in R
d and define the set E WD K \Sd�1. Suppose that ' is a random

vector in R
d that satisfies the conditions set out in Section 2.6.1 and construct an

m 
 d random matrix ˆ whose rows are independent copies of '. Proposition 5.1
implies that

�min.ˆI K/ � 
p

m Q2.E/� 2Wm.E/� t with probability � 1� e�t2=2: (2.28)

This result holds for all  > 0 and t > 0. To establish Theorem 6.3, we must develop
a constant lower bound for the marginal tail function Q2.E/, and we also need to
compare the mean empirical width Wm.E/ with the conic Gaussian width w.K/.

2.6.5 Step 2: The marginal tail function

We begin with the lower bound for the marginal tail function Q2 . This result is an
easy consequence of the second moment method, also known as the Paley–Zygmund
inequality. Let u be any vector in E. One version of the second moment method
states that

P
˚ jh'; uij � 2

� �
�
E jh'; uij � 2�2C

E jh'; uij2 : (2.29)
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To control the denominator on the right-hand side of (2.29), we use the sub-Gaussian
marginal condition to estimate that

E jh'; uij2 D
Z 1

0

2s 	 P˚ jh'; uij � s
�

ds � 4
2:

To bound the numerator on the right-hand side of (2.29), we use the nondegeneracy
assumption: E jh'; uij � ˛. Combining these results and taking the infimum over
u 2 E, we reach

Q2.E/ D inf
u2E

P
˚ jh'; uij � 2

� � .˛ � 2/2
4
2

(2.30)

for any  that satisfies 2 < ˛.

2.6.6 Step 3: The mean empirical width

Next, we demonstrate that the empirical width Wm.E/ is controlled by the conic
Gaussian width w.K/. This argument requires sophisticated results from the theory
of generic chaining [32]. First, observe that the vector h D m�1=2

Pm
iD1 "i'i inherits

sub-Gaussian marginals from the centered sub-Gaussian distribution '. Indeed,

P
˚ jhh; uij � t

� � C1e
�c1t2=
2 for each u 2 Sd�1:

See [36, Sec. 5.2.3] for an introduction to sub-Gaussian random variables. In
particular, we have the bound

P
˚ jhh; u � vij � t

� � C1e
�c1t2=.
2ku�vk2/ for all u; v 2 R

d:

Under the latter condition, the generic chaining theorem [32, Thm. 1.2.6] asserts
that

Wm.E/ D E sup
u2E

hh; ui � C2
 	 �2.E; `2/

where �2 is a geometric functional. The precise definition of �2 is not important for
our purposes because the majorizing measure theorem [32, Thm. 2.1.1] states that

�2.E; `2/ � C3 	 E sup
u2E

hg; ui

where g � NORMAL.0; Id/. It follows that

Wm.E/ � C4
 	 E sup
u2E

hg; ui D C4
 	 w.K/: (2.31)

We have recalled that E D K \ Sd�1 to identify the conic Gaussian width w.K/.
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2.6.7 Combining the bounds

Combine the bounds (2.28), (2.30), and (2.31) to discover that

�min.ˆI K/ � 
p

m 	 .˛ � 2/2
4
2

� 2C4
 w.K/� t with probability � 1� e�t2=2;

provided that 2 < ˛. Select  D ˛=6 to see that

�min.ˆI K/ � 1

54
	 ˛

3


2

p
m�C5
 w.K/� ˛

6
t with probability � 1�e�t2=2: (2.32)

Using the eccentricity � D 
=˛, we simplify expression (2.32) to reach a bound for
the minimum conic singular value of a sub-Gaussian random matrixˆ that satisfies
the conditions set out in Section 2.6.1. This completes the proof of Theorem 6.3.

2.7 The bowling scheme

As we have seen in Theorem 6.3, sub-Gaussian sampling models exhibit behavior
similar to the standard Gaussian measurement model. Yet there are many interesting
problems where the random sampling matrix does not conform to the sub-Gaussian
assumption. In this section, we explain how to adapt Mendelson’s Small Ball
Method to a range of other sampling ensembles. The key idea is to use the conic
duality arguments from Section 2.4 to complete the estimate for the mean empirical
width.

2.7.1 The mean empirical width of a descent cone

Let us state a simple duality result for the mean empirical width of a descent cone.
This bound is based on the same principles as Proposition 4.5.

Proposition 7.1 (The mean empirical width of a descent cone). Let f W Rd ! R

be a proper convex function, and fix a point x 2 R
d. Assume that the subdifferential

@f .x/ is nonempty and does not contain the origin. For any random vector ' 2 R
d,

Wm
	
D.f ; x/ \ Sd�1I'
 � E inf

��0 dist2
	
h; � 	 @f .x/



where h WD 1p

m

mX

iD1
"i'i:

The mean empirical width Wm is defined in (2.24). The random vectors '1; : : : ;'m
are independent copies of ', and "1; : : : ; "m are independent Rademacher random
variables.
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Proof. The argument is identical with the proof of Proposition 4.5 once we replace
the Gaussian vector g with the random vector h. ut

2.7.2 The bowling scheme

We are now prepared to describe a general approach for convex signal recovery from
independent random measurements.

The setup is similar to previous sections. Consider an unknown structured signal
x\ 2 R

d and a complexity measure f W R
d ! R that is proper and convex. Let

ˆ be a known m 
 d sampling matrix, and suppose that we acquire m noisy linear
measurements of the form y D ˆx\ C e. We wish to analyze the performance of the
convex recovery method (2.2). Proposition 2.6 shows that we can accomplish this
goal by finding a lower bound for the minimum conic singular value of the descent
cone:

�min
	
ˆI D.f ; x\/


 � ‹‹‹ : (2.33)

We want to produce a bound of the form (2.33) when the rows of the mea-
surement matrix ˆ are independent copies of a random vector '. This problem
falls within the scope of Mendelson’s Small Ball Method. Introduce the index set
E WD D.f ; x\/ \ Sd�1. In light of (2.23),

�min
	
ˆI D.f ; x\/


 D inf
u2E

 
mX

iD1
jh'i; uij2

!1=2
:

We follow Mendelson’s general strategy to control the minimum conic singular
value, but we propose a specific technique for bounding the mean empirical width
that exploits the structure of the index set E.

THE BOWLING SCHEME

(1) Apply Proposition 5.1 to bound the minimum conic singular value
�min

	
ˆI D.f ; x\
 below in terms of the marginal tail function Q2.EI'/

and the mean empirical width Wm.EI'/. The index set E WD D.f I x\/\
Sd�1.

(2) Bound the marginal tail function Q2.EI'/ below using a Paley–
Zygmund inequality.

(30) Apply Proposition 7.1 to control the mean empirical width Wm.EI'/.

In other words, Step (3) of Mendelson’s framework has been specialized to
Step (30).
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We refer to this instance of Mendelson’s Small Ball Method as the bowling
scheme. The name is chosen as a salute to David Gross’s golfing scheme. Whereas
the golfing scheme is based on dual optimality conditions for the signal recovery
problem (2.2), the bowling scheme is based on the primal optimality condition
through Proposition 2.6. In the bowling scheme, duality enters only when we are
ready to estimate the mean empirical width.

In our experience, this idea has been successful whenever we understand how to
bound the conic Gaussian width of the descent cone. The main distinction is that the
random vector ' may not share the rotational invariance of the standard Gaussian
distribution.

2.8 Example: Phase retrieval

To demonstrate how the bowling scheme works, we consider the question of phase
retrieval. In this problem, we collect linear samples of an unknown signal, but we are
only able to observe their magnitudes. To reconstruct the original signal, we must
resolve the uncertainty about the phases (or signs) of the measurements. There is a
natural convex program that can achieve this goal, and the bowling scheme offers
an easy way to analyze the number of measurements that are required.

2.8.1 Phase retrieval by convex optimization

In the phase retrieval problem, we wish to recover a signal x\ 2 R
d from a family of

measurements of the form

yi D jh i; x\ij2 for i D 1; 2; 3; : : : ;m: (2.34)

The sampling ensemble  1; : : : ; m consists of known vectors in R
d. For clarity of

presentation, we do not consider the case where the samples are noisy or complex-
valued.

Although the samples do not initially appear linear, we can apply a lifting method
proposed by Balan et al. [2]. Observe that

jh ; xij2 D  tx 	 xt D trace
	
xxt 	  t
:

In view of this expression, it is appropriate to introduce the rank-one positive-
semidefinite matrices

X\ D .x\/.x\/t 2 R
d�d and ‰ i D  i 

t
i 2 R

d�d for i D 1; 2; 3; : : : ;m:
(2.35)
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Then we can express the samples yi as linear functions of the matrix X\:

yi D trace
	
X\ 	‰ i



for i D 1; 2; 3; : : : ;m: (2.36)

Expression (2.36) coincides with the measurement model (2.1) we have been
considering.

We can use convex optimization to reconstruct the unknown matrix X\. It is
natural to minimize the Schatten 1-norm to promote low rank, but we also want
to enforce the fact that X\ is positive semidefinite [9]. To that end, we consider the
convex program

minimize
X2Rd�d

trace.X/ subject to X < 0 and yi D trace
	
X‰ i




for each i D 1; 2; 3; : : : ;m: (2.37)

This formulation involves the lifted variables (2.35). We say that the optimization
problem (2.37) recovers x\ if the matrix X\ is the unique minimizer. Indeed, in
this case, we can reconstruct the original signal by factorizing the solution to the
optimization problem.

Remark 8.1 (Citation for convex phase retrieval). Formulation (2.37) was devel-
oped by a working group at the meeting “Frames for the finite world: Sampling,
coding and quantization,” which took place at the American Institute of Mathemat-
ics in Palo Alto in August 2008. Most of the recent literature attributes this idea
incorrectly.

2.8.2 Phase retrieval from Gaussian measurements

Recently, researchers have started to consider phase retrieval problems with random
data; see [5] for example. In the simplest instance, we choose each sampling vector
 i independently from the standard normal distribution on R

d:

 i � NORMAL.0; Id/:

Then each sampling matrix ‰ i D  i 
t
i follows a Wishart distribution. These ran-

dom matrices do not have sub-Gaussian marginals, so we cannot apply Corollary 6.4
to study the performance of the optimization problem (2.37). Nevertheless, we can
make short work of the analysis by using the bowling scheme.

Theorem 8.2 (Phase retrieval from Gaussian measurements). Let x\ be a signal
in R

d. Let  i � NORMAL.0; Id/ be independent standard Gaussian vectors, and
consider random measurements yi D jh i; x\ij2 for i D 1; 2; 3; : : : ;m. Assuming
that m � Cd, the convex phase retrieval problem (2.37) recovers x\ with probability
at least 1 � e�cm. The numbers c and C are positive absolute constants.
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The sampling complexity m � Cd established in Theorem 8.2 is qualitatively
optimal. Indeed, a dimension-counting argument shows that we need at least m � d
nonadaptive linear measurements to reconstruct a general vector in x\ 2 R

d.

Remark 8.3 (Extensions). There are a number of obvious improvements to
Theorem 8.2 that follow with a little more effort. For example, it is clear that the
convex phase retrieval method is stable. The exceedingly high success probability
also allows us to establish uniform results for all d-dimensional vectors by means
of net arguments and union bounds. Furthermore, the Gaussian assumption
is inessential; it is possible to establish similar theorems for other sampling
distributions. We leave these refinements for the avid reader.

2.8.3 Proof of Theorem 8.2: Setup

Let us rewrite the optimization problem (2.37) in a form that is more conducive
to our methods of analysis. First, introduce the inner product space R

d�d
sym of d 
 d

symmetric matrices, equipped with the trace inner product hA; Bi WD trace.AB/
and the Frobenius norm k	kF. Define the linear operator

ˆ W Rd�d
sym ! R

m where Œˆ.X/�i D h‰ i; Xi for i D 1; 2; 3; : : : ;m:

Collect the measurements into a vector y D .y1; : : : ; ym/
t 2 R

m and observe that
y D ˆ.X\/ because of expression (2.36). Next, define the convex indicator function
of the positive-semidefinite cone:

� W Rd�d
sym ! R where �.X/ D

(
0; X is positive semidefinite

C1; otherwise:

Introduce the convex regularizer

f W Rd�d
sym ! R where f .X/ D trace.X/C �.X/:

With this notation, we can write (2.37) in the form

minimize
X2Rd�d

sym

f .X/ subject to y D ˆ.X/: (2.38)

Formulation (2.38) matches our core problem (2.2) with the error vector e D 0 and
error tolerance � D 0.

Proposition 2.6 demonstrates that X\ is the unique solution of (2.38) whenever

�min
	
ˆI D.f ;X\/



> 0:

We must determine how many measurements m suffice for this event to hold with
high probability.
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2.8.4 Step 1: The nonnegative empirical process bound

Define the set

E WD ˚
U 2 D.f ;X\/ W kUkF D 1

� � R
d�d
sym :

Proposition 5.1 demonstrates that

�min
	
ˆI D.f ;X\/


 D inf
U2E

 
mX

iD1
jh‰ i; Uij2

!1=2
� 

p
m Q2.E/ � 2Wm.E/ � t

(2.39)

with probability at least 1 � e�t2=2. In this setting, the marginal tail function is
defined as

Q2.E/ WD inf
U2E

P
˚ jh‰1; Uij � 2

�
:

The mean empirical width is defined as

Wm.E/ WD E sup
U2E

hH; Ui where H WD 1p
m

mX

iD1
"i‰ i:

Here, f"ig is an independent family of Rademacher random variables, independent
of everything else.

2.8.5 Step 2: The marginal tail function

We can use the Paley–Zygmund inequality to show that

Q1.E/ D inf
U2E

P
˚ jh‰1; Uij � 1

� � c0: (2.40)

We have implicitly chosen  D 1
2
, and c0 is a positive absolute constant.

2.8.5.1 The tail bound

To perform this estimate, we apply the Paley–Zygmund inequality in the form

P

�
jh‰1; Uij2 � 1

2

	
E jh‰1; Uij2


�
� 1

4
	
	
E jh‰1; Uij2
2
E jh‰1; Uij4 :
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The easiest way to treat the expectation in the denominator is to invoke Gaussian
hypercontractivity [17, Sec. 3.2]. Indeed,

	
E jh‰1; Uij4 
1=4 � C0

	
E jh‰1; Uij2
1=2

because h‰1; Ui is a second-order polynomial in the entries of  1. Combine the
last two displays to obtain

P

�
jh‰1; Uij2 � 1

2

	
E jh‰1; Uij2


�
� 1

4 	 C4
0

D c0:

We can bound the remaining expectation by means of an explicit calculation.
Assuming that U 2 E,

E jh‰1; Uij2 D 3

mX

iD1
juiij2 C 2

mX

i;jD1
juijj2 C

ˇ
ˇ̌
ˇ̌

mX

iD1
uii

ˇ
ˇ̌
ˇ̌

2

� 2:

We have used the fact that U is a symmetric matrix with unit Frobenius norm. In
conclusion,

P

n
jh‰1; Uij2 � 1

o
� c0 for each U 2 E:

This inequality implies (2.40).

2.8.6 Step 30: The mean empirical width of the descent cone

We can apply Proposition 7.1 to demonstrate that the mean empirical width satisfies

Wm.E/ � C1
p

d for m � C2d: (2.41)

The numbers C1 and C2 are positive, absolute constants.

2.8.6.1 The width bound

The bound holds trivially when X\ D 0, so we may assume that the unknown matrix
is nonzero. Select a coordinate system where

X\ D
�

a 0t

0 0


2 R

d�d
sym where a > 0:
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Recall that the matrix H D m�1=2
Pm

iD1 "i‰ i, where ‰ i D  i 
t
i and  i �

NORMAL.0; Id/. Partition H conformally with X\:

H D
�

h11 ht
21

h21 H22


:

Define the random parameter � D kH22k.

Wm.E/ D E sup
U2E

hH; Ui �
�
E dist2F

	
H; � 	 @f .X\/


�1=2
: (2.42)

Using standard calculus rules for subdifferentials [28, Chap. 23], we determine that

@f .X\/ D
��
1 0t

0 Y


2 R

d�d
sym W �max.Y/ � 1

�
:

We write �max denotes the maximum eigenvalue of a symmetric matrix. Proposi-
tion 7.1 delivers the width bound,

E dist2F
	
H; @f .X\/


 D E .h11 � �/2 C 2 E kh21k2 C E inf
�max.Y/�1

kH22 � � 	 Yk2F :
(2.43)

By construction, the third term on the right-hand side of (2.43) is zero. By direct
calculation, the second term on the right-hand side of (2.43) satisfies

E kh21k2 D d � 1: (2.44)

Finally, we turn to the first term on the right-hand side of (2.43). Relatively crude
bounds suffice here. By interlacing of singular values,

� D kH22k � kHk D 1p
m

��
���

mX

iD1
"i i 

t
i

��
���
:

Standard net arguments, such as those in [36, Sec. 5.4.1], demonstrate that

P
˚kHk � C3

p
d
� � e�c1d; provided that m � C2d:

Together, the last two displays imply that E �2 � C4d. Therefore,

E .h11 � �/2 � C5d: (2.45)

Introducing (2.43), (2.44), and (2.45) into (2.42), we arrive at the required
bound (2.41).
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Remark 8.4 (Other sampling distributions). The only challenging part of the calcu-
lation is the bound on kHk. For more general sampling distributions, we can easily
obtain the required estimate from the matrix moment inequality [7, Thm. A.1].

2.8.7 Combining the bounds

Assume that m � C2d. Combine the estimates (2.39), (2.40), and (2.41) to reach

�min
	
ˆI D.f ;X\/


 � c2
p

m � C6
p

d � 1
2
t

with probability at least 1 � e�t2=2. Choosing t D c3
p

m, we find that the
minimum conic singular value is positive with probability at least 1� e�c4m. In this
event, Proposition 2.6 implies that X\ is the unique solution to the phase retrieval
problem (2.37). This observation completes the proof of Theorem 8.2.

Acknowledgements JAT gratefully acknowledges support from ONR award N00014-11-1002,
AFOSR award FA9550-09-1-0643, and a Sloan Research Fellowship. Thanks are also due to the
Moore Foundation.

References

1. D. Amelunxen, M. Lotz, M.B. McCoy, J.A. Tropp, Living on the edge: phase transitions in
convex programs with random data. Inf. Inference 3(3), 224–294 (2014). Available at http://
arXiv.org/abs/1303.6672

2. R. Balan, B.G. Bodmann, P.G. Casazza, D. Edidin, Painless reconstruction from magnitudes
of frame coefficients. J. Fourier Anal. Appl. 15(4), 488–501 (2009)

3. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities: A Nonasymptotic Theory of
Independence (Oxford University Press, Oxford, 2013)

4. T.T. Cai, T. Liang, A. Rakhlin, Geometrizing local rates of convergence for linear inverse
problems (April 2014). Available at http://arXiv.org/abs/1404.4408

5. E.J. Candès, T. Strohmer, V. Voroninski, PhaseLift: exact and stable signal recovery from
magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8),
1241–1274 (2013)

6. V. Chandrasekaran, B. Recht, P.A. Parrilo, A.S. Willsky, The convex geometry of linear inverse
problems. Found. Comput. Math. 12(6), 805–849 (2012)

7. R.Y. Chen, A. Gittens, J.A. Tropp, The masked sample covariance estimator: an analysis via
the matrix Laplace transform method. Inf. Inference 1, 2–20 (2012)

8. K.R. Davidson, S.J. Szarek, Local operator theory, random matrices and Banach spaces, in
Handbook of the Geometry of Banach Spaces, vol. I (North-Holland, Amsterdam, 2001),
pp. 317–366

9. M. Fazel. Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University,
2002.

http://arXiv.org/abs/1303.6672
http://arXiv.org/abs/1303.6672
http://arXiv.org/abs/1404.4408


100 J.A. Tropp

10. R. Foygel, L. Mackey, Corrupted sensing: novel guarantees for separating structured signals.
Trans. Inf. Theory 60(2), 1223–1247 (2014)

11. Y. Gordon, Some inequalities for Gaussian processes and applications. Isr. J. Math. 50(4),
265–289 (1985)

12. Y. Gordon. On Milman’s inequality and random subspaces which escape through a mesh in
Rn, in Geometric Aspects of Functional Analysis (1986/1987). Lecture Notes in Mathematics,
vol. 1317 (Springer, Berlin, 1988), pp. 84–106

13. D. Gross, Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf.
Theory 57(3), 1548–1566 (2011)

14. V. Koltchinskii, S. Mendelson, Bounding the smallest singular value of a random matrix
without concentration (December 2013). Available at http://arXiv.org/abs/1312.3580

15. R. Latała, K. Oleszkiewicz, On the best constant in the Khinchin-Kahane inequality. Studia
Math. 109(1), 101–104 (1994)

16. G. Lecué, S. Mendelson, Compressed sensing under weak moment assumptions (January
2014). Available at http://arXiv.org/abs/1401.2188

17. M. Ledoux, M. Talagrand, Probability in Banach Spaces: Isoperimetry and Processes
(Springer, Berlin, 1991)

18. S. Mendelson. Empirical processes with a bounded  1 diameter. Geom. Funct. Anal. 20(4),
988–1027 (2010)

19. S. Mendelson, A remark on the diameter of random sections of convex bodies (December
2013). Available at http://arXiv.org/abs/1312.3608

20. S. Mendelson, Learning without concentration. J. Assoc. Comput. Mach. (2014, to appear).
62(3), (2015). Available at http://arXiv.org/abs/1401.0304

21. S. Mendelson, Learning without concentration for general loss functions (October 2014).
Available at http://arXiv.org/abs/1410.3192

22. S. Mendelson, A. Pajor, N. Tomczak-Jaegermann, Reconstruction and subgaussian operators
in asymptotic geometric analysis. Geom. Funct. Anal. 17(4), 1248–1282 (2007)

23. V. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Linear Spaces.
Number 1200 in LNM (Springer, New York, 1986)

24. S. Oymak, B. Hassibi, New null space results and recovery thresholds for matrix rank
minimization. Partial results presented at ISIT 2011 (2010). Available at http://arXiv.org/abs/
1011.6326

25. S. Oymak, B. Hassibi, Sharp MSE bounds for proximal denoising. Partial results presented at
Allerton 2012 (March 2013). Available at http://arxiv.org/abs/1305.2714

26. S. Oymak, C. Thrampoulides, B. Hassibi, Simple bounds for noisy linear inverse problems
with exact side information (December 2013). Available at http://arXiv.org/abs/1312.0641

27. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry (Cambridge University
Press, Cambridge, 1989)

28. R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970)
29. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measure-

ments. Commun. Pure Appl. Math. 61(8), 1025–1045 (2008)
30. M. Sion, On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)
31. M. Stojnic, Various thresholds for `1-optimization in compressed sensing (2009). Available at

http://arXiv.org/abs/0907.3666
32. M. Talagrand, The Generic Chaining. Upper and Lower Bounds of Stochastic Processes.

Springer Monographs in Mathematics (Springer, Berlin, 2005)
33. C. Thrampoulides, S. Oymak, B. Hassibi, Simple error bounds for regularized noisy linear

inverse problems. Appeared at ISIT 2014 (January 2014). Available at http://arXiv.org/abs/
1401.6578

34. J. Tropp, M. Wakin, M. Duarte, D. Baron, R. Baraniuk, Random filters for compressive
sampling and reconstruction, in Proceedings of the 2006 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2006 (ICASSP 2006), vol. 3, May 2006, pp. III–875

http://arXiv.org/abs/1312.3580
http://arXiv.org/abs/1401.2188
http://arXiv.org/abs/1312.3608
http://arXiv.org/abs/1401.0304
http://arXiv.org/abs/1410.3192
http://arXiv.org/abs/1011.6326
http://arXiv.org/abs/1011.6326
http://arxiv.org/abs/1305.2714
http://arXiv.org/abs/1312.0641
http://arXiv.org/abs/0907.3666
http://arXiv.org/abs/1401.6578
http://arXiv.org/abs/1401.6578


2 The bowling scheme 101

35. A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes. Springer Series
in Statistics (Springer, New York, 1996). With applications to statistics.

36. R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, in Compressed
Sensing (Cambridge University Press, Cambridge, 2012), pp. 210–268

37. G.A. Watson, Characterization of the subdifferential of some matrix norms. Linear Algebra
Appl. 170, 33–45 (1992)



Chapter 3
Low Complexity Regularization of Linear
Inverse Problems

Samuel Vaiter, Gabriel Peyré, and Jalal Fadili

Abstract Inverse problems and regularization theory is a central theme in imaging
sciences, statistics, and machine learning. The goal is to reconstruct an unknown
vector from partial indirect, and possibly noisy, measurements of it. A now standard
method for recovering the unknown vector is to solve a convex optimization
problem that enforces some prior knowledge about its structure. This chapter
delivers a review of recent advances in the field where the regularization prior
promotes solutions conforming to some notion of simplicity/low complexity. These
priors encompass as popular examples sparsity and group sparsity (to capture the
compressibility of natural signals and images), total variation and analysis sparsity
(to promote piecewise regularity), and low rank (as natural extension of sparsity
to matrix-valued data). Our aim is to provide a unified treatment of all these
regularizations under a single umbrella, namely the theory of partial smoothness.
This framework is very general and accommodates all low complexity regularizers
just mentioned, as well as many others. Partial smoothness turns out to be the
canonical way to encode low-dimensional models that can be linear spaces or more
general smooth manifolds. This review is intended to serve as a one stop shop toward
the understanding of the theoretical properties of the so-regularized solutions. It
covers a large spectrum including (i) recovery guarantees and stability to noise,
both in terms of `2-stability and model (manifold) identification; (ii) sensitivity
analysis to perturbations of the parameters involved (in particular the observations),
with applications to unbiased risk estimation; (iii) convergence properties of the
forward-backward proximal splitting scheme that is particularly well suited to solve
the corresponding large-scale regularized optimization problem.
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3.1 Inverse Problems and Regularization

In this chapter, we deal with finite-dimensional linear inverse problems.

3.1.1 Forward Model

Let x0 2 R
N be the unknown vector of interest. Suppose that we observe a vector

y 2 R
P of P linear measurements according to

y D ˚x0 C w; (3.1)

where w 2 R
P is a vector of unknown errors contaminating the observations. The

forward model (3.1) offers a model for data acquisition that describes a wide range
of problems in data processing, including signal and image processing, statistics,
and machine learning. The linear operator ˚ W RN ! R

P, assumed to be known, is
typically an idealization of the acquisition hardware in imaging science applications,
or the design matrix in a parametric statistical regression problem. The noise w can
be either deterministic (in this case, one typically assumes to know some bound on
its `2 norm kwk) or random (in which case its distribution is assumed to be known).
Except in Sections 3.4.4 and 3.5.3 where the noise is explicitly assumed random, w
is deterministic throughout the rest of the chapter. We refer to [189] and [22] for a
comprehensive account on noise models in imaging systems.

Solving an inverse problem amounts to recovering x0, to a good approximation,
knowing y and ˚ according to (3.1). Unfortunately, the number of measurements P
can be much smaller than the ambient dimension N of the signal. Even when P D N,
the mapping ˚ is in general ill conditioned or even singular. This entails that the
inverse problem is in general ill posed. In signal or image processing, one might
for instance think of ˚ as a convolution with the camera point-spread function,
or a subsampling accounting for low-resolution or damaged sensors. In medical
imaging, typical operators represent a (possibly subsampled) Radon transform (for
computerized tomography), a partial Fourier transform (for magnetic resonance
imaging), a propagation of the voltage/magnetic field from the dipoles to the sensors
(for electro- or magnetoencephalography). In seismic imaging, the action of ˚
amounts to a convolution with a wavelet-like impulse response that approximates
the solution of a wave propagation equation in media with discontinuities. For
regression problems in statistics and machine learning,˚ is the design matrix whose
columns are P covariate vectors.
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3.1.2 Variational Regularization

As argued above, solving an inverse problem from observations (3.1) is in general
ill posed. In order to reach the land of well-posedness, it is necessary to restrict
the inversion process to a well-chosen subset of R

N containing the plausible
solutions including x0, e.g., a linear space or a union of subspaces. A closely related
procedure, that we describe next, amounts to adopting a variational framework
where the sought-after solutions are those where a prior penalty/regularization
function is the smallest. Though this approach may have a maximum a posteriori
Bayesian interpretation, where a random prior is placed on x0, this is not the only
interpretation. In fact, we put no randomness whatsoever on the class of signals we
look for. We will not elaborate more on these differences in this chapter, but the
reader may refer to [119] for an insightful discussion.

The foundations of regularization theory can be traced back to the pioneering
work of the Russian school, and in particular of Tikhonov in 1943 when he
proposed the notion of conditional well-posedness. In 1963, Tikhonov [216, 217]
introduced what is now commonly referred to as Tikhonov (or also Tikhonov-
Phillips) regularization, see also the book [218]. This corresponds, for � > 0, to
solving an optimization problem of the form

x? 2 Argmin
x2RN

1

2�
k˚x � yk2 C J.x/: (Py;�)

3.1.2.1 Data fidelity

In (Py;�), k˚x � yk2 stands for the data fidelity term. If the noise happens to be
random, then using a likelihood argument, an appropriate fidelity term conforming
to the noise distribution can be used instead of the quadratic data fidelity. Clearly,
it is sufficient then to replace the latter by the negative log-likelihood of the
distribution underlying the noise. Think for instance of the Csiszár’s I-divergence
for Poisson noise. We would also like to stress that many of the results provided
in this chapter extend readily when the quadratic loss in the fidelity term, i.e.,
� 7! ky � �k2, is replaced by any smooth and strongly convex function, see in
particular Remark 13. To make our exposition concrete and digestible, we focus in
the sequel on the quadratic loss.

3.1.2.2 Regularization

The function J W RN ! R is the regularization term which is intended to promote
some prior on the vector to recover. We will consider throughout this chapter that
J is a convex finite-valued function. Convexity plays an important role at many
locations, both on the recovery guarantees and the algorithmic part. See for instance
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Section 3.6 which gives a brief overview of recent algorithms that are able to tackle
this class of convex optimization problems. It is however important to realize that
non-convex regularizing penalties, as well as non-variational methods (e.g., greedy
algorithms), are routinely used for many problems such as sparse or low-rank recov-
ery. They may even outperform in practice their convex counterparts/relaxation. It
is however beyond the scope of this chapter to describe these algorithms and the
associated theoretical performance guarantees. We refer to Section 3.2.1 for a brief
account on non-convex model selection approaches.

The scalar � > 0 is the regularization parameter. It balances the trade-off between
fidelity and regularization. Intuitively, and anticipating on our theoretical results
hereafter, this parameter should be adapted to the noise level kwk and the known
properties of the vector x0 to recover. Selecting optimally and automatically � for
a given problem is however difficult in general. This is at the heart of Section 3.5,
where unbiased risk estimation strategies are shown to offer a versatile solution.

Note that since ˚ is generally not injective and J is not coercive, the objective
function of (Py;�) is neither coercive nor strictly convex. In turn, there might
be existence (of minimizers) issues, and even if minimizers exist, they are not unique
in general.

Under mild assumptions, problem (Py;�) is formally equivalent to the con-
strained formulations

min fJ.x/ I ky � ˚xk 6 "g ; (P1
y;")

min fky � ˚xk I J.x/ 6 �g ; (P2
y;� )

in the sense that there exists a bijection between each pair of parameters among
.�; "; �/ so that the corresponding problems share the same set of solutions.
However, this bijection is not explicit and depends on y, so that both from an
algorithmic point of view and a theoretical one, each problem may need to be
addressed separately. See the recent paper [60] and references therein for a detailed
discussion, and [154, Theorem 2.3] valid also in the non-convex case. We focus
in this chapter on the penalized/Tikhonov formulation (Py;�), though most of the
results stated can be extended to deal with the constrained ones (P1

y;") and (P2
y;� )

(the former is known as the residual method or Mozorov regularization and the latter
as Ivanov regularization in the inverse problems literature).

The value of � should typically be an increasing function of kwk. In the special
case where there is no noise, i.e., w D 0, the fidelity to data should be perfect,
which corresponds to considering the limit of (Py;�) as � ! 0C. Thus, assuming
that y 2 Im.˚/, as is the case when w D 0, it can be proved that the solutions
of (Py;�) converge to the solutions of the following constrained problem [196, 216]

x? 2 Argmin
x2RN

J.x/ subject to ˚x D y: (Py;0)
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3.1.3 Notations

For any subspace T of RN , we denote PT the orthogonal projection onto T , xT D
PT.x/ and ˚T D ˚ PT . For a matrix A, we denote A� its transpose, and AC its
Moore-Penrose pseudoinverse. For a convex set E, aff.E/ denotes its affine hull
(i.e., the smallest affine space containing it) and lin.E/ its linear hull (i.e., the linear
space parallel to aff.E/). Its relative interior ri.E/ is the interior for the topology of
aff.E/ and rbd.E/ is its relative boundary. For a manifold M , we denote TM .x/ the
tangent space of M at x 2 M . A good source on smooth manifold theory is [143].

A function J W R
N ! R [ fC1g is said to be proper if it is not identically

C1. It is said to be finite valued if J.x/ 2 R for all x 2 R
N . We denote dom.J/

the set of points x where J.x/ 2 R is finite. J is said to be closed if its epigraph
f.x; y/ I J.x/ 6 yg is closed. For a set C � R

N , the indicator function �C is defined
as �C.x/ D 0 if x 2 C and �C.x/ D C1 otherwise.

We recall that the subdifferential at x of a proper and closed convex function
J W RN ! R [ fC1g is the set

@J.x/ D ˚
� 2 R

N I 8 ı 2 R
N ; J.x C ı/ > J.x/C h�; ıi� :

Geometrically, when J is finite at x, @J.x/ is the set of normals to the hyperplanes
supporting the graph of J and tangent to it at x. Thus, @J.x/ is a closed convex
set. It is moreover bounded, hence compact, if and only if x 2 int.dom.J//. The
size of the subdifferential at x 2 dom.J/ reflects in some sense the degree of non-
smoothness of J at x. The larger the subdifferential at x, the larger the “kink” of the
graph of J at x. In particular, if J is differentiable at x, then @J.x/ is a singleton and
@J.x/ D frJ.x/g.

As an illustrative example, the subdifferential of the absolute value is

8 x 2 R; @j 	 j.x/ D
�

sign.x/ if x ¤ 0;

Œ�1; 1� otherwise:
(3.2)

The `1 norm

8 x 2 R
N ; kxk1 D

NX

iD1
jxij

is a popular low complexity prior (see Section 3.2.3.1 for more details). For-
mula (3.2) is extended by separability to obtain the subdifferential of the `1 norm

@ k	k1 .x/ D ˚
� 2 R

N I k�k1 6 1 and 8 i 2 I; sign.�i/ D sign.xi/
�

(3.3)

where I D supp.x/ D fi I xi ¤ 0g. Note that at a point x 2 R
N such that xi ¤ 0 for

all i, k	k1 is differentiable and @ k	k1 .x/ D fsign.x/g.
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3.2 Low Complexity Priors

A recent trend in signal and image processing, statistics, and machine learning is to
make use of large collections of the so-called models to account for the complicated
structures of the data to handle. Generally speaking, these are manifolds M (most
of the time linear subspaces), and hopefully of low complexity (to be detailed later),
that capture the properties of the sought after signal, image, or higher dimensional
data. In order to tractably manipulate these collections, the key idea underlying this
approach is to encode these manifolds in the nonsmooth parts of the regularizer J.
As we detail here, the theory of partial smoothness turns out to be natural to provide
a mathematically grounded and unified description of these regularizing functions.

3.2.1 Model Selection

The general idea is thus to describe the data to recover using a large collection of
models M D fM gM2M, which are manifolds. The “complexity” of elements in
such a manifold M is measured through a penalty pen.M /. A typical example
is simply the dimensionality of M , and it should reflect the intuitive notion of
the number of parameters underlying the description of the vector x0 2 M that
one aims at recovering from the noisy measurements of the form (3.1). As popular
examples of such low complexity, one thinks of sparsity, piecewise regularity, or low
rank. Penalizing in accordance to some notion of complexity is a key idea, whose
roots can be traced back to the statistical and information theory literature, see for
instance [2, 161].

Within this setting, the inverse problem associated to measurements (3.1) is
solved by restricting the inversion to an optimal manifold as selected by pen.M /.
Formally, this would correspond to solving (Py;�) with the combinatorial regular-
izer

J.x/ D inf fpen.M / I M 2 M and x 2 M g : (3.4)

A typical example of such a model selection framework is that with sparse
signals, where the collection M corresponds to a union of subspaces, each of the
form

M D ˚
x 2 R

N I supp.x/ � I
�
:

Here I � f1; : : : ;Ng indexes the supports of signals in M and can be arbitrary. In
this case, one uses pen.M / D dim.M / D jIj, so that the associated combinatorial
penalty is the so-called `0 pseudonorm

J.x/ D kxk0 D j supp.x/j D j fi 2 f1; : : : ;Ng I xi ¤ 0g j: (3.5)
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Thus, solving (Py;�) is intended to select a few active variables (corresponding to
nonzero coefficients) in the recovered vector.

These sparse models can be extended in many ways. For instance, piecewise
regular signals or images can be modeled using manifolds M that are parameterized
by the locations of the singularities and some low-order polynomial between these
singularities. The dimension of M thus grows with the number of singularities,
hence the complexity of the model.

Literature review. The model selection literature [11, 17, 18] proposes many
theoretical results to quantify the performance of these approaches. However, a
major bottleneck of this class of methods is that the corresponding J function
defined in (3.4) is non-convex, and even not necessarily closed, thus typically
leading to highly intractable combinatorial optimization problems. For instance, in
the case of `0 penalty (3.5) and for an arbitrary operator ˚ , (Py;�) is known to be
NP-hard, see, e.g., [167].

It then appears crucial to propose alternative strategies which allow us to deploy
fast computational algorithms. A first line of work consists in finding stationary
points of (Py;�) using descent-like schemes. For instance, in the case of `0

pseudo-norm, this can be achieved using iterative hard thresholding [20, 210], or
iterative reweighting schemes which consist of solving a sequence of weighted
`1- or `2-minimization problems where the weights used for the next iteration are
computed from the values of the current solution, see for instance [45, 72, 187] and
references therein. Another class of approaches is that of greedy algorithms. These
are algorithms which explore the set of possible manifolds M by progressively,
actually in a greedy fashion, increasing the value of pen.M /. The most popular
schemes are matching pursuit [160] and its orthogonal variant [73, 179], see also
the comprehensive review [168] and references therein. The last line of research,
which is the backbone of this chapter, consists in considering convex regularizers
which are built in such a way that they promote the same set of low complexity
manifolds M. In some cases, the convex regularizer proves to be the convex hull
of the initial (restricted) non-convex combinatorial penalty (3.4). But these convex
penalties can also be designed without being necessarily convexified surrogates of
the original non-convex ones.

In the remainder of this section, we describe in detail a general framework that
allows model selection through the general class of convex partly smooth functions.

3.2.2 Encoding Models into Partly Smooth Functions

Before giving the precise definition of our class of convex priors, we define formally
the subspace Tx.

Definition 1 (Model tangent subspace). For any vector x 2 R
N , we define the

model tangent subspace of x associated to J
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Tx D lin.@J.x//?:

In fact, the terminology “tangent” originates from the sharpness property of
Definition 2(ii) below, when x belongs to the manifold M .

When J is differentiable at x, i.e., @J.x/ D frJ.x/g, one has Tx D R
N . On

the contrary, when J is not smooth at x, the dimension of Tx is of a strictly smaller
dimension, and J essentially promotes elements living on or close to the affine space
x C Tx.

We can illustrate this using the `1 norm J D k	k1 defined in (3.2). Using
formula (3.3) for the subdifferential, one obtains that

Tx D ˚
u 2 R

N I supp.u/ � supp.x/
�
;

which is the set of vector having the same sparsity pattern as x.
Toward the goal of studying the recovery guarantees of problem (3.4), our central

assumption is that J is a partly smooth function relative to some manifold M . Partial
smoothness of functions was originally defined [145]. Loosely speaking, a partly
smooth function behaves smoothly as we move on the manifold M , and sharply if
we move normal to it. Our definition hereafter specializes that of [145] to the case
of finite-valued convex functions.

Definition 2. Let J be a finite-valued convex function. J is partly smooth at x
relative to a set M containing x if

(i) (Smoothness) M is a C2-manifold around x and J restricted to M is C2

around x.
(ii) (Sharpness) The tangent space TM .x/ is Tx.

(iii) (Continuity) The set-valued mapping @J is continuous at x relative to M .

J is said to be partly smooth relative to a set M if M is a manifold and J is partly
smooth at each point x 2 M relative to M . J is said to be locally partly smooth at x
relative to a set M if M is a manifold and there exists a neighborhood U of x such
that J is partly smooth at each point of M \ U relative to M .

Remark 1 (Uniqueness of M ). In the previous definition, M needs only to be
defined locally around x, and it can be shown to be locally unique, see [131,
Corollary 4.2]. In the following we will thus often denote Mx any such a manifold
for which J is partly smooth at x.

Taking once again the example of J D k	k1, one sees that in this case, Mx D Tx

because this function is polyhedral. Section 3.2.3.6 below defines functions J for
which Mx differs in general from Tx.
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3.2.3 Examples of Partly Smooth Regularizers

We describe below some popular examples of partly smooth regularizers that are
widely used in signal and image processing, statistics, and machine learning. We
first expose basic building blocks (sparsity, group sparsity, anti-sparsity) and then
show how the machinery of partial smoothness enables a powerful calculus to create
new priors (using pre- and post-composition, spectral lifting, and positive linear
combinations).

3.2.3.1 `1 Sparsity

One of the most popular nonquadratic convex regularization is the `1 norm

J.x/ D kxk1 D
NX

iD1
jxij;

which promotes sparsity. Indeed, it is easy to check that J is partly smooth at x
relative to the subspace

Mx D Tx D ˚
u 2 R

N I supp.u/ � supp.x/
�
:

Another equivalent way to interpret this `1 prior is that it is the convex envelope
(restricted to the `2-ball) of the `0 pseudonorm (3.5), in the sense that the `1-unit
ball is the convex hull of the restriction of the unit ball of the `0 pseudonorm to the
`2-unit ball.

Literature review. The use of the `1 norm as a sparsity-promoting regularizer
traces back several decades. An early application was deconvolution in seismology
[61, 195, 211]. Rigorous recovery results began to appear in the late 1980s [80, 81].
In the mid-1990s, `1 regularization of least-square problems has been popularized
in the signal processing literature under the name Basis Pursuit [58] and in the
statistics literature under the name Lasso [212]. Since then, the applications and
understanding of `1 minimization have continued to increase dramatically.

3.2.3.2 `1 � `2 Group Sparsity

To better capture the sparsity pattern of natural signals and images, it is useful
to structure the sparsity into nonoverlapping groups B such that

S
b2B b D

f1; : : : ;Ng. This group structure is enforced by using typically the mixed `1 � `2

norm
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J.x/ D kxk1;B D
X

b2B
kxbk ; (3.6)

where xb D .xi/i2b 2 R
jbj. Unlike the `1 norm, and except the case jbj D 1 for all

b 2 B, the `1 � `2 norm is not polyhedral, but is still partly smooth at x relative to
the linear manifold

Mx D Tx D fu I suppB.u/ � suppB.x/g where suppB.x/ D
[

fb I xb ¤ 0g :

Literature review. The idea of group/block sparsity has been first proposed
by [31, 125, 126] for wavelet block shrinkage, i.e., when ˚ D Id. For overdeter-
mined regression problems of the form (3.1), it has been introduced by [9, 242].
Group sparsity has also been extensively used in machine learning in, e.g., [7]
(regression and multiple kernel learning) and [174] (for multitask learning). The
wavelet coefficients of a natural image typical exhibit some group structure,
see [159] and references therein on natural image modeling. Indeed, edges and
textures induce strong dependencies between coefficients. In audio processing, it
has proved useful to structure sparsity in multi-channel data [122]. Group sparsity
is also at the heart of the so-called multiple measurements vector (MMV) model,
see for instance [57, 69]. It is possible to replace the `2 norm with more general
functionals, such as `p norms for p > 1, see for instance [169, 224, 236].

3.2.3.3 `1 Anti-sparsity

In some cases, the vector to be reconstructed is expected to be flat. Such a prior can
be captured using the `1 norm

J.x/ D kxk1 D max
i2f1;:::;ng

jxij:

It can be readily checked that this regularizer is partly smooth (in fact polyhedral)
relative to the subspace

Mx D Tx D fu I uI D �xI for some � 2 Rg ; where I D fi I xi D kxk1g :

Literature review. The `1 regularization has found applications in computer
vision, such as for database image retrieval [136]. For this application, it is indeed
useful to have a compact signature of a signal x, ideally with only two values
˙ kxk1 (thus achieving optimal anti-sparsity since dim.Tx/ D 1 in such a case).
An approach proposed in [137] for realizing this binary quantification is to compute
these vectors as solutions of (Py;�) for J D k	k1 and a random ˚ . A study of
this regularization is done in [108], where an homotopy-like algorithm is provided.
The use of this `1 regularization is also connected to Kashin’s representation [156],
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which is known to be useful in stabilizing the quantization error for instance. Other
applications such as wireless network optimization [209] also rely on the `1 prior.

3.2.3.4 Synthesis Regularizers

Sparsity or more general low complexity regularizations are often used to model
coefficients ˛ 2 R

Q describing the data x D D˛ in a dictionary D 2 R
N�Q of Q

atoms in R
N . Given a partly smooth function J0 W RQ ! R, we define the following

synthesis-type prior J W RN ! R as the pre-image of J0 under the linear mapping D

J.x/ D min
˛2RQ

J0.˛/ s:t: D˛ D x

Since J0 is bounded below and convex, J is convex. If D is surjective (as in
most cases with redundant dictionaries), then J is also finite valued. The initial
optimization (Py;�) can equivalently been solved directly over the coefficients
domain to obtain x? D D˛? where

˛? 2 Argmin
˛2RQ

1

2�
ky � ˚D˛k2 C J0.˛/ (3.7)

which can be interpreted as a regularized inversion of the operator ˚D using the
prior J0.

It is possible to study directly the properties of the solutions ˛? to (3.7),
which involves directly partial smoothness of J0. A slightly different question is
to understand the behavior of the solutions x? D D˛? of (Py;�), which requires to
study partial smoothness of J itself. In the case where D is invertible, both problems
are completely equivalent.

Literature review. Sparse synthesis regularization using J0 D k	k1 is popular
in signal and image processing to model natural signals and images, see for
instance [159, 205] for a comprehensive account. The key problem to achieve good
performance in these applications is to design a dictionary to capture sparse repre-
sentations of the data to process. Multiscale dictionaries built from wavelet pyramids
are popular to sparsely represent transient signals with isolated singularities and
natural images [158]. The curvelet transform is known to provide nonadaptive near-
optimal sparse representation of piecewise smooth images away from smooth edges
(the so-called cartoon images) [34]. Gabor dictionaries (made of localized and
translated Fourier atoms) are popular to capture locally stationary oscillating signals
for audio processing [3]. To cope with richer and diverse contents, researchers
have advocated to concatenate several dictionaries to solve difficult problems in
signal and image processing, such as component separation or inpainting, see
for instance [98]. A line of current active research is to learn and optimize the
dictionary from exemplars or even from the available data themselves. We refer
to [97, Chapter 12] for a recent overview of the relevant literature.
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3.2.3.5 Analysis Regularizers

Analysis-type regularizers (following the terminology introduced in [99]) are of the
form

J.x/ D J0.D
�x/ ;

where D 2 R
N�Q is a linear operator. Such a prior controls the low complexity (as

measured by J0) of the correlations between the columns of D and the signal x. If
J0 is partly smooth at z D D�x for the manifold M 0

z , then it is shown in [145,
Theorem 4.2] that J is partly smooth at x relative to the manifold

Mx D ˚
u 2 R

N I D�u 2 M 0
z

�

provided that the following transversality condition holds [143, Theorem 6.30(a)]

Ker.D/ \ TM 0
z
.z/? D f0g () Im.D�/C TM 0

z
.z/ D R

N :

Literature review. A popular example is when J0 D k	k1 and D� is a finite-
difference discretization of the derivative of a 1-D signal or a 2-D image. This
defines the anisotropic total variation semi-norm, which promotes piecewise con-
stant signals or images [194]. The 2-D isotropic total variation semi-norm can be
interpreted as taking J0 D k	k1;2 with blocks of size two. A comprehensive review
of total variation regularization can be found in [53]. TV regularization has been
extended in several ways to model piecewise polynomial functions, see in particular
the Total Generalized Variation prior [28].

One can also use a wavelet dictionary D which is shift invariant, such that the
corresponding regularization J can be seen as a kind of multiscale total variation.
This is typically the case of the Haar wavelet dictionary [206]. When using higher
order wavelets, the corresponding priors favor models M composed of discrete
piecewise polynomials.

The Fused Lasso [215] corresponds to J0 being the `1 norm and D is the
concatenation of the identity and the adjoint of a finite-difference operator. The
corresponding models M are composed of disjoint blocks over which the signals
are constant.

Defining a block extracting operator D�x D .xb/b2B allows to rewrite the group
`1�`2 norm (3.6), even with overlapping blocks (i.e., 9.b; b0/ 2 B2 with b\b0 ¤ ;),
as J D J0 ı D� where J0 D k	k1;2 without overlap, see [32, 138, 182, 244]. To
cope with correlated covariates in linear regression, analysis-type sparsity-enforcing
priors were proposed in [118, 191] using J0 D k	k� the nuclear norm (as defined in
Section 3.2.3.6).

For unitary D, the solutions of (Py;�) with synthesis and analysis regularizations
are obviously the same. In the general case (e.g., D overcomplete), however, these
two regularizations are different. Some authors have reported results comparing
these two priors for the case where J0 is the `1 norm [99, 197]. A first discussion on
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the relation and distinction between analysis and synthesis `1-sparse regularizations
can be found in [99]. But only very recently, some theoretical recovery results and
algorithmic developments on `1- analysis regularization (so-called cosparse model)
have begaun to be developed, see, e.g., [166, 229].

3.2.3.6 Spectral Functions

The natural extension of low complexity priors to matrix-valued data x 2 R
N0�N0

(where N D N2
0 ) is to impose the low complexity on the singular values of the

matrix. We denote x D Ux diag.�x/V�x an SVD decomposition of x, where �x 2
R

N0C . If j W RN0 ! R is a permutation-invariant closed convex function, then one can
consider the function

J.x/ D j.�x/

which can be shown to be a convex function as well [146]. When restricted to the
linear space of symmetric matrices, j is partly smooth at �x for a manifold m�x , if
and only if J is partly smooth at x relative to the manifold

Mx D fU diag.�/U� I � 2 m�x ;U 2 ON0g ;
where ON0 � R

N0�N0 is the orthogonal group. The proof of this assertion can be
found in [70, Theorem 3.19], which builds upon the work of [71] on manifold
smoothness transfer under spectral lifting. This result can be extended to non-
symmetric matrices by requiring that j is an absolutely permutation-invariant closed
convex function, see [70, Theorem 5.3].

Literature review. The most popular spectral prior is obtained for j D k	k1. This
defines the nuclear norm, or 1-Schatten norm, as

J.x/ D kxk� D k�xk1 : (3.8)

It can be shown that the nuclear norm is the convex hull of the rank function with
respect to the spectral norm ball, see [102, 132]. It then corresponds to promoting a
low-rank prior. Moreover, the nuclear norm can be shown to be partly smooth at x
relative to the set [147, Example 2]

Mx D fu I rank.u/ D rank.x/g

which is a manifold around x.
The nuclear norm has been used in signal and image processing, statistics,

and machine learning for various applications, including low-rank matrix com-
pletion [38, 188, 203], principal component pursuit [47], model reduction [103],
and phase retrieval [49]. It is also used for some imaging applications, see for
instance [151].
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3.2.3.7 Mixed Regularizations

Starting from a collection of convex functions fJ`g`2L , L D f1; : : : ;Lg, it is
possible to design a convex function as

J`.x/ D
X

`2L
�`J`.x/;

where �` > 0 are weights. If each J` is partly smooth at x relative to a manifold M `
x ,

then it is shown in [145, Corollary 4.8] that J is also partly smooth at x for

Mx D
\

`2L
M `

x ;

with the proviso that the manifolds M `
x intersect transversally [143, Theo-

rem 6.30(b)], i.e. the sum of their respective tangent spaces TM `
x
.x/ spans the

whole ambient space R
N .

Literature review. A popular example is to impose both sparsity and low rank of
a matrix, when using J1 D k	k1 and J2 D k	k�, see for instance [114, 176].

3.2.3.8 Separable Regularization

Let fJ`g`2L , L D f1; : : : ;Lg, be a family of convex functions. If J` is partly smooth
at x` relative to a manifold M `

x`
, then the separable function

J .fx`g`2L / D
X

`2L
J`.x`/

is partly smooth at .x1; : : : ; xL/ relative to M 1
x1 
 	 	 	 
 M L

xL
[145, Proposition 4.5].

Literature review. One fundamental problem that has attracted a lot of interest in
the recent years in data processing involves decomposing an observed object into
a linear combination of components/constituents x`, ` 2 L D f1; : : : ;Lg. One
instance of such a problem is image decomposition into texture and piecewise-
smooth (cartoon) parts. The corresponding forward model can be cast in the

form (3.1), where x0 D
�

x1
x2

�
, x1 and x2 are the texture and cartoon components,

and ˚ D ŒId Id�. The decomposition is then achieved by solving the variational
problem (Py;�), where J1 is designed to promote the discontinuities in the image
and J2 to favor textures; see [6, 181, 204] and references therein. Another example
of decomposition is principal component pursuit, proposed in [47], to decompose a
matrix which is the superposition of a low-rank component and a sparse component.
In this case J1 D k	k1 and J2 D k	k�.
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3.3 `2 Stability

In this section, we assume that J is a finite-valued convex function, but it is not
assumed to be partly smooth.

The observations y are in general contaminated by noise, as described by the
forward model (3.1). It is thus important to study the ability of (Py;�) to recover
x0 to a good approximation in presence of such a noise w and to assess how the
reconstruction error decays as a function of the noise level. In this section, we
present a generic result ensuring a so-called linear convergence rate in terms of
`2-error between a recovered vector and x0 (see Theorem 1), which encompasses a
large body of literature from the inverse problems community.

3.3.1 Dual Certificates

It is intuitively expected that if (Py;�) is good at recovering an approximation of
x0 in presence of noise, then (Py;0) should be able to identify x0 uniquely when the
noise vanishes, i.e., y D ˚x0. For this to happen, the solution to (Py;0) has to satisfy
some nondegeneracy condition. To formalize this, we first introduce the notion of
dual certificate.

Definition 3 (Dual certificates). For any vector x 2 R
N , the set of dual certificates

at x is defined as

D.x/ D Im.˚�/ \ @J.x/ :

The terminology “dual certificate” was introduced in [38]. One can show that the
image by ˚� of the set of solutions of the Fenchel-Rockafellar dual to (Py;0) is
precisely D.x/.

It is also worth noting that x0 being a solution of (Py;0) for y D ˚x0 is equivalent
to D.x0/ ¤ ;. Indeed, this is simply a convenient rewriting of the first-order
optimality condition for (Py;0).

To ensure stability of the set of minimizers (Py;�) to noise perturbing the
observations ˚x0, one needs to introduce the additional requirement that the dual
certificates should be strictly inside the subdifferential of J at x0. This is precisely
the nondegeneracy condition mentioned previously.

Definition 4 (Nondegenerate dual certificates). For any vector x 2 R
N , we define

the set of nondegenerate dual certificates of x

QD.x/ D Im.˚�/ \ ri.@J.x// :
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3.3.2 Stability in `2 Norm

The following theorem, proved in [101], establishes a linear convergence rate valid
for any regularizer J, without any particular assumption beside being a proper closed
convex function. In particular, it does not assume partial smoothness of J. This
generic result encompasses many previous works, as discussed in Section 3.3.3.

Theorem 1. Assume that

Ker.˚/ \ Tx0 D f0g and QD.x0/ ¤ ; (3.9)

and consider the choice � D c kwk, for some c > 0. Then we have for all minimizers
x? of (Py;�)

kx? � x0k2 6 C kwk ; (3.10)

where C > 0 is a constant (see Remark 4 for details).

In plain words, this bound tells us that the distance of x0 to the set of minimizers
of (Py;�) is within a factor of the noise level, which justifies the terminology “linear
convergence rate.”

Remark 2 (The role of nonsmoothness). The injectivity of ˚ when restricted to Tx0
is intimately related to the fact that J is nonsmooth at x0. The higher the degree of
nonsmoothness, the lower the dimension of the subspace Tx0 , and hence the more
likely the restricted injectivity. If J is smooth around x0 (e.g., quadratic regularizers),
however, the restricted injectivity condition cannot be fulfilled, unless ˚ is itself
injective. The reason is that Tx0 is the whole R

N at the smoothness points. For
smooth regularizations, it can be shown that the convergence rate is slower than
linear, we refer to [196] for more details.

Remark 3 (Uniqueness). One can show that condition (3.9) implies that x0 is the
unique solution of (Py;0) for y D ˚x0. This condition however does not imply in
general that (Py;�) has a unique minimizer for � > 0.

Remark 4 (Stability constant). Result (3.10) ensures that the mapping y 7! x? (that
might be set valued) is C-Lipschitz-continuous at y D ˚x0. Condition QD.x0/ ¤ ;
is equivalent to the existence of some � 2 QD.x0/. The value of C (in fact an upper
bound) can be found in [101]. It depends on ˚ , Tx0 , c and the chosen nondegenerate
dual certificate �. In particular, the constant degrades critically as � gets closer to the
relative boundary of QD.x0/, which reflects the intuition of how far is � from being a
nondegenerate certificate.

Remark 5 (Source condition). The condition D.x0/ ¤ ; is often called “source
condition” or “range condition” in the literature of inverse problems. We refer to
the monograph [196] for a general overview of this condition and its implications.
It is an abstract condition, which is not easy to check in practice, since exhibiting a
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valid nondegenerate certificate is not trivial. We give in Section 3.4.1 further insights
about this in the context of compressed sensing. Section 3.4.1 describes a particular
construction of a good candidate (the so-called linearized pre-certificate) for being
such an � 2 QD.x0/, and it is shown to govern stability of the manifold Mx0 for partly
smooth regularizers.

Remark 6 (Infinite dimension). It is important to remind that, in its full general
form, Theorem 1 only holds in finite dimension. The constant C indeed may
depend on the ambient dimension N, in which case the constant can blow up as
the discretization grid of the underlying continuous problem is made finer (i.e., as
N grows). We detail below some relevant literature where similar results are shown
in infinite dimension.

3.3.3 Related Works

3.3.3.1 Convergence Rates

For quadratic regularizations of the form J D kD�	k2 for some linear operator D�,
the `2-error decay can be proved to be O.

pkwk/, which is not linear, see [196,
Chapter 3] for more details and extensions to infinite-dimensional Hilbert spaces.
For nonsmooth priors, in [30], the authors show the Bregman distance between
x? and x0 exhibits a linear convergence rate for both the Lagrangian (Py;�) and
the constrained (P1

y;") problems under the source condition D.x0/ ¤ 0. These
results hold more generally over infinite-dimensional Banach spaces. They have
been subsequently generalized to ill-posed nonlinear inverse problems by [190]
and [133]. It is important to observe that in order to prove convergence rates in terms
of `2-error, as done in (3.10), it is necessary to strengthen the source condition to its
nondegenerate version, i.e., QD.x0/ ¤ 0.

In [153], the authors consider the case where J is a `p norm with 1 6
p 6 2 and establish convergence rates of k˚x0 � ˚x?k in O.kwk/ and of
kx? � x0k in O.

pkwk/. [117] prove Theorem 1 for J D k	k1. They show that
the nondegeneracy condition is also necessary for linear convergence and draw
some connections with the restricted isometry property (RIP), see below. Under
a condition that bears similarities with (3.9), linear convergence with respect to
J, i.e., J.x? � x0/ D O.kwk/, is proved in [116] for positively homogeneous
regularizers. This result is equivalent to Theorem 1 but only when J is coercive,
which precludes many important regularizers, such as for instance analysis-type
regularizers including total variation.
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3.3.3.2 RIP-based Compressed Sensing

The recovery performance of compressed sensing (i.e., when ˚ is drawn from
suitable random ensembles) for J D k	k1 has been widely analyzed under the so-
called restricted isometry property (RIP) introduced in [41, 43, 44]. For any integer
k > 0, the kth order restricted isometry constant of a matrix ˚ is defined as the
smallest ık > 0 such that

.1 � ık/ kxk2 6 k˚xk2 6 .1C ık/ kxk2 ;

for all vectors x such that kxk0 6 k. It is shown [43] that if ı2k C ı3k < 1, then
for every vector x0 with kx0k0 6 k, there exists a nondegenerate certificate [40,
Lemma 2.2], see also the discussion in [117]. In turn, this implies linear convergence
rate and is applied in [44] to show `2-stability to noise of compressed sensing. This
was generalized in [46] to analysis sparsity J D kD�	k1, where D is assumed to
be a tight frame, structured sparsity in [46], and matrix completion in [37, 188]
using J D k	k�. The goal is then to design RIP matrices ˚ with constants such that
ı2k C ı3k (or a related quantity) is small enough. This is possible if ˚ is drawn from
an appropriate random ensemble for some (hopefully optimal) scaling of .N;P; k/.
For instance, if ˚ is drawn from the standard Gaussian ensemble (i.e., with i.i.d.
zero-mean standard Gaussian entries), there exists a constant C such that the RIP
constants of ˚=

p
P obey ı2k C ı3k < 1 with overwhelming probability provided

that

P > Ck log.N=k/ ; (3.11)

see for instance [41]. This result remains true when the entries of ˚ are drawn
independently from a subgaussian distribution. When ˚ is a structured random
matrix, e.g., random partial Fourier matrix, the RIP constants of ˚=

p
P can also

satisfy the desired bound, but at the expense of polylog terms in the scaling (3.11),
see [105] for a comprehensive treatment. Note that in general, computing the RIP
constants for a given matrix is an NP-hard problem [10, 219].

3.3.3.3 RIP-less Compressed Sensing

RIP-based guarantees are uniform, in the sense that the recovery holds with high
probability for all sparse signals. There is a recent wave of work in RIP-less analysis
of the recovery guarantees for compressed sensing. The claims are nonuniform,
meaning that they hold for a fixed signal with high probability on the random matrix
˚ . This line of approaches improves on RIP-based bounds providing typically
sharper constants. When ˚ is drawn from the Gaussian ensemble, it is proved
in [193] for J D k	k1 that if the number of measurements P obeys P > Ck log.N=k/
for some constant C > 0, where k D kx0k0, then condition (3.9) holds with
high probability on ˚ . This result is based on Gordon’s comparison principle for
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Gaussian processes and depends on a summary parameter for convex cones called
the Gaussian width. Equivalent lower bounds on the number of measurements for
matrix completion from random measurements by minimizing the nuclear norm
were provided in [42] to ensure that (3.9) holds with high probability. This was used
to prove `2-stable matrix completion in [35].

The authors in [54] have recently showed that the Gaussian width-based approach
leads to sharp lower bounds on P required to solve regularized inverse problems
from Gaussian random measurements. For instance, they showed for J D k	k1 that

P > 2k log.N=k/ (3.12)

guarantees exact recovery from noiseless measurements by solving (Py;0). An
overhead in the number of measurements is necessary to get linear convergence of
the `2-error in presence of noise by solving (P1

y;") with " D kwk, i.e., x0 is feasible.
Their results handle for instance the case of group sparsity (3.6) and the nuclear
norm (3.8). In the polyhedral case, it can be shown that (3.12) implies the existence
of a non-degenerate dual certificate, i.e., (3.9), with overwhelming probability. The
Gaussian width is closely related to another geometric quantity called the statistical
dimension in conic integral geometry. The statistical dimension canonically extends
the linear dimension to convex cones, and has been proposed in [4] to deliver reliable
predictions about the quantitative aspects of the phase transition for exact noiseless
recovery from Gaussian measurements.

To deal with non-Gaussian matrix measurements (such as for instance partial
Fourier matrices), [123] introduced the “golfing scheme” for noiseless low-rank
matrix recovery guarantees using J D k	k�. The golfing scheme is an iterative pro-
cedure to construct an (approximate) nondegenerate certificate. This construction is
also studied in [36] for noiseless and noisy sparse recovery with J D k	k1. In another
chapter of this volume [220], the author develops a technique, called the “bowling
scheme,” which is able to deliver bounds on the number of measurements that are
similar to the Gaussian width-based bounds for standard Gaussian measurements,
but the argument applies to a much wider class of measurement ensembles.

3.4 Model Stability

In the remainder of this chapter, we assume that J is finite-valued convex and locally
partly smooth around x0, as defined in Section 3.2.2. This means in particular that the
prior J promotes locally solution which belongs to the manifold M D Mx0 . In the
previous section, we were only concerned with `2-stability guarantees and partial
smoothness was not necessary then. Owing to the additional structure conveyed
by partial smoothness, we will be able to provide guarantees on the identification
of the correct M D Mx0 by solving (Py;�), i.e., whether the (unique) solution
x? of (Py;�) satisfies x? 2 M . Such guarantees are of paramount importance for
many applications. For instance, consider the case where `1 regularization is used
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to localize some (sparse) sources. Then x? 2 M means that one perfectly identifies
the correct source locations. Another example is that of the nuclear norm for low-
rank matrix recovery. The correct model identification implies that x? has the correct
rank, and consequently that the eigenspaces of x? have the correct dimensions and
are close to those of x0.

3.4.1 Linearized Pre-certificate

We saw in Section 3.3.2 that `2-stability of the solutions to (Py;�) is governed by the
existence of a nondegenerate dual certificate p 2 QD.x0/. It turns out that not all dual
certificates are equally good for stable model identification, and toward the latter,
one actually needs to focus on a particular dual certificate, which we call “minimal
norm” certificate.

Definition 5 (Minimal norm certificate). Assume that x0 is a solution of (Py;0).
We define the “minimal-norm certificate” as

�0 D ˚� argmin
˚�p2@J.x0/

kpk : (3.13)

A remarkable property, stated in Proposition 1 below, is that, as long as one is
concerned with checking whether �0 is nondegenerate, i.e., �0 2 ri.@J.x0//, one can
instead use the vector �F defined below, which can be computed in closed form.

Definition 6 (Linearized pre-certificate). Assume that

Ker.˚/ \ Tx0 D f0g: (3.14)

We define the “linearized pre-certificate” as

�F D ˚� argmin
˚�p2aff.@J.x0//

kpk : (3.15)

Remark 7 (Well-posedness of the definitions). Note that the hypothesis that x0 is a
solution of (Py;0) is equivalent to saying that D.x0/ is a nonempty convex compact
set. Hence in (3.13), the optimal p is the orthogonal projection of 0 on a nonempty
closed convex set, and thus �0 is uniquely defined. Similarly, the hypothesis (3.14)
implies that the constraint set involved in (3.15) is a nonempty affine space, and thus
�F is also uniquely defined.

Remark 8 (Certificate vs. pre-certificate). Note that the only difference between
(3.13) and (3.15) is that the convex constraint set @J.x0/ is replaced by a simpler
affine constraint. This means that �F does not always qualify as a valid certificate,
i.e., �F 2 @J.x0/, hence the terminology “pre-certificate” is used. This condition is
actually at the heart of the model identification result exposed in Theorem 2.
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From now on, let us remark that �F is actually simple to compute, since it
amounts to solving a linear system in the least-squares sense.

Proposition 1. Under condition (3.14), one has

�F D ˚�˚C;�Tx0
ex0 where ex0 D PTx0

.@J.x0// 2 R
N : (3.16)

Remark 9 (Computating ex). The vector ex appearing in (3.16) can be computed in
closed form for most of the regularizers discussed in Section 3.2.2. For instance, for
J D k	k1, ex D sign.x/. For J D k	k1;B, it reads ex D .eb/b2B, where eb D xb= kxbk
if xb ¤ 0, and eb D 0 otherwise. For J D k	k� and a SVD decomposition x D
Ux diag.�x/V�x , one has ex D UxV�x .

The following proposition, whose proof can be found in [232], exhibits a precise
relationship between �0 and �F. In particular, it implies that �F can be used in place
of �0 to check whether �0 is nondegenerate, i.e., �0 2 ri.@J.x0//.

Proposition 2. Under condition (3.14), one has

�F 2 ri.@J.x0// H) �F D �0;

�0 2 ri.@J.x0// H) �F D �0:

3.4.2 Model Identification

The following theorem provides a sharp sufficient condition to establish model
selection. It is proved in [232]. It encompasses as special cases many previous works
in the signal processing, statistics, and machine learning literatures, as we discuss
in Section 3.4.5.1.

Theorem 2. Let J be locally partly smooth at x0 relative to M D Mx0 . Assume
that

Ker.˚/ \ Tx0 D f0g and �F 2 ri.@J.x0//: (3.17)

Then there exists C such that if

max.�; kwk =�/ 6 C; (3.18)

the solution x? of (Py;�) from measurements (3.1) is unique and satisfies

x? 2 M and kx0 � x?k D O.max.�; kwk//: (3.19)

Remark 10 (Linear convergence rate vs. model identification). Obviously, assump-
tions (3.17) of Theorem 2 imply those of Theorem 1. They are of course stronger,



124 S. Vaiter et al.

but imply a stronger result, since uniqueness of x? and model identification (i.e.,
x? 2 M ) are not guaranteed by Theorem 1 (which does not even need J to be
partly smooth). A chief advantage of Theorem 2 is that its hypotheses can be
easily checked and analyzed for a particular operator ˚ . Indeed, computing �F only
requires solving a linear system, as clearly seen from formula (3.16).

Remark 11 (Minimal signal-to-noise ratio). Another important distinction between
Theorems 1 and 2 is the second assumption (3.18). In plain words, it requires that the
noise level is small enough and that the regularization parameter is wisely chosen.
Such an assumption is not needed in Theorem 2 to ensure linear convergence of the
`2-error. In fact, this condition is quite natural. To see this, consider for instance
the case of sparse recovery where J D k	k1. If the minimal signal-to-noise ratio is
low, the noise will clearly dominate the amplitude of the smallest entries, so that
one cannot hope to recover the exact support, but it is still possible to achieve a low
`2-error by forcing those small entries to zero.

Remark 12 (Identification of the manifold). For all the regularizations considered
in Section 3.2.3, the conclusion of Theorem 2 is even stronger as it guarantees that
Mx? D M . The reason is that for any x and nearby points x0 with x0 2 Mx, one has
Mx0 D Mx.

Remark 13 (General loss/data fidelity). It is possible to extend Theorem 2
to account for general loss/data fidelity terms beyond the quadratic one, i.e.,
1
2

ky � ˚xk2. More precisely, this result holds true for loss functions of the form
F.˚x; y/, where F W R

P 
 R
P ! R is a C2 strictly convex function in its first

argument, rF is C1 in the second argument, with rF.y; y/ D 0, where rF is
the gradient with respect to the first variable. In this case, expression (3.16) of �F

becomes simply

�F D � .PT � PT/
Cex0 where

�
T D Tx0

� D ˚�@2F.˚x0; ˚x0/˚ ;

and where @2F is the Hessian with respect to the first variable (which is a positive
definite operator). We refer to [232] for more details.

3.4.3 Sharpness of the Model Identification Criterion

The following proposition, proved in [232], shows that Theorem 2 is in some sense
sharp, since the hypothesis �F 2 ri.@J.x0// (almost) characterizes the stability
of M .

Proposition 3. We suppose that x0 is the unique solution of (Py;0) for y D ˚x0
and that
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Ker.˚/ \ Tx0 D f0g; and �F … @J.x0/: (3.20)

Then there exists C > 0 such that if (3.18) holds, then any solution x? of (Py;�) for
� > 0 obeys x? … M .

In the particular case where w D 0 (no noise), this result shows that the manifold
M is not correctly identified when solving (Py;�) for y D ˚x0 and for any � > 0

small enough.

Remark 14 (Critical case). The only case not covered by neither Theorem 2 nor
Proposition 3 is when �F 2 rbd.@J.x0//, where rbd stands for the boundary relative
to the affine hull. In this case, one cannot conclude, since depending on the noise
w, one can have either stability or non-stability of M . We refer to [229] where an
example illustrates this situation for the 1-D total variation J D ��D�DIF	��

1
, where

D�DIF is a finite-difference discretization of the 1-D derivative operator.

3.4.4 Probabilistic Model Consistency

Theorem 2 assumes a deterministic noise w, and the operator ˚ is fixed. For
applications in statistics and machine learning, it makes sense to rather assume
a random model for both ˚ and w. The natural question is then to assert that
the estimator defined by solving (Py;�) is consistent in the sense that it correctly
estimates x0 and possibly the model Mx0 as the number of observations P ! C1.
This requires to handle operators ˚ with an increasing number of rows, and thus
to also assess sensitivity of the optimization problem (Py;�) to perturbations of ˚
(and not only to .w; �/ as done previously).

To be more concrete, in this section, we work under the classical setting where
N an x0 are fixed as the number of observations P ! C1. The data .'i;wi/ are
assumed to be random vectors in R

N 
 R, where 'i is the ith row of ˚ for i D
1; : : : ;P. These vectors are supposed independent and identically distributed (i.i.d.)
samples from a joint probability distribution such that E .wij'i/ D 0, finite fourth-

order moments, i.e., E
	
w4i


< C1 and E

�
k'ik4

�
< C1. Note that in general, wi

and 'i are not necessarily independent. It is possible to consider other distribution
models by weakening some of the assumptions and strengthening others, see, e.g.,
[7, 142, 243]. Let us denote � D E.'�i �i/ 2 R

N�N , where �i is any row of ˚ . We
do not make any assumption on the invertibility of � .

In this setting, a natural extension of �F defined by (3.16) in the deterministic
case is

Q�F D � � CTx0
ex0
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where �Tx0
D PTx0

� PTx0
, and we use the fact that �Tx0

is symmetric and Im.� CTx0
/ �

Tx0 . It is also implicitly assumed that Ker.� / \ Tx0 D f0g which is the equivalent
adaptation of the restricted injectivity condition in (3.17) to this setting.

To make the discussion clearer, the parameters .� D �P; ˚ D ˚P;w D wP/

are now indexed by P. The estimator x?P obtained by solving .P�P;yP/ for yP D
˚Px0 C wP is said to be consistent for x0 if

lim
P!C1Pr

	
x?P is unique


 D 1

and x?P ! x0 in probability. The estimator is said to be model consistent if

lim
P!C1Pr

	
x?P 2 M


 D 1;

where M D Mx0 is the manifold associated to x0.
The following result, whose proof can be found in [232], guarantees model

consistency for an appropriate scaling of �P. It generalizes several previous works
in the statistical and machine learning literature as we review in Section 3.4.5.1.

Theorem 3. If

Ker.� / \ Tx0 D f0g and Q�F 2 ri.@J.x0//; (3.21)

and

�P D o.P/ and ��1P D o.P�1=2/; (3.22)

then the estimator x?P of x0 is model consistent.

3.4.5 Related Works

3.4.5.1 Model Consistency

Theorem 2 is a generalization of a large body of results in the literature. For the
Lasso, i.e. J D k	k1, to the best of our knowledge, this result was initially stated
in [107]. In this setting, result (3.19) corresponds to the correct identification of the
support, i.e., supp.x?/ D supp.x0/. Condition (3.21) for J D k	k1 is known in the
statistics literature under the name “irrepresentable condition” (generally stated in
a nongeometrical form), see, e.g., [243]. [142] have shown estimation consistency
for Lasso for fixed N and x0 and asymptotic normality of the estimates. The authors
in [243] prove Theorem 3 for J D k	k1, though under slightly different assumptions
on the covariance and noise distribution. A similar result is established in [140]
for the elastic net, i.e., J D k	k1 C � k	k22 for � > 0. In [7] and [8], the author
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proves Theorem 3 for two special cases, namely the group Lasso and nuclear norm
minimization. Note that these previous works assume that the asymptotic covariance
� is invertible. We do not impose such an assumption and only require the weaker
restricted injectivity condition Ker.� / \ T D f0g. In a previous work [229], we
have proved an instance of Theorem 2 when J.x/ D kD�xk1, where D 2 R

N�Q is an
arbitrary linear operator. This covers as special cases the discrete anisotropic total
variation or the fused Lasso. This result was further generalized in [228] when J
belongs to the class of partly smooth functions relative to linear manifolds M , i.e.,
M D Tx. Typical instances encompassed in this class are the `1 � `2 norm, or its
analysis version, as well as polyhedral gauges including the `1 norms. Note that the
nuclear norm (and composition of it with linear operators as proposed for instance
in [118, 191]), whose manifold is not linear, does not fit into the framework of [228],
while it is covered by Theorem 2. Lastly, a similar result is proved in [89] for a
continuous (infinite-dimensional) sparse recovery problem over the space of Radon
measures normed by the total variation of a measure J (not to be confused with
the total variation of functions). In this continuous setting, an interesting finding is
that, when �0 2 ri.@J.x0//, �0 is not equal to �F but to a different certificate (called
“vanishing derivative” certificate in [89]) that can also be computed by solving a
linear system.

3.4.5.2 Stronger Criteria for `1

Many sufficient conditions have been proposed in the literature to ensure that �F

is a nondegenerate certificate, and hence to guarantee stable identification of the
support (i.e., model). We illustrate this here for J D k	k1, but similar reasoning can
be carried out for k	k1;B or k	k�.

The strongest criterion makes use of mutual coherence, first considered in [78]

�.˚/ D max
i¤j

jh'i; 'jij

where each column 'i of ˚ is assumed normalized to a unit `2 norm. Mutual
coherence measures the degree of ill conditioning of ˚ through the correlation of

its columns .'i/16i6N . Mutual coherence is always lower bounded by
q

N�P
P.N�1/ , and

equality holds if and only if .'i/16i6N is an equiangular tight frame, see [208]. Finer
variants based on cumulative coherences have been proposed in [24, 120]. To take
into account the influence of the support I D supp.x0/ of the vector x0 to recover,
Tropp introduced in [221] the Exact Recovery Condition (ERC), defined as

ERC.I/ D
�
��˚�Ic˚

C;�
I

�
��1;1 D max

j…I

�
�˚CI 'j

�
�
1

where k	k1;1 is the matrix operator norm induced by the `1 vector norm, ˚I D
.'i/i2I , and Ic is the complement of the set I. ˚I is assumed injective which, in view
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of Section 3.2.3.1, is nothing but a specialization to `1 of the restricted injectivity
condition in (3.17). A weak ERC criterion, which does not involve matrix inversion,
is derived in [83]

wERC.I/ D
max
j2Ic

P
i2I jh'i; 'jij

1 � max
j2I

P
i¤j2I jh'i; 'jij :

Given the structure of the subdifferential of the `1 norm, it is easy to check that

�F 2 ri.@J.x0// () IC.x0/ D
�
��˚�Ic˚

C;�
I sign.x0;I/

�
��1 < 1:

The right-hand side in the equivalence is precisely what is called the irrepresentable
condition in statistics and machine learning. Clearly, IC.x0/ involves both the sign
vector and the support of x0. The following proposition gives ordered upper bounds
of IC.x0/ in terms of the cruder criteria ERC, wERC, and mutual coherence. A more
elaborate discussion of them can be found in [159].

Proposition 4. Assume that ˚I is injective and denote k D jIj D kx0k0. Then,

IC.x0/ 6 ERC.I/ 6 wERC.I/ 6 k�.˚/

1 � .k � 1/�.˚/ :

3.4.5.3 Linearized Pre-certificate for Compressed Sensing Recovery

Stable support identification has been established in [84, 239] for the Lasso problem
when ˚ is drawn from the Gaussian ensemble. These works show that for k D
kx0k0, if

P > 2k log.N/

then indeed �F 2 ri.@J.x0//, and this scaling can be shown to be sharp. This
scaling should be compared with (3.12) ensuring that there exists a nondegenerate
certificate. The gap in the log term indicates that there exists vectors that can be
stably recovered by `1 minimization in `2-error sense, but whose support cannot
be stably identified. Equivalently, for these vectors, there exists a nondegenerate
certificate but it is not �F.

The pre-certificate �F is also used to ensure exact recovery of a low-rank matrix
from incomplete noiseless measurements by minimizing the nuclear norm [38, 42].
This idea is further generalized by [39] for a family of decomposable norms
(including in particular `1-`2 norm and the nuclear norm), which turns to be a
subset of partly smooth regularizers. In these works, lower bounds on the number
of random measurements needed for �F to be a nondegenerate certificate are
developed. In fact, these measurement lower bounds combined with Theorem 2
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allow us to conclude that matrix completion by solving (Py;�) with J D k	k�
identifies the correct rank at high signal-to-noise levels.

3.4.5.4 Sensitivity Analysis

Sensitivity analysis is a central theme in variational analysis. Comprehensive
monographs on the subject are [23, 165]. The function to be analyzed underlying
problems (Py;�) and (Py;0) is

f .x; �/ D
�

1
2�

ky � ˚xk2 C J.x/ if � > 0

�Hy.x/C J.x/ if � D 0
; (3.23)

where Hy D fy I ˚x D yg and where the parameters are � D .�; y; ˚/ for � > 0.
Theorems 2 and 3 can be understood as a sensitivity analysis of the minimizers of f
at a point .x D x0; � D �0 D .0; ˚x0; ˚//.

Classical sensitivity analysis of nonsmooth optimization problems seeks condi-
tions to ensure smoothness of the mapping � 7! x� where x� is a minimizer of
f .	; �/, see for instance [23, 192]. This is usually guaranteed by the nondegenerate
source condition and restricted injectivity condition (3.9), which, as already exposed
in Section 3.3.2, ensure linear convergence rate, and hence Lipschitz behavior of this
mapping. The analysis proposed by Theorem 2 goes one step further, by assessing
that Mx0 is a stable manifold (in the sense of [240]), since the minimizer x� is unique
and remains in Mx0 for � close to �0. Our starting point for establishing Theorem 2
is the inspiring work of Lewis [145] who first introduced the notion of partial
smoothness and showed that this broad class of functions enjoys a powerful calculus
and sensitivity theory. For convex functions (which is the setting considered in our
work), partial smoothness is closely related to U � V -decompositions developed
in [144]. In fact, the behavior of a partly smooth function and of its minimizers (or
critical points) depend essentially on its restriction to the manifold, hence offering
a powerful framework for sensitivity analysis theory. In particular, critical points
of partly smooth functions move stably on the manifold as the function undergoes
small perturbations [148]. An important and distinctive feature of Theorem 2 is that
partial smoothness of J at x0 relative to M transfers to f .	; �/ for � > 0, but not
when � D 0 in general. In particular, [145, Theorem 5.7] does not apply to prove
our claim.

3.5 Sensitivity Analysis and Parameter Selection

In this section, we study local variations of the solutions of (Py;�) considered as
functions of the observations y. In a variational-analytic language, this corresponds
to analyzing the sensitivity of the optimal values of (Py;�) to small perturbations
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of y seen as a parameter. This analysis will have important implications, and we
exemplify one of them by constructing unbiased estimators of the quadratic risk,
which in turn will allow us to have an objectively guided way to select the optimal
value of the regularization parameter �.

As argued in Section 3.4.5.4, assessing the recovery performance by solv-
ing (Py;�) for w and � small amounts to a sensitivity analysis of the minimizers of f
in (3.23) at .x D x0; � D �0 D .0; ˚x0; ˚//. This section involves again sensitivity
analysis of (3.23) to perturbations of y but for � > 0. Though we focus our attention
on sensitivity to y, our arguments extend to any parameters, for instance � or ˚ .

Similarly to the previous section, we suppose here that J is a finite-valued convex
and partly smooth function. For technical reasons, we furthermore assume that the
partial smoothness manifold is linear, i.e., Mx D Tx. We additionally suppose that
the set of all possible models T D fTxgx2RN is finite. All these assumptions hold
true for the regularizers considered in Section 3.2.3, with the notable exception of
the nuclear norm, whose manifolds of partial smoothness are nonlinear.

3.5.1 Differentiability of Minimizers

Let us denote x?.y/ a minimizer of (Py;�) for a fixed value of � > 0. Our main goal
is to study differentiability of x?.y/ and find a closed-form formula of the derivative
of x?.y/ with respect to the observations y. Since x?.y/ is not necessarily a unique
minimizer, such a result means actually that we have to single out one solution
x?.y/, which hopefully should be a locally smooth function of y. However, as J is
non-smooth, one cannot hope for such a result to hold for any observation y 2 R

P.
For applications to risk estimation (see Section 3.5.3), it is important to characterize
precisely the smallest set H outside of which x?.y/ is indeed locally smooth. It
turns out that one can actually write down an analytical expression of such a set H ,
containing points where one cannot find locally a smooth parameterization of the
minimizers. This motivates our definition of what we coin a “transition space.”

Definition 7 (Transition space). We define the transition space H as

H D
[

T2T
bd.HT/;

where bd.C/ is the boundary of a set C, and

HT D ˚
y 2 R

P I 9x 2 QT; ��1˚�T .˚x � y/ 2 rbd.@J.x//
�
;

where QT D ˚
x 2 R

N I Tx D T
�
.

The set H contains the observations y 2 R
P such that the model subspace TQx.y/

associated to a well-chosen solution Qx.y/ of (Py;�) is not stable with respect to
small perturbations of y. In particular, when J D k	k1, it can be checked that H



3 Low Complexity Regularization of Linear Inverse Problems 131

is a finite union of hyperplanes and when J D k	k1;2 it is a semi-algebraic set (see
Definition 8). This stability is not only crucial to prove smoothness of Qx.y/, it is also
important to be able to write down an explicit formula for the derivative, as detailed
in the following theorem whose proof is given in [226].

Theorem 4. Let y 62 H and x? a solution of (Py;�) such that

Ker˚T \ Ker D2JT.x
?/ D f0g (Ix?)

where T D Tx? . Then, there exists an open neighborhood V � R
N of y, and a

mapping Qx W V ! T such that

1. for every Ny 2 V , Qx.Ny/ is a solution of .P�;Ny/, and Qx.y/ D x? ;
2. the mapping Qx is C1.V / and

8 Ny 2 V ; DQx.Ny/ D .˚�T˚T C �D2JT.x
?//�1˚T :

Here D2JT is the Hessian (second order derivative) of J restricted to T . This Hessian
is surely well defined owing to partial smoothness, see Definition 2(i).

3.5.2 Semi-algebraic Geometry

Our goal now is to show that the set H is in some sense “small” (in particular
to show that it has zero Lebesgue measure), which will entail differentiability of
y 7! x? Lebesgue almost everywhere. For this, additional geometrical structure on
J is needed. Such a rich class of functions is provided by the notion of a semi-
algebraic subset of RN to be defined shortly. Semi-algebraic sets and functions have
been broadly applied to various areas of optimization. The wide applicability of
semi-algebraic functions follows largely from their stability under many mathe-
matical operations. In particular, the celebrated Tarski-Seidenberg theorem states,
loosely, that the projection of a semi-algebraic set is semi-algebraic. These stability
properties are crucial to obtain the following result, proved in [226].

Definition 8 (Semi-algebraic set and function). A set E is semi-algebraic if it
is a finite union of sets defined by polynomial equations and (possibly strict)
inequalities. A function f W E ! F is semi-algebraic if E and its graph
f.u; f .u// I u 2 Eg are semi-algebraic sets.

Remark 15 (From semi-algebraic to o-minimal geometry). The class of semi-
algebraic functions is large, and subsumes, for instance, all the regularizers J
described in Section 3.2.3. The qualitative properties of semi-algebraic functions are
shared by a much bigger class called functions definable in an o-minimal structure
over R, or simply definable functions. O-minimal structures over R correspond in
some sense to an axiomatization of some of the prominent geometrical properties of
semi-algebraic geometry [68] and particularly of the stability under projection. For
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example, the function J.x/ D P
i jxijs, for an arbitrary s > 0, is semi-algebraic

only for rational s 2 Q, while it is always definable in an o-minimal structure
[235]. Due to the variety of regularizations J that can be formulated within the
framework of o-minimal structures, all our results stated in this section apply to
definable functions, see [226] for a detailed treatment.

Semi-algebraic functions are stable for instance under (sub)differentiation and
projection. These stability properties are crucial to obtain the following result,
proved in [226].

Proposition 5. If J is semi-algebraic, the transition space H is semi-algebraic and
has zero Lebesgue measure.

3.5.3 Unbiased Risk Estimation

A problem of fundamental practical importance is to automatically adjust the
parameter � to reach the best recovery performance when solving (Py;�). Parameter
selection is a central theme in statistics, and is intimately related to the question of
model selection, as introduced in Section 3.2.1.

We then adopt a statistical framework in which the observation model (3.1)
becomes

Y D ˚x0 C W (3.24)

where W is random noise having an everywhere strictly positive probability density
function, assumed to be known. Though the forthcoming results can be stated for
a large family of distributions, for the sake of concreteness, we only consider the
white Gaussian model where W � N .0; 
2IdP�P/, with known variance 
2.

Under the observation model (3.24), the ideal choice of � should be the
one which minimizes the quadratic estimation risk EW.kx?.Y/ � x0k2/. This is
obviously not realistic as x0 is not available, and in practice, only one realization
of Y is observed. To overcome these obstacles, the traditional approach is to replace
the quadratic risk with some estimator that solely depends on Y . The risk estimator
is also expected to enjoy nice statistical properties among which unbiasedness is
highly desirable.

However, it can be shown, see, e.g., [100, Section IV], that the quadratic risk
EW.kx?.Y/ � x0k2/ cannot be reliably estimated on Ker.˚/. Nonetheless, we may
still obtain a reliable assessment of the part that lies in Im.˚�/ D Ker.˚/? or any
linear image of it. For instance, the most straightforward surrogate of the above risk
is the so-called prediction risk EW.k�.Y/ � �0k2/, where

�0 D ˚x0 and �.y/ D ˚x?.y/;
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where x?.y/ is any solution of (Py;�). One can easily show that �.y/ 2 R
P is

well defined as a single-valued mapping and thus does not depend on the particular
choice of x?.y/, see [226]. Consequently, Theorem 4 shows that y 7! �.y/ is a C1

mapping on R
P n H .

3.5.4 Degrees of Freedom

The degrees of freedom (DOF) quantifies the model “complexity” of a statistical
modeling procedure [95]. It is at the heart of several risk estimation procedures.
Therefore, in order to design estimators of the prediction risk, an important step is
to get an estimator of the corresponding DOF.

Definition 9 (Empirical DOF). Suppose that y 7! �.y/ is differentiable Lebesgue
almost everywhere, as is the case when it is Lipschitz-continuous (Rademacher’s
theorem). The empirical number of degrees of freedom is defined as

df.y/ D div.�/.y/ D tr.D�.y//;

where the derivative is to be understood in the weak sense, i.e., to hold Lebesgue
almost everywhere (a.e.).

An instructive example to get the gist of this formula is the case where � is the
orthogonal projection onto some linear subspace V . We then get easily that df.y/ D
dim.V/, which is in agreement with the intuitive notion of the number of DOF.

The following result delivers the closed-form expression of df.y/, valid on a
full Lebesgue measure set, for �.y/ D ˚x?.y/ and x?.y/ an appropriate solution
of (Py;�). At this stage, it is important to realize that the main difficulty does
not lie in showing almost everywhere differentiability of �.y/; this mapping is
in fact Lipschitz-continuous by classical arguments of sensitivity analysis applied
to (Py;�). Rather, it is the existence of such a formula and its validity Lebesgue a.
e. that requires more subtle arguments obtained owing to partial smoothness of J.
For this, we need also to rule out the points y where (Ix?) does not hold. This is the
rationale behind the following set.

Definition 10 (Non-injectivity set). We define the Non-injectivity set G as

G D ˚
y … H I (Ix?) does not hold for any minimizer x? of(Py;�)

�
:

Theorem 5. For every y … H [ G , there is x? such that (Py;�) holds and

df.y/ D tr.�x?.y// where �x?.y/ D ˚T ı .˚T
�˚T C �D2JT.x

?//�1 ı ˚T
�;

(3.25)

where T D Tx? .
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Remark 16 (Non-injectivity set). It turns out that G is in fact empty for many
regularizers. This is typically the case for J D k	k1 [85], J D kD�	k1 [227], and
the underlying reasoning can be more generally extended to polyhedral regularizers.
The same result was also shown for J D k	k1;2 in [230]. More precisely, in all these
works, it was shown that for each y … H , there exists a solution x? of (Py;�) that
fulfills (Ix?). The proof is moreover constructive allowing to build such a solution
starting from any other one.

3.5.5 Stein Unbiased Risk Estimator (SURE)

We now have all necessary ingredients at hand to design an estimator of the
prediction risk.

Definition 11. Suppose that y 7! �.y/ is differentiable Lebesgue almost every-
where, as is the case when it is Lipschitz-continuous. The SURE is defined as

SURE.y/ D ky � �.y/k2 C 2
2 df.y/ � P
2: (3.26)

In this definition, we have anticipated on unbiasedness of this estimator. In fact,
this turns out to be a fundamental property owing to the celebrated lemma of
Stein [207], which indeed asserts that the SURE (3.26) is an unbiased estimator
of the prediction risk. Therefore, putting together Theorem 5, Proposition 5, and
Stein’s lemma, we get the following.

Theorem 6. Suppose that J is semi-algebraic and G is of zero Lebesgue measure.
Then,

EW.SURE.Y// D EW.k�.Y/ � �0k2/

where (3.25) is plugged into (3.26), and �.Y/ D ˚x?.Y/.

Remark 17 (Parameter selection). A practical usefulness of the SURE is its ability
to provide an objectively guided way to select a good � from a single observation y
by minimizing SURE.y/. While unbiasedness of the SURE is guaranteed, it is hard
to control its variance and hence its consistency. This is an open problem in general,
and thus little can be said about the actual theoretical efficiency of such an empirical
parameter selection method. It works however remarkably well in practice, see the
discussion in Section 3.5.6.5 and references therein.

Remark 18 (Projection risk). The SURE can be extended to unbiasedly estimate
other risks than the predicted one. For instance, as argued in Section 3.5.3, one can
estimate the so-called projection risk defined as EW.k PKer.˚/?.x

?.Y/� x0/k2/. This
is obviously than the prediction risk as a surrogate for the estimation risk.



3 Low Complexity Regularization of Linear Inverse Problems 135

3.5.6 Related Works

3.5.6.1 Sensitivity Analysis

In Section 3.4.5.4, we reviewed the relevant literature pertaining to sensitivity anal-
ysis for partly smooth functions, which is obviously very connected to Theorem 4.
See also [21] for the case of linear optimization over a convex semi-algebraic partly
smooth feasible set, where the authors prove a sensitivity result with a zero-measure
transition space. A distinctive feature of our analysis toward proving unbiasedness
of the SURE is the need to ensure that sensitivity analysis can be carried out on a
full Lebesgue measure set. In particular, it necessitates local stability of the manifold
Mx? associated to an appropriate solution x?, and this has to hold Lebesgue almost
everywhere. Thus the combination of partial smoothness and semi-algebraicity is
the key.

3.5.6.2 Risk Estimators

In this section, we put emphasis on the SURE as an unbiased estimator of the
prediction risk. There are other alternatives in the literature which similarly rely
on estimator of the DOF. One can think for instance of the generalized cross-
validation (GCV) [115]. Thus our results apply equally well to such risk estimators.
Extensions of the SURE to independent variables from a continuous exponential
family are considered in [134]. [100] generalizes the SURE principle to continuous
multivariate exponential families, see also [180, 227] for the multivariate Gaussian
case. The results described here can be extended to these setting as well, see [226].

3.5.6.3 Applications of SURE in Statistics and Imaging

Applications of SURE emerged for choosing the parameters of linear estimators
such ridge regression or smoothing splines [149]. After its introduction in the
wavelet community through the SURE-Shrink estimator [79], it has been exten-
sively used for various image restoration problems, e.g., with sparse regularization
[19, 33, 55, 155, 180, 184–186, 237] or with nonlocal means [75, 90, 233, 234].

3.5.6.4 Closed-form Expressions for SURE

For the Lasso problem, i.e., J D k	k1, the divergence formula (3.25) reads

df.y/ D j supp.x?/j;

where x? is a solution of (Py;�) such that (Ix?) holds, i.e., ˚supp.x?/ has full rank.
This result is proved in [245] for injective ˚ and in [85] for arbitrary ˚ . This result
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is extended to analysis `1-sparsity, i.e., J D kD�	k1, in [214, 227]. A formula for
the DOF in the case where x?.y/ is the orthogonal projection onto a partly smooth
convex set C is proved in [141]. This work extends that of [163] which treats the
case where C is a convex polyhedral cone. These two works allow one to compute
the degrees of freedom of estimators defined by solving (P2

y;� ) in the case where
˚ is injective. [127] studied the DOF of the metric projection onto a closed set
(nonnecessarily convex), and gave a precise representation of the bias when the
projection is not sufficiently differentiable.

A formula of an estimate of the DOF for the group Lasso, i.e., J D k	k1;2 when˚
is orthogonal within each group was conjectured in [242]. An estimate is also given
by [200] using heuristic derivations that are valid only when ˚ is injective, though
its unbiasedness is not proved. [225] derived an estimator of the DOF of the group
Lasso and proved its unbiasedness when ˚ is injective. Closed-form expression of
the DOF estimate for denoising with the nuclear norm, i.e., ˚ D Id and J D k	k�,
was concurrently provided in [48, 77].

3.5.6.5 Numerical Methods for SURE

Deriving the closed-form expression of the DOF is in general challenging and has to
be addressed on a case-by-case basis. The implementation of the divergence formula
such as (3.25) can be computationally expensive in high dimension. But since only
the trace of the Jacobian is needed, it is possible to speed up these computations
through Monte Carlo sampling, but at the price of mild approximations. If the
Jacobian is not known in closed-form or prohibitive to compute, one may appeal to
finite-difference approximations along Monte Carlo sampled directions [199, 241],
see [111, 184] for applications to imaging problems.

In practice, the analytical formula (3.25) might be subject to serious numerical
instabilities, and thus cannot always be applied safely when the solution x? is only
known approximately. Think for instance of the case where x? is approximated by
an iterate computed after finitely many iterations of an algorithm as detailed in
Section 3.6. A better practice is then to directly compute the DOF, hence the SURE,
recursively from the iterates themselves, as proposed by [76, 112, 237].

3.6 Proximal Splitting for Structured Optimization

Though problems (Py;�), (Py;0), (P1
y;"), and (P2

y;� ) are nonsmooth, they enjoy
enough structure to be solved by efficient algorithms. The type of algorithm to be
used depends in particular on the properties of J. We first briefly mention some
popular nonsmooth optimization schemes in Section 3.6.1 and focus our attention
on proximal splitting schemes afterward.
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3.6.1 Convex Optimization for Regularized Inverse Problems

3.6.1.1 (Sub)gradient Descent

Consider for example problem (Py;�). This is a convex composite optimization
problem where one of the functions is smooth with a Lipschitz-continuous gradient.
If J were smooth enough, then a simple gradient (or possibly (quasi-)Newton)
descent method could be used. However, as detailed in Section 3.2.2, low com-
plexity regularizers J are intended to be nonsmooth in order to promote models M
of low intrinsic dimension, and J is precisely nonsmooth transverse to M . One can
think of replacing gradients by subgradients (elements of the subdifferential), since
J is assumed finite-valued (hence closed) convex, which are bounded. This results in
a subgradient descent algorithm which is guaranteed to converge but under stringent
assumptions on the descent step sizes, which in turn makes their global convergence
rate quite slow, see [171].

3.6.1.2 Interior Point Methods

Clearly, the key to getting efficient algorithms is to exploit the structure of the
optimization problems at hand while handling nonsmoothness properly. For a large
class of regularizers J, such as those introduced in Section 3.2.3, the corresponding
optimization problems can be cast as conic programs. The cone constraint can be
enforced using a self-concordant barrier function, and the optimization problem can
hence be solved using interior point methods, as pioneered by [173], see also the
monograph [25]. This class of methods enjoys fast convergence rate. Each iteration
however is typically quite costly and can become prohibitive as the dimension
increases.

3.6.1.3 Conditional Gradient

This algorithm is historically one of the first methods for smooth constrained convex
optimization (a typical example being (P2

y;� )) and was extensively studied in the
70s. It is also known as Frank-Wolfe algorithm, since it was introduced by [106] for
quadratic programming and extended in [88]. The conditional gradient algorithm
is premised on being able to easily solve (at each iteration) linear optimization
problems over the feasible region of interest. This is in contrast to other first-order
methods, such as forward-backward splitting and its variants (see Section 3.6.3),
which are premised on being able to easily solve (at each iteration) a projection
problem. Moreover, in many applications the solutions to the linear optimization
subproblem are highly structured and exhibit particular sparsity and/or low-rank
properties. These properties have renewed interest in the conditional gradient
method to solve sparse recovery (`1 and total variation), low-rank matrix recovery
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(nuclear norm minimization), anti-sparsity recovery, and various other problems in
signal processing and machine learning; see, e.g., [62, 87, 128, 135, 198].

3.6.1.4 Homotopy/Path-following

Homotopy and path-following-type methods have been introduced in the case of
`1-minimization to solve (Py;�) by [175]. They were then adapted to analysis `1,
i.e., J D kD�	k1, in [213], and `1 regularization, k	k1, in [108]. One can in fact
show that these methods can be applied to any polyhedral regularization (see [231])
because these methods only rely on the crucial fact that the solution path � 7! x?�,
where x?� is a solution of (Py;�), is piecewise affine. The LARS algorithm [96] is an
accelerated version of homotopy which computes an approximate homotopy path
for J D k	k1 along which the support increases monotonically along the course
of iterations. In the noiseless compressed sensing case, with ˚ drawn from the
Gaussian ensemble, it is shown in [82] that if x0 is k-sparse with P > 2k log.N/,
the homotopy method reaches x0 in only k iterations. This k-solution property was
empirically observed for other random matrix ensembles, but at different thresholds
for P. In [157], the authors proved that in the worst case, the number of segments in
the solution path is exponential in the number of variables, and thus the homotopy
method can then take as many iterations to converge.

As for interior points, the cost per iteration of homotopy-like methods, without
particular ad hoc optimization, scales badly with the dimension, thus preventing
them to be used for large-scale problems such as those encountered in imaging.
This class of solvers is thus a wise choice for problems of medium size, and
when high accuracy (or even exact computation up to machine precision for the
homotopy algorithm) is needed. Extensions of these homotopy methods can deal
with progressive changes in the operator ˚ or the observations y, and are thus
efficient for these settings, see [5].

3.6.1.5 Approximate Message Passing

In the last five years, ideas from graphical models and message passing and
approximate message passing algorithms have been proposed to solve large-scale
problems of the form (Py;�) for various regularizers J, in particular `1, `1 � `2,
and the nuclear norm. A comprehensive review is given in [164]. However, rigorous
convergence results have been proved so far only in the case in which ˚ is standard
Gaussian, though numerical results show that the same behavior should apply for
broader random matrix ensembles.
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3.6.2 Proximal Splitting Algorithms

Proximal splitting methods are first-order iterative algorithms that are tailored to
solve structured nonsmooth (essentially convex) optimization problems. The first
operator splitting method has been developed from the 70s. Since then, the class
of splitting methods has been regularly enriched with increasingly sophisticated
algorithms, as the structure of problems to handle becomes more complex.

To make our discussion more concrete, consider the general problem of minimiz-
ing the proper closed convex function

f D h C
KX

kD1
gk ı Ak

where h W RN ! R is convex and smooth, the Ak W RN ! R
Nk are linear operators,

and gk W R
Nk ! R are proper closed convex functions for which the so-called

proximity operator (to be defined shortly) can be computed easily (typically in
closed form). We call such a function gk “simple.”

Definition 12. The proximity operator of a proper closed convex function g is
defined as, for � > 0,

prox�g.x/ D argmin
u2RN

1

2
kx � uk2 C �g.u/:

The proximal operator generalizes the notion of orthogonal projection onto a
nonempty closed convex set C that one recovers by taking g D �C.

Proximal splitting algorithms may evaluate (possibly approximately) the indi-
vidual operators (e.g., gradient of h), the proximity operators of the gks, the linear
operators Ak, all separately at various points in the course of iteration, but never
those of sums of functions nor composition by a linear operator. Therefore, each
iteration is cheap to compute for large-scale problems. They also enjoy rigorous
convergence guarantees, stability to errors, with possibly quantified convergence
rates and iteration complexity bounds on various quantities. This justifies their
popularity in contemporary signal and image processing or machine learning,
despite that their convergence is either sublinear or at best linear.

It is beyond the scope of this chapter to describe thoroughly the huge literature
on proximal splitting schemes, as it is a large and extremely active research field in
optimization theory. Good resources and reviews on the subject are [13, 16, 64, 177].
We instead give a brief classification of the most popular algorithms according to
the class of structured objective functions they are able to handle:

• Forward-Backward (FB) algorithm [66, 162, 178]. It is designed to mini-
mize (3.6.2) when h has a Lipschitz-continuous gradient, K D 1, A1 D Id,
and g1 is simple. There are accelerated (optimal) variants of FB, such as the
popular Nesterov [172] and Fista [15], but the convergence of the iterates is no



140 S. Vaiter et al.

longer guaranteed for these schemes. FB and its variants are good candidates to
solve (Py;�). We will further elaborate on FB in Section 3.6.3.

• Douglas-Rachford (DR) algorithm [86, 152]. It is designed to minimize (3.6.2)
for h D 0, K D 2, Ak D Id, and gk is simple for k D 1; 2. It can be easily
extended to the case of K > 2 by either lifting to a product space, see, e.g., [63],
or through projective splitting [94]. DR can be used to solve (Py;0), (P1

y;"),
or (P2

y;� ) for certain operators ˚ .
• Generalized Forward-Backward (GFB) algorithm [183]. It can handle the case

of an arbitrary K with Ak D Id, gk simple and h has a Lipschitz-continuous
gradient. It can be interpreted as hybridization of FB scheme and the DR scheme
on a product space.

• Alternate Direction Method of Multipliers (ADMM) algorithm [104, 109, 110,
113]. It is adapted to minimize (3.6.2) for h D 0, K D 2 with A1 D Id and A2 is
injective. It can be shown [93, 110] that ADMM is equivalent to DR applied to
the Fenchel-Rockafellar dual problem minu g�1 ı �A�2 .u/ C g�2 .u/, where g�k is
the Legendre-Fenchel conjugate of gk. While DR applies when g1 and g2 ı A2
are simple, ADMM is a better alternative whereas both g1 ı �A�2 and g�2 are
simple. Extension to the case K > 2 was proposed for instance in [92].

• Dykstra algorithm [91]. It is able to solve the case where h.x/ D kx � yk2,
Ak D Id, and the gk are simple functions. It was initially introduced by Œ91�
in the case where the gk are indicator functions of closed convex sets, and is
generalized in [12] to arbitrary convex functions. It is also extended in [14, 51]
to the case where h is a Bregman divergence.

• Primal-Dual schemes. Recently, primal-dual splitting algorithms have been
proposed to minimize (3.6.2) in its full generality, and even more complex
objectives, see for instance [29, 52, 56, 65, 67, 201, 222, 238]. Primal-dual
schemes can be used to solve (Py;�), (Py;0), (P1

y;"), or (P2
y;� ).

3.6.3 Finite Model Identification with Forward Backward

The FB algorithm is a good candidate to solve (Py;�) when J is simple. Starting
from some x.0/ 2 R

N , the FB iteration applied to (Py;�) reads

x.nC1/ D Prox�n�J
	
x.n/ C �n˚

�.y � ˚x.n//


;

where the step-size sequence should satisfy 0 < � 6 �n 6 � < 2= k˚k2 to ensure
convergence of the sequence x.n/ to a minimizer of (Py;�).

In fact, owing to partial smoothness of J, much more can be said about the iterates
of the FB algorithm. More precisely, after a finite number of iterations, Forward-
Backward algorithm correctly identifies the manifold M . This is made formal in
the following theorem whose proof can be found in [150].
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Theorem 7. Under the assumptions of Theorem 2, x.n/ 2 M for n large enough.

This result sheds some light on the convergence behavior of this algorithm in
the favorable case where condition (3.14) holds and .kwk =�; �/ are sufficiently
small. In fact, it is shown in [150] that FB identifies in finite time the manifold of
any nondegenerate minimizer x?. As a corollary, if condition (3.14) holds at x0 and
.kwk =�; �/ are sufficiently small, then we recover Theorem 7. These results shed
light on the typical convergence behavior of FB observed in such circumstances
(e.g., in compressed sensing problems).

Remark 19 (Local linear convergence). The FB generally exhibits a global sublin-
ear O.1=n/ convergence rate in terms of the objective function. However, under
partial smoothness of J, it is shown in [150] that once the active manifold is
identified, the FB algorithm enters a local linear convergence regime (Q-linear in
general and R-linear if M is a linear manifold), whose rate can be characterized
precisely in terms of the condition number of ˚Tx0

.

3.6.4 Related Works

Finite support identification and local R-linear convergence of FB to solve (Py;�)
is established in [26] under either a very restrictive injectivity assumption or a
nondegeneracy assumption that is a specialization of ours to the `1 norm. A
similar result is proved in [124]. The `1 norm is a partly smooth function and
is therefore covered by Theorem 7. [170] proved Q-linear convergence of FB
to solve (Py;�) with a data fidelity satisfying restricted smoothness and strong
convexity assumptions, and J a so-called convex decomposable regularizer. Again,
the latter falls within the class of partly smooth functions, and their result is then
subsumed by our analysis.

For general programs, a variety of algorithms, such as proximal and projected-
gradient schemes, were observed to have the finite identification property of the
active manifold. In [130, 131], the authors have shown finite identification of
manifolds associated to partly smooth functions via the (sub)gradient projection
method, Newton-like methods, and the proximal point algorithm. Their work
extends that of e.g., [240] on identifiable surfaces from the smooth constrained
convex case to a general nonsmooth setting. Using these results, [129] considered
the algorithm [223] to solve (3.6.2) when h is C2, K D 1, A1 D Id, and g1 is simple
and partly smooth, but not necessarily convex, and proved finite identification of
the active manifold. However, the convergence rates remain an open problem in all
these works.
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3.7 Summary and Perspectives

In this chapter, we have reviewed work covering a large body of literature on the
regularization of linear inverse problems. We also showed how these previous works
can all be seen as particular instances of a unified framework, namely sensitivity
analysis for minimization of convex partly smooth functions. We believe this general
framework is the one that should be adopted as long as one is interested in studying
fine properties and guarantees of these regularizers, and in particular when the
stability of the low complexity manifold associated to the data to recover is at stake.

This analysis is however only the tip of the iceberg, and there is actually a flurry
of open problems to go beyond the theoretical results presented in this chapter. We
list here a few ones that we believe are important avenues for future works:

• Non-convexity and/or nonfiniteness: in this chapter, for the sake of simplicity,
we focused on smooth convex fidelity terms and finite-valued convex regu-
larizers. All the results stated in this chapter extend readily to proper lower
semicontinuous convex regularizers, since any such a function is subdifferen-
tially regular. Generalizations of some of the results to non-convex regularizers
is possible as well, though some regularity assumptions are needed. This is of
practical importance to deal with settings where ˚ is not a linear operator, or to
impose more aggressive regularization (for instance when using `p functional
with 0 6 p < 1 instead of the `1 norm). There are however many difficulties to
tackle in this case. For instance, regularity properties that hold automatically for
the convex case have to be either imposed or proved. Another major bottleneck
is that some of the results presented here, if extended verbatim, will only assess
the recovery of a stationary/critical point. The latter is not a local minimum in
general, and even less global.

• Dictionary learning: a related non-convex sensitivity analysis problem is to
understand the recovery of the dictionary D in synthesis regularization (as
defined in Section 3.2.3.4) when solving problems of the form

min
f˛kgk ;D2D

X

k

1

2
ky � ˚D˛kk2 C �J0.˛k/

where the .yk/k are a set of input exemplars and D stands for the set of
constraints imposed on the dictionary to avoid trivial solutions. Such a non-
convex variational problem is popular to compute adapted dictionaries, in
particular when J0 D k	k1, see [97] and references therein. Although the
dictionary learning problem has been extensively studied when J0 D k	k1,
most of the methods lack theoretical guarantees. The theory of dictionary
learning is only beginning to develop, see, e.g., [1, 121, 139, 202]. Tackling
other regularizers, including analysis `1 of the form J D J0 ı D� is even more
difficult, see, e.g., [59] for some computational schemes.

• Infinite-dimensional problems: we dealt in this chapter with finite-dimensional
vector spaces. It is not straightforward to extend these results to infinite-
dimensional cases. As far as `2-stability is concerned, the constants involved in
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the upper bounds depend on the dimension N, and the scaling might diverge as
N ! C1. We refer to Section 3.3.3 for previous works on convergence rates
of Tikhonov regularization in infinite-dimensional Hilbert or Banach spaces.
Extending Theorem 2 for possibly nonreflexive Banach spaces is however
still out of reach (nonreflexivity is a typical degeneracy when considering low
complexity regularization). There exists however some extensions of classical
stability results over spaces of measures, such as weak convergence [27], exact
recovery [50, 74], and stable support recovery [89].

• Compressed sensing: as highlighted in Sections 3.3.3.3 and 3.4.5.3, the general
machinery of partly smooth regularizers (and the associated dual certificates)
is well adapted to derive optimal recovery bounds for compressed sensing.
Unfortunately, this analysis has been for now only applied to norms (k	k1,
k	k1;B, k	k�, and k	k1). Extending this framework for synthesis and analysis
regularizers (see Sections 3.2.3.4 and 3.2.3.5) is a difficult open problem.

• Convergence and acceleration of the optimization schemes: Section 3.6.3
showed how partial smoothness can be used to achieve exact manifold iden-
tification after a finite number of iterations using the FB algorithm. This in
turn implies a local linear convergence of the iterates and raises the hope
of acceleration using either first-order or second-order information for the
function along the identified manifold (in which we recall it is C2). Studying
such accelerations and their guarantees as well as extending this idea to other
proximal splitting schemes is thus of practical importance to tackle more
complicated problems such as, e.g., (Py;0), (P1

y;"), or (P2
y;� ).
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Chapter 4
Noise-Shaping Quantization Methods
for Frame-Based and Compressive Sampling
Systems

Evan Chou, C. Sinan Güntürk, Felix Krahmer, Rayan Saab,
and Özgür Yılmaz

Abstract Noise shaping refers to an analog-to-digital conversion methodology in
which quantization error is arranged to lie mostly outside the signal spectrum by
means of oversampling and feedback. Recently it has been successfully applied to
more general redundant linear sampling and reconstruction systems associated with
frames as well as non-linear systems associated with compressive sampling. This
chapter reviews some of the recent progress in this subject.

4.1 Introduction

Source coding via quantized linear representations, also known as transform coding,
is a classical and well-studied subject. Yet it is poorly understood outside the simple
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setting of orthogonal transforms, namely, for frame-based representations. The same
can also be said for partially nonlinear representations such as those based on
compressive sampling. The basic reason for the difficulty in solving the quantization
problem for these more general sampling and reconstruction systems is the lack of
an analog of Parseval’s identity which, more or less, dictates the best quantization
strategy for orthogonal systems. While some kind of basic reconstruction stability
can be ensured relatively easily, these results do not offer correct rate-distortion
trade-offs because of their inefficiency in utilizing redundancy, especially under
constraints that do not allow for high-resolution quantization.

Redundancy is a key concept of frame-based as well as compressive sampling
systems. It can be understood in terms of the sampling process (e.g., what part
of the coefficient space is taken up with the actual measurements) or in terms of
the reconstruction process (e.g., which perturbations of the measurements have the
smallest effect on the reconstruction). Efficient encoding via the first approach is
generally not practical because codewords cannot be easily placed arbitrarily in the
coefficient space. Indeed, quantized measurements are typically required to lie on a
finite rectangular grid. An alternative approach is then to seek ways of arranging the
quantization error in the coefficient space to lie in directions that are away from the
actual measurements, typically by means of some feedback process. Noise shaping
is the generic name of this quantization methodology. It has its roots in sigma-
delta modulation, which is used for oversampled analog-to-digital (A/D) conversion
[9, 25, 34, 41].

Let us explain the philosophy of noise shaping in more concrete terms. In both
frame-based and compressive sampling systems, we have a linear sampling operator
˚ that can be inverted on a given space X of signals using some (possibly nonlinear)
reconstruction operator � . Given a signal x 2 X and its sampled version y D ˚x,
ordinarily we recover x exactly (or approximately, as in compressive sampling) as
�.y/. In the context of this paper, quantization of y will mean replacing it with a
vector q which is of the same dimensionality as y and whose entries are chosen
from some given alphabet A. The goal is to choose q so that the approximate
reconstruction x# WD �.q/ is as close to x as possible as x varies over X.

In the context of finite frames,˚ is a full-rank m
k matrix where m > k, and� is
any left inverse of ˚ . The rows of ˚ form the analysis frame and the columns of �
form a synthesis frame dual to this frame. With y D ˚x and x D �y as above, when
y is replaced by a quantized vector q, the reconstruction error e WD x � x# is equal
to �.y � q/. Therefore the correct strategy to reduce the size of e is not to minimize
the Euclidean norm ky � qk as memoryless scalar quantization (MSQ) does, but to
minimize the semi-norm jy � qj� WD k�.y � q/k. In other words, we seek q 2 Am

so that the quantization “noise” y � q is close to ker.�/ in the above sense. This is
the basic principle of noise shaping. How this goal can be achieved (approximately),
i.e., the actual process of noise shaping, as well as what noise shaping can offer for
source coding are nontrivial questions that will be addressed in this article.

While the basic principle of noise shaping is formulated above for linear sam-
pling and reconstruction systems, its philosophy extends to compressive sampling
systems where the reconstruction operator is generally nonlinear. The simplest
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connection is made by considering strictly sparse signals. Let ˙N
k denote the

nonlinear space of N-dimensional vectors which have no more than k nonzero
entries. In the context of compressive sampling, ˚ is an m 
 N matrix where
m � N, which means that the sampling process is lossy for the whole of R

N .
However, note that ˙N

k is the union of (a large number of) k-dimensional linear
subspaces on each of which ˚ acts like a frame once m > k. This observation
opens up the possibility of noise shaping. Indeed, fixing any one of these subspaces
V , we can envision a noise shaping process associated with any of the linear
inverses (duals) of ˚ on V . However, it is not clear how one might organize all
of these individual noise shaping processes, especially given that these subspaces
are not directly available to the quantizer. What comes to the rescue is the notion
of an alternative dual. While we formulated noise shaping above as matching the
quantization operator to a given dual frame, it is also possible to consider matching
the dual frame to a given quantization operator. This results in the possibility of
“universal” quantization processes (i.e., independent of the signal subspace) which
become noise-shaping processes for suitable alternative duals. Even though finding
these suitable alternative duals may require extracting information about the signal
subspace, this duty purely belongs to the decoder and not the quantizer.

This article is organized as follows. In Section 4.2, we review the basics
of classical noise shaping in the setting of sigma-delta (˙�) modulation. In
Section 4.3, we extend the formulation of noise shaping and introduce various
notions of alternative duals for noise shaping in the setting of frames, followed
by their performance analysis for random frames in Section 4.4. We then discuss
noise-shaping quantization methods for compressive sampling in Section 4.5.

4.2 Classical noise shaping: Sigma-Delta Modulation

The Shannon-Nyquist sampling theorem for bandlimited functions provides the
natural framework of conventional A/D conversion systems. With the Fourier
transform normalized according to the “ordinary-frequency” convention

Ox./ WD
Z 1

�1
x.t/e�2� it dt;

let us define the space B˝ of bandlimited functions to be all x in L2.R/ such that Ox is
supported in Œ�˝;˝�. The classical sampling theorem says that any x 2 B˝ can be
reconstructed perfectly from its time samples .x.n�//n2Z according to the formula

x.t/ D �
X

n2Z
x.n�/ .t � n�/; (4.1)
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where � � �crit WD 1
2˝

, and  is any function in L2.R/such that

O ./ D
�
1; jj � ˝;

0; jj > 1
2�
:

(4.2)

Hence, if we define the sampling operator .˚x/n WD x.n�/ and the reconstruction
operator �.u/ WD �

P
un .	 � n�/ (on any space it makes sense), then � is a left

inverse of ˚ on B˝ when � and  satisfy the conditions stated above.
The value � WD 1=� is called the sampling rate, and �crit WD 1=�crit D 2˝ is

called the critical (or Nyquist) sampling rate. Their ratio given by

� WD �

�crit
(4.3)

is called the oversampling ratio. According to the value of �, A/D converters are
broadly classified as Nyquist-rate converters (�  1) or oversampling converters
(� � 1).

Nyquist-rate converters set their sampling rate � slightly above the critical
frequency 2˝ so that  may be chosen to decay rapidly enough to ensure
absolute summability of (4.1). Given any quantization alphabet A, the (nearly)
optimal quantization strategy in this (nearly) orthogonal setting is memoryless scalar
quantization (MSQ). This means that each sample yn WD x.n�/ is rounded to the
nearest quantization level qn 2 A. This process is also referred to as pulse-code
modulation (PCM). If each sample is quantized with error no more than ı, i.e.,
ky � qk1 � ı, then the error signal

e.t/ WD x.t/ � .�q/.t/ D �
X

n2Z

	
yn � qn



 .t � n�/ (4.4)

obeys the bound kekL1 � Cı where C is independent of ı. This is essentially the
best error bound one can expect for Nyquist-rate converters. Because setting ı very
small is costly, Nyquist-rate converters are not very suitable for signals that require
high-fidelity such as audio signals.

Oversampling converters are designed to take advantage of the redundancy in the
representation (4.1) when � < �crit. In this case, the interpolation operator � has a
kernel which gets bigger as � ! 0. Indeed, let O ./ D 0 for jj > ˝0. It is easily
seen that �u D 0 if

X

n2Z
une2� in D 0 for jj < �˝0: (4.5)

This means that even though y � q may be large everywhere, e D �.y � q/ can be
very small if y � q can be arranged to be spectrally disjoint from the (discretized)
reconstruction kernel  . This is the concrete form of noise shaping that we briefly
discussed in the Introduction.
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Fig. 4.1 Illustration of classical noise shaping via ˙� modulation: The superimposed Fourier
spectra of a bandlimited signal (in black), and the quantization error signals using MSQ (in red),
1st order ˙� modulation (in magenta), and 2nd order ˙� modulation (in blue).

The main focus of an oversampling A/D converter is on its quantization
algorithm, which has to be non-local to be useful, but also causal so that it can
be implemented in real time. The assignment of each qn will therefore depend on yn

as well as a set of values (the states) that can be kept in an analog circuit memory,
while meeting the spectral constraints on y � q as described in the previous section.
˙� modulators operate according to these principles.

As can be seen in (4.5), the kernel of � consists of high-pass sequences. Hence
the primary objective of˙�modulation is to arrange the quantization error y�q to
be an approximate high-pass sequence (see Fig. 4.1). This objective can be realized
by setting up a difference equation, the so-called canonical ˙� equation, of the
form

y � q D �ru; (4.6)

where � denotes the finite difference operator defined by

.�w/n WD wn � wn�1; (4.7)

r denotes the “order” of the scheme, and u is an appropriate auxiliary sequence
called the state sequence. This equation does not imply anything about q without
any constraint on u. The most useful constraint turns out to be boundedness.

In practice, the boundedness of u in (4.6) has to be attained through a recursive
algorithm. This means that given any input sequence .yn/, the qn are found by a
given “quantization rule” of the form

qn D F.un�1; un�2; : : : ; yn; yn�1; : : : /; (4.8)

and the un are updated via

un D
rX

kD1
.�1/k�1

 
r

k

!

un�k C yn � qn; (4.9)



162 E. Chou et al.

which is a restatement of (4.6). In electrical engineering, such a recursive procedure
for quantization is called “feedback quantization” due to the role qn plays as a
feedback control term in (4.9). The role of the quantization rule F is to keep the
system stable, i.e., u bounded.

Stability is a crucial property. Indeed, it was shown in [13] that a stable rth order
scheme results in the error bound

kekL1 � kuk`1k .r/kL1�
r; (4.10)

where  .r/ denotes the rth order derivative of  . The implicit˝- and the explicit � -
dependence of this estimate can be replaced with a single �-dependence by setting
 .t/ WD ˝ 0.˝t/ where the prototype O 0./ equals 1 on Œ�1; 1� and vanishes for
jj � 1 C �0, with �0 > 0 fixed. Let C0 WD k 0kL1 . Bernstein’s inequality applied
to  yields

kekL1 � C0kuk`1� r.1C �0/
r��r; for all � > 1C �0: (4.11)

With this error bound, there are two goals in progression. The first is to keep u
bounded and the second is to keep the bound small. Ultimately, the best strategy is to
have, for each r, a quantization rule yielding a stable rth order scheme, and then for
any given �, to choose the best one (i.e., the one with the least error bound). This task
is significantly complicated by the fact that the bound on u has a strong dependence
on r, especially for small quantization alphabets A. In general it is not possible to
expect this dependence to be less than .cr/r for some constant c that depends on the
given amplitude range � for x. This growth order is also what is needed to ensure
that the reconstruction error decays exponentially, i.e., as 2�p�, as a function of �,
which is the best possible due to Kolmogorov entropy estimates for bandlimited
functions [21]. The rate p of exponential decay that is achievable by the resulting
family of schemes is inversely proportional to c, and gets worse as � is increased.
The question of best achievable accuracy for oversampling converters in this setting
remains open. Currently, the best result in the one-bit case with A D f�1; 1g yields
kekL1 D O.2�p�/ where p D �=.6e2 log 2/  0:1, and �  0:06. Higher values
of p can be achieved with more levels in A. For example, if A D f�1; 0; 1g, then
p rises to 0:15 and � to 0:25 [15]. These are rigorously proven bounds and the
actual behavior of the error based on numerical experiments appears to be better.
For the details of the quantization rules which result in these exponentially accurate
˙� modulators, see [15, 21]. It has also been shown that no matter how the bits
are assigned the rate of the exponential decay cannot match that of Nyquist-rate
conversion [28].
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4.3 Generalized Noise-shaping Operators and Alternative
Duals of Frames for Noise Shaping

In this section, we will generalize the classical theory of ˙� modulation to
more general noise-shaping quantizers as well as sampling and reconstruction
systems. For conceptual clarity, we will separate the process of noise shaping
from the processes of sampling and reconstruction. While we will present these
generalizations in a finite-dimensional setting, extensions to infinite-dimensional
settings are usually possible. We will also discuss the notion of alternative duals of
frames which are associated with noise-shaping quantizers.

4.3.1 A general framework of noise shaping

The canonical ˙� equation we saw in (4.6) is a special case of a more general
framework of noise shaping. Let A be a finite quantization alphabet and J be a
compact interval in R. Let h D .hj/j�0 be a given sequence, finite or infinite,
where h0 D 1. By a noise-shaping quantizer with the transfer filter h, we mean
any sequence Q D .Qm/

1
1 of maps Qm W Jm ! Am, m 2 N, where for each y 2 Jm,

the output q WD Qm.y/ satisfies

y � q D h � u (4.12)

where u 2 R
m and kuk1 � C for some constant C which is independent of m. Here

h � u refers to the (finite) convolution of h and u defined by

.h � u/n WD
X

j�0
hjun�j; 1 � n � m;

where it is assumed that un WD 0 for n � 0. Without any reference to a sampling
or a reconstruction operator, noise shaping in this setting refers to the fact that the
“quantization noise” y � q is spectrally aligned with h. Note that the operator H W
u 7! h�u is invertible on R

m for any m, and therefore given any y and q, there exists
u 2 R

m which satisfies (4.12); this is trivial. However, the requirement that kuk1
must be controlled uniformly in m imposes restrictions on what q can be for a given
y; these solutions are certainly non-trivial to find and may not always exist.

The operator H above (defined as convolution by h) is a lower triangular Toeplitz
matrix with unit diagonal. With this view, let us relax the notion of a noise-shaping
quantizer and assume that H is any lower triangular m
m matrix with unit diagonal.
We will refer to H as a noise-shaping transfer operator where the associated noise-
shaping relation is given by

y � q D Hu: (4.13)
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Suppose we are given a sequence .Hm/
1
1 of m 
 m noise-shaping transfer

operators. In this general setting, we say that an associated sequence .Qm/
1
1 of

quantizer maps (for which q WD Qm.y/ and u is determined by (4.13)) achieves
noise shaping for .Hm/, J, and A, if kuk1 � C for some constant C independent of
m. A slightly weaker assumption is to only require that kuk1 D o.kH�1m k1!1/,
though we shall not need to work in this generality in this paper.

In many applications, one works with .Hm/
1
1 which are “progressive” (also

called “nested”) in the sense that

Pm ı HmC1 ı PmC1 D Hm ı Pm;

where Pm is the restriction of a vector to its first m coordinates. Convolution is
a standard example. In this case, it may be natural to require that the .Qm/

1
1 are

progressive as well. The classical ˙� modulation we saw in Section 4.2 is of this
type. However, our general formulation does not impose progressiveness.

As indicated earlier, noise-shaping quantizers provide non-trivial solutions
to (4.13) and therefore do not exist unconditionally, though under certain suitable
assumptions on H, J, and A, they exist and can be implemented via recursive
algorithms. The simplest is the (non-overloading) greedy quantizer whose general
formulation is given below:

Proposition 1. Let A WD AL;ı denote the arithmetic progression in R which is of
length L, spacing 2ı, and symmetric about 0. Assume that H D I � QH, where QH
is strictly lower triangular, and � � 0 such that k QHk1!1 C �=ı � L. Suppose
kyk1 � �. For each n � 1, let

qn WD roundA

0

@yn C
n�1X

jD1
QHn;n�jun�j

1

A

and

un WD yn C
n�1X

jD1
QHn;n�jun�j � qn:

Then the resulting q satisfies (4.13) with kuk1 � ı.

This quantizer is called greedy because for all n, the selection of qn over A

is made so as to minimize junj. The proof of this basic result follows easily by
induction once we note that for any w 2 Œ�Lı;Lı�, we have jw � roundA.w/j � ı,
hence the scalar quantizer roundA is not overloaded. For details, see [11]. Note that
the greedy quantizer is progressive if .Hm/

1
1 is a progressive sequence of noise-

shaping transfer operators. In the special case Hu D h � u where h0 D 1, we simply
have k QHk1!1 D khk1 � 1. This special case is well-known and widely utilized
(e.g. [9, 21, 34, 41]).
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4.3.2 Canonical duals of frames for noise shaping

The earliest works on noise-shaping quantization in the context of finite frames
used˙� quantization and focused on canonical duals for reconstruction. Before we
begin our discussion of these contributions we remind the reader of our convention:
we identify an analysis frame with (the rows of) its analysis operator and a synthesis
frame with (the columns of) its synthesis operator.

Let ˚ be a finite frame and y D ˚x be the frame measurements of a given
signal x. Assume that we quantize y using a noise-shaping quantizer with transfer
operator H. Any left-inverse (dual) � of ˚ gives

x � �q D �.y � q/ D �Hu: (4.14)

Using this expression, and specializing to the case of first order˙� quantization,
i.e., H D D where D is the lower bidiagonal matrix whose diagonal entries are 1
and subdiagonal entries are -1, [3] observed that the reconstruction error can be
bounded as

kx � �qk2 � kuk1
mX

jD1
k.�D/jk2 (4.15)

where .�D/j denotes the jth column of �D. This led [3] to introduce the notion of
frame variation

Var.�/ WD
mX

jD1
k j �  jC1k2 (4.16)

with j denoting the jth column of� and mC1 defined to be zero. Using normalized
tight-frames, i.e., frames ˚ for which ˚�˚ D .m=k/I, this resulted in the error
bound

kx � ˚�qk2 � k

m
kuk1Var.˚�/; (4.17)

where � D ˚� denotes the canonical dual of ˚ defined (for an arbitrary frame
˚) by

˚� WD .˚�˚/�1˚�: (4.18)

Subsequently, similarly defined higher-order frame variations were used to study
the behavior of higher-order ˙� schemes (e.g., in [2] and [6]) with corresponding
generalizations of (4.17) and the conclusion that frames with lower variations lead
to better error bounds. This motivated considering frames obtained via uniform
sampling of smooth curves in R

k (called frame paths). As it turned out, however,
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this type of analysis based on frame-variation bounds does not provide higher-
order reconstruction accuracy unless the frame path terminates smoothly. Smooth
termination of the frame path is not available for most of the commonly encountered
frames, and finding frames with this property can be challenging. Indeed, designing
such frames was a main contribution of [6] which showed a reconstruction error
bound decaying as mr for rth order ˙� quantization of measurements using these
frames.

In practice, however, one must often work with a given frame rather than design
a frame of their choosing. In such cases there are frames, sampled from smooth
curves, for which reconstructing with the canonical dual yields reconstruction error
that is lower bounded by a term behaving like m�1, regardless of the ˙� scheme’s
order r � 3 (see, [31] for the details). Consequently, to achieve better error decay
rates one must seek either different quantization or different reconstruction schemes.
We will consider both routes to improving the error bounds in what follows.

4.3.3 Alternative duals of frames for noise shaping

The discussion in Section 4.3.2 was based on canonical duals and it involved
a particular method to bound the 2-norm of the reconstruction error x � �q,
assuming u is bounded in the 1-norm. It is possible to significantly improve the
reconstruction accuracy by allowing for more general duals, here called alternative
duals. To explain this route, we return to the general noise-shaping quantization
relation (4.14). We assume again that u is known to be bounded in the 1-norm,
which is essentially the only type of bound available. Hence, the most natural
reconstruction error bound is given by

kx � �qk2 � k�Hk1!2kuk1: (4.19)

With this bound, the natural objective would be to employ an alternative dual
� of ˚ which minimizes k�Hk1!2. An explicit solution for this problem is
not readily available mainly because there is no easily computable expression for
kAk1!2 for a general k 
 m matrix A, so we replace it by a simpler upper bound.
In fact, this was already done in (4.15) because we have

kAk1!2 �
mX

jD1
kAjk2 (4.20)

where again Aj denotes the jth column of A. (This upper bound is also known to be
the L2;1-norm of A.) Another such bound which is often (but not always) better is
given by

kAk1!2 � p
mkAk2!2: (4.21)
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(Indeed, for a large random matrix with standard Gaussian entries, the upper bound
in (4.21) behaves as mCp

mk whereas that of (4.20) behaves as m
p

k. Both of these
upper bounds are easily seen to be less than

p
mkAkFr, however.)

With this upper bound, we minimize k�Hk2!2 over all alternative duals � of
˚ . Then an explicit solution is available and is given by

�H�1 WD .H�1˚/�H�1: (4.22)

This idea was initially introduced specifically for ˙� quantization [4, 31] with the
choice H D Dr. The resulting alternative duals were called Sobolev duals and will
be discussed in the next subsection. The above generalized version was stated in [23]
where the notation�H and the term “H-dual” were introduced for the right hand side
of (4.22), but because of a further generalization we will discuss in Section 4.3.3.3,
we find it more appropriate to use the label H�1.

Note that the no noise-shaping case of H D I yields the canonical dual. In
general, we have

k�H�1Hk2!2 D k.H�1˚/�k2!2 D 1


min.H�1˚/

so that (4.19) and (4.21) yield the error bound

kx � �H�1qk2 �
p

m


min.H�1˚/
kuk1: (4.23)

4.3.3.1 Sobolev Duals

In the case of ˙� modulation, H is defined by (4.6), and given in matrix form
by Dr where the diagonal entries of the lower bidiagonal matrix D are 1 and the
subdiagonal entries are �1. Because k�Drk2!2 resembles a Sobolev norm on � ,
the corresponding alternative dual was called the (rth order) Sobolev dual of ˚
in [4]. In this work, Sobolev duals of certain deterministic frames, such as the
harmonic frames, were studied. More precisely, [4] considered frames obtained
using a sufficiently dense sampling of vector-valued functions on Œ0; 1�; which
had the additional property that their component functions were piecewise C1 and
linearly independent. For such frames, it was shown that


min.D
�r˚/ � crm

rC 1
2 ; (4.24)

hence with (4.23), the reconstruction error using the rth order Sobolev dual satisfies

kx � �D�r qk2 � Cr

mr
kuk1 (4.25)
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with Cr WD 1=cr. Here, for a fixed stable ˙� scheme, the constant Cr depends only
on the order r and the vector-valued function from which the frame was sampled.
The main technique used in [4] to control the operator norm k�D�r Drk2!2 is a
Riemann sum argument. The argument leverages the smoothness of the vector-
valued functions from which the frames are sampled to obtain a lower bound
on kD�r˚xk2 over unit norm vectors x 2 R

d and produces the stated lower
bound (4.24).

As mentioned before, error bounds similar to (4.25) had also been obtained in
[6], albeit for specific tight frames. Nevertheless, in both [4] and [6], the decay of
the error associated with ˙� quantization is a polynomial function of the number
of measurements. The significance of this polynomial error decay stems from the
fact that for any frame, a lower bound on the reconstruction error associated with
MSQ is known to decay only linearly in m [20].

4.3.3.2 Refined Bounds Using Sobolev Duals

The analysis of [4] was refined in [29] in two special cases: harmonic frames, and
the so-called Sobolev self-dual frames. For these frames, [29] established an upper
bound on the reconstruction error that decays as a root-exponential function of the
number of measurements. More specifically, for harmonic frames, [29] explicitly
bounds the constant Cr in (4.25) and, as in [21] and [15], optimizes the ˙�
scheme’s order r as a function of the number of measurements. Quantizing with
a ˙� scheme of the optimal order ropt.m/ and reconstructing with the associated
Sobolev dual results in a root-exponential error bound

kx � �D�ropt qk2 � c1e
�c2
p

m=k (4.26)

where the constants c1 and c2 depend on the quantization alphabet AL;ı and possibly
on k as well. This possible dependence on k is absent in the similar bound for
Sobolev self-dual frames. Sobolev self-dual frames are defined using the singular
value decomposition Dr D U˙V�. Here, the m 
 k matrix corresponding to a
Sobolev self-dual frame consists of the k columns of U associated with the smallest
singular values of Dr. This construction implies that the frame admits itself as both
a canonical dual and Sobolev dual of order r, hence the name. More importantly,
this construction also allows one to bound Cr in (4.25) explicitly and optimize the
˙� scheme’s order r to obtain the error bound (4.26), without any dependence of
the constants on k.

While we have so far discussed deterministic constructions of frames, Gaussian
random frames were studied in [23], and later, sub-Gaussian random frames in [30].
We will discuss these random frames extensively in Section 4.4.1, though at this
point we note that, like the harmonic and Sobolev self-dual frames, these frames
also allow for root-exponential error decay when the order of the ˙� scheme is
optimized.
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In the context of ˙� quantization of frame coefficients using a fixed alphabet
A, the number of measurements is proportional to the total number of bits. Hence,
the error bounds (4.25) and (4.26) can be interpreted as polynomially and root-
exponentially decaying in the total number of bits. While these bounds are certainly
a big improvement over the linearly decaying lower bound associated with MSQ,
they are still sub-optimal. To see this, one observes that the problem of quantizing
vectors in the unit ball of Rk with a maximum reconstruction error of � is analogous
to covering the unit-ball with balls of radius �. A simple volume argument shows
that to quantize the unit ball of Rk with an error of ", one needs at least k log2

	
1
�




bits. Thus, the reconstruction error can at best decay exponentially in the number
of bits used. Moreover, since there exists a covering of the unit-ball with no
more than

	
3
�


k
elements (see, e.g., [32]), in principle an exponential decay in the

error as a function of the number of bits used is possible. This exponential error
decay is predicated on a quantization scheme that has direct access to x and, more
importantly, the ability to compare x to each of the approximately ��k elements of
the covering, to assign it an appropriate binary label. The reconstruction scheme
for this quantization would then simply replace the binary label by the center of
the element of the covering associated with it. Of course, this setting is markedly
different from the noise-shaping quantization of frame coefficients considered in this
chapter, but it establishes exponential error decay in the number of bits as optimal.

To achieve exponential error decay in the number of bits, [26] proposed an
encoding scheme to follow rth order ˙� quantization. The encoding scheme
consists of using an ` 
 m Bernoulli random matrix B, with ` slightly larger than
k, to embed the vector D�rq into a lower dimensional subspace. Since B serves as
a distance-preserving Johnson-Lindenstrauss embedding (see, [1, 27]), the vector
BD�rq effectively contains all the information needed for accurate reconstruction
of x, and it is the only quantity retained. Moreover, the number of bits required to
store BD�rq scales only logarithmically in m. Using .BD�r˚/� as a reconstruction
operator (acting on BD�rq) and employing the properties of Johnson-Lindenstrauss
embeddings, [26] shows that the reconstruction error still decays as it would have
if no embedding had been employed. In particular, this means an error decay of
m�r for the frames discussed in this section. Combining these two observations,
i.e., logarithmic scaling of the number of bits with m, and polynomial decay of the
error, [26] obtains reconstruction error bounds that decay exponentially, i.e., near
optimally, in the number of bits.

It turns out that exponential decay of the reconstruction error (in the bit rate or in
the oversampling ratio m=k) can also be achieved by means of the “plain route” of
noise-shaping quantization and alternative dual reconstruction only, but with noise-
shaping unlike ˙� quantization and more like the conventional beta encoding [10,
11]. This method, called beta duals, is explained next for general frames, and later
in Section 4.4.2 for random frames.



170 E. Chou et al.

4.3.3.3 Further generalizations: V-duals

Given any m
k matrix ˚ whose rows are a frame for Rk, consider any p
m matrix
V (i.e., not necessarily square) such that V˚ is also a frame for Rk. We will call

�V WD .V˚/�V (4.27)

the V-dual of ˚ . (The square and invertible case of V D H�1 was already discussed
at the beginning of this subsection.) When p < m, we call V˚ the V-condensation
of ˚ .

With a V-dual, we have �VH D .V˚/�VH so that

k�VHk1!2 � kVHk1!2

min.V˚/

�
p

pkVHk1!1

min.V˚/

: (4.28)

For V D H�1 (and therefore, p D m), combination of (4.19) with (4.28) agrees
with (4.23). However, as shown in [11], optimization of (4.28) over V can produce
a strictly smaller reconstruction error upper bound. A highly effective special case
is discussed next.

Beta duals

Beta duals have been recently proposed and studied in [10, 11]. They constitute a
special case of V-duals, while they relate strongly to classical beta expansions. (See
[12, 35] for the classical theory of beta expansions, and [14] for the use of beta
expansions in A/D conversion as a robust alternative to successive approximation.)
In order to illustrate the main construction of beta duals without technical details,
our presentation in this article will be restricted to certain dimensional constraints
as described below.

Let m � p � k and assume that �0 WD m=p is an integer. For any ˇ > 1, let hˇ be
the (length-2) sequence given by hˇ0 D 1 and hˇ1 D �ˇ. Define Hˇ to be the �0 
 �0
noise-shaping transfer operator corresponding to hˇ , and

vˇ WD Œˇ�1 ˇ�2 	 	 	 ˇ��0

�:

We set

H WD

2

6
4

Hˇ

: : :

Hˇ

3

7
5

m�m

and V WD

2

6
4

vˇ

: : :

vˇ

3

7
5

p�m

: (4.29)
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canonical dual 1st order Sobolev dual

2nd order Sobolev dual beta dual with β=1.6 and p=3

Fig. 4.2 Comparative illustration of the various alternative duals described in this paper: Each plot
depicts the original frame in R

2 consisting of the 15th roots-of-unity along with one of its duals
(scaled up by a factor of two for visual clarity). For the computation of the alternative duals, the
analysis frame was ordered counter-clockwise starting from .1; 0/.

In other words, H D Ip ˝ Hˇ and V D Ip ˝ vˇ where ˝ denotes the Kronecker
product. It follows that VH D Ip ˝ .vˇHˇ/. Since vˇHˇ D Œ0 	 	 	 0 ˇ��0

�, we have
kVHk1!1 D ˇ��0

which, together with (4.19) and (4.28), yields

kx � �Vqk2 �
p

pkuk1

min.V˚/

ˇ��0

: (4.30)

For certain special frames, such as the harmonic semi-circle frames, it is possible
to set p as low as k and turn the above bound into a near-optimal one in terms of its
bit-rate [11]. The case of random frames will be discussed in the next section.

In Fig. 4.2, we illustrate a beta dual of a certain “roots-of-unity” frame along with
the Sobolev duals of order 0 (the canonical dual), 1, and 2.

4.4 Analysis of Alternative Duals for Random Frames

In this section, we consider random frames, that is, frames whose analysis (or
synthesis) operator is a random matrix. Certain classes of random matrices have
become of considerable importance in high dimensional signal processing, par-
ticularly with the advent of compressed sensing. One main reason for this is that
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their inherent independence entails good conditioning of not only the matrix, but
also its submatrices. Because of the fast growing number of such submatrices with
dimension, the latter is very difficult to achieve with deterministic constructions.
This also means, however, that any two frame vectors are approximately orthogonal,
so frame path conditions that would imply recovery guarantees using canonical dual
frames will almost never hold. For this reason, it is crucial to work with alternative
duals. We separately consider the two main examples discussed above, Sobolev
duals and beta duals.

4.4.1 Sobolev duals of random frames

As noted above, the Sobolev dual of a frame is the dual frame � that minimizes
the expression k�Drk2!2, and the explicit minimizer is given by (4.22) with H D
Dr. By (4.23), a bound for the error that arises when using this alternative dual to
reconstruct is governed by 
min.D�r˚/. Thus a main goal of this subsection is to
discuss the behavior of this minimum singular value.

The matrix D�r˚ is the product of a deterministic matrix D�r, whose singular
values are known to a sufficient approximation, and a random matrix ˚ , whose
singular values are known to be well concentrated. Nevertheless, using a product
bound does not yield good results, mainly because the singular values of D�r differ
tremendously, so any worst case bound will not be good enough. One approach to
provide a refined bound is to first provide lower bounds for the action of D�r˚ on a
single vector and then proceed via a covering argument. That is, one combines these
lower bounds for all of the vectors forming an �-net, obtaining a uniform bound for
the net. An approximation argument then allows to pass from the net to all vectors
in the sphere. In this way, [23] obtains the following result for Gaussian random
frames:

Theorem 1 ([23]). Let ˚ be an m 
 k random matrix whose entries are i.i.d. stan-
dard Gaussian variables. Given r 2 N and ˛ 2 .0; 1/, there exist constants
strictly positive r-dependent constants c1, c2, and c3 such that if � WD m=k �
.c1 log m/1=.1�˛/, then with probability at least 1 � exp.�c2m��˛/,


min.D
�r˚/ � c3.r/�

˛.r� 12 /pm: (4.31)

In this approach, one explicitly uses the density of the Gaussian distribution.
Thus, as soon as the matrix entries fail to be exactly Gaussian, a completely different
approach is needed. In what follows, we will present the main idea of the method
used in [30] to tackle the case of random matrices with independent sub-Gaussian
entries as introduced in the following definition (for alternative characterizations
of sub-Gaussian random variables see, for example, [42]). This approach is also
related to the RIP-based analysis for quantized compressive sampling presented in
[18] (cf. Section 4.5 below).



4 Noise-shaping Quantization Methods for Frames 173

Definition 1. A random variable  is sub-Gaussian with parameter c > 0 if it
satisfies P.jj > t/ � e1�ct2 for all t � 0.

As in the Gaussian case presented in [23], we employ the singular value
decomposition D�r D U˙V� where U and V are unitary and ˙ 2 R

m�m is a
diagonal matrix with entries s1 � 	 	 	 � sm � 0. Then


min.D
�r˚/ D 
min.U˙V�˚/ D 
min.˙V�˚/;

as U is unitary. Furthermore, for P` W Rm ! R
` the projection onto the first ` entries,

` � m, one has in the positive semidefinite partial ordering �

˙ � P`˙ D P`˙P�̀P` � s`P`:

Here the first inequality uses that P` is a projection, the following equality uses that
˙ is diagonal, and the last inequality uses that the diagonal entries of˙ are ordered.

As a consequence, we find that 
min.D�r˚/ � s`
min.V�˚/. For Gaussian
matrix entries, this immediately yields Theorem 1, as standard Gaussian vectors
are rotation invariant, so P`V�˚ is just a standard Gaussian matrix, whose singular
value distributions are well understood (see for example [42]). Applying the bound
for different values of ` yield the theorem for different choices of ˛.

For independent, zero mean, unit variance sub-Gaussian (rather than Gaussian)
matrix entries, one no longer has such a strong version of rotation invariance; while
the columns of V�˚ will still be sub-Gaussian random vectors, its entries will,
in general, no longer be independent. There are also singular value estimates that
require only independent sub-Gaussian matrix columns rather than independent
entries (see again [42]), but such bounds require that the matrix columns are of
constant norm. Even if ˚ and hence also V�˚ has constant norm columns (such as
for example for Bernoulli matrices, ˚ij 2 ˙1), the projection P` will typically map
them to vectors of different length.

In order to nevertheless bound the singular values, we again use a union bound
argument, first considering the action on one fixed vector x of unit norm. Then we
write

kV�˚xk22 D
kX

i;i0D1

mX

j;j0D1
xi˚ji.VP�̀P`V�/jj0˚j0i0xi0 :

Thus kV�˚xk22 is a so-called chaos process, that is, a random quadratic form of the
form h;Mi, where  is a random vector with independent entries (in this case, the
vectorization of ˚). Its expectation is given by

EkV�˚xk22 D
kX

iD1

mX

jD1
x2i E˚

2
ji.VP�̀P`V�/jj D kxk22tr.VP�̀P`V�/ D `;
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where the last equality uses the cyclicity of the trace. Its deviation from the
expectation can be estimated using the following refined version of the Hanson-
Wright inequality, which has been provided in [37] (see [24] for the original
version).

Theorem 2. Let  D .1; : : : ; n/ 2 R
n be a random vector with independent

components i which are sub-Gaussian with parameter c and satisfy Ei D 0. Let A
be an n 
 n matrix. Then for every t � 0,

P
˚jh;Mi � Eh;Mij > t

� � 2 exp
�

� C4 min
	 t2

c4kMk2F
;

t

c2kMk2!2

�
;

where C4 is an absolute constant.

To obtain a deviation bound for the above setup, we thus need to estimate the
Frobenius norm kMk2F WD trM�M D P

i;i0;j;j0 M2
.i;i0/;.j;j0/ and the operator norm

kMk2!2 WD supkyk2D1 kMyk2 of the doubly-indexed matrix M given by M.i;j/;.i0;j0/ D
xixi0.VP�̀P`V�/jj0 . For the Frobenius norm, we write

kMk2F D
X

i;i0;j;j0

x2i x2i0.VP�̀P`V�/2jj0 D kVP�̀P`V�k2F D tr.VP�̀P`V�VP�̀P`V�/ D `;

where in the last equality, we used again the cyclicity of the trace, that V is unitary,
and that P�̀P` is a projection. For the operator norm, we note that

M D P`V
�

0

BBB
@

xT 0 	 	 	 0
0 xT 	 	 	 0
:::
:::
:::
:::

0 	 	 	 0 xT

1

CCC
A
;

so as all these three factors have operator norm 1, the norm of their product is
bounded above by 1. On the other hand, applying M to the unit norm vector y
given by y.i;j/ D xiV1j yields My D e1, where e1 is the first standard basis vector,
showing that the norm is also lower bounded by 1. So one indeed has kMk2!2 D 1.
Combining these bounds with Theorem 2 yields the following generalization of
Theorem 1 for sub-Gaussian frames.

Theorem 3 ([30]). Let ˚ be an m 
 k random matrix whose entries are zero mean,
unit variance, sub-Gaussian random variables with parameter c. Given r 2 N and
˛ 2 .0; 1/, there exist constants c D c.r/ > 0 and c0 D c0.r/ > 0 such that if
� WD m

k � c
1

1�˛ then one has with probability at least 1 � exp.�c0m��˛/


min.D
�r˚/ � �˛.r� 12 /

p
m: (4.32)
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Combining (4.23) for H D Dr with the lower bound of (4.31) or (4.32), the
Sobolev dual reconstruction �D�r q from ˙� quantized frame coefficients y D ˚x
results in the error bound

kx � �D�r qk2 � C.r/��˛.r� 12 /kuk1: (4.33)

Thus the error decays polynomially in the oversampling rate � as long as the
underlying ˙� scheme is stable. For the greedy quantization rule, stability follows
from Proposition 1, as long as kyk1 � � for a suitable�whose range is constrained
by the quantization alphabet AL;ı and r. (It can be easily computed that for H D Dr,
we have k QHk1!1 D 2r � 1. Hence we require L > 2r � 1, with the value of
ı assumed to be adjustable.) If we assume that kxk2 � 1, then controlling kyk1
amounts to bounding k˚k2!1 � k˚k2!2 and thus to bounding the maximum
singular value of a rectangular matrix with independent sub-Gaussian entries. This is
a well-understood setup, it is known that the singular values of such a matrix are well
concentrated and one has k˚k2!1 � k˚k2!2 D O.

p
m/ with high probability

(see again [42]). As a consequence, the ˙� scheme is stable provided L is chosen
large enough and the quantizer level is adjusted accordingly. We conclude that sub-
Gaussian frame expansions quantized using a greedy r-th order ˙� scheme allow
for reconstruction error bounds decaying polynomially in the oversampling rate,
where the decay order can be made arbitrarily large by choosing r large enough.

4.4.2 Beta duals of random frames

We return to the Gaussian distribution for the analysis of beta duals for random
frames. Based on the error bound (4.30) derived in Section 4.3.3.3, it now suffices
to give a probabilistic lower bound for 
min.V˚/. Note that the entries of the p 
 k
matrix V˚ are i.i.d. Gaussian with variance


2�0 WD ˇ�2 C 	 	 	 C ˇ�2�0

: (4.34)

At this point, a choice for the parameter p needs to be made. In [11], both choices
of p D k and p > k were studied in detail. The analysis of the former choice is
somewhat cleaner, but the strongest probabilistic estimates follow by choosing p
greater than k.

We will primarily be interested in the smallest singular value of V˚ being near
zero. For p D k, the following well-known result suffices:

Theorem 4 ([36, Theorem 3.1], [17]). Let˝ be a k
k random matrix with entries
drawn independently from N .0; 
2/. Then for any " > 0,

P

�n

min.˝/ � "
=

p
k
o�

� ":
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Meanwhile, the stability of the greedy quantizer with alphabet AL;ı can be
ensured in a way similar to the case of Sobolev duals, noting that k QHk1!1 D ˇ.
Hence, we know that if ˇ C �=ı � L, then kuk1 � ı. By standard Gaussian
concentration results, � � 4

p
m is guaranteed with probability at least 1 � e�2m.

Therefore, with (4.30) and Theorem 4 in which we set ˝ D V˚ , we obtain

kx � �Vqk2 � kL"�1ıˇ�m=k (4.35)

with probability at least 1 � " � e�2m, where we have also used the simple chain
of inequalities 1=
�0 � ˇ � L. The value of ˇ can be chosen arbitrarily close to L
with sufficiently large values of ı. However, the optimal choice would result from
minimizing ıˇ�m=k subject to ˇ C �=ı D L. For details, see [11].

For p > k, we have the following result:

Theorem 5 ([11, Theorem 4.3]). Let p > k and˝ be a p
k random matrix whose
entries are drawn independently from N .0; 
2/. Then for any 0 < " < 1,

P
	˚

min.˝/ � "


p
p=2

�
 �
�
10C 8

p
log "�1

�k
ep=2"p�k:

The corresponding error bound

kx � �Vqk2 � 2L"�1ıˇ�m=p (4.36)

now holds with higher probability. The choices "  ˇ��m=p for small � and p 
.1C �/k turn out to be good ones. For details, again see [11].

4.5 Noise-shaping Quantization for Compressive Sampling

Compressive sampling (also called compressed sensing) has emerged over the last
decade as a novel sampling paradigm. It is based on the empirical observation that
various important classes of signals encountered in practice, such as audio and
images, admit (nearly) sparse approximations when expanded with respect to an
appropriate basis or frame, such as a wavelet basis or a Gabor frame. Seminal
papers by Candès, Romberg, and Tao [8], and by Donoho [16] established the
fundamental theory, specifying how to collect the samples (or measurements),
and the relation between the approximation accuracy and the number of samples
acquired (“sampling rate”) vis-a-vis the sparsity level of the signal. Since then
the literature has matured considerably, again focusing on the same issues, i.e.,
how to construct effective measurement schemes and how one can control the
approximation error as a function of the sampling rate, e.g., see [19].

By now compressive sampling is well-established as an effective sampling the-
ory. From the perspective of practicability, however, it also needs to be accompanied
by a quantization theory. Here, as in the case of frames, MSQ is highly limited as



4 Noise-shaping Quantization Methods for Frames 177

a quantization strategy in terms of its rate-distortion performance. Thus, efficient
quantization methods are needed for compressive sampling to live up to its name,
i.e., to provide compressed representations in the sense of source coding.

In this section, we will discuss how noise-shaping methods can be employed to
quantize compressive samples of sparse and compressible signals to vastly improve
the reconstruction accuracy compared to the default method of MSQ. We start with
the basic framework of compressive sampling as needed for our discussion.

4.5.1 Basics of Compressive Sampling

In the basic theory of compressive sampling, the signals of interest are finite (but
potentially high) dimensional vectors that are exactly or approximately sparse. More
precisely, we say that a signal x in R

N is k-sparse if it is in ˙N
k WD fx 2 R

N W
kxk0 � kg. Here kxk0 denotes the number of non-zero entries of x. The signals we
encounter in practice are typically not sparse, but they can be well-approximated
by sparse signals. Such signals are referred to as compressible signals and roughly
identified as signals x with small 
k.x/`p , the best k-term approximation error of x
in `p, defined by


k.x/`p WD min
z2˙N

k

kx � zkp:

Compressive sampling consists of acquiring linear, non-adaptive measurements
of sparse or compressible signals, possibly corrupted by noise, and recovering
(an approximation to) the original signal from the compressive samples via a
computationally tractable algorithm. In other words, the compressive samples
are obtained by multiplying the signal of interest by a compressive sampling
(measurement) matrix. The success of recovery algorithms relies heavily on certain
properties of this matrix. To state this dependence precisely, we next define the
restricted isometry constants of a matrix.

Definition 2. The restricted isometry constant (see, e.g., [8]) �k WD �k.˚/ of a
matrix ˚ 2 R

m�N is the smallest constant for which

.1 � �k/kxk22 � k˚xk22 � .1C �k/kxk22
for all x 2 ˙N

k .

Suppose that ˚ 2 R
m�N is used as a compressive sampling matrix. Here,

m denotes the number of measurements and is significantly smaller than N, the
ambient dimension of the signal. Let Qy WD ˚x C w denote the (possibly) perturbed
measurements of a signal x 2 R

N , where the unknown perturbation w satisfies
kwk2 � �. A crucial result in the theory of compressive sampling states that if the
restricted isometry constants of ˚ are suitably controlled (e.g. as originally stated
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in [8], or more recently as in [7] which only assumes �ak � p
.a � 1/=a for some

a � 4=3), then there is an approximate recovery ��
1.˚; Qy/ of x which satisfies

kx ���
1.˚; Qy/k2 � C� C D
k.x/`1=

p
k: (4.37)

Here, ��
1.˚; Qy/ is found by mapping Qy to a minimizer of a tractable, convex opti-

mization problem—which is often called the “Basis Pursuit Denoise” algorithm—
given by

��
1.˚; Qy/ WD arg min

z
kzk1 subject to k˚z � Qyk2 � �:

C and D are constants that depend on ˚ , but can be made absolute by slightly
stronger assumptions on ˚ .

Note that in the noiseless case, it follows from (4.37) that any k-sparse signal can
be exactly recovered from its compressive samples as �01.˚;˚x/. In the general
case, the approximation error remains within the noise level and within the best k-
term approximation error of x in `1. Hence the recovery is robust with respect to the
amount of noise and stable with respect to violation of the exact sparsity assumption.
The decoder ��

1 is a robust compressive sampling decoder as defined next.

Definition 3 ([30, Definition 4.9]). Let " > 0, let m;N be positive integers such
that m < N and suppose that ˚ 2 R

m�N . We say that � W Rm�N 
 R
m ! R

N is a
robust compressive sampling decoder with parameters .k; a; �/, k < m, and constant
C if

kx ��.˚;˚x C e/k � C"; (4.38)

for all x 2 ˙N
k , kek2 � ", and all matrices ˚ with a restricted isometry constant

�ak < � .

Examples of robust decoders include ��
1 and its p-norm generalization ��

p with
0 < p � 1 [8, 38], compressive sampling matching pursuit (CoSaMP) [33],
Orthogonal Matching Pursuit (OMP) [43], and iterative hard thresholding (IHT)
[5]. See also [19] for detailed estimates of the relevant parameters.

4.5.2 Noise-shaping Quantization of Compressive Samples

Even though noise shaping methods are tailored mainly for quantizing redundant
representations, perhaps surprisingly, they also provide efficient strategies for
quantizing compressive samples [18, 22, 23, 30]. The approach, originally developed
in [23] specifically for ˙� quantization, relies on the observation that when the
original signal is exactly sparse, compressed measurements are in fact redundant
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frame coefficients of the sparse signal restricted to its support. Since then it has
been extended for beta encoding and applied to compressible signals as well [10].
We start with the case of sparse signals.

4.5.2.1 Sparse signals

Let x 2 ˙N
k with supp.x/ D T and ˚ 2 R

m�N be a compressive sampling matrix.
Then, we have

y D ˚x H) y D ˚TxT ;

where ˚T is the submatrix of ˚ consisting of its columns indexed by T and xT is the
restriction of x to T . Accordingly, any quantization technique designed for frames
could be adopted to compressive sampling as follows:

Quantization: Since the compressive samples are in fact frame coefficients, apply
the noise-shaping quantization algorithm directly to the compressive samples y to
obtain the quantized samples, say, q. Note that the quantization process is blind to
the support of the sparse signal as well as to the sampling operator.

Reconstruction: Reconstruct via the following two-stage reconstruction algo-
rithm. To obtain an estimate x# of x from q:

1. Coarse Recovery: Solve

Qx D �
�Q
1 .˚; q/ (4.39)

where �Q is an upper bound on ky � qk2, which depends on the quantization
scheme and is known explicitly. Note that the decoder �

�Q
1 above can be

replaced with any robust compressive sampling decoder �. Clearly, by (4.38)
kx � Qxk will be small if �Q is small.

2. Fine Recovery: Obtain a support estimate, QT , of x from Qx. A finer approxima-
tion for x is then given by reconstructing with an appropriate alternative dual of
the underlying frame˚QT based on the noise-shaping operator that was employed
for quantization.

The success of the two-stage reconstruction algorithm relies on the accurate
recovery of the support of x. In turn, this can be guaranteed by a size condition
on the smallest-in-magnitude non-zero entry of x. To see this, note that for all i 2 T ,
the robustness guarantee (4.38) yields jQxi � xj � C�Q, which, together with the
size condition mini2T jxij > 2C�Q, gives jQxij > C�Q. Moreover, by (4.38) we have
jQxij � C�Q for all i 2 Tc. Consequently, the largest-in-magnitude k coefficients of Qx
are supported on T . Thus, we have the following proposition.

Proposition 2. Suppose that x 2 ˙N
k with supp.x/ D T, and let ˚ 2 R

m�N be
a compressive sampling matrix so that (4.38) holds for � D �

�Q
1 with robustness
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constant C. Let Qx be as in (4.39) where k˚x � qk2 � �Q. If mini2T jxij > 2C�Q, then
the k largest-in-magnitude coefficients of Qx are supported on T.

By this observation, the coarse recovery stage not only yields an estimate Qx that
satisfies kx�Qxk2 � C�Q, but it also gives an accurate estimate of the support of x (via
the support of the k-largest coefficients of Qx). It remains to show that reconstruction
techniques associated with noise shaping quantization for frames can be used in the
fine recovery stage to produce an estimate x# that is more accurate than Qx of the
coarse stage.

When q results from a noise-shaping quantization scheme, accurate recovery
based on alternative duals can be guaranteed via (4.19). In particular, suppose that
H is the noise transfer operator of the quantizer. Conditioned on recovering T , let
�H�1 be the left inverse of ˚T as defined in (4.22) and set x# WD �H�1q. We then
have, as before,

kx � x#k2 �
p

m


min.H�1˚T/
kuk1 (4.40)

where u is as in (4.13) .
Predominantly, compressed sensing matrices ˚ (hence their submatrices ˚T ) are

random matrices. Thus, to uniformly control the reconstruction error via (4.40) one
needs lower bounds on the smallest singular values of the random matrices H�1˚T

for all T � ŒN� WD f1; : : : ;Ng, jTj D k, as well as a uniform upper bound on kuk1.
We concentrate again on random matrices ˚ with independent and identically

distributed Gaussian or sub-Gaussian entries. In these cases, for each fixed support
T , ˚T is a random frame of the type considered in Section 4.4 and a probabilistic
lower bound on 
min.H�1˚T/ follows from Theorem 1 (for Gaussian entries) and
Theorem 3 (for sub-Gaussian entries).

A uniform lower bound on 
min.H�1˚T/ over all support sets T of size k can
now be deduced via a union bound over the

	N
k



support sets. Note that to obtain a

uniform bound over this rather large set of supports, one requires a relatively small
bound for the probability of failure on each potential support, and, consequently,
a larger embedding dimension m as compared to the case of a single frame. An
alternative approach based on the restricted isometry constant, essentially yielding
the same result, can be found in [18].

The approaches just outlined are general and can be applied in the case of any
noise shaping quantizer that allows exact recovery of the support of sparse vectors
via Proposition 2. In the following, however, we focus on the special case of rth-
order ˙� quantization, where H D D�r and we obtain the following theorem.

Theorem 6 ([23, 30]). Let r 2 Z
C, fix a 2 N, � < 1, and c;C > 0. Then there exist

constants C1;C2;C3;C4 depending only on these parameters such that the following
holds.

Fix 0 < ˛ < 1. Let ˚ be an m
N matrix with independent sub-Gaussian entries
that have zero mean, unit variance, and parameter c, let � be a robust compressive
sampling decoder and k 2 N is such that
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� WD m

k
�
�

C1 log.eN=k/
� 1
1�˛
:

Suppose that q is obtained by quantizing ˚z, z 2 R
N, via the rth order greedy

˙� scheme with the alphabet AL;ı , and with L � d K��1=2

ı
e C 2r C 1. Denote by

q the quantization output resulting from ˚z where z 2 R
N. Then with probability

exceeding 1 � 4e�C2m1�˛k˛ for all x 2 ˙N
k having min

j2supp.x/
jxjj > C3ı:

(i) The support of x, T, coincides with the support of the best k-term approximation
of �. 1p

m
˚; 1p

m
q/.

(ii) Denoting by ˚T and F the sub-matrix of ˚ corresponding to the support of z
and its rth order Sobolev dual respectively, and by xT 2 R

k the restriction of x
to its support, we have

kxT � Fqk2 � C4�
�˛.r�1=2/ı:

We remark that in Theorem 6, the requirement that L � d K��1=2

ı
e C 2r C 1

ensures stability of the ˙� scheme while min
j2supp.x/

jxjj > C3ı implies accurate

support recovery.

4.5.2.2 Compressible signals

The two-stage reconstruction algorithm for sparse signals presented above applies
equally well to noise-shaping quantization based on beta encoding as discussed in
Section 4.3.3.3. However, it turns out that for beta encoding there is a more powerful
reconstruction algorithm which works for compressible signals as well.

Let˚ now be an m
N compressive sampling matrix, and let H be the m
m noise
transfer operator and V be the p
m condensation operator as in (4.29), where again,
for simplicity, we have assumed that m=p is an integer. Note that the associated
noise-shaping quantization relation

˚x � q D Hu

implies

V˚x � Vq D VHu;

hence we may consider V˚ as a new condensed measurement matrix and Vq D
V˚x C VHu as the corresponding perturbed measurement. As before,

kVHuk2 � kVHk1!2kuk1 � p
pˇ�m=pkuk1;
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so that if the greedy quantization rule is stable (i.e., kuk1 � ı), then we can set
� WD p

pˇ�m=pı and consider the decoder

.q 7! ��
1.V˚;Vq//:

As it follows from the discussion of (4.37), if for some ˛ > 0, �2k WD �2k.˛V˚/ is
sufficiently small (say less than 1=3), then we have the estimate

kx ���
1.V˚;Vq/k2 � C˛� C D


k.x/1p
k
; (4.41)

where C and D are now absolute constants.
For the random (Gaussian) case, the following result is implied by our discussion

above and other tools presented earlier in this paper (for a more detailed derivation
of a similar result, see [10]):

Theorem 7. Let ˚ be an m 
 N random matrix whose entries are i.i.d. standard
Gaussian variables. Let x 2 R

N, kxk2 � 1, and let q be the result of quantizing the
measurements ˚x with the noise transfer operator H from (4.29) and the alphabet
AL;ı where ˇ C 2

p
N=ı � L. Assume m � p � k are such that �0 WD m=p is an

integer and

� WD m

k
� C1�

0 log N=k

for some numerical constant C1. Let V be the p
m condensation matrix as in (4.29)
and � WD p

pˇ�m=pı. Then with probability exceeding 1 � e�p=C0

1 for another
numerical constant C01, we have

kx ���
1.V˚;Vq/k2 � CLı

p
p=mˇ�m=p C D


k.x/1p
k
:

We note that the optimal choice of the auxiliary parameters p and k in the above
theorem depends on the success probability as well as further information on the
amount of compressibility of x. A rule of thumb would be to balance the two error
terms above corresponding to quantization error and approximation error. Similarly,
the choice of ˇ, L, and ı can be optimized. For example, if L � 2 is given and fixed,
but ı is variable, then one would minimize the error bound (over p, k, ˇ and ı)
within a given probabilistic guarantee objective and a priori knowledge on x.

Finally, we end with the following remark: a recent work [39, 40] shows that
it is in fact possible to obtain an approximation from ˙� quantized compressive
samples that is robust to additive noise and is stable for compressible signals. This
approximation is obtained via a one-stage reconstruction method based on solving
a simple convex optimization problem. Furthermore, by encoding the quantized
measurements via a Johnson- Lindenstrauss dimensionality reducing embedding as
in [26], one obtains near-optimal rate-distortion guarantees in the case of sparse
signals. For details, see [39, 40].
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Chapter 5
Fourier Operators in Applied Harmonic
Analysis

John J. Benedetto and Matthew J. Begué

Abstract We present a panorama describing the pervasiveness of the short-time
Fourier transform (STFT) in a host of topics including the following: waveform
design and optimal ambiguity function behavior for radar and communications
applications; vector-valued ambiguity function theory for multi-sensor environ-
ments; finite Gabor frames for deterministic compressive sensing and as a back-
ground for the HRT conjecture; generalizations of Fourier frames and non-uniform
sampling; and pseudo-differential operator frame inequalities.

5.1 Introduction

5.1.1 The Short Time Fourier Transform (STFT)

Let Z denote the ring of integers and let C, respectively R, denote the field of
complex, respectively real, numbers. Given an integer N, let Z=NZ denote the ring
of integers modulo N. (We have chosen this well-defined notation, Z=NZ, and not
ZN , to denote the ring of integers mod N, since we shall deal with primes, p, and
Zp is universally used to denote the ring of p-adic integers.) Unless otherwise noted,
all of the vector spaces herein are complex vector spaces. Let L2.Rd/ be the space
of square-integrable functions defined on the d-dimensional Euclidean space R

d.
We let ORd denote R

d considered as the Fourier, or spectral, domain. We define the
Fourier transform of a Schwartz class function, f 2 S .Rd/, as

8� 2 ORd; Of .�/ D
Z

Rd
f .x/e�2� ix
� dx:
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The Fourier transform can be extended to the space S 0.Rd/ of tempered distribu-
tions. In particular, the Fourier transform is well-defined on the Banach algebra
L1.Rd/ and, more generally, on the Banach algebra Mb.R

d/ of bounded Radon
measures. Some references on harmonic analysis are [13, 102, 103].

Let f ; g 2 L2.Rd/. The short-time Fourier transform (STFT) of f with respect to
g is the function Vgf defined on R

2d as

Vgf .x; !/ D
Z

Rd
f .t/g.t � x/e�2� it
! dt;

see [51, 52]. The STFT is uniformly continuous on R
2d. Furthermore, if f ; g 2

L2.Rd/, and F D Of and G D Og, then the fundamental identity of time-frequency
analysis is

Vgf .x; !/ D e�2� ix
!VGF.!;�x/:

If f ; g 2 L2.Rd/, then it can be proved that

��Vgf
��

L2.R2d/
D kf kL2.Rd/ kgkL2.Rd/ : (5.1)

Thus, if kgkL2.Rd/ D 1, then (5.1) allows us to assert that f is completely determined
by Vgf . Furthermore, for a fixed “window” function g 2 L2.Rd/ with kgkL2.Rd/ D 1,
we can recover f 2 L2.Rd/ from its STFT, Vgf , by means of the vector-valued
integral inversion formula,

f D
Z

Rd

Z

ORd
Vgf .x; !/e!�xg d! dx;

where .e!h/.t/ D e2� it
!h.t/ and �xh.t/ D h.t � x/ represent modulation and
translation, respectively, see [51, p. 43].

Remark 1. a. Equation (5.1) is Moyal’s formula. This is a special case of a formu-
lation in 1949 due to José Enrique Moyal in the context of quantum mechanics
as a statistical theory. When written in terms of the Wigner distribution from
quantum mechanics (1932), this formulation is analogous to the orthogonality
relations, that give rise to (5.1) for the STFT. It should also be pointed out that
the Ville distribution for signal analysis also appeared in the late 1940s. These
ideas are closely related, e.g., see [36, Chapter 8] and [50].

b. Closely related to the STFT and the Wigner and Ville distributions is the narrow
band cross-correlation ambiguity function of v;w 2 L2.R/, defined as

8.t; �/ 2 R 
 OR; A.v;w/.t; �/ D
Z

R

v.s C t/w.s/e�2� is� ds:
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Note that A.v;w/.t; �/ D e2� it�Vwu.t; �/. The narrow band radar ambiguity
function, A.v/, of v 2 L2.R/ is defined as

8.t; �/ 2 R 
 OR; A.v/.t; �/ D
Z

R

v.s C t/v.s/e�2� is� ds

D e� it�
Z

R

v.s C t
2
/v.s � t

2
/e�2� is� ds:

P. M. Woodward (1953) introduced the function, A.v/, to describe the effect
of range and Doppler on matched filter receivers in radar. Underlying the
function itself was his idea of using information theory to optimize resolution
in terms of radar waveforms. By comparison with Shannon, Woodward dealt
with the problem of mapping information into lower dimensions, prescient of
current dimension reduction methodologies. This leads to ambiguities whence,
the term, ambiguity function. Technical examples of such ambiguity abound in
the radar literature, e.g., [80, 100]. In Sections 5.3 and 5.4, we concentrate on
discrete versions of A.v/.
Whereas the narrow band ambiguity function is essentially time-frequency
analysis, the wide band ambiguity function is essentially a wavelet transform,
e.g., [8, 64, 106].

c. The STFT can also be formulated in terms of so-called .X; �/ or continuous
frames, e.g., see [1, 2, 6, 45, 48].

5.1.2 Outline and theme

Our theme is to interleave and compare various related decompositions whose
coefficients are associated with sampled values of a given function. The tentacles
of this process are labyrinthine and diverse.

In Section 5.2 we give the necessary background from harmonic analysis.
We define balayage, sets of spectral synthesis and strict multiplicity, and provide
material from the theory of frames.

Motivated by radar and communications applications of waveform design,
Section 5.3 defines and discusses CAZAC sequences and optimal ambiguity
function behavior on Z=NZ, and states a basic result. Because of the importance
of dealing effectively with multi-sensor environments, Section 5.4 is devoted to
the development of the vector-valued Discrete Fourier Transform (DFT) and proper
definitions of vector-valued ambiguity functions. Perhaps surprisingly, this material
requires more than using bold-faced notation.

Section 5.5 treats two topics dealing with finite Gabor systems: deterministic
compressive sensing in terms of Gabor matrices and conditions to assert the linear
independence of finite Gabor sums. The former gives elementary results embedded
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in advanced material developed by others. The latter addresses the HRT (Heil,
Ramanathan, Topiwala) conjecture, and solves several special cases.

Sections 5.6 and 5.7 use the material on balayage, spectral synthesis, and strict
multiplicity to formulate frame inequalities for the STFT and pseudo-differential
operators, respectively. It builds on deep work of Beurling and Landau, and it is
developed in the spirit of Fourier frames and non-uniform sampling formulas.

We close with a brief appendix showing how the DFT can be used in practice
to compute Fourier transforms on R. We omit the required error estimates and
generalizations. On the other hand, we include the Appendix since this computation
requires the Classical Sampling Theorem (Theorem 17), thereby fitting naturally
into our theme.

All of the aforementioned topics are unified by the STFT. Further, most of
these topics have a long history with contributions by some of the most profound
harmonic analysts. Our presentation has to be viewed in that context. Furthermore,
our presentation is meant to integrate [5, 6, 15, 18–20, 22]. These references do
have a common author, who wants to record the relationships between these topics,
but who does not want to give the wrong impression about relative importance by
having so many of his papers listed in the references.

5.2 Background from harmonic analysis

5.2.1 Balayage, spectral synthesis, and multiplicity

Let Mb.G/ be the algebra of bounded Radon measures on the locally compact
abelian group (LCAG), G, with dual group denoted by OG. The space, Mb.E/,
designates those elements of Mb.G/ for which supp.�/ � E, see [16]. We use
Beurling’s definition of balayage from his 1959–60 lectures.

Definition 1. Let E � G, and � � OG be closed sets. Balayage is possible for
.E; �/ � G 
 OG if

8� 2 Mb.G/; 9	 2 Mb.E/ such that O� D O	 on �:

The notion of balayage originated in potential theory by Christoffel in the early
1870s, see [32], and then by Poincaré in 1890, who used the idea of balayage as
a method to solve the Dirichlet problem, see [6] for historical background. The
set, �, of group characters is the analogue of the original role of � in balayage
as a collection of potential theoretic kernels. Kahane formulated balayage for the
harmonic analysis of restriction algebras, see [66].

We shall also require the definition of spectral synthesis due to Wiener and
Beurling.
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Definition 2. Let Cb.G/ be the set of bounded continuous functions on the
LCAG G. A closed set � � OG is a set of spectral synthesis, or S-set, if

8� 2 Mb.G/ and 8f 2 Cb.G/; supp.Of / � � and O� D 0 on � H)
Z

G
f d� D 0;

(5.2)

see [12].

Remark 2. a: Let A. OG/ denote the Banach algebra of absolutely convergent
Fourier transforms on OG, taken with the transported topology from L1.G/; and
let A0. OG/ be its dual space. Equivalent to Definition 2, a closed set� � OG is a set
of spectral synthesis if for all T 2 A0. OG/ and for all � 2 A. OG/, if supp.T/ � �

and � D 0 on �, then T.�/ D 0. This equivalence follows from an elementary
functional analysis argument.

b: To determine whether or not � � OG is a set of spectral synthesis is closely
related to the problem of determining the ideal structure of the convolution
algebra L1.G/, and so a fundamental theorem about sets of spectral synthesis
can be thought of in the context of a Nullstellensatz of harmonic analysis. The
problem of characterizing S-sets emanated from Wiener’s Tauberian theorems
and was developed by Beurling in the 1940s. It is “synthesis” in that one wishes
to approximate f 2 L1.G/ in the 
.L1.G/;L1.G// (weak-�) topology by
finite sums of characters, � W L1.G/ ! C, that is, each � is a continuous
homomorphism G ! fz 2 C W jzj D 1g under multiplication. Further, � can
be considered an element of � with supp.ı� / � supp.Of /, where supp.Of / is the
so-called spectrum of f . Such an approximation is elementary to achieve with
convolutions of the measures ı� , but in this case we lose the essential property
that the spectra of the approximants be contained in the spectrum of f .

c: The annihilation property of (5.2) holds when f and � have balancing smooth-
ness and irregularity. For example, if Of 2 S 0. ORd/, O� D � 2 S . ORd/, and � D 0

on supp.Of /, then Of .�/ D 0. Similarly, the same annihilation holds for the pairing
of Mb. ORd/ and C0. ORd/.

d: The sphere S2 � OR3 is not an S-set (proven by Schwartz in 1947). Also, every
non-discrete OG has non-S-sets (proven by Malliavin in 1959). Polyhedra are
S-sets while the 1/3-Cantor set is an S-set with non-S-subsets, see [12].

Definition 3. A closed set � � ORd is a set of strict multiplicity if

9� 2 Mb.� / n f0g such that lim
kxk!1

j L�.x/j D 0;

where L� is the inverse Fourier transform of � and kxk denotes the standard
Euclidean norm of x 2 R

d. This is also well-defined for G and OG.

The notion of strict multiplicity was motivated by Riemann’s study of sets of
uniqueness for trigonometric series. In 1916 Menchov showed that there exist
a closed � � OR=Z and � 2 M.� / n f0g such that j� j D 0 and L�.n/ D
O..log jnj/�1=2/ as jnj ! 1 (j� j is the Lebesgue measure of � ). There have been
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intricate refinements of Menchov’s result by Bary (1927), Littlewood (1936), Salem
[97, 98], Ivašev-Mucatov (1957), and Beurling, et al. see [12].

The above concepts are used in the deep proof of the following theorem.

Theorem 1. Assume that � � ORd is an S-set of strict multiplicity, and that
balayage is possible for .E; �/ � R

d 
 ORd. Let �� D f� 2 ORd W dist.�;�/ � �g.
There is �0 > 0 such that if 0 < � < �0, then balayage is possible for .E; ��/.

5.2.2 Frames

Definition 4. Let H be a separable Hilbert space, e.g., H D L2.Rd/;Rd, or Cd. A
sequence F D fxigi2I � H is a frame for H if there exist constants A;B > 0 such
that

8x 2 H; A kxk2 �
X

i2I

jhx; xiij2 � B kxk2 : (5.3)

The constants A and B are lower and upper frame bounds, respectively. In this paper
we shall assume that A is the largest of the lower frame bounds and B is the smallest
of the upper frame bounds. In this case, we refer to A and B as the lower and upper
frame bounds, respectively. If A D B, we say that F is a tight frame for H. If all the
elements of F are of equal norm, we refer to F as an equal-norm tight frame. In the
case that the tight frame, F, consists of a finite number of elements all with norm
equal to 1, then F is a finite unit-norm tight frame or FUNTF.

Frames are a natural tool for dealing with numerical stability, over-completeness,
noise reduction, and robust representation problems. Frames were first defined by
Duffin and Schaeffer [39] in 1952 but appeared even earlier in Paley and Wiener’s
book [86] in 1934. Since then, significant contributions have been made by Beurling
[23, 24], Beurling and Malliavin [25, 26], Kahane [65], Landau [79], Jaffard [63],
and Seip [85, 99]. Recent expositions on the theory and applications of frames
include [34, 75, 76].

Theorem 2. If F D fxigi2I � H is a frame for H, then

8x 2 H; x D
X

i2I

hx; S�1xiixi D
X

i2I

hx; xiiS�1xi;

where the map, S W H ! H, x 7!
X

i2I

hx; xiixi, is a well-defined topological

isomorphism.

Theorem 2 illustrates the natural role that frames play in non-uniform sampling
formulas, see Example 1.



5 Fourier Operators in Applied Harmonic Analysis 191

Let � � ORd be a closed set. The Paley-Wiener space, PW�, is defined as

PW� D ff 2 L2.Rd/ W supp.Of / � �g:

Definition 5. Let� � ORd be a compact set and let E D fxigi2I � R
d be a sequence.

For each x 2 E, define fx D .e�x1�/
_ 2 PW�, where 1� denotes the characteristic

function of the set �. The sequence ffx W x 2 Eg is a Fourier frame for PW� if there
exist constants A;B > 0 such that

8f 2 PW�; A kf k2L2.Rd/ �
X

x2E

jf .x/j2 � B kf k2L2.Rd/ : (5.4)

In fact, (5.4) is a special case of (5.3) since f .x/ is an inner product by the Fourier
inversion formula.

Definition 6. A sequence E � R
d is separated if

9r > 0 such that inffkx � yk W x; y 2 E and x ¤ yg � r:

The following theorem due to Beurling gives a sufficient condition for the
existence of Fourier frames in terms of balayage. The proof uses Theorem 1, and its
history and structure are analyzed in [6] as part of a more general program.

Theorem 3 (Beurling). Assume that � � ORd is an S-set of strict multiplicity and
that E � R

d is a separated sequence. Further assume that for every � 2 � and
for every compact neighborhood N.�/, � \ N.�/ is a set of strict multiplicity. If
balayage is possible for .E; �/, then f.e�x1�/

_ W x 2 Eg is a Fourier frame for
PW�.

A host of examples can be deduced satisfying the hypotheses of Theorem 3 as
well as Theorem 14 (ahead) from the constructions in [23, Section II].

Example 1. The conclusion of Theorem 3 is the assertion

8f 2 PW�; f D
X

x2E

f .x/S�1.fx/ D
X

x2E

hf ; S�1.fx/ifx;

where S.f / D P
x2E f .x/ .e�x1�/

_.

5.3 Optimal ambiguity function behavior on Z=NZ

Definition 7. A function, u W Z=NZ ! C, is Constant Amplitude Zero Autocorre-
lation (CAZAC) if

8m 2 Z=NZ; juŒm�j D 1; .CA/
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and

8m 2 Z=NZ n f0g; 1

N

N�1X

kD0
uŒm C k�uŒk� D 0: .ZAC/:

Equation (CA) is the condition that u has constant amplitude 1. Equation (ZAC) is
the condition that u has zero autocorrelation for m 2 .Z=NZ/ n f0g, i.e., off the
DC-component.

The study of CAZAC sequences and other sequences related to optimal auto-
correlation behavior is deeply rooted in several important applications. One of the
most prominent applications is the area of waveform design associated with radar
and communications. See, e.g., [7, 21, 35, 47, 49, 53, 59, 72, 73, 80, 84, 91, 93, 100,
108, 109]. There has been a striking recent application of low correlation sequences
to radar in terms of compressed sensing [60].

There are also purely mathematical roots for the construction of CAZAC
sequences. One example, that inspired the role of probability theory in the subject, is
due to Wiener, see [17]. Another originated in a question by Per Enflo in 1983 asking
about specific Gaussian sequences to deal with the estimation of certain exponential
sums, see [96] by Saffari for the role played by Björck, cf. [28, 29].

Do there exist only finitely many non-equivalent CAZAC sequences in Z=NZ?
The answer to this question is “yes” for N prime and “no” for N D MK2, see, e.g.,
[18, 96].

Definition 8. Let p be a prime number, and so Z=pZ is a field. A Björck CAZAC
sequence, bp, of length p is defined as

8k D 0; 1; : : :; p � 1; bpŒk� D ei�p.k/;

where, for p � 1 .mod 4/,

�p.k/ D arccos

�
1

1C p
p

��
k

p

�

and, for p � 3 .mod 4/,

�p.k/ D 1

2
arccos

�
1 � p

1C p

�
Œ.1 � ık/

�
k

p

�
C ık�:

Here, ık is the Kronecker delta and
�

k
p

�
is the Legendre symbol defined by

�
k

p

�
D
8
<

:

0; if k � 0 .mod p/;
1; if k � n2 .mod p/ for some n 2 Z;

�1; if k 6� n2 .mod p/ for all n 2 Z:
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In [27] Björck proved that Björck sequences are CAZAC sequences, and there is
a longstanding collaboration of Björck and Saffari in the general area, see [29] for
references.

Definition 9. Let u W Z=NZ ! C. The discrete narrow band ambiguity function,
AN.u/ W Z=NZ 
 Z=NZ ! C, of u is defined as

8.m; n/ 2 Z=NZ 
 1Z=NZ; AN.u/Œm; n� D 1

N

N�1X

kD0
uŒm C k�uŒk�e�2� ikn=N : (5.5)

The discrete autocorrelation of u is the function, AN.u/Œ	; 0� W Z=NZ ! C.

The following estimate is proved in [22]. Notwithstanding the difficulty of proof,
its formulation was the result of observations by two of the authors of [22] based on
extensive computational work by one of them, viz., Woodworth.

Theorem 4. Let bp denote the Björck CAZAC sequence of prime length p, and let

Ap.bp/ be the discrete narrow band ambiguity function defined on Z=pZ 
 1Z=pZ.
Then,

8.m; n/ 2 .Z=pZ 
 1Z=pZ/ n .0; 0/;

jAp.bp/Œm; n�j < 2p
p

C 4

p
; if p � 1 .mod 4/;

and

jAp.bp/Œm; n�j < 2p
p

C 4

p3=2
; if p � 3 .mod 4/:

The proof of Theorem 4 requires Weil’s exponential sum bound [112], which is
a consequence of his proof of the Riemann Hypothesis for curves over finite fields
[113].

Theorem 4 establishes essentially optimal ambiguity function behavior for bp, cf.
Example 2 and Section 5.5.1. In this regard, and by comparison, if u is any CAZAC
sequence of length p, then

1p
p � 1 � maxfjAp.u/Œm; n�j W .m; n/ 2 .Z=pZ 
 1Z=pZ/ n f.0; 0/gg:

Example 2. a. Let p be a prime number. Alltop [3] defined the sequence, ap, of
length p as

8k D 0; 1; : : :; p � 1; apŒk� D e2� ik3=p:
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Clearly, ap is of constant amplitude (CA). Alltop proved that

8m 2 .Z=pZ/ n f0g and 8n 2 Z=pZ; jAp.ap/Œm; n�j D 1p
p
;

which is an excellent bound, cf. Theorem 4 and Section 5.5.1, but also
establishes that ap is not a CAZAC sequence in contrast to bp.

b. The structure of Ap.bp/ is also more complex than that of Ap.ap/ in that
jAp.bp/j takes values smaller than 1=

p
p, a feature that can be used in radar

and communications. This goes back to [22] with continuing work by one of
those authors and Nava-Tudela.

5.4 The vector-valued DFT and ambiguity functions

5.4.1 The vector-valued DFT

Let N � d. Form an N 
 d matrix using any d columns of the N 
 N DFT
matrix .e2� ijk=N/N�1j;kD0. The rows of this matrix, up to multiplication by 1=

p
d, form

a FUNTF for Cd.

Definition 10. Let N � d and let s W Z=dZ ! Z=NZ be injective. The rows
fEmgN�1

mD0 of the N 
 d matrix,

	
e2� im s.n/=N



m;n ;

form an equal-norm tight frame for Cd, that we call a DFT frame.

Definition 11. Let fEkgN�1
kD0 be a DFT frame for Cd. Given u W Z=NZ ! C

d, we
define the vector-valued discrete Fourier transform of u by

8n 2 ZN ; F.u/.n/ D Ou.n/ D
N�1X

mD0
u.m/ � E�mn;

where � is pointwise (coordinatewise) multiplication. We have that

F W `2.Z=NZ 
 Z=dZ/ ! `2.Z=NZ 
 Z=dZ/

is a linear operator.

The following inversion formula for the vector-valued DFT is proved in [5].

Theorem 5. The vector-valued Fourier transform is invertible if and only if s, the
function defining the DFT frame, has the property that

8n 2 Z=dZ; .s.n/;N/ D 1:
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The inverse is given by

8m 2 Z=NZ; u.m/ D F�1 Ou.m/ D 1

N

N�1X

nD0
Ou.n/ � Emn:

In this case we also have that F�F D FF� D NI, where I is the identity operator.

In particular, the inversion formula is valid for N prime.
We also note here that vector-valued DFT uncertainty principle inequalities are

valid, similar to the results [33] in compressive sensing.

5.4.2 Vector-valued ambiguity functions and frame
multiplication

5.4.2.1 An ambiguity function for vector-valued functions

Given u W Z=NZ ! C
d. If d D 1, then we can write the discrete ambiguity function,

AN.u/, as

AN.u/Œm; n� D 1

N

N�1X

kD0
hu.m C k/; u.k/enki; (5.6)

where recall en D e2� in=N . For d > 1, the problem of defining a discrete periodic
ambiguity function has two natural settings: either it is C-valued or Cd-valued, i.e.,
A1N.u/Œm; n� 2 C or Ad

N.u/Œm; n� 2 C
d. The problem and its solutions were first

outlined in [19] (2008).
Let us consider the case A1N.u/Œm; n� 2 C. Motivated by (5.6), we must find a

sequence fEkg � C
d and an operator, � W Cd 
 C

d ! C
d, so that

A1N.u/Œm; n� D 1

N

N�1X

kD0
hu.m C k/; u.k/ � Enki 2 C (5.7)

defines a meaningful ambiguity function.
To effect this definition, we shall make the following three ambiguity function

assumptions. First, we assume that there is a sequence fEkgN�1
kD0 � C

d and an
operation, �, with the property that Em � En D EmCn for m; n 2 Z=NZ. Second, to
deal with u.k/ � Enk in (5.7), where u.k/ 2 C

d, we also assume that fEkgN�1
kD0 � C

d

is a tight frame for Cd. The multiplication nk is modular multiplication in Z=NZ.
Third, we assume that � W Cd 
 C

d ! C
d is bilinear, in particular,



196 J.J. Benedetto and M.J. Begué

0

@
N�1X

jD0
cjEj

1

A �
 

N�1X

kD0
dkEk

!

D
N�1X

jD0

N�1X

kD0
cjdkEj � Ek:

Example 3. Let fEjgN�1
jD0 � C

d satisfy the three ambiguity function assumptions.
Then,

Em � En D d2

N2

N�1X

jD0

N�1X

kD0
hEm;EjihEn;EkiEjCk: (5.8)

Further, let fEjgN�1
jD0 be a DFT frame, and let r designate a fixed column. Assume,

without loss of generality, that the N 
 d matrix for the frame consists of the first d
columns of the N 
 N DFT matrix. Then (5.8) gives

.Em � En/.r/ D e2� i.mCn/r=N

p
d

D EmCn.r/:

Consequently, for DFT frames, � is componentwise multiplication in C
d with a

factor of
p

d. In particular, we have shown that if u W Z=NZ ! C
d, then A1N.u/

is well-defined and can be written explicitly for the case of DFT frames and
component-wise multiplication, �, in C

d.

The definition of � is intrinsically related to the “addition” defined on the indices
of the frame elements. In fact, it is not pre-ordained that this “addition” must be
modular addition on Z=NZ, as was the case in Example 3. Formally, we could have
Em � En D Em�n for some function � W Z=NZ 
 Z=NZ ! Z=NZ. The following
example exhibits this phenomenon for the familiar case of cross products from the
calculus, see [19].

Example 4 (A1N.u/ for cross product frames). Define � W C3 
 C
3 ! C

3 to be the
cross product on C

3. Let fi; j; kg be the standard basis for C3, e.g., i D .1; 0; 0/ 2 C
3.

We have that i � j D k, j � i D �k, k � i D j, i � k D �j, j � k D i, k � j D �i,
i � i D j � j D k � k D 0. The union of tight frames and the zero vector is a tight
frame. In fact, f0; i; j; k;�i;�j;�kg is a tight frame for C3 with frame constant 2.
Let E0 D 0, E1 D i, E2 D j, E3 D k, E4 D �i, E5 D �j, and E6 D �k. The index
operation corresponding to the frame multiplication is the non-abelian operation
� W Z=7Z 
 Z=7Z ! Z=7Z, where we compute

1 � 2 D 3; 1 � 3 D 5; 1 � 4 D 0; 1 � 5 D 6; 1 � 6 D 2,
2 � 1 D 6; 2 � 3 D 1; 2 � 4 D 3; 2 � 5 D 0; 2 � 6 D 4,
3 � 1 D 2; 3 � 2 D 4; 3 � 4 D 5; 3 � 5 D 1; 3 � 6 D 0,

n � n D 0, n � 0 D 0 � n D 0, etc.

Thus, the ambiguity function assumptions are valid, with the verification of
bilinearity from the definition of the cross product being a tedious calculation. In
any case, we can now obtain the following formula:
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8u; v 2 C
3; u � v D 1

4

6X

jD1

6X

kD1
hu;Ejihv;EkiEj�k:

Consequently, A1N.u/ is well-defined for the case of this cross product frame and
associated bilinear operator, �.

5.4.2.2 Frame multiplication

The essential idea and requirement to define ambiguity functions for u W Z=NZ !
C

d is to formulate an effective notion of frame multiplication. This was the purpose
of the exposition in Section 5.4.2.1 and of [19], where we further noted the
substantive role of group theory in this process.

In fact, the set f0;˙i;˙j;˙kg of Example 4 is a quasi-group, and the quaternion
group of order 8, viz., f˙1;˙i;˙j;˙kg, fits into our theory, see Andrews [4] who
develops frame multiplication theory for non-abelian finite groups.

We begin this subsection by defining frame multiplication along the lines
motivated in Section 5.4.2.1. Then we shall define frame multiplication associated
with a group. Our theory characterizes the groups for which frame multiplication
is possible; and, in this case, ambiguity functions can be defined for C

d-valued
functions. We shall state some results when the underlying group is abelian, see
[5] for the full theory.

Definition 12. a. Let F D fxigi2I be a frame for a finite dimensional Hilbert
space, H, and let � W I 
 I ! I be a binary operation. We say � is a frame
multiplication for F if there is a bilinear map, � W H 
 H ! H, such that

8i; j 2 I; xi � xj D xi�j:

Thus, � defines a frame multiplication for F if and only if, for every x DP
i2I aixi and y D P

i2I bixi in H,

x � y D
X

i;j2I

aibjxi�j

is well-defined, independent of the frame representations of x and y.
b. Let .G; �/ be a finite abelian group, and let F D fxggg2G be a frame for a finite

dimensional Hilbert space. We say .G; �/ defines a frame multiplication for F
if there is a bilinear map, � W H 
 H ! H, such that

8g; h 2 G; xg � xh D xg�h:

Definition 13. Let .G; �/ be a finite group. A finite tight frame F D fxggg2G for a
Hilbert space H is a G-frame if there exists � W G ! U .H/, a unitary representation
of G, such that
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8g; h 2 G; �.g/xh D xg�h:

Here, U .H/ is the group of unitary operators on H.

Remark 3. The notion of G-frames [105] is a natural one with slightly varying
definitions. Definition 13 has been used extensively by Vale and Waldron [111].
Closely related, there are geometrically uniform frames, see Bölcskei and Eldar [30],
Forney [46], Heath and Strohmer [104], and Slepian [101], as well as a more general
formulation due to Han and Larson [54, 55].

The following theorem is proved in [5].

Theorem 6. Let .G; �/ be a finite abelian group and let F D fxggg2G be a
tight frame for a finite dimensional Hilbert space H. Then G defines a frame
multiplication for F if and only if F is a G-frame.

Definition 14. a. Let .G; �/ be a finite abelian group of order N. Thus, G has
exactly N characters, i.e., N group homomorphisms, �j W G ! C

�, where C� is
the multiplicative group, C n f0g. For each i and j, �j.xi/ is an Nth root of unity;
and the set f.�j.xi//

N
iD1 W j D 1; : : :;Ng � C

N is an orthonormal basis for CN .
b. Let I � f1; : : :;Ng have cardinality d. Then, for any U 2 U .Cd/,

F D fU.�j.xi//j2I W i D 1; : : :;Ng � C
d

is a frame for Cd, and this is the definition of a harmonic frame, see [61, 110].
c. If .G; �/ is Z=NZ with modular addition, and U is the identity, then F is a DFT-

FUNTF.
d. Tight frames F D fxggg2G and H D fyggg2G for C

d are said to be unitarily
equivalent if there exist a unitary map U 2 U .Cd/ and constant c > 0 such that

8g 2 G; xg D cU.yg/:

Using Schur’s lemma and Maschke’s theorem [107], we see the relationship
between frame multiplication and harmonic frames in the following result.

Theorem 7. Let .G; �/ be a finite abelian group and let F D fxggg2G be a tight
frame for C

d. If .G; �/ defines a frame multiplication for F, then F is unitarily
equivalent to a harmonic frame, and there exist U 2 U .Cd/ and c > 0 such that

8g; h 2 G;
1

c
U.xg � xh/ D 1

c
U.xg/

1

c
U.xh/;

where the product on the right side is vector pointwise multiplication.

Corollary 1. Let F D fxkgk2Z=NZ � C
d be a tight frame for Cd. If Z=NZ defines a

frame multiplication for F, then F is unitarily equivalent to a DFT frame.
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5.5 Finite Gabor systems

5.5.1 Gabor matrices

Definition 15. Let F D fxigN�1
iD0 � C

d, N � d. The coherence of F, denoted by
�.F/, is defined as

�.F/ D max
j¤k

jhxj; xkij��xj

�� kxkk
:

It is well-known that

�
N � d

d.N � 1/
�1=2

� �.F/ � 1; (5.9)

see [92, 114]. The expression on the left side of (5.9) is the Welch bound for F. If
�.F/ D 1, then there are two elements xj; xk 2 F that are aligned, and we have
maximal coherence. If �.F/ is the Welch bound, then all of the xi 2 F are spread
out in C

d, and we say that we have maximal incoherence or minimal coherence.

Remark 4. In the case that F is a FUNTF, then �.F/ is the cosine of the smallest
angle between the lines spanned by the elements of the frame. This is not the
same as asserting that the coherence is the cosine of the smallest angle between the
elements of the frame. For example, in the frame for R2 that consists of the vectors
.1; 0/; .0; 1/; .�1; 0/, and .0;�1/, the smallest angle between any two elements is
90 degrees but the smallest angle between any two of the lines spanned by the frame
is 0 degrees. Thus, taking the smallest cosine between elements of the frame yields
a coherence of 0, whereas taking the smallest cosine between the lines spanned by
the frame gives the correct coherence of 1.

A FUNTF, F D fxigi2I , with jhxj; xkij constant for all j ¤ k is called an
equiangular frame. It can be shown that among all FUNTFs of N frame elements
in C

d, the equiangular frames are those with minimal coherence. In fact, �.F/
is the Welch bound if the FUNTF is equiangular. Note that (5.9) implies that an
equiangular frame must satisfy N � d2, see [104].

Gabor analysis is centered on the interplay of the Fourier transform, translation
operators, and modulation operators. Recall that for a given a function g W Z=NZ !
C, we let �jg.l/ D g.l � j/ and ek.l/ D e2� ikl=N , for l D 0; 1; : : :;N � 1, denote
translation and modulation on g, respectively. Let > denote the transpose operator.
The N 
 N2 Gabor matrix, G, generated by g, is defined as

G.g/ D ŒG0jG1j 	 	 	 jGN�1� ; (5.10)

where each Gj is the N 
 N matrix,

Gj D �
e0�j�Ngje1�j�Ngj 	 	 	 jeN�1�j�Ng

�
;



200 J.J. Benedetto and M.J. Begué

and where each .ek�j�N/
> is the N 
 1 column vector, k D 0; 1; : : :;N � 1.

Next, we introduce the notation,

.g/jk D ek�j�Ng D 	
ek.0/�j�Ng.0/; ek.1/�j�Ng.1/; : : :; ek.N � 1/�j�Ng.N � 1/
> :

We identify the Gabor matrix G.g/ with the set of all these vectors, and so we write

Gg D f.g/jkgN�1
k;jD0:

This set, Gg, of vectors is referred to as the Gabor system generated by g, with
corresponding Gabor matrix G.g/. Clearly, if g W Z=NZ ! C, then Gg consists
of N2 vectors each of length N, corresponding to all N2 time-frequency shifts in
Z=NZ 
 1Z=NZ.

The following is elementary to prove, see [87].

Theorem 8. Given g W Z=NZ ! C, not identically zero. Then, Gg is a tight frame
for CN.

In this case of Theorem 8, the Gabor system, Gg, is called a Gabor frame for CN ,
see [87].

Given g W Z=NZ ! C, not identically zero. Then, for Gg, the Gabor frame for
C

N , (5.9) becomes

s
N2 � N

N.N2 � 1/ D 1p
N C 1

� �.Gg/:

The notion of coherence is useful in obtaining sparse solutions to systems of
equations. It is well known that for a full rank matrix A 2 C

n�m with n < m, there
is an infinite number of solutions, x 2 C

m, to the system Ax D b. One is interested,
especially in the context of signal processing and image compression, in finding the
sparsest such solution, x, to the linear system. One measure of sparsity of x is by
counting the number of nonzero elements, denoted by the `0 “norm”,

kxk0 D #fi W x.i/ ¤ 0g:

The sparsest solution to the system Ax D b depends on the coherence of the set of
column vectors corresponding to A. A basic theorem is the following.

Theorem 9. If x is a solution to Ax D b, and

kxk0 <
1

2

�
1C 1

�.A/

�
; (5.11)

then x is the unique sparsest solution to Ax D b, e.g., [31].
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Furthermore, the Orthogonal Matching Pursuit (OMP) algorithm constructs x, see
[20, 31].

Example 5. We combine Gabor frames, Theorem 9, discrete ambiguity functions,
and properties of Alltop and Björck sequences in the following way. The coherence
of a Gabor frame, Gg, has an elementary formulaic identity to the discrete ambiguity
function of g. Thus, �.Gap/ and �.Gbp/ are of order 1=

p
p by the comments in

Section 5.3. Hence, these values are optimally small because of Welch’s theorem,
see (5.9).

Consequently, if we let n D p and m D p2 in the setup of Theorem 9, we see
that the right side of (5.11) is essentially as large as possible. Thus, the right side
of (5.11) is of order 1=2.1 C p

p/. Therefore, a large domain is established with
regard to unique sparse solutions of Ax D b.

5.5.2 The HRT conjecture

Let g 2 L2.R/ and let � D f.˛k; ˇk/gN
kD1 � R

2 be a collection of N distinct points.
The Gabor system generated by g and � is the set,

G .g; �/ D fe2� iˇkxg.x � ˛k/gN
kD1:

In [57, 58], the Heil, Ramanathan, and Topiwala (HRT) conjecture is stated as
follows: Given g 2 L2.R/ n f0g and � D f.˛k; ˇk/gN

kD1 as above; then G .g; �/
is a linearly independent set of functions in L2.R/. In this case, we shall say that the
HRT conjecture holds for G .g; �/.

Despite its simple statement, the HRT conjecture remains an open problem. On
the other hand, some special cases for its validity are known, see [9, 15, 37, 38, 58,
78, 82].

Among the results in [15], the authors prove that the HRT conjecture holds in the
setting of ultimately positive functions.

Definition 16. We say that a function f W R ! C is ultimately positive if

9x0 > 0 such that 8x > x0; f .x/ > 0:

The HRT results for such functions rely on Kronecker’s theorem in Diophantine
approximations.

Theorem 10 (Kronecker’s theorem). Let fˇ1; : : :; ˇNg � R be a linearly indepen-
dent set over Q, and let �1; : : :; �N 2 R. If U; � > 0, then there exist p1; : : :; pN 2 Z

and u > U such that

8k D 1; : : :;N; jˇk � pk � �kj < �;
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and, therefore,

8k D 1; : : :;N; je2� iˇku � e2� i�k j < 4��:

One proof of Kronecker’s theorem relies on the Bohr compactification, [12,
Theorem 3.2.7]; see [56, Chapter 23], [71, 74] for different proofs.

We shall use the following lemmas in the proof of Theorem 11.

Lemma 1. Let P be a property that holds for almost every x 2 R. For every
sequence fungn2N � R, there exists a measurable set E � R such that jR n Ej D 0

and P holds for x C un for each .n; x/ 2 N 
 E.

Proof. If E D T
n2Nfx W P.x C un/ holdsg, then P holds for x C un for each

.n; x/ 2 N 
 E. We know that jfx W P.x C un/ failsgj D 0 for each n 2 N, and
so
ˇ̌S

n2Nfx W P.x C un/ failsgˇ̌ D 0, i.e., jR n Ej D 0. ut
Lemma 2. If A W R2 ! R

2 is a surjective linear transformation with det A D 1,
then there exists a unitary transformation UA W L2.R/ ! L2.R/ such that

UAeb�a D cA.a; b/ev�uUA;

where .u; v/ D A.a; b/ and cA.a; b/ has the property that jcA.a; b/j D 1.

The operators UA are metaplectic transforms, and form a group of linear
transformations of L2.R/ onto itself. Translations, modulations, dilations, and the
Fourier transform are all examples of metaplectic transforms on L2.R/.

Theorem 11 (HRT for ultimately positive functions). Let g 2 L2.R/ be ulti-
mately positive and let � D f.˛k; ˇk/gN

kD0 � R
2 be a set of distinct points with the

property that fˇ0; : : :; ˇNg is linearly independent over Q. Then, the HRT conjecture
holds for G .g; �/.

Proof. i. We begin by simplifying the setting. First notice that if fˇ0; : : :; ˇNg
is linearly independent over Q then fˇ1 � ˇ0; : : :; ˇN � ˇ0g is also linearly
independent over Q. Furthermore, there exists a linear transformation, A, on
R
2 sending .˛0; ˇ0/ to .0; 0/ and associated metaplectic transform, U D UA.

Then by [15, Lemma 1.3], G .g; �/ is linearly independent in L2.R/ if and only
if G .Ug;A.�// is linearly independent in L2.R/. Consequently, without loss
of generality, we may assume .˛0; ˇ0/ D .0; 0/ and fˇ1; : : :; ˇNg is linearly
independent over Q.
We suppose that G .g; �/ is linearly dependent in L2.R/ and obtain a contradic-
tion.

ii. Since G .g; �/ is linearly dependent, there exist constants c1; : : :; cN 2 C not all
zero such that

g.x/ D
NX

kD1
cke2� iˇkxg.x � ˛k/ a:e: (5.12)
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In fact, we can take each ck 2 C n f0g.
By Kronecker’s theorem (Theorem 10) and the linear independence of
fˇ1; : : :; ˇNg over Q, there exists a sequence fungn2N � R such that
limn!1 un D 1, and

8k D 1; : : :;N; lim
n!1 e2� iˇkun D e2� i�k ; (5.13)

where each

�k D �k C 1=4 and
ck

jckj D e�2� i�k ;

i.e., we have chosen each �k in the application of Theorem 10 so that e2� i�k D
jckji=ck. Therefore, from (5.13), we compute

8k D 1; : : :;N; lim
n!1 cke2� iˇkun D jckji: (5.14)

Then, by Lemma 1, there exists a set X � R with jR n Xj D 0 such that

8.n; x/ 2 N 
 X; g.x C un/ D
NX

kD1
cke2� iˇk.xCun/g.x C un � ˛k/: (5.15)

iii. Without loss of generality, we may assume that 0 2 X, for if not, then we
can replace g with a translated version of g. Since g is ultimately positive and
un ! 1, then we may also assume without loss of generality that

8n 2 N and 8k D 0; 1; : : :;N; g.un � ˛k/ > 0

by simply replacing fungn2N with a subsequence for which this property does
hold. Then, by the positivity of g, we divide both sides of (5.15) by g.x C un/

and evaluate at x D 0 to obtain

1 D
NX

kD1
cke2� iˇkun

g.un � ˛k/

g.un/
D

NX

kD1

	jckji C cke2� iˇkun � jckji

 g.un � ˛k/

g.un/

(5.16)

�
ˇ̌
ˇ̌
ˇ

NX

kD1
jckji g.un � ˛k/

g.un/

ˇ̌
ˇ̌
ˇ
�
ˇ̌
ˇ̌
ˇ

NX

kD1
.cke2� iˇkun � jckji/g.un � ˛k/

g.un/

ˇ̌
ˇ̌
ˇ

�
NX

kD1
jckjg.un � ˛k/

g.un/
�

NX

kD1
jckj

ˇ̌
ˇ̌e2� iˇkun � jckj

ck
i

ˇ̌
ˇ̌ g.un � ˛k/

g.un/
;

since jcd � jcjij D jcj jd � jcji=cj for c 2 C n f0g and d 2 C.
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Now set � D 1=.8�/ and apply Theorem 10 to assert that

9U > 0 such that 8un > U and 8k D 1; ::;N;

ˇ̌
ˇ̌e2� iˇkun � jckj

ck
i

ˇ̌
ˇ̌ <

1

2
:

This, combined with (5.16), gives

8un > U; 2 �
NX

kD1
jckjg.un � ˛k/

g.un/
:

Hence, fg.un � ˛k/=g.un/gn2N is a bounded sequence for each k D 1; : : :;N.
Therefore there exists a subsequence fvngn2N of fungn2N and rk 2 R, k D 1; : : :;N,
such that

8k D 1; : : :;N; lim
n!1

g.vn � ˛k/

g.vn/
D rk:

Then, by the equality of (5.16) and by (5.14), we have

1 D lim
n!1

NX

kD1
cke2� iˇkvn

g.vn � ˛k/

g.vn/
D

NX

kD1
jckjrki:

The left side is real and the right side is imaginary, giving the desired contradiction.
ut

Definition 17. We say that a function f W R ! R is ultimately decreasing if

9x0 > 0 such that 8y > x > x0; f .y/ � f .x/:

See Figure 5.1 for an illustration of an ultimately positive and ultimately decreasing
function on R.

Kronecker’s theorem can also be used to prove that the HRT conjecture holds for
a four-element Gabor system generated by an ultimately positive function if g.x/
and g.�x/ are also ultimately decreasing.

Fig. 5.1 An illustration of an ultimately positive and ultimately decreasing function.
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Theorem 12. Let g 2 L2.R/ have the properties that g.x/ and g.�x/ are ultimately
positive and ultimately decreasing, and let � D f.˛k; ˇk/g3kD0 � R

2 be a set of
distinct points. Then, the HRT conjecture holds for G .g; �/.

The proof in [15] is omitted here.
Because of the importance of various independent sets in harmonic analysis,

Kronecker’s theorem motivates the following definition.

Definition 18. Let E � OR be compact, and let C.E/ be the space of complex-valued
continuous functions on E. The set E is a Kronecker set if

8� > 0 and 8' 2 C.E/ for which 8x 2 E; j'.x/j D 1; 9x 2 R such that 8� 2 E;

j'.�/ � e2� ix� j < �:
The resemblance to Kronecker’s theorem is apparent. Further, it is clear from

Definition 18 how to define Kronecker sets for E � � , a LCAG. In this setting and
going back to the definition of strict multiplicity in Definition 3, we say that a closed
set E � � is a Riemann set of uniqueness, or U-set, if it is not a set of multiplicity,
i.e., it is not a closed set, F, for which A00.� / \ A0.F/ ¤ f0g. Here, A00.� / D fT 2
A0.� / W OT 2 L1.G/ vanishes at infinityg, and A0.F/ D fT 2 A0.� / W supp.T/ � Fg.
This definition of a U-set is correct but not highly motivated; however, see [12] for
history, motivation, open problems, and important references.

From the point of view of Kronecker’s theorem, it is interesting to note that
Kronecker sets are sets of strong spectral resolution, i.e., A0.E/ D Mb.E/, and these,
in turn, are U-sets (Malliavin, 1962). There are many other intricacies and open
problems in this area combining harmonic analysis, in particular, spectral synthesis,
with number theory, see [11, 11, 12, 65, 67, 71, 81, 83, 95].

5.6 Short-time Fourier transform frame inequalities on R
d

Let g0.x/ D 2d=4e��kxk2 . Then G0.�/ D Og0.�/ D 2d=4e��k�k2 and kg0kL2.Rd/ D 1,
see [16] for properties of g0.

Definition 19. The Feichtinger algebra, S0.R
d/, is defined as

S0.R
d/ D ff 2 L2.Rd/ W kf kS0.Rd/ D ��Vg0 f

��
L1.R2d/

< 1g:

The Fourier transform of S0.R
d/ is an isometric isomorphism onto itself, and, in

particular, f 2 S0.R
d/ if and only if F 2 S0. ORd/, see, e.g., [40–42, 44, 51].

The Feichtinger algebra provides a natural setting for proving non-uniform
sampling theorems for the STFT analogous to Beurling’s non-uniform sampling
theorem, Theorem 3, for Fourier frames. This setting extends to more general
modulation spaces. The theories for the STFT and modulation spaces are given
in [51].
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The following is Gröchenig’s non-uniform Gabor frame theorem, and it was also
influenced by earlier work with Feichtinger, see [50, Theorem S] and [51], cf. [43,
44] for a precursor of this result.

Theorem 13. Given any g 2 S0.R
d/. There is r D r.g/ > 0 such that if E D

f.sn; 
n/g1nD1 � R
d 
 ORd is a separated sequence with the property that

1[

nD1
B..sn; 
n/; r.g// D R

d 
 ORd;

then the frame operator S D Sg;E defined by

Sg;Ef D
1X

nD1
hf ; �sn e
n gi�sn e
n g;

is invertible on S0.R
d/. Further, every f 2 S0.R

d/ has a non-uniform Gabor
expansion,

f D
1X

nD1
hf ; �sn e
n giS�1g;E.�sn e
n g/;

where the series converges unconditionally in S0.R
d/.

It should be noted that the set E depends on g.
The following is proved in [6] and can be compared with Theorem 13.

Theorem 14. Let E D f.sn; 
n/g1nD1 � R
d 
 ORd be a separated sequence; and let

� � ORd
R
d be an S-set of strict multiplicity that is compact, convex, and symmetric

about 0 2 ORd 
R
d. Assume balayage is possible for .E; �/. Further, let g 2 L2.Rd/,

Og D G, have the property that kgkL2.Rd/ D 1. We have that

9A;B > 0; such that 8f 2 S0.R
d/; for which supp.bVgf / � �;

A kf k2L2.Rd/ �
1X

nD1
jVgf .sn; 
n/j2 � B kf k2L2.Rd/ :

Consequently, the frame operator S D Sg;E is invertible in L2.Rd/-norm on the

subspace of S0.R
d/, whose elements f have the property that supp.bVgf / � �.

Moreover, every f 2 S0.R
d/ satisfying the support condition, supp.bVgf / � �,

has a non-uniform Gabor expansion,

f D
1X

nD1
hf ; �sn e
n giS�1g;E.�sn e
n g/;
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where the series converges unconditionally in L2.Rd/.

It should be noted that here the set E does not depend on g.

Example 6. In comparing Theorem 14 with Theorem 13, a possible weakness of
the former is the dependence of the set E on g, whereas a possible weakness of the
latter is the hypothesis that supp.bVgf / � �. We now show that this latter constraint
is of no major consequence.

Let f ; g 2 L1.Rd/ \ L2.Rd/. We know that Vgf 2 L2.Rd 
 ORd/, and

bVgf .�; z/ D
Z

ORd

Z

Rd

�Z

Rd
f .t/g.t � x/e�2� it
! dt

�
e�2� i.x
�Cz
!/ dx d!:

The right side is

Z

ORd

Z

Rd
f .t/

�Z

Rd
g.t � x/e�2� ix
� dx

�
e�2� it
!e�2� iz
! dt d!;

where the interchange in integration follows from the Fubini-Tonelli theorem and
the hypothesis that f ; g 2 L1.Rd/. This, in turn, is

Og.��/ R ORd

	R
Rd f .t/e�2� it
�e�2� it
! dt



e�2� iz
! d!

D Og.��/ R ORd
Of .� C !/e�2� iz
! d! D e�2� iz
� f .�z/Og.��/:

Consequently, we have shown that

8f ; g 2 L1.Rd/ \ L2.Rd/; bVgf .�; z/ D e�2� iz
� f .�z/Og.��/: (5.17)

Let d D 1 and let � D Œ�˝;˝� 
 Œ�T;T� � ORd 
 R
d. We can choose g 2

PWŒ�˝;˝�, where Og is even and smooth enough so that g 2 L1.R/. For this window,
g, we can take any even f 2 L2.R/ which is supported in Œ�T;T�. Equation (5.17)
applies. Consequently, in this case, supp.bVgf / � �. Clearly, this particular example
can be extended significantly, whence our assertion that the hypothesis, supp.bVgf / �
�, in Theorem 14 is of no major consequence.

5.7 Pseudo-differential operator frame inequalities on R
d

Let 
 2 S 0.Rd 
 ORd/. The operator, K
 , formally defined as

.K
 f /.x/ D
Z

ORd

.x; �/Of .�/e2� ix
� d�;
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is the pseudo-differential operator with Kohn-Nirenberg symbol, 
 , see [51]
Chapter 14, [52] Chapter 8, [62], and [102]. For consistency with the notation and
setting of the previous sections, we shall define pseudo-differential operators, Ks,
with tempered distributional Kohn-Nirenberg symbols, s 2 S 0.Rd 
 ORd/, as

.KsOf /.�/ D
Z

R

s.y; �/f .y/e�2� iy
� dy:

Furthermore, we shall deal with Hilbert-Schmidt operators, K W L2. ORd/ ! L2. ORd/;
and these, in turn, can be represented as K D Ks, where s 2 L2.Rd 
 ORd/. Recall
that K W L2. ORd/ ! L2. ORd/ is a Hilbert-Schmidt operator if

1X

nD1
kKenk2

L2. ORd/
< 1

for some orthonormal basis, feng1nD1, for L2. ORd/, in which case the Hilbert-Schmidt
norm of K is defined as

kKkHS D
 1X

nD1
kKenk2

L2. ORd/

!1=2
;

and kKkHS is independent of the choice of orthonormal basis.
The following theorem on Hilbert-Schmidt operators can be found in [94].

Theorem 15. If K W L2. ORd/ ! L2. ORd/ is a bounded linear mapping and
.K Of /.�/ D R

ORd m.�; �/Of .�/ d�, for some measurable function m, then K is a Hilbert-

Schmidt operator if and only if m 2 L2. OR2d/ and, in this case, kKkHS D kmkL2.R2d/.

The following theorem about pseudo-differential operator frame inequalities is
proved in [6].

Theorem 16. Let E D fxng � R
d be a separated sequence, that is symmetric about

0 2 R
d; and let � � ORd be an S-set of strict multiplicity, that is compact, convex,

and symmetric about 0 2 ORd. Assume balayage is possible for .E; �/. Furthermore,
let K be a Hilbert-Schmidt operator on L2. ORd/ with pseudo-differential operator
representation,

.K Of /.�/ D .KsOf /.�/ D
Z

Rd
s.y; �/f .y/e�2� iy
� dy;

where s� .y/ D s.y; �/ 2 L2.Rd 
 ORd/ is the Kohn-Nirenberg symbol and where we
furthermore assume that

8� 2 ORd; s� 2 Cb.R
d/ and supp.s�e�� /O� �:
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Then,

9A;B > 0 such that 8f 2 L2.Rd/ n f0g;

A

���KsOf
���
4

L2. ORd/

kf k2L2.Rd/

�
X

x2E

jh.KsOf /.	/; s.x; 	/ex.	/ij2 � B ksk2
L2.Rd� ORd/

���KsOf
���
2

L2. ORd/
:

Example 7. We shall define a Kohn-Nirenberg symbol class whose elements, s,
satisfy the hypotheses of Theorem 16.

Choose f�jg � int.�/, where � is as described in Theorem 16. Choose fajg �
Cb.R

d/ \ L2.Rd/ and fbjg � Cb. ORd/ \ L2. ORd/ with the following properties:

i.
P1

jD1 jaj.y/bj.y/j is uniformly bounded and converges uniformly on R
d 
 ORd;

ii.
P1

jD1
�
�aj

�
�

L2.Rd/

�
�bj

�
�

L2. ORd/
< 1;

iii. 8j 2 N, 9�j > 0 such that B.�j; �j/ � � and supp.Oaj/ � B.0; �j/.

These conditions are satisfied for a large class of functions aj and bj.
The Kohn-Nirenberg symbol class consisting of functions, s, defined by

s.y; �/ D
1X

jD1
aj.y/bj.�/e

�2� iy
�j

satisfy the hypotheses of Theorem 16. To see this, first note that condition i
guarantees that if we set s� .y/ D s.y; �/, then

8� 2 ORd; s� 2 Cb.R
d/:

Condition ii allows us to assert that s 2 L2.Rd 
 ORd/ since Minkowski’s inequality
can be used to make the following estimate:

kskL2.Rd� ORd/
�
1X

jD1

�Z

ORd

Z

Rd

ˇ̌
bj.�/aj.y/e

�2� iy
.�j��/ ˇ̌2 dy d�

�1=2

D
1X

jD1

��aj

��
L2.Rd/

��bj

��
L2. ORd/

:

Finally, using condition iii, we obtain the support hypothesis, supp.s�e�� /O� �, of
Theorem 16 for each � 2 ORd, because of the following calculations:

supp.s�e�� /O.!/ D
1X

jD1
bj.�/.Oaj � ı��j/.!/
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and, for each j,

supp.Oaj � ı��j/ � B.0; �j/C f�jg � B.�j; �j/ � �:

Remark 5. Pfander and collaborators combine the theory of Gabor frames and
Hilbert-Schmidt operators to obtain results in operator sampling. The goal of
operator sampling is to determine an operator completely from its action on a single
input function or distribution. The question of determining which operators can be
identified in this way was addressed in basic work of Kailath [68–70] and Bello [10],
who found that the identifiability of a communication channel is characterized by
the area of the support of its so-called spreading function. The spreading function,
�H.t; 	/, of the Hilbert-Schmidt operator, H, on L2.R/ is the symplectic Fourier
transform of its Kohn-Nirenberg symbol, 
 , viz,

�H.t; 	/ D
Z

OR

Z

R


.x; �/Of .�/e�2� i.	x�� t/ dx d� I

and we have the representation,

Hf .x/ D
Z

R

Z

OR
�H.t; 	/�te	 f .x/ d	 dt:

In this sense, an operator H whose spreading function has compact support can
be said to have a bandlimited symbol. This motivates the definition of an operator
Paley-Wiener space and an associated sampling theorem [89]. The aforementioned
communications application was put on a firm mathematical footing, first proving
Kailath’s conjectures in [77] (Kozek and Pfander) and then proving Bello’s asser-
tions in [89] (Pfander and Walnut). Results and an overview of the subject are given
in [88, 90].

Appendix

The Classical Sampling Theorem goes back to papers by Cauchy (1840s), see [13,
Theorem 3.10.10] for proofs of Theorem 17. It has had a significant impact on
various topics in mathematics, including number theory and interpolation theory,
long before Shannon’s application of it in communications.

Theorem 17 (Classical Sampling Theorem). Let T; ˝ > 0 satisfy the condition
that 0 < 2T˝ � 1, and let s be an element of the Paley-Wiener space PW1=.2T/

satisfying the condition that Os D S D 1 on Œ�˝;˝� and S 2 L1. OR/. Then

8f 2 PW˝; f D T
X

n2Z
f .nT/�nTs; (5.18)
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where the convergence of (5.18) is in the L2.R/ norm and uniformly in R. One
possible sampling function s is

s.t/ D sin.2�˝t/

� t
:

We can compute Fourier transforms numerically using the following result,
whose proof, see [14], requires Theorem 17.

Theorem 18. Let T; ˝ > 0 satisfy the property that 2T˝ D 1, let N � 2 be an
even integer, and let f 2 PW˝ \ L1.R/. Consider the dilation fT.t/ D Tf .Tt/ as a
continuous function on R, as well as a function on Z defined by m 7! fT Œm�, where
fT Œm� D fT.m/. Assume that fT 2 `1.Z/. Then for every integer n 2 Œ� N

2
; N
2
�, we

have

Of
�
2˝n

N

�
D Of

� n

NT

�
D

N�1X

mD0
.fT/
ı
N Œm�W

mn
N ; (5.19)

where WN D e�2� i=N and .fT/ıN Œm� D
X

k2Z
fT Œm � kN�.

In practice, the computation (5.19) requires natural error estimates and the FFT.
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Chapter 6
The Fundamentals of Spectral Tetris Frame
Constructions

Peter G. Casazza and Lindsey M. Woodland

Abstract In Casazza et al. (Appl. Comput. Harmon. Anal. 30(2), 175–187, 2011),
Casazza, Fickus, Mixon, Wang and Zhou introduced a fundamental method for
constructing unit norm tight frames, which they called Spectral Tetris. This was
a significant advancement for finite frame theory - especially constructions of finite
frames. This paper then generated a vast amount of literature as Spectral Tetris was
steadily developed, refined, and generalized until today we have a complete picture
of what are the broad applications as well as the limitations of Spectral Tetris. In this
paper, we will put this vast body of literature into a coherent theory.
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6.1 Introduction

Hilbert space frames were introduced by Duffin and Schaeffer in [16] while studying
deep questions in non-harmonic Fourier series. Today they have broad application
to problems in pure mathematics, applied mathematics, engineering, medicine and
much more. Due to the redundancy, flexibility and stability of a frame, frame
theory has proven to be a powerful area of research with applications to a wide
array of fields, including signal processing, noise and erasure reduction, compressed
sensing, sampling theory, data quantization, quantum measurements, coding, image
processing, wireless communications, time-frequency analysis, speech recognition,
bio-imaging, and much more. The reader is referred to [3] and references therein for
further information regarding these topics. A fundamental problem for applications
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of frames is to construct frames with the necessary properties for the application.
This can often be very difficult if not impossible in practice.

In [9], Casazza, Fickus, Mixon, Wang and Zhou introduced a construction
technique for unit norm tight frames, which they called Spectral Tetris. Prior to this
technique only ad-hoc methods were used to construct desired frames and in many
cases the theory relied on existence proofs. Since [9], there has been a flurry of
activity around Spectral Tetris as it was steadily developed, refined, and generalized
until today we have necessary and sufficient conditions for the frames and fusion
frames for which Spectral Tetris can construct. In this paper we will put this vast
quantity of literature into a coherent theory so that researchers will be able to quickly
tell if these methods will work for their problems.

The present paper is divided into two main parts: the first half introduces
finite frame theory and then develops the progression of Spectral Tetris frame
constructions while the second half introduces and analyzes the algorithms used
to construct Spectral Tetris fusion frames.

6.2 Spectral Tetris Frame Constructions

Before Spectral Tetris is introduced, we will briefly discuss the basics of finite frame
theory. After this, we then illustrate Spectral Tetris through an example as it is
applied to unit norm tight frames. From here, the Spectral Tetris algorithm is further
generalized in each concurrent subsection until finally in Subsection 6.2.7 Spectral
Tetris frames are completely characterized. We have included the progression of
Spectral Tetris as many of the specialized cases throughout are easier to implement
than the general form and hence could be of particular interest to some researchers.

6.2.1 Hilbert Space Frames

We now introduce the basics of finite frame theory.

Definition 2.1. A family of vectors ffngN
nD1 in an M-dimensional Hilbert space HM

is a frame if there are constants 0 < A � B < 1 so that for all x 2 HM ,

Akxk2 �
NX

nD1
jhx; fnij2 � Bkxk2;

where A and B are the lower and upper frame bounds, respectively.

(1) In the finite dimensional setting, a frame is simply a spanning set of vectors in
the Hilbert space.

(2) The optimal lower frame bound and optimal upper frame bound, denoted Aop

and Bop, are the largest lower frame bound and the smallest upper frame bound,
respectively.
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(3) If A D B is possible, then ffngN
nD1 is a tight frame. Moreover, if A D B D 1 is

possible, then ffngN
nD1 is a Parseval frame.

(4) If there is a constant c so that kfnk D c for all n D 1; : : : ;N then ffngN
nD1 is an

equal norm frame. Moreover, if c D 1 then ffngN
nD1 is a unit norm frame.

(5) fhx; fnigN
nD1 are called the frame coefficients of the vector x 2 HM with respect

to frame ffngN
nD1.

(6) We will refer to a unit norm, tight frame as a UNTF.

If ffngN
nD1 is a frame for HM , then the analysis operator of the frame is the

operator T W HM ! `2.N/ given by

T.x/ D fhx; fnigN
nD1

and the synthesis operator is the adjoint operator, T�, which satisfies

T�
	fangN

nD1

 D

NX

nD1
anfn:

The frame operator is the positive, self-adjoint, invertible operator S D T�T on HM

and satisfies

S.x/ D T�T.x/ D
NX

nD1
hx; fnifn:

That is, ffngN
nD1 is a frame if and only if there are constants 0 < A � B < 1 such

that its frame operator S satisfies AI � S � BI where I is the identity on HM .
A frame has a certain spectrum or certain eigenvalues if its frame operator S has

this spectrum or respectively these eigenvalues. Note that the spectrum of a frame
operator S is positive and real. Also, the smallest and largest eigenvalues of a
frame operator S coincide with the optimal lower and upper frame bounds. For any
frame with spectrum f�mgM

mD1, the sum of its eigenvalues counting multiplicities,
equals the sum of the squares of the norms of its vectors:

MX

mD1
�m D

NX

nD1
jjfnjj2:

This quantity will be exactly the number of vectors N when we work with unit norm
frames.

Definition 2.2. Let N � M > 0 and let the real values �1; : : : ; �M � 2 satisfyPM
mD1 �m D N (unit norm). Then the class of unit norm frames ffngN

nD1 in HM whose
frame operator has eigenvalues �1; : : : ; �M will be denoted by F

	
N; f�mgM

mD1


.

Remark 2.3. Later in Corollary 2.10, we will see that the sets F
	
N; f�mgM

mD1



are
non-empty.
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Proposition 2.4. If ffngN
nD1 is a UNTF for HM then the frame bound will be c D N

M .

To each frame we can associate the matrix of its synthesis operator, where the
columns correspond to the frame vectors represented against an orthonormal basis
for HM . Note, any rank M, M
N matrix with N � M represents the synthesis matrix
of some frame; however, this arbitrary matrix representation may not have many
useful properties in applications. If instead the frame vectors are represented against
the eigenbasis of its frame operator S then the frame operator can be represented via
a diagonal matrix for which its eigenvalues are the diagonal entries.

Theorem 2.5 ([3]). Let T W HM ! `2.N/ be a linear operator, let femgM
mD1 be an

orthonormal basis for HM, and let f�mgM
mD1 be a sequence of positive numbers. Let

B� denote the M 
 N matrix representation of T� with respect to femgM
mD1 and the

standard basis fOengN
nD1 of `2.N/. Then the following conditions are equivalent.

(1) fB� OengN
nD1 forms a frame for HM whose frame operator has eigenvectors

femgM
mD1 and associated eigenvalues f�mgM

mD1.
(2) The rows of B� are orthogonal and the m-th row square sums to �m.
(3) The columns of B� form a frame for `2.N/ and B�B D diag.�1; : : : ; �M/, where

B�B represents the frame operator and “diag” is the diagonal operator with
diagonal values f�mgM

mD1.

Applying Theorem 2.5 to a UNTF yields the following characteristics: the frame
operator is a scalar multiple of the identity, the rows of the synthesis matrix all
square sum to the same constant and the columns must all square sum to one.
Because of these characteristics, in the present paper we only consider frames
represented with respect to the eigenbasis of the frame operator. One can relax
this condition but little information is then available from the representation of the
frame vectors. Also, sparsity is very sensitive to the basis with respect to which we
represent the frame vectors.

Theorem 2.5 also justifies calling such a matrix a frame matrix or just a frame
and hence we will use the term frame interchangeably to mean a frame or a frame
matrix.

Definition 2.6. Given an M 
 N frame matrix T� D Œf1 	 	 	 fN � representing an
N-element frame in HM against the eigenbasis of its frame operator, we have the
following:

(1) The support size of a row is the number of nonzero entries in that row.
(2) The support of a frame vector fn, denoted supp fn, is the index set of the nonzero

entries.

With the necessary definitions from finite frame theory needed for the present
paper complete, we refer the interested reader to [3, 15] for a more in-depth study
on the topic.
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6.2.2 Before Spectral Tetris

Before introducing the Spectral Tetris construction technique, it is important to men-
tion previous frame construction methods. In particular, one well known theorem
used for frame construction illustrates how to construct a Parseval frame from the
knowledge of an existing Parseval frame. Consider the following construction: for
N � M, given an N 
 N unitary matrix, if any M rows are selected from this matrix
then the column vectors from these rows form a Parseval frame for HM . Moreover,
the leftover set of N � M rows, also has the property that its N columns form a
Parseval frame for HN�M . The next theorem, known as Naimark’s Theorem, utilizes
this type of operation and is one of the most fundamental results in frame theory.

Theorem 2.7 (Naimark’s Theorem [3]). Let F D ffngN
nD1 be a frame for HM with

analysis operator T, let fengN
nD1 be the standard basis of `2 .N/, and let P W `2 .N/ !

`2 .N/ be the orthogonal projection onto range .T/. Then the following conditions
are equivalent:

(1) ffngN
nD1 is a Parseval frame for HM.

(2) For all n D 1; : : : ;N, we have Pen D Tfn.
(3) There exist  1; : : : ;  N 2 HN�M such that ffn ˚  ngN

nD1 is an orthogonal basis
of HN.

Moreover, if (3) holds, then f ngN
nD1 is a Parseval frame for HN�M. If f 0ngN

nD1
is another Parseval frame as in (3), then there exists a unique linear operator L on
HN�M such that L n D  0n; for all n D 1; : : : ;N, and L is unitary.

Explicitly, we call f ngN
nD1 the Naimark Complement of F.

Naimark’s Theorem has its limitations as it requires the use of a previously
known Parseval frame and only constructs Parseval frames. However, prior to
Spectral Tetris, more general construction methods did not exist and instead the
field relied on existence theorems, which fail to give precise details about desired
frames. Existence results, such as the Schur-Horn Theorem, can be found in [4, 5, 7].
Preceding these papers, variations of the Schur-Horn theorem had appeared in the
literature although they were in forms which were indistinguishable at the time. For
a frame theoretic based proof of the Schur-Horn theorem, see [4, 5].

Definition 2.8. After arranging both sequences, fangN
nD1 and f�mgM

mD1, in non-
increasing order, if

Pn
iD1 a2i � Pn

iD1 �i for every n D 1; : : : ;M and
PN

iD1 a2i DPM
iD1 �i, then f�mgM

mD1 majorizes fa2ngN
nD1. We denote this by f�mgM

mD1 � fa2ngN
nD1.

Moreover, if M ¤ N, pad the shorter sequence with zeroes until the lengths are the
same.

Theorem 2.9 (Schur-Horn Theorem [5]). Let S be a positive, self-adjoint opera-
tor on HM, and let �1 � �2 � 	 	 	 � �M > 0 be the eigenvalues of S. Further, let
N � M, and let a1 � a2 � 	 	 	 � aN be positive real numbers. The following are
equivalent:
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(1) There exists a frame ffngN
nD1 for HM having frame operator S and satisfying

kfnk D an for all n D 1; 2; : : : ;N.
(2) f�mgM

mD1 � fa2ngN
nD1.

The Schur-Horn theorem provides a straightforward method for determining
when frames exist. As a consequence, N-element equal norm frames exist in HM

for every N � M.

Corollary 2.10 ([7]). For every N � M and every invertible, positive, self-adjoint
operator S on HM there exists an equal norm frame for HM with N-elements and
frame operator S. In particular, there exists an equal norm Parseval frame with N-
elements in HM for every N � M.

Both Theorem 2.9 and Corollary 2.10 guarantee existence of certain frames;
however these theorems provide minimal insight into the construction of such
frames.

6.2.3 Spectral Tetris Frame Constructions: The Basics
of Spectral Tetris

Spectral Tetris was introduced in [9] as a method for constructing sparse, unit norm,
tight frames and sparse, unit weighted, tight fusion frames via a quick and easy to
use algorithm. We start with an example which illustrates the basics of Spectral
Tetris for UNTFs. Note that we will call any frame constructed via Spectral Tetris,
a Spectral Tetris frame.

Definition 2.11. The N-element Spectral Tetris frame in HM with eigenvalues
�1; : : : ; �M � 2 will be denoted by STF .NI�1; : : : ; �M/.

Before we begin the example, recall a few necessary facts. The N-element UNTF
in HM , represented by an M 
 N matrix, must have the following properties:

(1) The columns square sum to one, to obtain unit norm vectors.
(2) The rows are orthogonal, which is equivalent to the frame operator, S, being a

diagonal M 
 M matrix.
(3) The rows have constant norm, to obtain tightness, meaning that S D cI for some

constant c, where I is the M 
 M identity matrix.

One drawback of Spectral Tetris, in its original form, is that it can only construct
frames with redundancy of at least 2, that is N � 2M, where N is the number
of frame elements and M is the dimension of the Hilbert space. For a UNTF, the
unique eigenvalue is N

M and hence the restriction on the redundancy of the frame
equates to the requirement that the unique eigenvalue is at least 2.

The main idea of Spectral Tetris is to iteratively construct a synthesis matrix, T�,
for a UNTF one to two vectors at a time, which satisfies properties (1) and (2) at each
step and gets closer to and eventually satisfies property (3) when complete. When it
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is necessary to build two vectors at a time throughout the Spectral Tetris process,
we will utilize the following 2 
 2 matrix as a building block for our construction:

A .x/ D
� p x

2

p x
2p

1 � x
2

�p1 � x
2


;

where 0 � x � 2.
Notice that A .x/ satisfies the following properties:

(1) the columns of A .x/ square sum to 1,
(2) A .x/ has orthogonal rows,
(3) the square sum of the first row is x.

These properties combined are equivalent to

A .x/A� .x/ D
�

x 0

0 2 � x


:

We start with an example of how the Spectral Tetris algorithm works.

Example 2.12. Use Spectral Tetris to construct a sparse, unit norm, tight frame with
11 elements in H4, so the tight frame bound will be 11

4
. Note, by Corollary 2.10, such

a frame exists.
To do this, create a 4 
 11 matrix T�, which satisfies the following conditions:

(1) The columns square sum to 1.
(2) T� has orthogonal rows.
(3) The rows square sum to 11

4
.

(4) S D T�T D 11
4

I.

Note that (4) follows if (1), (2) and (3) are all satisfied.
Define ti;j to be the entry in the ith row and jth column of T�. With an empty 4
11

matrix, start at t1;1 and work left to right to fill out the matrix. By requirement (1),
the square sum of column one needs to be 1 and by requirement (2) the square sum
of row one needs to be 11

4
� 1. Hence, start by being greedy and put the maximum

weight of 1 in t1;1. This forces the rest of the entries in column 1 to be zero, from
requirement (1). This yields:

T� D

2

66
4

1 	 	 	 	 	 	 	 	 	 	
0 	 	 	 	 	 	 	 	 	 	
0 	 	 	 	 	 	 	 	 	 	
0 	 	 	 	 	 	 	 	 	 	

3

77
5 :

Next, since row one needs to square sum to 11
4

, by (3), and so far row one only
has a total weight of 1, we need to add 11

4
�1 D 7

4
D 1C 3

4
� 1more weight to row

one. Again be greedy and add another 1 in t1;2. This forces the rest of the entries in
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column 2 to be zero, by (1). Also note that row one now has a total square sum of 2.
This yields:

T� D

2

66
4

1 1 	 	 	 	 	 	 	 	 	
0 0 	 	 	 	 	 	 	 	 	
0 0 	 	 	 	 	 	 	 	 	
0 0 	 	 	 	 	 	 	 	 	

3

77
5 :

In order to have a total square sum of 11
4

in the first row, we need to add a total of
11
4

� 2 D 3
4
< 1 more weight. If the remaining unknown entries are chosen so that

T� has orthogonal rows, then S will be a diagonal matrix. Currently, the diagonal
entries of S are mostly unknowns, having the form f2C‹; 	; 	; 	g. Therefore we need
to add 3

4
more weight in the first row without compromising the orthogonality of the

rows of T� nor the normality of its columns. That is, if we get “greedy” and try to

add
q

3
4

to position t1;3 then the rest of row one must be zero, yielding:

T� D

2

6
66
4

1 1

q
3
4
0 0 0 0 0 0 0 0

0 0 	 	 	 	 	 	 	 	 	
0 0 	 	 	 	 	 	 	 	 	
0 0 	 	 	 	 	 	 	 	 	

3

7
77
5
:

In order for column three to square sum to one, at least one of the entries t2;3; t3;3
or t4;3 is non-zero. But then, it is impossible for the rows to be orthogonal and thus
we cannot proceed. Hence, instead add two columns of information in attempts to
satisfy these conditions. The key idea is to utilize our 2 
 2 building block, A .x/.

Define the third and fourth columns of T� according to such a matrix A.x/, where
x D 11

4
�2 D 3

4
. Notice that by doing this, column three and column four each square

sum to one within the first two rows, hence the rest of the unknown entries in these
two columns will be zero. This yields:

T� D

2

6666
4

1 1

q
3
8

q
3
8

	 	 	 	 	 	 	
0 0

q
5
8

�
q

5
8

	 	 	 	 	 	 	
0 0 0 0 	 	 	 	 	 	 	
0 0 0 0 	 	 	 	 	 	 	

3

7777
5
:

The diagonal entries of T� are now f 11
4
; 5
4
C‹; 	; 	g. The first row of T�, and

equivalently the first diagonal entry of S, now have sufficient weight and so its
remaining entries are set to zero. The second row, however, is currently falling short

by 11
4

�
 �q

5
8

�2
C
�

�
q

5
8

�2!

D 6
4

D 1C 2
4
. Since 1C 2

4
� 1, again be greedy

and add a weight of 1 in t2;5. Hence, column five becomes e2. Next, with a weight
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of 2
4
< 1 left to add to row two, utilize the 2 
 2 building block A .x/, with x D 2

4
.

Adding this 2 
 2 block in columns six and seven yields sufficient weight in these
columns and hence we finish these two columns with zeros. This yields:

T� D

2

6666
6
4

1 1

q
3
8

q
3
8
0 0 0 0 0 0 0

0 0

q
5
8

�
q

5
8
1

q
2
8

q
2
8
0 0 0 0

0 0 0 0 0

q
6
8

�
q

6
8

	 	 	 	
0 0 0 0 0 0 0 	 	 	 	

3

7777
7
5
:

The diagonal entries of T� are now f 11
4
; 11
4
; 6
4
C‹; 	g, where the third diagonal

entry, and equivalently the third row, are falling short by 11
4

� 6
4

D 5
4

D 1C 1
4
. Since

1 C 1
4

� 1, then we take the eighth column of T� to be e3. Complete the matrix
following these same strategies by letting the ninth and tenth columns arise from
A
	
1
4



, and making the final column e4, yielding the desired UNTF:

T� D

2

66666
6
4

1 1

q
3
8

q
3
8
0 0 0 0 0 0 0

0 0

q
5
8

�
q

5
8
1

q
2
8

q
2
8
0 0 0 0

0 0 0 0 0

q
6
8

�
q

6
8
1

q
1
8

q
1
8
0

0 0 0 0 0 0 0 0

q
7
8

�
q

7
8
1

3

77777
7
5

:

In this construction, column vectors are either introduced one at a time, such as
columns 1; 2; 5; 8; and 11, or in pairs, such as columns f3; 4g; f6; 7g; and f9; 10g.
Each singleton contributes a value of 1 to a particular diagonal entry of T�, while
each pair spreads two units of weight over two entries. Overall, we have formed a
flat spectrum, f 11

4
; 11
4
; 11
4
; 11
4

g, from blocks of area one or two. This construction is
reminiscent of the game Tetris, as we fill in blocks of mixed area to obtain a flat
spectrum.

6.2.4 Sparsity

Example 2.12 illustrates an important property of the frames that Spectral Tetris
constructs, namely sparsity.

Definition 2.13.

(1) Given a fixed orthonormal basis of HM , a vector in HM which can be
represented by only 0 � k � M basis elements, is called k-sparse.
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(2) Let fejgM
jD1 be an orthonormal basis for HM . Then a frame ffngN

nD1 for HM is
called k-sparse with respect to fejgM

jD1, if for each n 2 f1; : : : ;Ng there exists

Jn � f1; : : : ;Mg such that fn 2 spanfej W j 2 Jng and
PN

nD1 jJnj D k.

In Example 2.12, column one of T� is 1-sparse and the matrix T� is 17-sparse.
The sparsity of T� in Example 2.12 is not ad-hoc; it is shown in [10], that unit

norm tight Spectral Tetris frames are optimally sparse in the sense that given N �
2M, the synthesis matrix of the N-element unit norm, tight Spectral Tetris frame
(UNTSTF) for HM is sparsest among all synthesis matrices of N-element unit norm,
tight frames for HM .

Definition 2.14. Let F be a class of frames for HM , let ffngN
nD1 2 F, and let fejgM

jD1
be an orthonormal basis for HM . Then ffngN

nD1 is optimally sparse in F with respect
to fejgM

jD1 if ffngN
nD1 is k1-sparse with respect to fejgM

jD1 and there does not exist a
frame f ngN

nD1 2 F which is k2-sparse with respect to fejgM
jD1 with k2 < k1.

To prove UNTSTFs are optimally sparse, the following definition and theorem
are required.

Definition 2.15. A finite sequence of real values �1; : : : ; �M is ordered blockwise,
if for any permutation � of f1; : : : ;Mg the set of partial sums fPs

mD1 �m W s D
1; : : :Mg contains at least as many integers as the set fPs

mD1 ��.m/ W s D 1; : : : ;Mg.
The maximal block number of a finite sequence of real values �1; : : : ; �M , denoted
by� .�1; : : : ; �M/, is the number of integers in fPs

mD1 �
.m/ W s D 1; : : : ;Mg, where

 is a permutation of f1; : : : ;Mg such that �
.1/; : : : ; �
.M/ is ordered blockwise.

The following lemma provides a sparsity bound for any frame in F
	
N; f�mgM

mD1



and is instrumental for proving that UNTSTFs are optimally sparse.

Lemma 2.16 ([10]). Let N � M > 0 and let the real values �1; : : : ; �M � 2

satisfy
PM

mD1 �m D N. Then any frame in F
	
N; f�mgM

mD1



has sparsity at least
N C 2 .M � � .�1; : : : ; �M// with respect to any orthonormal basis of HM.

Theorem 2.17 ([10]). Let N � M > 0, then the UNTSTF ffngN
nD1 with real

eigenvalues �1; : : : ; �M � 2 ordered blockwise satisfying
PM

mD1 �m D N is
optimally sparse in F

	
N; f�mgM

mD1



with respect to the standard unit vector basis.
That is, this frame is NC2 .M � � .�1; : : : ; �M//-sparse with respect to the standard
unit vector basis.

Proof ([10]). Let ffngN
nD1 be a UNTSTF with eigenvalues �1; : : : ; �M � 2. We

will first show that its synthesis matrix has block decomposition of order � WD
� .�1; : : : ; �M/. For this, let k0 D 0, and let k1; : : : ; k� 2 N be chosen such that
mi WD Pki

mD1 �m is an integer for every i D 1; : : : ; �. Moreover, let m0 D 0.
Further, note that k� D M and m� D N, since

PM
mD1 �m is an integer by

hypothesis. The steps of Spectral Tetris for computing STF.m1I�1; : : : ; �k1 / and
STF.NI�1; : : : ; �M/ coincide until we reach the entry in the kth

1 row and mth
1

column when computing STF.NI�1; : : : ; �M/. Therefore, the first k1 entries of
the first m1 vectors of both constructions coincide. Continuing the computation
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of STF.N; �1; : : : ; �M/ will set the remaining entries of the first m1 vectors and
also the first k1 entries of the remaining vectors to zero. Thus, any of the first k1
vectors have disjoint support from any of the vectors constructed later on. Repeating
this argument for k2 until k�, we obtain that the synthesis matrix has a block
decomposition of order �; the corresponding partition of the frame vectors being

�[

iD1
ffmi�1C1; : : : ; fmig:

To compute the number of non-zero entries in the synthesis matrix generated by
Spectral Tetris, we let i 2 f1; : : : ; �g be arbitrarily fixed and compute the number of
non-zero entries of the vectors fmi�1C1; : : : ; fmi . Spectral Tetris ensures that each of
the rows ki�1 C 1 up to ki � 1 intersects the support of the subsequent row on a set
of size 2, since in these rows Spectral tetris will always produce a 2 
 2 submatrix
A .x/ for some 0 < x � 2. Thus, there exist 2 .ki � ki�1 � 1/ frame vectors with
two non-zero entries. The remaining .mi � mi�1/ � 2 .ki � ki�1 � 1/ frame vectors
will have only one entry, yielding a total number of .mi � mi�1/C 2 .ki � ki�1 � 1/
non-zero entries in the vectors fmi�1C1; : : : ; fmi .

Summarizing, the total number of non-zero entries in the frame vectors of
ffngN

nD1 is

�X

iD1
.mi � mi�1/C 2 .ki � ki�1 � 1/ D

 
�X

iD1
.mi � mi�1/

!

C 2

 

k� �
 

�X

iD1
1

!!

D N C 2 .M � �/ ;

which by Lemma 2.16 is the maximally achievable sparsity. ut
Although Theorem 2.17 proves that unit norm tight Spectral Tetris frames are

optimally sparse with respect to the standard unit vector basis, a slight modification
to the Spectral Tetris algorithm will construct optimally sparse frames with respect
to any desired orthogonal basis. This sparsity is, however, dependent on the ordering
of the given sequence of eigenvalues for which the Spectral Tetris construction is
performed, which is discussed in upcoming sections.

Remark 2.18. Optimally sparse UNTFs in F
	
N; f�mgM

mD1



are not uniquely deter-
mined. The following is an example of two different UNTFs in F

	
9; f 9

4
g9iD1



which

both achieve the optimal sparsity of 15:
2

666
666
4

1 1

q
1
8

q
1
8

0 0 0 0 0

0 0

q
7
8

�
q

7
8

q
1
4

q
1
4

0 0 0

0 0 0 0

q
3
4

�
q

3
4

q
3
8

q
3
8
0

0 0 0 0 0 0

q
5
8

�
q

5
8
1

3

777
777
5
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and

2

6666
66
4

1

q
5
8

q
5
8

0 0 0 0 0 0

0

q
3
8

�
q

3
8

q
3
8

q
3
8

q
3
8

q
3
8
0 0

0 0 0

q
5
8

�
q

5
8
0 0 1 0

0 0 0 0 0

q
5
8

�
q

5
8
0 1

3

7777
77
5

:

Spectral Tetris not only provides optimally sparse UNTFs, it also yields orthog-
onality between numerous pairs of frame vectors due to their disjoint support. This
can be seen in Example 2.12 where columns ti;j and ti;j0 are orthogonal whenever
jj0 � jj � 5. More generally any UNTSTF, ffngN

nD1, satisfies the orthogonality
condition hfn; fn0i D 0 whenever jn0 � nj � �

N
M

˘ C 3. This is explicitly stated in
the following theorem:

Theorem 2.19 ([9]). For any M;N 2 N such that N � 2M, there exists a UNTF,
ffngN

nD1, for HM with the property that hfn; fn0i D 0 whenever jn0 � nj � �
N
M

˘C 3.

Sparse frames are instrumental in numerous applications as they reduce compu-
tational complexity and also ensure high compressibility of the synthesis matrix-
which then is a sparse matrix. Since high dimensional signals are typically
concentrated on lower dimensional subspaces, it is a natural assumption that the
collected data can be represented by a sparse linear combination of an appropriately
chosen frame. The novel methodology of Compressed Sensing utilizes this obser-
vation to show that such signals can be reconstructed from very few non-adaptive
linear measurements by linear programming techniques. Finite frames thus play an
essential role, both as sparsifying systems and in designing the measurement matrix.
However, a drawback of Spectral Tetris is that it often generates multiple copies of
the same frame vector. For practical purposes, this shall typically be avoided since
the frame coefficients associated with a repeated frame vector do not provide any
new information about the incoming signal.

6.2.5 Spectral Tetris Constructions for Unit Norm Tight
Frames with Redundancy Less than 2

Spectral Tetris provides an easy to use construction method for UNTFs which are
optimally sparse and possess orthogonality relations within the rows and columns.
A potential drawback of Spectral Tetris is that in most cases it requires the frame
to have at least twice as many vectors as the dimension. The following example
illustrates the failure of Spectral Tetris when redundancy is less than 2.

Example 2.20. Use Spectral Tetris to construct a 5-element UNTF in H3. By
Corollary 2.10 such a frame exists. The first step of Spectral Tetris forces column
one to be e1. Next, use the building block A .x/ for positions t1;2; t1;3; t2;2 and t2;3
to get:
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T� D

2

6666
4

1

q
1
8

q
1
8
0 0

0

q
7
8

�
q

7
8
0 0

0 0 0 	 	
0 0 0 	 	

3

7777
5
:

Notice that row two square sums to 7
4

exceeding the required eigenvalue of 5
4
.

Thus Spectral Tetris cannot construct such a UNTF.

However in some scenarios Spectral Tetris can construct UNTFs with redun-
dancy less than 2.

Theorem 2.21 ([14]). For M < N < 2M and � D N
M the following are equivalent:

(1) The Spectral Tetris construction will successfully produce a unit norm tight
frame ffngN

nD1 for HM.
(2) For all 1 � k � M�1, if k� is not an integer, then we have bk�c � .k C 1/ ��2,

where bxc is the greatest integer less than or equal to x.

Theorem 2.21 completely characterizes when Spectral Tetris is able to construct
UNTFs with redundancy less than 2 and because of this importance, the following
example explicitly illustrates these conditions.

Example 2.22. In H4, construct a 6-element UNTF. The tight frame bound is � D
6
4

D 3
2
< 2: Next, check if condition (2) holds: For all 1 � k � 3,

• 1
	
3
2


 D 3
2

is not at integer and
�	

3
2


˘ D 1 � 1 D .1C 1/ 3
2

� 2.
• 2

	
3
2


 D 3 is an integer.
• 3

	
3
2


 D 9
2

is not at integer and
�	

9
2


˘ D 4 � 4 D .3C 1/ 3
2

� 2.

Thus condition (2) holds and therefore Spectral Tetris will construct this frame.
Moreover, the frame constructed by Spectral Tetris is

2

6
66666
4

1

q
1
4

q
1
4
0 0 0

0

q
3
4

�
q

3
4
0 0 0

0 0 0 1

q
1
4

q
1
4

0 0 0 0

q
3
4

�
q

3
4

3

7
77777
5

:

The condition in Theorem 2.21 is completely determined by the value of the tight
frame bound � and as such an equivalent classification can be made.

Theorem 2.23 ([14]). Spectral Tetris can be performed to generate a unit norm,
tight frame with N vectors in HM if and only if, when � is in reduced form, one of
the following occur:

(1) � WD N
M � 2 or

(2) � is of the form � D 2L�1
L for some positive integer L.
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Remark 2.24. The requirement that � D M
N is in reduced form is crucial to property

(2) in Theorem 2.23. Also, if M and N are known to be relatively prime, then
property (2) is equivalent to M D 2N � 1.

Example 2.25. Using Theorem 2.23, it is a straightforward check to see that
Spectral Tetris can construct UNTFs with N-elements in H4 for all N � 6.

It is clear that there exist UNTFs with redundancy less than two for which the
conditions of Theorem 2.23 are not satisfied. One method to construct such UNTFs
is through the use of the Naimark Complement. First construct a UNTSTF satisfying
N � 2M. It’s Naimark Complement will be an N-element UNTF in HN�M with
redundancy less than 2. Hence Spectral Tetris ultimately constructs UNTFs for
N � M.

Alternatively, a modified version of Spectral Tetris can be used directly to
construct a UNTF with redundancy less than 2. In particular, a UNTF with
redundancy greater than j

j�1 can be constructed using J
J discrete Fourier transform
submatrices with scaled rows. However, through the use of these larger submatrices,
we lose some sparsity within the frame, which inevitably reduces the orthogonality
between the frame vectors.

Definition 2.26. Given M 2 N, let ! D exp
	
2�k
M



be a primitive M-th root of unity.

The (non-normalized) discrete Fourier transform (DFT) matrix in HM�M is defined
by FM D 	

! ij

M�1

i;jD0.

Remark 2.27. DFT matrices possess the following properties:

(1) The rows are orthogonal.
(2) The columns are orthogonal.
(3) All entries have the same modulus.

Similar to the building block A.x/ used in Section 6.2.3, this adapted version
of Spectral Tetris uses altered DFT submatrices for frame constructions where the
rows of the DFT submatrices are multiplied by appropriate constants in order to get
the correct row norm and unit norm columns. This scalar multiplication will not
affect the pairwise orthogonality of the rows. It is important to note that the frames
constructed using DFT submatrices will typically have complex entries.

Example 2.28. Construct a 5-element UNTF in H4. Recall, Example 2.20 showed
that such a frame exists but the conventional Spectral Tetris method cannot construct
this frame. Instead use altered DFT submatrices to construct such a UNTF. Define
!M D exp

	
2�k
M



.

Start by filling the desired 4
5 synthesis matrix with an altered 2
2DFT matrix
in the upper left corner. (Note a standard 2 
 2 matrix A .x/ could also be used here
and in particular, when w2 D �1 in the matrix below, this is exactly A. 5

4
/.) To obtain

the correct norms, multiply the entries of the first row by
q

5
8
, thus making the first

row have the desired norm
q

5
4
.
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In order to get unit norm columns, multiply the second row of the 2 
 2 DFT

matrix by
q

3
8
, yielding:

2

6666
4

q
5
8

q
5
8

0 0 0
q

3
8

q
3
8

	 !2 	 	 	
0 0 	 	 	
0 0 	 	 	

3

7777
5
:

The first two rows are orthogonal regardless of how the second row is completed.

The second row, at this point, has norm
q

3
4
, and thus it needs an additional weight

of
q

2
4

D
q

5
4
�
q

3
4
. We cannot insert a 1
1 block of

q
2
4

because the orthogonality
of the rows would be lost when making this column unit norm. Also, if we attempt to
insert an altered 2
 2 DFT matrix in the same fashion we would have the following
problem:

• To obtain the additional weight of
q

2
4

in row two, multiply the first row of a

2 
 2 DFT by the factor
q

2
8
.

• Next, to obtain unit norm columns, multiply the second row of the DFT by the

factor
q

6
8
.

• Inserting this block into our synthesis matrix yields a norm of
q

12
8

D
q

6
4
>

q
5
4
, the desired row norm.

To remedy this issue, we next attempt to utilize an altered 3 
 3 DFT. To obtain
the correct altered 3 
 3 DFT proceed as follows:

• First to obtain the additional weight of
q

2
4

in row two, multiply the first row of

a 3 
 3 DFT by
q

2
12

D
q

1
6
.

• Next, to obtain unit norm columns and row norms of
q

5
4

in the third and fourth
row of the synthesis matrix, multiply the second and third row of the 3
 3 DFT

by
q

5
12

.

This yields the desired 4 
 5 UNTF whose columns are normalized, rows are
pairwise orthogonal and rows square sum to 5

4
.

2

66666
6
4

q
5
8

q
5
8

0 0 0
q

3
8

q
3
8

	 !2
q

1
6

q
1
6

q
1
6

0 0

q
5
12

q
5
12

	 !3
q

5
12

	 !23
0 0

q
5
12

q
5
12

	 !23
q

5
12

	 !43

3

77777
7
5

:
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Remark 2.29. As seen in Subsection 6.2.4, unit norm tight Spectral Tetris frames
are optimally sparse when the original Spectral Tetris algorithm is implemented.
However, when this altered version of Spectral Tetris with DFT submatrices is used
to construct UNTFs with redundancy less than 2, then optimal sparsity is lost. The
following example illustrates this.

Example 2.30. Constructing a 5-element UNTF in H4 using the DFT Spectral
Tetris construction method yields one 2 
 2-block and one 3 
 3-block, resulting in
13 non-zero elements in the synthesis matrix (as seen in Example 2.28). However,
the following matrix represents a sparser synthesis matrix for a 5-element UNTF in
4-dimensions:

2

666
666
4

q
5
8

q
5
8

0 0 0
q

3
8

�
q

3
8

q
1
6

q
1
6

�
q

1
6

0 0

q
5
8

�
q

5
8

0

0 0

q
5
24

q
5
24
2

q
5
24

3

777
777
5

:

This matrix was constructed by starting with a 2
2 spectral tetris block and then
adding the following 3 
 3 block for some a; b; c 2 C:

2

4
a a �a
b �b 0

c c 2c

3

5 :

6.2.6 Spectral Tetris for Non-Tight, Unit Norm Frames

In general, sparse UNTFs represent a very small class of frames and hence a more
general version of Spectral Tetris is necessary. In [1], the authors adapted Spectral
Tetris to construct non-tight, unit norm frames with spectrum greater than or equal
to two. The authors called this adaptation Sparse Unit Norm Frame Construction
for Real Eigenvalues (SFR) and this was the first general construction method for
non-tight frames. Note that the spectrum of a finite frame is necessarily positive and
real. Also since the frames SFR will construct are not necessarily tight then the rows
of the frame need not square sum to the same constant.

The SFR construction method also utilizes the 2 
 2 building block A .x/ and
builds a unit norm frame with prescribed spectrum one or two vectors at a time.
The sufficient conditions for when SFR can be implemented as well as the SFR
algorithm follow.

Theorem 2.31 ([1]). Suppose that real values �1 � 	 	 	 � �M � 2 and N 2 N

satisfy:
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(1)
PM

jD1 �j D N (i.e. unit norm frame vectors), and
(2) if m0 is an integer in f1; : : : ;Mg, for which �m0 is not an integer, then b�m0c �

N � 3.

Then the eigenvalues of the frame operator of the frame ffngN
nD1 constructed by

SFR are f�mgM
mD1 and the frame vectors are at most 2-sparse.

Remark 2.32. Note that the assumptions in Theorem 2.31 imply that only �1 could
possibly be greater than N � 3 and therefore �m0 can be replaced by �1.

In [1], the authors provide an easily implementable algorithm, SFR, for con-
structing unit norm frames with prescribed spectrum.

SFR: Sparse Unit Norm Frame Construction for Real Eigenvalues

Parameters:

• Dimension M 2 N.
• Real eigenvalues N � �1 � 	 	 	 � �M � 2, number of frame vectors N

satisfying
PM

mD1 �j D N 2 N.

Algorithm:

• Set n D 1

• For m D 1; : : : ;M do

(1) Repeat
(a) If �m < 1 then

(i) fn WD
q

�m
2

	 em C
q
1 � �m

2
	 emC1.

(ii) fnC1 WD
q

�m
2

	 em �
q
1 � �m

2
	 emC1.

(iii) n WD n C 2.
(iv) �mC1 WD �mC1 � .2 � �m/.
(v) �m WD 0:

(b) else
(i) fn WD em.

(ii) n WD n C 1.
(iii) �m WD �m � 1.

(c) end
(2) until �m D 0.

• end.

Output:

• Unit norm frame ffngN
nD1 with eigenvalues f�mgM

mD1

ALGORITHM 1: The SFR algorithm for constructing a unit norm frame with a
desired spectrum.
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Remark 2.33. For an explicit example of the SFR construction, see Remark 4.2,
which is based on Example 4.1 in the Appendix of the present paper.

6.2.7 Generalized Spectral Tetris Frame Constructions

Spectral Tetris, in its original form, could only construct UNTFs and eventually it
was modified to construct unit norm, non-tight frames with all eigenvalues greater
than or equal to two. In [14], the authors adapted Spectral Tetris to construct highly
sparse frames with specified eigenvalues and specified vector norms. In addition,
the authors also proved necessary and sufficient conditions on the eigenvalues and
vector norms of a frame for when this construction can be implemented and hence
completely characterized the Spectral Tetris construction of a frame.

Similar to the Spectral Tetris construction method of Subsection 6.2.3, in this
adaptation of Spectral Tetris called Prescribed Norms Spectral Tetris (PNSTC), a
frame is built one or two vectors at a time and uses a 2
2 submatrix similar to A.x/.
However, in order to allow for varied vector norms, modify property (1) of A .x/ so
that the columns of A .x/ have varied norms; call these norms a1 and a2. Thus, the
new 2 
 2 building block, denoted by OA .x/ WD OA .x; a1; a2/, is as follows:

OA .x/ WD OA .x; a1; a2/ D

2

66
4

r
x.a21�y/

x�y

r
x.x�a21/

x�yr
y.x�a21/

x�y �
r

y.a21�y/
x�y

3

77
5 ;

where y D a21 C a22 � x.
Note, the existence of OA .x/ depends on x; a1, and a2.

Lemma 2.34 ([14]). A real matrix OA .x/ WD OA .x; a1; a2/ satisfying

OA .x/ OA� .x/ D
�

x 0

0 a21 C a22 � x


:

exists if and only if both of the following hold:

(1) a21 C a22 � x > 0; and
(2) either a21; a

2
2 � x or a21; a

2
2 � x.

In order to satisfy the conditions in Lemma 2.34, a few restrictions on the
eigenvalue sequence and the vector norm sequence are required. Note that the
majorization condition of Theorem 2.9 is not sufficient in this scenario and hence
there exist frames for which PNSTC cannot construct. In particular, a strengthening
of majorization is required and is explicitly defined as follows:
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Definition 2.35 ([14]). Two sequences fangN
nD1 and f�mgM

mD1 are Spectral Tetris
ready if

PN
nD1 a2n D PM

mD1 �m and if there is a partition 0 � n1 < 	 	 	 < nM D N of
the set f0; 1; : : : ;Ng such that for all k D 1; 2; : : : ;M � 1:

(1)
Pnk

nD1 a2n � Pk
mD1 �m <

PnkC1
nD1 a2n and

(2) if
Pnk

nD1 a2n <
Pk

mD1 �m; then nkC1 � nk � 2 and a2nkC2 � Pk
mD1 �m �Pnk

nD1 a2n:

Since there is no assumption on the ordering of the sequence of eigenvalues nor
the sequence of vector norms in Definition 2.35, it may be necessary to permute
the sequences to make them Spectral Tetris ready. It is important to note that
some permutations of the sequences may be Spectral Tetris ready while other
permutations may not. This is illustrated in the following example:

Example 2.36. Given the eigenvalues f�mg3mD1 D f8; 6; 4g and the vector norms
fang4nD1 D f3; 2; 2; 1g: Arranging the vectors norms as fang4nD1 D f2; 1; 3; 2g and
taking the partition n1 D 1; n2 D 3 and n3 D 4 yields Spectral Tetris ready
sequences. However, arranging the vector norms as fang4nD1 D f2; 2; 3; 1g with
eigenvalues f�mg3mD1 D f8; 6; 4g yields no partition of the norms with Spectral
Tetris ready sequences. Also, from this it is clear that the ordering of the sequences
need not be monotone.

The properties given in Definition 2.35 completely characterize when PNSTC
can be implemented.

Theorem 2.37 ([14]). Given fangN
nD1 � .0;1/ and f�mgM

mD1 � .0;1/, PNSTC
can be used to construct a frame ffngN

nD1 for HM such that kfnk D an for n D
1; : : : ;N and having eigenvalues f�mgM

mD1 if and only if there exists a permutation
which makes the sequences fangN

nD1 and f�mgM
mD1 Spectral Tetris ready.

Although PNSTC can construct a large class of sparse frames, there exist frames
which fail to meet the conditions of Theorem 2.37.

Example 2.38. A 4-element tight frame in H3 with vector norms fang4nD1 D
f3; 3; 3; 1g satisfies the majorization condition of Theorem 2.9 and hence such a
frame exists; however, there is no arrangement of these eigenvalues and vector
norms which is Spectral Tetris ready and thus PNSTC cannot construct such a frame.

The following algorithm, from [14], constructs a frame with prescribed norms
and prescribed eigenvalues.
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PNSTC: Prescribed Norms Spectral Tetris Construction

Parameters:

• Dimension M 2 N.
• Number of frame elements N 2 N.
• Eigenvalues f�mgM

mD1 � .0;1/ and norms of the frame vectors
fangN

nD1 � .0;1/ such that f�mgM
mD1 and fa2ngN

nD1 are Spectral Tetris
ready.

Algorithm:

• Set n D 1

• For m D 1; : : : ;M do

(1) Repeat
(a) If �m � a2n then

(i) fn WD anem.
(ii) �m WD �m � a2n.

(iii) n WD n C 1.
(b) else

(i) If 2�m D a2n C a2nC1, then

(A) fn WD
q

�m
2

	 .em C emC1/.

(B) fnC1 WD
q

�m
2

	 .em � emC1/.
(ii) else

(A) y WD a2n C a2nC1 � �m.

(B) fn WD
r

�m.a2n�y/
�m�y 	 em C

r
y.�m�a2n/
�m�y 	 emC1.

(C) fnC1 WD
r

�m.�m�a2n/
�m�y 	 em �

r
y.a2n�y/
�m�y 	 emC1.

(iii) end.
(iv) �mC1 WD �mC1 � 	

a2n C a2nC1 � �m


:

(v) �m WD 0.
(vi) n WD n C 2.

(c) end
(2) until �m D 0.

• end.

Output:

• Frame ffngN
nD1 � HM with eigenvalues f�mgM

mD1 and norms of the frame
vectors fangN

nD1.

ALGORITHM 2: The PNSTC algorithm for constructing a frame with prescribed
spectrum and prescribed vector norms.
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Since PNSTC is the most general form of Spectral Tetris and hence the most
useful, an example is included to illustrate the implementation of Algorithm
2. Within the following example, notice the requirement that the frame have
redundancy at least 2 is no longer necessary.

Example 2.39. Construct an 8-element frame in H5 with:

vector norms fang8nD1 D f4; 1; 2;p3; 1;p2; 3; 2g
and eigenvalues f�mg5mD1 D f18; 6; 2; 10; 4g:

First note, such a frame exists by Theorem 2.9. However, satisfying majorization
does not guarantee that PNSTC can construct such a frame. Keeping the original
arrangement of the sequences, fang8nD1 D f4; 1; 2;p3; 1;p2; 3; 2g, f�mg5mD1 D
f18; 6; 2; 10; 4g and letting n1 D 2; n2 D 4; n3 D 5; n4 D 7, and n5 D 8 yields
Spectral Tetris ready sequences.

Next, implement PNSTC to construct the desired frame:

• Let n D 1.

(1) Let m D 1

(a) Since �1 D 18 � 16 D 42 D a21, then
(i) f1 WD a1e1 D 4e1.

(ii) �1 WD �1 � a21 D 18 � 42 D 2.
(iii) n WD n C 1 D 1C 1 D 2.
(iv) end.

(b) Since �1 ¤ 0, (�1 D 2) then repeat with �1 D 2 and n D 2.
(c) Since �1 D 2 � 12 D a22, then

(i) f2 WD a2e1 D 1e1.
(ii) �1 WD �1 � a21 D 2 � 12 D 1.

(iii) n WD n C 1 D 2C 1 D 3.
(iv) end.

(d) Since �1 ¤ 0, (�1 D 1) then repeat with �1 D 1 and n D 3.
(e) Check: �1 D 1 6� 22 D a23
(f) Check: 2�1 D 2 ¤ 7 D 22 C p

3
2 D a23 C a24

(g) Set y WD a23 C a24 � �1 D 22 C p
3
2 � 1 D 6, hence

(i) f3 WD
q

1.22�6/
1�6 	 e1 C

q
6.1�22/
1�6 	 e2 D

q
2
5

	 e1 C
q

18
5

	 e2.

(ii) f4 WD
q

1.1�22/
1�6 	 e1 �

q
6.22�6/
1�6 	 e2 D

q
3
5

	 e1 �
q

12
5

	 e2.
(iii) end.

(h) We also have the following:
(i) �2 WD �2 � 	

a23 C a24 � �1

 D 6 � .4C 3 � 1/ D 0.

(ii) �1 WD 0.
(iii) n WD n C 2 D 3C 2 D 5.
(iv) end.

(i) Now �1 D 0 and we end this loop.
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• Next m D 2. (We still have n D 5).
• But �2 D 0 and we are done with this loop.
• Next m D 3. (We still have n D 5).

(1) Since �3 D 2 � 1 D 12 D a25, then
(a) f5 WD a5e3 D 1e3.
(b) �3 WD �3 � a25 D 2 � 12 D 1.
(c) n WD n C 1 D 5C 1 D 6.
(d) end.

(2) Since �3 ¤ 0, (�3 D 1) then repeat with �3 D 1 and n D 6.
(3) Check: �3 D 1 6� 2 D a26
(4) Check: 2�3 D 2 ¤ 11 D p

2
2 C 32 D a26 C a27

(5) Set y WD a26 C a27 � �3 D p
2
2 C 32 � 1 D 10, hence

(a) f6 WD
q

1.2�10/
1�10 	 e3 C

q
10.1�2/
1�10 	 e4 D

q
8
9

	 e3 C
q

10
9

	 e4.

(b) f7 WD
q

1.1�2/
1�10 	 e3 �

q
10.2�10/
1�10 	 e4 D

q
1
9

	 e3 �
q

80
9

	 e4.
(c) end.

(6) We also have the following:
(a) �4 WD �4 � 	

a26 C a27 � �3

 D 10 � .2C 9 � 1/ D 0.

(b) �3 WD 0.
(c) n WD n C 2 D 6C 2 D 8.
(d) end.

(7) Now �3 D 0 and we end this loop.

• Next m D 4. (We still have n D 8).
• But �4 D 0 and we are done with this loop.
• Next m D 5. (We still have n D 8).

(1) Since �5 D 4 � 4 D 22 D a28, then
(a) f8 WD a8e5 D 2e5.
(b) �5 WD �5 � a28 D 4 � 4 D 0.
(c) n WD n C 1 D 8C 1 D 9.
(d) end.

(2) Now �5 D 0 and we end this loop.

• end.

Output: PNSTC created an 8-element frame ffng8nD1 in H5 with norms
fang8nD1 D f4; 1; 2;p3; 1;p2; 3; 2g and eigenvalues f�mg5mD1 D f18; 6; 2; 10; 4g.
This frame is represented in the following matrix:

2

6666
6666
4

4 1

q
2
5

q
3
5
0 0 0 0

0 0

q
18
5

�
q

12
5
0 0 0 0

0 0 0 0 1

q
8
9

q
1
9
0

0 0 0 0 0

q
10
9

�
q

80
9
0

0 0 0 0 0 0 0 2

3

7777
7777
5

:
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Prior to implementing PNSTC, it is necessary to ensure that the sequences are
Spectral Tetris ready; however, doing so can be a time-consuming and tedious
task. To alleviate this task in specialized cases, the authors of [6] provide a simple
systematic method for making sequences Spectral Tetris ready.

Proposition 2.40 ([6]). Given a sequence of norms fangN
nD1 and a sequence of

eigenvalues f�mgM
mD1 where

PN
nD1 a2n D PM

mD1 �m, if

max i;j2f1;:::;Ng
	
a2i C a2j


 � min m2f1;:::;Mg�m;

then the sequences can be made Spectral Tetris ready by systematically switching
adjacent weights.

Proposition 2.40 allows PNSTC to construct a frame with sequences which are
not initially Spectral Tetris ready and instead alters the sequences throughout the
PNSTC process.

Example 2.41. Construct a Spectral Tetris frame on a sequence of vector norms
and eigenvalues which are not Spectral Tetris ready. In H2, construct a 6-element
frame with the sequence of norms fang6nD1 D fp3; 2;p3; 1; 2;p2g and eigenvalues
f�mg2mD1 D f9; 8g.

First note that these sequences are not Spectral Tetris ready in the current order.
Also,

P6
nD1 a2n D 17 D P2

mD1 �m and

max i;j2f1;:::;6g
	
a2i C a2j


 D 8 � 8 min m2f1;:::;2g�m;

hence by Proposition 2.40 these sequences can be made Spectral Tetris ready by
switching adjacent weights/norms. Therefore PNSTC can construct such a frame by
possibly switching adjacent norms.

Starting the PNSTC construction of this frame yields f1 WD p
3	e1 and f2 WD 2	e1.

Next, we need to add a weight of 9 � .
p
3/2 � .2/2 D 2 to row one. Since � D

2 6� a23 D 3, in PNSTC we would typically add a 2 
 2 submatrix next. However,
a24 D 1 < x D 2 < 3 D a23 and by Lemma 2.34 such a 2 
 2 submatrix does not
exist. But, switching a3 and a4 yields the vector norm order fp3; 2; 1;p3; 2;p2g
and now � D 2 � 1 D a23. Hence, we assign f3 WD 1 	 e1.

Now we need to add a weight of � D 1 to row one. Since � D 1 6� 3 D a24 then

add a 2
2 submatrix to yield f4 WD
q

3
5

	 e1 C
q

12
5

	 e2 and f5 WD
q

2
5

	 e1 �
q

18
5

	 e2.
Thus row one now has sufficient weight.

For row two, we need to add a weight of 8�
�q

12
5

�2
�
�q

18
5

�2
D 2 and hence

let f6 WD 2 	 e2. This yields the desired frame:
2

4
p
3 2 1

q
3
5

q
2
5
0

0 0 0

q
12
5

�
q

18
5
2

3

5 :

Notice this frame has orthogonal rows with norms fang6nD1 D fp3; 2; 1;p3; 2;p2g
and eigenvalues f�mg2mD1 D f9; 8g.
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As seen in Example 2.41, Proposition 2.40 is a modification of PNSTC which
allows the algorithm to handle non-Spectral Tetris ready orderings. To use this
re-ordering technique, simply insert the following Algorithm 3 between lines
((1)(b)(ii)) and ((1)(b)(ii)(A)) of the PNSTC algorithm, at Algorithm 2. This re-
ordering procedure will be defined as Spectral Tetris Re-Ordering (STR).

STR: Spectral Tetris Re-Ordering Procedure

Parameters:

• Dimension M 2 N.
• Number of frame elements N 2 N.
• Eigenvalues .�m/

M
mD1 and vector norms fangN

nD1 such that
PN

nD1 a2n D
PM

mD1 �m and maxi;j2f1;:::;Ng
�

a2i C a2j

�
� minm2f1;:::;Mg�m.

Algorithm:

(1) If �m > a2nC1, then

(a) temp WD an.
(b) anC1 WD an.
(c) anC1 WDtemp.
(d) Go to PNSTC (1ai).

(2) end.

ALGORITHM 3: Procedure for running PNSTC on a non-spectral-tetris-ready
ordering.

When the conditions of Proposition 2.40 are satisfied then STR always results in
a Spectral Tetris ready ordering of the vector norms and eigenvalues. However, when
these conditions are not satisfied, the authors of [14] provide alternative sufficient
conditions on the prescribed norms and eigenvalues under which PNSTC can be
implemented.

Theorem 2.42 ([14]). Let fangN
nD1 � .0;1/ and f�mgM

mD1 � .0;1/ be non-
decreasing sequences such that

PN
nD1 a2n D PM

mD1 �m and

a2N�2L C a2N�2L�1 � �M�L

for L D 0; 1; : : : ;M � 1. Then fangN
nD1 and f�mgM

mD1 are Spectral Tetris ready,
hence by Theorem 2.37, PNSTC can construct a frame ffngN

nD1 for HM with kfnk D
an for n D 1; : : : ;N and with eigenvalues f�mgM

mD1. In particular, PNSTC can be
performed if a2N C a2N�1 � �1.

Remark 2.43. In Theorem 2.42, the property a2N�2L C a2N�2L�1 � �M�L together
with

PN
nD1 a2n D PM

mD1 �m imply that N � 2M. Thus, this sufficient condition also
requires redundancy of at least 2; whereas, the Spectral Tetris ready condition only
required N � M.



6 Spectral Tetris 241

The PNSTC algorithm can be specialized to construct tight and/or unit norm
frames and in doing so the conditions in Theorem 2.42 become easier to check.

Theorem 2.44 ([14]). Let a1 � a2 � 	 	 	 � aN > 0 and � D 1
M

PN
nD1 a2n. If

a21 C a22 � �, then PNSTC constructs a �-tight frame ffngN
nD1 for HM satisfying

kfnk D an for all n D 1; 2; : : : ;N.

Remark 2.45. The condition in Theorem 2.44 is an analog to the requirement that
the frame have redundancy at least 2 in the original Spectral Tetris construction.

The condition in Theorem 2.44 is only a sufficient condition; hence, as the
following example illustrates, there exist tight frames which fail this condition but
satisfy the Spectral Tetris ready condition.

Example 2.46. Use PNSTC to construct a 6-element tight frame in H3 with vector
norms .

p
6;

p
5;

p
5; 1; 1; 1/. The tight frame bound will be � D 19

3
. Checking

the conditions of Theorem 2.44 yields a21 C a22 D 6 C 5 D 11 6� 19
3

and hence
Theorem 2.44 does not apply. However, arranging the norms .

p
6; 1;

p
5; 1; 1;

p
5/

and taking the partition n1 D 1; n2 D 3 and n3 D 6 yields sequences which are
Spectral Tetris ready and hence PNSTC can construct such a frame.

A reformulation of Definition 2.35 and Theorem 2.37 to the case of tight
frames with prescribed spectrum provides necessary and sufficient conditions for
a sequence of norms to yield a tight frame via PNSTC.

Corollary 2.47 ([14]). A tight frame for HM with prescribed norms fangN
nD1 and

eigenvalue � D 1
M

PN
nD1 a2n can be constructed via PNSTC if and only if there exists

an ordering of fa2ngN
nD1 for which there is a partition 0 � n1 < 	 	 	 < nM D N of

f0; 1; : : : ;Ng such that for all k D 1; 2; : : : ;M � 1:

(1)
Pnk

nD1 a2n � k� <
PnkC1

nD1 a2n for all k D 1; : : : ;M � 1; and
(2) if

Pnk
nD1 a2n < k�; then nkC1 � nk � and a2nkC2 � k� �Pnk

nD1 a2n:

Another specialized case of PNSTC is that of unit norm frames. Recall,
Section 6.2.6 required the sufficient condition that the eigenvalues of a frame be
greater than or equal to 2 for SFR to construct a unit norm frame; however, in [14],
the authors found necessary and sufficient conditions for SFR to construct unit norm
frames and relaxed this bound by reformulating Definition 2.35 and Theorem 2.37.

Corollary 2.48 ([14]). Let
PM

mD1 �m D N where N 2 N and N � M. Then SFR
can be used to produce a unit norm frame for HM with eigenvalues f�mgM

mD1 �
.0;1/ if and only if there is some permutation of f�mgM

mD1 and a partition 0 � n1 <
	 	 	 < nM D N of f0; : : : ;Ng such that for each k D 1; : : : ;M � 1,

(1) nk � Pk
mD1 �m < nk C 1 and

(2) if nk <
Pk

mD1 �m, then nkC1 � nk � 2.

The characterization in Corollary 2.48 provides a limitation on the location of
the eigenvalues that can be strictly less than one, as the following Corollary proves.
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Corollary 2.49 ([14]). If SFR can be used to produce a unit norm frame for HM

with eigenvalues .�m/
M
mD1, then �k < 1 is only possible if k D 1 or if nk�1 DPk�1

mD1 �m.

The PNSTC algorithm can also be applied to construct equal-norm frames.

Theorem 2.50 ([14]). Let f�mgM
mD1 � .0;1/ be non-increasing. Then PNSTC can

construct an equal-norm frame for HM with eigenvalues f�mgM
mD1.

Through the development and adaptations of Spectral Tetris, we now have a
complete characterization of the frames for which Spectral Tetris can construct.
In continuing this study, we wish to further this construction technique to fusion
frames. In the proceeding section, we will see that due to the sparsity of Spectral
Tetris frames and the orthogonality of the frame vectors, we can generalize SFR
and PNSTC to construct sparse fusion frames.

6.3 Spectral Tetris Fusion Frame Constructions

Now that Spectral Tetris frames have been completely characterized, the present
section is dedicated to characterizing Spectral Tetris fusion frames. To do this,
we first introduce and discuss applications of fusion frames. Next, we develop the
original Spectral Tetris fusion frame construction technique as it is based on Spectral
Tetris frame constructions and is restricted to unit-weighted equidimensional fusion
frames. Making our way through the progression of Spectral Tetris and general-
izing the algorithm within each subsection, we eventually completely characterize
Spectral Tetris fusion frames in Section 6.3.7. We include algorithms, examples and
proofs throughout to further illustrate the process.

6.3.1 Fusion Frames

Today, across numerous disciplines, scientists utilize vast amounts of data obtained
from various networks which need to be analyzed at a central processor. However,
due to low communication bandwidth and limited transit/computing power at
each single node in the network, the data may not be able to be computed at
one centralized processing system. Hence there has been a fundamental shift
from centralized information processing to distributed processing, where network
management is distributed and the reliability of individual links is less critical. Here
the data processing is performed in two stages: (1) local processing at neighboring
nodes, followed by (2) the integration of locally processed data streams at a central
processor.

An example of distributed processing involves wireless sensor networks, which
can provide cost-effective and reliable surveillance. Consider a large number of
inexpensive, small sensors dispersed throughout an area in order to collect data or
keep surveillance. Due to practical and economic factors such as the topography of
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the land, limited signal processing power, low communication bandwidth, or short
battery life, the sensors are not capable of transmitting their information to one
central processor. Therefore, the sensors need to be deployed in smaller clusters,
where in each cluster there is one higher powered sensor which collects all of the
information from the signals in its cluster and then transmits this information to a
central processor. In this two-stage model, information is first gathered locally in
each cluster, then processed more globally at a central station. A similar two-stage
(local-global) processing principle is also applicable in distributed sensing, parallel
processing, packet encoding, optimal packings and in modeling the human visual
cortex [3, 19].

Mathematically, this can be interpreted as follows: given data and a collection
of subspaces, first project the data onto the subspaces then process the data
within each subspace (this coincides with the local clusters of sensors gathering
information locally). Next, combine or fuse all of the locally processed information
(this coincides with the larger powered sensors in each cluster transmitting their
information to a central processor).

This concept of a frame-like collection of subspaces is known as a fusion
frame and provides a suitable mathematical framework to design and analyze two-
stage processing (local-global). Fusion frames were first studied in [2] and further
analyzed in [1, 3, 8].

Fusion frame theory is a generalization of frame theory. To illustrate this
connection, for a given frame ffngN

nD1 its frame operator can be viewed in the
following manner:

Sx D T�Tx D
NX

nD1
hx; fnifn D

NX

nD1
jjfnjj2hx; fn

jjfnjj i
fn

jjfnjj :

Notice that S is the sum of rank one projections each with weight given by
the square norm of the respective frame vector. Generalizing this idea to consider
weighted projections of arbitrary rank yields the definition of a fusion frame.

Definition 3.1. Let fWigD
iD1 be a family of subspaces in HM , and let fwigD

iD1 � R
C

be a family of weights. Then f.Wi;wi/gD
iD1 is a fusion frame for HM if there exist

constants 0 < A � B < 1 such that

Akxk22 �
DX

iD1
w2i kPi .x/ k22 � Bkxk22 for all x 2 HM;

where Pi denotes the orthogonal projection of HM onto Wi for each i 2 f1; : : : ;Dg.

(1) In finite dimensions, a fusion frame is a spanning set of subspaces.
(2) The constants A and B are called the lower fusion frame bound and upper fusion

frame bound, respectively.
(3) The largest lower fusion frame bound and the smallest upper fusion frame

bound are called the optimal lower fusion frame bound and optimal upper
fusion frame bound, respectively.
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(4) If A D B is possible then the family f.Wi;wi/gD
iD1 is called a tight fusion frame.

Moreover, if A D B D 1 is possible then the family f.Wi;wi/gD
iD1 is called a

Parseval fusion frame.
(5) If each subspace has unit weight, wi D 1 for all i D 1; : : : ;D, then the family

f.Wi;wi/gD
iD1 is denoted .Wi/

D
iD1 and is called a unit weighted fusion frame.

(6) The fusion frame operator QS W HM ! HM defined by QSx D PD
iD1 w2i Pi .x/

for all x 2 HM is a positive, self-adjoint, invertible operator, where Pi is the
orthogonal projection of HM onto Wi.

(7) The fWigD
iD1 are called the fusion frame subspaces.

In two-stage processing, a signal can be reconstructed via a fusion frame;
however, due to sensor failures, buffer over flows, added noise or subspace
perturbations during processing, some information about the signal could be lost
or corrupted. One might ask, how can a fusion frame reconstruct a signal when
these problems are present? Clearly, redundancy between the subspaces helps to add
resilience against erasures (or lost data); but what about other issues that could arise
when a signal is being processed. Redundancy between these subspaces may not be
sufficient to manage these issues and typically extra structure on the fusion frame
is required, such as prescribing the subspace dimensions or prescribing the fusion
frame operator. In particular, [17, 18] show that in order to minimize the mean-
squared error in the linear minimum mean-squared error estimation of a random
vector from its fusion frame measurements in white noise, the fusion frame needs
to be Parseval or tight. Also to provide maximal robustness against erasures of one
fusion frame subspace the fusion frame subspaces must also be equidimensional.

Within two stage processing, further issues could potentially arise due to
economic factors which limit the available computing power and bandwidth
for data processing. Because of this we need to be able to construct a fusion
frame that enables signal decomposition with a minimal number of additions and
multiplications and hence reduces computational costs. These numerous potential
constraints on our data processing capabilities now motivates the need for fusion
frames which not only have a desired fusion frame operator or subspace dimensions,
but also possess some degree of sparsity. In particular, some of these issues could
be alleviated if each subspace was spanned by a collection of sparse vectors with
respect to a fixed orthonormal basis for HM .

Definition 3.2. Let fejgM
jD1 be an orthonormal basis for HM . Then a fusion frame

f.Wi; vi/gD
iD1 for HM with dim Wi D di for all i D 1; : : : ;D is called k-sparse with

respect to fejgM
jD1, if for each i 2 f1; : : : ;Ng there exists an orthonormal basis ffi;lgdi

lD1
for Wi and for each l D 1; : : : ; di and fJi;lg � f1; : : : ;Mg such that fi;l 2 spanfej W
j 2 Ji;lg and

PM
iD1

Pdi
lD1 jJi;lj D k. We refer to ffi;lgD;mi

iD1;lD1 as an associated k-sparse
frame.

Since fusion frames generalize the structure of a frame, it is natural to question
if sparse representations in fusion frames possess similar properties as sparse
representations in frames. In particular, do sparse fusion frames allow for precise
signal reconstruction when using only an under determined set of equations? The
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answer to this question is yes, which leads to a further question: how can such a
sparse fusion frame be constructed? This motivates the need for the Spectral Tetris
fusion frame construction.

To construct fusion frames, we will construct their associated frame matrix much
like we did with conventional frames.

Theorem 3.3 ([2]). The following are equivalent:

(1) f.Wi;wi/gD
iD1 is a fusion frame for HM with lower and upper fusion frame

bounds A and B, respectively.
(2) There exists an orthonormal basis feijgdi

jD1 for Wi, for all i D 1; : : : ;D, so that
the matrix C with column vectors eij for i 2 f1; : : : ;Dg and j 2 f1; : : : ; dig
satisfies:

(a) The rows are orthogonal and
(b) the square sums of the rows lie between A and B.

Similar to our discussion of conventional frames, the square sum of the rows of
the fusion frame matrix, as described in Theorem 3.3, yield the eigenvalues of the
fusion frame operator where the smallest and largest eigenvalues of the fusion frame
operator correspond to the optimal smallest and largest fusion frame bounds, A and
B. Hence, if all of the rows of such a matrix square sum to the same value, then this
is a tight fusion frame. In the present paper, when we discuss the eigenvalues of a
fusion frame, we specifically mean the eigenvalues of its fusion frame operator.

6.3.2 Prior to the Spectral Tetris Fusion Frame Construction
Method

Before Spectral Tetris was adapted to construct sparse fusion frames other con-
struction methods existed; however these methods first required the knowledge of
a given fusion frame. In particular, two general ways to construct a fusion frame
from a given fusion frame are the Spatial Complement Method and the Naimark
Complement Method.

Given a fusion frame, taking its spatial complement is a natural way of generating
a new fusion frame. This requires the use of the orthogonal fusion frame to a given
fusion frame.

Definition 3.4 ([1]). Let f.Wi;wi/gD
iD1 be a fusion frame for HM . If the family

f	W?i ;wi

gD

iD1, where W?i is the orthogonal complement of Wi, is also a fusion
frame, then we call f	W?i ;wi


gD
iD1 the orthogonal fusion frame to f.Wi;wi/gD

iD1.

Theorem 3.5 (Spatial Complement Theorem [1]). Let f.Wi;wi/gD
iD1 be a fusion

frame for HM with optimal fusion frame bounds 0 < A � B < 1 such thatPD
iD1 w2i < 1. Then the following conditions are equivalent:

(1)
TD

iD1 Wi D f0g.
(2) B <

PD
iD1 w2i .
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(3) The family f	W?i ;wi

gD

iD1 is a fusion frame for HM with optimal fusion frame

bounds
PD

iD1 w2i � B and
PD

iD1 w2i � A.

Another fusion frame construction method, which also requires a given fusion
frame, is the Naimark Complement Method and can be seen as an extension
of Theorem 2.7. Consider the following relationship between frames and fusion
frames. Let f.Wi;wi/gD

iD1 be a fusion frame for HM with frame operator QS. Let
	
 i;j

di

jD1 be an orthonormal basis for Wi for i D 1; : : : ;D and let S be the frame

operator for the frame fwi i;jgD;di
iD1;jD1. We have the following equivalence:

QSx D
DX

iD1
w2i .Pi .x// D

DX

iD1

diX

jD1
w2i hx;  i;ji i;j D

DX

iD1

diX

jD1
hx;wi i;jiwi i;j D T�Tx D Sx:

Thus every fusion frame arises from a conventional frame partitioned into equal-
norm, orthogonal sets. This relationship validates defining the Naimark complement
of a fusion frame via the Naimark complement of a conventional frame.

Definition 3.6. Let f.Wi;wi/gD
iD1 be a Parseval fusion frame for HM . Choose

orthonormal bases
	
 i;j

di

jD1 for Wi, making fwi i;jgD;di
iD1;jD1 a Parseval frame for

HM . By Theorem 2.7, fwi i;jgD;di
iD1;jD1 has a Naimark complement Parseval frame

f 0i;jgD;di
iD1;jD1 for HD�M . The Naimark Complement fusion frame of f.Wi;wi/gD

iD1 is
given by

��
W 0i ;

q
1 � w2i

��D

iD1
;

which is a Parseval fusion frame for HPD
iD1 di�D, where W 0i WD span

�
f 0i;jgdi

jD1
�

.

Notice that the choice of the orthonormal bases for the subspaces Wi of a fusion
frame will alter the corresponding Naimark complement fusion frame. However,
it is shown in [13] that all choices yield unitarily equivalent Naimark complement
fusion frames in the sense that there is a unitary operator mapping the corresponding
fusion frame subspaces onto one another. The following theorem provides properties
for when the Naimark Complement of a fusion frame exists.

Theorem 3.7 (Naimark Complement Method [1]). Let f.Wi;wi/gD
iD1 be a Parse-

val fusion frame for HM with 0 < wi < 1, for all i D 1; : : : ;D. Then there exists

a Hilbert space HM � K and a Parseval fusion frame f
�

W 0i ;
q
1 � w2i

�
gD

iD1 for

K � HM with dim W 0i D dim Wi for all i D 1; : : : ;D.
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6.3.3 Spectral Tetris Fusion Frames Constructions

In general, the Spectral Tetris construction of a unit-weighted fusion frame first
constructs a Spectral Tetris frame and then groups the vectors of this frame into
orthonormal sets which span the subspaces of the desired fusion frame. This is
explicitly seen in Algorithm 4 and Algorithm 6 in the following sections.

Definition 3.8. A frame constructed via the Spectral Tetris construction (SFR or
PNSTC) is called a Spectral Tetris frame. A unit weighted fusion frame .Wi/

D
iD1 is

called a Spectral Tetris fusion frame if there is a partition of a Spectral Tetris frame
ffi;jgD;di

iD1;jD1 such that ffi;jgdi
jD1 is an orthonormal basis for Wi for all i D 1; : : : ;D.

In Subsection 6.3.4 and Subsection 6.3.6 unit-weighted fusion frames are
constructed and hence the restriction in Definition 3.8 to such fusion frames.
However, in Subsection 6.3.7 non-unit weighted fusion frames are constructed and
this requires a more general definition, which is developed in that section.

6.3.4 Spectral Tetris for Equidimensional, Unit-Weighted
Fusion Frame Constructions

The authors of [1] were the first to adapt SFR to construct equidimensional, unit-
weighted fusion frames for any given fusion frame operator with eigenvalues greater
than or equal to two. Explicitly, in [1] they develop and analyze the following
scenario:

Let �1 � 	 	 	 � �M � 2 be real values and M 2 N satisfy the factorization

MX

mD1
�m D kD 2 N:

The goal is to construct a sparse fusion frame .Wi/
D
iD1 ;Wi � HM , such that:

(G1) dim Wi D k for all i D 1; : : : ;D and
(G2) the associated fusion frame operator has f�mgM

mD1 as its eigenvalues.

To construct such a fusion frame, in [1] the authors generalize the SFR algorithm
and develop a new algorithm called Sparse Fusion Frame Construction for Real
Eigenvalues (SFFR). The SFFR algorithm follows the same construction formula as
the SFR algorithm; however, in the output stage of SFFR, the vectors fn are grouped
in such a way so that the vectors assigned to each subspace form an orthonormal
system.

Theorem 3.9 ([1]). Suppose the real values D � �1 � 	 	 	 � �M � 2;D 2 N, and
k 2 N satisfy:

(1)
PM

mD1 �m D kD 2 N,
(2) If m0 is the first integer in f1; : : : ;Mg for which �m0 is not an integer, then

b�m0c � D � 3.
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Then the fusion frame fWigD
iD1 constructed by SFFR fulfills conditions (G1) and

(G2) and the corresponding frame vectors are at most 2-sparse.

Remark 3.10. Note that the assumptions in Theorem 3.9 imply that only �1 could
possibly be greater than D � 3 and therefore �m0 can be replaced by �1.

The SFFR algorithm from [1] follows and constructs equidimensional, unit-
weighted fusion frames.

SFFR: Sparse Fusion Frame Construction for Real Eigenvalues

Parameters:

• Dimension M 2 N.
• Real eigenvalues D � �1 � 	 	 	 � �M � 2, number of subspaces D, and

dimension of subspaces k satisfying
PM

mD1 �m D kD 2 N.

Algorithm:

• Set j WD 1

• For m D 1; : : : ;M do

(1) Repeat
(a) If �m < 1 then

(i) fj WD
q

�m
2

	 em C
q
1 � �m

2
	 emC1.

(ii) fjC1 WD
q

�m
2

	 em �
q
1 � �m

2
	 emC1.

(iii) j WD j C 2.
(iv) �mC1 WD �mC1 � .2 � �m/.
(v) �m WD 0:

(b) else
(i) fj WD em.

(ii) j WD j C 1.
(iii) �m WD �m � 1.

(c) end
(2) until �m D 0.

• end.

Output:

• Equidimensional, unit weighted, fusion frame fWigD
iD1 where Wi WD

spanffiCjD W j D 0; : : : ; k � 1g.

ALGORITHM 4: The SFFR algorithm for constructing an equidimensional, unit
weighted, fusion frame with a desired frame operator.

Remark 3.11. For an explicit example of the SFFR construction method, see
Example 4.1 in the Appendix of the present paper.
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The SFFR algorithm constructs non-tight fusion frames; however due to the
reconstruction properties of tight frames it is sometimes useful to extend such
a fusion frame with additional subspaces until it becomes tight. The following
theorem provides sufficient conditions for when and what types of subsets can be
added to a fusion frame in order to obtain a tight fusion frame.

Theorem 3.12 ([1]). Let fWigD
iD1 be a fusion frame for HM with dim Wi D k <

M for all i D 1; : : : ;D, and let QS be the associated fusion frame operator with
eigenvalues D � �1 � 	 	 	 � �M � 2 and eigenvectors femgM

mD1. Further, let A be
the smallest positive integer, which satisfies the following conditions:

(1) �1 C 2 � A.
(2) AM D kN0 for some N0 2 N.
(3) A � �M C N0 � .D C 3/.

Then there exists a fusion frame fVigN0�D
iD1 for HM with dim Vi D k for all i 2

f1; : : : ;N0 � Dg so that fWigD
iD1 [ fVigN0�D

iD1 is an A-tight fusion frame.

The number of k-dimensional subspaces added in Theorem 3.12 to extend a
fusion frame to a tight fusion frame is, in general, the smallest number that can
be added.

6.3.5 Sparsity

The fusion frames constructed by SFFR are optimally sparse. We present analogous
sparsity results to that of Subsection 6.2.4.

Definition 3.13. Let M;D > 0 and let the real values �1; : : : ; �M � 2 satisfyPM
jD1 �j D D. Then the class of fusion frames fWigD

iD1 in HM with dim Wi D k
for all i D 1; : : : ;D whose fusion frame operator has eigenvalues �1; : : : ; �M will
be denoted by FF.D; k; f�igM

iD1/.

The notion of maximal block number as defined in Definition 2.15 can be
extended to a decomposition property of the synthesis matrix of a fusion frame.

Definition 3.14. Let M;D > 0, and let fWigD
iD1 be a fusion frame for HM

with associated frame ffi;lgdi
lD1. Then we say that the synthesis matrix of fWigD

iD1
associated with ffi;lgdi

lD1 has block decomposition of order M, if there exists a
partition f1; : : : ;Dg D I1 [ 	 	 	 [ IM such that, for any k1 2 Ii1 and k2 2 Ii2 with
i1 ¤ i2, we have supp'k1 \ supp'k2 D ; and M is maximal.

The following result now connects the maximal block number of the sequence
of eigenvalues of a fusion frame operator with the block decomposition order of an
associated fusion frame.
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Proposition 3.15 ([11]). Let M; k;D > 0 and let the real values �1; : : : ; �M � 2

satisfy
PM

jD1 �j D kD. Then the synthesis matrix of any fusion frame in the class
FF.D; k; f�igM

iD1/ with any associated frame has block decomposition of order at
most �.�1; : : : ; �M/.

Having introduced the required new notions, we are now in the position to state
the exact value for the maximally achievable sparsity for a class FF.D; k; f�igM

iD1/.

Theorem 3.16 ([11]). Let M; k;D > 0, and let �1; : : : ; �M � 2 satisfyPM
jD1 �j D kD. Then any fusion frame in FF.D; k; f�igM

iD1/ is at least
kD C 2.M � �.�1; : : : ; �M//-sparse with respect to any orthonormal basis.

Using the sparsity bound in Theorem 3.16, the following theorem proves that
fusion frames constructed by SFFR do in fact achieve optimal sparsity.

Theorem 3.17 ([11]). Let M; k;D > 0, and let �1; : : : ; �M � 2 be ordered
blockwise and satisfy

PM
jD1 �j D kD. Then the fusion frame SFFR.D; kI�1; : : : ; �M/

is optimally sparse in the class FF.D; k; f�igM
iD1/ with respect to the standard unit

vector basis.
In particular, this fusion frame is kD C 2.M � �.�1; : : : ; �M//-sparse with

respect to the standard unit vector basis, and the vectors generated by SFFR are
an associated kD C 2.M � �.�1; : : : ; �M//-sparse frame.

Similar to conventional frames, if sparsity with respect to an orthonormal basis
other that the standard unit basis is required, then the SFFR algorithm can easily be
modified to accommodate this need by using this new basis instead.

6.3.6 Spectral Tetris for Unit Weighted Fusion Frame
Constructions

In [1], the authors adapted SFR to construct optimally sparse, equidimensional,
unit weighted fusion frames with all eigenvalues greater than or equal to two.
However, it may be necessary to construct a fusion frame with fewer restrictions.
In [12] the authors generalized Spectral Tetris through the use of PNSTC and
a Reference Fusion Frame to construct unit-weighted fusion frames where the
subspaces are not necessarily equidimensional and the eigenvalues need only to
be positive. The authors also provide sufficient conditions for when this is possible,
and provide necessary and sufficient conditions in the case of tight fusion frames
with eigenvalues greater than or equal to two.

To implement this method and construct unit weighted fusion frames, first
use PNSTC to construct a frame. Then use this Spectral Tetris frame to obtain a
reference fusion frame. This reference fusion frame is not the desired fusion frame,
it is however a major step in the construction of the fusion frame. Given a Spectral
Tetris frame, ffngN

nD1, the reference fusion frame is a first naive construction of a
fusion frame from the Spectral Tetris frame. The procedure is to pick f1 and then
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choose the first vector after that which is orthogonal to f1. Next, pick the first vector
orthogonal to both of these vectors. Continue in this way until no more vectors
can be chosen. This is the first subspace, V1, of the reference fusion frame. For the
second subspace, V2, pick the first vector not in V1 then repeat the above procedure
and continue this process. The general procedure for constructing Spectral Tetris
fusion frames is to then alter the dimensions of the subspaces of the reference fusion
frame, one at a time, until the required dimensions, fdigD

iD1, are met. To do this, for
the first i 2 f1; : : : ;Dg such that di does not equal the dimension of Vi, Algorithm 6
will give a procedure for increasing/decreasing the dimension of Vi until it equals di.

Definition 3.18. Let N � M be positive integers, and let f�mgM
mD1 � .0;1/ have

the property that
PM

mD1 �m D N. The fusion frame constructed by RFF presented
below in Algorithm 5 is called the reference fusion frame for the eigenvalues
.�m/

M
mD1.

RFF: Reference Fusion Frame Spectral Tetris Construction

Parameters:

• Dimension M 2 N.
• Number of frame elements N 2 N.
• Eigenvalues f�mgM

mD1 � (0, 1) such that
PM

mD1 �m D N (unit norm).

Algorithm:

(1) Use PNSTC for f�mgM
mD1 with unit norm vectors to get a Spectral Tetris

frame F D ffngN
nD1.

(2) t WD maximal support size of the rows of F.
(3) Si WD ; for i D 1; : : : ; t.
(4) k D 0.
(5) Repeat.

(a) k WD k C 1.
(b) j WD minf1 � r � t W suppfk \ suppfs D ; for all fs 2 Srg.
(c) Sj WD Sj [ ffkg.

(6) until k D N.

Output:

• Reference fusion frame .Vi/
t
iD1, where Vi D span .Si/ for i D 1; : : : ; t:

ALGORITHM 5: The RFF algorithm for constructing the reference fusion frame.

The following example highlights a few important observations. First, in order to
construct a reference fusion frame, the conventional frame needs to be unit norm but
not necessarily tight. Secondly, different orderings of the eigenvalues of a frame will
in general lead to different sequences of dimensions of the reference fusion frame
and hence will alter the steps in the final fusion frame algorithm.
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Example 3.19. Construct a 10-element unit norm frame in H3 with eigenvalues
f�mg3mD1 D f 13

3
; 10
3
; 7
3
g using PNSTC/SFR and then construct its reference fusion

frame. It is a straightforward check of PNSTC or SFR to see that the corresponding
10-element frame is as follows:

Œf1 	 	 	 f8� D

2

6
66
4

1 1 1 1

q
1
6

q
1
6
0 0 0 0

0 0 0 0

q
5
6

�
q

5
6
1

q
1
3

q
1
3
0

0 0 0 0 0 0 0

q
2
3

�
q

2
3
1

3

7
77
5
:

Thus the reference fusion frame constructed by RFF is as follows:

V1 D spanff1; f7; f10g;V2 D spanff2; f8g;
V3 D spanff3; f9g;V4 D spanff4g;V5 D spanff5g;V6 D spanff6g:

However, if we reorder the same eigenvalues in the following way: f�mg3mD1 D
f 7
3
; 13
3
; 10
3

g, then PNSTC yields the following frame:

Œg1 	 	 	 g10� D

2

66
6
4

1 1

q
1
6

q
1
6
0 0 0 0 0 0

0 0

q
5
6

�
q

5
6
1 1

q
1
3

q
1
3
0 0

0 0 0 0 0 0

q
2
3

�
q

2
3
1 1

3

77
7
5
:

Thus the reference fusion frame which RFF constructs for this frame is:

V1 D spanfg1; g5; g9g;V2 D spanfg2; g6; g10g;
V3 D spanfg3g;V4 D spanfg4g;V5 D spanfg7g;V6 D spanfg8g:

The following Theorem 3.21 provides sufficient conditions for when a Spectral
Tetris fusion frame can be constructed via a Reference fusion frame; but first the
definition of a chain is necessary.

Definition 3.20. Let S be a set of vectors in HM , and s 2 S. A subset C � S is a
chain in S starting at s, if s 2 S and the support of any element in S intersects the
support of some other element of S. C is a maximal chain in S starting at s if C is
not a proper subset of any other chain in S starting at s.

Theorem 3.21 ([12]). Let N � M be positive integers, .�m/
M
mD1 � .0;1/ and let

.di/
D
iD1 � N be a non-increasing sequence of dimensions such that

PM
mD1 �m DPD

iD1 di D N. Let .Vi/
t
iD1 be the reference fusion frame for .�m/

M
mD1. If we have the

majorization .dim Vi/
t
iD1 � .di/

D
iD1, then there exists a Spectral Tetris fusion frame

.Wi/
D
iD1 for HM with dim Wi D di for i D 1; : : : ;D and eigenvalues .�m/

M
mD1.
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The proof of Theorem 3.21 from [12] is included as it is very constructive
in nature and helps the reader to determine how the fusion frame subspaces are
developed.

Proof. We show how to iteratively construct the desired fusion frame .Wi/
D
iD1. Let t

and V1; : : : ;Vt be given by RFF for .�m/
M
mD1. Let W0

i D Vi for i D 1; : : : ; t. We add

empty sets if necessary to obtain a collection
	
W0

i


D

iD1 of D sets. If
PD

iD1 jjW0
i j �

dij D 0 then
	
W0

i


D

iD1 is the desired fusion frame. Otherwise, starting from
	
W0

i


D

iD1,
we will construct the spanning sets of the desired fusion frame.

Let

m D maxfj � D W dj ¤ jW0
j jg:

Note that
Pm

iD1 jW0
i j D Pm

iD1 di by the choice of m, and
Pm�1

iD1 jW0
i j >Pm�1

iD1 di

by the majorization assumption. Therefore, dm > jW0
mj and there exists

k D maxfj < m W jW0
j j > djg:

Notice that jW0
mj < dm � dk < jW0

k j implies jW0
mj C 2 � jW0

k j.
We now have to consider two cases:

Case 1:
If there exists at least one element w 2 W0

k , which has disjoint support from
every element in W0

m, then pick one such w 2 W0
k satisfying this property. Define

	
W1

i


D

iD1 by:

W1
i D

8
<

:

W0
k n fwg if i D k;

W0
m [ fwg if i D m;

W0
i else.

Case 2: If there is no such element w 2 W0
k which has disjoint support from every

element in W0
m, then partition W0

k [ W0
m into maximal chains, say C1; : : : ;Cr.

Note that for each i D 1; : : : ; r, the cardinality of the sets Ci \ W0
k and Ci \ W0

m
differ by at most one, since, given vk 2 W0

k and vm 2 W0
m, we know that vk and

vm either have disjoint support, or their support sets have intersection of size
one. Since jW0

mj C 2 � jW0
k j then there is a maximal chain Cj that contains one

element more from W0
k than from W0

m. Define
	
W1

i


D

iD1 by:

W1
i D

8
<

:

	
W0

k [ Cj

 n 	W0

k \ Cj



if i D k;	
W0

m [ Cj

 n 	W0

m \ Cj



if i D m;
W0

i else.
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In both of the above cases, we have defined
	
W1

i


D

iD1 such that

DX

iD1
jjW1

i j � dij <
DX

iD1
jjW0

i j � dij:

Note that
	
W1

i


D

iD1 satisfies the majorization condition
	jW1

i j
D

iD1 � .dn/
N
nD1.

Thus if the sets of
	
W1

i


D

iD1 do not span the desired fusion frame, we can repeat

the above procedure with
	
W1

i


D

iD1 instead of
	
W0

i


D

iD1 and get
	
W2

i


D

iD1 such that
PD

iD1 jjW2
i j � dij < PD

iD1 jjW1
i j � dij. Continuing in this fashion we will, say

after repeating the process l times, arrive at
	
Wl

i


D

iD1 such that
PD

iD1 jjWl
i j�dij D

0, then the sets of
	
Wl

i


D

iD1 span the desired fusion frame .Wn/
D
nD1. ut

Combining the RFF algorithm for constructing a Reference fusion frame and
the techniques in the proof of Theorem 3.21 yields a construction algorithm for
unit weighted fusion frames. Explicitly, this algorithm is called the Unit-Weighted
Fusion Frame Spectral Tetris Construction (UFF), as defined in [12], and follows.

Remark 3.22. For an explicit example of constructing a unit-weighted fusion frame
via RFF and UFF see Example 4.3 in the Appendix of the present paper.

Although Theorem 3.21 only provides sufficient conditions for when UFF can
construct a unit weighted fusion frame, the authors of [12] completely characterize
the specialized case of unit weighted tight Spectral Tetris fusion frames. In
particular, the majorization condition .dim Vi/

t
iD1 � .di/

D
iD1 in Theorem 3.21 is also

necessary for unit weighted tight fusion frames.

Theorem 3.23 ([12]). Let N � 2M be positive integers and fdigD
iD1 � N in non-

increasing order such that
PD

iD1 di D N. Let .Vi/
t
iD1 be the reference fusion frame

for f�mgM
mD1 D f N

M ; 	 	 	 ; N
M g. Then there exists a unit weighted tight Spectral Tetris

fusion frame .Wi/
D
iD1 for HM with dim Wi D di for i D 1; : : : ;D; if and only if

.dim Vi/
t
iD1 � .di/

D
iD1.

Tight fusion frames are fitting in numerous applications of distributed processing
because they are robust against additive noise and erasures. Also the fusion frame
operator of a tight fusion frame is ideal for reconstruction purposes because it
is a sequence of orthogonal projection operators which sum to a scalar multiple
of the identity operator. Moreover, tight fusion frames are maximally robust
against the loss of a single projection precisely when the tight fusion frame’s
projection operators are equidimensional, which is exactly the type of fusion frame
Theorem 3.23 constructs. Hence, the complete characterization of unit weighted
tight fusion frames in Theorem 3.23 is beneficial because this way researchers will
know exactly when and how UFF can construct the tight fusion frames needed for
their research.
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UFF: Unit-Weighted Fusion Frame Spectral Tetris Construction

Parameters:

• Dimension M 2 N.
• Number of frame elements N 2 N.
• Eigenvalues .�m/

M
mD1 � (0, 1) and dimensions M > d1 � d2 � 	 	 	 �

dD > 0 such that
PM

mD1 �m D PD
iD1 di D N.

• Reference fusion frame .Vi/
t
iD1 for .�m/

M
mD1 such that .dim Vi/

t
iD1 �

.di/
D
iD1.

Algorithm:

(1) Set ` WD 0

(2) Set W`
i WD Vi for 0 < i � t and W`

i WD ; for t < i � D, do
(3) Repeat

(a) If
PD

iD1 jjW`
i j � dij ¤ 0

(i) Set m D maxfj � Djdj ¤ jW`
j jg

(ii) Set k D maxfj < mjjW`
j j > djg

(iii) If A D fx 2 W`
k j supp .x/ \ supp .v/ D ; for all v 2 W`

mg ¤ ;,
then
(A) Pick one Ox 2 A
(B) W`C1

k WD W`
k n fOxg

(C) W`C1
m WD W`

m [ fOxg
(D) W`C1

i WD W`
i for all i ¤ k;m

(iv) else
(A) Partition W`

k [ W`
m into maximal chains

(B) Pick one such maximal chain, Cj, which contains one more
element from W`

k than from W`
m

(C) W`C1
k WD 	

W`
k [ Cj


 n 	W`
k \ Cj




(D) W`C1
m WD 	

W`
m [ Cj


 n 	W`
m \ Cj




(E) W`C1
i WD W`

i for all i ¤ k;m
(v) Set ` WD `C 1

(b) end.

(4) Do until
PD

iD1 jjW`
i j � dij D 0

(5) end.

Output:

• The sets
	
W`

i


D

iD1 span the desired fusion frame .Wi/
D
iD1, where Wi D

span
	
W`

i



for all i D 1; : : : ;D.

ALGORITHM 6: The UFF algorithm for constructing a unit-weighted fusion
frame.
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6.3.7 Generalized Spectral Tetris Fusion Frame Constructions

Given a spectrum for a desired fusion frame operator and dimensions for the
subspaces, UFF can be implemented to construct such a unit weighted fusion frame.
However, since not all fusion frames are unit weighted, in [6] the authors developed
the first construction method for fusion frames with prescribed weights through
an adapted version of PNSTC/STR. The authors completely characterize Spectral
Tetris fusion frames and in doing so provide the most general algorithm for Spectral
Tetris fusion frames.

From previous discussions in Subsection 6.3.1, the fusion frame f.Wi;wi/gD
iD1,

with frame operator QS, arises from a conventional frame when we look at orthonor-
mal bases

	
 i;j

di

jD1 of the fusion frame subspaces Wi. If it is further assumed that all

subspaces have unit weight, i.e. wi D 1 for all i D f1; : : : ;Dg, then f i;jgD;di
iD1;jD1 is

a frame with unit-norm vectors and frame operator QS D S. This relationship lead to
the definition of a Spectral Tetris fusion frame as defined in Definition 3.8. However,
to construct arbitrarily weighted Spectral Tetris fusion frames, this definition needs
to be amended. In particular, to identify a non-unit weighted fusion frame with a
conventional frame, use a tight frame within each subspace of the fusion frame
instead of an orthonormal basis.

For a fusion frame f.Wi;wi/gD
iD1 in HM , recall our fusion frame operator QSx DPD

iD1 w2i .Pi .x// for any x 2 HM . Let ffi;jgdi
iD1 be a tight frame for Wi with frame

operator S and let Pi be the orthogonal projection onto Wi. The fusion frame operator
becomes:

QSx D
DX

iD1
w2i .Pi .x// D

DX

iD1

diX

jD1
hPi .x/ ; fi;jifi;j D

DX

iD1

diX

jD1
hx; fi;jifi;j D Sx:

Hence, a non-unit weighted fusion frame arises from a conventional frame by
identifying a tight frame for each subspace of the fusion frame.

Theorem 3.24. For i 2 f1; : : : ;Dg, let wi > 0, Wi be a subspace of HM and
ffi;jgdi

jD1 be a tight frame for Wi with tight frame bounds w2i . Then the following
are equivalent.

(1) f.Wi;wi/gD
iD1 is a fusion frame whose fusion frame operator has spectrum

f�mgM
mD1.

(2) ffi;jgD;di
iD1;jD1 is a frame whose frame operator has spectrum f�mgM

mD1.

In light of this relationship, to construct arbitrarily weighted fusion frames via
Spectral Tetris, first construct a Spectral Tetris frame and then partition this frame
in such a way so that the corresponding partition is a tight frame for each subspace
of the fusion frame.

Definition 3.25. Suppose f.Wi;wi/gD
iD1 is a fusion frame with fusion frame

operator QS. We say f.Wi;wi/gD
iD1 is a Spectral Tetris fusion frame if there exists



6 Spectral Tetris 257

a Spectral Tetris frame F D ffngN
nD1 with frame operator S and a partition fJigD

iD1
of f1; : : : ;Ng such that ffngn2Ji is a tight frame for Wi with tight frame bound w2i .
Further, we say F and fJigD

iD1 generate f.Wi;wi/gD
iD1.

We would like to construct a fusion frame which has a desired sequence of
eigenvalues, subspace weights and dimensions. However, we make no mention of
the norms of the vectors which span the subspaces of the fusion frame because, as
we will see, different sequences of norms can produce the same fusion frame.

Example 3.26 ([6]). Construct a fusion frame in H2 with eigenvalues f2; 3g and
a sequence of weights fp2; 1g with corresponding subspace dimensions f2; 1g.
PNSTC can produce a variety of frames whose frame operator has this spectrum:

(1) The sequence of norms fp2;p2; 1g produces the frame

�
f1 f2 f3

� D
�p

2 0 0

0
p
2 1


:

(2) The sequence of norms
�
1; 1;

p
2; 1

�
produces the frame

�
g1 g2 g3 g4

� D
�
1 1 0 0

0 0
p
2 1


:

(3) The sequence of norms

�
1;

q
3
2
;

q
3
2
; 1

�
produces the frame

�
h1 h2 h3 h4

� D
"
1

q
1
2

q
1
2
0

0 1 �1 1

#

:

A fusion frame f.Wi;wi/g2iD1; with weights w1 D p
2;w2 D 1; is then

obtained via PNSTC by defining W1 D span .f1; f2/, W2 D span .f3/, or W1 D
span .g1; g2; g3/, W2 D span .g4/, or W1 D span .h1; h2; h3/, W1 D span .h4/. All
three generate the same fusion frame.

The differences among the constructions in Example 3.26 are superficial; (2)
simply splits a vector from (1) into two colinear vectors, and (3) takes two
orthogonal vectors from (2) and combines them into a 2 
 2 block spanning the
same 2-dimensional space. In fact, all Spectral Tetris frames which generate a given
fusion frame are related in this manner. The following theorem explicitly states this
and proves that every Spectral Tetris fusion frame can be generated from a Spectral
Tetris frame, where each subspace of the fusion frame is spanned by equal norm,
orthogonal frame vectors. Moreover, the weights of the subspaces of the Spectral
Tetris fusion frame are the norms of the frame vectors from the Spectral Tetris frame.
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Theorem 3.27 ([6]). If f.Wi;wi/gD
iD1 is a spectral tetris fusion frame in HM, then

there exists a spectral tetris frame F D ffngN
nD1 and a partition fJigD

iD1 of f1; : : : ;Ng
generating this fusion frame such that kfnk D wi and hfn; fn0i D 0, for n; n0 2 Ji for
each i 2 f1; : : : ;Dg.

In order to apply the Spectral Tetris fusion frame construction, first a Spectral
Tetris frame must be constructed and hence the sequence of weights/norms and
eigenvalues must be Spectral Tetris ready. However, to construct the Spectral Tetris
fusion frame, these sequences have further constraints as defined in the following
theorem.

Theorem 3.28 ([6]). Let fwigD
iD1 be a sequence of weights, f�mgM

mD1 a sequence
of eigenvalues, and fdigD

iD1 a sequence of dimensions. Let N D PD
iD1 di, and now

consider each wi repeated di times. We will use a double index to reference specific
weights and a single index to emphasize the ordering:

fwi;jgD;di
iD1;jD1 D fwngN

nD1:

Then Spectral Tetris can construct a fusion frame whose subspaces have the given
weights and dimensions, and whose frame operator has the given spectrum if and
only if there exists a Spectral Tetris ready (as in Definition 2.35) permutation of
fwngN

nD1 and f�mgM
mD1, say fw
ngN

nD1 and f�
 0mgM
mD1 whose associated partition 1 �

n1 � 	 	 	 � nM D N satisfies:

(1)
Pni

nD1 w2
n <
Pi

mD1 �
 0m, then

(a) if
PniC1

nD1 w2
n <
PiC1

mD1 �
 0m, then for wu;v;wp;q 2 fw
ngniC1C1
nDni ; v ¤ q

(b) if
PniC1

nD1 w2
n D PiC1
mD1 �
 0m, then for wu;v;wp;q 2 fw
ngniC1

nDni ; v ¤ q

(2)
Pni

nD1 w2
n D Pi
mD1 �
 0m, then

(a) if
PniC1

nD1 w2
n <
PiC1

mD1 �
 0m, then for wu;v;wp;q 2 fw
ngniC1C1
nDniC1; v ¤ q

(b) if
PniC1

nD1 w2
n D PiC1
mD1 �
 0m, then for wu;v;wp;q 2 fw
ngniC1

nDniC1; v ¤ q

for all i D 1; : : : ;M � 1.

Theorem 3.28 gives necessary and sufficient conditions for the construction
of a Spectral Tetris fusion frame. Moreover, it is possible for a sequence of
weights/norms and a sequence of eigenvalues to satisfy the Spectral Tetris ready
condition and hence such a Spectral Tetris Frame exists but no partition of these
sequences satisfies the orthogonality conditions (1)(a,b) and (2)(a,b) of Theo-
rem 3.28. However this does not suggest that such a fusion frame cannot exist, it
just implies that Spectral Tetris cannot construct such a fusion frame.

Example 3.29. Given the dimensions fdig5iD1 D f4; 2; 2; 2; 1g and the eigenvalues
f�mg6mD1 D f 11

6
; 11
6
; 11
6
; 11
6
; 11
6
; 11
6

g, PNSTC will construct the following unit norm
frame:
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2

66666
66666
66
4

1

q
5
12

q
5
12

0 0 0 0 0 0 0 0

0

q
7
12

�
q

7
12

q
1
3

q
1
3

0 0 0 0 0 0

0 0 0

q
2
3

�
q

2
3

q
1
4

q
1
4

0 0 0 0

0 0 0 0 0

q
3
4

�
q

3
4

q
1
6

q
1
6

0 0

0 0 0 0 0 0 0

q
5
6

�
q

5
6

q
1
12

q
1
12

0 0 0 0 0 0 0 0 0

q
11
12

�
q

11
12

3

77777
77777
77
5

A unit weighted fusion frame with these dimensions and spectrum is known to
exist due to combinatorial arguments. However, the hypotheses of Theorem 3.28
cannot be satisfied in this case because no four columns can be chosen to be pairwise
orthogonal. Hence there is no Spectral Tetris fusion frame with these properties.

Although the conditions in Theorem 3.28 completely characterize Spectral Tetris
fusion frames, it can be a time consuming task to find a Spectral Tetris ready
sequence which satisfies (1)(a,b) and (2)(a,b). The following theorem provides eas-
ier sufficient conditions for when a Spectral Tetris fusion frame can be constructed.

Theorem 3.30 ([6]). Consider HM and a sequence of weights w1 � w2 � 	 	 	 � wD

with corresponding subspace dimensions fdigD
iD1, and a sequence of eigenvalues

�1 � �2 � 	 	 	 � �M. Let the doubly indexed sequence fwi;jgD;di
iD1;jD1 represent

wi each repeated di times. Now PNSTC/STR will build a weighted fusion frame
f.Wi;wi/gD

iD1, with dim .Wi/ D di and whose frame operator has the given spectrum
if there exists an ordering fwngN

nD1 of fwi;jgD;di
iD1;jD1 such that

(1)
PN

nD1 w2n D PM
mD1 �m

(2) w2D�1;1 C w2D;1 � �1

(3) If wl D wi;j;wl0 D wi0;j0 with i D i0 and l < l0, then
Pl0�1

nDl w2n � 2�M.

The conditions in Theorem 3.30 are more relaxed than that of Theorem 3.28;
however, finding an ordering of weights which achieves condition (3) is no small
task. Intuitively, we would want to space like-weights as far apart as possible in our
ordering in order to maximize

Pl0�1
nDl w2n. When all of the subspaces have the same

dimension then the ordering of the like-weights becomes obvious. We will start in
this more obvious case and provide sufficient conditions for when PNSTC/STR can
construct an equidimensional, tight fusion frame.

Corollary 3.31 ([6]). Consider HM and a sequence of weights w1 � w2 � 	 	 	 �
wD. PNSTC/STR can construct a tight weighted fusion frame with the given weights,
all subspaces of dimension k, (eigenvalue � D k

M

PD
iD1 a2i ) provided both of the

following hold:

(1) w2D�1 C w2D � �

(2) k
M � 1

2
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Next, Theorem 3.30 is specialized to the case of equidimensional fusion frames
and sufficient conditions are given for when PNSTC/STR can construct such fusion
frames.

Corollary 3.32 ([6]). Consider HM, a sequence of weights w1 � w2 � 	 	 	 � wD

and a sequence of eigenvalues �1 � �2 � 	 	 	 � �M. PNSTC/STR can construct a
weighted fusion frame f.Wi;wi/gD

iD1, all subspaces dimension k, and with the given
spectrum provided all of the following hold:

(1) k
PD

nD1 w2n D PM
mD1 �m

(2) w2D�1 C w2D � �1

(3)
PD

nD1 w2n � 2�M

Remark 3.33. To construct the fusion frame in Corollary 3.31 and Corollary 3.32,
write each weight wi repeated k times and arrange these weights as follows:
fa1; : : : ; am; a1; : : : ; am; : : : g. Then proceed to use PNSTC/STR on this collection
of norms. We provide this arrangement of the sequence of weights because it
guarantees that such a fusion frame can be constructed so long as all of the
conditions in the respective corollary are met. However, other arrangements are
possible.

To help illustrate the generalized Spectral Tetris construction method of a fusion
frame, an example is now included which constructs an equidimensional, weighted
fusion frame, which utilizes Corollary 3.32.

Example 3.34. Construct a weighted fusion frame in H5 with 9 two-dimensional
subspaces, weights fwig9iD1 D f1; 1; 1; 1;p2;p2;p3;p3; 2g and spectrum
f�mg5mD1 D f7; 7; 7; 7; 8g. Notice that conditions (1), (2), and (3) of Corollary 3.32
are met. Indeed:

(1) k
P9

iD1 w2i D 2 .18/ D 36 D P5
iD1 �m

(2) w2D�1 C w2D D 7 � 7 D �1

(3)
P9

iD1 w2i D 18 � 16 D 2�5

and hence such a construction is possible.
To construct such a fusion frame, first construct the corresponding Spectral Tetris

frame via PNSTC. Write each norm k times and arrange these weights in the
following order:

f1; 1; 1; 1;p2;p2;p3;p3; 2; 1; 1; 1; 1;p2;p2;p3;p3; 2g:

PNSTC constructs the following Spectral Tetris frame:
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2

6
66666
4

1 1 1 1
p
2

q
2
3

q
1
3

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

q
4
3

�
q

8
3

p
3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
p
2

p
2 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
p
2 �p

2 2

3

7
77777
5

:

Grouping the frame vectors in the following way will yield the desired fusion
frame:

W1 D spanff1; f10gI W2 D spanff2; f11gI W3 D spanff3; f12gI
W4 D spanff4; f13gI W5 D spanff5; f14gI W6 D spanff6; f15gI
W7 D spanff7; f16gI W8 D spanff8; f17gI W9 D spanff9; f18gI

where each subspace is two-dimensional with respective desired weight and the
spectrum of the fusion frame operator is f7; 7; 7; 7; 8g.

Remark 3.35 ([6]). In order for PNSTC/STR to build a desired fusion frame, a
complex relationship among partial sums of weights, partial sums of eigenvalues,
and dimensions of our subspaces must be satisfied according to Theorem 3.28. We
simplified this relationship in Theorem 3.30 and its corollaries to achieve concrete
constructions via PNSTC/STR. While these extra assumptions still allow a variety
of fusion frames to be created, they are best suited for fusion frames with relatively
flat spectrum. For example, (1) and (3) of Corollary 3.32 imply

PM
mD1 �m

k
� 2�M;

and this can clearly be manipulated to

Average
	f�mgM

mD1



2�M
� k

M
:

Hence if we desire PNSTC/STR to guarantee the construction of fusion frames
with relatively large subspaces, our prescribed frame operator must have a relatively
flat spectrum. However, the conditions used here are of the correct order for practical
applications as we generally do not work with large subspaces or with eigenvalues
for the frame operator which are very spread out.
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6.4 Appendix

Additional examples of the SFR, SFFR, RFF and UFF construction methods are
included here.

An explicit example of constructing an equidimensional unit-weighted fusion
frame via SFFR is now included. The remark following this example explains how
a frame can be constructed using SFR.

Example 4.1. Construct an equidimensional, unit-weighted fusion frame in H3 with
5 two-dimensional subspaces and spectrum f�mg3mD1 D f 13

3
; 10
3
; 7
3
g.

Note that D D 5 � 13
3

� 10
3

� 7
3

� 2 and
P3

mD1 �m D 10 D 2 .5/ D kD 2 N;
hence the parameters of the algorithm are met.

• Set j D 1

• For m D 1 do

(1) �1 D 13
3

� 1 then
(a) f1 WD e1.
(b) j WD j C 1 D 1C 1 D 2.
(c) �1 WD �1 � 1 D 13

3
� 1 D 10

3
.

(2) �1 D 10
3

� 1 then
(a) f2 WD e1.
(b) j WD 2C 1 D 3.
(c) �1 WD 10

3
� 1 D 7

3
.

(3) �1 D 7
3

� 1 then
(a) f3 WD e1.
(b) j WD 3C 1 D 4.
(c) �1 WD 7

3
� 1 D 4

3
.

(4) �1 D 4
3

� 1 then
(a) f4 WD e1.
(b) j WD 4C 1 D 5.
(c) �1 WD 4

3
� 1 D 1

3
.

(5) �1 D 1
3
< 1 then

(a) f5 WD
q

1
3

2
	 e1 C

q
1 � 1

3

2
	 e2 D

q
1
6

	 e1 C
q

5
6

	 e2.

(b) f6 WD
q

1
3

2
	 e1 �

q
1 � 1

3

2
	 e2 D

q
1
6

	 e1 �
q

5
6

	 e2.
(c) j WD 5C 2 D 7.
(d) �mC1 D �2 WD �mC1 � .2 � �m/ D 10

3
� 	
2 � 1

3


 D 5
3
.

(e) �1 WD 0:

(6) end.

• For m D 2 (we have �m D �2 D 5
3

and j D 7) do

(1) �2 D 5
3

� 1 then
(a) f7 WD e2.
(b) j WD j C 1 D 8.
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(c) �2 WD �2 � 1 D 2
3
.

(2) �2 D 2
3
< 1 then

(a) f8 WD
q

2
3

2
	 e2 C

q
1 � 2

3

2
	 e3 D

q
1
3

	 e2 C
q

2
3

	 e3.

(b) f9 WD
q

2
3

2
	 e2 �

q
1 � 2

3

2
	 e3 D

q
1
3

	 e2 �
q

2
3

	 e3.
(c) j WD j C 2 D 10.
(d) �mC1 D �3 WD �3 � .2 � �2/ D 7

3
� 	
2 � 2

3


 D 1.
(e) �2 WD 0:

(3) end.

• For m D 3 (we have �m D �3 D 1 and j D 10) do

(1) �3 D 1 � 1 then
(a) f10 WD e3.
(b) j WD j C 1 D 11.
(c) �3 WD �3 � 1 D 0.

(2) end.

• end.

Output:

• Define the two-dimensional subspaces fWig5iD1 as the following

Wi WD spanffiC5j W j D 0; 1g:

Explicitly, this yields:

W1 D spanff1; f6g;W2 D spanff2; f7g;W3 D spanff3; f8g;
W4 D spanff4; f9g;W5 D spanff5; f10g:

It is straightforward to check that each of the subspaces fWig5iD1 are 2-
dimensional and the spectrum of the fusion frame operator is f 13

3
; 10
3
; 7
3
g.

Therefore fWig5iD1 is an equidimensional, unit weighted fusion frame with 5 two
dimensional subspaces and spectrum f 13

3
; 10
3
; 7
3
g. Note that the corresponding

frame vectors are at most 2-sparse.

Remark 4.2. Example 4.1 can be slightly simplified to also be an example of the
SFR construction for a unit norm frame. Explicitly in Example 4.1, to adapt the
SFFR algorithm construction to a construction for SFR our parameters and output
would change to the following:

New SFR Parameters:

• Dimension 3 2 N.
• Real eigenvalues 5 � 13

3
� 10

3
� 7

3
� 2, number of frame vectors 10

satisfying
P3

mD1 �m D 10 D D 2 N.
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Algorithm: The algorithm will be the exact same as in Example 4.1.
New SFR Output:

• Unit norm frame ffjg10jD1 with spectrum f�mg3mD1 D f 13
3
; 10
3
; 7
3
g.

Next, an illustrative example of constructing a unit weighted fusion frame using
UFF is included.

Example 4.3. Construct a unit-weighted fusion frame in H4 with 11 frame ele-
ments, eigenvalues

	
11
4
; 11
4
; 11
4
; 11
4



and dimensions 3 � 3 � 2 � 1 � 1 � 1.

Notice that
P4

mD1 �m D 11 D P6
iD1 di D N.

Recall the unit norm tight frame with eigenvalue � D 11
4

constructed in
Example 2.12,

T� D Œf1f2 	 	 	 f11� D

2

66666
6
4

1 1

q
3
8

q
3
8
0 0 0 0 0 0 0

0 0

q
5
8

�
q

5
8
1

q
2
8

q
2
8
0 0 0 0

0 0 0 0 0

q
6
8

�
q

6
8
1

q
1
8

q
1
8
0

0 0 0 0 0 0 0 0

q
7
8

�
q

7
8
1

3

77777
7
5

:

It is a straight forward check of the RFF algorithm to see that the reference fusion
frame given for frame T� is as follows:

V1 D spanff1; f5; f8; f11g;V2 D spanff2; f6g;
V3 D spanff3; f9g;V4 D spanff4; f10g;V5 D spanff7g:

Note that the majorization condition, .dim Vi/
5
iD1 � .di/

6
iD1, is also satisfied.

• ` WD 0

• W0
i WD ; for 5 < i � 6. Hence,

W0
1 WD ff1; f5; f8; f11gI W0

2 WD ff2; f6gI W0
3 WD ff3; f9gI

W0
4 WD ff4; f10gI W0

5 WD ff7gI W0
6 WD ;:

•
P6

iD1 jjW0
i j � dij D 4 ¤ 0

(1) m WD maxfj � 6jdj ¤ jW0
j jg D 6

(2) k WD maxfj < 6jjW0
j j > djg D 4

(3) Since A D fx 2 W0
4 j supp .x/ \ supp .v/ D ; for all v 2 W0

6 g ¤ ;, then
(a) Pick one Ox 2 A. We can pick f10.
(b) Yielding the new subspaces:

W1
1 WD W0

1 D ff1; f5; f8; f11gI W1
2 WD W0

2 D ff2; f6gI
W1
3 W W0

3 D ff3; f9gI W1
4 W W0

4 n ff10g D ff4gI
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W1
5 WD W0

5 D ff7gI W1
6 WD W0

6 [ ff10g D ff10g:

(4) ` WD 0C 1 D 1.

• Repeat with ` D 1.
•
P6

iD1 jjW1
i j � dij D 2 ¤ 0

(1) m WD maxfj � 6jdj ¤ jW1
j jg D 2.

(2) k WD maxfj < 2jjw1j j > djg D 1.
(3) A D fx 2 W1

1 j supp .x/ \ supp .v/ D ; for all v 2 W1
2 g D ff11g ¤ ;.

(a) Pick one Ox 2 A. We can pick f11.
(b) Yielding the new subspaces:

W2
1 WD W1

1 n ff11g D ff1; f5; f8gI
W2
2 WD W1

2 [ ff11g D ff2; f6; f11gI
W2
3 W W1

3 D ff3; f9gI W2
4 W W1

4 D ff4gI
W2
5 WD W1

5 D ff7gI W2
6 WD W1

6 D ff10g:

(4) ` WD 1C 1 D 2

• Repeat with ` D 2.
•
P6

iD1 jjW2
i j � dij D 0

• end.

Output:

• The sets
	
W2

i


6
iD1 span the desired fusion frame .Wi/

D
iD1, where Wi D span

	
W2

i




for all i D 1; : : : ; 6.
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Part III
Bandlimitation and Generalizations



Chapter 7
System Approximations and Generalized
Measurements in Modern Sampling Theory

Holger Boche and Volker Pohl

Abstract This chapter studies several aspects of signal reconstruction of sampled
data in spaces of bandlimited functions. In the first part, signal spaces are character-
ized in which the classical sampling series uniformly converge, and we investigate
whether adaptive recovery algorithms can yield uniform convergence in spaces
where non-adaptive sampling series does not. In particular, it is shown that the
investigation of adaptive signal recovery algorithms needs completely new analytic
tools since the methods used for nonadaptive reconstruction procedures, which
are based on the celebrated Banach–Steinhaus theorem, are not applicable in the
adaptive case.

The second part analyzes the approximation of the output of stable linear time-
invariant (LTI) systems based on samples of the input signal, and where the
input is assumed to belong to the Paley–Wiener space of bandlimited functions
with absolute integrable Fourier transform. If the samples are acquired by point
evaluations of the input signal f , then there exist stable LTI systems H such that
the approximation process does not converge to the desired output Hf even if the
oversampling factor is arbitrarily large. If one allows generalized measurements
of the input signal, then the output of every stable LTI system can be uniformly
approximated in terms of generalized measurements of the input signal.

The last section studies the situation where only the amplitudes of the signal
samples are known. It is shown that one can find specific measurement functionals
such that signal recovery of bandlimited signals from amplitude measurement is
possible, with an overall sampling rate of four times the Nyquist rate.
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7.1 Introduction

The great success of digital signal proceeding lies in the fact that analog signals
observed in the physical world can equivalently be represented by a sequence of
complex numbers. These digital signals can then be processed and filtered very
quickly and efficiently on digital computers. Sampling theory is the theoretical
foundation of the conversion from analog to digital signals and vice versa. Because
of its fundamental importance for modern information theory, signal processing and
communications, there exists a long and extensive list of impressive research results
in this area starting with the seminal work of Shannon [60]. We refer to excellent
survey articles and textbooks such as [38, 41, 59, 64, 73] and to [14, 15] for historical
comments on the topic.

Sampling theory was originally formulated for bandlimited signals with finite
energy. Later these results were extended to non-bandlimited signals [16, 25, 26, 29]
and to broader classes of bandlimited functions, in particular to functions which do
not necessarily have finite energy [19, 52, 71]. But these results often took into
consideration only the pointwise convergence of the reconstruction series. From
a practical point of view, however, it is often necessary to control the peak value
of the reconstructed signal because electronic circuits and devices (like amplifiers,
antennas, etc.) have only limited dynamic ranges. Moreover, the energy efficiency
of these devices usually and largely depends on this dynamic range [68]. To control
the peak value of the signals, one has to investigate the uniform convergence of the
sampling series. This will be done in some detail in the first part of this chapter
(Sec. 7.4). The starting point will be a classical result [13] which shows that the
uniform Shannon sampling series is locally uniformly convergent for all bandlimited
signals with an absolute integrable Fourier transform. Then we present several
extensions of this result to larger signal spaces and we investigate whether it is
possible to have global uniform convergence on the entire real axis. In particular, we
discuss the influence of the sampling points and we investigate whether it is possible
to apply adaptive reconstruction algorithms to obtain signal recovery methods which
are uniformly convergent. Classical sampling series, like the one of Shannon, are
fixed for the whole signal space under consideration. These series may or may
not converge for all signals in this signal space. But even if the sampling series
does not converge for all functions in the space, it might be possible to adapt the
reconstruction series to the actual signal to obtain a signal approximation which
converges uniformly to the desired signal. However, it will be shown that for the
common signal spaces of bandlimited signals, such an adaption of the recovery
series essentially gives no improvement of the global uniform convergence behavior.
These investigations in Sec. 7.4 are strongly related to one of the cornerstones of
functional analysis, namely to the theorem of Banach–Steinhaus. This important
theorem is a very powerful and elegant tool to investigate nonadaptive algorithms,
and in particular to prove the divergence of sampling series considered in this
chapter. For adaptive algorithms, however, the Banach–Steinhaus theorem cannot
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be applied. Therefore completely new tools are necessary for the investigation of
such recovery algorithms, which are related to some early works of Paul Erdős.

The second part of this chapter (Sec. 7.5) investigates another aspect of sampling-
based signal processing. Whereas the sampling theorem deals with the reconstruc-
tion of a signal f from its samples ff .�n/g, the main task of digital signal processing
is often not to reconstruct f , but to process the sampled data ff .�n/g such that an
approximation of the processed signal g D Hf is obtained, where H is a certain
linear transformation. In other words, one wants a digital implementation of the
analog system H. It seems to be widely accepted that such a digital implementation
is always possible, at least for stable linear systems. This is certainly true for
bandlimited signals with finite energy. However, for more general signal spaces,
a digital implementation of stable LTI systems may fail, even on such spaces where
the sampling series uniformly converges. This remarkable observation is presented
and discussed in Sec. 7.5. Moreover, we also discuss the influence of data acquisition
for possible signal-based signal processing. Usually, signals are sampled by point
evaluations f 7! ff .�n/gn2Z. However, more general measurement functionals are
possible to digitize an analog signal. It is shown that generalized measurement
functionals will enable the digital implementation of analog signal processing
schemes on spaces where a digital implementation based on point evaluations fail.

The last part (Sec. 7.6) considers another application where generalized measure-
ment functionals are necessary to guarantee signal recovery from signal samples.
Here we consider the situation where only the amplitude of the signal samples
is available, but not the phase. This problem, known as phase retrieval, plays an
important role in many different applications. Even though there is a long history of
research [31] on phase retrieval, it is still not clear whether signal reconstruction
from the amplitudes of point evaluations is in general, possible. Here we will
show, however, that specifically designed measurement functionals will allow signal
recovery of bandlimited functions from the knowledge of its amplitudes only. The
recovery algorithm will be partially based on the sampling series investigated in
Sec. 7.4.

7.2 Preliminaries and Signal Models

7.2.1 General Notations

We use standard notations. In particular, the set of all continuous functions on the
real axis R is denoted by C .R/, and C0.R/ stands for all f 2 C .R/ which vanish at
infinity. Both spaces are equipped with the supremum norm kf k1 D supt2R jf .t/j.
If 1 � p < 1 or p D 1, then

kf kp D
�Z 1

�1
jf .t/jp dt

�1=p

and kf k1 D ess sup
t2R

jf .t/j
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is the Lp norm of f , and Lp.R/ stands for the Banach space of all measurable
functions on R with finite Lp norm. Similarly, if S � R is a finite interval of length
jSj on R, then Lp.S/ with 1 � p � 1 stands for the set of measurable functions on
S with finite norm, defined by

kf kp D
�
1

jSj
Z

S

jf .t/jp dt

�1=p

and kf k1 D 1

jSj ess sup
t2S

jf .t/j :

In particular, L2.R/ and L2.S/ are Hilbert spaces with the inner products

hf ; gi D
Z

R

f .t/ g.t/ dt and hf ; gi D 1

jSj
Z

S

f .t/ g.t/ dt ; (7.1)

respectively. For any f 2 L1.R/, its Fourier transform is defined by

Of .!/ D .F f /.!/ D
Z 1

�1
f .t/ e�it! dt ; ! 2 R :

Because L1.R/ \ L2.R/ is a dense subset of L2.R/, Plancherel’s theorem extends
F to a unitary operator on L2.R/. There, F satisfies Parseval’s formula

˝Of ; Og˛ D
2�
˝
f ; g
˛

for all f ; g 2 L2.R/. By Riesz–Thorin interpolation, F can be extended to
any Lp.R/ with 1 < p < 2, and for p > 2 it can be defined in the distributional sense
(see, e.g., [39, 58]).

7.2.2 Spaces of Bandlimited Functions

In many applications, and especially in communications, bandlimited signals are
the prevailing signal model. In order to set our discussion in the context of known
results, we consider two families of bandlimited functions, namely Paley–Wiener
and Bernstein spaces.

Paley–Wiener Spaces For 
 > 0 and 1 � p � 1, the Paley–Wiener space PW p



is the set of all functions f that can be represented as

f .z/ D 1

2�

Z 


�

Of .!/ ei!z d! ; z 2 C (7.2)

for some Of 2 Lp.Œ�
; 
�/. Thus f can be represented as the inverse Fourier transform
of a function Of in Lp.Œ�
; 
�/, and we say that f has bandwidth 
 . The norm in
PW p


 is defined by kf kPW
p



D kOf kLp.Œ�
;
�/.
The Paley–Wiener spaces are nested. Indeed, Hölder’s inequality implies that

kf kPW
q



� kf kPW
p



for all f 2 PW p

 and all 1 � q � p. This yields the inclusions

PW p

 � PW q


 for all 1 � q � p < 1. In particular, PW 1

 is the largest space
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in the family of Paley–Wiener spaces. By the properties of the Fourier transform,
it follows easily from (7.2) that any Paley–Wiener function f is continuous on R

with kf k1 � 1
2�

kf kPW 1



and the Riemann–Lebesgue lemma shows that any Paley–
Wiener function vanishes at infinity such that PW p


 � C0.R/ for every 1 � p � 1.
Similarly, as for the Lp.R/ spaces, the Paley–Wiener space PW 2


 plays a
particular role since it is a Hilbert space with the L2 inner product given on the
left-hand side of (7.1). Moreover, it is even a reproducing kernel Hilbert space. This
means that for every � 2 R, and for all f 2 PW 2


 , the point evaluation f .�/ can be
written as an inner product

f .�/ D hf ; r�i with r�.t/ D sin.
Œt � ��/
�Œt � �� ;

and with the reproducing kernel r� 2 PW 2

 with kr�kPW 2

�
D p


=� .

Bernstein Spaces For any 
 > 0, the set B
 contains all entire functions of
exponential type � 
 , i.e., to every f 2 B
 and every � > 0 there is a constant
C D C.f ; �/ such that

jf .z/j � C e.
C�/jzj for all z 2 C :

Then for 1 � p � 1, the Bernstein space Bp

 is the set of all f 2 B
 whose

restriction to the real axis belongs to Lp.R/. The norm in Bp

 is defined as the Lp.R/

norm of f on R.
Functions in the Bernstein spaces Bp


 are also bandlimited in the sense that they
have a Fourier transform with finite support. This follows from the Paley–Wiener
theorem [39, 58]. It states that f is an entire function of exponential type � 
 , if and
only if it is the Fourier transform of a distribution with compact support which is
contained in the interval Œ�
; 
�. Finally, we remark that the theorem of Plancherel–
Pólya implies that there exists a constant C D C.p; 
/, such that for all f 2 Bp




jf .t C i�/j � C kf kp e
 j� j for all t; � 2 R : (7.3)

Thus every f 2 Bp

 is uniformly bounded on every line parallel to the real axis. It

follows that Bp

 � Bq


 � B1
 for all 1 � p � q � 1. In particular, B1
 is the
largest space in the family of Bernstein spaces. The space of all functions f 2 B1

for which f .t/ ! 0 as t ! ˙1 will be denoted by B1
;0, and we have the relations
B1
;0 � C0.R/ and Bp


 � C .R/ for every 1 � p � 1. Note also that Plancherel’s
theorem shows that B2


 D PW 2

 . So overall we have the relation

B2

 D PW 2


 � PW 1

 � B1
 :

Without any loss of generality, we normalize the bandwidth 
 of our signals to

 D � throughout this chapter.



274 H. Boche and V. Pohl

In applications, it is often important to control the peak value of the signals
because of limited dynamic ranges of power amplifiers and other hardware compo-
nents [68]. Moreover, the energy efficiency is an increasingly important aspect for
mobile communication networks, and since the efficiency of high power amplifiers
is directly related to the peak-to-average power ratio of the signals, it is necessary
to control the peak values of the signals to design energy efficient systems. For
such applications, B1� is the appropriated signal space. Moreover, in sampling and
reconstruction of stochastic processes, the space PW 1

� plays a fundamental role
[8, 17] because the spectral densities of such processes are L1 functions, in general.
Consequently, one has to investigate the behavior of the reconstruction series for
functions in PW 1. For these reasons, the spaces B1� and PW 1

� are the primary
signal spaces considered in this chapter.

7.3 Classical Sampling Theory: A Short Introduction

Sampling theory deals with the reconstruction of functions f in terms of their values
(samples) f .�n/ on an appropriated set f�ng of sampling points. The particular
choice of the set f�ng and in particular the density of the points �n determine
whether it is possible to reconstruct f from its samples [59]. This theory is the
foundation of all modern digital signal processing [60]. Moreover, in [30], Feynman
discusses sampling theory in a much wider context (“physics of computations”)
and its importance for theoretical physics. This section reviews some of the most
important results in sampling theory, as far as they will be needed in the subsequent
discussions.

7.3.1 Uniform Sampling

We start our discussion with the situation where the sampling points � D f�ngn2Z
are distributed uniformly on the real axis, i.e., where �n D n for all n 2 Z. Then
the fundamental initial result in sampling theory is the so-called cardinal series
[37] which is also known by the name Whittaker–Shannon–Kotelnikov sampling
theorem. Let f 2 PW p

� be a bandlimited function and consider the Shannon series
of degree N

.SNf /.t/ D
NX

nD�N

f .n/rn.t/ D
NX

nD�N

f .n/
sin.�Œt � n�/

�Œt � n�
(7.4)

with the reproducing kernels rn of PW 2
� . This series is intended to approximate

the given function f from its samples ff .n/gN
nD�N . The question is whether, and in

which sense, SNf converges to the given function f as N ! 1.
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Original research was mainly focused on functions in the Hilbert space PW 2
� ,

and it is well known that

lim
N!1 kf � SNf kPW 2

�
D 0 for all f 2 PW 2

� : (7.5)

This result easily follows by observing that the reproducing kernels frngn2Z form an
orthonormal basis for PW 2

� [36]. Moreover, since PW 2
� is a reproducing kernel

Hilbert space, Cauchy–Schwarz inequality immediately gives

jf .t/ � .SNf /.t/j D jhf � SNf ; rtij � krtkPW 2
�

kf � SNf kPW 2
�
:

Since krtkPW 2
�

D 1 for all t 2 R, (7.5) also implies

lim
N!1max

t2R jf .t/ � .SNf /.t/j D 0 for all f 2 PW 2
� :

In other words, SNf converges uniformly to f for all f 2 PW 2
� , and one can

even show that SNf converges absolutely. Moreover, it is fairly easy to extend the
above results for PW 2

� to all Paley–Wiener space PW p
� with 1 < p � 1. More

precisely, one has the following statement [38]:

Theorem 1. For each 1 < p � 1 and for all f 2 PW p
� , we have

f .t/ D lim
N!1.SNf /.t/ D

1X

nD�1
f .n/

sin.�Œt � n�/

�Œt � n�

where the sum converges absolutely and uniformly on the whole real axis R, and
also in the norm of PW p

� .

Theorem 1 gives a simple and convenient reconstruction formula for all functions
in the Paley–Wiener spaces PW p

� with p > 1. However, we want to stress
that Theorem 1 does not hold for the largest Paley–Wiener space PW 1

� . The
convergence of the sampling series in this space will be considered in more detail in
Section 7.4. In particular, Corollary 1 below will show that with oversampling, SN

converges uniformly on PW 1
� .

7.3.2 Nonuniform Sampling Series

The Shannon sampling series (7.4) is based on uniform signal samples taken at
integer values �n D n, n 2 Z. To gain more flexibility, one may consider series
which reconstruct a function f from samples ff .�n/gn2Z taken at a set � D f�ngn2Z
of nonuniform sampling points. To choose an appropriate sampling set �, we start
again with the Hilbert space B2

� D PW 2
� . For this signal space, the so-called

complete interpolating sequences are suitable sampling sets.
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Definition 1 (Interpolating and Sampling Sequence). Let � D f�ngn2Z be a
sequence in C and let QS W B2

� ! `2 be the associated sampling operator defined
by QS W f 7! ff .�n/gn2Z. We call �

• a sampling sequence for B2
� if QS is injective.

• an interpolation sequence for B2
� if QS is surjective.

• complete interpolating for B2
� if QS is bijective.

In the following, we always use as sampling sets complete interpolating
sequences for B2

� . Such sequences were completely characterized by Minkin [47]
after [49, 51] already gave characterizations under mild constrains on �.

Over- and Undersampling Assuming that � is complete interpolating for B2
� ,

then QS is an isomorphism between the signal space B2
� and the sequence space

`2 such that the interpolation problem f .�n/ D cn, n 2 Z has a unique solution
f 2 B2

� for every sequence fcngn2Z 2 `2. Now, let ˇ 2 R and consider the signal
space B2

ˇ� . If ˇ > 1, then B2
� is a proper subset of B2

ˇ� and QS will no longer be

injective viewed as an operator on B2
ˇ� ! `2. Therefore it will not be possible to

reconstruct every f 2 B2
ˇ� uniquely from its samples QSf . In this case, we say that

B2
ˇ� is undersampled by �. Conversely, if ˇ < 1, then B2

ˇ� is a proper subset of

B2
� and the sampling operator QS W B2

ˇ� ! `2 is injective but not surjective. In this

case, every function f 2 B2
ˇ� can uniquely be reconstructed from its samples QS but

there exist sequences fcngn2Z 2 `2 such that the interpolation problem f .�n/ D cn,
n 2 Z has no solution in B2

ˇ� . In this case, we say that B2
ˇ� is oversampled by �

and 1=ˇ is the oversampling factor.
Let � D f�ngn2Z be a complete interpolating sequence for B2

� and define the
function

'.z/ D zı� lim
R!1

Y

j�nj<R
�n¤0

�
1 � z

�n

�
with ı� D

�
1 if 0 2 �
0 otherwise

: (7.6)

One can show [43, 70] that the product in (7.6) converges uniformly on every
compact subset of C and that ' is an entire function of exponential type � . It follows
from (7.6) that '.�n/ D 0, i.e., � is the zero set of the function ' which is often
called the generating function of �. Based on the function (7.6), one defines for
every n 2 Z

'n.z/ WD '.z/

'0.�n/.z � �n/
; z 2 C : (7.7)

Again, these are entire functions of exponential type � which solve the interpolation
problem 'n.�n/ D 1 and 'n.�k/ D 0 if k ¤ n. Following the ideas of classical
Lagrange interpolation, one considers for any N 2 N, the approximation operator
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.ANf /.z/ D
NX

nD�N

f .�n/ 'n.z/ ; (7.8)

which only involves 2NC1 sampling values. The aim is to approximate any function
f 2 B2

� by ANf in such a way that the approximation error kf � ANf kB2
�

becomes
less than any arbitrary given bound � as soon as N 2 N is sufficiently large.

By the definition of the interpolation kernels 'n, it is clear that ANf satisfies the
interpolation condition .ANf /.�n/ D f .�n/ for all n D 0;˙1;˙2; : : : ;˙N, and
one can show that for every f 2 B2

� , the sequence fANf gN2N converges in B2
� as

N ! 1. Since � is completely interpolating, we therefore have ANf converging to
f for every f 2 B2

� [70].

Theorem 2. Let � D f�ngn2Z be a complete interpolating sequence for B2
� and

let f'ngn2Z be the functions defined by (7.7) based on the generating function (7.6).
Then

f .t/ D lim
N!1.ANf /.t/ D

1X

nD�1
f .�n/ 'n.t/

for all f 2 B2
� where the sum converges in the norm of B2

� , and uniformly on R.

In general, the characterization of complete interpolating sequences � is fairly
complicated and the calculation of the corresponding generating function ' via (7.6)
can be computationally difficult. Fortunately, an important subset of complete inter-
polating sequences is known which simplifies the entire procedure considerably.
These are the zero sets of the so-called sine-type functions.

Definition 2 (Sine-type function). An entire function ' of exponential type � is
said to be a sine-type function if it has simple and separated zeros and if there exist
positive constants A;B;H such that

A e
 j�j � j'. C i�/j � B e
 j�j for all Ÿ 2 R and j�j � H :

Any sine-type function can be determined from its zero set � by (7.6).

Example 1. The uniform sampling considered above is a special case of nonuni-
form sampling. The sampling set � is obtained as the zero set of the sine-type
function '.z/ D sin.�z/, which is equal to � D f�n D ngn2Z. The corresponding
interpolation kernels (7.7) become 'n.z/ D sin.�Œz � n�/=.�Œz � n�/ and (7.8)
becomes equal to (7.4).

If the sampling set � is chosen as the zero set of a sine-type function, then
Theorem 2 can be extended to all Bernstein spaces Bp

� with 1 < p < 1. Thus, the
nonuniform sampling series (7.8) reconstructs every function in Bp

� . More precisely,
one has the following statement [43, Lect. 22].
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Theorem 3. Let � D f�ngn2Z be the zero set of a sine-type function ' and
let f'ngn2Z and AN be defined as in (7.7) and (7.8), respectively. Then for each
1 � p < 1

f .t/ D lim
N!1.ANf /.t/ D

1X

nD�1
f .�n/ 'n.t/ ; for all f 2 Bp

�

where the sum converges uniformly on R and for 1 < p < 1, it also converges in
the norm of Bp

� .

Also here we would like to stress that Theorem 3 does not hold for the largest
space B1� in the family of Bernstein spaces, and we will discuss the B1� -case later
in Sec. 7.4 (cf. Conjecture 2 and Theorem 13 below).

7.4 On the Global Uniform Convergence of Sampling Series

Theorems 1 and 3 establish the uniform convergence of the sampling series on
PW p

� for 1 < p � 1 and on Bp
� for 1 � p < 1, respectively. However, both

results cannot easily be extended to the largest spaces PW 1
� and B1� . This section

reviews and discusses some recent results which investigate on which signal spaces
and under which conditions the sampling series converges uniformly on R. So we
are going to investigate the behavior of the quantity

max
t2R jf .t/ � .SNf /.t/j or max

t2R jf .t/ � .ANf /.t/j

as N tends to infinity. This quantity is an important measure for the stability of
the reconstruction process since it allows us to control the peak value of the error
between the approximation ANf and the function f itself. The question is whether the
maximum error can be made arbitrarily small for a sufficiently large approximation
degree N.

For the signal space PW 1
� , a classical theorem due to Brown states that the

Shannon sampling series SN converges uniformly on compact sets of R.

Theorem 4 (Brown [13]). For all f 2 PW 1
� and for all T > 0, we have

lim
N!1

�
max

t2Œ�T;T�
jf .t/ � .SNf /.t/j

�
D 0 :

Based on this result we consider now the following two questions.

1. Is it possible to have even uniform convergence on the entire real axis, i.e., is it
possible to replace the interval Œ�T;T� by R in Theorem 4?

2. Is it possible to extend Theorem 4 to the larger space B1� of bounded
bandlimited functions?
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Since Theorem 4 is based on uniform sampling without oversampling, we may hope
to achieve these extensions by replacing the uniform sampling series SN with a non-
uniform series AN and by using oversampling.

7.4.1 Weak Divergence of the Shannon Sampling Series

We begin by asking whether the Shannon sampling series (7.4) converges uniformly
on the whole real axis R for every function f 2 PW 1

� . The negative answer is given
by the following theorem [7].

Theorem 5. There exists a signal f0 2 PW 1
� such that

lim sup
N!1

kSNf0k1 D 1 : (7.9)

Remark 1. Since PW 1
� � C0.R/, all functions in PW 1

� are bounded on R.
Therefore Theorem 5 implies in particular that there exists an f0 2 PW 1

� such
that lim supN!1 kf0 � SNf0k1 D 1.

Remark 2. In fact, the divergence behavior described by Theorem 5 is not a
particular property of the Shannon sampling series but holds for a large class
of approximation processes which rely on uniform sampling. More precisely, [7]
proved Theorem 5 not only for the sampling series (7.4) but also for all sampling
series with the general form

.RNf /.t/ D .Tf /.t/C
NX

nD�N

f .n/ �n.t/ ; (7.10)

where T W PW 1
� ! B1� is linear and bounded, and �n 2 B1� are certain

interpolation kernels. If the series RN satisfies1 the following three properties:

• The kernels �n are uniformly bounded, i.e., k�nk1 � C� < 1 for all n 2 Z,
• .RNf /.t/ converges pointwise to f .t/ for all f 2 PW 2

� ,
• The operator T is such that there exist two constants C;D > 0 such that for all

f 2 PW 1
� always supt2R j.Tf /.t/j � C maxjzj�D jf .z/j,

then it shows the same divergence behavior as in Theorem 5. Moreover, the
particular function f0 2 PW 1

� , for which kSNf0k1 diverges, is universal in the
sense that all interpolation series RN with the above properties diverge for f0.

1Interpolation series RN which satisfy these conditions include the so-called Valiron series
[5, 37, 66] or Tschakaloff series [37, 63].
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The proof of Theorem 5 relies on an explicit construction of f0 2 PW 1
� and a

corresponding subsequence fNkg1kD1 such that

.SNk f0/.Nk C 1=2/ � C1
p

k3 C C2 ! 1 as k ! 1 :

Because of this construction, one has the lim sup-divergence in (7.9). In a sense, this
is a weak notion of divergence, because one designs a very specific function f0 and
a corresponding subsequence of approximations fSNk f0gk2N such that divergence
emerges. This notion of (weak) divergence is sufficient to show that the approxima-
tion procedure is not always convergent. However, it does not show that there exists
no recovery procedure at all. In particular, the divergence result of Theorem 5 does
not allow to answer the following two questions:

Q-1 Let f 2 PW 1
� be arbitrary. Does there exist a specific sequence N .f / D

fNk D Nk.f /gk2N, depending on f , such that

sup
k2N

kf � SNk f k1 < 1 : (7.11)

Q-2 Does there exist a universal approximation sequence N D fNkgk2N such that
(7.11) holds for all f 2 PW 1

�?

Remark 3. Note that a negative answer to Q-1 implies a negative answer to Q-2.
Conversely, a positive answer to Q-2 implies a positive answer to Q-1.

With that said, Theorem 5 gives only a weak statement about the global
divergence behavior of the Shannon series on PW 1

� . Because if Q-2 were to have
a positive answer, then one would have a globally convergent method to reconstruct
every f 2 PW 1

� from its sampled values ff .n/gn2Z. But even if only question Q-1
were to have a positive answer, signal recovery would still be possible, but with an
adaptive approximation process which depends on the actual function.

Divergence results like those in Theorem 5 are usually proved using the uniform
boundedness principle. This principle is one of the cornerstones of functional
analysis and it may be formulated as follows (see, e.g., [57]):

Theorem 6 (Banach–Steinhaus, [3]). Let fTngn2N be a sequence of linear oper-
ators Tn W X ! Y mapping a Banach space X into a normed space Y with the
operator norms

kTnk D sup
f2X

kTnf kY
kf kX :

If supn2N kTnk D 1 then there exists an x0 2 X such that

sup
n2N

kTnx0kY D 1 : (7.12)

In fact, the set D of all x0 2 X which satisfy (7.12) is a residual set in X .
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Remark 4. In a Banach space, a residual set is the complement of a set of first
category (a meager set) and therefore it is a set of second category (i.e., a nonmeager
set). In the following we use that the countable intersection of residual sets is again
a residual set. In particular, the countable intersection of open dense subsets is a
residual set [42].

Here, we shortly discuss how the theorem of Banach–Steinhaus can be used
to investigate the two questions Q-1 and Q-2. In particular, we want to show the
limitations of the Banach–Steinhaus theorem for answering question Q-1.

To prove Theorem 5, based on the uniform boundedness principle, it is sufficient
to shown that the norms

kSNk D sup
n
kSNf k1 W f 2 PW 1

� ; kf kPW 1
�

� 1
o

of the operators SN W PW 1
� ! B1� , defined in (7.4), are not uniformly bounded.

This was done in [7], where it was shown that there exists a constant CS such that

kSNk � CS log N for all N 2 N : (7.13)

Then Theorem 6 implies immediately that there exits a residual set D � PW 1
�

such that

lim sup
N!1

kSNf k1 D C1 for all f 2 D :

Next we use Theorem 6 to investigate question Q-2. Since (7.13) holds for all
N 2 N, the same reasoning can be applied to any subsequence N D fNkgk2N of N.
Then the Banach–Steinhaus theorem states that there exists a residual set D.N / �
PW 1

� such that

lim sup
k!1

kSNk f k1 D C1 for all f 2 D.N / :

This shows that the answer to question Q-2 is actually negative, i.e., there exists no
universal subsequence N D fNkgk2N such that SNk f converges uniformly for every
f 2 PW 1

� . One can even say more about the size of the divergence set. Let fNvgv2N
be a countable collection of subsequences of N. Then to every Nv D fNv;kgk2N there
exists a subset D.Nv/ � PW 1

� such that

lim sup
k!1

kSNv;k f k1 D C1 for all f 2 D.Nv/ :

Since each D.Nv/ is a residual sets in PW 1
� and since we have only countably

many sets, Baire’s category theorem (see, e.g., [57]) implies that the intersection of
these sets
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\

v

D.Nv/ ¤ ¿ (7.14)

is again a (nonempty) residual set in PW 1
� . So given a countable collection of

subsets fNvgv2N, the set of functions f 2 PW 1
� for which

lim sup
k!1

kSNv;k f k1 D C1 for all Nv D fNv;kgk2N 2 fNvgv2N

is nonmeager (of second category) in PW 1
� .

However, the above reasoning cannot be extended to give a definite answer to
question Q-1. Because for a negative answer to Q-1, we need to show that

\

NvDfNv;kgk2Z

Nv is a subsequence of N

D.Nv/ ¤ ¿ :

In other words, we have to show that there exists a function f� 2 PW 1
� such that

limk!1 kSNv;k f�k1 D C1 for every subsequence Nv D fNv;kgk2N of N. However,
in contrast to (7.14), the set of all subsequences of N contains uncountably many
elements and the uncountable intersection of residual sets may not be of second
category. It even may be empty. Therefore, using the above technique, it is not
possible to decide whether this intersection is empty or not. This way we are not
able to answer question Q-1.

In the next subsection we are going to investigate question Q-1 for the Shannon
sampling series in more detail, using completely new techniques. Before that, we
give an example of an operator sequence which is (weakly) divergent, but for which
question Q-2 can be answered positively.

Example 2 (Approximation by Walsh functions). Consider the usual Lebesgue
space L2.Œ0; 1�/ of square integrable functions on the interval Œ0; 1� and let f ng1nD0
be the orthonormal system of Walsh functions [67] in L2.Œ0; 1�/, where the functions
are indexed as in [33]. Let PN W L2.Œ0; 1�/ ! spanf n W n D 0; 1; : : : ;Ng be the
orthogonal projection onto the first N C 1 Walsh functions. Now we view PN as a
mapping L1.Œ0; 1�/ ! L1.Œ0; 1�/ with the corresponding norm

kPNk D sup fkPNf k1 W f 2 L1.Œ0; 1�/ ; kf k1 � 1g :

Then one can show [33] that

lim sup
N!1

kPNk D C1 but kP2k k D 1 for all k 2 N :

So the sequence fPNgN2N of linear operators is not uniformly bounded. Therefore
the uniform boundedness principle yields a divergence result similar to Theorem 5.
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However, since there exists a uniformly bounded subsequence fP2k gk2N, the question
Q-2 has a positive answer for this operator sequence fPNgN2N.

7.4.2 Strong Divergence of the Shannon Sampling Series

The difficulties in answering Q-1, based on the Banach–Steinhaus theorem, may
also be viewed as follows. Under Q-1, the approximation series fNk.f /gk2N can be
chosen subject to the actual function f , i.e., one is allowed to adapt the reconstruction
method to the actual function. Therefore, the overall approximation procedure
fSNk.f /f gk2Z depends nonlinearly on the function f . Hence, one essential requirement
for applying the Banach–Steinhaus theorem (the linearity of the operators) is no
longer satisfied. So even though the theorem of Banach–Steinhaus is a very powerful
tool for proving (weak) divergence results as in Theorem 5, it cannot be used to
answer question Q-1. Thus, for the investigation of adaptive recovery algorithms
completely different techniques are needed.

We will show below, that for the Shannon sampling series SN , question Q-1 has a
negative answer. To this end, it is necessary and sufficient to show that the sequence
fSNgN2N diverges strongly.

Definition 3 (Strong divergence). Let X and Y be Banach spaces, and let
fTNgN2N be a sequence of bounded operators TN W X ! Y . We say that TN

diverges strongly if

lim
N!1 kTNf1kY D 1 for some f1 2 X :

So the strong divergence is in contrast to the weaker statement of the lim sup
divergence used in Theorem 5. As explained above, it is not possible to show the
strong divergence of SN using the Banach–Steinhaus theorem, and even though
several extensions [23, 24, 61] of the Banach–Steinhaus theorem were developed
in the past, there currently exists no systematic way to show strong divergence. For
the Shannon sampling series (7.4) on PW 1

� , its strong divergence is established by
the following theorem.

Theorem 7. The Shannon sampling series SN W PW 1
� ! B1� given in (7.4)

diverges strongly, i.e., there exists a function f1 2 PW 1
� for which

lim
N!1

�
max
t2R j.SNf1/.t/j

�
D lim

N!1 kSNf1k1 D 1 : (7.15)

Clearly, this is a much stronger statement than Theorem 5, with important practi-
cal implications for adaptive signal processing algorithms. It rules out the possibility
that the divergence in (7.9) occurs only because of a divergent subsequence. In
particular, it implies a negative answer to question Q-1. Consequently, there exists
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no (adaptive) signal recovery procedure which converges uniformly on the entire
real axis R.

The structure of the divergence sets. For nonadaptive linear methods, the
Banach–Steinhaus theorem is a very powerful and well established tool in functional
analysis to investigate nonadaptive approximation methods. In particular, if one can
show that there exists one function f 2 X such that the sequence TNf diverges
(weakly) in Y , then the Banach–Steinhaus theorem immediately implies that there
exists a whole set Dweak of second category for which TNf diverges weakly for
every f 2 Dweak.

We established in Theorem 7 that there exists one function f1 such that the
Shannon sampling series diverges strongly. The question is now whether it is
possible to say something about the size or structure of the set of all functions for
which SN diverges strongly. Since the Banach–Steinhaus theorem cannot be applied
in the case of strong divergence, other techniques have to be developed. Because
of the close relation between strong divergence and adaptive signal processing
methods, we believe that it is an important research topic to develop general tools for
the investigation of strong divergence, similar to the Banach–Steinhaus technique
for weak divergence, i.e., for nonadaptive systems.

Here we start with such an investigation and study the structure of the weak
and strong divergence sets of approximation series. To this end, we consider linear
approximation operators TN W X ! Y mapping a Banach space X into a Banach
space Y . Since TNf should be a good approximation of f 2 X , measured in the
topology of Y , it is natural to assume that X � Y . Additionally, we assume that
there exists a dense subset X0 � X such that

lim
N!1 kTNf0 � f0kY D 0 for all f0 2 X0 ; (7.16)

i.e., such that TNf0 converges to f0 in the norm of Y . For such linear operators, the
next theorem studies the structure of the divergence sets

Dweak D
n
f 2 X W lim sup

N!1
kTNf kY D 1

o
and

Dstrong D
n
f 2 X W lim

N!1 kTNf kY D 1
o (7.17)

of functions for which weak and strong divergence emerges, respectively.

Theorem 8. Let X and Y be two Banach spaces such that X is continuously
embedded in Y , and let TN W X ! Y be a sequence of bounded linear operators
such that (7.16) holds for a dense subset X0 � X . For any M;N 2 N define the set

D.M;N/ WD
n
f 2 X W kTNf kY > M

o
:

1. If Dweak is nonempty, then for all M;N0 2 N the set
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1[

NDN0

D.M;N/ (7.18)

is open and dense in X .
2. For the divergence sets defined in (7.17), hold

Dweak D
1\

MD1
lim sup

N!1
D.M;N/ D

1\

MD1

1\

N0D1

1[

NDN0

D.M;N/ (7.19)

Dstrong D
1\

MD1
lim inf
N!1 D.M;N/ D

1\

MD1

1[

N0D1

1\

NDN0

D.M;N/ : (7.20)

Remark 5. For completeness and for later reference, the straightforward proofs of
these statements are provided in the Appendix.

Remark 6. It is easy to see that the operators SN W PW 1
� ! B1� , associated

with the Shannon sampling series and defined in (7.4), satisfy the requirements
of Theorem 8. Indeed, Theorem 1 shows that PW 2

� is a dense subset of PW 1
�

such that limN!1 kSNf0 � f0k1 D 0 for all f0 2 PW 2
� , and Theorem 5 implies

Dweak ¤ ¿.

At a first sight, the structure of both divergence sets seems to be fairly similar.
The only difference is that the inner intersection and union in (7.19) and (7.20) are
interchanged. However, the different order of these two operations has a distinct
consequence. The first statement of Theorem 8 shows that sets (7.18) are open and
dense subsets of X , provided that Dweak is nonempty. Then Theorem 8 states that
Dweak is a countable intersection of these sets, and Baire’s category theorem implies
that a countable intersection of open and dense subsets of a Banach space X is a set
of second category, i.e., a nonmeager set. Consequently, if one is able to show that
there exists one function in Dweak, representation (7.19) together with the category
theorem of Baire implies immediately that Dweak is nonmeager.

For Dstrong the situation is completely different. There we have on the right-hand
side the countable intersection of the open sets D.M;N/. However, the intersection
of open sets is generally no longer open, and it may even be empty. So representation
(7.20) gives only little information about the size of Dstrong. If there exists one
function f 2 Dstrong, then it is easy to show (using the same ideas as in part one
of the proof of Theorem 8) that Dstrong is dense in X . Nevertheless, even if it is
dense, it might be a set of first category, i.e., a meager set.

Finally, we shortly discuss the oscillatory behavior of the Shannon series [6].
This will give further insight into its divergence behavior.

Theorem 9. Let f 2 PW 1
� be a function for which the Shannon sampling series

(7.4) diverges strongly. Then

lim
N!1

�
max
t2R .SNf /.t/

�
D C1 (7.21)
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and

lim
N!1

�
min
t2R .SNf /.t/

�
D �1 :

This result not only implies the statement of Theorem 7 but it additionally shows
the oscillatory behavior of the Shannon series and its unlimited growth as N tends to
infinity. To the best of our knowledge, Theorem 9 is the only example which proves
the strong oscillatory behavior of a practically relevant reconstruction method, and
we will also see in Sec. 7.4.3 that nonuniform sampling series diverge strongly (cf.
Theorem 11 below and the corresponding discussion).

We close this section with two examples which illustrate that there are many
more problems where the question of strong divergence is of importance.

Example 3 (Lagrange interpolation on Chebyshev nodes). In 1941, Paul Erdős
tried to show a behavior like (7.21) for the Lagrange interpolation on Chebyshev
nodes. In [27], he claimed that a statement like (7.21) holds for the Lagrange
interpolation of continuous functions. However, in [28] he observed that his proof
was erroneous, and he was not able to present a correct proof. He presented a result
equivalent to Theorem 7, and it seems that the original problem is still open.

Example 4 (Calculation of the Hilbert transform). For any function f 2 L1.Œ��; ��/
the Hilbert transform H is defined by

.Hf /.t/ D lim
�!0

1

2�

Z

��j� j��
f .t C �/

tan.�=2/
d� : (7.22)

This operation plays a very important role in different areas of communications,
control theory, physics, and signal processing [35, 54, 65]. In practical applications,
Hf has to be determined based on discrete samples ff .tn/gN

nD�N of f . To this end,
let fTNgN2N, any sequence of linear operators which determines an approximation
of Hf from the samples of ff .tn/gN

nD�N of f . It was shown in [11] that for any such
operator sequence, there exists a function f0 2 B WD ff 2 C .Œ��; ��/ W Hf 2
C .Œ��; ��/g such that

lim sup
N!1

kTNf0k1 D 1 :

In other words, any (nonadaptive) linear method which determines the Hilbert
transform from a discrete set of sampled values diverges weakly. Here, it would
also be interesting to investigate whether the question Q-1 has positive answers or
not, i.e., whether there exist adaptive methods to approximate the Hilbert transform
from interpolated data.
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7.4.3 Convergence for Oversampling

So far we saw that the Shannon sampling series diverges strongly on PW 1
� .

However, applying nonuniform sampling patterns and increasing the sampling rate
induces additional degrees of freedom, which might give a better convergence
behavior. The question is whether nonuniform sampling resolves the divergence
problems observed for uniform sampling.

We start our investigations by showing that the result of Brown (Theorem 4) on
the local uniform approximation behavior of the Shannon sampling series can be
extended to nonuniform sampling series, provided that the sampling pattern is equal
to the zero set of a sine-type function [9].

Theorem 10. Let � D f�ngn2Z be the zero set of a sine-type function ', let
f'ngn2Z be the corresponding interpolation kernels, defined in (7.7), and let
AN W PW 1

� ! B1� be defined as in (7.8). Then for every T > 0, one has

lim
N!1

�
max

t2Œ�T;T�
jf .t/ � .ANf /.t/j

�
D 0 for all f 2 PW 1

� :

So if sampling patterns derived from sine-type functions are used, then we do not
need oversampling to obtain local convergence for all f 2 PW 1

� . It seems natural
to ask whether we can apply other sampling patterns to achieve local convergence
of ANf . However, we believe that Theorem 10 is sharp with respect to the chosen
sampling pattern. If more general sampling patterns are used, the sampling series
ANf may no longer converge to f . More precisely, we believe that the following
statement is true.

Conjecture 1. There exist a complete interpolating sequence � D f�ngn2Z with
generating function ', corresponding interpolation kernels f'ngn2Z, a point t� 2 R,
and a function f� 2 PW 1

� such that

lim sup
N!1

ˇ̌
.ANf�/.t�/

ˇ̌ D lim sup
N!1

ˇ̌
ˇ̌
ˇ

NX

nD�N

f�.�n/ 'n.t�/

ˇ̌
ˇ̌
ˇ

D C1 :

Next, we ask whether the nonuniform sampling series ANf even converges
globally uniformly on R. It turns out that the answer is negative. More precisely,
one can even show that the nonuniform sampling series AN W PW 1

� ! B1� , given
in (7.8), diverges strongly. To prove this statement, [6] used nonuniform sampling
patterns derived from a special type of sine-type function: For any g 2 PW 1

� , we
define the function

'.z/ D A sin.�z/ � g.z/ ; z 2 C (7.23)

with a constant A > kgkPW 1
�

� kgk1. This is a sine-type function and we say
that ' is determined by the sine wave crossings of g. Such functions are used in
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sampling theory and communications [4, 53] by methods which try to reconstruct
the signal from its sine wave crossings.

Theorem 11. Let ' be a sine-type function of the form (7.23) with zero set
� D f�ngn2Z and let f'ngn2Z be the corresponding interpolation kernels (7.7). Then
the nonuniform sampling series (7.8) diverges strongly, i.e., there exists a function
f 2 PW 1

� such that

lim
N!1 kANf k1 D lim

N!1

 

max
t2R

ˇ̌
ˇ̌
ˇ

NX

nD�N

f .�n/ 'n.t/

ˇ̌
ˇ̌
ˇ

!

D 1 :

So a nonuniform sampling series alone gives no improvement with respect to
the global uniform convergence as compared to the uniform sampling considered in
Theorem 7. Both the uniform and the nonuniform sampling series diverge strongly
on PW 1

� . Note that the previous theorem was formulated only for sampling
patterns arising from the zero set of a sine-type function of the form (7.23). This
is only a small subset of all complete interpolating sequences. Nevertheless, there
is strong evidence that Theorem 11 also holds for arbitrary complete interpolating
sequences. This gives the following conjecture [6].

Conjecture 2. Let � D f�ngn2Z be an arbitrary complete interpolating sequence
with generator ' and corresponding interpolation kernels (7.7). Then there exists an
f 2 PW 1

� such that

lim
N!1 kANf k1 D lim

N!1

 

max
t2R

ˇ̌
ˇ̌
ˇ

NX

nD�N

f .�n/ 'n.t/

ˇ̌
ˇ̌
ˇ

!

D 1 :

Nonuniform sampling pattern alone does not resolve the divergence problem of
the sampling series on PW 1

� . Since PW 1
� � B1� , the same statement holds

for B1� . Next we want to investigate whether oversampling improves the global
convergence behavior of the nonuniform sampling series (7.8). This is done for the
largest signal spaces B1� .

Our first theorem in this direction, taken from [48], shows that if oversampling is
applied, then the result of Brown (Theorem 4) on the local uniform convergence on
PW 1

� can be extended to the larger space B1� and to nonuniform sampling series
of the form (7.8):

Theorem 12. Let � D f�ngn2Z be the zero set of a sine-type function ', and let
f'ngn2Z be defined as in (7.7). Then for every T > 0 and any 0 < ˇ < 1, we have

lim
N!1 max

t2Œ�T;T�
jf .t/ � .ANf /.t/j D 0 for all f 2 B1̌�

where AN is defined in (7.8).



7 System Approximations and Generalized Measurements in Modern. . . 289

Remark 7. Note that this theorem allows sampling patterns from arbitrary sine-type
functions. The oversampling is expressed by the fact that the above result holds only
for functions in B1̌� with ˇ < 1, i.e., for functions with bandwidth ˇ� < � .

Remark 8. If no oversampling is applied, i.e., if ˇ D 1, then the above result is not
true, in general. Then one can only show [48] that the approximation error remains
locally bounded, i.e., supN2N maxt2Œ�T;T� jf .t/�.ANf /.t/j � C kf k1 for all f 2 B1� .

The question is whether we can also have uniform convergence on the entire real
axis. So what happens if we let T go to infinity in Theorem 12? The answer is given
by the next theorem [48]. It shows that we only have uniform convergence on R for
the subset B1̌�;0 of all f 2 B1̌� which vanish at infinity. However, in general, the
approximation error remains uniformly bounded for every f 2 B1̌� .

Theorem 13. Let� D f�ngn2Z be the zero set of a sine-type function ', and let AN

be defined as in (7.8) with interpolation kernels f'ngn2Z given in (7.7). Then for any
0 < ˇ < 1, we have

lim
N!1max

t2R jf .t/ � .ANf /.t/j D 0 for all f 2 B1̌�;0 ;

and there exists a constant C > 0 such that

lim
N!1max

t2R jf .t/ � .ANf /.t/j � C kf k1 for all f 2 B1̌� :

Since PW 1

 � B1
;0, Theorem 13 includes in particular the following corollary

[9] on the global uniform convergence of AN on PW 1
ˇ� .

Corollary 1. Let ' be a sine-type function with zero set � D f�ngn2Z and let
f'ngn2Z be the corresponding interpolation kernels (7.7). Then for every f 2
PW 1

ˇ� with 0 < ˇ < 1 holds

lim
N!1 kf � ANf k1 D lim

N!1

 

max
t2R

ˇ̌
ˇ̌
ˇ
f .t/ �

NX

nD�N

f .�n/ 'n.t/

ˇ̌
ˇ̌
ˇ

!

D 0 :

So with oversampling, i.e., for functions in PW 1
ˇ� with ˇ < 1, the sampling

series (7.8) converges uniformly on the entire real axis. This result cannot be
extended to the larger signal space B1̌� . For these functions, the approximation
error is only bounded in general, but does not go to zero as N tends to infinity. This
even holds for any arbitrary large oversampling factor 1=ˇ.
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7.5 Sampling-Based Signal Processing

Up to now, our discussion was based on the goal to reconstruct a certain function,
say f 2 PW 1

� , from its values ff .�n/gn2Z at the sampling points f�ngn2Z. However,
in applications one is often not interested in f itself, but in some processed version
of f , i.e., one wants to determine g D Hf where H W PW 1

� ! PW 1
� is a certain

linear system, for example the Hilbert transform (7.22) or the derivation operator
f .t/ 7! df=dt [18]. Since signals in the physical world are usually analog, the
system H is often described in the analog domain. Then for a given function f , it
would be easy determining g D Hf . However, if only samples ff .�n/gn2Z of f are
available, then it seems to be more desirable to implement the system H directly
in the digital domain, based on the signal samples ff .�n/gn2Z. Thus, we look for a
mapping HD W ff .�n/g 7! Hf which determines g D Hf directly from the available
samples ff .�n/g. We call HD the digital implementation of the analog system H.

Example 5 (Sensor Networks). In a sensor network, many sensors which are dis-
tributed nonuniformly in space (and time) measure (i.e., sample) a certain physical
quantity (e.g., temperature, pressure, the electric or magnetic field strength, and
velocity). For concreteness, assume that we measure temperature. Then the aim is
not necessarily to reconstruct the entire temperature distribution in the observed
area, but only to determine, say, the maximum temperature or the maximum
temperature difference.

The interesting question now is whether it is possible to find for a given analog
system H, a digital implementation HD. The answer depends strongly on the system
H under consideration. Here we only investigate this problem for a fairly simple but
very important class of mappings H, namely for stable linear, time-invariant systems
H W PW 1

� ! PW 1
� .

7.5.1 Linear Time-Invariant Systems

In our context, a linear system is always a linear operator H W PW 1
� ! PW 1

� .
Such a system is called stable, if H is bounded, i.e., if

kHk D sup
n
kHf kPW 1

�
W f 2 PW 1

� ; kf kPW 1
�

� 1
o
< 1 ;

and H is said to be time invariant if it commutes with the translation operator
Ta W f .t/ 7! f .t � a/, i.e., if HTaf D TaHf for all a 2 R and for every f 2 PW 1

� .
It is known that for every stable, linear, time-invariant (LTI) system H W PW 1

� !
PW 1

� there exists a unique function Oh 2 L1.Œ��; ��/ such that for all f 2 PW 1
�

.Hf /.t/ D 1

2�

Z �

��
Of .!/ Oh.!/ ei!t d! ; t 2 R (7.24)
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and with kHk D kOhk1. Conversely, every function Oh 2 L1.Œ��; ��/, defines via
(7.24) a stable LTI system H. In engineering, the function Oh is often called the
transfer function of the LTI system H, whereas its inverse Fourier transform h D
F�1 Oh is said to be the impulse response of H. Since L1.Œ��; ��/ � L2.Œ��; ��/,
we have that h 2 PW 2

� .

Digital implementation for PW 2
 . Now we want to find a digital implementation

HD for a stable LTI system H. To this end we first consider the situation on the
Hilbert space PW 2

� . There the obvious way to define HD is by applying H to ANf .
This yields

.HANf /.t/ D
NX

nD�N

f .�n/ .H'n/.t/ D
NX

nD�N

f .�n/  n.t/ DW .HNf /.t/ (7.25)

with kernels  n WD H'n 2 PW 2
� , for all n 2 Z, and where the sampling set � is

chosen to be a complete interpolating for PW 2
� . If H is a stable system PW 2

� !
PW 2

� , then it follows from Theorem 2 that

kHf � HNf kPW 2
�

D kHf � HANf kPW 2
�

� kHk kf � ANf kPW 2
�

! 0

as N ! 1 for every f 2 PW 2
� . Since PW 2

� is a reproducing kernel Hilbert space,
the norm convergence again implies the uniform convergence on R.

Digital implementation in PW 1
 . Since PW 2

� is a dense subset of PW 1
� , we

may hope that the implementation for PW 2
� extends in some sense to PW 1

� .
Let us first consider a very special stable LTI system, namely the identity operator

H D IPW 1
�

on PW 1
� . For this particular system, its digital implementation is easily

derived. Following the above ideas for PW 2
� , its digital implementation is simply

HN D HAN D AN , and Corollary 1 implies

lim
N!1

kHf �HNf k1 D lim
N!1

kHf �ANf k1 D lim
N!1

max
t2R

ˇˇˇ̌
ˇ
Hf �

NX

nD�N

f .�n/ 'n.t/

ˇˇˇ̌
ˇ

D 0

for all f 2 PW 1
ˇ� with ˇ < 1, and provided that the sampling set � D f�ngn2Z

was chosen to be the zero set of a sine-type function. So for the identity operator, we
found a digital implementation. Since Corollary 1 was used in the above arguments,
it is clear that this digital implementation is based on the oversampled input signal f .
Theorem 11 shows then that if � is the zero set of sine-type functions of the form
(7.23), oversampling is indeed necessary even for the global approximation of the
simple LTI system H D IPW 1

�
. Moreover, if Conjecture 2 turns out to be true,

then it would imply that oversampling is necessary for all complete interpolating
sequences �.

Our next question is whether the digital implementation (7.25) converges for any
arbitrary stable LTI system H on PW 1

ˇ� , i.e., whether HNf ! Hf as N ! 1 for all
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f 2 PW 1
ˇ� . In particular, we investigate whether HNf converges locally uniformly

to Hf or even globally uniformly as the identity operator.

7.5.2 Sampling via Point Evaluations

So the digital implementation HN of any stable LTI system H W PW 1
� ! PW 1

�

is defined as in (7.25), based on a complete interpolating sequence � D f�ngn2Z
for PW 2

� and based on the interpolation kernels f'ngn2Z given in (7.7) with ' as
in (7.6).

The next theorem taken from [10] shows that there exist stable LTI systems for
which such a digital implementation is not possible, even if we allow arbitrarily
large oversampling. More precisely, it shows that there exist stable LTI systems such
that the approximation of its digital implementation HNf diverges even pointwise for
some f 2 PW 1

� .

Theorem 14. Let � D f�ngn2Z be a complete interpolating sequence for PW 2
�

and let f'ngn2Z be the interpolation kernels defined in (7.7). Let t 2 R be arbitrary,
then there exists a stable LTI system H W PW 1

� ! PW 1
� such that for every

0 < ˇ < 1 there exists a signal f 2 PW 1
ˇ� such that

lim sup
N!1

j.HNf /.t/j D lim sup
N!1

ˇ̌
ˇ̌
ˇ

NX

nD�n

f .�n/ .H'n/.t/

ˇ̌
ˇ̌
ˇ

D 1 :

So for any fixed t 2 R there are stable LTI systems H W PW 1
� ! PW 1

� such
that for every ˇ 2 .0; 1� the corresponding digital approximation HN diverges at t
for some signals f 2 PW 1

ˇ� . But on the other side, since H is stable, we have for

any t 2 R and any f 2 PW 1
�

j.Hf /.t/j � kHf k1 � kHf kPW 1
�

� kHk kf kPW 1
�
< 1 :

So the divergence observed in Theorem 14 is indeed a property of the digital
implementation of H based on (time domain) samples of f and not a property of the
system H itself. Moreover, if it were possible to sample f in the frequency domain,
then we could approximate the integral in its analog implementation (7.24) by its
Riemann sum. This sum would converge to .Hf /.t/ for every t 2 R.

Overall, we see that there exists no general answer to the question whether every
LTI system H W PW 1

� ! PW 1
� can be implemented digitally. Of course there are

stable LTI systems which allow such digital implementation. The identity operator
discussed above is one example of such a system. However, Theorem 14 shows that
there exist stable systems for which such a digital implementation is not possible.

We come back to the discussion at the end of Section 7.4.1 and ask whether
question Q-1 or Q-2 may have a positive answer for the approximation operators
HN , i.e., whether there exist subsequences fNkgk2N (dependent on the function f , or
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not) such that fHNk f gk2N converges to Hf . To this end, let H be a stable LTI system
and let t 2 R be a fixed point. Then .HNf /.t/ defines a sequence of linear functionals
on PW 1

ˇ� , for every ˇ 2 .0; 1�, with the norm

kHNkt;ˇ D sup
n
j.HNf /.t/j W f 2 PW 1

ˇ� ; kf kPW 1
ˇ�

� 1
o
:

Then Theorem 14 implies that for every t 2 R there exists a stable LTI system H
such that for all ˇ 2 .0; 1�

lim sup
N!1

kHNkt;ˇ D C1 :

However, since we have no statement for lim infN!1 kHNkt;ˇ , we do not know at
the moment whether kHNkt;ˇ satisfies an inequality similar to (7.13) for some t 2 R.
If a lower bound like (7.13) were to exist, then question Q-2 would have a negative
answer, i.e., no subsequence fNkgk2N would exist such that HNk f converges globally
uniformly to Hf for all f 2 PW 1

� . Indeed, we believe that the following statement is
true, which would imply a negative answer to Q-2 (see discussion in Section 7.4.1).

Conjecture 3. Let � D f�ngn2Z be a complete interpolating sequence for PW 2
� ,

and let t 2 R be arbitrary. Then there exists a stable LTI system H W PW 1
� !

PW 1
� such that for every ˇ 2 .0; 1�

lim
N!1 kHNkt;ˇ D C1 :

It would also be interesting to investigate question Q-1, i.e., to ask whether the
sequence fHN W PW 1

ˇ� ! B1� g diverges strongly. We believe that this is indeed
the case, i.e., we think that the following conjecture is true.

Conjecture 4. Let � D f�ngn2Z be a complete interpolating sequence for PW 2
� .

There exists a stable LTI system H W PW 1
� ! PW 1

� such that for every ˇ 2 .0; 1�
there exists an fˇ 2 PW 1

ˇ� for which

lim
N!1

��HNfˇ
��1 D lim

N!1

�
max
t2R

ˇ̌
.HNfˇ/.t/

ˇ̌� D C1 :

Remark 9. Note that the LTI system H W PW 1
� ! PW 1

� for which the
approximation HN diverges is universal with respect to ˇ. In other words, we believe
that it is not possible to find a digital implementation of H, regardless of the amount
of oversampling.

If this conjecture is true, it would exclude the existence of an adaptive algorithm
which chooses the approximation sequence fNk.f /gk2N subject to the actual function
f to approximate the output Hf of the system H from the signal samples ff .�n/gn2Z.
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7.5.3 Sampling by Generalized Measurement

The fundamental concept of digital signal processing is to represent analog (i.e.,
continuous) signals as a sequence of numbers. In the previous discussions it was
always assumed that the conversion from the analog to the digital domain is based
on point evaluations of the analog signal. Thus the measurement functionals were
assumed to be of the form

�n W f 7! f .�n/ ; n 2 Z (7.26)

with a certain sequence f�ngn2Z of sampling points. However, more general
measurement methods are possible, which we want to investigate next.

Although we depart from the point evaluations (7.26), we still require that our
measurements are based on bounded linear functionals on the specific function
space. Again, we first consider the situation on the Hilbert space PW 2

� . By
the Riesz representation theorem, we know that any bounded linear functional
�n W PW 2

� ! C can be written as an inner product with a certain function
sn 2 PW 2

� , i.e.,

�n.f / D hf ; sniPW 2
�

D
Z 1

�1
f .t/ sn.t/ dt D 1

2�

Z �

��
Of .!/ Osn.!/ d! ; (7.27)

where the last equation follows from Parseval’s formula, and Cauchy–Schwarz
inequality gives immediately k�nk D ksnkPW 2

�
. In this respect, any generalized

sampling process on PW 2
� is based on a sequence fsngn2N of sampling functions

in PW 2
� , which defines via (7.27) a sequence f�ngn2N of measurement functionals.

A stable reconstruction of any f 2 PW 2
� from the samples f�n.f /gn2N is possible

if fsngn2N is at least a frame [22, 70] for PW 2
� . Let f
ngn2N be the dual frame of

fsngn2N, then f can be reconstructed from its samples f�n.f /gn2N by

f .t/ D lim
N!1.ANf /.t/ where .ANf /.t/ D

NX

nD1
�n.f / 
n.t/

and where the sum converges in the norm of PW 2
� and uniformly on R. If fsngn2Z

is even an orthonormal basis for PW 2
� , then we simply have 
n D sn for all n 2 Z.

Example 6. The point evaluations (7.26) can be written as in (7.27) by choosing sn

to be equal to the reproducing kernels r�n of PW 2
� . Moreover, it is known [70] that

fsngn2Z is a Riesz basis for PW 2
� if and only if f�ngn2Z is complete interpolating for

PW 2
� . Note that the measurement functionals associated with the point evaluations

are uniformly bounded, because k�nk D kr�nkPW 2
�

D 1 for all n 2 Z.

Now we apply again a stable LTI system H to the approximation operator AN .
This gives an approximation of the digital implementation HD of H
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.HNf /.t/ WD .HANf /.t/ D
NX

nD1
�n.f / .H
n/.t/ : (7.28)

If H is a stable LTI system PW 2
� ! PW 2

� , then it is again easy to see that HNf !
Hf as N ! 1 in the norm of PW 2

� and uniformly on R for every f 2 PW 2
� .

Now we consider the approximation operator (7.28) on PW 1
� . To this end,

f�ngn2N has to be a sequence of bounded linear functionals on PW 1
� . It is known

that every bounded linear functional �n W PW 1
� ! C has the form (7.27) but with

a function Osn 2 L1.Œ��; ��/ and such that k�nk D kOsnk1. As in the case of point
evaluations on PW 2

� , we require that all measurement functionals are uniformly
bounded, i.e., we require that there exists a positive constant C� such that

k�nk D kOsnk1 � C� for all n 2 N : (7.29)

The question is whether we can find a frame fsngn2N for PW 2
� such that the

series (7.28) converges to Hf for any stable LTI system H W PW 1
� ! PW 1

�

and for every f 2 PW 1
� . The answer is affirmative, provided oversampling is

applied. Moreover, appropriate measurement functionals f�ngn2N are generated by
an orthonormal sequence fsngn2N in PW 2

� . More precisely, the following statement
can be proved [10].

Theorem 15. Let 0 < ˇ < 1 be arbitrary. There exists an orthonormal basis
fsngn2N for PW 2

� with the associated measurement functionals (7.27) which satisfy
(7.29) such that for all stable LTI systems H W PW 1

� ! PW 1
� and for all

f 2 PW 1
ˇ�

lim
N!1 kHf � HNf k1 D lim

N!1

 

sup
t2R

ˇ
ˇ̌
ˇ̌.Hf /.t/ �

NX

nD1
�n.f /.Hsn/.t/

ˇ
ˇ̌
ˇ̌

!

D 0 : (7.30)

Moreover, there exists a constant Cs such that

kHNf k1 D sup
t2R

ˇ̌
ˇ̌
ˇ

NX

nD1
�n.f / .Hsn/.t/

ˇ̌
ˇ̌
ˇ

� Cs kHk kf kPW 1
�

for all f 2 PW 1
ˇ� :

This theorem shows that there exists a set f�ngn2Z of generalized measurement
functionals such that, in connection with oversampling, every stable LTI system
on PW 1

� possesses a digital implementation. The measurement functionals �n are
defined via (7.27) by a specific orthonormal basis fsngn2Z for PW 2

� . It should be
noted that this orthonormal basis depends on ˇ, i.e., on the amount of oversampling.
Theorem 14 shows that fsng cannot be a sequence of reproducing kernels because
this would yield point evaluations as measurement functionals. The proof of Theo-
rem 15 in [10] is constructive in the sense that it provides an explicit construction of
an orthonormal basis fsngn2N such that (7.30) holds. This construction is based on
the Olevskii system [50] which is an orthonormal basis for C .Œ0; 1�/.
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Thus for the signal space PW 1
� , a digital implementation of a stable LTI system

can only be guaranteed if generalized measurement functionals with oversampling
are used. If the data acquisition is based on simple point evaluations, then there
are stable LTI systems which possess no digital implementation. This demonstrates
in particular the limitation of digital implementations based on measurements from
sensor networks, because the sampling process in such a network is basically a point
evaluation at the particular sensor position.

7.6 Signal Recovery from Amplitude Samples

Sampling theory as discussed in the previous sections is based on signal samples
taken by a sequence of linear functionals f�ngn2Z. Then the reconstruction method
is linear, namely a simple interpolation series of the form (7.8) or (7.10). If the
measurement functionals are nonlinear then signal recovery will become more
involved and in particular nonlinear, in general.

This section discusses a particular case of nonlinear measurements which is of
considerable interest in many applications. Assume again that f�ng is a set of linear
functionals on our signal space and f�n.f /gn2Z is the sequence of complex-valued
samples of a signal f . In many different applications it is not possible to measure
the magnitude and the phase of �n.f /, but only the squared modulus j�n.f /j2. In
this case, the sampling operator f 7! fj�n.f /j2gn2Z is nonlinear. However, the
nonlinearity arises only due to the intensity measurement j 	 j2 but it is often possible
to design the linear functionals f�ngn2Z by an appropriate measurement setup.
The interesting question is now whether f can be reconstructed from the intensity
samples fj�n.f /j2gn2Z and how we have to choose the functionals f�ngn2Z such that
signal recovery becomes possible.

The described problem, also known as phase retrieval, arises especially in optics,
where, because of the short wavelength, only the intensity of the electromagnetic
wave can be measured, but not its actual phase. Applications where such problems
appear range from X-ray crystallography [45, 46], astronomical imaging [32], radar,
[40], speech processing [1] to quantum tomography [34], to mention only some.

Phase retrieval for signals from finite-dimensional spaces C
N were considered

extensively in the last years. Now there exists necessary and sufficient conditions
on the number of samples as well as different recovery algorithms ranging from
algebraic methods to algorithms based on convex optimization [1, 2, 12, 20, 21, 55].
For infinite-dimensional signal spaces, only a few results exist up to now. Neverthe-
less, it seems natural to ask whether it is possible to obtain results for bandlimited
signals which are similar to the sampling series considered in the previous section,
but which are based on the sampled amplitude only.

Since only the amplitudes of the signal samples are available, some oversampling
has to be used to compensate this information loss. However, several questions
arise: How much oversampling is necessary and what are sufficient conditions on
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the measurement functionals f�ng such that signal recovery can be guaranteed? In
particular, can we recover every signal from the amplitudes of point evaluations
�n.f / D f .�n/ or do we need generalized measurement functionals (as discussed in
Sec. 7.5.3)?

Before we start our discussion, we want to mention that in the considered
situation, signal recovery will only be possible up to an unknown global phase
factor. To see this, let f�ngn2Z be the set of linear measurement functionals. Then it
is not possible to recover f perfectly from the intensity measurements fj�n.f /j2g, but
only up to a unitary constant. Because if Qf .z/ D c f .z/, where c is a unitary constant,
then both functions f and Qf will give the same measurements, i.e., j�n.Qf /j2 D j�n.f /j2
for all n. Consequently, we consider here only signal recovery up to a global unitary
constant, which is sufficient in most applications.

Real-valued bandlimited functions For real-valued bandlimited signals there
exists a remarkable result [62] in the spirit of classical Shannon sampling theory.
It shows that any signal in the Bernstein spaces Bp

� with 0 < p � 1 can be
reconstructed from amplitude samples taken at an average rate of at least twice the
Nyquist rate. The result in [62] implies in particular the following statement.

Theorem 16. Let � D f�ngn2Z be the zero set of a sine-type function ', and for
1 � p � 1 let f 2 Bp

�=2 be real valued on R. Then f can uniquely be determined

from the samples cn D j�n.f /j2 D jf .�n/j2, n 2 Z, up to a sign factor.

The proof of Theorem 16 in [62] also provides a reconstruction algorithm.
It is noteworthy that in the case of real-valued functions, point evaluations are
sufficient as measurement functionals �n. Unfortunately, the technique used to prove
Theorem 16 in [62] cannot be easily extended to the complex-valued functions.

Complex-valued bandlimited functions In the complex case, simple point eval-
uation does not seem to be sufficient, but rather very specific measurement
functionals have to be chosen. In [69], measurement functionals f�ng for phase
retrieval in B2

� were proposed, which consist of linear combinations of point
evaluations at specific sampling points. This approach was later extended to all
Bernstein spaces Bp

� with 1 < p < 1 in [56]. More precisely, let f 2 Bp
� and

let K � 2 be an arbitrary integer, then the measurement functionals proposed in
[69] are given by

�n;m.f / D
KX

kD1
˛k;m f .nˇ C �k/ ; n 2 Z ; m D 1; 2; : : : ;K2 (7.31)

where the constant ˇ > 0, the complex numbers f�kgK
kD1, and the complex

coefficients f˛k;mg are chosen in a very specific way. To formulate sufficient
conditions on the functionals (7.31) such that signal recovery is possible, we define
the C

K vectors
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am D .˛1;m; : : : ; ˛K;M/
T ; m D 1; : : : ;K2 :

Therewith the requirements on the functionals (7.31) can be formulated as follows:

Definition 4 (Recovery condition). We say that the measurement functionals
(7.31) satisfy the recovery condition, if

1) �K D �1 C ˇ

2) � D fnˇC�k W n 2 Z ; k D 1; : : : ;K �1g is the zero set of a sine-type function
3) famgK2

mD1 forms a 2-uniform K2=K tight frame for CK .

Remark 10. The particular form of the measurement functionals arises from a
concrete measurement setup for a particular phase retrieval problem. Therefore,
there exists a fairly simple practical implementation of these functionals. We also
remark that the conditions on the functional can be slightly weakened, c.f. [56, 69].

Remark 11. It is fairly easy to find coefficients for the measurement functionals
(7.31) such that the recovery condition is satisfied. In particular, constructions for
2-uniform tight frames can be found in [72]. To get appropriate �k one can choose
� D f�n W n 2 Zg as the zero set of the sine-type function '.z/ D sin.�z/. Then
�n D n, n D 1; : : : ;K and ˇ D K � 1.

Theorem 17. For any K � 2 let f�n;mg be the measurement functionals given in
(7.31) such that they satisfy the recovery condition. Let 1 < p < 1 and set

Rp
� WD ff 2 Bp

� W f .nˇ C �1/ ¤ 0 for all n 2 Zg :

Then every f 2 Rp
� can be recovered from the amplitude measurements

cn;m D j�n;m.f /j2 ; n 2 Z ; m D 1; : : : ;K2

up to a global unitary factor.

The recovery procedure which belongs to Theorem 17 consists basically of a
two-step procedure.

1. In the first step, one determines all values f .nˇ C �k/ from the amplitude
measurements j�n;m.f /j2 using ideas and algorithms from finite-dimensional
phase retrieval.

2. Since � D fnˇ C �k W n 2 Z ; k D 1; : : : ;K � 1g is the zero set of a sine-type
function, we can use the sampling series discussed in Section 7.4 to recover f
from its samples at the sampling set �.

The first step in this recovery procedure relies only on an appropriate choice of
the coefficients f˛k;mg, whereas the second step only relies on an appropriate choice
of the sampling set �. For this reason, it is also easy to extend Theorem 17 to other
signal spaces. For example, applying Corollary 1 in the second step of the recovery
procedure, we immediately obtain a phase retrieval result for functions in PW 1

� .
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Corollary 2. For any K � 2 let f�n;mg be the measurement functionals given in
(7.31) such that they satisfy the recovery condition. Let 0 < ˇ < 1 and set

P1
� WD ff 2 PW 1

� W f .nˇ C �1/ ¤ 0 for all n 2 Zg :

Then every f 2 P1
� can be recovered from the amplitude measurements cn;m D

j�n;m.f /j2, n 2 Z, m D 1; : : : ;K2 up to a global unitary factor.

The overall sampling rate in Theorem 17 is mainly determined by the constant
K, which can be an arbitrary natural number K � 2. We see from (7.31) that we
apply K2 measurement functional �n;m in every interval of length ˇ, i.e. the overall
sampling rate becomes R D K2=ˇ, and ˇ has to be chosen such that the sequence
fnˇ C �k W n 2 Z; k D 1; : : : ;K � 1g is the zero set of a sine-type function. This
implies (see also Remark 11) that ˇ � K � 1. Therefore, the overall sampling rate
has to be at least R � K2=.K � 1/ � 4, where R D 4 is achieved for K D 2. So we
have found a sufficient condition on the sampling rate.

In Theorem 17, functions f 2 Bp
� which have a zero in the set fnˇC�1 W n 2 Zg

cannot be recovered. However, on the one hand, it is not hard to see that the set of
these functions is fairly small, namely it is a set of first category. On the other hand,
it was also shown in [56] that this restriction on the recoverable functions can be
avoided if the desired signal f is preprocessed in a specific way, namely by adding
a known sine-type function u prior to the amplitude measurements.

Theorem 18. Let Amax > 0 be arbitrary, and let 0 < ˇ < ˇ1 < 1. For any
1 � p � 1 set

S p WD ff 2 Bp
ˇ� W kf kBp

ˇ�
� Amaxg :

Then there exists a sine-type function u 2 B1̌
1�

and a sequence of measurement
functionals of the form (7.31) which satisfy the recovery condition such that every
f 2 S p can be recovered from the amplitude measurements

cn;m D j�n;m.f C u/j2 ; n 2 Z ; m D 1; : : : ;K2

up to a global unitary factor.

Remark 12. The restriction on the norm in the definition of the signal space S p

requires only that we need to know an upper bound on the signal norm. By
the Theorem of Plancharel-Pólya (7.3), this is equivalent to a restriction on the
peak value of the signal. This knowledge is necessary to choose an appropriated
function u.

The proof of Theorem 18 is based on the following two facts:

1. Let � D f�n D n C i�ngn2Z be the zero set of an arbitrary sine-type function. If
one changes the imaginary parts of every �n, the resulting sequence is again the
zero set of a sine-type function [44].
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2. Fix 1 � p � 1 and ˇ < � . Then to every Hu > 0 there exists a sine-type
function u such that for every f 2 Bp

ˇ� with kf kBp
ˇ�

� Amax, the function v D
f C u satisfies jv. C i�/j > 0 for all  2 R and all j�j > Hu [56]. So all zeros of
v D f C u 2 B1� are concentrated in a strip parallel to the real axis.

So based on these two observations, we can choose � D f�n D n C i�ng such
that the measurement functionals satisfy the recovery condition. Then we choose an
arbitrary Hu > 0 and increase (if necessary) all �n such that j�nj > Hu for all n 2 Z.
The resulting sequence will still satisfy the recovery condition. Then we choose u
such that the zeros of all function v D f C u with f 2 Bp

ˇ� lie close to the real axis.
In this way, we can achieve that the functions v D f C u will definitely have no
zero on the set � and we can recover v from the measurements j�n.v/j2. Since u is
known, we can finally determine f .

The second step of the recovery algorithm consist in the interpolation of v from
the samples fv.�ngn. Since v 2 B1� , we necessarily need to apply the results for
the sampling series on B1� as discussed in Section 7.4.3. In particular, it follows
from Theorem 13 that we necessarily need oversampling, i.e., Theorem 18 does not
hold for functions in Bp

� .
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Appendix

This appendix provides a short proof of Theorem 8 in Section 7.4.2

Proof (Theorem 8).

1. First, we prove the statement for the sets (7.18). To this end, let g 2 X and � > 0
be arbitrary. For all M;N0 2 N, we have to show that there exists a functions f�
in the set (7.18) such that kg� f�kX < �. Since X0 is a dense subset of X , there
exists a q 2 X0 such that kg � qkX < �=2. Therewith, we define f� WD q C �

2
f0

with f0 2 Dweak and with kf0kX D 1. Then we get

kg � f�kX � kg � qkX C �
2
kf0kX < �

2
C �

2
D � :



7 System Approximations and Generalized Measurements in Modern. . . 301

Let M;N0 2 N be arbitrary. We still have to show that f� is contained in set
(7.18). To this end, we observe that for every N 2 N

kTNf�kY D kTNq C �
2
TNf0kY � �

2
kTNf0kY � kTNqkY :

Since q 2 X0, (7.16) implies that there is an N1 � N0 such that 1 � kTNq �
qkY � kTNqkY � kqkY for all N � N1. Consequently

kTNqkY � 1C kqkY � 1C C0kqkX for all N � N1 ;

using for the last inequality that X is continuously embedded in Y with a certain
constant C0 < 1. Combining the last two inequalities, we get kTNf�kY �
�
2
kTNf0kY � 1 � C0kqkX for all N � N1. Since f0 2 Dweak there exits an

N2 � N1 such that

kTN2 f�kY � �
2
kTN2 f0k � 1 � C0kqkX > M

which shows that f� 2 D.M;N2/ � S
N�N0

D.M;N/. Thus the sets (7.18) are
dense in X and it remains to show that these sets are open. To this end, let
M;N 2 N and f� 2 D.M;N/ be arbitrary, i.e., kTNf�kY > M. Since TN is a
continuous linear operator X ! Y , there exists a ı > 0 and a neighborhood

Uı.f�/ D ff 2 X W kf � f�kX < ıg

of f� such that kTNf kY > M for all f 2 Uı . Thus D.M;N/ is open for all
M;N 2 N and since the union of (countable many) open sets is again open, the
sets (7.18) are also open.

2. We prove (7.19). By the definition of the lim sup operation, the set Dweak can be
written as

Dweak D
n
f 2 X W lim

N0!1
sup

N�N0

kTNf kY D 1
o

and we note that for every fixed f 2 X the sequence fsupN�N0 kTNf kY g1N0D1 is
monotone decreasing. Assume that f 2 Dweak and choose M 2 N arbitrary. Then,
by the above definition of Dweak, it follows that for arbitrary N0 there exists an
N � N0 such that kTNf kY > M, i.e., f 2 S

N�N0
D.M;N/, and since this holds

for all M;N 2 N we have

f 2
1\

MD1

1\

N0D1

1[

NDN0

D.M;N/

which shows that Dweak � T1
MD1

T1
N0D1

S1
NDN0

D.M;N/. Conversely, assume
that f 2 T1

MD1
T1

N0D1
S1

NDN0
D.M;N/. Then to every arbitrary M 2 N and
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N0 2 N there exists an N > N0 such that f 2 D.M;N/, i.e., that kTNf kY > M.
Thus f 2 Dweak.
Finally, we prove (7.20). Assume first that f 2 Dstrong. Then to every M 2 N

there exists an N0 D N0.M/ such that kTNf kY > M for all N � N0. In other
words

f 2
1\

NDN0.M/

D.M;N/ �
1[

N0D1

1\

NDN0

D.M;N/ for every M 2 N ;

which shows that f 2 T1MD1
S1

N0D1
T1

NDN0
D.M;N/. Conversely, assume that

f 2 T1
MD1

S1
N0D1

T1
NDN0

D.M;N/. This means that for any arbitrary M 2 N

the function f belongs to
S1

N0D1
T1

NDN0
D.M;N/, i.e., there exists an N0 such

that

f 2
1\

NDN0

D.M;N/; i:e:; kTNf kY > M for all N � N0 :

Thus limN!1 kTNf kY D 1, i.e., f 2 Dstrong. ut
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Chapter 8
Entire Functions in Generalized Bernstein
Spaces and Their Growth Behavior

Brigitte Forster and Gunter Semmler

Abstract For an L2.R/ function, the famous theorem by Paley and Wiener gives
a beautiful relation between extensibility to an entire function of exponential type
and the line support of its Fourier transform. However, there is a huge class of entire
functions of exponential type which are not square integrable on an axis, but do
have integrability properties on certain half lines. In this chapter we investigate such
functions, their growth behavior, and their integrability properties in Lp-norms. We
show generalizations of a theorem of J. Korevaar and the Paley-Wiener theorem.

8.1 Entire functions of exponential type, the Paley-Wiener
theorem and the theorem of Korevaar — the classical
case

The famous Paley-Wiener theorem gives a relation between L2.R/ functions with
compact support in Fourier domain and the growth behavior of their extensions as
an entire functions in the complex plane. In fact, it states:

Theorem 1 (Paley–Wiener). [24, p. 101] Let f be an entire function of exponential
type A > 0. In addition, let f be square-integrable on the real line. Then there exists
a function F 2 L2.Œ�A;A�/ such that

f .z/ D
Z A

�A
F.t/eizt dt: (8.1)

Conversely, if F 2 L2.Œ�A;A�/ then the function f defined by (8.1) is an entire
function of exponential type.
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L2[− , ] l 2(Z)

PW 2

Fourier transform

Fourier
integral transform

Shannon
reconstruction

formula

p

p p

Fig. 8.1 The isometries in the Fourier transform, in the Theorem of Paley–Wiener, i.e., in the
Fourier integral transform, and in the sampling theorem via the Shannon reconstruction formula
generate a commutative diagram.

The theorem is closely related to the sampling theorem of Shannon, Whittaker,
and Kotel’nikov [13] on the reconstruction of band-limited L2 functions. In fact,
according to the Paley-Wiener theorem and the sampling theorem we have the
commutative diagram in Fig. 8.1, see [8, p. 30]. The Nyquist rate, giving the
maximal recoverable frequency, is identical to the constant A in the growth
condition. The space of all band-limited functions is called a Paley-Wiener space
and is denoted by PW2

A, where A is the constant from Theorem 1.
Obviously, changes in one of the transforms in the diagram effect at least

one of the other two. For example, changing the interpolation function sin.�x/
�x

in the Sampling theorem to another appropriate function of sine type serving as
Lagrange interpolator has the effect that the Fourier transform must be changed
to the so-called non-harmonic Fourier series

P
n2Z Of�n e�nx. Here, f�ngn2Z is the

sequence of not necessarily real-valued zeros of the Lagrange interpolator. Con-
sidering such generalized Fourier and sampling series has led to a wide class of
research articles giving better understanding, what sampling really is, which sets
of sampling and interpolation points are appropriate, and how stable they are with
respect to small errors, e.g., jitter errors. Good starting points in this research area
are, e.g., [1, 11, 15, 17, 24] and the references given therein.

In this chapter, we are interested in the effects which a change of the Paley-
Wiener mapping of this commutative diagram evokes. J. Korevaar proved inequali-
ties for the growth of entire functions of exponential type. His main result states:

Theorem 2 (Theorem of Korevaar). ([12], see also [6, Theorem 6.7.17]) If f .z/
is an entire function of exponential type � , 1 � p < 1, and

Z 1

�1
jf .x/jp dx D Mp < 1;
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then

jf .x C iy/jp � ApMpy�1 sinh p�y; (8.2)

with

A1 D 1

�
; Ap D 2k

p�
<
1

�
for 2k < p � 2kC1; k D 0; 1; 2; : : : (8.3)

For p D 2 the constant A2 D 1
2�

in (8.3) is best possible. For p ¤ 2 the best possible
value Bp of the constant Ap in (8.2) satisfies

1

2p�
� Bp � 1

p�
.1 � p < 2/;

1

p�
< Bp <

1

�
.p > 2/: (8.4)

There is a large class of entire functions of exponential type � , which are not
elements of Lp.R/ for any 1 � p � 1. Simple examples are entire functions with
triangular indicator diagram. The aim of this chapter is to establish analog results
for entire functions with polygonal indicator diagram.

The organization of the chapter is as follows: First, we consider the general
setting of entire functions with indicator diagram contained in some polygon in
the complex plane and define corresponding generalized Bernstein spaces. Then,
in Section 8.3, we give an extension of the Paley-Wiener theorem to this setting
for the Lp-norm, 1 � p � 2, as well as its converse. These results are essential
for Section 8.4, where we prove the generalization of Korevaar’s theorem. The last
section is devoted to relations to the Phragmén-Lindelöf theorems.

Parts of this work have been mentioned in the 4-page article [9], which has been
presented at the SampTA conference 2011. The proofs of the results are given in
this chapter, here.

8.2 Entire functions in generalized Bernstein spaces

Whereas the L2-theory of the commutative diagram of sampling theorem, Fourier
transform and Paley-Wiener theorem, is well understood, the complete characteri-
zation in the Lp- theory, 1 � p � 1, is still an open question. However, a good part
of the developments in sampling theory is driven by results from function theory.
For example, the standard proof of the Paley-Wiener Theorem 1 is based on the
one hand on the Theorem of Morera and on the other hand on a limiting process
of curves encycling the straight-line interval Œ�A;A � in the complex plane. In this
chapter, we consider a special class of these curves, i.e., polygonal curves.
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8.2.1 Growth and indicator function

Let f be an entire function of exponential type � > 0, i.e., � is the smallest number
such that for all " > 0 there exist constants A."/ with

jf .z/j < A."/e.�C"/jzj:

The indicator function of f is defined as

hf .�/ WD lim sup
r!1

1

r
ln jf .rei� /j: (8.5)

It represents the growth exponent in direction � and is bounded by the type of f , i.e.,
h.�/ � � .

The Borel transform of the entire function f .z/ D P1
nD0 anzn of exponential type

� is defined as

Bf .w/ D
1X

nD0
nŠ

an

wnC1 for jwj > �: (8.6)

Let E� denote the smallest closed convex set outside which Bf .w/ is regular. Then
E� is called conjugate indicator diagram of f and the Pólya representation

f .z/ D 1

2� i

Z

C
Bf .w/ezw dw (8.7)

holds for all z 2 C, where C is a contour containing E� in its interior. Conversely,
in the half plane fz W Re .ze�i� / > hf .��/g, the Borel transform Bf can be computed
from f using the Laplace integral

Bf .z/ D
Z 1

0

e�zwf .w/dw; (8.8)

where the integration is along the ray fw D te�i� W t � 0g. The supporting function

kK.�/ WD max
z2K

Re .ze�i� /

of a compact set K � C designates the (signed) maximum distance of its projection
onto the ray fz W arg z D �g from the origin. If K is the conjugate indicator diagram
of an entire function f of exponential type � then hf .��/ D kE�.�/ is true for all
� 2 R. Equivalently, hf .�/ D kE.�/ holds for the indicator diagram E WD fz W z� 2
E�g where z� denotes the complex conjugate of a number z 2 C. This gives rise to
the idea to consider all entire functions with growth behavior related to convex sets.
In the following, we restrict ourselves to convex polygons D.
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A good overview on entire functions of exponential type and the properties of
their indicator diagrams is given in the monograph of R. P. Boas, Jr. [6, Ch. 5].

8.2.2 Generalized Bernstein spaces

Let D be a closed convex polygon with N � 2 vertices and @D the boundary of D.
For N D 2, the polygon D is degenerated to a straight line segment. We assume that
the origin lies in D. Let �j denote the angles between the normals Nj to the sides lj
of D (j D 1; : : : ;N) and the positive real axis, such that

0 � �1 < �2 < : : : < �N < 2�:

The vertices aj, j D 1; : : : ;N, are numbered in the mathematical positive sense, such
that lj D Œ aj; ajC1 � for all j D 1; : : : ;N, where aNC1 WD a1 (see Figure 8.2). By Lj

we denote for j D 1; : : : ;N the straight line containing the segment lj.
Let kD.�/ denote the supporting function of D. The normals Nj to the sides of

D split the complex plane into the angles �j WD fz W arg.z/ 2 � �j�1; �j Œ g where
�0 WD �N : In each of these angles we have

kD.�/ D Re .aje
�i� / for all ei� 2 � j:

Consider for 1 � p < 1 the set Bp.D/ of all entire functions f of exponential
type for which

Re

a1

a2

aN

D
l1

N1

1q

Im

Fig. 8.2 Convex polygon D in the complex plane with vertices ak, sides lk, and normals Nk,
k D 1; : : : ;N.
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kf kp;D WD sup
�2Œ 0;2� Œ

�Z 1

0

jf .rei� /jpe�prkD.�/ dr

� 1=p

(8.9)

is finite. The set Bp.D/ constitutes a Banach space with norm k	kBp.D/ D k	kp;D [15].
In fact, an entire function f of exponential type belongs to Bp.D/ if the functions

r 7! f .rei�j/e�rkD.�j/; j D 1; : : : ;N; (8.10)

belong to Lp.Œ0;1Œ/, in which case we have

kf kp;D D max
jD1;:::;N

�Z 1

0

jf .rei�j/jpe�prkD.�j/ dr

� 1=p

; (8.11)

see [15, p. 632], or as an equivalent norm

jjjf jjjp;D WD jjjf jjjBp.D/ WD
NX

jD1

�Z 1

0

jf .rei�j/jpe�prkD.�j/ dr

� 1=p

:

In fact, kf kp;D � jjjf jjjp;D � Nkf kp;D: For p D 1, the entire functions with norm

kf k1;D D sup
z2C

n
jf .z/je�jzjkD.arg z/

o
< 1

constitute a Banach space B1.D/ [15].
If D is degenerated to the interval Œ�i�; i�� then Bp.D/ for 1 � p < 1 is

identical to the classical Bernstein space Lp
� consisting of those entire functions f

of exponential type at most � whose restrictions to the real line belong to Lp.R/.
Moreover, the norms k 	 kp;D and k 	 kLp.R/ turn out to be equivalent [15, p. 626].

Similarly, B1.D/ coincides in that case with the Bernstein space B� of entire
functions of exponential type at most � that are bounded on R [15, p.634].

Lemma 1. Let f 2 Bp.D/ and 1 � p < 1. Then

hf .�/ � kD.�/ 8� 2 R:

Thus, the indicator diagram of f is contained in D.

Proof. Define entire functions gj; j D 1; : : : ;N; of exponential type by gj.z/ WD
f .z/e�a�

j z. Then r 7! g.rei� / belongs to Lp.Œ0;1Œ/ for � 2 Œ�j�1; �j�, since

jgj.re
i� /j D jf .rei� /je�Re .a�

j ei� / D jf .rei� /je�rkD.�/:

From [6, Theorem 6.7.8] (cf. [5] for a proof), we infer that
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lim
r!1 gj.re

i� / D 0 8� 2 Œ�j�1; �j�: (8.12)

If an entire function of exponential type is bounded on the sides of an angle
that is smaller than a half plane, then the Phrágmen-Lindelöf theorem (cf. [6,
Theorem 1.4.2.]) implies that this function is bounded in the entire angle by the
same constant. Another similar result (cf. [6, Theorem 1.4.4.]) even implies that
relation (8.12) holds uniformly with respect to � . Consequently, there is a constant
C > 0 with

jf .z/j � Cjea�

j zj D CejzjkD.arg z/; z 2 � j; j D 1; : : : ;N:

Hence we obtain

hf .�/ D lim sup
r!1

1

r
ln jf .rei� /j � kD.�/:

If E denotes the indicator diagram, we have thus proved kE.�/ � kD.�/, which
implies E � D.

There is a partial converse of the preceding lemma.

Lemma 2. Let D be a convex polygon with N > 2 vertices. Let D contain the
origin in its interior. If f is an entire function of exponential type so that its indicator
diagram E is properly included in D (i.e., E � D;E \ @D D ;), then f 2 Bp.D/ for
all p 2 Œ1;1Œ.

Proof. Since E is compact there is " > 0 such that kD.�/� kE.�/ > " for all � 2 R.
Using again hf .�/ D kE.�/ we infer from definition (8.5) of the indicator function
that

jf .rei�j/j � er.hf .�j/C"=2/ < er.kD.�j/�"=2/; j D 1; : : : ;N;

for all sufficiently large r, say r � r0. Thus

Z 1

0

jf .rei�j/jpe�prkD.�j/ dr

�
Z r0

0

jf .rei� /jpe�prkD.�j/ dr C
Z 1

r0

epr.kD.�j/�"=2/e�prkD.�j/ dr

D C.r0/C
Z 1

r0

e�pr"=2 dr

< 1:

Hence the functions (8.10) belong to Lp.Œ0;1Œ/, and f 2 Bp.D/ according to what
was said above.
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This lemma cannot be improved in the sense that the inclusion E � D of the
indicator diagram E in some polygon D would imply that f 2 Bp.D/ for any p. As a
counterexample, consider the entire function f .z/ WD cos.z/Ccos.iz/ of exponential
type. An elementary consideration yields hf .�/ D max.j cos.�/j; j sin.�/j/ and
hence the indicator diagram is the square E WD fz W jRe .z/j C jIm .z/j � 1g. But
the divergence of the integral

R1
0

j cos.x/ C cos.ix/jpe�px dx shows that f does not
belong to Bp.E/ for any p 2 Œ1;1Œ.

8.3 Extensions of the Paley-Wiener theorem

Let G � C be a region bounded by a closed rectifiable Jordan curve. We denote
by Ep.G/, p > 0, the class of all functions f .z/ analytic in G for which there is a
sequence of closed rectifiable Jordan contours �n � G converging to the boundary
@G of G such that

sup
n

Z

�n

jf .z/jpjdzj < 1: (8.13)

Convergence to the boundary means here that each compact set K � G is
surrounded by almost all contours �n.

In the same way, we denote by Ep.ext G/, p > 0, the class of all functions f .z/
analytic in ext G WD C n G with f .z/ ! 0 as jzj ! 1 such that (8.13) is true for
a sequence of closed rectifiable Jordan contours �n � ext G converging to @G from
outside.

For each function f 2 Ep.G/ and each function g 2 Ep.ext G/ the angular
boundary values exist almost everywhere on @G, and the functions defined on the
boundary by these values are elements of Lp.@D/. Moreover, for p � 1, both classes
constitute Banach spaces with norm

kf kEp.G/ D kf kLp.@G/ resp. kgkEp.ext G/ D kgkLp.@G/:

More properties of those spaces can be found in [7] and [20]. Sedletskii showed
in [22] that for 1 < p < 1 and 1=p C 1=q D 1

.Ep.G//0 Š Eq.ext G/ resp. .Ep.ext G//0 Š Eq.G/; (8.14)

where the prime denotes the dual space.
The following theorem is an extension of the Paley–Wiener theorem. Levin

[14, p. 392] has given a generalization of this theorem in the L2 setting. It gives
a relation between entire functions of exponential type with indicator diagram of
polygonal form and their Borel transform. We check that these ideas carry over to
the Lp-setting if 1 < p � 2. Denote by D� the complex conjugate of the polygon D,
i.e., D� WD fz� W z 2 Dg.
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Theorem 3. Let D be a closed convex polygon with N � 2 vertices and @D the
boundary of D. We assume that the origin lies in D. D� denotes the complex
conjugate polygon. Let f 2 Bp.D/, 1 < p � 2, 1=p C 1=q D 1. Then the Borel
transform  WD Bf belongs to Eq.ext D�/ and f has the representation

f .z/ D 1

2� i

Z

@D�

e�z .�/ d�: (8.15)

Moreover, we have the estimate

k kEq.ext D�/ � Mp
q

p
2� jjjf jjjBp.D/; (8.16)

where Mp D .p1=p=q1=q/1=2 is the Babenko-Beckner constant.

From Lemma 1 we know that under the assumptions of the theorem the indicator
diagram E of f is contained in D, so that the Borel transform is defined outside the
polygon D�. As soon as  2 Eq.ext D�/ is established we know that the Borel
transform has an extension to @D� and is an Lq function there, so that it makes
sense to consider the integral occurring on the right-hand side of (8.15). In contrast
to Levin [14], who requires the indicator diagram to be polygonal, we make no
assumptions on the form of E.

It is well known (cf. [6, Section 5.3]) that f possesses the Pólya representa-
tion (8.7) where � is some Jordan curve inclosing the conjugate indicator diagram
of f . So the theorem claims that this formula remains true if � is shrunken to the
boundary of D.

In the special case D D Œ�i�; i��, Theorem 3 says that an entire function f of
degree not larger than � with f jR 2 Lp.R/ (1 < p � 2) has a representation

f .z/ D 1

2� i

Z

@D�

e�z .�/ d� D 1

2� i

Z i�

�i�
e�z C.�/ d�C 1

2� i

Z �i�

i�
e�z �.�/ d�

where

 C.it/ WD lim
"!0C0  .it C "/;  �.it/ WD lim

"!0C0  .it � "/; t 2 Œ��; �� a:e:

Setting Of .t/ WD  C.it/ �  �.it/ 2 Lq.Œ��; ��/ we arrive at the representation

f .z/ D 1

2�

Z �

��
eitzOf .t/ dt; (8.17)

i.e., f can be represented as the inverse Fourier transform of an Lq function
with bounded support. The original Paley–Wiener theorem [21] treats thus in our
terminology B2.D/ functions with polygons degenerated to a line segment. Analog
theorems for Bp.D/ functions with line-like polygons D and p ¤ 2 have been proved
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in [18, 19], and [4], see also Zygmund [25]. In the following, we show the result for
1 < p � 2 and an arbitrary convex polygon containing the origin.

Proof (Theorem 3). We follow the proof in [14]. Let us consider the Borel transform
of f on the line f."C it C kD.�j//e�i�j W t 2 Rg which is parallel at a distance " > 0
to the side l�j D Œa�j ; a�jC1� of D�. Setting w D rei�j , dw D ei�j dr in (8.8), the Borel
transform  on this line can be computed by

 "
j .t/ WD  .."C it C kD.�j//e

�i�j/

D ei�j

Z 1

0

exp.�."C it C kD.�j//e
�i�j 	 rei�j/f .rei�j/ dr

D ei�j

Z 1

0

e�."Cit/rfj.r/ dr

with the abbreviation

fj.r/ WD f .rei�j/e�kD.�j/r; r � 0:

The convergence condition

Re .."C it C kD.�j//e
�i�j 	 ei�j/ > hf .�j/

for this integral is fulfilled for all " > 0 in view of Lemma 1. We have fj 2 Lp.Œ0;1Œ/

because f 2 Bp.D/. Moreover,  "
j 2 Lq.R/. This can be seen from the Hausdorff-

Young inequality with sharp Babenko-Beckner constant Mp D .p1=p=q1=q/1=2 [2, 3]:

k "
j kq

Lq.R/
D
Z

R

ˇ̌
ˇ̌
Z 1

0

e�"rfj.r/e�irt dr

ˇ̌
ˇ̌
q

dt � 2�Mq
p

�Z 1

0

ˇ̌
e�"rfj.r/

ˇ̌p
dr

�q=p

� 2�Mq
p

�Z 1

0

jfj.r/jp dr

�q=p

D 2�Mq
pkfjkq

Lp.Œ 0;1Œ/:

By the same means we see that

k "1
j �  "2

j kq
Lq.R/ � 2�Mq

p

�Z 1

0

je�"1r � e�"2rjp jfj.r/jp dr

�q=p

so that by the dominated convergence theorem the sequence  "
j converges in

Lq-norm to some  j 2 Lq.R/ for " ! 0C. Moreover,

k jkq
Lq.R/ � 2�Mq

pkfjkq
Lp.Œ 0;1Œ/: (8.18)

Putting
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 .z/ WD  j.�i.zei�j � kD.�j//; z 2 l�j ;

we define an extension of  onto @D� such that  2 Lq.@D�/. From (8.6) we know
that limjzj!1  .z/ D 0 holds for every Borel transform of an entire function of
exponential type. Hence  2 Eq.ext D�/ and (8.18) yields

k kEq.ext D�/ D k kLq.@D�/ D
NX

jD1
k kLq.Œ a�

j ;a
�

jC1
�/ �

NX

jD1
k jkLq.R/

� Mp
q

p
2�

NX

jD1
kfjkLp.Œ 0;1Œ/ D Mp

q
p
2�jjjf jjjBp.D/;

and thus (8.16). From the relation

f .z/ D lim
"!0C0

1

2� i

Z

.1C"/@D�

e�z .�/ d� D 1

2� i

Z

@D�

e�z .�/ d�

(cf. [14, Anhang 1, § 3] for further details), we finally deduce (8.15).

The preceding theorem has a counterpart.

Theorem 4. Let 1 � q � 2, and let D be a closed convex polygon with N � 2

vertices. Let D contain the origin in its interior. Let  2 Eq.ext D�/, and set

f .z/ WD 1

2� i

Z

@D�

e�z .�/ d�:

Then f 2 Bp.D/ for 1=p C 1=q D 1, and there is some constant C > 0 independent
of  such that

kf kBp.D/ � Ck kEq.ext D�/: (8.19)

Proof. The estimate

jf .z/j � 1

2�
max
�2@D�

je�zj
Z

@D�

j .�/j jd�j D 1

2�
ejzjkD.arg z/

Z

@D�

j .�/j jd�j

shows that f is an entire function of exponential type. In order to verify f 2 Bp.D/
it remains to prove that each of the functions

fj.r/ WD f .rei�j/e�rkD.�j/; j D 1; : : : ;N;

belongs to Lp.Œ0;1Œ/.
First, we consider the case where p D q D 2. Let D1 be a disk with center

0 so small that it is contained in the interior of D as well as in the interiors of
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the reflections of D in the normals Nj. Define S to be the space of all functions  
holomorphic in ext D�1 , continuous in ext D�1 , and such that  .z/ ! 0 for jzj ! 1.
Clearly, S � E2.ext D�/, and S is dense in E2.ext D�/. This follows from the fact
that for  2 E2.ext D�/ the function g.z/ WD  .1=z/ belongs to E2.G/ where G is
the domain

G WD f1=z W z 2 ext D�g [ f0g: (8.20)

Since g.0/ D 0 also g.z/=z 2 E2.G/. Moreover, since G is a Smirnov domain, there
is a sequence pn.z/ of polynomials with

kpn.z/ � g.z/=zkEq.G/ ! 0 (8.21)

for n ! 1, see [7, chapter 10.3]. Then  n.z/ WD pn.1=z/=z is a sequence in S
tending to  2 E2.ext D�/, which shows the density.

We are now going to prove the existence of a constant C > 0 with (8.19) for all
 2 S and p D q D 2. By the Cauchy integral theorem we know that for  2 S

f .z/ D 1

2� i

Z

@D�

e�z .�/ d� D 1

2� i

Z

@D�

1

e�z .�/ d�:

Hence we obtain
Z 1

0

jfj.r/j2 dr D
Z 1

0

f .rei�j/f .rei�j/
�
e�2rkD.�j/ dr

D
Z 1

0

 
1

2� i

Z

@D�

1

erei�j z .z/ dz

! �
1

2� i

Z

@D�

erei�j w .w/ dw

��
e�2rkD.�j/ dr

D 1

4�2

Z

@D�

Z

@D�

1

Z 1

0

erei�j zCre�i�j w��2rkD.�j/ .z/ .w/� dr dz dw�

D 1

4�2

Z

@D�

Z

@D�

1

1

ei�j z C e�i�j w� � 2kD.�j/
 .z/ .w/� dz dw�:

The integrand is holomorphic with respect to z in ext D�1 [ f1g with exception of
zj WD 2e�i�j kD.�j/� w�e�2i�j , where it has a simple pole. Hence the residue theorem
yields

Z 1

0

jfj.r/j2 dr D � 1

2� i

Z

@D�

ei�j .2e�i�j kD.�j/ � w�e�2i�j/ .w/�dw�

D
�
1

2� i

Z

@D�

e�i�j .2e�i�j kD.�j/ � w�e�2i�j/� .w/ dw

��
:

The point zj is obtained from w by means of a reflection in the straight line L�j ,
i.e., the line defined by the segment l�j . Since the integrand of the last integral is
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holomorphic, we can replace the integration along @D� by the integration along
any closed curve � that has winding number one about the points of D�1 and
winding number 0 about the image of D�1 under the two reflections just described.
In particular, we can choose � to consist of a sufficiently large section of L�j that is
closed up by a semicircle. Since

 .2e�i�j kD.�j/ � w�e�2i�j/� .w/ D O.1=jwj2/;

the integral along this semicircle tends to 0 if its radius tends to infinity. Conse-
quently, we can just integrate over L�j . But on this line, the reflection mentioned
above is the identity map. Thus, choosing the parameterization w D e�i�j.kD.�j/C
ix/, we obtain

Z 1

0

jfj.r/j2 dr D 1

2�

Z 1

�1
j .e�i�j.kD.�j/C ix//j2 dx D 1

2�
k k2L2.L�

j /
:

Postponing the existence of a positive constant C1 independent of  with

k kL2.L�

j /
� C1k kE2.ext D�/

to the subsequent Lemma 3, and taking (8.11) into account, we conclude that (8.19)
holds for  2 S and p D q D 2. The linear and bounded operator  7! f from S to
B2.D/ can therefore be extended to an operator from E2.ext D�/ to B2.D/ with the
same norm in the usual manner: To  2 E2.ext D�/ we find a sequence  n 2 S with
 n !  in E2.ext D�/. The associated functions

fn.z/ WD 1

2� i

Z

@D�

e�z n.�/ d�

are by (8.19) a Cauchy sequence in B2.D/ and hence convergent to some F 2 B2.D/
satisfying kFkB2.D/ � Ck kE2.ext D�/. Moreover, the sequence fn.z/ converges to
f .z/ uniformly on compact subsets of C since

jfn.z/ � f .z/j D
ˇ̌
ˇ
ˇ
1

2� i

Z

@D�

e�z n.�/ d� � 1

2� i

Z

@D�

e�z .�/ d�

ˇ̌
ˇ
ˇ

� 1

2�
k n �  kE2.ext D�/

�Z

@D�

je2�zj jd�j
�1=2

:

We investigate the consequences of the convergence of fn to F in B2.D/. The
sequences

f .n/j .r/ WD fn.re
i�j/e�rkD.�j/; j D 1; : : : ;N;

converge in L2.Œ0;1Œ/ to
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Fj.r/ WD F.rei�j/e�rkD.�j/; j D 1; : : : ;N;

for n ! 1. Hence a subsequence f .nk/
j converges to Fj almost everywhere for

k ! 1. But if F coincides with f almost everywhere on the rays fz W arg z D �jg
we infer from the identity theorem f D F 2 B2.D/ and thus also (8.19) for arbitrary
 2 E2.ext D�/.

Now we show the theorem for q D 1, p D 1. Indeed,

kf k1;D D sup
z2C

n
jf .z/je�jzjkD.arg z/

o

D sup
z2C

� ˇ̌
ˇ̌ 1
2� i

Z

@D�

e�z .�/ d�

ˇ̌
ˇ̌ e�jzjkD.arg z/

�

� 1

2�
sup
z2C

�Z

@D�

j .�/j jd�j max
�2@D

ˇ
ˇ̌
e�

�z
ˇ
ˇ̌
e�jzjkD.arg z/

�

D 1

2�
sup
z2C

�Z

@D�

j .�/j jd�j
�

D 1

2�
k kE1.ext D�/:

The validity of our assertions for 1 < q < 2 is now a consequence of the Riesz-
Thorin Interpolation Theorem.

It cannot be expected that Theorem 4 also holds for q > 2, since for a function
Of 2 Lq.Œ��; ��/, q > 2 formula (8.17) does not always define a function f 2 Lp.R/,
see [23, p. 111]. A counterexample is constructed in the recent article [16]. There,
also an explicit converse of Theorem 3 is given for f 2 Bp.Œ�
; 
�/, 
 > 0,
1 < p < 2, with additional summability assumptions on the Fourier coefficients of
Of or the corresponding sampling sequence of f .

If D WD fz W jzj < 1g is the unit disk, it is common to write Hp WD Ep.D/ for the
Smirnov space, and Hp is then called Hardy space. Equipped with these notations
we are ready to give a proof for the lemma that closes the gap in the derivation of
the preceding theorem.

Lemma 3. Let the origin be contained in the interior of the convex polygon D. Let
D have N � 2 vertices. Then there is a constant C > 0 depending only on D such
that for every function  2 E2.ext D�/ we have

k kL2.L�

j /
� Ck kE2.ext D�/; j D 1; : : : ;N:

Proof. For " > 0 we subdivide L�j into

Mj WD fz 2 L�j W min
w2l�j

jz � wj � "g and Nj WD fz 2 L�j W min
w2l�j

jz � wj > "g;
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and estimate the L2-norm of on Mj and Nj separately. The Cauchy integral formula

 .z/ D 1

2� i

Z

@D�

 .w/

w � z
dw; z 2 ext D�;

and the Cauchy-Schwarz inequality yield the estimate

j .z/j2 � 1

2�

Z

@D�

jdwj
jw � zj2

Z

@D�

j .w/j2 jdwj � j@Dj
2�

max
w2@D�

1

jw � zj2 k k2L2.@D�/
;

where also z 2 ext D�. Here, we have denoted the length of the boundary curve of
D by j@Dj. Now we find

k k2L2.Nj/
� C1k k2E2.ext @D�/

; (8.22)

with the constant

C1 WD j@Dj
2�

Z

Nj

max
w2@D�

1

jw � zj2 jdzj < 1:

The function g.z/ WD  .1=z/ belongs to E2.G/ where G is the domain (8.20). If we
had proved that for QMj WD f1=z W z 2 Mjg holds

kgkL2. QMj/
� C2kgkE2.G/; (8.23)

we could conclude that also

k k2L2.Mj/
D
Z

Mj

j .w/j2 jdwj D
Z

QMj

jg.z/j2
ˇ̌
ˇ̌dz

z2

ˇ̌
ˇ̌ � max

z2 QMj

ˇ̌
ˇ̌ 1
z2

ˇ̌
ˇ̌ kgk2

L2. QMj/

� C3C2kgkE2.G/ D C2C3

Z

@G
jg.z/j2 jdzj D C2C3

Z

@D�

j .w/j2
ˇ̌
ˇ̌dw

w2

ˇ̌
ˇ̌

� C2C3 max
w2@D�

ˇ̌
ˇ̌ 1
w2

ˇ̌
ˇ̌
Z

@D�

j .w/j2 jdwj D C2C3C4k kL2.@D�/;

and thus

k k2L2.Mj/
� C2C3C4k k2E2.ext @D�/

(8.24)

would be true. In order to prove (8.23) we transform the problem once more by
means of a conformal mapping ' W D ! G. The function

f .z/ WD g.'.z//Œ'0.z/�1=2; z 2 D;

belongs to H2 and
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kf kH2 D kgkE2.G/; kf kL2.'�1. QMj//
D kgkL2. QMj/

: (8.25)

If " is sufficiently small, the preimage '�1. QMj/ � D of QMj under the continuous
extension of the conformal mapping ' onto D can be projected onto @D from the
origin, i.e., it can be parameterized by a function �.ei� / WD %.�/ei� ; ˛ � � � ˇ,
where % W Œ˛; ˇ� !�0; 1� is piecewise C1. Thus the derivative �0 is bounded by some
constant C5 > 0. Introducing the maximal function F W Œ0; 2�� ! R

C by

F.�/ WD sup
0�r<1

jf .rei� /j;

the Hardy-Littlewood Maximal Theorem [7, Theorem 1.9] asserts the existence of
a positive constant C6 with

kFkL2.Œ0;2��/ � C6kf kH2 : (8.26)

Putting these facts together we obtain

kf k2
L2.'�1. QMj//

D
Z

'�1. QMj/

jf .z/j2 jdzj D
Z ˇ

˛

jf .�.ei� /j2j�0.ei� /j d�

� C5

Z 2�

0

F.�/2 d� � C5C
2
6kf k2H2 : (8.27)

Recalling (8.25) and putting C2 WD C6C
1=2
5 the inequality (8.23) is now established.

From (8.22) and (8.24) follows easily the lemma with C WD C1=2
1 C .C2C3C4/1=2.

We note that careful study of the proofs in [7, Thm. 1.8, 1.9 and Appendix B]
reveals that the estimate (8.26) holds with C6 D 8. However, the estimate

kf kL2.'�1. QMj//
� Ckf kH2

from the last proof (cf. (8.27)) has been shown with C D p
2 as best possible

constant by different means also by Gabriel [10].
As an immediate consequence of the two preceding theorems, we obtain the

following

Corollary 1. Let the origin be contained in the interior of the polygon D. Then
the linear operator associating to each function f 2 B2.D/ its Borel transform
 2 E2.ext D�/ defines an isomorphism between Banach spaces.

This fact is also contained in [15, Lemma 3.1], which refers to [14, Anhang 1,
§ 3] for a proof.
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8.4 Growth estimate of Korevaar type

The following generalization of Korevaar’s theorem is our main result.

Theorem 5 (Generalization of Korevaar’s Theorem). Let D be a closed convex
polygon with N � 2 vertices and let the origin be a point of D. Let f 2 Bp.D/,
1 � p < 1. Then

jf .z/jp � Kpjjjf jjjpBp.D/
	

NX

jD1

exp.pRe zajC1/ � exp.pRe zaj/

pRe zajC1 � pRe zaj
jajC1 � ajj:

The constant Kp depends on p only: For 1 � p � 2, Kp D M
p
p

2�
; for 2 � p < 1,

Kp D 2k Ms
s

2�
, where s D p

2k and 2k < p � 2kC1 for some k 2 N, and Mp stands again
for the Babenko-Beckner constant.

For the case of the 2-gone, i.e., the interval D D Œ�ia; ib �, a; b > 0, our result is
a little more general than Korevaar’s, since we take into account the different growth
behavior in the half plane Re z > 0 and Re z < 0. In fact, let f be an entire function
in Bp.Œ�ia; ib�/. This implies in particular that f jR 2 Lp.R/. Then Theorem 5 yields

jf .z/jp D jf .x C iy/jp � Kpjjjf jjjpBp.D/
2

exp.pRe .�zia// � exp.pRe .zib//

pRe .�zia/ � pRe .zib/
j � ia � ibj

D Kpjjjf jjjpBp.D/
2

exp.pay/ � exp.�pby/

pay C pby
.a C b/

D Kpjjjf jjjpBp.D/

2

p

exp.pay/ � exp.�pby/

y
:

This last estimate is sharper than Korevaar’s, since

exp.pay/ � exp.�pby/ � 2 sinh.p maxfa; bgy/:

Hence, for p D 2, with this estimate and the constant Kp given in Theorem 5 we get

jf .x C iy/j2 � K2jjjf jjj2B2.D/2
sinh.2maxfa; bgy/

y

D 1

2�
jjjf jjj2B2.D/

sinh.2maxfa; bgy/

y
: (8.28)

This is the result of Korevaar with respect to the L2.R/-norm, since for the special
case of a 2-gone D D Œ�ia; ib � we have kf kL2.R/ D jjjf jjjB2.D/.

Theorem 5 shows that functions bounded in the norm of a Bernstein space allow
for pointwise estimates in the whole plane. The geometry of the indicator diagram
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determines the size of these estimates. Therefore, the theorem yields a specific
growth estimate for every direction.

Proof (Theorem 5). We split the proof in several cases with respect to p.
First we consider the special case p D 2. Let f 2 B2.D/. According to Theorem 3,

f has the representation

f .z/ D 1

2� i

Z

@D�

 .�/ez� d�;

where  2 E2.ext D�/ denotes the Borel transform of f . We can estimate because
of the duality (8.14) of inner and outer Smirnov spaces

jf .z/j � 1

2�
k kE2.ext D�/kez�kE2.D�/: (8.29)

We compute the norm

kez�k2E2.D�/
D
Z

@D�

jez! j2 jd!j D
NX

kD1

Z a�

kC1

a�

k

jez! j2 jd!j

D
NX

kD1

Z 1

0

jez.a�

k Ct.a�

kC1
�a�

k //j2 dt 	 jakC1 � akj

D
NX

kD1

e2Re za�

kC1 � e2Re za�

k

2Re za�kC1 � 2Re za�k
	 jakC1 � akj;

where jd!j is an element of arc length. Hence we find, using (8.16), i.e.,
k kE2.D�/ � M2

p
2�jjjf jjjBp.D/ D p

2�jjjf jjjBp.D/,

jf .z/j � 1

2�
k kE2.ext D�/

 
NX

kD1

e2Re za�

kC1 � e2Re za�

k

2Re za�kC1 � 2Re za�k
	 jakC1 � akj

! 1
2

� 1p
2�

jjjf jjjB2.D/
 

NX

kD1

e2Re za�

kC1 � e2Re za�

k

2Re za�kC1 � 2Re za�k
	 jakC1 � akj

! 1
2

: (8.30)

Now, let 1 < p � 2 and let f 2 Bp.D/. Then by Theorem 3 there exists some
 2 Ep.ext D�/ with

f .z/ D 1

2� i

Z

@D�

 .�/e�z d�:

By the Minkowski inequality and (8.16),
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jf .z/j � 1

2�
k kLq.@D�/kez�kLp.@D�/ � Mp

2�

q
p
2�jjjf jjjBp.D/ke�zkEp.ext D�/:

Since

ke�zkp
Ep.ext D�/

D
NX

kD1

exp.pRe za�kC1/ � exp.pRe za�k /
pRe za�kC1 � pRe za�k

	 jakC1 � akj;

it is

jf .z/jp � Mp
p

2�
jjjf jjjpBp.D/

NX

kD1

exp.pRe za�kC1/ � exp.pRe za�k /
pRe za�kC1 � pRe za�k

	 jakC1 � akj: (8.31)

For 2 � p < 1, let 2k < p � 2kC1, k 2 N. If f 2 Bp.D/ and s D p=2k, then
1 < s � 2 and

g D .f /2
k 2 B p

2k
.2kD/ D Bs.2

kD/:

From the previous cases we see

jg.z/js � Ms
s

2�
jjjgjjjsBs.2kD/

NX

kD1

exp.sRe z2ka�kC1/ � exp.rRe z2ka�k /
sRe z2ka�kC1 � sRe z2ka�k

	 j2kakC1 � 2kakj:

Thus

jf .z/jp � Ms
s

2�
2kjjjf jjjpBp.D/

NX

kD1

exp.pRe za�kC1/ � exp.pRe za�k /
pRe za�kC1 � pRe za�k

	 jakC1 � akj:

Special case p D 1: Let f 2 B1.D/. Then by [15, Lemma 2.8], we have

lim
jzj!1

jf .z/j exp.�jzjkD.� arg z// D 0:

For jzj large enough and all p � 1 we deduce

jf .z/jp exp.�pjzjkD.� arg z// � jf .z/j exp.�jzjkD.� arg z//:

Hence, from equation (8.31) and the limit p ! 1,

jf .z/j � M1

2�
jjjf jjjB1.D/

NX

kD1

exp.Re za�kC1/ � exp.Re za�k /
Re za�kC1 � Re za�k

jakC1 � akj:

Note that M1 D 1. This concludes the proof.
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Note 1. The upper bound in Theorem 5 is never attained. Indeed, let p D 2 and
assume

jf .z0/j D 1p
2�

jjjf jjjB2.D/
 

NX

kD1

e2Re z0a�

kC1 � e2Re z0a�

k

2Re z0a�kC1 � 2Re z0a�k
	 jakC1 � akj

!1=2

for some function f 2 B2.D/ and some z0 2 D. Since E2.ext D�/ and E2.D�/ are
both subspaces of L2.@D�/ with norms induced by L2.@D�/, we can read (8.29) as
Cauchy-Schwarz inequality. There, equality holds if and only if

Bf .�/ D  .�/ D c.ez0�/�

for some constant c. Hence f .z/ D c 	 1
2� i

R
@D� e�ze.�z0/� d� and we find

f ./ D c

2� i

Z

@D�

exp..z0�/
�/ exp.�/ d�

D c

2� i

NX

jD1

Z a�

jC1

a�

j

exp.z�

0 �
� C �/ d�

D c

2� i

NX

jD1

.a�

jC1 � a�

j /

Z 1

0

exp.z�

0 .aj C t.ajC1 � aj//C .a�

j C t.a�

jC1 � a�

j /// dt

D c

2� i

NX

jD1

.a�

jC1 � a�

j /
exp.z�

0 ajC1 C a�

jC1
/ � exp.z�

0 aj C a�

j /

z�

0 .ajC1 � aj/C .a�

jC1
� a�

j /
:

But the function  .�/ D c.ez0�/� is not holomorphic off D� and does not vanish
at infinity. Therefore, it is not the Borel transform of some function in B2.D/. In
particular, f … B2.D/. Equality is not attained in B2.D/.

Therefore, the question for best constants in Theorem 5 is an open problem.

8.5 Special case p D 1

For the 2-gone, i.e., an interval D D Œ�ia; ib �, a; b > 0, the limit case p D 1 of
Korevaar’s Theorem 2 is closely related to a result by Phragmén and Lindelöf:

Theorem 6 ([24, p. 82]). Let f be an entire function of exponential type B > 0. If,
in addition, f is bounded on the real axis by jf .x/j � M for all x 2 R, then

jf .x C iy/j � MeBjyj:
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If, in our case, we assume that g is an entire function of exponential type bounded
on the rays rei�j , r > 0, j D 1; : : : ;N, then g is also bounded in the sectors between
the rays. This is due to the more general Phragmén–Lindelöf theorem:

Theorem 7 (Phragmén–Lindelöf). ([24, p. 80]) Let f be continuous on a closed
sector of opening �=˛ and analytic in the open sector. Suppose that on the bounding
rays of the sector, jf .z/j � M.

If for some ˇ < ˛, jf .z/j � exp.rˇ/ whenever z lies in the sector and jzj large
enough, then jf .z/j � M throughout the sector.

Therefore, the above considered entire function g of exponential type is bounded
everywhere and by Liouville’s theorem a constant.

If we suppose the weaker conditions that f has a certain exponential growth on
the rays,

jf .rei�j/j � M exp.rh.�j//; r > 0;

for constants h.�j/ satisfying kD.��j/ � h.�j/ � 0 for all j D 1; : : : ;N, we cannot
deduce f 2 B1.D/. A counterexample is the function

f .z/ D
NX

kD1
eakz C e.a1Ca2/z:

Obviously, f satisfies the growth condition. But the conjugate indicator diagram E
of f is not contained in D and thus there exists � 2 Œ 0; 2� � with kD.��/�h.�/ < 0.
In this sense, Theorem 7 is best possible.

8.6 Conclusion

In this chapter, we considered variations on the commutative diagram (Fig. 8.1)
consisting of the Fourier transform, the Sampling Theorem, and the Paley-Wiener
Theorem. We started from a generalization of the Paley-Wiener theorem and
considered entire functions with specific growth properties along half lines. Our
main result showed that the growth exponents are directly related to the shape of
the corresponding indicator diagram, e.g., its side lengths. Since many results from
sampling theory are derived with the help from a more general function theoretic
point of view (the most prominent example for this is the Paley-Wiener Theorem
itself), we believe that a closer examination and understanding of the Bernstein
spaces and the corresponding commutative diagrams can — via a a limiting process
to the straight-line interval Œ�A;A � — yield new insights into the Lp.R/-sampling
theory.
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Chapter 9
Sampling in Euclidean and Non-Euclidean
Domains: A Unified Approach

Stephen D. Casey and Jens Gerlach Christensen

Abstract Sampling theory is a fundamental area of study in harmonic analysis and
signal and image processing. The purpose of this paper is to connect sampling theory
with the geometry of the signal and its domain. It is relatively easy to demonstrate
this connection in Euclidean spaces, but one quickly gets into open problems
when the underlying space is not Euclidean. We focus primarily on Euclidean and
hyperbolic geometries.

There are numerous motivations for extending sampling to non-Euclidean
geometries. Applications of sampling in non-Euclidean geometries are showing
up areas from EIT to cosmology. Irregular sampling of bandlimited functions by
iteration in hyperbolic space is possible, as shown by Feichtinger and Pesenson.
Sampling in spherical geometry has been analyzed by many authors, e.g., Driscoll,
Healy, Keiner, Kunis, McEwen, Potts, and Wiaux, and brings up questions about
tiling the sphere. In Euclidean space, the minimal sampling rate for Paley-Wiener
functions on R

d, the Nyquist rate, is a function of the bandwidth. No such rate
has yet been determined for hyperbolic or spherical spaces. We look to develop a
structure for the tiling of frequency spaces in both Euclidean and non-Euclidean
domains. In particular, we establish Nyquist tiles and sampling groups in Euclidean
geometry, and discuss the extension of these concepts to hyperbolic and spherical
geometry and general orientable surfaces.
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9.1 Introduction: Nyquist Tiles and Sampling Groups

Sampling Theory is the distinctive branch of mathematics which sets up and solves
the interpolation problem of a function with bounded growth from known sampled
values. The theory is fundamental in the field of information theory, particularly
in telecommunications, signal processing and image processing. Sampling is the
process of converting a signal (for example, a function continuous in time or space)
into the sample values (a numeric sequence, which is a function of discrete time or
space), storing and/or transmitting these values, and then reconstructing the original
function when this is required. The theory is a subset of the general theory of
interpolation.

The purpose of this paper is to connect sampling theory with the geometry of
the signal and its domain. It is relatively easy to demonstrate this connection in
Euclidean spaces, but one quickly gets into open problems when the underlying
space is not Euclidean. We discuss the extension to hyperbolic and spherical
geometry and general orientable surfaces. The establishment of the exact Nyquist
rate in non-Euclidean spaces is an open problem. We use two tools to work on the
problem – the Beurling-Landau density and Voronoi cells. Using these tools, we
establish a relation in Euclidean domains, connecting Beurling-Landau density to
sampling lattices and hence dual lattice groups, and then use these dual lattices to
define Voronoi cells, which become our tiles in frequency. We then discuss how to
extend this to hyperbolic geometry.

There are numerous motivations for extending sampling to non-Euclidean
geometries, and in particular, hyperbolic and spherical and geometries. Hyperbolic
space and its importance in Electrical Impedance Tomography (EIT) [4, 5] and
Network Tomography [6] has been mentioned in several papers of Berenstein et. al.
and some methods developed in papers of Kuchment, e.g., [25]. Irregular sampling
of bandlimited functions by iteration in hyperbolic space is possible, as shown by
Feichtinger and Pesenson [12, 13] and Christensen and Ólafsson [7]. Applications
where data are defined inherently on the sphere are found in computer graphics,
planetary science, geophysics, quantum chemistry, and astrophysics [9, 28]. In many
of these applications, a harmonic analysis of the data is insightful. For example,
spherical harmonic analysis has been remarkably successful in cosmology, leading
to the emergence of a standard cosmological model [8, 28].

The sphere is compact, and its study requires different tools. Fourier analysis
on S

2 amounts to the decomposition of L2.S2/ into minimal subspaces invariant
under all rotations in SO.3/. Bandlimited functions on the sphere are spherical
polynomials. Sampling on the sphere is how to sample a band-limited function,
an Nth degree spherical polynomial, at a finite number of locations, such that all of
the information content of the continuous function is captured. Since the frequency
domain of a function on the sphere is discrete, the spherical harmonic coefficients
describe the continuous function exactly. A sampling theorem thus describes how to
exactly recover the spherical harmonic coefficients of the continuous function from
its samples. Developing sampling lattices leads to questions on how to efficiently
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tile the sphere, a subject in its own right. We refer to the work of Driscoll and Healy
[9], Keiner, Kunis, and Potts [24], and McEwen and Wiaux [28] for results on the
sphere.

For Paley-Wiener functions on Euclidean spaces, the minimal sampling rate, the
Nyquist rate, is a function of the bandwidth. No such rate has yet been determined
for hyperbolic or spherical spaces. The establishment of the Nyquist rate in non-
Euclidean spaces is an important open question.

The Nyquist rate allows us to develop an efficient tiling of frequency space.
A tiling or a tessellation of a flat surface is the covering of the plane or region
in the plane using one or more geometric shapes, called tiles, with no overlaps and
no gaps. This generalizes to higher dimensions. We look to develop Nyquist tiles
and sampling groups for Euclidean, hyperbolic, and spherical spaces. We assume
throughout the paper that all signals are single band and symmetric in frequency,
i.e., that the transform of the signal can be contained in a simply connected region
centered at the origin. Symmetry can be achieved by shifting, and multiband signals
can be addressed by the techniques in this paper, but there are techniques to more
cleverly deal with multiband signals, e.g., see [22].

The paper is structured as follows. We establish the concepts of Nyquist tiles
and sampling groups for Euclidean spaces in this section, and demonstrate their
intrinsic relation to sampling. Section 9.2 gives an discussion of the geometry of
orientable surfaces, concluding with a discussion of the Uniformization Theorem.
The Uniformization Theorem gives that all orientable surfaces inherit their intrinsic
geometry from their universal covers. There are only three of these covers –
the plane C (Euclidean geometry), the Riemann sphere QC (spherical geometry),
and the hyperbolic disk D (hyperbolic geometry). The third section is on Fourier
analysis and sampling in hyperbolic space. We develop our analysis in terms of the
Fourier-Helgason transform, and discuss results on the Beurling-Landau densities of
sampling lattices. We describe two approaches to sampling in hyperbolic space, the
first using operator theory, the second Beurling-Landau densities. We then include
a discussion of the sphere, and close with a discussion about sampling on general
orientable surfaces.

9.1.1 Nyquist Tiling in R

We work with square integrable functions on the real line .f 2 L2.R//. References
for the material on harmonic analysis and sampling in R include Benedetto [3],
Dym and McKean [10], Grafakos [15], Gröchenig [18], Higgins [22], Hörmander
[23], Levin [27], and Young [37].

Fourier series and Fourier transforms are defined as follows (see [3, 10],
and [18]). Let f be a periodic, integrable function on R, with period 2˚ , i.e.,
f 2 L1.T2˚ /. The Fourier coefficients of f , Of Œn�, are defined by

Of Œn� D 1

2˚

Z ˚

�˚
f .t/ exp.�i�nt=˚/ dt :
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If fOf Œn�g is absolutely summable (fOf Œn�g 2 l1), then the Fourier series of f is

f .t/ D
X

n2Z
Of Œn� exp.i�nt=˚/ :

Let f be a function in L1. The Fourier transform of f is defined as

Of .!/ D
Z

R

f .t/e�2� it!dt

for t 2 R (time), ! 2 OR (frequency). The Fourier inversion formula, for
Of 2 L1. OR/, is

f .t/ D .Of /_.t/ D
Z

OR
Of .!/e2� i!td!:

Formally, we can think of the transform and the coefficient integral as analysis, and
the inverse transform and series as synthesis. The choice to have 2� in the exponent
simplifies certain expressions, e.g., for f ; g 2 L1 \ L2.R/, Of ; Og 2 L1 \ L2. OR/, we
have the Parseval-Plancherel equations – kf kL2.R/ D kOf kL2. OR/ and hf ; gi D hOf ; Ogi.
Extend the transform from L1 \ L2 to L2 via a density argument. We also define the
periodization of a function of finite support. Let T > 0 and let f .t/ be a function
such that supp f � Œ0;T�. The T-periodization of f is Œf �ı.t/ D P1

nD�1 f .t � nT/ :
Classical sampling theory applies to functions that are square integrable and

band-limited. A function in L2.R/ whose Fourier transform is compactly supported
has several smoothness and growth properties given in the Paley-Wiener Theorem
(see, e.g., [10, 22, 29, 34, 35]).

Definition 1 (Paley-Wiener Space PW˝).

PW˝ D ff continuous W f ; Of 2 L2; supp.Of / � Œ�˝;˝�g

Theorem 1 (W-K-S Sampling Theorem). Let f 2 PW˝ , sinc
T
.t/ D sin.�T t/

� t
, and

ınT.t/ D ı.t � nT/.

1.) If T � 1=2˝, then for all t 2 R,

f .t/ D T
X

n2Z
f .nT/

sin.�T .t � nT//

�.t � nT/
D T

 �X

n2Z
ınT


f

!

� sinc
T
.t/ :

2.) If T � 1=2˝ and f .nT/ D 0 for all n 2 Z, then f � 0.

A beautiful way to prove the W-K-S Sampling Theorem is to use the Poisson
Summation Formula. Let T > 0 and for f 2 L1.Œ0;T//, let Œf �ı.t/ D P

n2Z f .t � nT/
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be the T-periodization of f . We can then expand Œf �ı.t/ in a Fourier series. The
sequence of Fourier coefficients of this T-periodic function are given bybŒf �ıŒn� D
1
T

Of 	� n
T



: We have

X

n2Z
f .t C nT/ D 1

T

X

n2Z
Of .n=T/e2� int=T : (PSF1)

Therefore

X

n2Z
f .nT/ D 1

T

X

n2Z
Of .n=T/ :

Thus, the Poisson Summation Formula allows us to compute the Fourier series of
Œf �ı in terms of the Fourier transform of f at equally spaced points. This extends to
the Schwartz class of distributions as

2

X

n2Z
ınT D 1

T

X

n2Z
ın=T : (PSF2)

If f 2 PW˝ , Of is compactly supported, and we can periodically extend the function.
If T � 1=2˝,

Of .!/ D
 
X

n2Z
Of .! � n

T
/

!

	 �Œ�1=2T;1=2T/.!/ :

But, by computing inverse transforms and applying (PSF2),

Of .!/ D
 
X

n2Z
Of .! � n

T
/

!

	 �Œ�1=2T;1=2T/.!/ D
 
X

n2Z

�
ın=T


Of
!

	 �Œ�1=2T;1=2T/.!/

if and only if

f .t/ D T

 �X

n2Z
ınT


f

!

� sinc
T
.t/ :

An additional bonus to this derivation is that it gives a direct method for analyzing
reconstruction errors.

There are several errors associated with the sampling reconstruction. Complete
reconstruction requires samples over all time. If only a finite number of the samples
are used, we get truncation error. If sample values are not measured at intended
points, we can get jitter error. If we have a uniformly spaced sampling set, the main
error is aliasing. The sampling rate 1=2˝ is called the Nyquist rate. Sampling sub-
Nyquist results in aliasing error EA, described in the following. If f has bandlimit˝,
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and we sample at rate T > 1=2˝, high frequencies of one block of e2�nt=T f .t/
intersect with low frequencies of the next block e2�.nC1/t=T f .t/. Aliasing results
in a stroboscopic effect [3], an effect which is visualized as jumps in the output
signal. The high and low frequencies of adjacent blocks alias each other. To analyze
aliasing error, we compute the pointwise estimate. For simplicity, assume f 2 PW1.
If T D 1

2
, applying (PSF1) and integrating gives us that f .t/ equals

Z 1=2

�1=2
ŒOf �ı.!/e2� it! d! D

X

n2Z
f .n/

Z 1=2

�1=2
e2� i.t�n/! d! D

X

n2Z
f .n/

sin.�.t � n//

�.t � n/
:

If T > 1
2
, then

Z 1=2

�1=2
ŒOf �ı.!/e2� it! d! D

X

n2Z

Z 1=2

�1=2
Of .! C n/e2� it! d!

D
X

n2Z

Z nC1=2

n�1=2
Of .u/e2� it.u�n/ du D

X

n2Z
e2� it.�n/

Z nC1=2

n�1=2
Of .u/e2� itu du :

Now,

f .t/ D
X

n2Z

Z nC1=2

n�1=2
Of .u/e2� itu du :

Thus,

EA D sup

ˇ̌
ˇ̌f .t/ �

Z 1=2

�1=2
ŒOf �ı.!/e2� it! d!

ˇ̌
ˇ̌

D sup

ˇ̌
ˇ̌
X

n6D0

	
1 � e2� it.�n/


 Z nC1=2

n�1=2
Of .u/e2� it.u/ du

ˇ̌
ˇ̌

� 2 sup

�X

n6D0

Z nC1=2

n�1=2
jOf .u/j du


D 2

Z

juj�1=2
jOf .u/jdu :

The constant 2 is sharp. An analysis of this error bound in terms of operators can be
found in Chapter 11 of [22].

So, for f 2 PW˝ , if we sample at exactly Nyquist

f .t/ D 1

2˝

 �X

n2Z
ı. 1

2˝ /


f

!

� sinc
. 1
2˝ /
.t/
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if and only if

Of .!/ D
 
X

n2Z
Of .! � 2n˝/

!

	 �Œ�˝;˝/.!/ D
 
X

n2Z

�
ı2n˝


Of
!

	 �Œ�˝;˝/.!/ :

The interval Œ�˝;˝/ is simply connected and symmetric to the origin. It is spread
by the group of translations to form a tiling of frequency space – fŒ.k � 1/˝; .k C
1/˝/g. We refer to Œ�˝;˝/ as a sampling interval. Note, sampling intervals are
“half open, half closed,” with length determined by the Nyquist rate. The inverse
transform of the characteristic functions of the tiles are sinc functions, which form
an orthonormal (o.n.) basis for PW˝ . Sampling is expressed in terms of this basis.
We can now define the following.

Definition 2 (Nyquist Tiles for f 2 PW�). Let f be a nontrivial function in PW˝ .
The Nyquist Tile NT.f / for f is the sampling interval of minimal length in OR such
that supp.Of / � NT.f /. A Nyquist Tiling for f is the set of translates fNT.f /kgk2Z of
Nyquist tiles which tile OR.

We are assuming throughout the paper that all signals are single band and
symmetric in frequency, i.e., that the transform of the signal can be contained
in a simply connected region centered at the origin. Symmetry can be achieved
by shifting. For example, consider the function g.t/ D ei� t sin.� t/

� t . The Fourier
transform is Og.!/ D �

Œ0;1/.!/. By modulating the original function g by e�i� t, we
get f .t/ D sin.� t/

� t , whose transform is Of .!/ D �
Œ�1=2;1=2/.!/. The Nyquist tile for

both g and f is Œ�1=2; 1=2/.
The Nyquist tile is transported by a group of motions to cover the transform

domain.

Definition 3 (Sampling Group for f 2 PW�). Let f 2 PW˝ with Nyquist Tile
NT.f /. The Sampling Group G.f / is a group of translations such that NT.f / tiles OR.

The group G is clearly isomorphic to Z.

9.1.2 Nyquist Tiles and Sampling Groups in R
d

Let f 2 L1.Rd/. We define the Fourier transform as

Of .!/ D
Z

Rd
f .t/e�2� it
!dt

for t 2 R
d (time), ! 2 ORd (frequency). The Fourier inversion formula, for

Of 2 L1. ORd/, is

f .t/ D .Of /_.t/ D
Z

ORd

Of .!/e2� i!
td! :
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Again, the choice to have 2� in the exponent simplifies certain expressions, e.g., for

f ; g 2 L1 \ L2.Rd/, Of ; Og 2 L1 \ L2.cRd/, we have the Parseval-Plancherel equations
– kf kL2.Rd/ D kOf kL2. ORd/

and hf ; gi D hOf ; Ogi. Extend the transform from L1 \ L2 to

L2 via a density argument.
We again define the periodization of a function of finite support. Let T > 0

and let f .t/ be a function such that supp f � Œ0;T�k. The T-periodization of f is
Œf �ı.t/ D P

n2Zd f .t � nT/ :We can expand a T-periodic function Œf �ı.t/ in a Fourier
series. Denote the lattice � D TZd, where T is the n 
 n matrix with T on the main
diagonal and zeroes elsewhere. The sequence of Fourier coefficients of this periodic
function on the lattice � D TZd are given by

bŒf �ıŒn� D 1

Td
Of
�
� n

T

�
:

We have

X

n2Zd

f .t C nT/ D 1

Td

X

n2Zd

Of .n=T/e2� in
t=T : (PSF1)

Therefore,

X

n2Zd

f .nT/ D 1

Td

X

n2Zd

Of .n=T/ :

We can write the Poisson summation formula for an arbitrary lattice by a change of
coordinates. Let A be an invertible d 
 d matrix, � D AZ

d, and �? D .AT/�1Zd

be the dual lattice. Then

X

�2�
f .t C �/ D

X

n2Zd

.f ı A/.A�1t C n/ D
X

n2Zd

.f ı A/O.n/e2� in
A�1.t/

D 1

j det Aj
X

n2Zd

Of ..AT/�1.n//e2� i.AT /�1.n/
t :

Note, j det Aj D vol.�/. This last expression can be expressed more directly as

X

�2�
f .t C �/ D 1

vol.�/

X

ˇ2�?

Of .ˇ/e2� iˇ
t :

This extends again to the Schwartz class of distributions as

2

X

�2�
ı� D 1

vol.�/

X

ˇ2�?

ıˇ : (PSF2)
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The sampling formula again follows from computations and an application of
(PSF2). We assume a single band signal. Let � be a regular sampling lattice

in R
d,and let �? be the dual lattice in c

R
d. Then � has generating vectors

f�1;�2; : : : ;�dg, and the sampling lattice can be written as � D f� W � D
z1�1 C z2�2 C : : : C zd�dg for .z1; z2; : : : ; zd/ 2 Z

d. Let f˝1;˝2; : : : ;˝dg be the
generating vectors for the dual lattice �?. The dual sampling lattice can be written
as �? D f�? W �? D z1˝1 C z2˝2 C : : : C zd˝dg for .z1; z2; : : : ; zd/ 2 Z

d.
The vectors f˝1;˝2; : : : ;˝dg generate a parallelepiped. We want to use this
parallelepiped to create a tiling, and therefore we make the parallelepiped “half
open, half closed” as follows. If we shift the parallelepiped so that one vertex is at
the origin, we include all of the boundaries that contain the origin, and exclude the
other boundaries. We denote this region as a sampling parallelepiped ˝P .

If the region˝P is a hyper-rectangle, we get the familiar sampling formula

f .t/ D 1

vol.�/

X

n2Zd

f .
n1
!1
; : : : ;

nd

!d
/
sin. �

!1
.t � n1!1//

�.t � n1!1/
	 : : : 	 sin. �

!d
.t � nd!d//

�.t � nd!d/
:

If, however, the sampling parallelepiped˝P a general parallelepiped, we first have
to compute the inverse Fourier transform of �˝P . Let S be the generalized sinc
function

S D 1

vol.�/
.�˝P /

_ :

Then, the sampling formula (see [22]) becomes

f .t/ D
X

�2�
f .�/S.t � �/ :

Definition 4 (Nyquist Tiles for f 2 PW�P ). Let

PW˝P D ff continuous W f 2 L2.Rd/; Of 2 L2.cRd/; supp.Of / � ˝Pg ;

where f˝1;˝2; : : : ;˝dg be the generating vectors for the dual lattice �?. Let f
be a nontrivial function in PW˝P . The Nyquist Tile NT.f / for f is the sampling

parallelepiped of minimal area in cRd centered at the origin such that supp.Of / �
NT.f /. A Nyquist Tiling is the set of translates fNT.f /kgk2Zd of Nyquist tiles which

tile cRd.

Definition 5 (Sampling Group for f 2 PW�P ). Let f 2 PW˝P with Nyquist Tile
NT.f /. The Sampling Group G is a symmetry group of translations such that NT.f /

tiles cRd.

Remark. Note that the sampling group G of f 2 PW˝P will be isomorphic to
Z ˚ Z ˚ : : :˚ Z, d-times.
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9.1.3 Beurling-Landau Density for Euclidean Space

If sample values are not measured at intended points, we can get jitter error. Let
f�ng denote the error in the nth sample point. First we note that if f 2 PW1, then,
by Kadec’s 1/4 Theorem, the set fn ˙ �ngn2Z is a stable sampling set if j�nj < 1=4.
Moreover, this bound is sharp. The sampling set� D f�k 2 R W j�k � kj < 1=4gk2Z
in Kadec’s theorem is just a perturbation of Z. For more general sampling sets, the
work of Beurling and Landau provide a deep understanding of the one-dimensional
theory of nonuniform sampling of band-limited functions.

A sequence� is separated or uniformly discrete if q D infk.�kCl ��k/ > 0. The
value q is referred to as the separation constant of �. With a separated sequence �
we associate a distribution function n�.t/ defined such that for a < b,

n�.b/ � n�.a/ D card.� \ .a; b�/ ;

and normalized such that n�.0/ D 0. There is clearly a one-to-one correspondence
between � and n�. A discrete set � is a set of sampling for PW˝ if there exists
a constant C such that kf k22 � C

P
�k2� jf .�k/j2 for every f 2 PW˝ . The set �

is called a set of interpolation for PW˝ if for every square summable sequence
fa�g�2�, there is a solution f 2 PW˝ to f .�/ D a�, � 2 �. Clearly, all complete
interpolating sequences are separated. Landau showed that if � is a sampling
sequence for PW˝ , then there exists constants A and B, independent of a; b such
that

n�.b/ � n�.a/ � .b � a/ � A logC.b � a/ � B :

Definition 6 (Beurling-Landau Densities).

1.) The Beurling-Landau lower density

D�.�/ D lim infr!1inft2R
.n�.t C r// � n�.t/

r

2.) The Beurling-Landau upper density

DC.�/ D lim supr!1supt2R
.n�.t C r// � n�.t/

r

The densities are defined similarly in higher dimensions. Specifically, for the
exact and stable reconstruction of a bandlimited function f from its samples ff .�k/ W
�k 2 �g, it is sufficient that the Beurling-Landau lower density satisfies D�.�/ > 1.
A set fails to be a sampling set if D�.�/ < 1. Conversely, if f is uniquely and stably
determined by its samples on �, then D�.�/ � 1. Note, a sampling set for which
the reconstruction is stable in this sense is called a (stable) set of sampling. This
terminology is used to contrast a set of sampling with the weaker notion of a set
of uniqueness. � is a set of uniqueness for PW˝ if f j� D 0 implies that f D 0.
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Whereas a set of sampling for PW˝ has a density D�.�/ � 1, there are sets of
uniqueness with arbitrarily small density. We also have that if the Beurling-Landau
upper density satisfies DC.�/ � 1, then � is a set of interpolation.

The canonical case is when ˝ D 2� and � D Z. Since feintg in an o.n. basis
for L2Œ��; ��, it follows from Parseval that � is both a set of sampling and a set of
interpolation. This scales by a change of variable, and so � D 1

˝
Z is both a set of

sampling and a set of interpolation for PW2�˝ . Moreover, general lattices can be
compared to the canonical results as follows. If � is a set of sampling for PW2�˝ ,
then� is everywhere at least as dense as the lattice 1

˝
Z. If� is a set of interpolation

for PW2�˝ , then � is everywhere at least as sparse as the lattice 1
˝
Z.

This generalizes to R
d. Let ˝P be a hyper-rectangle with side lengths ˝. If we

normalize the density of Zd to be one, then the density of the canonical lattice for
PW2�˝P is 1=.2�/d times the volume of the spectrum ˝P . Then, if � is a set of
sampling for PW2�˝P , then � is everywhere at least as dense as the lattice 1

˝d Z
d.

If� is a set of interpolation for PW2�˝P , then� is everywhere at least as sparse as
the lattice 1

˝d Z
d.

9.1.4 Voronoi Cells for Euclidean Space

We use our sampling lattices to develop Voronoi cells corresponding to the sampling
lattice. These cells will be, in the Euclidean case, our Nyquist tiles.

Definition 7 (Voronoi Cells in c
R

d). Let O� D fO�k 2 c
R

d W k 2 Ng be a discrete

set in cRd. Then, the Voronoi cells f˚kg, the Voronoi partition VP. O�/, and partition
norm kVP. O�/k corresponding to this set are defined as follows. Here, dist is the
Euclidean distance.

1.) The Voronoi cells ˚k D f! 2 c
R

d W dist.!; O�k/ � infj6Dk dist.!; O�j/g,

2.) The Voronoi partition VP. O�/ D f˚k 2 c
R

dgk2Zd ,
3.) The partition norm kVP. O�/k D supk2Zd sup!;	2˚k

dist.!; 	/.

Given f ; Of 2 L2.Rd/ such that f 2 PW˝P , if the signal is sampled on a lattice
exactly at Nyquist, we get a sampling grid � D f�k 2 R

dgk2Zd that is both a
sampling set and a set of interpolation. The Beurling-Landau lower density and the
Beurling-Landau upper density are equal for �. The dual lattice �? in frequency
space can be used to create Voronoi cells f˚kg, a Voronoi partition VP.�?/, and
partition norm kVP.�?/k. If we sample on a lattice exactly at Nyquist, each sample
point will correspond to an element in the dual lattice which is at the center of a

Nyquist tile NT.f / for f . The set of Nyquist tiles will cover cRd. If, however, we

develop the Voronoi cells f˚kg for �?, we get VP.�?/ D f˚k 2 c
R

dgk2Zd such

that for all k, ˚k D f! 2 c
R

d W dist.!; �?k / � infj6Dk dist.!; �?j /g. But this puts

�?k in the center of the cell. Then, if we construct the Voronoi cell containing this
point, we will get, up to the boundary, the exact Nyquist tile corresponding to this



342 S.D. Casey and J.G. Christensen

point. Nyquist tiles are “half open, half closed.” If we shift a Nyquist tile so that one
vertex is at the origin, we include all of the boundaries that contain the origin and
exclude the other boundaries. To get the exact correspondence between NT.f /k and
˚k, we make˚k “half open, half closed” and denote it as f̊k. We denote the adjusted
Voronoi partition aseVP .

Theorem 2 (Nyquist Tiling for Euclidean Space). Let f be a nontrivial function
in PW˝P , and let� D f�k 2 R

dgk2Zd be the sampling grid which samples f exactly
at Nyquist. Let�? be the dual lattice in frequency space. Then the adjusted Voronoi

partitioneVP.�?/ D ff̊k 2 c
R

dgk2Zd equals the Nyquist Tiling, i.e.,

ff̊k 2 c
R

dgk2Zd D fNT.f /kgk2Zd :

Moreover, the partition norm equals the volume of �?, i.e.,

keVP.�?/k D supk2Zd sup!;	2e̊k
dist.!; 	/ D vol.�?/ ;

and the sampling group G is exactly the group of motions that preserve �?.

This connects, in the Euclidean case, sampling theory with the geometry of the
signal and its domain. Given a function f 2 PW˝ , sampling of such a function
is the process of tiling the frequency domain by translated identical copies of the
parallelepiped of minimal area, the Nyquist Tile, which contains the frequency
support of Of . The relation between the geometry and sampling problem in the
Euclidean case is as follows: the set of the corresponding translations – the Sampling
Group – forms a symmetry group. The corresponding sampling set, which is simply
the annihilator of the sampling group, is also a symmetry group of translations on
R

d. The set of copies of the Nyquist tile, obtained by applying the sampling group,
is the Nyquist Tiling.

The situation is considerably different when the underlying space is not
Euclidean. We quickly get into open problems. Theorem 2 gives an approach for
solving the problem in non-Euclidean spaces. We suggest using the two tools we
just established – the Beurling-Landau density and Voronoi cells. Our next section
discusses the geometry of orientable surfaces. In particular, it provides insight
into why a focus on Euclidean, spherical, and, especially, hyperbolic geometries is
important.

9.2 Geometry of Surfaces

A surface is a generalization of Euclidean space. From the viewpoint of harmonic
analysis, there is a natural interest in both the theory and applications of the study
of integrable and square integrable functions on surfaces. This section discusses the
geometry of surfaces. Background material for this section can be found in Ahlfors
[1, 2], Farkas and Kra [11], Forster [14], Lee [26], and Singer and Thorpe [36].
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We assume our surfaces are connected and orientable. Therefore, we can choose
a coordinate system so that differential forms are positive [36]. We consider
Riemann surfaces, but our discussion carries through to connected and orientable
Riemannian manifolds of dimension two [26]. Riemann surfaces allow us to discuss
the Uniformization Theorem, which gives that all orientable surfaces inherit their
intrinsic geometry from their universal coverings. There are only three universal
covers – the plane C (Euclidean geometry), the Riemann sphere QC (spherical
geometry), and the hyperbolic disk D (hyperbolic geometry).

Recall that a Jordan curve � is a simple closed continuous path. The interior of
� is the union of all open sets contained inside of � . We say that an open set U is
simply connected if its boundary @U is a Jordan curve whose interior contains only
points in U.

Klein’s Erlangen program sought to characterize and classify the different
geometries on the basis of projective geometry and group theory. Since there is
a lot of freedom in projective geometry, due to the fact that its properties do not
depend on a metric, projective geometry became the unifying frame of all other
geometries. Also, group theory provided a useful way to organize and abstract the
ideas of symmetry for each geometry. The different geometries need their own
appropriate languages for their underlying concepts, since objects like circles and
angles were not preserved under projective transformations. Instead, one could talk
about the subgroups and normal subgroups created by the different concepts of each
geometry and use this to create relations between other geometries. The underlying
group structure is the group of isometries under which the geometry is invariant.
Isometries are functions that preserve distances and angles of all points in the set.
A property of surfaces in R

3 is said to be intrinsic if it is preserved by isometry, i.e.,
if it can be determined from any point on the surface. Isometries can be modeled
as the groups of symmetries of the geometry. Thus, the hierarchies of the symmetry
groups give a way for us to define the hierarchies of the geometries. We explore the
groups of isometries for three geometries – Euclidean, spherical, and hyperbolic. In
the next subsection, we present the Uniformization Theorem, which shows that for
connected and orientable surfaces, these are the only intrinsic geometries.

The motions that preserve lengths in Euclidean geometry are rotations and
translations. Shortest paths, or geodesics, are line segments. Let � be a path in C.
The Euclidean length of � is LE.� / D R

�
jdzj : Let ˛ 2 C, and let '�;˛ D ei� zC˛ :

Then '�;˛ preserves the Euclidean length, i.e.,

LE.'�;˛.� // D LE.� / :

The motions that preserve lengths in spherical geometry are normalized Möbius
maps. Shortest paths, or geodesics, are subarcs of great circles, which are images of
the equator of QC under isometries. The metric is weighted by �.z/ D 2=.1C jzj2/.
Let � be a path on the Riemann sphere QC. The spherical length of � is
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LS.� / D
Z

�

2 jdzj
1C jzj2 :

Let ˛; ˇ 2 C and let

'˛;ˇ D ˛z C ˇ

�ˇz C ˛
;

where j˛j2 C jˇj2 D 1. Then '˛;ˇ preserves the spherical length, i.e.,

LS.'˛;ˇ.� // D LS.� / :

The spherical distance ı between two points z1, z2 in QC is

ı.z1; z2/ D 2 jz1 � z2j
Œ.1C jz1j2/.1C jz2j2/�1=2 :

The motions that preserve lengths in hyperbolic geometry are Möbius-Blaschke
maps. They preserve the unit circle @D. Shortest paths, or geodesics, are subarcs
paths that intersect @D at right angles, which are images of R\D under isometries.
The metric is weighted by �.z/ D 2=.1 � jzj2/. Let � be a smooth path in the unit
disk D. The hyperbolic length of � is

LH.� / D
Z

�

2 jdzj
1 � jzj2 :

Let ˛ 2 D, and let

'�;˛ D ei� z � ˛
1 � ˛z

(a Möbius-Blaschke transformation of D onto D). Then '�;˛ preserves the hyper-
bolic length, i.e.,

LH.'�;˛.� // D LH.� / :

Let r be a real number, 0 < r < 1. Assuming that the geodesic with respect to
the hyperbolic metric joining 0 to r is the line segment Œ�1; 1�, then the hyperbolic
distance � between two points z1, z2 in D is

�.z1; z2/ D 2 arctanh

� jz1 � z2j
j1 � z2z1j

�
D log

 
1C jz1�z2j

j1�z2z1j
1 � jz1�z2j

j1�z2z1j

!

:
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To see these formulae in the hyperbolic case, let � be some smooth curve in D,
and let '�;˛ be a hyperbolic isometry. Then

LH.'�;˛.� // D
Z

'�;˛.� /

2 jdzj
1 � jzj2 D

Z

�

2 j'0�;˛j jdzj
1 � j'�;˛.z/j2

D
Z

�

2 jei� j j1�˛zC˛.z�˛/j
j1�˛zj2 jdzj

1 � jei� j2 jz�˛j2j1�˛zj2
: D

Z

�

2 j1�j˛j
2j

j1�˛zj2 jdzj
j1�˛zj2�jz�˛j2
j1�˛zj2

:

Thus,

LH.'�;˛.� // D
Z

�

2 j1 � j˛j2j jdzj
j1 � ˛zj2 � jz � ˛j2

D
Z

�

2 j1 � j˛j2j jdzj
.1 � ˛z/.1 � ˛z/ � .z � ˛/.z � ˛/

D
Z

�

2 .1 � j˛j2/ jdzj
.1 � j˛j2/.1 � jzj2/ D

Z

�

2 jdzj
1 � jzj2 D LH.� / :

We have

LH.� / D
Z

�

2 jdzj
1 � jzj2 D

Z

�

jdzj
1 � jzj C

Z

�

jdzj
1C jzj D log

�
1C jzj
1 � jzj

�
:

To compute hyperbolic distance, let z1; z2 2 D, let � be the geodesic between z1
and z2, and let '�;z1 .� /, where � is chosen so that we rotate z2 onto the value r on
the positive real axis.

LH.� / D LH.'�;z1 .� // D
Z

'�;z1 .� /

2 jdzj
1 � jzj2 :

Since '�;z1 .� / goes from 0 to r, we have

Z r

0

2 jdzj
1 � jzj2 D log

�
1C jzj
1 � jzj

�ˇ̌
ˇ̌
r

0

D log

�
1C jrj
1 � jrj

�
:

Since r D ei� z2�z1
1�z1z2

,

�.z1; z2/ D 2 arctanh

� jz1 � z2j
j1 � z2z1j

�
D log

 
1C jz1�z2j

j1�z2z1j
1 � jz1�z2j

j1�z2z1j

!

:
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The metric in D is derived from the differential dsD D 2 jdzj
1�jzj2 : A parallel

development for hyperbolic geometry is in the upper half plane H D fz D x C iy W
Im.z/ D y > 0g. The corresponding differential in this metric is dsH D jdzj

Im.z/ : The

mapping T.z/ D z�i
zCi conformally maps H to D, with

2 jT 0.z/j
1 � jT.z/j2 D jdzj

Im.z/

for all z 2 H, i.e., T is an isometry from .H; dsH/ to .D; dsD/. Some authors use the
model H, e.g., [13], while others use D, e.g., [21].

9.2.1 The Uniformization Theorem

The Uniformization Theorem is one of the most important theorems in both the
geometry of surfaces and the theory of functions of one complex variable. It plays
the same role for Riemann surfaces that the Riemann Mapping Theorem plays for
regions in the complex plane C.

We say that two simply connected domains ˝ and � in C are analytically
equivalent if there exists a bijective analytic mapping ' W ˝ �! � : The Riemann
Mapping Theorem gives the result that if ˝ is a simply connected proper subset
of C, then ˝ is analytically equivalent to the unit disk D. Riemann surfaces are
generalizations of the complex domain C. The term is used with two different but
related meanings. Riemann introduces the concept in his thesis to explain multi-
valued analytic functions by letting their domains be multiple copies of the complex
plane C. The axiomatic formalization of these leads to covering spaces.

Definition 8. Let S be a connected orientable one-dimensional complex surface.
An atlas of S is a collection f.U˛; '˛/g on S such that each U˛ is an open set, every
s 2 S is contained in some U˛ .fU˛g forms an open cover of S/, and

'˛ W U˛ �! C

is a one-to-one, onto continuous mapping with a continuous inverse (a homeomor-
phism), mapping U˛ onto some open subset of C such that the transition functions

f˛ˇ D '˛ ı '�1ˇ W 'ˇ.U˛ \ Uˇ/ �! '˛.U˛ \ Uˇ/

are analytic whenever U˛ \ Uˇ 6D ;. Each .U˛; '˛/ is referred to a chart.

Definition 9. Given a surface S , two atlases are compatible if the transition
functions between their elements are analytic. We can create a partial ordering of
compatible atlases by set containment. By Zorn’s Lemma, this collection of partially
ordered sets has a maximal element. This maximal set of charts of S will be referred
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to as the maximal atlas of S and will be denoted as f.U�̨; '˛/g. Then, for this

maximal atlas,
D
S ; f.U�̨; '˛/g˛

E
is a Riemann surface.

We could also define a Riemann surface without using the maximal atlas.
Because we want to discuss uniformization, we will assume, for a given surface,
that the atlas is maximal, and we will denote charts without the �. Note that the
charts are a key component of the surface. For a given ˛, the pair .U˛; '˛/ is also
called a local coordinate.

Definition 10. Let S; T be two Riemann surfaces. A continuous mapping

f W S �! T

is called analytic if for every local coordinate .U; '/ on S and every local coordinate
.V;  / on T with U \ f�1.V/ 6D ;, the mapping

 ı f ı '�1 W '.U \ f�1.V// �!  .V/

is analytic as a mapping C ! C. The map is called conformal if it is also one-to-one
and onto. Two conformally equivalent Riemann surfaces are regarded as equivalent.

Ahlfors [1] efficiently develops the theory of Riemann surfaces using coverings.
This idea goes back to Riemann’s original idea of a surface, that is, as a way to
explain multi-valued analytic functions by letting their domains be multiple copies
of the complex plane C. We first define a general covering.

Definition 11. Let X;Y be Hausdorff topological spaces. A covering is a continu-
ous, surjective mapping f between X and Y . A covering f W X �! Y is said to be
smooth or unramified if f is a local homeomorphism. A covering f W X �! Y is
said to be unlimited if every point of Y possesses a neighborhood U such that the
preimage of U under f is a disjoint union of open subsets of X.

Thus, for an unlimited, unramified covering f W X �! Y , every point in Y is
contained in an admissible open neighborhood.

Definition 12. Let QS;S be two Riemann surfaces, and let f W QS �! S be a
covering. Let s D f .Qs/. Then, given a local coordinate .U; '/ for Qs 2 QS , there
exists a local coordinate .V;  / for s 2 S such that '.Qs/ D  .s/ D 0, f .U/ � V ,
and there exists a natural number n such that f is given locally by the nth power of
the complex variable z, i.e.,

 ı f ı '�1.z/ D zn ; z 2 '.U/ :

The integer n depends only on the point Qs. If n > 1, Qs is called a branch point of
order n � 1 or a ramification point of order n. If n D 1 for all Qs 2 QS , the cover
unramified.
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We say that QS is an unlimited covering of S provided that for every curve � on
S and every Q� 2 QS with f . Q�/ D �.0/, there exists a curve Q� on QS with initial point
Q� and f . Q�/ D � . The curve Q� is called a lift of � . This is generally referred to
as the curve lifting property, and it follows directly from the unlimited, unramified
covering.

Given a point z0 on a Riemann surface S , we consider all closed curves on S
passing through z0. We say that any two of these paths are equivalent whenever
they are homotopic. The set of these equivalence classes forms a group with the
operation of multiplication of equivalence classes of paths. This group is called the
fundamental group of S based at z0 and denoted as �1.S; z0/. Since all Riemann
surfaces are connected, given any two points z0; z1 on S , the groups �1.S; z0/ and
�1.S; z1/ are isomorphic. This allows us to refer to the fundamental group of S
(�1.S/) by picking any base point on S . Note, if S is simply connected, �1.S/ is
trivial.

There is an important connection between �1.S/ and the smooth unlimited
covering spaces QS of S . If QS is a smooth unlimited covering space of S , then
�1. QS/ is isomorphic to a subgroup of �1.S/. Conversely, every subgroup of �1.S/
determines a smooth unlimited covering corresponding to the space QS . Given that
the trivial group is a subgroup of every group, the group of �1.S/ determines a
simply connected smooth unlimited covering space QS , which is called the universal
cover, i.e., the universal covering space is the covering space corresponding to the
trivial subgroup of �1.S/.

Given connected Riemann surface S and its universal covering space QS , S is
isomorphic to QS=G, where the group G is isomorphic to the fundamental group
of S , �1.S/ (see [14], Section 5). The corresponding universal covering is simply
the quotient map which sends every point of QS to its orbit under G. Thus, the
fundamental group of S determines its universal cover. Moreover, the universal
covering is indeed the “biggest” smooth unlimited covering of a connected Riemann
surface, in the sense that all other unramified unlimited covering space of a Riemann
surface can be covered unlimitedly and without ramification by the universal
covering of this surface.

The Uniformization Theorem allows us to classify all universal covers of all
Riemann surfaces. This in turn allows us to understand the geometry of every
Riemann surface. An open Riemann surface is called hyperbolic if the maximum
principle is not valid. This is equivalent to the existence of a Green’s function and a
harmonic measure. An open Riemann surface is called parabolic if it does not have
these properties. Closed Riemann surfaces are elliptic.

Theorem 3 (The Uniformization Theorem). Let S be a Riemann surface.

1.) Every surface admits a Riemannian metric of constant Gaussian curvature �.
2.) Every simply connected Riemann surface is conformally equivalent to one of

the following:
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a.) C with Euclidean Geometry (parabolic) – � D 0 – with isometries

D�
ei� z C ˛

�
; ı
E
; where � 2 Œ0; 2�/ ;

b.) QC with Spherical Geometry (elliptic) – � D 1 – with isometries

D� ˛z C ˇ

�ˇz C ˛

�
; ı
E
; where j˛j2 C jˇj2 D 1 ;

c.) D with Hyperbolic Geometry (hyperbolic) – � D �1 – with isometries

D�
ei� z � ˛
1 � ˛z

�
; ı
E
; where j˛j < 1 and � 2 Œ0; 2�/ :

Proofs are given in Ahlfors [1], Chapter 10, Forster [14], Section 27, and Farkas
and Kra [11], Section IV.6. Ahlfors [1] states the theorem by saying that every
simply connected Riemann surface is conformally equivalent to D;C or OC. Also
see Table 7.1 on page 214 of Singer and Thorpe’s Lecture Notes on Elementary
Topology and Geometry [36]. Chapter 7 of [36] is on the intrinsic Riemannian
geometry of surfaces. They also feature Table 7.1 on the front cover of the book. The
discussion in [26, 36] allows us to extend Uniformization to orientable Riemannian
manifolds of dimension two.

We finish this section by computing the Gaussian curvature � of QC, C, and D.
Gauss’ Theorema Egregium gives the deep result that � is intrinsic to every Riemann
surface [26]. Moreover, a surface inherits its geometry from the geometry of its
universal cover. Given that S is isomorphic to QS=G, where the group G is isomorphic
to the fundamental group of S , �1.S/, the metric is preserved (see [11], section
IV.9). The Riemannian metrics for QC;C, and D are �.z/jdzj, where �.z/ equals

2

1C jzj2 for QC ; 1 for C ;
2

1 � jzj2 for D :

The Gaussian curvature � of a surface S measures the amount of rotation obtained
in parallel transporting vectors around small Jordan curves on S . Given the
Riemannian metrics for C; QC and D, the curvature is given by

�.�/ D �� log.�/

�2
;

where� is the Laplacian. The curvatures � for QC;C, and D are 1; 0;�1, respectively.
To see this, first note that since log.1/ D 0, � D 0 for C. For QC, �.x; y/ D 2=.1C
x2 C y2/. Computing,

@2

@x2
�.x; y/ D �2C 2x2 � 2y2

.1 � x2 � y2/2
;
@2

@y2
�.x; y/ D �2 � 2x2 C 2y2

.1 � x2 � y2/2
:
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Adding gives

� log.�/ D �4
.1 � x2 � y2/2

:

Thus

�.�/ D �� log.�/

�2
D 1 :

For D, �.x; y/ D 2=.1 � x2 � y2/. Computing,

@2

@x2
�.x; y/ D 2C 2x2 � 2y2

.1 � x2 � y2/2
;
@2

@y2
�.x; y/ D 2 � 2x2 C 2y2

.1 � x2 � y2/2
:

Adding gives

� log.�/ D 4

.1 � x2 � y2/2
:

Thus

�.�/ D �� log.�/

�2
D �1 :

9.3 Sampling in Hyperbolic Space

We begin by stating the Fourier transform, its inversion, and the Plancherel formula
for hyperbolic space [20, 21].

Let dz denote the area measure on the unit disc D D fz j jzj < 1, and let
the measure dv be given by then the SU.1; 1/-invariant measure on D is given by
dv.z/ D dz=.1�jzj2/2. For functions f 2 L1.D; dv/ the Helgason-Fourier transform
is defined as

Of .�; b/ D
Z

D

f .z/e.�i�C1/hz;bi dv.z/

for � > 0 and b 2 T. Here hz; bi denotes the minimal hyperbolic distance from
the origin to the horocycle through z and a point b 2 @D. The mapping f 7! Of
extends to an isometry L2.D; dv/ ! L2.RC 
 T; .2�/�1� tanh.��=2/d� db/, i.e.,
the Plancherel formula becomes

Z

D

jf .z/j2 dz

.1 � jzj2/2 D 1

2�

Z

RC�T
jOf .�; b/j2� tanh.��=2/d� db:
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Here db denotes the normalized measure on the circle T, such that
R
T

db D 1, and
d� is Lebesgue measure on R. The Helgason-Fourier inversion formula is

f .z/ D 1

2�

Z

RC

Z

T

Of .�; b/e.i�C1/hz;bi� tanh.��=2/ d� db :

A function f 2 L2.D; dv/ is called bandlimited if its Helgason-Fourier transform Of
is supported inside a bounded subset Œ0;˝� of RC. The collection of bandlimited
functions with bandlimit inside a set Œ0;˝� will be denoted PW˝ D PW˝.D/. This
definition of bandlimit coincides with the definitions given in [12] and [7] which
both show that sampling is possible for bandlimited functions. The Laplacian on D

is symmetric and given by

� D .1 � x2 � y2/�2
�
@2

@x2
C @2

@y2

�
;

and we note that

c�f .�; b/ D �.�2 C 1/Of .�; b/:

Therefore, if f 2 PW˝.D/, we see that the following Bernstein inequality is
satisfied

k�nf k � .1C j˝j2/n=2kf k:

In the following section we will describe sampling results for band-limited
functions on hyperbolic space, which, it must be stressed, do not deal with optimal
densities.

9.3.1 Sampling via Operator Theory in D

The work in [12] defines bandlimits using the spectrum of the Laplacian on a
manifold, while [7] builds on representation theory which for the case at hand gives
the explicit form of the Fourier transform on D as defined above. We also refer to
the paper [13] which provides the same results in the setting of the upper half plane
(which is bi-holomorphically equivalent to D). These papers build on Neumann
series for an operator based on sampling as well as the Bernstein inequality. The
sampling operators have previously been explored in [16, 17].

According to Pesenson [30] there is a natural number N such that for any
sufficiently small r there are points xj 2 D for which B.xj; r=4/ are disjoint,
B.xj; r=2/ cover D, and 1 � P

j �B.xj;r/ � N. Such a collection of fxjg will be
called an .r;N/-lattice.



352 S.D. Casey and J.G. Christensen

Let �j be smooth nonnegative functions which are supported in B.xj; r=2/ and
satisfy that

P
j �j D 1D and define the operator

Tf .x/ D P˝

0

@
X

j

f .xj/�j.x/

1

A ;

where P˝ is the orthogonal projection from L2.D; dv/ onto PW˝.D/. By decreasing
r (and thus choosing xj closer) one can obtain the inequality kI � Tk < 1, in which
case T can be inverted by

T�1f D
1X

kD0
.I � T/kf :

For given samples we can calculate Tf , and the Neumann series provides the
recursion formula

fnC1 D fn C Tf � Tfn

and then limn!1 fn D f with norm convergence. The rate of convergence is
determined by the estimate kfn � f k � kI � TknC1kf k.

The paper [13] further provides a necessary condition for the set fxig to be
a sampling set. They find that there is a constant C which is determined by the
geometry of D, such that if r < C�1.1C j˝j2/k=2/�1 for any k > 1, then any .N; r/-
lattice fxig is a sampling set. The paper [7] obtains similar results, but removes some
restrictions on the functions �j. In particular the partitions of unity do not need to be
smooth and can actually be chosen as characteristic functions �j D �Uj for a cover of
disjoint sets Uj contained in the balls B.xj; r=2/. This is done by lifting the functions
to the group of isometries (which in this case is SU.1; 1/) and by estimating local
oscillations using Sobolev norms for left-invariant vector fields on this group.

9.3.2 Beurling density for Bergman spaces

In this section we describe a collection of celebrated sampling theorems for
Bergman spaces on the unit disc by Schuster and Seip [31–33]. Let H.D/ be the
space of holomorphic functions on D. Let 1 � p < 1 be given and equip the
unit disc D with normalized area measure d
.z/. We define the Bergman space
Ap.D/ D Lp.D; d
/ \ H.D/. This is a reproducing kernel Banach space with
reproducing kernel

K.z;w/ D 1

.1 � wz/2
:
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By [32] and [31] sampling and interpolation sets for Ap.D/ are characterized by the
upper and lower Beurling densities

DC.Z/ D lim sup
r!1

sup
w2D

D.�w.Z/; r/;

D�.Z/ D lim inf
r!1 inf

w2D D.�w.Z/; r/:

Here �w.z/ D w�z
1�wz and D.Z; r/ D .

P
jzkj<r log jzkj/=.log.1 � r//. Let �.z;w/ D

j�w.z/j be the pseudo-hyperbolic distance from z to w, then a sequence Z D fzig is
called uniformly discrete if there is a ı > 0 such that �.zi; zj/ > ı for i ¤ j.

Theorem 4. Let � be a set of distinct points in D.

1.) A sequence � is a set of sampling for Ap if and only if it is a finite union of
uniformly discrete sets and it contains a uniformly discrete subsequence �0 for
which D�.�0/ > 1=p.

2.) A sequence� is a set of interpolation for Ap if and only if it is uniformly discrete
and DC.�/ < 1=p.

These results show there can be no Nyquist density for the Bergman spaces,
since the sampling sets are always sharply separated from the interpolating sets. We
note that the results of Seip and Schuster are for a particular class of holomorphic
functions, to which the bandlimited functions PW˝.D/ do not belong. It is an
open question whether it is possible to establish a Nyquist density for bandlimited
functions on D and to use this information to create regular lattices and dual lattices
determined by the size of the bandlimit ˝.

9.3.3 Voronoi Cells and Beurling-Landau Density for OD

We develop our model for hyperbolic space on the Poincaré disk D. The motions
that preserve lengths in hyperbolic geometry are Möbius-Blaschke maps. Geodesics
are subarcs of paths that intersect @D at right angles. Let � be a smooth path in
the unit disk D. The hyperbolic length of � is LH.� / D R

�
2 jdzj
1�jzj2 : Let ˛ 2 D,

and let '�;˛ D ei� z�˛
1�˛z (a Möbius-Blaschke transformation of D onto D). Then

'�;˛ preserves the hyperbolic length, i.e., LH.'�;˛.� // D LH.� / : The hyperbolic
distance � between two points z1, z2 in D is

�.z1; z2/ D 2 arctanh

� jz1 � z2j
j1 � z2z1j

�
D log

 
1C jz1�z2j

j1�z2z1j
1 � jz1�z2j

j1�z2z1j

!

:

The distance � will be used to determine distance for the sampling lattice �. Note
that, because we cannot establish the Beurling-Landau densities, we cannot create
regular lattices and dual lattices.
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The Helgason-Fourier transform maps L2.D/ to

L2.RC 
 T ;
1

2�
� tanh.��=2/d� db/ ;

which is isomorphic to the space of L2.T/-vector-valued square integrable functions
with measure � tanh.��=2/d�, in short denoted by

L2.RCI L2.T/; � tanh.��=2/d�/ :

The negative Laplacian �� is positive with spectrum R
C, and therefore we define

Voronoi cells based on a distance on R
C. This distance is denoted dist, and it is an

open question in which manner it is related to the measure � tanh.��=2/ d�. With
an appropriate distance function dist, we can define the following.

Definition 13 (Voronoi Cells in OD). Let O� D fO�k 2 OD D R
C 
 T W k 2 Ng

be a discrete set in frequency space. Then, the Voronoi cells f˚kg, the Voronoi
partition VP. O�/, and partition norm kVP. O�/k corresponding to this set are defined
as follows:

1.) The Voronoi cells ˚k D f! 2 OD W dist.!; O�k/ � infj6Dk dist.!; O�j/g,
2.) The Voronoi partition VP. O�/ D f˚k � ODgk2Zd ,
3.) The partition norm kVP. O�/k D supk2Zd sup!;	2˚k

dist.!; 	/.

A crucial step in answering the question of Nyquist density using Voronoi cells
is to determine an appropriate candidate for the distance on OD.

9.4 Sampling on the Sphere

One perspective of Fourier analysis is to think of it as a systematic use of symmetry
to simplify and understand linear operators. The unit sphere S

2 admits the special
orthogonal group of three variables, SO.3/ – proper rotations of R

3 about the
origin – as a transitive group of symmetries. Fourier analysis on S

2 amounts to
the decomposition of L2.S2/ into minimal subspaces invariant under all rotations
in SO.3/. The rotations of the sphere induce operators on functions by rotating the
graphs over S2. The Hilbert space L2.S2/ is defined with the usual inner product,
using the rotation-invariant area element �. Background for this section can be
found in Driscoll and Healy [9], Keiner, Kunis, and Potts [24], and McEwen and
Wiaux [28].

Bandlimited functions on the sphere are spherical polynomials. The correspond-
ing sampling problem is the computation of Fourier coefficients of a function from
sampled values at scattered nodes. If we consider the problem of reconstructing a
spherical polynomial of degree N 2 N from sample values, one might set up a linear
system of equations with M D .N C 1/2 interpolation constraints which has to be
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solved for the unknown vector of Fourier coefficients Of 2 C
.NC1/2 . If the nodes for

interpolation are chosen such that the interpolation problem always has a unique
solution, the sampling set is called a fundamental system.

Let S
2 D fx 2 R

3 W kxk2 D 1g be the two-dimensional unit sphere
embedded in R

3. A point � 2 S
2 is identified in spherical coordinates by � D

.sin.�/ cos.�/; sin.�/ sin.�/; cos.�//T , where the angles .�; �/ are the co-latitude
and longitude of �. Topologically, S2 D QC. Geodesics are great circles, and the
geodesic distance can be most directly written as

dist.�; / D arccos.� 	 / :

For �;  2 S
2, k��k22 D 2�2.� 	/. The distance to the “north pole” n D .0; 0; 1/T

of S2 is arccos.� 	 n/ D � .
The spherical harmonics Yn

k form an o.n. basis for L2.S2/. We can define them
as follows. The Legendre polynomials Pk W Œ�1; 1� �! R are generated by applying
the Gram-Schmidt method to fxkg1kD0. They are given by the Rodrigues formula
Pk.t/ D 1=.2kkŠ/dk=dtk.t2 � 1/k. The associated Legendre functions are defined by

Pn
k.t/ D

s
.k � n/Š

.k C n/Š
.t2 � 1/ n

2
dn

dtn
Pk.t/ :

The spherical harmonics Yn
k W S2 �! C of degree k 2 N [ f0g and order n 2 Z,

jnj � k, are the functions

Yn
k .�/ D Yn

k .�; �/ D
r
2k C 1

4�
Pjnjk .cos.�//ein� :

We have that

Z 2�

0

Z �

0

Yn
k .�; �/Y

m
l .�; �/ sin.�/ d� d� D ık;l 	 ım;n ;

i.e., Yn
k form an o.n. basis for L2.S2/. We say that f is a spherical polynomial of

degree N if f .�; �/ D PN
kD0

Pk
nD�k

Of n
k Yn

k . The space of spherical polynomials of
degree at most N has dimension .N C 1/2.

The Fourier transform is the spherical Fourier matrix

f .�; �/ D
1X

kD0

kX

nD�k

Of n
k Yn

k ;

with coefficients given by

Of n
k D

Z

S2

f Yn
k d� :
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The dual space of L2.S2/ is discrete. The inverse Fourier transform is the construc-
tion of a spherical polynomial from the coefficients. The function f is N bandlimited
(N 2 N) if Of n

k D 0 for k > N. Thus, f .�; �/ D PN
kD0

Pk
nD�k

Of n
k Yn

k . For the problem
of solving for a spherical polynomial f of degree N from sample values, we are
looking to solve for the unknown Fourier coefficients fOf n

k g D Of 2 C
.NC1/2 .

Let � D f�kgM
kD1 be a sampling set on S

2. The mesh norm ı� and the separation
distance q� are defined by

ı� D 2max�2S2minkD1;:::;M dist.�; �k/ ; q� D minj6Dk dist.�j; �k/ :

A sampling set � is called ı dense if for some 0 < ı � 2� , ı� � ı, and called q
separated if there exists 0 < q � 2� such that q� � q. We assume that our sampling
set is separated. Finally, a sampling set is called quasi-uniform if there exists a
constant C independent of the number on sample points M such that ı� � C q�.

Sampling on the sphere is how to sample a bandlimited function, an Nth degree
spherical polynomial, at a finite number of locations, such that all of the information
content of the continuous function is captured. Since the frequency domain of a
function on the sphere is discrete, the spherical harmonic coefficients describe the
continuous function exactly. A sampling theorem thus describes how to exactly
recover the spherical harmonic coefficients of the continuous function from its
samples. Given �, the spherical Fourier transform matrix is

Y D .Yn
k .�j//jD1;:::;MIkD0;:::;NIjnj�k :

Let YH denote its complex conjugate transpose. The inverse Fourier transform
matrix is the construction of a spherical polynomial of degree N from given data
points .�j; yj/ 2 S

2 
 C such that the identity f .�j/ D yj is solved. This is solving
the linear system YOf D y, y D .y1; y2; : : : ; yM/ for the vector of Fourier coefficients
Of D fOf n

k g of the spherical polynomial. Essentially, it is the inverse problem to f D YOf,
which corresponds to evaluating a spherical polynomial on �.

The open question again is the establishment of the optimal Beurling-Landau
densities. This leads to questions about sphere tiling. The papers [24] and [28]
address the problem of finding optimal sampling lattices.

9.5 Conclusion

The purpose of this chapter is to connect sampling theory with the geometry of the
signal and its domain. We have demonstrated this connection in Euclidean spaces.
This chapter gives an outline for an approach to carrying this over to non-Euclidean
spaces. We look to get the exact Nyquist rates in both hyperbolic and spherical
geometries. We have used two tools to work on the problem – the Beurling-Landau
density and Voronoi cells. Given a sampling lattice � in either a Euclidean or non-
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Euclidean geometry, we can define Voronoi cells using the dual lattice �?. These
cells then become our tiles in frequency. Working in Euclidean domains, we can
connect Beurling-Landau density to sampling lattices and hence the lattice groups,
and then using the dual lattices to define Voronoi cells, which become our tiles in
frequency. The open questions boil down to the establishment of exact the Beurling-
Landau densities for functions in Paley-Wiener spaces in spherical and hyperbolic
geometries. These densities are the key to extending sampling to more general
settings (see, e.g., [19]). This program can extend to general Riemann surfaces.

9.5.1 Surface Redux

Given connected Riemann surface S and its universal covering space QS , S is
isomorphic to QS=G, where the group G is isomorphic to the fundamental group
of S , �1.S/ (see [14], Section 5). The corresponding universal covering is simply
the quotient map which sends every point of QS to its orbit under G. Forster [14]
(Section 27) gives the consequences of the Uniformization Theorem very succinctly.
The only covering surface of Riemann sphere QC is itself, with the covering map
being the identity. The plane C is the universal covering space of itself, the once
punctured plane C n fz0g (with covering map exp.z � z0/), and all tori C=� , where
� is a parallelogram generated by z 7�! z C n�1 C m�2 ; n;m 2 Z and �1; �2 are
two fixed complex numbers linearly independent over R. The universal covering
space of every other Riemann surface is the hyperbolic disk D. Therefore, the
establishment of exact the Beurling-Landau densities for functions in Paley-Wiener
spaces in spherical and especially hyperbolic geometries will allow the development
of sampling schemes on arbitrary Riemann surfaces.
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Chapter 10
A Sheaf-Theoretic Perspective on Sampling

Michael Robinson

Abstract Sampling theory has traditionally drawn tools from functional and
complex analysis. Past successes, such as the Shannon-Nyquist theorem and recent
advances in frame theory, have relied heavily on the application of geometry
and analysis. The reliance on geometry and analysis means that these results are
dependent on the symmetries of the space of samples. There is a subtle interplay
between the topology of the domain of the functions being sampled, and the class
of functions themselves. Bandlimited functions are somewhat limiting; often one
wishes to sample from other classes of functions. The correct topological tool for
modeling all of these situations is the sheaf ; a tool which allows local structure and
consistency to derive global inferences. This chapter develops a general sampling
theory for sheaves using the language of exact sequences, recovering the Shannon-
Nyquist theorem as a special case. It presents sheaf-theoretic approach by solving
several different sampling problems involving non-bandlimited functions. The
solution to these problems show that the topology of the domain has a varying level
of importance depending on the class of functions and the specific sampling question
being studied.

10.1 Introduction

Sampling theory has traditionally drawn tools from functional and complex analysis.
Past successes, such as the Shannon-Nyquist theorem and recent advances in
frame theory, have relied heavily on the application of geometry and analysis. The
traditional perspective is that reconstruction of functions from samples relies on
an appropriate notion of bandlimitedness. This chapter advances a complementary
perspective that the topology of the underlying space can have a strong impact as
well.

The reliance on geometry and analysis means that the results are usually
dependent on symmetries of the space of samples. For instance, the space of samples
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in uniform sampling has a particular translation invariance. Nonuniform sampling
breaks this translation invariance, thereby permitting it to exceed the performance
of uniform sampling. This fuller expressive power and generality comes at a
cost, in that the theory required for nonuniform sampling is much more intricate.
Topological methods offer a different perspective by reducing the dependence on
symmetries and by providing a more flexible framework in which to pose sampling
and reconstruction questions.

There is evidence that topology has an important – and largely unexplored –
impact on sampling problems. For instance, the space of bandlimited functions
associated to the Laplace-Beltrami operator on the real line with the usual metric
is infinite-dimensional, while the space of bandlimited functions over a compact
subset of the real line is finite dimensional. There is a subtle interplay between the
topology of the domain of the functions being sampled and the class of functions
themselves. The correct algebraic tool for modeling all of these situations is the
sheaf ; a tool which is sensitive to the topology of the domain and allows local
structure to derive global inferences.

Sheaves permit greater generality in specifying sampling procedures and provide
more general conditions for reconstruction than otherwise possible. They highlight
both the importance of local control in reconstruction as well as the importance
of topology in sampling. Most sampling problems that have been studied in the
literature assume that samples are scalar valued and are collected in a geometrically
aware fashion. Sheaves formalize and generalize the sampling process, allowing
each sample to be vector valued, of different dimensions, and located arbitrarily. In
this way, sheaves gracefully permit the study of functions over general topological
spaces using samples of varying types, richness, and rates. This generality suggests
that sheaves are the appropriate tool for unifying traditional notions of bandlimited-
ness with topological aspects of sampling.

In order to build a sampling theory using sheaves, it is necessary to specify the
base space that serves as the domain of functions to be sampled. Both the topology
and the combinatorial structure of the base space are important for specifying
practical examples of sampling. Sheaves which specify the function space and the
sampling procedure are written over the space. Once specified, these sheaves will
be analyzed using exact sequences for cohomology, which lead to the most general
conditions for reconstruction.

This chapter makes several contributions to sampling theory. It discusses the use
of sheaves in sampling and reconstruction through a three-part procedure:

1. Represent the appropriate function spaces as sheaves,
2. Construct a sampling morphism, and
3. Compute the cohomology of the ambiguity sheaf.

This procedure leads to a general sampling theorem for sheaves using the
language of exact sequences. The Shannon-Nyquist theorem is a special case of this
more general sampling theorem. This chapter shows how a sheaf-theoretic approach
emphasizes the impact of the topology of the domain by solving three different
sampling problems:
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1. Bandlimited functions on the real line, in which reconstruction is global.
Topology strongly impacts the number of samples required: if we instead
consider bandlimited functions on a compact space, we obtain finite Fourier
series. (The sampling rate is unchanged, however.)

2. Quantum graphs, in which reconstruction is somewhat local. Sometimes non-
trivial topology in the domain is detected, sometimes not.

3. Splines written over a coarse topological space describing a fixed knot sequence,
in which there remain only local constraints on the functions. Topology plays
almost no further role in the reconstruction of splines from their samples.

10.1.1 Historical context

Sampling theory has a long and storied history, about which a number of recent
survey articles [3, 13, 38, 40] have been written. Since sampling plays an important
role in applications, substantial effort has been expended on practical algorithms.
Our approach is topologically motivated, which is similar to other topological
approaches to sampling (for instance [6, 23]) in that it is not constrained by specific
timing constraints. Relaxed timing constraints are an important feature of bandpass
[42] and multirate [41] algorithms.

Some signals have local or partially local control, of which splines [39] are an
excellent example. There are several subtly different perspectives on splines, which
can be characterized by their underlying knot sequences. If the knot sequences are
fixed – as is common in the computer graphics literature [12] – the underlying
topology can be quite coarse. The resulting splines exhibit strictly local behavior.
If the knot sequence is allowed to vary over a Riemannian manifold or a stratified
space, then splines can reflect both the global and local topology of the space
[25, 27, 30]. In order to emphasize the impact of the topology of the underlying
space, this chapter will discuss splines with a fixed knot sequence.

Sheaf theory has not been used in applications until fairly recently. The catalyst
for new applications was the technical tool of cellular sheaves, developed in [37].
Since that time, an applied sheaf theory literature has emerged, for instance [8, 15,
22, 32, 33].

Our sheaf-theoretic approach has sufficient generality to treat sampling on non-
Euclidean spaces. Others have also studied sampling on non-Euclidean spaces, for
instance general Hilbert spaces [24], Riemann surfaces [36], symmetric spaces [10],
the hyperbolic plane [14], combinatorial graphs [31], and quantum graphs [26, 28].
Each of these methods are specific to a particular kind of space; sheaves provide
unified sufficiency conditions for perfect reconstruction on abstract simplicial
complexes, which encompass all of the above cases.

A large class of local signals are those with finite rate of innovation [17, 43].
Our ambiguity sheaf is a generalization of the Strang-Fix conditions as identified
in [9]. With our approach, one can additionally consider reconstruction using richer
samples.
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10.2 A unifying example

Vector spaces of functions such as Ck.U;C/ are rather global in nature – an element
of such a space is a function. In contrast, evaluating a function at a particular point
x corresponds to a linear transformation that is only sensitive to a function’s value
at or near x. Function evaluation is a local process, so without further knowledge
of the type of function being sampled, a single sample is a weak constraint. Even
reconstructing a function from a discrete collection of samples therefore appears
counterintuitive.

The local sampling versus global reconstruction paradox is resolved because
reconstruction theorems only exist for certain suitably constrained vector spaces.
An extreme example of reconstruction is that of the Taylor series of a holomorphic
function. Evaluating such a function and all its derivatives at a point determines
its value anywhere in a connected component of its domain. Analytic continuation
is therefore a very strong kind of reconstruction from a single sample. Analytic
continuation relies both on (1) a restricted space of functions (merely smooth
functions do not suffice) and (2) a rather large amount of information at the sample
point (not just the value of the function but also all of its derivatives). These two
constraints are essential to understand the nature of reconstruction from samples, so
the admittedly special case of analytic continuation is informative.

Consider the space of holomorphic functions C!.U;C/ on a connected open set
U � C. Without loss of generality, suppose that U contains the origin. Then the
function a W C!.U;C/ ! l1 given by

a.f / D
�

f .0/; f 0.0/; : : : ;
f .n/.0/

nŠ
; : : :

�

for f 2 C!.U;C/ is a linear transformation. Because a computes the Taylor series
of f , whenever a.f / D a.g/ it must follow that f D g on U. This means that as a
linear transformation, the sampling function a has a trivial kernel.

Conversely, the trivial kernel of a witnesses the fact that the original f 2
C!.U;C/ can be recovered from the sampled value a.f /. This is by no means
necessarily true for all sampling functions. For instance, the sampling function
b W C!.U;C/ ! l1 given by

b.f / D
�

f 0.0/; : : : ;
f .n/.0/

nŠ
; : : :

�

has a one-dimensional kernel. This means that reconstruction of an analytic function
from its image through b is ambiguous – it is known only up to the addition of a
constant. Since the kernel of b is a subspace of C!.U;C/, there is more information
available than merely its dimension. If we restrict the domain of b to be the subspace
Z � C!.U;C/ of analytic functions whose value at the origin is zero, then the
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intersection Z \ ker b is trivial. Reconstruction succeeds on Z using b for sampling
even though using b on its whole domain is ambiguous.

Sampling a function in C!.U;C/ can be represented generally as a function s W
C!.U;C/ ! l1. Observe that s could take the form of the functions a or b above, in
which a function is evaluated in the immediate vicinity of a single point. However,
s could also be given by

s.f / D .: : : ; f .�1/; f .0/; f .1/; : : : /

or by many other possibilities. In this general setting, the simplest way to determine
whether reconstruction is ambiguous is to examine ker s. Recognizing that we may
wish to restrict the class of functions under discussion, it is useful to understand how
the subspace ker s is included within C!.U;C/. This situation can also be described
as the following exact sequence of linear functions

0 ! A
i
�� C!.U;C/

s
�� l1 ! 0;

which means that ker s D image i. Observe that the zero at the beginning of the
sequence indicates that the map i is injective so that A D ker s. Likewise, the zero at
the end of the sequence indicates that s is surjective.

If f 2 C!.U;C/ is fixed (but unknown) and s.f / is known, then clearly f can
only be known to be one of the preimages i�1.f / � A. If there is only one preimage
(as in the case of a above), then reconstruction is said to be unambiguous.

This example contrasts sharply with the situation of sampling data from the space
of all smooth functions. The analytic functions are a subset C!.U;C/ � C1.U;C/,
so if s0 represents s extended to the space of all continuous functions, one has a
diagram like

0 ! A0
i
�� C1.U;C/

s0

�� l1 ! 0:

A0 is quite large when compared to the case of sampling analytic functions using the
function a above. This can be expressed diagrammatically as

0

��

0

��

0
i
��

��

C!.U;C/
a

��

��

l1 ��

��

0

0 �� A0
i
�� C1.U;C/

s0

�� l1 �� 0
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in which all possible compositions of linear maps with the same domain and
codomain are equal. This shows how the two classes of functions and their samples
are related, and the technique will be used in later sections as a kind of algebraic
bound.

Although the example of sampling analytic functions will be generalized con-
siderably throughout the rest of the chapter, the overall structure of constructing an
exact sequence will remain. We begin by replacing the vector spaces C!.U;C/ and
l1 with sheaves and replacing the linear sampling map a with a sheaf morphism. This
allows us to constrain the domain of influence of an individual sample. This refined
control is not usually visible in a function space, since the topology of the domain
of the function to be sampled is hidden. Because the local degrees of freedom
of the function and the samples can vary over the base space (heterogeneous
sampling) it is useful to place maximum and minimum bounds on the amount of
information available. This generalizes the diagrammatic construction of sampling
for C!.U;C/ � C1.U;C/ that was given above.

The effect of the domain’s topology is easily identified using sheaves and is
visible through the size of the ambiguity space A. Although it leads to weaker
invariants, it is usually easier to compute the size of the ambiguity space A instead of
the kernel of the sampling map a. The most precise sampling conditions come from
constraints on the cohomology of A. This leads to something unanticipated by the
example in this section – the cohomology of A separates the influence of ambiguity
from the influence of redundancy on reconstruction.

10.3 Local data

This section formalizes the intuition in the previous section, by showing how
sheaves are the correct mathematical formalism for discussing local information.
From this formal structure, general sampling reconstruction theorems can be proven
which place bounds on necessary and sufficient sampling rates.

Section 10.3.1 distills an axiomatic framework that precisely characterizes what
“local” means. Section 10.3.2 defines the cohomology functor for sheaves, which
assembles this local information into global information. With the definition of
a sheaf morphism in Section 10.3.3, these tools allow the statement of general
conditions under which a sampling suffices to reconstruct a function in a particular
space in Section 10.4.

10.3.1 Sheaves represent local data

A local model of data should be flexible enough to capture both analytic and non-
analytic functions. Because portions of the data in one region will not necessarily be
related to those farther away, the model should allow us to infer global effects only
when they are appropriate to the kind of function under study.
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Spaces of continuous functions exhibit several properties related to locality. As a
concrete example, consider the following properties of Ck.U;C/ when k � 0:

1. Restriction: Whenever V � U are open sets, there is a linear map Ck.U;C/ !
Ck.V;C/ that is given by restricting the domain of a function defined on U to
one defined on V .

2. Uniqueness: Whenever a function is the zero function on some open set, then
all of its restrictions are zero functions also. The converse is true also: suppose
f 2 Ck.V;C/ and that fU1; : : : g is an open cover1 of V . If the restriction of f to
each Uk is the zero function on Uk, then f has to be the zero function on V .

3. Gluing: If U and V are open sets and f 2 Ck.U;C/, g 2 Ck.V;C/ then whenever
f .x/ D g.x/ for all x 2 U \ V there is a function h 2 Ck.U [ V;C/ that restricts
to f and g.

The gluing property provides a condition by which local information (the
elements f 2 Ck.U;C/, g 2 Ck.V;C/) can be assembled into global information in
Ck.U[V;C/, provided a consistency condition is met. We will call this specification
of f and g a section when they restrict to the same element in Ck.U \ V;C/.
This can also be illustrated diagrammatically as shown in Figure 10.1, where the
arrows represent the restrictions of functions from one domain to the next. When
two functions on the middle level are mapped to the same function on the bottom
level, they are both images of a function on the top level.

As is clear from the above construction, open sets – the topology of the
domain – play a central role in the description of continuous functions. Change
the topology and the space of continuous functions changes. Therefore, sampling
and reconstruction problems will reflect topological properties. Analytical methods
usually make topological properties of the domain implicit and its geometric
properties explicit – sheaf theory reverses this: the topology of the domain is
explicit, while its geometry is implicit.

Fig. 10.1 A diagram of spaces of functions over two intersecting sets (left) and a particular
function within those spaces (right)

1An open cover of a topological space X is a collection of open sets whose union is X.
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It is usually unnecessary to consider all open sets; what is really relevant is the
intersection lattice. In this chapter, we need a concept of space that is convenient for
computations. The most efficient such definition is that of a simplicial complex,
which specifies a decomposition of a space into simplices. The combinatorial
structure of a simplicial complex makes most constructions easier, though it can
be limiting if not chosen carefully. Multiple constructions are often possible, which
usually leads to isomorphic descriptions of sampling problems. As a rule of thumb,
our constructions will place vertices everywhere there are samples.

Let us formalize these properties to obtain a more general construction, in which
the data are not necessarily encoded as continuous functions. We will encode
the data locally, by assigning a vector space to each face. When the gluing rule
above indicates that these data are consistent across the entire space, we obtain
the analog of a function whose domain is the whole space. That is, functions are
gluings of information specified locally and consistently at all parts of the space.
Distances, area, and volume are not explicitly included in the construction of a
simplicial complex. These important properties are defined implicitly within the
definition of the sheaf of functions. Instead, the sheaf-based perspective showcases
the importance of topology on sampling.

Definition 1. An abstract simplicial complex X on a set A is a collection of ordered
subsets of A that is closed under the operation of taking subsets. We call each
element of X a face. A face with k C 1 elements is called a k-dimensional face
(or a k-face), though we usually call a 0-face a vertex and a 1-face an edge. If all
of the faces of an abstract simplicial complex X are of dimension n or less, we say
that X is an n-dimensional simplicial complex. If X is a 1-dimensional simplicial
complex, we usually call X a graph.

If a and b are two faces in an abstract simplicial complex X with a a proper
subset of b, we will write a b and say that a is attached to b. Finally, a collection
Y of faces of X is called a closed subcomplex if whenever b 2 Y and a  b, then
a 2 Y also.

The ordering of the vertices within a face is called its orientation, which
generalizes the notion of direction on a graph. For this chapter, an orientation index
plays an important algebraic role. Suppose that a is a k-face and b is a k C 1-face of
an abstract simplicial complex X. If a is a face of b, suppose that a D .v0; 	 	 	 ; vk/

and b D .v
.0/; 	 	 	 ;?; 	 	 	 ; v
.k//, where ? represents a vertex not appearing in a
and 
 is a permutation on kC1 elements. The orientation index is a number given by

Œb W a� D
(
.�1/msign.
/ if ? appears in slot m .starting with 0/ of b; or

0 if a is not a face of b:

Example 1. Consider the graph shown in Figure 10.2. This is a visual representation
of the simplicial complex

ffA;Bg; fC;Bg; fC;Dg; fC;Eg; fAg; fBg; fCg; fDg; fEg;;g:
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Fig. 10.2 A small directed graph for Example 1

Fig. 10.3 A small simplicial complex for Example 2

Observe that because B appears second in fA;Bg, then ŒfA;Bg; fBg� D .�1/0 
 1

D C 1 and ŒfA;Bg; fAg� D .�1/1 
 1 D �1.

Example 2. Consider the abstract simplicial complex given by

ffAg; fBg; fCg; fDg; fA;Bg; fB;Cg; fC;Ag; fC;Dg; fB;Dg; fB;C;Dg;;g;

which is shown in Figure 10.3. Observe that this simplicial complex contains
a 2-dimensional face fB;C;Dg. The orientation index relating the 2-dimensional
face’s edges is given by

ŒfB;C;Dg; fB;Cg� D .�1/2 
 1 D C1;
ŒfB;C;Dg; fB;Dg� D .�1/1 
 1 D �1;
ŒfB;C;Dg; fC;Dg� D .�1/0 
 1 D C1:

Sometimes simplicial complexes arise naturally from the problem, for instance
the connection graph for a network, but it is helpful to have a procedure to obtain a
simplicial complex from a topological space. Suppose that X is a topological space
and that U D fU1; : : : g is an open cover of X.

Definition 2. The nerve N.U / is the abstract simplicial complex whose vertices
are given by the elements of U and whose k-faces fUi0 ; : : : ;Uik g are given by the
nonempty intersections Ui0 \ 	 	 	 \ Uik .

Example 3. Figure 10.4 shows two covers and their associated nerves. In the left
diagram, the sets A, B, and C have nonempty pairwise intersections and a nonempty
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Fig. 10.4 The nerve of two covers: (left) with a nonempty triple intersection (right) without a
triple intersection

triple intersection A \ B \ C, so the nerve is a 2-dimensional abstract simplicial
complex. In the right diagram, A\B\C is empty, so the nerve is only 1 dimensional.

The concept of local information over a simplicial complex is a straightforward
generalization of the three properties (restriction, uniqueness, and gluing) for
continuous functions. The resulting mathematical object is called a sheaf.

Definition 3. A sheaf F on an abstract simplicial complex X is an assignment of
the following collection of data to the faces and attachments of X:

• for each element a of X, F .a/ is a vector space, called the stalk at a,
• for each attachment of two faces a  b of X, F .a  b/ is a linear function

from F .a/ ! F .b/ called a restriction map (or restriction), and
• for every composition of attachments a  b  c, the restrictions satisfy
F .b c/ ı F .a b/ D F .a b c/.

We will usually refer to X as the base space for F .

Remark 1. Although sheaves have been extensively studied over topological spaces
(see [4] or the appendix of [19] for a modern, standard treatment), the resulting
definition is ill suited for application to sampling. Instead, we follow a substantially
more combinatorial approach introduced in the 1980 thesis of Shepard [37].

Example 4. The space of continuous functions over a topological space can be
represented as a sheaf. For instance, Figure 10.5 shows one way to organize the
space of continuous functions over the interval .�2; 2/ in terms of spaces of
continuous functions over smaller intervals. (See Example 8 for another encoding
of continuous functions as a sheaf.) In this particular sheaf model, the base space is
given by an abstract simplicial complex X over three abstract vertices,

ff�2g; f0g; f2g; f�2; 0g; f0; 2g;;g:

We define the sheaf C over X by assigning spaces of continuous functions to
each face. Over vertices, we assign the stalks
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Fig. 10.5 A sheaf of continuous functions over an interval (compare with Figure 10.6)

C .f�2g/ D C..�2; 0/;R/;
C .f0g/ D C..�1; 1/;R/; and

C .f2g/ D C..0; 2/;R/:

Notice that each of these are spaces of continuous functions over intervals of length
2 and that they overlap. The stalks over the edges specify these overlapping regions,
so they are spaces of continuous functions over intervals of length 1 as follows:

C .f�2; 0g/ D C..�1; 0/;R/and

C .f0; 2g/ D C..0; 1/;R/:

The restriction maps between stalks are given by the process of “actually” restricting
the domains of the functions.

Example 5. Coming back to Section 10.2, a sheaf of analytic functions can be
constructed as a subsheaf of the previous example by merely replacing the stalks
with spaces of analytic functions defined over the appropriate intervals.

Notice that the definition of a sheaf captures the restriction locality property, but
does not formalize the uniqueness or gluing properties. Some authors [4, 7, 16, 20]
explicitly require these properties from the outset, calling the object defined in
Definition 3 a presheaf, regarding it as incomplete. Although the difference between
sheaves and presheaves is useful in navigating certain technical arguments, every
presheaf has a unique sheafification. Because of this, our strategy follows the
somewhat more economical treatment set forth in [35, 37], which removes this
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distinction. As a consequence of this choice, we explicitly define collections of
sections, which effectively implement the uniqueness and gluing properties.

Definition 4. Suppose F is a sheaf on an abstract simplicial complex X and that
U is a collection of faces of X. An assignment s which assigns an element of F .a/
to each face a 2 U is called a section supported on U when for each attachment
a b of faces in U , F .a b/s.a/ D s.b/. We will denote the space of sections
of F over U by F .U /, which is easily checked to be a vector space. A global
section is a section supported on X. If r and s are sections supported on U � V ,
respectively, in which r.a/ D s.a/ for each a 2 U we say that s extends r.

Example 6. The space of global sections in the sheaf C given in Example 4 is
C..�2; 2/;R/. A global section of C consists of five continuous functions on
the intervals .�2; 0/; .�1; 0/; .�1; 1/; .0; 1/; .0; 2/ that all restrict to the same two
functions on .�1; 0/ and .0; 1/. Since the union of these intervals is .�2; 2/
and is connected, these five continuous functions must be restrictions of a single
continuous function over .�2; 2/.

The following sheaf plays a central role in this chapter, as it is used to represent
discrete time series.

Example 7. Consider Y � X a subset of the vertices of an abstract simplicial
complex. A sheaf S which assigns a vector space V to vertices in Y and the
trivial vector space to every other face is called a V-sampling sheaf supported on
Y . To every attachment of faces of different dimension, S will assign the zero
function. For a finite abstract simplicial complex X, the space of global sections
of a V-sampling sheaf supported on Y is isomorphic to

L
y2Y V .

Example 8. Figure 10.6 shows a sheaf that is essentially dual to the one in
Example 4 and whose global sections are continuous functions. (Although it
is straightforward to generalize the construction to cell complexes of arbitrary
dimension, we will work over an interval to keep the exposition simple.) Consider a
simplicial complex with two vertices v1 and v2 and one edge e between them. The
stalk over each vertex is a space of continuous functions as in Example 4, though
we require the functions to be continuous over a closed interval. However, the stalk

Fig. 10.6 Another sheaf of continuous functions over an interval (compare with Figure 10.5)
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over the edge is merely R. The restriction in this case evaluates functions at an
appropriate endpoint. If we name the sheaf C , then for f 2 C .v1/ D C.Œ0; 1�;R/,

.C .v1 e// .f / D f .1/;

and

.C .v2 e// .g/ D g.1/;

for g 2 C .v2/ D C.Œ1; 2�;R/. Observe that the global sections of this sheaf are
precisely functions that are continuous on Œ0; 2�.

Sheaves can also describe spaces of piecewise continuous functions, as the next
example shows.

Example 9. Suppose G is a graph in which each vertex has finite degree. Let PL
be the sheaf constructed on G that assigns PL .v/ D R

1Cdeg v to each edge v of
degree deg v and PL .e/ D R

2 to each edge e. The stalks of PL specify the value
of the function (denoted y below) at each face and the slopes of the function on the
edges (denoted m1; : : : ;mk below).

To each attachment of a degree k vertex v into an edge e, let PL assign the
linear function

.PL .v e// .y;m1; 	 	 	 ;me; 	 	 	 ;mk/ D
�

y C .Œe W v� � 1/ 1
2
me

me

�
:

The global sections of this sheaf are piecewise linear functions on G, which is
discussed extensively in Section 10.5.3. Figure 10.7 shows an example of this sheaf
on a graph model of R. Consider the stalk at the vertex v0 at the origin. Since this
vertex has degree 2, the stalk is given by the space of ordered triples .y;m1;m2/.
The y specifies the value of a section at that vertex, while m1 specifies the slope to
the left, while m2 specifies the slope to the right. The left restriction is

Fig. 10.7 An example of a sheaf PL over a graph
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.PL .v0 e�1// .y;m1;m2/ D
�

y � m1

m1

�

because Œe�1 W v0� D Œfv0; v�1g W v0� D �1. The right restriction is

.PL .v0 e0// .y;m1;m2/ D
�

y
m2

�

because Œe0 W v0� D Œfv1; v0g W v0� D C1. Notice that in both cases, the value of a
section over an edge fv1; v2g specifies the value of the linear function at v2 and the
slope of the line along the edge.

10.3.2 Sheaf cohomology

The space of global sections of a sheaf is important in applications. Although
Definition 4 is not constructive, one can compute this space algorithmically.
Consider the abstract simplicial complex X shown in Figure 10.8, which consists
of an edge e between two vertices v1 and v2. Suppose s is a global section of a sheaf
S on X. This means that

S .v1 e/s.v1/ D s.e/ D S .v2 e/s.v2/:

Since the above equation is written in a vector space, we can rearrange it to obtain
the equivalent specification

S .v1 e/s.v1/ � S .v2 e/s.v2/ D 0;

which could be written in matrix form as

	
S .v1 e/ �S .v2 e/


 �s.v1/
s.v2/

�
D 0:

This purely algebraic manipulation shows that computing the space of global
sections of a sheaf is equivalent to computing the kernel of a particular matrix
as in Section 10.2. Clearly this procedure ought to work for arbitrary sheaves
over arbitrary abstract simplicial complexes, though it could get quite complicated.

Fig. 10.8 A sheaf over a small abstract simplicial complex
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Cohomology is a systematic way to perform this computation, and it results in
additional information as we will see in later sections.

The vector

�
s.v1/
s.v2/

�
above suggests that we should define the following formal

cochain vector spaces Ck.XIF / D L
a a k �face of X F .a/ to represent the possible

assignments of data to the k-faces. In the same way, the matrix

	
S .v1 e/ �S .v2 e/




generalizes into the coboundary map dk W Ck.XIF / ! CkC1.XIF /, which we now
define. The coboundary map dk takes an assignment s on the k-faces to a different
assignment dks whose value at a .k C 1/-face b is

.dks/.b/ D
X

a a k �face of X

Œb W a�F .a  b/ s.a/: (10.1)

(Notice that the orientation index Œb W a� supplies the minus sign in the matrix
equations above.) Together, we have a sequence of linear maps

0 ! C0.XIF /
d0

�� C1.XIF /
d1

�� C2.XIF /
d2

�� 	 	 	

called the cochain complex.
As in the simple example described above, the kernel of dk consists of data

specified on k-faces that are consistent when tested on the .k C 1/-faces. However,
because of the orientation index in the coboundary map, it can be shown that
dkC1 ı dk D 0, so that the image of dk is a subspace of the kernel of dkC1. This
means that the image of dk is essentially redundant information, since it is already
known to be consistent when tested on the .k C 2/-faces. Because of this fact, only
those elements of the kernel of dk that are not already known to be consistent are
really worth mentioning. This leads to the definition of sheaf cohomology:

Definition 5. The kth sheaf cohomology of F on an abstract simplicial complex
X is

Hk.XIF / D ker dk= image dk�1:

As an immediate consequence of this construction, we have the following useful
statement.

Proposition 1. H0.XIF / D ker d0 consists precisely of those assignments s which
are global sections, so a global section is determined entirely by its values on the
vertices of X.
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10.3.3 Transformations of local data

Sheaves can be used to represent local data and cohomology can be used to infer
the resulting globally consistent data. We now connect this theory to the process
of sampling. As envisioned in Section 10.2, sampling is a transformation between
two spaces of functions – from functions with a continuous domain to functions
with a discrete domain. Such a transformation arising from sampling respects the
local structure of the function spaces. This kind of transformation is called a sheaf
morphism. There are two aspects to a sheaf morphism: (1) its effect on the base
space and (2) its effect on stalks. The effect on the base space should be to respect
local neighborhoods, which means that a sheaf morphism must at least specify
a continuous map. Since we have restricted our attention to abstract simplicial
complexes rather than general topological spaces, the analog of a continuous map is
a simplicial map.

Definition 6. A simplicial map from one abstract simplicial complex X to another
Y is a function f from the set of faces of X to the faces of Y that additionally satisfies
two properties:

1. If a b is an attachment of two faces in X, then f .a/ f .b/ is an attachment
of faces in Y and

2. The dimension of f .a/ is no more than the dimension of a, a face in X.

The last condition means a simplicial map takes vertices to vertices, edges either
to edges or vertices, and so on.

Example 10. Consider the simplicial complexes X and Y shown in Figure 10.9. The
function F W X ! Y given by

F.v1/ D w1; F.v2/ D w2; F.v3/ D w2

determines a simplicial map, in which F.e1/ D w2, F.e2/ D F.e3/ D F.f / D g1.
In contrast, any function that takes v1 to w1, v2 to w2, and v3 to w3 cannot be a

simplicial map because the image of e2 should be an edge from w1 to w3, but no
such edge exists.

Definition 7. Suppose that f W X ! Y is a simplicial map, that F is a sheaf on Y ,
and that G is a sheaf on X. A sheaf morphism (or simply a morphism) m W F ! G

Fig. 10.9 The simplicial complexes X (left) and Y (right) for Example 10
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along f assigns a linear map ma W F .f .a// ! G .a/ to each face a 2 X so that for
every attachment a b of X, mb ı F .f .a/ f .b// D G .a b/ ı ma.

Usually, we describe a morphism by way of a commutative diagram like the one
below.

F .f .a//

F .f .a/ f .b//

��

ma
�� G .a/

G .a b/

��
F .f .b//

mb
�� G .b/

Remark 2. The reader is cautioned that a sheaf morphism and its underlying
simplicial map “go opposite ways.”

Sheaf morphism W G F
m

��

Simplicial map W X
f

�� Y

Cohomology is a functor from the category of sheaves and sheaf morphisms to
the category of vector spaces. This indicates that cohomology preserves and reflects
the underlying relationships between data stored in sheaves.

Proposition 2. Suppose that R is a sheaf on X and that S is a sheaf on Y. If
m W R ! S is a morphism of these sheaves, then m induces linear maps mk W
Hk.X;R/ ! Hk.Y;S / for each k. (Note that the simplicial map associated to m is
a function Y ! X.)

As a consequence, m0 is a linear map from the space of global sections of R
to the space of global sections of S . Because of this, it is possible to describe the
process of sampling using a sheaf morphism.

Definition 8. Suppose that F is a sheaf on an abstract simplicial complex X, and
that S is a V-sampling sheaf on X supported on a closed subcomplex Y . A sampling
morphism (or sampling) of F is a morphism s W F ! S that is surjective on every
stalk.

Example 11. The diagram below shows a morphism (vertical arrows) between two
sheaves, namely the sheaf of continuous functions defined in Example 4 (top row)
and the sampling sheaf defined in Example 7 (bottom row).
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C..�2; 0/;R/ ��

e�1

��

C..�1; 0/;R/

��

C..�1; 1/;R/
e0

��

���� C..0; 1/;R/

��
R �� 0 R ���� 0

In the diagram, ex represents the operation of evaluating a continuous function at
x. As in Section 10.2, this sampling morphism takes a continuous function f 2
C..�2; 1/;R/ to a vector .f .�1/; f .0//.

In algebraic topology, special emphasis is placed on sequences of maps of the
form

	 	 	 �� A1
m1

�� A2
m2

�� A3
m3

�� A4
m4

�� 	 	 	 ;

where the Ak are vector spaces and the mk are linear maps. We will denote this
sequence by .A�;m�/. For instance, the cochain complex described in the previous
section is a sequence of vector spaces. A linear map satisfies the dimension theorem,
which relates the size of its kernel, cokernel, and image. In some sequences, the
dimension theorem is extremely useful – these are the exact sequences.

Definition 9. A sequence .A�;m�/ of vector spaces is called exact if ker mk D
image mk�1 for all k.

Via the dimension theorem, exact sequences can encode information about linear
maps, namely

1. 0 ! A
m

�� B is exact if and only if m is injective,

2. A
m
�� B ! 0 is exact if and only if m is surjective, and

3. 0 ! A
m

�� B ! 0 is exact if and only if m is an isomorphism.

Observe that the cochain complex .C�.XIS /; d�/ is exact if and only if
Hk.XIS / D 0 for all k.

Remark 3. Sequences of sheaf morphisms (instead of just vector spaces) are
surprisingly powerful and play an important role in the general theory of sheaves. If
the direction of the morphisms is allowed to change across the sequence, like

A B ���� C ;

the resulting construction can represent all linear, shift-invariant filters [34, 35].
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10.4 The general sampling theorems

Given a sampling morphism F ! S , we can construct its ambiguity sheaf A ,
which characterizes lost information. The ambiguity sheaf is constructed over the
same space X as F . Each stalk of the ambiguity sheaf A .a/ at a face a 2 X is given
by the kernel of the map F .a/ ! S .a/. Each restriction map of the ambiguity
sheaf A .a b/ is given by restricting the domain of F .a b/ to A .a/whenever
a b is an attachment of faces in X. This implies that the exact sequence of sheaves

0 ! A �� F
s
�� S ! 0

induces short exact sequences of cochain spaces

0 ! Ck.XIA / ! Ck.XIF / ! Ck.XIS / ! 0;

one for each k. Together, these sequences of cochain spaces induce a long exact
sequence (via the well-known Snake lemma; see [18] for instance)

0 ! H0.XIA / ! H0.XIF / ! H0.XIS / ! H1.XIA / ! 	 	 	

An immediate consequence is therefore

Corollary 1 (Sheaf-theoretic Nyquist theorem). The global sections of F are
identical with the global sections of S if and only if Hk.XIA / D 0 for k D 0

and 1.

The cohomology space H0.XIA / characterizes the ambiguity in the sampling.
When H0.XIA / is nontrivial, there are multiple global sections of F that result
in the same set of samples. In contrast, H1.XIA / characterizes the redundancy
of the sampling. When H1.XIA / is nontrivial, then there are sets of samples that
correspond to no global section of F . Optimal sampling therefore consists of
identifying minimal closed subcomplexes Y so the resulting ambiguity sheaf A
has H0.XIA / D H1.XIA / D 0.

Remark 4. Corollary 1 is also useful for describing boundary value problems for
differential equations, as we will see in Section 10.5.2. The sheaf F can be taken to
be a sheaf of solutions to a differential equation [11]. The sheaf S can be taken to
have support only at the boundary of the region of interest, and therefore specifies
the possible boundary conditions. In this case, the space of global sections of the
ambiguity sheaf A consists of all solutions to the differential equation that also
satisfy the boundary conditions.
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Let us place bounds on the cohomologies of the ambiguity sheaf. To do so, we
construct two new sheaves associated to a given sheaf F and a closed subcomplex
Y � X. These new sheaves allow us to study reconstruction from a collection of rich
samples.

Definition 10. For a closed subcomplex Y of X, let F Y be the sheaf whose stalks
are the stalks of F on Y and zero elsewhere, and whose restrictions are either those
of F on Y or zero as appropriate. There is a surjective sheaf morphism F ! F Y

and an induced ambiguity sheaf FY which can be constructed in exactly the same
way as A before.

Thus the dimension of each stalk of F Y is larger than that of any sampling sheaf
supported on Y , and the dimension of stalks of FY are therefore as small as or
smaller than that of any ambiguity sheaf. Because global sections are determined
by their values at the vertices (Proposition 1), obtaining rich samples from F Y

at all vertices evidently allows reconstruction. This idea works for all degrees of
cohomology, which generalizes the notion of oversampling.

Proposition 3 (Oversampling theorem). If Xk is the closed subcomplex generated
by the k-faces of X, then Hk.XkC1IFXk/ D 0.

Proof. By direct computation, the k-cochains of FXk are

Ck.XkC1IFXk/ D Ck.XkC1IF /=Ck.XkIF /

D
M

a a k �face of X

F .a/=
M

a a k �face of X

F .a/

D 0:

ut
As an immediate consequence, H0.XIFY/ D 0when Y is the set of vertices of X.

On the other hand, not taking enough samples leads to an ambiguous reconstruction
problem. This can be detected by the presence of nontrivial global sections of the
ambiguity sheaf.

Theorem 1 (Sampling obstruction theorem). Suppose that Y is a closed subcom-
plex of X and s W F ! S is a sampling of sheaves on X supported on Y. If
H0.X;FY/ 6D 0, then the induced map H0.XIF / ! H0.XIS / is not injective.

Succinctly, H0.X;FY/ is an obstruction to the recovery of global sections of F
from its samples.

Proof. We begin by constructing the ambiguity sheaf A as before so that

0 ! A ! F
s

�� S ! 0
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is a short exact sequence of sheaves. Observe that S ! F Y can be chosen to be
injective, because the stalks of S have dimension not more than the dimension of
F (and hence F Y also). Thus the induced map H0.XIS / ! H0.XIF Y/ is also
injective. Therefore, by a diagram chase on

0 ! H0.XIA / �� H0.XIF /

Š
��

s
�� H0.XIS /

��

0 ! H0.XIFY/ �� H0.XIF / �� H0.XIF Y/

we infer that there is a surjection H0.XIA / ! H0.XIFY/. By hypothesis, this
means that H0.XIA / 6D 0, so in particular H0.XIF / ! H0.XIS / cannot be
injective. ut

10.5 Examples

This section shows the unifying power of a sheaf-theoretic approach to sampling,
by focusing on three rather different examples. The examples differ in terms of how
“local” the reconstruction is; those that are less local show a greater impact of the
topology of the base space on reconstruction. We examine

1. The Paley-Wiener space PWB on the real line, which leads to a sheaf-theoretic
reinterpretation of the Shannon-Nyquist sampling theorem. Because of the
intimate connection between the usual Laplace-Beltrami operator and the
topology of the base space, global topology strongly impacts the number of
samples required.

2. Quantum graphs, which reflect an intermediate case in which nontrivial topol-
ogy in the domain is detected, sometimes not.

3. Splines with a fixed knot sequence, which exhibit a substantially coarsened base
space topology. The resulting functions are determined locally and do not reflect
much of the global topology of the base space.

The case of the Paley-Wiener space PWB is rather well known – but we show
that it has a sheaf-theoretic interpretation. In rather stark contrast to the case of PWB

is the vector space consisting of the B-splines associated to a fixed knot sequence.
The functions in this space are determined via a locally finite, piecewise polynomial
partition of unity. Since the resulting B-splines are determined locally with respect
to a much coarser topology than the usual one, it makes sense that reconstructing
them from local samples is possible. Importantly, sampling theorems obtained for
spaces of B-spline are less sensitive to global topological properties.

Spaces of solutions to linear differential equations have intermediate sampling
behavior between PWB and the space of B-splines. While a degree k differential
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equation defines its solution locally, there are k linearly independent such solutions.
Additionally, the topology of the underlying space on which the differential equation
is written impacts the process of reconstruction from samples [26, 28, 32].

The unifying power of sheaf theory means that all of the examples in this section
can be treated in the same way, according to the following procedure:

1. Representing the base space and the functions to be sampled in a sheaf,
2. Constructing a sampling morphism between sheaves, and
3. Analyzing the cohomology of the resulting ambiguity sheaf.

10.5.1 Bandlimited functions

In this section, we prove the traditional form of the Nyquist theorem by showing
that an appropriate bandlimit is a sufficient condition for H0.XIA / D 0, where A
is an ambiguity sheaf and X is an abstract simplicial complex for the real line R.

Recall that the Paley-Wiener space PWB consists of functions f whose Fourier
transform

Of .!/ D
Z 1

�1
f .x/e�2� i!xdx

is supported on Œ�B;B�. We say that each f 2 PWB has bandwidth B. The Shannon-
Nyquist theorem asserts that functions in PW1=2 are uniquely determined by their
values on the integers, which is best explained by the fact that every f 2 PW1=2 has
a cardinal series decomposition

f .x/ D
1X

nD�1
f .n/

sin�.x � n/

�.x � n/
:

Moreover, the set of sinc functions is orthonormal over the usual inner product in
PW1=2, so we have that

f .n/ D
Z 1

�1
f .x/

sin�.x � n/

�.x � n/
dx: (10.2)

Even though the support of sin�.x�n/= .�.x � n// is R, it decays away from n. This
means that in (10.2), the effect of values of f far away from n will have little effect
on f .n/. So in the case of PWB, sampling via (10.2) is only approximately local.
Because of this, global constraints – such as those arising from compactness – on
the function space play an important role in sampling theorems.

We begin by specifying the following 1-dimensional simplicial complex X. This
simplicial complex should be a model for the real line – the domain of the functions
we will be sampling. In order to facilitate the construction of a sampling morphism
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Fig. 10.10 The sheaves used in proving the traditional Nyquist theorem

that will sample functions at the integers, let the set of vertices be given by X0 D Z.
The edges connect each consecutive pair of vertices so that the set of edges is given
by X1 D ffn; n C 1g W n 2 Zg, which yields the same base space as in Example 4.

The main property of bandlimited functions is that their Fourier transform has
bounded support. Although the sampling to be performed is local, bandlimitedness
is not a local property. The sheaf of bandlimited signals will be somewhat trivial –
all of the stalks will be the same. Therefore, we construct the sheaf CB of signals
according to their Fourier transforms (see Figure 10.10) so that for every face, the
stalk of CB is the vector space MB.R;C/ of complex-valued measures on R whose
support is contained in Œ�B;B�.

Intuitively, the stalk over a vertex n represents functions that are localized to a
vicinity of that vertex. Following the inspiration of Example 4, moving from one
vertex to the next amounts to translating the function. Therefore, moving from one
vertex in CB should apply a time translation of one sample. Since the stalks represent
the function’s frequency domain, time translation applies a multiplication by a unit
complex number. Without loss of generality, each restriction to the left is chosen
to be the identity, and each restriction to the right is chosen to be multiplication by
e2� i! . In essence, CB is the sheaf of local Fourier transforms of functions on R.
Observe that the space of global sections of CB is therefore just MB.R;C/, because
the restrictions do not change the bandwidth of the function being represented.

Example 12. A simple example of a bandlimited function is f .x/ D sin.2�x/,
which is represented as a global section F of C1. The value of F over a vertex n
is given by the measure

F.fng/ D e2� in!

�
1

2i
ı.! C 1/ � 1

2i
ı.! � 1/

�
:

By Proposition 1, the values of F at the edges of X are merely the same values –
since the restrictions are given by multiplication by e2�! .

Another familiar example of a bandlimited function is the sinc function g.x/ D
sin.�x/=.�x/. This is represented as a global section G of C1=2 in which the value
over each vertex n is given by the measure

G.fng/ D e2� in!rect.!/;
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where rect.!/ is the measure that takes the value 1 for �1=2 � ! � 1=2 and zero
elsewhere.

Construct the sampling sheaf S whose stalk on each vertex is C and each edge
stalk is zero. We construct a sampling morphism m W CB ! S by the zero map on
each edge, and by the integral

m.f / D
Z 1

�1
f .!/d! D f ..�1;1//

on each vertex.
Then the ambiguity sheaf AB has stalks MB.R;C/ on each edge, and ff 2

MB.R;C/ W m.f / D 0g on each vertex fng.

Example 13. Continuing Example 12, consider the function f .x/ D sin.2�x/
sampled at the integers. The sampling morphism m takes the global section F to
a global section mF of the sampling sheaf S . Then at a vertex n,

mF.n/ D e2� in!

�
1

2i
ı.! C 1/ � 1

2i
ı.! � 1/

�
..�1;1//

D e2� in! 1

2i
ı.! C 1/.�1;1/ � e2� in! 1

2i
ı.! � 1/.�1;1/

D e�2� in 1

2i
� e2� in 1

2i

D sin.�2�n/ D 0;

which means that mF is the zero section of S . Thus F lies in the kernel of m, and
therefore pulls back to a nontrivial section of the ambiguity sheaf A1. The correct
interpretation is that the function f cannot be sampled unambiguously.

Theorem 2 (Traditional Nyquist theorem). If B � 1=2, the ambiguity sheaf AB

has H0.XIAB/ D 0. Therefore, each such function can be recovered uniquely from
its samples on Z.

Proof. The elements of H0.XIAB/ are given by the measures f supported on Œ�B;B�
for which

Z B

�B
f .!/e2� in!d! D .e2� in! f /.Œ�B;B�/ D 0

for all n. Observe that if B � 1=2, this is precisely the statement that the Fourier
series coefficients of f all vanish; hence f must vanish. This means that the only
global section of AB is the zero function. (Ambiguities can arise if B > 1=2, because
the set of functions fe�2� in!gn2Z is then not complete.) ut
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Fig. 10.11 The sheaf CB of local Fourier transforms of functions on a circle with N vertices

Sampling on the circle can be addressed by a related construction of a sheaf CB.
As indicated in Figure 10.11, the stalk over each edge and vertex is still MB.R;C/.
Again, the restrictions are chosen so that left-going restrictions are identities and
the right-going restrictions consist of multiplying measures by e2� i! . As in the case
of functions on a line, this restriction map explains the effect of translation on the
Fourier transform of a function. This also means that functions that are local to an
edge or a vertex do not reflect any nontrivial topology since the restriction maps are
identical to what they were in the case of the line.

Since the topology is no longer that of a line, there are some important
consequences. The space of global sections of CB on the circle is not MB.R;C/,
and now depends on the number N of vertices on the circle.2 One may conclude
from a direct computation that the value of any global section at a vertex must be a
measure f satisfying

e2� i!Nf .!/ D f .!/:

This means that the support of f must be no larger than the set of fractions 1
NZ

because at each ! either f .!/ must vanish or .e2� i!N � 1/ must vanish. Hence
a global section describes a function whose Fourier transform is discrete. Thus
resulting space of global sections of CB is finite dimensional. Perhaps surprisingly,
this does not impact the required sampling rate.

Corollary 2. If CB is sampled at each vertex, then a sampling morphism will fail to
be injective on global sections if B > 1=2.

(If B < 1=2, some sampling morphisms – such as the zero morphism – are still
not injective.)

Proof. Merely observe that for a sampling sheaf S a necessary condition for
injectivity is that

2N must be at least 3 to use an abstract simplicial complex model of the circle. If N is 1 or 2, one
must instead use a CW complex. This does not change the analysis presented here.
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dim H0.CB/ � dim H0.S /

.2N C 1/B � N

B � N=.2N C 1/ < 1=2: ut

10.5.2 Wave propagation (quantum graphs)

A rich source of interesting sheaves arise in the context of differential equations
[11]. Sampling problems are interesting in spaces of solutions to differential
equations, because they are restricted enough to have relatively relaxed sampling
rates. Although a differential equation describes a function locally, continuity and
boundary conditions allow topology to influence which of these locally defined
functions can be extended globally.

Consider the differential equation

@2u

@x2
C k2u D 0 (10.3)

on the real line, in which k is a complex scalar parameter called the wavenumber.
The general solution to this differential equation is the linear combination of two
traveling waves, namely

u.x/ D c1e
ikx C c2e

�ikx;

a right-going and a left-going wave. This means that locally and globally, a given
solution is described by an element of C2.

Although the definition of a sheaf in this chapter is combinatorial, it can be
an accurate model of the space of solutions of a differential equation. Under an
appropriate definition of the Laplacian operator on the geometric realization of X
(such as is given in [1, 2, 32, 44]), we will construct the sheaf of solutions to (10.3).
There are sensible definitions for bandlimitedness in this geometric realization,
which give rise to Shannon-Nyquist theorems [26, 28]. However, our focus will
remain combinatorial and topological. We note that others [29, 31] have obtained
results in general combinatorial settings, though we will focus on the impact of the
topology of X on sampling requirements.

Let us now generalize to the case of solutions to (10.3) over a graph X, written
as a 1-dimensional abstract simplicial complex. In order for the space of solutions
to be well defined, it is necessary to assign a length to each edge. We shall write
L.e/ for the length of edge e, which is a positive real number. We will make use
of the orientation of the edges of X to help keep track of the direction waves are
moving along them. Since the differential equation is insensitive to orientation, this
is merely a bookkeeping tool – the orientations of the edges are arbitrary.
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The differential equation (10.3) as specified along the edges of X requires
boundary conditions at each vertex in order to have unique solutions. There are
many possible conditions that can be placed at each vertex; for concreteness, we
will consider Kirchhoff conditions [21]:

1. The solution is continuous and
2. The sum of the derivatives at a vertex (facing outward) is zero.

These two conditions limit the number of complex degrees of freedom in
specifying a solution at a vertex to be the degree of the vertex, as follows. Suppose
that a vertex v of X has degree n. Without loss of generality, suppose that the edges
are given by fv1; vg; 	 	 	 ; fvn; vg and that the solutions to (10.3) on these edges are
given by

u1 D c1;1e
ikx C c1;2e

�ikx;

:::

un D cn;1e
ikx C cn;2e

�ikx;

where x is the distance from vertex v. There are therefore 2n complex degrees of
freedom in the above equations. The continuity condition (1) above means that

u1.0/ D 	 	 	 D un.0/ so that

c1;1 C c1;2 D 	 	 	 D cn;1 C cn;2;

which reduces the number of degrees of freedom to n C 1. The derivative condition
(2) above is given by

0 D
nX

mD1
u0m.0/ D

nX

mD1
ik .cm;1 � cm;2/ ;

which further reduces the degrees of freedom to n. Without loss of generality, this
means that a solution to (10.3) at v is determined by the incoming wave amplitudes
c1;1; 	 	 	 ; cn;1. Given these amplitudes, the others can be computed. (For a derivation
of the appropriate formulas, see for instance [32].)

The number of degrees of freedom at an edge or vertex determines the dimension
of the stalks of the sheaf. The restriction maps are given by the formulas for
computing the outgoing wave amplitudes c1;2; 	 	 	 ; cn;2 from the incoming wave
amplitudes, and they additionally account for the propagation of the phase of the
waves along each edge.

This sheaf is called a transmission line sheaf and is defined as follows.

Definition 11. The transmission line sheaf T on X has stalks given by

1. T .e/ D C
2 over each edge e and

2. T .v/ D C
deg v over each vertex v, whose degree is deg v.
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If em is the mth edge attached to vertex v, the restriction T .v em/ is given by

T .v em/.u1; : : : ; udeg v/ D
8
<

:

�
um; e�ikL.em/

�
2

deg v

Pdeg v
jD1 uj � um

��
ifŒem W v� D 1I

�
eikL.em/

�
2

deg v

Pdeg v
jD1 uj � um

�
; um

�
ifŒem W v� D �1:

The transmission line sheaf encodes the space of solutions to (10.3) in that every
global section is a solution and vice versa. Reconstruction from samples of a
transmission line sheaf therefore corresponds to solving a specific boundary value
problem.

The easiest sampling result for transmission line sheaves follows immediately
from Proposition 1, namely that a global section of a transmission line sheaf T on
X is completely specified by its values on the vertices of X. This result is clearly
inefficient; merely consider the simplicial complex X for the real line with vertices
X0 D Z and edges X1 D fn; n C 1g. We have already seen that the space of sections
of a transmission line sheaf on X is merely C

2, yet Proposition 1 would have us
collect samples at infinitely many vertices. The missing insight is that the topology
of X impacts the global sections of a transmission line sheaf. Changing the edge
length in the simplicial complex model for R does not change the space of global
sections of a transmission line sheaf. Another situation in which edge length does
not matter is shown in the next example.

Example 14. Consider the space Y shown at right in Figure 10.12. The coboundary
map d0 for a general sheaf is given by (10.1). It is a block matrix, in which each
block is a restriction map between attached faces, and whose sign comes from the
orientation index. The rows correspond to the stalks over each edge, and the columns
correspond to the stalks over each vertex. In the case of a transmission line sheaf
over Y , this matrix has the form

Fig. 10.12 The graph X for Example 15 (left) and Y for Example 14 (right)
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Fig. 10.13 Sampling a star at a leaf (left) and at its center (right)

0

B
BBBBBB
@

T .v1/ T .v2/ T .v3/ T .v4/

T .e1/ �eikL.e1/ 0 0 1 0 0

�1 0 0 � 1
3

e�ikL.e1/ 2
3

e�ikL.e1/ 2
3

e�ikL.e1/

T .e2/ 0 �eikL.e2/ 0 0 1 0

0 �1 0 2
3

e�ikL.e2/ � 1
3

e�ikL.e2/ 2
3

e�ikL.e2/

T .e3/ 0 0 �eikL.e3/ 0 0 1

0 0 �1 2
3

e�ikL.e3/ 2
3

e�ikL.e3/ � 1
3

e�ikL.e3/

1

C
CCCCCC
A

:

(Notice the presence of the minus signs in the blocks corresponding to the
attachments v1  e1, v2  e2, and v3  e3 due to the orientation indices
Œe1; v1� D �1, Œe2; v2� D �1, and Œe3; v3� D �1.)

Because d0 has rank 5, dim H0.YIT / D 1 for any transmission sheaf T
regardless of edge lengths so that the space of solutions to (10.3) with Kirchhoff
conditions is 1 dimensional.

This means that reconstruction of sections requires at least one dimension of
measurements, a lower bound. If we consider a sampling morphism T ! T Z for
some set of vertices Z, this induces an injective map on global sections. To see this,
consider sampling at any one of the leaf nodes or at the center.

If we sample at a leaf node only, as shown in Figure 10.13 at left, the ambiguity
sheaf A has a coboundary matrix given by

0

B
BBBBB
@

A .v2/ A .v3/ A .v4/

A .e1/ 0 0 1 0 0

0 0 � 1
3
e�ikL.e1/ 2

3
e�ikL.e1/ 2

3
e�ikL.e1/

A .e2/ �eikL.e2/ 0 0 1 0

�1 0 2
3
e�ikL.e2/ � 1

3
e�ikL.e2/ 2

3
e�ikL.e2/

A .e3/ 0 �eikL.e3/ 0 0 1

0 �1 2
3
e�ikL.e3/ 2

3
e�ikL.e3/ � 1

3
e�ikL.e3/

1

C
CCCCC
A

;

which has rank 5, implying that the ambiguity sheaf has only trivial global sections.
Again, this means that there are only trivial solutions to (10.3) with Kirchhoff
conditions.
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On the other hand, sampling at the center yields a different ambiguity sheaf B,
whose coboundary matrix is

0

BBBB
B
@

B.v4/

B.e1/ �eikL.e1/ 0 0

�1 0 0
B.e2/ 0 �eikL.e2/ 0

0 �1 0
B.e3/ 0 0 �eikL.e3/

0 0 �1

1

CCCC
C
A
;

which also has trivial kernel.

If we instead consider a different topology, for instance a circle, then edge lengths
do have an impact on the global sections of the resulting transmission line sheaf
as the following example shows. When wave solutions to (10.3) traverse a loop
they must start and end the loop with the same phase – if not, they will violate the
Kirchhoff continuity condition.

Example 15. Consider the simplicial complex X shown at left in Figure 10.12, in
which the edges are oriented as marked. Because X has a nontrivial loop, the lengths
of the edges impact the space of global sections of a transmission line sheaf over
X. If T is a transmission line sheaf, its coboundary d0 W C0.XIT / ! C1.XIT / is
given by

0

BB
BBB
@

T .v1/ T .v2/ T .v3/

T .e1/ 0 0 �eikL.e1/ 0 1 0

0 0 0 �1 0 e�ikL.e1/

T .e2/ 1 0 0 0 �eikL.e2/ 0

0 e�ikL.e2/ 0 0 0 �1
T .e3/ �eikL.e3/ 0 1 0 0 0

0 �1 0 e�ikL.e3/ 0 0

1

CC
CCC
A
:

This matrix has full rank unless e�ik.L.e1/CL.e2/CL.e3// D 1, a condition called
resonance. Therefore, the space of global sections of T has dimension

dim H0.XIT / D
(
2 if k .L.e1/C L.e2/C L.e3// 2 2�ZI
0 otherwise;

and an easy calculation shows that sampling at any one of the vertices results in an
injective map on global sections. This means that the space of solutions to (10.3)
with Kirchhoff conditions is sensitive to edge lengths when there is a loop – if the
phase of a wave does not match its value after propagating around a loop, it is not a
solution.

Based on the previous examples, a sound procedure is to consider the dimension
of the space of global sections of T to be a lower bound on how much information
is to be obtained through sampling. (Clearly, this may not be enough in some
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situations, especially if the sampling morphisms are not injective on stalks.)
As described in [32], a general lower bound on the dimension of H0.T / is n C 1,
where n is the number of resonant loops. (A tighter lower bound exists, but its
expression is complicated by the presence of degree 1 vertices.) Therefore, topology
plays an important role in acquiring enough information to recover global sections
of T from samples.

10.5.3 Polynomial splines

Section 10.5.1 showed how limiting the support of the Fourier transform of a
function permitted it to be reconstructed by its values at a discrete subset. Because
of the Paley-Wiener theorem, the smoothness of a function is reflected in the decay
of its Fourier transform. On the other hand, Section 10.5.2 showed that applying
smoothness constraints directly to the function also enables perfect recovery. This
suggests that as we consider smoother functions, we can reconstruct them from more
widely spaced samples.

In this section, we consider sampling from polynomial splines, which are
functions whose smoothness is explicitly controlled. A Ck degree n polynomial
spline has k continuous derivatives and is constructed piecewise from degree n
polynomial segments (see Figure 10.14). Because of this, a polynomial spline is
infinitely differentiable on all of its domain except at a discrete set of knot points,
where it has k continuous derivatives.

Unlike variational splines traditionally used for approximation, the splines in
this section employ a fixed set of knot points. The fixed choice of knot points means
that in effect we are explicitly choosing a coarse topology that differs from the
usual topology. The polynomial splines that are constructed in this section are local
with respect to this coarse topology and not with respect to the usual topology. The
reader is cautioned that if the knot points are allowed to vary, then the resulting
space of splines is sensitive to both local and global topological features, since they

Fig. 10.14 A polynomial spline with two quadratic segments, joined at a knot with continuous
first derivatives
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can approximate solutions to differential equations. For instance, the discussion on
quantum graphs given above can be lifted to the context of approximating splines,
as is discussed in [25, 27, 30].

Consider a degree n polynomial spline that has two knots: one at 0 and one at L.
Require it to have .n�1/ continuous derivatives across its three segments: .�1; 0/,
.0;L/, and .L;1/. To obtain n � 1 continuous derivatives at x D 0, such a spline
should have the form

f .x/ D
(

a�n xn CPn�1
kD0 akxk for x � 0I

aCn xn CPn�1
kD0 akxk for 0 � x � L:

In a similar way, to obtain n � 1 continuous derivatives at x D L, the spline should
be of the form

f .x/ D
(

b�n .x � L/n CPn�1
kD0 bk.x � L/k for 0 � x � LI

bCn .x � L/n CPn�1
kD0 bk.x � L/k for x � L:

But clearly on 0 � x � L, these two definitions should agree so that f is a well-
defined function. This means that for all x,

aCn xn C
n�1X

kD0
akxk D b�n .x � L/n C

n�1X

kD0
bk.x � L/k

D
n�1X

iD0
bi

iX

kD0

 
i

k

!

xk.�L/i�k C b�n
nX

kD0

 
n

k

!

xk.�L/n�k

D
n�1X

kD0
xk

n�1X

iDk

 
i

k

!

.�L/i�kbi C
nX

kD0
xk

 
n

k

!

.�L/n�kb�n

D
n�1X

kD0
xk

 
n�1X

iDk

 
i

k

!

.�L/i�kbi C
 

n

k

!

.�L/n�kb�n

!

C b�n xn:

By linear independence, this means that

aCn D b�n

ak D
n�1X

iDk

 
i

k

!

.�L/i�kbi C
 

n

k

!

.�L/n�kb�n :

Notice that if the a variables are given, then this is a triangular system for the b
variables.

Using this computation, we can define PS n, the Cn�1 sheaf of n-degree
polynomial splines on R with knots at each of the integers. This sheaf is built on
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the simplicial complex X for R, whose vertices are X0 D Z and whose edges are
X1 D fm;m C 1g. Because a degree n spline at any given knot can be defined by
n C 2 real values on the two segments adjacent to that knot, we assign

PS n.fmg/ D R
nC2

for each m 2 Z. We will think of these as defining .a0; : : : ; an�1; a�n ; aCn / in our
calculation above. The spline on each segment is merely a degree n polynomial so
that

PS n.fm;m C 1g/ D R
nC1:

For each knot, there are two restriction maps: one to the left and one to the right.
They are given by

PS n.fmg fm;m C 1g/ D

0

BBB
@

1 	 	 	 0 0 0
:::

:::
:::
:::

0 	 	 	 1 0 0
0 	 	 	 0 0 1

1

CCC
A

and

PS n.fm C 1g fm;m C 1g/ D

0

B
BBBBBB
BBBBBB
@

1 �L L2 �L3 	 	 	 .�L/n 0

1 �2L 3L2 	 	 	 	n
1



.�L/n�1 0

1 �3L 	 	 	 	n
2



.�L/n�2 0

1 	 	 	 	n
3



.�L/n�3 0
:::

:::	n
k



.�L/n�k 0
:::

:::

1 0

1

C
CCCCCC
CCCCCC
A

:

Remark 5. Observe that L D 1, PS 1 reduces to the sheaf PL given in Exam-
ple 9 for the special case of the graph being a line (so all vertices have degree 2).

Lemma 1. Consider PS n on the simplicial complex shown in Figure 10.15,
which has k C 2 vertices and k C 1 edges. The sheaf has nontrivial global sections

Fig. 10.15 The simplicial complex used in Lemma 1
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that vanish at the endpoints if and only if k > n C 1. If k � n C 1, then the only
global section which vanishes at both endpoints is the zero section.

Proof. Consider the ambiguity sheaf A associated to the sampling morphism
PS n ! .PS n/Y where Y consists of the two endpoints. Observe that the global
sections of A correspond to global sections of PS n that vanish at the endpoints,
so the lemma follows by reasoning about H0.A /. The matrix for the coboundary
map d0 W C0.A / ! C1.A / has a block structure

0

BBBBB
BBB
@

A 0 0

B A 	 	 	 0
0 B 0

:::

A
B

1

CCCCC
CCC
A

;

where the .n C 1/ 
 .n C 2/ blocks are

A D

0

BBB
@

1 	 	 	 0 0 0
:::

:::
:::
:::

0 	 	 	 1 0 0
0 	 	 	 0 0 1

1

CCC
A
; B D

0

BBB
@

�1 	 	 	 � � 0
:::

:::
:::
:::

0 	 	 	 �1 � 0

0 	 	 	 0 �1 0

1

CCC
A
:

Clearly both such blocks are of full rank. Thus the coboundary matrix has a
nontrivial kernel whenever it has more rows than columns. Namely, whenever the
following is satisfied:

.n C 2/k > .n C 1/.k C 1/

nk C 1k > nk C n C k C 1

k > n C 1

as desired. ut
This lemma implies that unambiguous reconstruction from samples is possible

provided the gaps between samples are small enough. Increased smoothness allows
the gaps to be larger without inhibiting reconstruction. Because of this, it is
convenient to define distances between vertices.

Definition 12. On a graph G, define the edge distance between two vertices v;w
to be
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ed.v;w/ D

8
ˆ̂<

ˆ̂
:

minpf# edges in p such that p is a

PL � continuous path from v ! wg or

1if no such path exists:

From this, the maximal distance to a vertex set Y is

med.Y/ D max
x2X0

fmin
y2Y

ed.x; y/g:

Corollary 3. Suppose that Y � Z, which we take to be a subset of vertices of X.
If med.Y/ � n C 2, then the sampling morphism PS n ! .PS n/Y induces an
injective linear map on global sections.

If we instead consider sampling of polynomial splines on the circle, very little
changes. The proof of Lemma 1 does not change at all. However, it is tedious to
ensure the continuity of many derivatives on general abstract simplicial complexes,
and there are many inequivalent sets of continuity conditions3 that make sense.

Because of the limited impact of the topology on splines, the rest of this section
will focus on the sheaf of piecewise linear functions PL . This allows us to examine
splines over spaces with nontrivial topology in the base space, since the results
are fundamentally similar for most generalizations of PS n. We will focus on the
special case of a sampling morphism s W PL ! PL Y where Y is a subset of the
vertices of X. Excluding one or two vertices from Y does not prevent reconstruction
in this case, because the samples include information about slopes along adjacent
edges.

Lemma 2. Consider PL Y , the subsheaf of PL whose sections vanish on a
vertex set Y, and the graphs G1, G2, and G3 as shown in Figure 10.16. There are
no nontrivial sections of PL Y on G1 and G2, but there are nontrivial sections of
PL Y on G3.

G2

G1

Y Y

Y

Y

Y

0 or more copies

v w

e
G3

Y Y

Global section

Fig. 10.16 Graphs G1 and G2 (left) and G3 (right) for Lemma 2. Filled vertices represent elements
of Y , empty ones are in the complement of Y .

3The interested reader should consider [12] for a practical discussion of several of these conditions
in dimensions 1 and 2.
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Proof. If a section of PL vanishes at a vertex x with degree n, this means that the
value of the section there is an .n C 1/-dimensional zero vector. The value of the
section on every edge adjacent to x is then the 2-dimensional zero vector. Since the
dimensions in each stalk of PL represent the value of the piecewise linear function
and its slopes, linear extrapolation to the center vertex in G1 implies that its value is
zero too.

Lemma 1 shows that G2 has no nontrivial sections. It also shows that G3 has
nontrivial sections, which are spanned by the one shown in Figure 10.16. ut
Proposition 4 (Unambiguous sampling). Consider the sheaf PL on a graph X
and Y � X0. Then H0.XIFY/ D 0 if and only if med.Y/ � 1.

Proof. (() Suppose that x 2 X0nY is a vertex not in Y . Then there exists a path
with one edge connecting it to Y . Whence we are in the case of G1 of Lemma 2, so
any section at x must vanish.

()) By contradiction. Assume med.Y/ > 1. Without loss of generality, consider
x 2 X0nY , whose distance to Y is exactly 2. Then one of the subgraphs shown in
Figure 10.17 must be present in X. The case of G3 in Lemma 2 makes it each of
these has nontrivial sections at x, merely looking at sections over the subgraph. ut
Proposition 5 (Nonredundant sampling). Consider the case of s W PL !
PL Y . If Y D X0, then H1.XIA / 6D 0. If Y is such that med.Y/ � 1 and the
number of edges4 jX1j satisfies jX0nYj CP

y…Y deg y D 2jX1j, then H1.XIA / D 0.

Proof. The stalk of A over each edge is R
2, and the stalk over a vertex in

Y is trivial. However, the stalk over a vertex of degree n not in Y is R
nC1.

Observe that if H0.XIA / D 0, then H1.XIA / D C1.XIA /=C0.XIA /. Using
the degree sum formula in graph theory, we compute that H1.XIA / has dimension
2jX1j �P

y…Y.deg y C 1/. ut

Y

Y

x

Y x

x

Y

Y

Fig. 10.17 The three families of subgraphs that arise when med.Y/ > 1. Filled vertices represent
elements of Y , empty ones are in the complement of Y .

4jAj represents the cardinality of a set A.
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10.6 Conclusions

This chapter has shown that exact sequences of sheaves are a unifying principle
for sampling theory. These tools reveal general, precise conditions under which
reconstruction succeeds and are not limited to uniform sampling or other sym-
metries. Several sampling problems for bandlimited and non-bandlimited functions
were discussed. The use of sheaves in sampling is essentially unexplored otherwise,
and there remain many open questions. We discuss two such questions here with a
relationship to bandlimited functions:

1. “Is the B < 1=2 in the Nyquist theorem invariant with respect to changes in
topology and geometry?”

2. “Is there a general notion of bandwidth for sheaves of Hilbert spaces?”

The first question is connected to the existing literature on sampling. We showed
that although the number of samples required for the reconstruction of a bandlimited
function may vary, the sampling rate necessary appears to be the same. We found
that the bandwidth B required for reconstructing functions on the real line and the
circle was constrained to be less than 1=2. Others (for instance [26, 31]) have found
that this remains the case for other domains as well.

The second question is a bit more subtle. If a function is bandlimited, this
means that its Fourier transform has bounded support. The Fourier transform is
intimately related to the spectrum of the Laplacian operator. On the other hand,
because cohomological obstructions play a role in sampling, we had to consider
the cochain complex for sheaves of functions. These two threads of study are in
fact closely related through Hodge theory via the study of Hilbert complexes [5].
Indeed, if F and S are sheaves of Hilbert spaces then their cochain complexes are
Hilbert complexes, and they have a Hodge decomposition, along with an associated
Laplacian operator.

Acknowledgements This work was partly supported under Federal Contract No. FA9550-09-1-
0643. The author also wishes to thank the editor for the invitation to write this chapter. Portions
of this chapter appeared in the proceedings of SampTA 2013, published by EURASIP. Finally,
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Chapter 11
How To Best Sample a Solution Manifold?

Wolfgang Dahmen

Abstract Model reduction attempts to guarantee a desired “model quality,”
e.g. given in terms of accuracy requirements, with as small a model size as possible.
This chapter highlights some recent developments concerning this issue for the
so-called Reduced Basis Method (RBM) for models based on parameter-dependent
families of PDEs. In this context the key task is to sample the solution manifold
at judiciously chosen parameter values usually determined in a greedy fashion.
The corresponding space growth concepts are closely related to the so-called weak
greedy algorithms in Hilbert and Banach spaces which can be shown to give rise
to convergence rates comparable to the best possible rates, namely the Kolmogorov
n-width rates. Such algorithms can be interpreted as adaptive sampling strategies
for approximating compact sets in Hilbert spaces. We briefly discuss the results
most relevant for the present RBM context. The applicability of the results for weak
greedy algorithms has however been confined so far essentially to well-conditioned
coercive problems. A critical issue is therefore an extension of these concepts to a
wider range of problem classes for which the conventional methods do not work
well. A second main topic of this chapter is therefore to outline recent developments
of RBMs that do realize n-width rates for a much wider class of variational problems
covering indefinite or singularly perturbed unsymmetric problems. A key element
in this context is the design of well-conditioned variational formulations and their
numerical treatment via saddle point formulations. We conclude with some remarks
concerning the relevance of uniformly approximating the whole solution manifold
also when the quantity of interest is only the value of a functional of the parameter-
dependent solutions.
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11.1 Introduction

Many engineering applications revolve around the task of identifying a configura-
tion that in some sense best fits certain objective criteria under certain constraints.
Such design or optimization problems typically involve (sometimes many) parame-
ters that need to be chosen so as to satisfy given optimality criteria. An optimization
over such a parameter domain usually requires a frequent evaluation of the
states under consideration which typically means to frequently solve a parameter-
dependent family of operator equations

Byu D f ; y 2 Y : (11.1)

In what follows the parameter set Y is always assumed to be a compact subset
of R

p for some fixed p 2 N and By should be thought of as a (linear) partial
differential operator whose coefficients depend on the parameters y 2 Y . Moreover,
By is viewed as an operator taking some Hilbert space U one-to-one and onto the
normed dual V 0 of some (appropriate) Hilbert space V where U and V are identified
through a variational formulation of (11.1) as detailed later, see for instance (11.30).
Recall also that the normed dual V 0 is endowed with the norm

kwkV0 WD sup
v2V;v¤0

hw; vi
kvkV

; (11.2)

where h	; 	i denotes the dual pairing between V and V 0.
Given a parametric model (11.1) the above mentioned design or optimization

problems concern now the states u.y/ 2 U which, as a function of the parameters
y 2 Y , form what we refer to as the solution manifold

M WD fu.y/ WD B�1y f W y 2 Yg: (11.3)

Examples of (11.1) arise, for instance, in geometry optimization when a transfor-
mation of a variable finitely parametrized domain to a reference domain introduces
parameter-dependent coefficients of the underlying partial differential equation
(PDE) over such domains, see, e.g., [14]. Parameters could describe conductivity,
viscosity, or convection directions, see, e.g., [10, 23, 25]. As an extreme case,
parametrizing the random diffusion coefficients in a stochastic PDE, e.g., by
Karhunen-Loew or polynomial chaos expansions, leads to a deterministic paramet-
ric PDE involving, in principle, even infinitely many parameters, p D 1, see, e.g.,
[7] and the literature cited there. We will, however, not treat this particular problem
class here any further since, as will be explained later, it poses different conceptual
obstructions than those in the focus of this chapter, namely the absence of ellipticity
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which makes conventional strategies fail. In particular, we shall explain why for
other relevant problem classes, e.g., those dominated by transport processes, M is
not “as visible” as for elliptic problems and how to restore “full visibility.”

11.1.1 General Context - Reduced Basis Method

A conventional way of searching for a specific state in M or optimize over M is to
compute approximate solutions of (11.1) possibly for a large number of parameters
y. Such approximations would then reside in a sufficiently large trial space UN � U
of dimension N , typically a finite element space. Ideally one would try to assure
that UN is large enough to warrant sufficient accuracy of whatever conclusions
are to be drawn from such a discretization. A common terminology in reduced
order modeling refers to UN as the truth space providing accurate computable
information. Of course, each such parameter query in UN is a computationally
expensive task so that many such queries, especially in an online context, would
be practically infeasible. On the other hand, solving for each y 2 Y a problem in
UN would just treat each solution u.y/ as some “point” in the infinite-dimensional
space U, viz. in the very large finite-dimensional space UN . This disregards the fact
that all these points actually belong to a possibly much thinner and more coherent
set, namely the low-dimensional manifold M which, for compact Y and well-posed
problems (11.1), is compact. Moreover, if the solutions u.y/, as functions of y 2 Y ,
depend smoothly on y there is hope that one can approximate all elements of M
uniformly over Y with respect to the Hilbert space norm k 	 kU by a relatively small
but judiciously chosen linear space Un. Here “small” means that n D dim Un is
significantly smaller than N D dim UN , often by orders of magnitude. As detailed
later the classical notion of Kolmogorov n-widths quantifies how well a compact
set in a Banach space can be approximated in the corresponding Banach norm by
a linear space and therefore can be used as a benchmark for the effectiveness of a
model reduction strategy.

Specifically, the core objective of the Reduced Basis Method (RBM) is to find
for a given target accuracy " a possibly small number n D n."/ of basis functions
�j; j D 0; : : : ; n; whose linear combinations approximate each u 2 M within
accuracy at least ". This means that ideally for each y 2 Y one can find coefficients
cj.y/ such that the expansion

un.x; y/ WD
n."/X

jD0
cj.y/�j.x/ (11.4)

satisfies

ku.y/ � un.y/kU � "; y 2 Y : (11.5)

Thus projecting (11.1) into the small space Un WD span f�0; : : : ; �ng reduces each
parameter query to solving a small n
n system of equations where typically n � N .
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11.1.2 Goal Orientation

Recall that the actual goal of reduced modeling is often not to recover the full fields
u.y/ 2 M but only some quantity of interest I.y/ typically given as a functional
I.y/ WD `.u.y// of u.y/ where ` 2 U0. Asking just the value of such a functional
is possibly a weaker request than approximating all of u.y/ in the norm k 	 kU .
In other words, one may have j`.u.y// � `.un.y//j � " without insisting on the
validity of (11.5) for a tolerance of roughly the same size. Of course, one would
like to exploit this in favor of online efficiency. Duality methods as used in the
context of goal-oriented finite element methods [3] are indeed known to offer ways
of economizing the approximate evaluation of functionals. Such concepts apply in
the RBM context as well, see, e.g., [16, 21]. However, as we shall point out later,
guaranteeing that j`.u.y// � `.un.y//j � " holds for y 2 Y ultimately reduces to
tasks of the type (11.5) as well. So, in summary, understanding how to ensure (11.5)
for possibly small n."/ remains the core issue and therefore guides the subsequent
discussions.

Postponing for a moment the issue of how to actually compute the �j, it is
clear that they should intrinsically depend on M rendering the whole process
highly nonlinear. To put the above approach first into perspective, viewing u.x; y/
as a function of the spatial variables x and of the parameters y, (11.4) is just
separation of variables where the factors cj.y/, �j.x/ are a priori unknown. It is
perhaps worth stressing though that, in contrast to other attempts to find good tensor
approximations, in the RBM context explicit representations are only computed for
the spatial factors �j while for each y the weight cj.y/ has to be computed by solving
a small system in the reduced space Un. Thus the computation of f�0; : : : ; �n."/g
could be interpreted as dictionary learning and, loosely speaking, n D n."/ being
relatively small for a given target accuracy, means that all elements in M are
approximately sparse with respect to the dictionary f�0; : : : ; �n; : : :g.

The methodology just outlined has been pioneered by Y. Maday, T.A. Patera, and
collaborators, see, e.g., [6, 21, 23, 25]. As indicated before, RBM is one variant of
a model order reduction paradigm that is specially tailored to parameter dependent
problems. Among its distinguishing constituents one can name the following. There
is usually a careful division of the overall computational work into an offline phase,
which could be computationally intense but should remain manageable, and an
online phase, which should be executable with highest efficiency taking advantage
of a precomputed basis and matrix assemblations during the offline phase. It is
important to note that while the offline phase is accepted to be computationally
expensive it should remain offline feasible in the sense that a possibly extensive
search over the parameter domain Y in the offline phase requires for each query
solving only problems in the small reduced space. Under which circumstances this
is possible and how to realize such division concepts has been worked out in the
literature, see, e.g., [23, 25]. Here we are content with stressing that an important
role is played by the way how the operator By depends on the parameter y, namely
in an affine way as stated in (11.18) later below. Second, and this is perhaps the
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most distinguishing constituent, along with each solution in the reduced model one
strives to provide a certificate of accuracy, i.e., computed bounds for incurred error
tolerances [23, 25].

11.1.3 Central Objectives

When trying to quantify the performance of such methods aside from the above-
mentioned structural and data organization aspects, among others, the following
questions come to mind:

(i) for which type of problems do such methods work very well in the sense that
n."/ in (11.5) grows only slowly when " decreases? This concerns quantifying
the sparsity of solutions.

(ii) How can one compute reduced bases f�0; : : : ; �n."/g for which n."/ is nearly
minimal in a sense to be made precise below?

Of course, the better the sparsity quantified by (i) the better could be the payoff
of an RBM. However, as one may expect, an answer to (i) depends strongly on the
problem under consideration. This is illustrated also by the example presented in
§11.5.4. Question (ii), instead, can be addressed independently of (i) in the sense
that, no matter how many basis functions have to be computed in order to meet a
given target accuracy, can one come up with methods that guarantee generating a
nearly minimal number of such basis functions? This has to do with how to sample
the solution manifold and is the central theme in this chapter.

The most prominent way of generating the reduced bases is a certain greedy
sampling of the manifold M. Contriving greedy sampling strategies that give
rise to reduced bases of nearly minimal length, in a sense to be made precise
below, also for noncoercive or unsymmetric singularly perturbed problems is the
central objective in this chapter. We remark though that a greedy parameter search
in its standard form is perhaps not suitable for very high-dimensional parameter
spaces without taking additional structural features of the problem into account.
The subsequent discussions do therefore not target specifically the large amount of
recent work on stochastic elliptic PDEs, since while greedy concepts are in principle
well understood for elliptic problems they are per se not necessarily adequate for
infinitely many parameters without exploiting specific problem-dependent structural
information.

First, we recall in §11.2 a greedy space growth paradigm commonly used in
all established RBMs. To measure its performance in the sense of (ii) we follow
[6] and compare the corresponding distances distU.M;Un/ to the smallest possible
distances achievable by linear spaces of dimension n, called Kolmogorov n-widths.
The fact that for elliptic problems the convergence rates for the greedy errors
are essentially those of the n-widths, and hence rate-optimal, is shown in §11.3
to be ultimately reduced to analyzing the so-called weak greedy algorithms in
Hilbert spaces, see also [4, 13]. However, for indefinite or strongly unsymmetric
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and singularly perturbed problems this method usually operates far from optimality.
We explain why this is the case and describe in §11.4 a remedy proposed in [10].
A pivotal role is played by certain well-conditioned variational formulations
of (11.1) which are then shown to lead again to an optimal outer greedy sampling
strategy also for non-elliptic problems. An essential additional ingredient consists of
certain stabilizing inner greedy loops, see §11.5. The obtained rate-optimal scheme
is illustrated by a numerical example addressing convection-dominated convection-
diffusion problems in §11.5.4. We conclude in §11.6 with applying these concepts
to the efficient evaluation of quantities of interest.

11.2 The Greedy Paradigm

The by far most prominent strategy for constructing reduced bases for a given
parameter-dependent problem (11.1) is the following greedy procedure, see,
e.g., [23]. The basic idea is that, having already constructed a reduced space
Un of dimension n, find an element unC1 D u.ynC1/ in M that is farthest away from
the current space Un, i.e., that maximizes the best approximation error from Un and
then grow Un by setting UnC1 WD Un C span funC1g. Hence, denoting by PU;Un the
U-orthogonal projection onto Un,

ynC1 WD argmaxy2Y ku.y/ � PU;Un u.y/kU; unC1 WD u.ynC1/: (11.6)

Unfortunately, determining such an exact maximizer is computationally way too
expensive even in an offline phase because one would have to compute for a
sufficiently dense sampling of Y the exact solution u.y/ of (11.1) in U (in practice in
UN ). Instead one tries to construct more efficiently computable surrogates R.y;Un/

satisfying

ku.y/ � PU;Un u.y/kU � R.y;Un/; y 2 Y : (11.7)

Recall that “efficiently computable” in the sense of offline feasibility means that
for each y 2 Y , the surrogate R.y;Un/ can be evaluated by solving only a problem
of size n in the reduced space Un. Deferring an explanation of the nature of such
surrogates, Algorithm 1 described below is a typical offline feasible surrogate-based
greedy algorithm (SGA). Clearly, the maximizer in (11.8) below is not necessarily
unique. In case several maximizers exist it does not matter which one is selected.

Strictly speaking, the scheme SGA is still idealized since:

(a) computations cannot be carried out in U;
(b) one cannot parse through all of a continuum Y to maximize R.y;Un/.

Concerning (a), as mentioned earlier computations in U are to be understood
as synonymous to computations in a sufficiently large truth space UN satisfying
all targeted accuracy tolerances for the underlying application. Solving problems in
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Algorithm 1 Surrogate-based greedy algorithm
1: function SGA
2: Set U0 WD f0g, n D 0,
3: while argmaxy2Y R.y;Un/ � tol do
4:

ynC1 WD argmaxy2Y R.y;Un/;

unC1 WD u.ynC1/;

UnC1 WD span
˚
Un; fu.ynC1/g� D span fu1; : : : ; unC1g

(11.8)

5: end while
6: end function

UN is strictly confined to the offline phase and the number of such solves should
remain of the order of n D dim Un. We will not distinguish in what follows between
U and UN unless such a distinction matters.

As for (b), the maximization is usually performed with the aid of a exhaustive
search over a discrete subset of Y . Again, we will not distinguish between a
possibly continuous parameter set and a suitable training subset. In fact, continuous
optimization methods that would avoid a complete search have so far not proven
to work well since each greedy step increases the number of local maxima of the
objective functional. Now, how fine such a discretization for a exhaustive search
should be, depends on how smoothly the u.y/ depend on y. But even when such a
dependence is very smooth a coarse discretization of a high-dimensional parameter
set Y would render a exhaustive search infeasible so that, depending on the problem
at hand, one has to resort to alternate strategies such as, for instance, random
sampling. However, since it seems that (b) can only be answered for a specific
problem class we will not address this issue in this chapter any further.

Instead, we focus on general principles which guarantee the following. Loosely
speaking the reduced spaces based on sampling M should perform optimally in the
sense that the resulting spaces Un have the (near) “smallest dimension” needed to
satisfy a given target tolerance while the involved offline and online cost remains
feasible in the sense indicated above. To explain first what is meant by “optimal” let
us denote the greedy error produced by SGA as


n.M/U WD max
v2M infNu2Un

kv � NukU D max
y2Y ku.y/ � PU;Un u.y/kU: (11.9)

Note that if we replace in (11.9) the space Un by any linear subspace Wn � U and
infimize the resulting distortion over all subspaces of U of dimension at most n, we
obtain the classical Kolmogorov n-widths dn.M/U quantifying the “thickness” of a
compact set, see (11.21). One trivially has

dn.M/U � 
n.M/U; n 2 N: (11.10)

Of course, it would be best if one could reverse the above inequality. We will discuss
in the next section to what extent this is possible.
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To prepare for such a discussion we need more information about how the
surrogate R.y;Un/ relates to the actual error ku.y/ � PU;Un u.y/kU because the
surrogate drives the greedy search and one expects that the quality of the snapshots
found in SGA depends on how “tight” the upper bound in (11.7) is.

To identify next the essential conditions on a “good” surrogate it is instructive to
consider the case of elliptic problems. To this end, suppose that

hByu; vi D by.u; v/ D hf ; vi; u; v 2 U;

is a uniformly U-coercive bounded bilinear form and f 2 U0, i.e., there exist
constants 0 < c1 � C1 < 1 such that

c1kvk2U � by.v; v/; jby.u; v/j � C1kukUkvkU; u; v 2 U; y 2 Y; (11.11)

holds uniformly in y 2 Y . The operator equation (11.1) is then equivalent to: given
f 2 U0 and a y 2 Y , find u.y/ 2 U such that

by.u.y/; v/ D hf ; vi; v 2 U: (11.12)

Ellipticity has two important well-known consequences. First, since (11.11) implies
kBykU!U0 � C1, kB�1y kU0!U � c�11 the operator By W U ! U0 has a finite condition
number

�U;U0.By/ WD kBykU!U0kB�1y kU0!U � C1=c1 (11.13)

which, in particular, means that residuals in U0 are uniformly comparable to errors
in U

C�11 kf � By NukU0 � ku.y/ � NukU � c�11 kf � By NukU0 ; Nu 2 U; y 2 Y : (11.14)

Second, by Céa’s Lemma, the Galerkin projection …y;Un onto Un is up to a constant
as good as the best approximation, i.e., under assumption (11.11)

ku.y/ �…y;Un u.y/kU � C1
c1

inf
v2Un

ku.y/ � vkU: (11.15)

(When by.	; 	/ is in addition symmetric C1=c1 can be replaced by .C1=c1/1=2.) Hence,
by (11.14) and (11.15),

R.y;Un/ WD c�11 sup
v2U

hf ; vi � by.…y;Un u.y/; v/

kvkU
(11.16)

satisfies more than just (11.7), namely it provides also a uniform lower bound

c1
C1

R.y;Un/ � ku.y/ � PU;Un u.y/kU; y 2 Y : (11.17)
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Finally, suppose that by.	; 	/ depends affinely on the parameters in the sense that

by.u; v/ D
MX

kD1
�k.y/bk.u; v/; (11.18)

where the �k are smooth functions of y 2 Y and the bilinear forms bk.	; 	/ are
independent of y. Then, based on suitable precomputations (in UN ) in the offline
phase, the computation of …y;Un u.y/ reduces for each y 2 Y to the solution of
a rapidly assembled .n 
 n/ system, and R.y;Un/ can indeed be computed very
efficiently, see [16, 23, 25].

An essential consequence of (11.7) and (11.17) can be formulated as follows.

Proposition 2.1. Given Un � U, the function unC1 generated by (11.8) for R.y;Un/

defined by (11.16) has the property that

kunC1 � PU;Un unC1kU � c1
C1

max
v2M minNu2Un

kv � NukU: (11.19)

Hence, maximizing the residual based surrogate R.y;Un/ (over a suitable discretiza-
tion of Y) is a computationally feasible way of determining, up to a fixed factor
� WD c1=C1 � 1, the maximal distance between M and Un and performs in
this sense almost as well as the “ideal” but computationally infeasible surrogate
R�.�;Un/ WD ku.y/ � PU;Un u.y/kU .

Proof of Proposition 2.1. Suppose that Ny D argmaxy2Y R.y;Un/; y� WD argmaxy2Yku.y/ � PU;Un u.y/kU so that unC1 D u.Ny/. Then, keeping (11.17) and (11.15) in
mind, we have

kunC1 � PU;Un unC1kU D ku.Ny/ � PU;Un u.Ny/kU � c1
C1

R.Ny;Un/ � c1
C1

R.y�;Un/

� c1
C1

ku.y�/ � PU;Un u.y�/kU D c1
C1

max
y2Y

ku.y/ � PU;Un u.y/kU;

where we have used (11.7) in the second but last step. This confirms the claim. �

Property (11.19) turns out to play a key role in the analysis of the performance
of the scheme SGA.

11.3 Greedy Space Growth

Proposition 2.1 allows us to view the algorithm SGA as a special instance of the
following scenario. Given a compact subset K of a Hilbert space H with inner
product .	; 	/ inducing the norm k 	 k2 D .	; 	/, consider the weak greedy Algorithm 2
(WGA) below.
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Algorithm 2 Weak greedy algorithm
1: function WGA
2: Set H0 WD f0g, n D 0, u0 WD 0, fix any 0 < � � 1,
3: given Hn, choose some unC1 2 K for which

min
vn2Hn
kvn � unC1k � � max

v2K
min
vn2Un
kv � vnk DW �
n.K/H ; (11.20)

and set HnC1 WD Hn C span funC1g.
4: end function

Note that again the choice of unC1 is not necessarily unique and what follows
holds for any choice satisfying (11.20).

Greedy strategies have been used in numerous contexts and variants. The current
version is not to be confused though with the weak orthogonal greedy algorithm
introduced in [26] for approximating a function by a linear combination of n terms
from a given dictionary. In contrast, the scheme WGA described in Algorithm 2
aims at constructing a (problem dependent) dictionary with the aid of a PDE model.
While greedy function approximation is naturally compared with the best n-term
approximation from the underlying dictionary (see [2, 26] for related results), a
natural question here is to compare the corresponding greedy errors


n.K/H WD max
v2K min

vn2Un
kv � vnk DW max distH.K;Un/

incurred when approximating a compact set K with the smallest possible deviation
of K from any n-dimensional linear space, given by the Kolmogorov n-widths

dn.K/H WD inf
dimVDn

sup
v2K

inf
vn2V

kv � vnk D inf
dimVDn

max distH.K;V/; (11.21)

mentioned earlier in the preceding section. One trivially has dn.K/H � 
n.K/H for
all n 2 N and the question arises whether there actually exists a constant C such that


n.K/H � Cdn.K/H; n 2 N: (11.22)

One may doubt such a relation to hold for several reasons. First, orthogonal greedy
function approximation performs in a way comparable to best n-term approximation
only under rather strong assumptions on the underlying given dictionary. Intuitively,
one expects that errors made early on in the iteration are generally hard to correct
later although this intuition turns out to be misleading in the case of the present set
approximation. Second, the spaces Un generated by the greedy growth are restricted
by being generated only from snapshots in K while the best spaces can be chosen
freely, see the related discussion in [4].

The comparison (11.22) was addressed first in [6] for the ideal case � D 1. In
this case a bound of the form 
n.K/H � Cn2ndn.K/H could be established for some
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absolute constant C. This is useful only for cases where the n-widths decay faster
than n�12�n which indeed turns out to be possible for elliptic problems (11.12) with
a sufficiently smooth affine parameter dependence (11.18). In fact, in such a case the
u.y/ can be even shown to be analytic as a function of y, see [7] and the literature
cited there. It was then shown in [4] that the slightly better bound


n.K/H � 2nC1
p
3

dn.K/H; n 2 N; (11.23)

holds. More importantly, these bounds cannot be improved in general. Moreover,
the possible exponential loss in accuracy is not due to the fact the greedy spaces are
generated by snapshots from K. In fact, denoting by Ndn.K/H the restricted “inner”
widths, obtained by allowing only subspaces spanned by snapshots of K in the
competition, one can prove that Ndn.K/H � ndn.K/H , n 2 N, which is also sharp
in general [4].

While these findings may be interpreted as limiting the use of reduced bases
generated in a greedy fashion to problems where the n-widths decay exponentially
fast the situation turns out to be far less dim if one does not insist on a direct
comparison of the type (11.22) with n being the same on both sides of the inequality.
In [4, 13] the question is addressed whether a certain convergence rate of the
n-widths dn.K/H implies some convergence rate of the greedy errors 
n.K/H . The
following result from [4] gave a first affirmative answer.

Theorem 3.1. Let 0 < � � 1 be the parameter in (11.20) and assume that
d0.K/H � M for some M > 0. Then

dn.K/H � Mn�˛; n 2 N;

for some ˛ > 0, implies


n.K/H � CMn�˛; n > 0; (11.24)

where C WD q
1
2 .4q/˛ and q WD d2˛C1��1e2.

This means that the weak greedy scheme may still be highly profitable even
when the n-widths do not decay exponentially. Moreover, as expected, the closer
the weakness parameter � is to one, the better, which will later guide the sampling
strategies for constructing reduced bases.

Results of the above type are not confined to polynomial rates. A sub-exponential
decay of the dn.K/H with a rate e�cn˛ , ˛ � 1 is shown in [4] to imply a rate


n.K/H � C.˛; �/e�Qcn Q̨

; Q̨ D ˛=.1C ˛/; n 2 N: (11.25)

The principle behind the estimates (11.24), (11.25) is to exploit a “flatness” effect
or what one may call “conditional delayed comparison.” More precisely, given any
� 2 .0; 1/ and defining q WD d2.��/�1e2, one can show that ([4, Lemma 2.2])


nCqm.K/H � �
n.K/H ) 
n.K/H � q1=2dm.K/H; n 2 N:
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Thus a comparison between greedy errors and n-widths is possible when the greedy
errors do not decay too quickly. This is behind the diminished exponent Q̨ in (11.25).

These results have been improved upon in [13] in several ways employing differ-
ent techniques yielding improved comparisons. Abbreviating 
n WD 
n.K/H; dn WD
dn.K/H , a central result in the present general Hilbert space context states that for
any N � 0;K � 1, 1 � m < K one has

KY

iD1

2NCi � ��2K

�K

M

�m� K

K � m

�K�m

2m

NC1d2.K�m/
m : (11.26)

As a first important consequence, one derives from these inequalities a nearly direct
comparison between 
n and dn without any constraint on the decay of 
n or dn. In
fact, taking N D 0;K D n, and any 1 � m < n in (11.26), using the monotonicity of

the 
n, one shows that 
2n
n � ��2n

�
n
m

�m�
n

n�m

�n�m
d2.n�m/

m from which one deduces


n � p
2��1 min

1�m<n
d

n�m
n

m ; n 2 N: (11.27)

This, in particular, gives the direct unconditional comparison


2n.K/H � ��1
p
2dn.K/H; n 2 N:

The estimate (11.27) is then used in [13] to improve on (11.25) establishing the
bounds

dn.K/H � C0e
�c0n˛ ) 
n.K/H �

p
2C0�

�1e�c1n˛ ; n 2 N; (11.28)

i.e., the exponent ˛ is preserved by the rate for the greedy errors. Moreover, one can
recover (11.24) from (11.26) (with different constants).

Although not needed in the present context the second group of results in [13]
should be mentioned that concerns the extension of the weak greedy algorithm
WGA to Banach spaces X in place of the Hilbert space H. Remarkably, a direct
comparison between 
n.K/X and dn.K/X similar to (11.26) is also established in
[13]. The counterpart to (11.27) reads 
2n � 2��1

p
ndn, i.e., one loses a factor

p
n

which is shown, however, to be necessary in general.
All the above results show that the smaller the weakness parameter � the stronger

the derogation of the rate of the greedy errors in comparison with the n-widths.

11.4 What are the Right Projections?

As shown by (11.24) and (11.28), the weak greedy algorithm WGA realizes
optimal rates for essentially all ranges of interest. A natural question is under
which circumstances a surrogate-based greedy algorithm SGA is in this sense also
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rate-optimal, namely ensures the validity of (11.24) and (11.28). Obviously, this is
precisely the case when new snapshots generated through maximizing the surrogate
have the weak greedy property (11.20). Note that Proposition 2.1 says that the
residual-based surrogate (11.16) in the case of coercive problems does ensure the
weak-greedy property so that SGA is indeed rate-optimal for coercive problems.
Note also that the weakness parameter � D c1=C1 is in this case the larger the
smaller the condition number of the operator By is, see (11.13). Obviously, the key
is that the surrogate not only yields an upper bound for the best approximation
error but also, up to a constant, a lower bound (11.17), and the more tightly the
best approximation error is sandwiched by the surrogate the better the performance
of SGA. Therefore, even if the problem is coercive for a very small � D c1=C1,
as is the case for convection-dominated convection-diffusion problems, in view of
the dependence of the bounds in (11.24) and (11.28) on ��1, one expects that the
performance of a greedy search based on (11.16) degrades significantly.

In summary, as long as algorithm SGA employs a tight surrogate in the sense
that

cSR.y;Un/ � inf
v2Un

ku.y/ � vkU � R.y;Un/; y 2 Y; (11.29)

holds for some constant cS > 0, independent of y 2 Y , algorithm SGA is rate-
optimal in the sense of (11.24), (11.28), i.e., it essentially realizes the n-width rates
over all ranges of interest, see [10]. We refer to c�1S WD �n.R/ as the condition
of the surrogate R.	;Un/. In the RBM community the constant c�1S is essentially
the stability factor which is usually computed along with an approximate reduced
solution. Clearly, the bounds in §11.3 also show that the quantitative performance
of SGA is expected to be the better the smaller the condition of the surrogate, i.e.,
the larger cS.

As shown so far, coercive problems with a small condition number �U;U0.By/

represent an ideal setting for RBM and standard Galerkin projection combined
with the symmetric surrogate (11.16), based on measuring the residual in the
dual norm k 	 kU0 of the “error norm” k 	 kU , identifies rate-optimal snapshots
for a greedy space growth. Of course, this marks a small segment of relevant
problems. Formally, one can still apply these projections and surrogates for any
variational problem (11.12) for which a residual can be computed. However, in
general, for indefinite or unsymmetric singularly perturbed problems, the tightness
relation (11.29) may no longer hold for surrogates of the form (11.16) or, if it
holds the condition �n.R/ becomes prohibitively large. In the latter case, the upper
bound of the best approximation error is too loose to direct the search for proper
snapshots. A simple example is the convection-diffusion problem: for f 2 .H1

0.�//
0

find u 2 H1
0.�/, � � R

d, such that

".ru;rv/C .Eb 	 ru; v/C .cu; v/ DW by.u; v/ D hf ; vi; v 2 H1
0.�/; (11.30)

where, for instance, y D ."; Eb/ 2 Y WD Œ"0; 1� 
 Sd�1, Sd�1 the .d � 1/-sphere.
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Remark 4.1. It is well known that when c � 1
2
divEb � 0 problem (11.30) has for

any f 2 H�1.�/ WD .H1
0.�//

0 a unique solution. Thus for U WD H1
0.�/ (11.11)

is still valid but with �U;U0.By/ � "�1 which becomes arbitrarily large for a
correspondingly small diffusion lower bound "0.

The standard scheme SGA indeed no longer performs nearly as well as in the
well-conditioned case. The situation is even less clear when " D 0 (with modified
boundary conditions) where no “natural” variational formulation suggests itself (we
refer to [10] for a detailed discussion of these examples). Moreover, for indefinite
problems the Galerkin projection does generally perform like the best approximation
which also adversely affects tightness of the standard symmetric residual based
surrogate (11.16).

Hence, to retain rate-optimality of SGA also for the above-mentioned extended
range of problems one has to find a better surrogate than the one based on the
symmetric residual bound in (11.16). We indicate in the next section that such
better surrogates can indeed be obtained at affordable computational cost for a wide
range of problems through combining Petrov-Galerkin projections with appropriate
unsymmetric residual bounds. The approach can be viewed as preconditioning
the continuous problem already on the infinite-dimensional level.

11.4.1 Modifying the Variational Formulation

We consider now a wider class of (not necessarily coercive) variational problems

b.u; v/ D hf ; vi; v 2 V; (11.31)

where we assume at this point only for each f 2 V 0 the existence of a unique solution
u 2 U, i.e., the operator B W U ! V 0, induced by b.	; 	/, is bijective. This is well
known to be equivalent to the validity of

8
<̂

:̂

inf
w2W

sup
v2V

b.w; v/

kwkUkvkV
� ˇ; sup

v2V
sup
w2U

b.w; v/

kwkUkvkV
� Cb;

for v 2 V 9 w 2 W; such that b.w; v/ ¤ 0;

(11.32)

for some constants ˇ;Cb. However, one then faces two principal obstructions
regarding an RBM based on the scheme SGA:

(a) first, as in the case of (11.30) for small diffusion, �U;V0.B/ � Cb=ˇ could be
very large so that the corresponding error-residual relation

ku � vkU � ˇ�1kf � BvkV0 ; v 2 U; (11.33)

renders a corresponding residual-based surrogate ill conditioned.
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(b) When b.	; 	/ is not coercive, the Galerkin projection does, in general, not
perform as well as the best approximation.

The following approach has been used in [10] to address both (a) and (b). The
underlying basic principle is not new, see [1], and variants of it have been used for
different purposes in different contexts such as least squares finite element methods
[18] and, more recently, in connection with discontinuous Petrov Galerkin methods
[9, 11, 12]. In the context of RBMs the concept of natural norms goes sort of half
way by sticking in the end to Galerkin projections [25]. This marks an essential
distinction from the approach in [10] discussed later below.

The idea is to change the topology of one of the spaces so as to (ideally) make
the corresponding induced operator an isometry, see also [9]. Following [10], fixing
for instance, k 	 kV , one can define

kwk OU WD sup
v2V

b.w; v/

kvkV
D kBwkV0 ; w 2 U; (11.34)

which means that one has for Bu D f

ku � wk OU D kf � BwkV0 ; w 2 U; (11.35)

a perfect error-residual relation. It also means that replacing k	kU in (11.32) by k	k OU
yields the inf-sup constant Ǒ D 1. Alternatively, fixing k 	 kU , one may set

kvk OV WD sup
w2U

b.w; v/

kwkU
D kB�vkU0 ; v 2 V; (11.36)

to again arrive at an isometry B W U ! OV 0, meaning

ku � wkU D kf � Bwk OV0 ; w 2 U: (11.37)

Whether the norm for U or for V is prescribed depends on the problem at hand and
we refer to [8–10] for examples of both types.

Next note that for any subspace W � U one has

uW D argmin
w2W

ku � wk OU D argmin
w2W

kf � BwkV0 ; (11.38)

and analogously for the pair .U; OV/, i.e., the best approximation in the OU norm is a
minimum residual solution in the V 0 norm.

To use residuals in V 0 as surrogates requires fixing a suitable discrete projection
for a given trial space. In general, in particular when V ¤ U, the Galerkin projection
is no longer appropriate since inf-sup stability of the infinite-dimensional problem
is no longer inherited by an arbitrary pair of finite-dimensional trial and test spaces.
To see which type of projection would be ideal, denote by RU W U0 ! U the Riesz
map defined for any linear functional ` 2 U0 by

h`;wi D .RU`;w/U; w 2 U:
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Then, by (11.34), for any w 2 W � U, taking v WD RVBw 2 V one has

b.w; v/ D hBw; vi D hBw;RVBwi D .Bw;Bw/V0 D .w;w/ OU:

Thus, in particular,

b.u � uh;RVBw/ D .u � uh;w/ OU;

i.e., given W � U, using VW WD RVB.W/ as a test space in the Petrov-Galerkin
scheme

b.uh; v/ D hf ; vi; v 2 VW WD RVB.W/; (11.39)

is equivalent to computing the OU-orthogonal projection of the exact solution u
of (11.31) and hence the best OU approximation to u. One readily sees that this also
means

inf
w2W

sup
v2V.W/

b.w; v/

kwk OUkvkV
D 1; (11.40)

i.e., we have a Petrov-Galerkin scheme for the pair of spaces W;VW with perfect
stability and the Petrov-Galerkin projection is the best OU-projection. Unfortunately,
this is not of much help yet, because computing the ideal test space VW D
RVB.W/ D B��R�1OU .W/ is not numerically feasible. Nevertheless, it provides a
useful orientation for finding good and practically realizable pairs of trial and test
spaces, as explained next.

11.4.2 A Saddle Point Formulation

We briefly recall now from [9, 10] an approach to deriving from the preceding
observations a practically feasible numerical scheme which, in particular, fits into
the context of RBMs. Taking (11.38) as point of departure we notice that the
minimization of kf � BwkV0 over W is a least squares problem whose normal
equations read: find uW 2 W such that (with RV0 D R�1V )

0 D .f � BuW ;Bw/V0 D hRV.f � BuW/;Bwi; w 2 W: (11.41)

Introducing the auxiliary variable r WD RV.f � BuW/ which is equivalent to

hRV0r; vi D .r; v/V D hf � Buw; vi; v 2 VW D RVB.W/; (11.42)

the two relations (11.41) and (11.42) can be rewritten in form of the saddle point
problem
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.r; v/V C b.uW ; v/ D hf ; vi; v 2 VW :

b.w; r/ D 0; w 2 W:
(11.43)

The corresponding inf-sup constant is still one (since the supremum of b.w; v/ over
VW equals for each w 2 W the supremum over all of V) and .	; 	/V is a scalar product
so that (11.43) has a unique solution uW , see e.g. [5]. Taking for any w 2 W the test
function v D RVBw 2 VW in the first line of (11.43), one obtains

.r; v/V D .r;RVBw/V D hr;Bwi D b.w; r/ D 0;

by the second line in (11.43) so we see that hf ;RVBwi D b.uW ;RVBw/ holds for
all w 2 W which means that uW solves the ideal Petrov-Galerkin problem (11.39).
Thus (11.43) is equivalent to the ideal Petrov Galerkin scheme (11.39).

Of course, (11.43) is still not realizable since the space VW is still not computable
at affordable cost. One more step to arrive at a realizable scheme is based on the
following: given the finite-dimensional space W, replacing VW in (11.43) by some
(accessible) space Z � V , amounts to a Petrov-Galerkin formulation with test space
PV;ZVW , where again PV;Z denotes the V-orthogonal projection to Z. Thus, when Z is
large enough the (computable) projection PV;ZVW is close enough to VW so that one
obtains a stable finite-dimensional saddle point problem which is the same as saying
that its inf-sup constant is safely bounded away from zero. Since Z D V would yield
perfect stability the choice of Z � V can be viewed as a stabilization. To quantify
this we follow [10] and say that for some ı 2 .0; 1/, Z � V is ı-proximal for W � U
if Z is sufficiently close to the ideal test space VW D RVB.W/ in the sense that

k.I � PV;Z/RVBwkV � ıkRVBwkV ; w 2 W: (11.44)

The related main findings from [10] can be summarized as follows.

Theorem 4.2. (i) The pair .uW;Z ; rW;Z/ 2 W 
 Z � U 
 V solves the saddle point
problem

.rW;Z ; v/V C b.uW;Z ; v/ D hf ; vi; v 2 Z;
b.w; uW;Z/ D 0; w 2 W;

(11.45)

if and only if uW;Z solves the Petrov-Galerkin problem

b.uW;Z ; v/ D hf ; vi; v 2 PV;Z.RVB.W//: (11.46)

(ii) If Z is ı-proximal for W, (11.46) is solvable and one has

ku � uW;Zk OU � 1
1�ı infw2W kuW;Z � wk OU;

ku � uW;Zk OU C krW;ZkV � 2
1�ı infw2W kuW;Z � wk OU:

(11.47)

(iii) Z is ı-proximal for W if and only if

inf
w2W

sup
v2Z

b.w; v/

kwk OUkvkV
�

p
1 � ı2: (11.48)
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Note that (11.45) involves ordinary bilinear forms and finite-dimensional spaces
W;Z and (iii) says that the V-projection of the ideal test space RVB.W/ onto Z is a
good test space if and only if Z is ı-proximal for W. Loosely speaking, Z is large
enough to “see” a substantial part of the ideal test space RVB.W/ under projection.
The perhaps most important messages to be taken home regarding the RBM context
read as follows.

Remark 4.3. (i) The Petrov-Galerkin scheme (11.46) is realized through the
saddlepoint problem (11.45) without explicitly computing the test space
PV;Z.RVB.W//.

(ii) Moreover, given W, by compactness and (11.44), one can in principle enlarge
Z so as to make ı as small as possible, a fact that will be exploited later.

(iii) The solution component uW;Z is a near best approximation to the exact solution
u in the OU norm.

(iv) rW;Z can be viewed as a lifted residual which tends to zero in V when W grows
and can be used for a posteriori error estimation, see [9]. In the Reduced Basis
context this can be exploited for certifying the accuracy of the truth solutions
and for constructing computationally feasible surrogates for the construction
of the reduced bases.

11.5 The Reduced Basis Construction

We point out next how to use the preceding results for sampling the solution
manifold M of a given parametric family of variational problems: given y 2 Y ,
f 2 V 0y, find u.y/ 2 Uy such that

by.u.y/; v/ D hf ; vi; v 2 Vy; (11.49)

in a way that the corresponding subspaces are rate-optimal. We will always assume
that the dependence of the bilinear form by.	; 	/ on y 2 Y is affine in the sense
of (11.18).

As indicated by the notation the spaces Uy;Vy for which the variational problems
are well posed in the sense that the induced operator By W Uy ! V 0y is bijective,
could depend on y through y-dependent norms. However, to be able to speak of a
“solution manifold” M as a compact subset of some “reference Hilbert space,” the
norms k 	 kUy should be uniformly equivalent to some reference norm k 	 kU which
has to be taken into account when formulating (11.49). In fact, under this condition,
as shown in [10], for well-posed variational formulations of pure transport problems
the dependence of the test spaces Vy on y 2 Y is essential, in that

V WD
\

y2Y
Vy (11.50)
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is a strict subset of each individual Vy. This complicates the construction of a tight
surrogate. We refer to [10] for ways of dealing with this obstruction and confine the
subsequent discussion for simplicity to cases where the test norms k 	 kVy are also
uniformly equivalent to a single reference norm k 	 kV , see the example later below.

Under the above assumptions, the findings of the preceding section will be used
next to contrive a well-conditioned tight surrogate even for non-coercive or severely
ill-conditioned variational problems which is then in general unsymmetric, i.e.,
Vy ¤ Uy. These surrogates will then be used in SGA. To obtain such a residual-
based well-conditioned surrogate in the sense of (11.29), we first renorm the pairs
of spaces Uy or Vy according to (11.34) or (11.36). In anticipation of the example
below, for definiteness we concentrate on (11.34) and refer to [10] for a discussion
of (11.36). As indicated above, we assume further that the norms k 	 k OUy

; k 	 kVy are
equivalent to reference norms k 	 k OU; k 	 kV , respectively.

11.5.1 The Strategy

Suppose that we have already constructed a pair of spaces Un � Uy;Vn � Vy, y 2 Y ,
such that for a given ı < 1

inf
w2Un

sup
v2Vn

by.w; v/

kwk OUy
kvkVy

�
p
1 � ı2; y 2 Y; (11.51)

i.e., Vn � V is ı-proximal for Un � U. Thus, by Theorem 4.2, the parametric saddle
point problem

.rn.y/; v/Vy C by.un.y/; v/ D hf ; vi; v 2 Vn;

b.w; rn.y// D 0; w 2 Un;
(11.52)

has for each y 2 Y a unique solution .un.y/; rn.y// 2 Un 
 Vn. By the choice of
norms we know that

ku.y/ � un.y/k OUy
D kf � B�un.y/kV0

y
; y 2 Y; (11.53)

i.e.,

R.y;Un 
 Vn/ WD kf � B�un.y/kV0

y
; y 2 Y; (11.54)

suggests itself as a surrogate. There are some subtle issues about how to evaluate
R.y;Un 
 Vn/ in the dual V 0N of a sufficiently large truth space VN � Vy, y 2 Y , so
as to faithfully reflect errors in OU�, not only in the truth space UN � Uy but also in
OU, and how these quantities are actually related to the auxiliary variable krn.y/kVy

which is computed anyway. As indicated before, these issues are aggravated when
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the norms k 	 kVy are not all equivalent to a single reference norm. We refer to
a corresponding detailed discussion in [10, §5.1] and continue working here for
simplicity with the idealized version (11.54) and assume its offline feasibility.

Thus we can evaluate the errors ku.y/�un.y/k OUy
and can determine a maximizing

parameter ynC1 for which

ku.ynC1/ � un.ynC1/k OUy
D max

y2Y kf � B�un.y/kV0

y
: (11.55)

Now relation (11.47) in Theorem 4.2 tells us that for each y 2 Y

ku.y/ � un.y/k OUy
� .1 � ı/�1 inf

w2Un
ku.y/ � wk OUy

; (11.56)

i.e., un.y/ is a near best approximation to u.y/ from Un which is, in fact, the closer to
the best approximation the smaller ı. By (11.53) and (11.56), the surrogate (11.54)
is indeed well conditioned with condition number close to one for small ı.

A natural strategy is now to enlarge Un to UnC1 WD Un C span fu.ynC1/g.
In fact, this complies with the weak greedy step (11.20) in §11.3 with weakness
parameter � D .1 � ı/ as close to one as one wishes, when ı is chosen accordingly
small, provided that the pair of spaces Un;Vn satisfies (11.51). A repetition would
therefore, in principle, be a realization of Algorithm 1, SGA, establishing rate-
optimality of this RBM. Obviously, the critical condition for such a procedure to
work is to ensure at each stage the validity of the weak greedy condition (11.20)
which in the present situation means that the companion space Vn is at each stage
ı-proximal for Un. So far we have not explained yet how to grow Vn along with Un

so as to ensure ı-proximality. This is explained in the subsequent section.

Remark 5.1. One should note that, due to the possible parameter dependence of
the norms k 	 k OUy

; k 	 kVy on y, obtaining tight surrogates with the aid of an explicit
Petrov-Galerkin formulation would be infeasible in an RBM context because one
would have to recompute the corresponding (parameter dependent) test basis for
each parameter query which is not online feasible. It is therefore actually crucial to
employ the saddle point formulation in the context of RBMs since this allows us to
determine a space Vn of somewhat larger dimension than Un which stabilizes the
saddle point problem for all y simultaneously.

11.5.2 A Greedy Stabilization

A natural option is to enlarge Vn by the second component rn.ynC1/ of (11.52).
Note though that the lifted residuals rn tend to zero as n ! 1. Hence, the solution
manifold of the (y-dependent version of the) saddle point formulation (11.43) has
the form

M 
 f0g;
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where M is the solution manifold of (11.49) (since r.y/ D 0 for y 2 Y). Thus
the spaces Vn are not needed to approximate the solution manifold. Instead the
sole purpose of the space Vn is to guarantee stability. At any rate, the grown pair
UnC1;Vn C span frn.ynC1/g DW V0

nC1 may fail to satisfy now (11.51).
Therefore, in general one has to further enrich V0

nC1 by additional stabilizing
elements again in a greedy fashion until (11.51) holds for the desired ı. For problems
that initially arise as natural saddle point problems such as the Stokes system,
enrichments by the so-called supremizers (to be defined in a moment) have been
proposed already in [14, 15, 22]. In these cases it is possible to enrich V0

nC1 by a
fixed a priori known number of such supremizers to guarantee inf-sup stability. As
shown in [10], this is generally possible when using fixed (parameter independent)
reference norms k 	 k OU , k 	 kV for U and V . For the above more general scope of
problems a greedy strategy was proposed and analyzed in [10], a special case of
which is also considered in [15] without analysis. The strategy in [10] adds only as
many stabilizing elements as are actually needed to ensure stability and works for a
much wider range of problems including singularly perturbed ones. In cases where
not all parameter-dependent norms k 	 kVy are equivalent such a strategy is actually
necessary and its convergence analysis is then more involved, see [10].

To explain the procedure, suppose that after growing Un to UnC1 we have
already generated an enrichment Vk

nC1 of V0
nC1 (which could be, for instance, either

V0
nC1 WD Vn C span frn.ynC1/g or V0

nC1 WD Vn) but the pair UnC1;Vk
nC1 still fails to

satisfy (11.51) for the given ı < 1. To describe the next enrichment from Vk
nC1 to

VkC1
nC1 we first search for a parameter Ny 2 Y and a function Nw 2 UnC1 for which the

inf-sup condition (11.51) is worst, i.e.,

sup
v2Vk

nC1

bNy. Nw; v/
kvkVNyk Nwk OUNy

D inf
y2Y

0

@ inf
w2UnC1

sup
v2Vk

nC1

by.w; v/

kvkVykwk OUy

1

A : (11.57)

If this worst case inf-sup constant does not exceed yet
p
1 � ı2, the current space

Vk
nC1 does not contain an effective supremizer for Ny; Nw, yet. However, since the

truth space satisfies the uniform inf-sup condition (11.51) there must exist a good
supremizer in the truth space which can be seen to be given by

Nv D argmaxv2VNy

bNy. Nw; v/
kvkVNyk Nwk OUNy

; (11.58)

providing the next enrichment

VkC1
nC1 WD spanfVk

nC1; Nvg: (11.59)

We defer some comments on the numerical realization of finding Ny; Nv
in (11.57), (11.58) to the next section.
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This strategy can now be applied recursively until one reaches a satisfactory
uniform inf-sup condition for the reduced spaces. Again, the termination of this
stabilization loop is easily ensured when (11.18) holds and the norms k 	 k OUy

, k 	 kVy

are uniformly equivalent to reference norms k 	 k OU , k 	 kV , respectively, but is more
involved in the general case [10].

11.5.3 The Double Greedy Scheme and Main Result

Thus, in summary, to ensure that the greedy scheme SGA with the particular
surrogate (11.54), based on the corresponding outer greedy step for extending Un

to UnC1, has the weak greedy property (11.20), one can employ an inner stabilizing
greedy loop producing a space VnC1 D Vk�

nC1 which is ı-proximal for UnC1. Here
k� D k�.ı/ is the number of enrichment steps needed to guarantee the validity
of (11.51) for the given ı. A sketchy version of the corresponding “enriched” SGA,
developed in [10], looks is given below in Algorithm 3.

As indicated above, both Algorithm 1, SGA, and Algorithm 3, SGA-DOU, are
surrogate-based greedy algorithms. The essential difference is that for non-coercive
problems or problems with an originally large variational condition number in
SGA-DOU an additional interior greedy loop provides a tight well-conditioned
(unsymmetric) surrogate which guarantees the desired weak greedy property (with
weakness constant � as close to one as one wishes) needed for rate-optimality.

Of course, the viability of Algorithm SGA-DOU hinges mainly on two questions:

(a) how to find the worst inf-sup constant in (11.57) and how to compute the
supremizer in (11.58)?

(b) does the inner greedy loop terminate (early enough)?

As for (a), it is well known that, fixing bases for Un;Vk
n , finding the worst inf-

sup constant amounts to determine for y 2 Y the cross-Gramian with respect to
by.	; 	/ and compute its smallest singular value. Since these matrices are of size
n
 .nCk/ and hence (presumably) of “small” size, a search over Y requires solving
only problems in the reduced spaces and are under assumption (11.18) therefore

Algorithm 3 Double greedy algorithm
1: function SGA-DOU

2: Initialize U1;V0
1 , ı 2 .0; 1/, target accuracy tol, n 1,

3: while 
n.M/ > tol do
4: while Un;V0

n fail to satisfy (11.51) do
5: compute Vn with the aid of the inner stabilizing greedy loop,
6: end while
7: given Un;Vn, satisfying (11.51), compute UnC1;V0

nC1 with the aid of the outer greedy
step 4, (11.8) in algorithm SGA for the surrogate (11.54),

8: end while
9: end function



11 How To Best Sample a Solution Manifold? 425

offline feasible. The determination of the corresponding supremizer Nv in (11.58), in
turn, is based on the well-known observation that

argmaxv2VNy

bNy. Nw; v/
kvkVNy

D RVNy BNy Nw;

which is equivalent to solving the Galerkin problem

. Nv; z/VNy D bNy. Nw; z/; z 2 VNy:

Thus each enrichment step requires one offline Galerkin solve in the truth space.
A quantitative answer to question (b) is more involved. We are content here with

a few related remarks and we refer to a detailed discussion of this issue in [10].
As mentioned before, when all the norms k 	 k OUy

; k 	 kVy , y 2 Y , are equivalent to
reference norms k 	 k OU; k 	 kV , respectively, the inner loop terminates after at most
the number of terms in (11.18). When the norms k 	 kVy are no longer uniformly
equivalent to a single reference norm termination is less clear. Of course, since all
computations are done in a truth space which is finite dimensional, compactness
guarantees termination after finitely many steps. However, the issue is that the
number of steps should not depend on the truth space dimension. The reasoning
used in [10] to show that (under mild assumptions) termination happens after a
finite number of steps, independent of the truth space dimension, is based on the
following fact. Defining U1

n.y/ WD fw 2 Un W kwk OUy
D 1g, solving the problem

.Ny; Nw/ WD argmax
y2YIw2U1

n .y/

inf
�2Vk

n

kRVy Byw � �kVy ; (11.60)

when all the k 	k OUy
norms are equivalent to a single reference norm, can be shown to

be equivalent to a greedy step of the type (11.57) and can hence again be reduced to
similar small eigenvalue problems in the reduced space. Note, however, that (11.60)
is similar to a greedy space growth used in the outer greedy loop and for which some
understanding of convergence is available. Therefore, successive enrichments based
on (11.60) are studied in [10] regarding their convergence. The connection with the
inner stabilizing loop based on (11.57) is that

argmax
y2YIw2U1

n .y/

inf
�2Vk

n

kRVNy BNyw � �kVNy � ı

just means

inf
�2Vk

n

kRVy Byw � �kVy � ıkRVy BykVy D ıkwk OUy
; w 2 Un; y 2 Y;

which is a statement on ı-proximality known to be equivalent to inf-sup stability,
see Theorem 4.2, and (11.44).

A central result from [10] can be formulated as follows, see [10, Theorem 5.5].
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Theorem 5.2. If (11.18) holds and the norms k 	 k OUy
; k 	 kVy are all equivalent to a

single reference norm k 	k OU; k 	kV , respectively, and the surrogates (11.54) are used,
then the scheme SGA-DOU is rate-optimal, i.e., the greedy errors 
n.M/ OU decay at
the same rate as the n-widths dn.M/ OU, n ! 1.

Recall that the quantitative behavior of the greedy error rates are directly related
to those of the n-widths by � D cS, see Theorem 3.1. This suggests that a fast decay
of dn.M/ OU is reflected by the corresponding greedy errors already for moderate
values of n which is in the very interest of reduced order modeling. This will be
confirmed by the examples below. In this context an important feature of SGA-DOU

is that through the choice of the ı-proximality parameter the weakness parameter
� can be driven toward one, of course, at the expense of somewhat larger spaces
VnC1. Hence, stability constants close to one are built into the method. This is to be
contrasted by the conventional use of SGA based on surrogates that are not ensured
to be well conditioned and for which the computation of the certifying stability
constants tends to be computationally expensive, see e.g. [21].

11.5.4 A Numerical Example

The preceding theoretical results are illustrated next by a numerical example that
brings out some of the main features of the scheme. While the double greedy scheme
applies to noncoercive or indefinite problems (e.g., see [10] for pure transport) we
focus here on a classical singularly perturbed problem because it addresses also
some principal issues for RBMs regarding problems with small scales. Specifically,
we consider the convection-diffusion problem (11.30) on � D .0; 1/2 for a simple
parameter-dependent convection field

Eb.y/ WD
�

cos y
sin y

�
; y 2 Œ0; 2�/; c D 1;

keeping for simplicity the diffusion level " fixed but allowing it to be arbitrarily
small. All considerations apply as well to variable and parameter-dependent diffu-
sion with any arbitrarily small but strictly positive lower bound. The “transition”
to a pure transport problem is discussed in detail in [10, 28]. Parameter-dependent
convection directions mark actually the more difficult case and are, for instance, of
interest with regard to kinetic models.

Let us first briefly recall the main challenges posed by (11.30) for very
small diffusion ". The problem becomes obviously dominantly unsymmetric and
singularly perturbed. Recall that for each positive " the problem possesses for each
y 2 Y a unique solution u.y/ in U D H1

0.�/ that has a zero trace on the boundary
@�. However, as indicated earlier, the condition number �U;U0.By/ of the underlying
convection-diffusion operator By, viewed as an operator from U D H1

0.�/ onto
U0 D H�1.�/, behaves like "�1, that is, it becomes increasingly ill conditioned.
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This has well known consequences for the performance of numerical solvers but
above all for the stability of corresponding discretizations.

We emphasize that the conventional mesh-dependent stabilizations like SUPG
(cf. [17]) do not offer a definitive remedy because the corresponding condition,
although improved, remains very large for very small ". In [19] SUPG stabilization
for the offline truth calculations as well as for the low-dimensional online Galerkin
projections are discussed for moderate Peclét numbers of the order of up to 103. In
particular, comparisons are presented when only the offline phase uses stabilization
while the un-stabilized bilinear form is used in the online phase, see also the
references in [19] for further related work.

As indicated earlier, we also remark in passing that the singularly perturbed
nature of the problem poses an additional difficulty concerning the choice of the
truth space UN . In fact, when " becomes very small one may not be able to
afford resolving correspondingly thin layers in the truth space which increases the
difficulty of capturing essential features of the solution by the reduced model.

This problem is addressed in [10] by resorting to a weak formulation that does
not use H1

0.�/ (or a renormed version of it) as a trial space but builds on the
results from [8]. A central idea is to enforce the boundary conditions on the outflow
boundary �C.y/ only weakly. Here �C.y/ is that portion of @� for which the
inner product of the outward normal and the convection direction is positive. Thus
solutions are initially sought in the larger space H1

0;��.y/.�/ DW U�.y/ enforcing
homogeneous boundary conditions only on the inflow boundary ��.y/. Since the
outflow boundary and hence also the inflow boundary depend on the parameter y,
this requires subdividing the parameter set into smaller sectors, here four, for which
the outflow boundary �C D �C.y/ remains unchanged. We refer in what follows
for simplicity to one such sector denoted again by Y .

The following prescription of the test space falls into the category (11.34) where
the norm for U is adapted. Specifically, choosing

sy.u; v/ WD 1

2

	hByu; vi C hByv; ui
;

kvk2Vy
WD sy.v; v/ D �jvj2H1.�/

C
���
�

c � 1

2
div Eb.y/

�1=2
v
���
2

L2.�/
;

in combination with a boundary penalization on �C, we follow [8, 28] and define

kuk2NUy
WD k NByuk2NV0

y
D kNByuk2V0

y
C �kuk2Hb.�/

;

where Hb.y/ D H1=2
00 .�C.y//, NVy WD Vy
Hb.y/0 and NBy denotes the operator induced

by this weak formulation over NUy WD H1
0;��.y/

.�/ 
 Hb.y/. The corresponding
variational formulation is of minimum residual type (cf. (11.38)) and reads

u.y/ D argmin
w2U�.y/

˚k NByw � f k2V0

y
C �kwk2Hb.y/

�
: (11.61)
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Fig. 11.1 Left: " D 2�5; n D 6; nV D 13; middle: " D 2�7; n D 7; nV D 20; right:
" D 2�26; n D 20; nV D 57.

One can show that its (infinite-dimensional) solution, whenever being sufficiently
regular, solves also the strong form of the convection diffusion problem (11.30).
Figure 11.1 illustrates the effect of this formulation where we set n D dim Un; nV WD
dim Vn.

The shaded planes shown in Figure 11.1 indicate the convection direction for
which the snapshot is taken. For moderately large diffusion the boundary layer
at �C is resolved by the truth space discretization and the boundary conditions
at the outflow boundary are satisfied exactly. For smaller diffusion in the middle
example the truth space discretization can no longer resolve the boundary layer and
for very small diffusion (right) the solution is close to the one for pure transport.
The rationale of (11.61) is that all norms commonly used for convection-diffusion
equations resemble the one chosen here, for instance in the form of a mesh-
dependent “broken norm,” which means that most part of the incurred error of
an approximation is concentrated in the layer region, see, e.g., [24, 27]. Hence,
when the layers are not resolved by the discretization, enforcing the boundary
conditions does not improve accuracy and, on the contrary, may degrade accuracy
away from the layer by causing oscillations. The present formulation instead avoids
any nonphysical oscillations and enhances accuracy in those parts of the domain
where this is possible for the afforded discretization, see [8, 10, 28] for a detailed
discussion. The following table quantifies the results for the case of small diffusion
" D 2�26 and a truth discretization whose a posteriori error bound is 0:002.

Columns 3 and 8 show the ı governing the condition of the saddle point problems
(and hence of the corresponding Petrov-Galerkin problems), see (11.51), the greedy
space growth is based upon (Table 11.1). Hence, the surrogates are very tight giving
rise to weakness parameters very close to one. As indicated in Remark 4.3 one can
use also an a posteriori bound for the truth solution based on the corresponding
lifted residual. Columns 5 and 10 show therefore the relative accuracy of the current
reduced model and the truth model. This corresponds to the stability constants
computed by conventional RBMs. Even for elliptic problems these latter ones are
significantly larger than the ones for the present singularly perturbed problem which
are guaranteed to be close to one by the method itself. Based on the a posteriori
bounds for the truth solution (which are also obtained with the aid of tailored
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Table 11.1 Convection-diffusion equation, " D 2�26, maximal a posteriori error
0:00208994

n nV ı Surrogate Surr/a-post n nV ı Surrogate Surr/a-post

2 5 1.36e-03 2.10e-01 1.01e+02 14 39 1.17e-04 8.15e-03 3.90e+00

4 9 1.10e-02 7.51e-02 3.59e+01 16 45 9.79e-05 7.56e-03 3.62e+00

6 15 1.75e-03 4.95e-02 2.37e+01 18 51 6.32e-05 7.40e-03 3.54e+00

8 21 9.16e-04 2.34e-02 1.12e+01 20 57 4.74e-05 6.09e-03 2.92e+00

10 27 3.65e-04 2.05e-02 9.82e+00 22 63 2.36e-05 5.43e-03 2.60e+00

12 33 3.34e-04 1.56e-02 7.45e+00 24 65 2.36e-05 4.73e-03 2.27e+00

0 5 10 15 20 25
0

0.1

0.2

reduced basis trial dimension

Fig. 11.2 Convection-diffusion equation, " D 2�26, maximal a posteriori error 0:00208994

well-conditioned variational formulations, see [8]), the greedy space growth is
stopped when the surrogates reach the order of the truth accuracy. As illustrated in
Figure 11.2, in the present example this is essentially already the case for � 20

trial reduced basis functions and almost three times as many test functions. To
show this “saturation effect” we have continued the space growth formally up to
n D 24 showing no further significant improvement which is in agreement with the
resolution provided by the truth space. These relations agree with the theoretical
predictions in [10]. Figure 11.2 illustrates also the rapid gain of accuracy by the
first few reduced basis functions which supports the fact that the solution manifold
is “well seen” by the Petrov-Galerkin surrogates. More extensive numerical tests
shown in [10] show that the achieved stability is independent of the diffusion but the
larger the diffusion the smaller become the dimensions n D dim Un; nV D dimVn

for the reduced spaces. This indicates the expected fact that the larger the diffusion
the smoother is the dependence of u.y/ on the parameter y. In fact, when " ! 0 one
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approaches the regime of pure transport where the smoothness of the parameter
dependence is merely Hölder continuity requiring for a given target accuracy a
larger number of reduced basis functions, see [10].

11.6 Is it Necessary to Resolve All of M?

The central focus of the preceding discussion has been to control the maximal
deviation


n.M/U D max
y2Y ku.y/ � PU;Un u.y/kU (11.62)

and to push this deviation below a given tolerance for n as small as possible.
However, in many applications one is not interested in the whole solution field
but only in a quantity of interest I.y/, typically of the form I.y/ D `.u.y// where
` 2 U0 is a bounded linear functional. Looking then for some desired optimal state
I� D `.u.y�// one is interested in a guarantee of the form

j`.un.y// � `.u.y//j � tol; y 2 Y; (11.63)

where the states un.y/ belong to a possibly small reduced space Un in order to be
then able to carry out the optimization over y 2 Y in the small space Un � U.
Asking only for the values of just a linear functional of the solution seems to be
much less demanding than asking for the whole solution and one wonders whether
this can be exploited in favor of even better online efficiency.

Trying to reduce computational complexity by exploiting the fact that retrieving
only a linear functional of an unknown state - a scalar quantity - may require
less information than recovering the whole state is the central theme of goal-
oriented adaptation in finite element methods, see [3]. Often the desired accuracy is
indeed observed to be reached by significantly coarser discretizations than needed
to approximate the whole solution within a corresponding accuracy. The underlying
effect, sometimes referred to as “squared accuracy” is well understood and exploited
in the RBM context as well, see [16, 21]. We briefly sketch the main ideas for the
current larger scope of problems and point out that, nevertheless, a guarantee of
the form (11.63) ultimately requires controlling the maximal deviation of a reduced
space in the sense of (11.62). Hence, an optimal sampling of a solution manifold
remains crucial.

First, a trivial estimate gives for ` 2 U0

j`.un.y// � `.u.y//j � k`kU0kun.y/ � u.y/kU (11.64)

so that a control of 
n.M/U would indeed yield a guarantee. However, the n needed
to drive k`kU0
n.M/U below tol is usually larger than necessary.
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To explain the principle of improving on (11.64) we consider again a variational
problem of the form (11.31) (suppressing any parameter dependence for a moment)
for a pair of spaces U;V where we assume now that �U;V0.B/ � Cb=cb is already
small, possibly after renorming an initial less favorable formulation through (11.34)
or (11.36). Let u 2 U again denote the exact solution of (11.31). Given a ` 2 U0 we
wish to approximate `.u/, using an approximate solution Nu 2 W � U defined by

b.Nu; v/ D hf ; vi; v 2 QVW � V; (11.65)

where QVW is a suitable test space generated by the methods discussed in §11.4.1. In
addition we will use the solution z 2 V of the dual problem:

b.w; z/ D �`.w/; w 2 U; (11.66)

together with an approximation Nz 2 Z � V defined by

b.w; Nz/ D �`.w/; w 2 QWZ � U; (11.67)

again with a suitable test space QWZ . Recall that we need not determine the test spaces
QVW ; QWZ explicitly but rather realize the corresponding Petrov-Galerkin projections
through the equivalent saddle-point formulations with suitable ı-proximal auxiliary
spaces generated by a greedy stabilization.

Then, defining the primal residual functional

rNu.v/ WD r.Nu; v/ WD b.u � Nu; v/ D hf ; vi � b.Nu; v/ (11.68)

and adapting the ideas in [16, 21] for the symmetric case V D U to the present
slightly more general setting, we claim that

Ò.Nu/ WD `.Nu/ � r.Nu; Nz/ (11.69)

is an approximation to the true value `.u/ satisfying

j Ò.Nu/ � `.u/j � C inf
w2W

ku � wkU inf
v2Z

kz � vkV ; (11.70)

where C depends only on the inf-sup constant of the finite-dimensional problems.
In fact, since by (11.66),

`.u/ � `.Nu/ D b.Nu � u; z/ D �r.Nu; z/;

one has `.u/ D `.Nu/ � r.Nu; z/ and hence

j Ò.Nu/ � `.u/j D j`.Nu/ � r.Nu; Nz/ � `.Nu/C r.Nu; z/j D jr.Nu; z � Nz/j D jb.u � Nu; z � Nz/j
� Cbku � NukUkz � NzkV ;

which confirms the claim since Nu, Nz are near best approximations due to the asserted
inf-sup stability of the finite-dimensional problems.
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Clearly, (11.70) says that in order to approximate `.u/ the primal approximation
in U need not resolve u at all as long as the dual solution z is approximated well
enough. Moreover, when ` is a local functional, e.g., a local average approximating
a point evaluation, z is close to the corresponding Green’s function with (near)
singularity in the support of `. In the elliptic case z would be very smooth away
from the support of ` and hence well approximable by a relatively small number of
degrees of freedom concentrated around the support of `. Thus it may very well be
more profitable to spend less effort on approximating u than on approximating z.

Returning to parameter-dependent problems (11.49), the methods in §11.5 can
now be used as follows to construct possibly small reduced spaces for a frequent
online evaluation of the quantities I.y/ D `.u.y//. We assume that we already
have properly renormed families of norms k 	 kUy ; k 	 kVy , y 2 Y , with uniform
inf-sup constants close to one. We also assume now that both families of norms
are equivalent (by compactness of Y uniformly equivalent) to reference norms
k 	 kU; k 	 kV , respectively. Hence, we can consider two solution manifolds

Mpr WD fu.y/ D B�1y f ; y 2 Yg � U; Mdual WD fz.y/ WD B��y `; y 2 Yg � V;

and use Algorithm 3, SGA-DOU, to generate (essentially in parallel) two sequences
of pairs of reduced spaces

.Un;Vn/; .Zn;Wn/; n 2 N:

Here Vn � V;Wn � U are suitable stabilizing spaces such that for m < n and for
the corresponding reduced solutions um.y/ 2 Um; zn�m.y/ 2 Zn�m the quantity

In;m.y/ WD `.um.y// � r.um.y/; zn�m.y// (11.71)

satisfies

jI.y/ � In;m.y/j � C
m.Mpr/U
n�m.Mdual/V ; (11.72)

with a constant C independent of n;m. The choice of m < n determines how to
distribute the computational effort for computing the two sequences of reduced
bases and their stabilizing companion spaces. By Theorem 5.2, one can see that
whichever n-width rate dn.Mpr/U or dn.Mdual/V decays faster one can choose
m < n to achieve for a total of dim Um C dim Zn�m D n the smallest error
bound. Of course, the rates are not known and one can use the tight surrogates
to bound and estimate the respective errors very accurately. For instance, when

dn.Mpr/U � Cn�˛ , dn.Mdual/V � Cn�ˇ , m D
j�

˛
˛Cˇ

�
n
k

yields an optimal

distribution with a bound

jI.y/ � In;m.y/j � C
�˛ C ˇ

ˇ

�ˇ�˛ C ˇ

˛

�˛
n�.˛Cˇ/: (11.73)
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In particular, when ˇ > ˛ the dimensions on the reduced bases for the dual problem
should be somewhat larger but essentially using the same dimensions for the primal
and dual reduced spaces yields the rate n�.˛Cˇ/ confirming the “squaring” when
˛ D ˇ. In contrast, as soon as either one of the n-width rates decays exponentially
it is best to grow only the reduced spaces for the faster decay while keeping a fixed
space for the other side.

11.7 Summary

We have reviewed recent developments concerning reduced basis methods with
the following main focus. Using Kolmogorov n-width as a benchmark for the
performance of reduced basis methods in terms of minimizing the dimensions
of the reduced models for a given target accuracy, we have shown that this
requires essentially to construct tight well-conditioned surrogates for the underlying
variational problem. We have explained how renormation in combination with inner
stabilization loops can be used to derive such residual-based surrogates even for
problem classes not covered by conventional schemes. This includes in a fully robust
way indefinite as well as ill-conditioned (singularly perturbed) coercive problems.
Greedy strategies based on such surrogates are then shown to constitute an optimal
sampling strategy, i.e., the resulting snapshots span reduced spaces whose distances
from the solution manifold decay essentially at the same rate as the Kolmogorov
n-widths. This means, in particular, that stability constants need not be determined
by additional typically expensive computations but can be pushed by the stabilizing
inner greedy loop as close to one as one wishes. Finally, we have explained why the
focus on uniform approximation of the entire solution manifold is equally relevant
for applications where only functionals of the parameter-dependent solutions have
to be approximated.
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Chapter 12
On the Stability of Polynomial Interpolation
Using Hierarchical Sampling

Albert Cohen and Abdellah Chkifa

Abstract Motivated by the development of nonintrusive methods for high-
dimensional parametric PDEs, we study the stability of a sparse high-dimensional
polynomial interpolation procedure introduced in Chkifa et al. (Found. Comput.
Math. 1–33, 2013). A key aspect of this procedure is its hierarchical structure:
the sampling set is progressively enriched together with the polynomial space.
The evaluation points are selected from a grid obtained by tensorization of a
univariate sequence. The Lebesgue constant that quantifies the stability of the
resulting interpolation operator depends on the choice of this sequence. Here
we study <-Leja sequences, obtained by the projection of Leja sequences on
the complex unit disk, with initial value 1, onto Œ�1; 1�. For this sequence, we prove
cubic growth in the number of points for the Lebesgue constant of the multivariate
interpolation operator, independently of the number of variable and of the shape of
the polynomial space.

12.1 Introduction

This chapter deals with a high-dimensional interpolation process, for which the
sampling set is hierarchically enriched, in parallel with the polynomial space. Our
main motivation for considering this process is the development of non-intrusive
methods for high-dimensional parametric PDE.

Parametric PDEs are equations with the general form

D.u; y/ D 0; (12.1)

where D is a differential operator and y WD .y1; : : : ; yd/ is a parameter vector in a
tensor product domain Xd. Up to a change of variable, typical choices for X are the
real interval Œ�1; 1� or the complex unit disk fjzj � 1g. The solution u to such PDEs
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is therefore a function of y, which may be deterministic or stochastic depending on
the context of application, in addition to the usual space and time variable. Assuming
well posedness of the problem for all y 2 Xd in some Banach space V , we may define
the solution map

y 7! u.y/; (12.2)

acting from Xd to V . For certain relevant parametric PDEs, this map is uniformly
bounded, and therefore belongs to L1.Xd;V/. This is the case for instance for the
linear diffusion equation

�div.a.y/u/ D f ; (12.3)

set on a bounded Lipschitz domain D � Rm, with f 2 L2.D/ and boundary
conditions u D 0 on @D, provided that for some fixed r > 0 the diffusion coefficient
a.y/ 2 L1.D/ satisfies the ellipticity condition

r � a.y/; (12.4)

for all y 2 Xd.
Parametric PDEs raise significant computational challenges in the high dimen-

sional context, that is when d >> 1 or d D C1. Recent results such as in [8–10]
have shown the effectiveness of approximating the map y 7! u.y/ to certain such
PDEs by multivariate polynomials in the parametric variables .y1; : : : ; yd/. Here, the
multivariate polynomial spaces are of the general form

P� WD Spanfy	 D y	11 : : : y
	d
d W 	 D .	1; : : : ; 	d/ 2 �g; (12.5)

where � 2 N
d is an index set that is assumed to be downward closed (also called

lower set), in the sense that for 	 WD .	1; : : : ; 	d/; � WD .�1; : : : ; �d/ 2 N
d, we have

	 2 � and �i � 	i; i D 1; : : : ; d ) � 2 �: (12.6)

It was shown in [7, 8] that for relevant classes of parametric PDEs, certain sequences
of downward closed index sets

�1 � �2 � 	 	 	 � N
d (12.7)

with #.�k/ D k break the curse of dimensionality in the sense that the polynomial
approximation error decays with k at a rate k�s that does not deteriorates as d gets
large, in the sense that it remains valid even when d D 1.

One practical way to construct such polynomial approximations is by inter-
polation, based on the evaluation of u at certain points yi 2 Xd. One attractive
feature of such an approach is that it is nonintrusive and therefore can benefit from
existing numerical codes for evaluating y 7! u.y/ pointwise. An important issue
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for computational simplicity and economy is that the sampling and interpolation
procedure should be hierarchical: the solution u is evaluated at only one new point
in Xd when �k is updated to �kC1.

Such a procedure was recently proposed and analyzed in [6]. It is based on the
data of a sequence Z WD .zi/i�0 of pairwise distinct points in X and the univariate
interpolation operators Ik onto Pk associated with the sections fz0; 	 	 	 ; zkg. The
corresponding multivariate interpolation operator I� onto P� is constructed by
the Smolyack process of tensorization and sparsification based on the difference
operators �k WD Ik � Ik�1, which is described in §12.2 of this chapter. We also
show that there is a simple relation between the algebraic growth of the Lebesgue
constant L� WD kI�kL1!L1 in terms of #.�/ and that of its univariate counterpart
Lk WD kIkkL1!L1 or of Dk WD k�kkL1!L1 in terms of .k C 1/.

This motivates the search for “good” univariate sequences Z of points on Œ�1; 1�
such that the Lebesgue constant Lk or the norm of the difference operator Dk, has
moderate algebraic growth, controlled by .1 C k/� for a small � . Note that it is
well known that the Lebesgue constant grows logarithmically with k for certain
choices of non-nested sets of points on Œ�1; 1�, such as Chebychev and Gauss-
Lobatto points; however, it is not clear that such a very slow growth is possible
for nested sets corresponding to the sections of a sequence Z.

In this chapter, we consider the so-called <-Leja sequences, obtained by the
projection of Leja sequences on the complex unit disk, with initial value 1, onto
Œ�1; 1�, and studied in [3, 4]. We recall in §12.3 some main properties of these
sequences. We then obtain in §12.4 the bound Lk � 8

p
2.1Ck/2, which improves on

the O..kC1/3 log.kC1// bound given in [3] and on the O..kC1/2 log.kC1// bound
given in [4]. Then in §12.5, we establish the improved bound Dk � .1C k/2 for the
difference operator, which could not be obtained directly from Dk � Lk C Lk�1.
A consequence of this last result is that using the <-Leja sequence, the resulting
multivariate interpolation operator has Lebesgue constant with bound

L� � .#�/3; (12.8)

whatever the dimension d and the shape of the finite downward closed set �.

12.2 Sparse polynomial interpolation

In this section, we recall the construction of the multivariate interpolation operator
proposed in [6]. Given an infinite sequence Z WD .zi/i�0 of pairwise distinct points
in X, we define Ik the univariate interpolation operator onto Pk associated with the
section fz0; 	 	 	 ; zkg. We may express Ik as the telescoping sum

Ik D
kX

lD0
�l; �l WD Il � Il�1; (12.9)
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with the convention that I�1 D 0, which corresponds to the Newton form with

�kf D
�

f .zk/ � Ik�1f .zk/
�

hk; h0.z/ D 1; hk.z/ D
k�1Y

jD0

z � zj

zk � zj
: (12.10)

Now, for an arbitrary downward closed set � � N
d, we introduce the grid of

points

�� WD
n
z	 W 	 2 �

o
where z	 WD .z	j/jD1;:::;d 2 Xd: (12.11)

We also introduce the operator

I� WD
X

	2�
�	; where �	 WD ˝jD1;:::;d�	j : (12.12)

We observe that this coincides with (12.9) for the univariate case d D 1 when
� D f0; 1; : : : ; kg. We also observe that when � is a rectangular block, that is

� D B� WD f	 W 	 � �g; (12.13)

for some �, then

I� D
�1X

	1D1
	 	 	

�dX

	dD1
˝d

jD1�	j D ˝jD1;:::;d
� �jX

	jD1
�	j

�
D ˝jD1;:::;dI�j (12.14)

is the interpolation operator for the tensor product polynomial space P� WD
˝jD1;:::;dP�j and the tensor product grid �� D ˝jD1;:::;dfz0; : : : ; z�jg.

The following result is given in [6] but its first appearance dates back from [13]
in the bi-dimensional case. It shows that the previous observation generalizes to any
downward closed set.

Theorem 1. The grid �� is unisolvent for the polynomial space P� and the
interpolation operator is given by I�.

Proof. Since #.�/ D dim.P�/ and the image of I� is obviously contained in P�, it
suffices to show that I� is the interpolation operator, that is, I�f .z�/ D f .z�/ for all
� 2 �. This is shown by splitting I�f into

I�f D IB� f C .I� � IB�/f ; (12.15)

where B� is the rectangular block in (12.13). For the first, we have already observed
that IB� f .z�/ D f .z�/. The second part in the above splitting is a sum of terms
�	 f where 	 is such that 	j > �j for at least one value of j. For this value we
have �	j f .z�j/ D I	j f .z�j/ � I	j�1f .z�j/ D f .z�j/ � f .z�j/ D 0, which implies that
�	 f .z�/ D 0. Therefore .I� � IB�/f .z�/ D 0 which concludes the proof. ut
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One main interest of the above construction is that it is hierarchical in the sense
that the enrichment of � by a new index � corresponds to adding one sampling
point z� to the grid ��. In a similar way to the univariate case, the hierarchical
computation of the interpolant is possible, based on the formula

�	 f D
�

f .z	/ � I�f .z	/
�

H	; H	.z/ D
dY

jD1
h	j.zj/; (12.16)

which holds whenever � is any downward closed set such that 	 … � and
� [ f	g is also a downward closed set. This hierarchical form allows us to develop
adaptive interpolation algorithms: given a certain set �n of cardinality n, one picks
a new index 	nC1 which maximizes the contribution �	 f in some norm of interest
(typically Lp for p D 1; 2 or 1) among those 	 … �n such that �n [ f	g is a
downward closed set. The numerical behavior of such adaptive algorithms is studied
in [6].

The stability of the operators I� is critical for numerical applications such as the
nonintrusive treatment of parametric PDEs. It is measured by the Lebesgue constant

L� WD max
f2C.Xd/�f0g

kI�f kL1.Xd/

kf kL1.Xd/

: (12.17)

In particular, we have the classical estimate

kf � I�f kL1.Xd/ � .1C L�/ inf
g2P�

kf � gkL1.Xd/: (12.18)

This constant depends on the sequence Z, in particular through the Lebesgue
constant of the univariate interpolation operators

Lk WD max
f2C.X/�f0g

kIkf kL1.X/

kf kL1.X/
D max

z2X
�k.z/; (12.19)

where �k is the Lagrange function for the section fz0; : : : ; zkg defined by

�k.z/ WD
kX

iD0
jli;k.z/j; z 2 X; (12.20)

where

li;k.z/ WD
Y

jD0;:::;k;
j¤i

z � zj

zi � zj
; z 2 X; (12.21)

for j D 0; : : : ; k are the Lagrange polynomials associated with fz0; : : : ; zkg.
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It is shown in [6] that algebraic growth of Lk yields algebraic growth of the
Lebesgue constant L�. More precisely, given any � � 1

Lk � .1C k/� ; for any k � 1 H) L� � .#�/�C1: (12.22)

Surprisingly, the previous implication is valid whatever the dimension d and the
shape of the finite downward closed set �.

A more straightforward computation shows that we also have

Dk � .1C k/� ; for any k � 1 H) L� � .#�/�C1; (12.23)

where

Dk WD max
f2C.X/�f0g

k�kf kL1.X/

kf kL1.X/
: (12.24)

Indeed, by triangle inequality, we find that

L� �
X

	2�

dY

jD1
D	j �

X

	2�

dY

jD1
.1C 	j/

� D
X

	2�
.#.B	//

� �
X

	2�
.#�/� D .#�/�C1;

(12.25)

where in the fourth inequality, we have used the fact that B	 � � for any 	 2 �

because � is downward closed.
The construction of sequences with algebraic growth of the Lebesgue constant

is then essential. In all the following, without loss of generality, we consider the
interval X D Œ�1; 1�, for which the classical choices of Chebyshev and Gauss-
Lobatto points give univariate Lebesgue constants that grow logarithmically, hence
polynomially, with k. However, these choices are of no use for our purposes since
they do not correspond to the sections of a single sequence Z.

A possible alternative is provided by the so-called Leja sequences A WD .aj/j�0
constructed according to a0 2 Œ�1; 1� arbitrary and ak satisfying

jak � a0j : : : jak � ak�1j D max
t2Œ�1;1� jt � a0j : : : jt � ak�1j: (12.26)

Numerical evidence shows that such sequences have moderate growth of the
Lebesgue constant, the bound Lk � .k C 1/ seems valid, see [4]. However, no
rigorous proof supports this evidence. It is only known that the growth of the
Lebesgue constants is sub-exponential, i.e., .Lk/

1
k !k!1 0, see [14]. In the rest

of this chapter, we provide estimates on the growth of Lebesgue constants for
slightly different sequences, namely Leja points for the complex unit disk and their
projections on the interval Œ�1; 1�.
Remark 1. In the remainder of the chapter, we work with sections of length k, more
precisely given a sequence Z D .zj/j�0 of pairwise distinct points in X, we study the
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growth of the Lebesgue constant of the k-section Zk WD .z0; : : : ; zk�1/. In order to
avoid confusion with the previous notations which deal rather with fz0; : : : ; zkg, we
denote, when needed, by IZk the interpolation operator associated with Zk, by �Zk the
Lebesgue function associated with Zk and by LZk the Lebesgue constant associated
with Zk.

12.3 Leja sequences and their projections

12.3.1 Leja sequence on the unit disk

Recently, Calvi and Phung [2, 3] have shown that the Lebesgue constants of Leja
sequences on the unit disk and their real projections on Œ�1; 1�, the so-called
<-Leja sequences, are moderate and have growths that are bounded asymptotically
in O.k log k/ and O.k3 log k/, respectively. In addition, unlike Leja sequences on
Œ�1; 1�, theses sequences are easy to construct and have explicit formulas. In [4],
their bounds were improved to 2k and 5k2 log k, respectively. In this chapter, we
improve further these bounds and give direct bounds for the norms Dk of the
difference operators, which are useful in view of the discussion in the previous
section. Our techniques of proof share several common points with those developed
in [2–4], yet they are shorter and exploit to a considerable extent the properties of
Leja sequences on the unit disk.

We introduce the notations U and @U for the closed complex unit disk and the
complex unit circle, respectively, and the notation UN for the set of N-root of unity.
Given an infinite sequence Z WD .zj/j�0, we introduce the notation

Zk WD .z0; 	 	 	 ; zk�1/ and Zl;mWD.zl; 	 	 	 ; zm�1/; l � m � 1: (12.27)

Given two finite sequence S1 and S2, we denote by S1 ^ S2 the concatenation of S1
and S2. For any finite set S D .s0; 	 	 	 ; sl/ of complex numbers, we introduce the
notation

�S WD .�s0; 	 	 	 ; �sl/; � 2 C; <.S/ WD .<.s0/; 	 	 	 ;<.sl//; S WD .s0; 	 	 	 ; sl/:

(12.28)

Throughout this chapter, to any finite set S of numbers, we associate the polynomial

wS.x/ WD
Y

s2S

.x � s/: (12.29)

Any integer k � 1 can be uniquely expanded according to

k D
nX

jD0
aj2

j; aj 2 f0; 1g (12.30)
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We denote, respectively, by 
1.k/, 
0.k/, and p0.k/ the number of ones in the binary
expansion of k, the number of zeros in the binary expansion of k, and the largest
integer p such that 2p divide k. For k D 2n; : : : ; 2nC1 � 1 with binary expansion as
above, one has


1.k/ D
nX

jD0
aj; 
0.k/ D

nX

jD0
.1� aj/ D n C 1� 
1.k/; p0.k/ D inffj D 0; : : : ; n W aj ¤ 0g:

(12.31)
We recall also that for any n � 1 and any 0 < l < 2n, one has


1.l/C 
1.2
n � l/ D n C 1 � p0.l/: (12.32)

The proof is simple and can be found in [4].
Leja sequences E D .ej/j�0 on U considered in [2, 4] have all their initial value

e0 2 @U the unit circle. In view of definition (12.26), the maximum principle
implies ej 2 @U for any j � 1. The sequence considered in [2] are actually Leja
sequences on the unit circle.

A Leja sequence on the unit circle E D .ej/j�0 is defined inductively by pick
e0 2 @U arbitrary and for k � 1

ek D argmaxz2@U jz � ek�1j : : : jz � e0j: (12.33)

The previous argmax problem might admit many solutions and ek is one of them.
We call a k-Leja section every finite sequence .a0; : : : ; ak�1/ obtained by the same
recursive procedure. In particular, when E WD .ej/j�1 is a Leja sequence then the
section Ek D .e0; : : : ; ek�1/ is k-Leja section.

In contrast to the interval Œ�1; 1� where even the first points of a Leja sequence
cannot be computed explicitly, Leja sequences on @U are much easier to compute.
For instance, suppose that e0 D 1, then we can immediately check that e1 D �1
and e2 D ˙i. Assume that e2 D i then e3 maximizes jz2 � 1jjz � ij, so that e3 D �i
because �i maximizes jointly jz2 � 1j and jz � ij. Then e4 must maximize jz4 � 1j,
etc. We observe that a “binary” pattern on the distribution of E begins to appear.

Since the elements of @U have all the same modulus 1, an arbitrary Leja
sequence E D .e0; e1; : : : / on @U is merely the product, i.e. geometric rotation,
by e0 of a Leja sequence with initial value 1. The latter are completely determined
according to the following theorem, see [1, 2, 4].

Theorem 2. Let n � 0, 2n < k � 2nC1, l D k � 2n, and e0 D 1. The finite sequence
Ek D .e0; : : : ; ek�1/ is a k-Leja section if and only if E2n D .e0; : : : ; e2n�1/ and
Ul D .e2n ; : : : ; ek�1/ are, respectively, 2n-Leja and l-Leja sections and e2n is any
2n-root of �1.

The most natural construction of a Leja sequence in @U consists then in defining
E WD .ej/j�0 inductively by

E1 WD .e0 D 1/ and E2nC1 WD E2n ^ e
i�
2n E2n ; n � 0: (12.34)
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This “uniform” construction of the sequence E yields an interesting distribution of
its elements. Indeed, by an immediate induction, see [1], it can be shown that the
elements ek are given by

ek D exp
�

i�
nX

lD0
aj2
�j
�

for k D
nX

jD0
aj2

j; aj 2 f0; 1g: (12.35)

The construction yields then a low-discrepancy sequence on @U based on the
bit-reversal Van der Corput enumeration. This sequence was known to be a Leja
sequence over @U in many earlier works.

As stated above, Theorem 2 characterizes completely Leja sequences on the unit
circle. It has many implications that turn out to be very useful in the analysis of the
growth of Lebesgue constants. We have

Theorem 3. Let E WD .ej/j�0 be a Leja sequence on U starting at e0 D 1. We
have:

• For any n � 0, E2n D U2n in the set sense.
• For any k � 1, jwEk.ek/j D supz2@U jwEk.z/j D 2
1.k/.
• For any n � 0, E2n;2nC1 WD .e2n ; 	 	 	 ; e2nC1�1/ is a 2n-Leja section.
• For any n � 0, B.E2n/ WD .e2n�1; 	 	 	 ; e1; e0/ is a 2n-Leja section.
• The sequence E2 WD .e22j/j�0 is a Leja sequence on @U starting at 1.

The proof of these properties can be found in [2, 4, 5].
Using the implications of the Leja definition (12.33) on the growth of the

Lebesgue constants LEk and the previous structural properties of Leja sequences
on the unit disk, it was proved in [4] that for any Leja sequence E on @U , we have

�Ek.ek/ � k and LEk � 2k; k � 1: (12.36)

For further use, let us note that given E a Leja section starting at � 2 @U, n � 1,
and k such that 1 � k � 2n, one has for any z;  2 @U with  62 Ek

jwEk.z/j
jwEk./j

D jwEk.z/jjwB.Ek;2n /./j
jwE2n ./j � 2
1.k/2
1.2

n�k/

j2n � �2n j D 2nC1�p0.k/

j2n � �2n j : (12.37)

We have used that Ek [ B.Ek;2n/ D Ek [ Ek;2n D E2n D �U2n in the set sense, that
B.Ek;2n/ is a f2n � kg-Leja section according to the forth property above, and the
identity (12.32).

12.3.2 <-Leja sequences on Œ�1; 1�

We consider a Leja sequence E D .ej/j�0 on the unit circle with e0 D 1 and project it
onto the real interval Œ�1; 1� and denote by R D .rj/j�0 the sequence obtained. Since
E D .1;�1; ˛;�˛; 	 	 	 /with ˛ D ˙i, one should make sure that no point is repeated
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e0•
r0

×e1
•r1 ×

e2
•
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×

e3

•

e4•
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×
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•

e8•

r5
×

e9
•

r6×

e10•

r7
×

e11
•

r8×

e12•

e13
•

e14•

e15
•

Fig. 12.1 Distribution of the first elements of the Leja sequence E defined in (12.35) and R the
associated<-Leja sequence.

on R simply by not projecting a point ej such that ej D ei for some i < j. Such
sequences R were named <-Leja sequences in [3]. The projection rule that prevents
the repetition is well understood, it was already explained in [3, Theorem 2.4] and
we also provide below in Theorem 4. We explicit in Fig. 12.1 this rule for the
first elements of the Leja sequence E defined in (12.35) and the associated <-Leja
sequence. First let us observe that given E a Leja sequence starting at e0 D 1, we
have e1 D 1, e2 D �e3 D ˙i, and e2j D �e2jC1 for any j � 2, therefore the
associated <-Leja sequence R satisfies

r2j�1 D �r2j; j � 2 (12.38)

Theorem 4. Let E be a Leja sequence on @U with e0 D 1 and R the associated
<-Leja sequence. Then

R D <.#/; with # WD .j/j�0 D .1;�1/ ^
1̂

jD1
E2j;2jC2j�1 : (12.39)

The previous theorem says essentially that the section E2n;2nC1 , considered as a set,
is the union of the first half E2n;2nC2n�1 and of its element-wise conjugate E2n;2nC2n�1

defined as in (12.28). We have r0 D 1, r1 D �1. In addition, for n � 0 and k such
that 2n � k � 1 < 2nC1, using the simple identity k D 2CPn

jD1 2j�1 C .k � 1� 2n/,
we deduce that Rk D <.„k/ and the following element rk D <.k/ are obtained
from
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„k D .1;�1/ ^
n̂

jD1
E2j;2jC2j�1 ^ E2nC1;2nCk�1 and k D e2nCk�1: (12.40)

The particular structure of the Leja sequences E yields useful properties for <-
Leja sequences. First, in view of the first property in Theorem 3, since E2nC1 D
U2nC1 in the set sense, the projection on Œ�1; 1� gives

R2nC1 D
�

cos
� j�

2n

�
W j D 0; : : : ; 2n

�
; n � 0 (12.41)

in the set sense. Therefore R2nC1 coincides as a set with the Gauss-Lobatto abscissas.
We have also the following result.

Lemma 1. Let R WD .rj/j�0 be an <-Leja sequence. The sequence

R2 WD .2r22j � 1/j�0 (12.42)

is also an <-Leja sequence.

Proof. We consider E D .ej/j�0 to be a Leja sequence associated with R and recall
that by Theorem 3, the sequence E2 D .e22j/j�0 is also Leja sequence starting at 1
since e0 D 1. The sequence R2 can be obtained by projection of E2 onto Œ�1; 1�.
Indeed, the first two elements of R2 are 1 and �1 because r0 D 1; r2 D 0, so that
we only need to show that (12.40) holds with R2 and E2. For n � 0 and 2n � k�1 <
2nC1, one has 2nC1 � .2k � 1/� 1 < 2nC2 so that by the second equality in (12.40),

r2k�1 D <.e2nC1C2k�1�1/ D <.e2.2nCk�1//:

Since 2k � 4 then according to (12.38), we have r2k D �r2k�1, hence

2r22k � 1 D 2r22k�1 � 1 D <.e22.2nCk�1//;

where we have used <.z2/ D 2<.z/2 � 1 for z 2 @U . The proof is then complete.
ut

We should note that the notation R2 in the previous lemma does not match
the notation E2 given in Theorem 3 for Leja sequences. It is however natural and
convenient in the sense that if R is an <-Leja sequence associated with E then R2 is
also an <-Leja sequence, yet associated with E2.

The previous lemma has certain implications on the polynomials wRk associated
with the sections Rk which are essential to the study of the norms of the difference
operators discussed in section §12.5. In order to clarify our notation, we find it
convenient to work with normalized versions of these polynomials wRk that we
define by

WRk.x/ WD 2kwRk.x/; x 2 Œ�1; 1�: (12.43)
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We are interested in the relation between these polynomials for sections of the
sequences R and R2. First, since all <-Leja sequences have initial elements 1 and
�1, it is immediate that

WR21
.2x2 � 1/ D WR2 .x/ x 2 Œ�1; 1�: (12.44)

For higher value of k, we have the following

Lemma 2. Let R be an <-Leja sequence and denote S WD R2. For any k � 2

WSk.2x2 � 1/ D 2x WR2k�1 .x/; x 2 Œ�1; 1�: (12.45)

Consequently W 0Sk
.�1/ D W 0R2k�1

.0/, W 0Sk
.1/ D 1

2
W 0R2k�1

.1/ D 1
2
W 0R2k�1

.�1/, and

W 0Sk
.sj/ D 1

2
W 0R2k�1

.r2j/ D 1

2
W 0R2k�1

.r2j�1/; j D 2; : : : ; k � 1 (12.46)

Proof. The verification of (12.45) for k D 2 is immediate. Now, from the definition
of R2, we have for k � 3,

wSk.2x2 � 1/ D
k�1Y

jD0

�
2x2 � 1 � .2r22j � 1/

�
D 2k

k�1Y

jD0
.x C r2j/.x � r2j/:

Since r0 D 1; r1 D �1; r2 D 0, and r2j D �r2j�1 for any j � 2,

wSk.2x2 � 1/ D 2k.x C 1/.x � 1/x2
k�1Y

jD2
.x � r2j�1/.x � r2j/ D 2kx wR2k�1 .x/;

which implies (12.45) after multiplication by 2k. The derivation with respect to x
gives

4x W 0Sk
.2x2 � 1/ D 2

�
x W 0R2k�1

.x/C WR2k�1 .x/
�
:

Since WR2k�1 .0/ D 0, the first result on derivatives is obtained when dividing by x
and letting x ! 0. The second result is obtained by the substitution of x by 1 or �1.
In order to obtain (12.46), we substitute x by r2j and r2j�1 D �r2j for j D 2 : : : ; k�1.

ut
The previous Lemma has also implications on the growth of WRk.rk/, which we

will use in §12.4.

Lemma 3. Let R be an <-Leja sequence and denote S WD R2. For any N � 1, we
have WR2 .r2/ D WR1 .r1/ D 4 and

2rk WRk.rk/ D WSNC1
.sNC1/; k D 2N C 1; N � 1; (12.47)
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and

WRk.rk/ D 2WSN .sN/; k D 2N; N � 2: (12.48)

Proof. The first equality follows from (12.45) applied with x D rk since
k D 2.N C 1/ � 1 and 2r2k � 1 D 2r22.NC1/ � 1 D sNC1. The second equality
can be checked easily for N D 1. For N � 2, using the fact rk D �r2N�1 and
sN D 2r2k � 1, formula (12.45) implies

WRk.rk/ D 2.rk � r2N�1/WR2N�1 .rk/ D 4rkWR2N�1 .rk/ D 2WSN .sN/:

ut

12.4 Growth of Lebesgue constants for <-Leja sections

As stated above in (12.41), for any <-Leja sequence R, the sections R2nC1 coincide
in the set sense with the Gauss-Lobatto abscissas. This type of abscissas is known
to have Lebesgue constant with logarithmic growth LR2n

C1
� 2

�
log.2n C 1/. More

precisely, we have the bound

LR2n
C1

� 1C 2

�
log.2n/: (12.49)

See [12, Formulas 5 and 13]. In [4], using the previous bound and classical
trigonometric arguments as the one used in the bounding of Lebesgue constant of
Tchybeshev abscissas, e.g., [11], it is established that for any n � 0 and any k such
that 2n C 1 � k < 2nC1 C 1

LRk � 4n�p0.k0/.5C 8

�
log 2n/ where k0 WD k � .2n C 1/: (12.50)

Although the effect of the binary pattern on the distribution of the Leja sequence E
on @U is somehow reflected by the term 2n�p0.k0/, we observe that if k is an even
number, we only have the bound LRk � 8

�
k2 log k.

Through a novel analysis, we propose to relate the analysis of the Lebesgue
constants LRk to the analysis of the Lebesgue constants LEk where E is any Leja
sequence associated with R, which allows us to improve the bound on LRk .

The sections Rk of length k D 2n C 1 having been already treated, see (12.49),
we only discuss the case of k such that 2n C 1 < k < 2nC1 C 1. For such values we
have Rk D <.„k/ where„k is the section obtained from E2nCk�1 by the elimination
procedure described in (12.40). Observe that E2nCk�1 is the shortest section of E that
yields Rk when projected onto Œ�1; 1�. We have the following result
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Theorem 5. Let n � 0 and k � 3 such that 2n C 1 < k < 2nC1 C 1. One has

LRk � 2nC 3
2�p0.k0/

LE2n
Ck�1

where k0 WD k � .2n C 1/: (12.51)

In view of (12.36), the previous theorem implies in particular

LRk � 2nC 3
2 
 2.2n C k � 1/ � 8

p
2k2: (12.52)

In order to prove the theorem, we must bound the Lebesgue function associated
with the real section Rk using the Lebesgue function or constant associated with
the complex section EkC2n�1. To this end, we propose to bound the Lagrange
polynomials associated with Rk using those associated with EkC2n�1. For notational
simplicity, we introduce

Gk D E2nCk�1; 2n C 1 < k < 2nC1 C 1; (12.53)

where Gk is considered as a set. The section „k is obtained from E2nCk�1 by the
elimination procedure described in (12.40). The following lemma describes how Gk

can be obtained from „k.

Lemma 4. Let E be a Leja sequence with e0 D 1 and # D .j/j�0 the sequence
defined in Theorem 4. For any n � 0 and any k with 2n C 1 < k < 2nC1 C 1, we
have

Gk D f0; 1g [ f2; 2; 	 	 	 ; 2n ; 2ng [ Fk Fk WD #2nC1;k D f2nC1; 	 	 	 ; k�1g:
(12.54)

Proof. We have that

Gk D E2nCk�1 D E2nC1 ^ E2nC1;2nCk�1 D E2nC1 ^„2nC1;k:

Therefore, we only need to show that E2nC1 D f0; 1; 2; 2; 	 	 	 ; 2n ; 2ng in the set
sense. Since E2nC1 coincides with the set of 2nC1-root of unity, E2nC1 is the union of
f1;�1g and f2; : : : ; 2ng and their conjugates, which finishes the proof. ut

The previous lemma allows us to relate the polynomials WRk defined in (12.43)
and the polynomials wGk and their derivatives.

Lemma 5. Let E be a Leja sequence on U with e0 D 1 and# and R the associated
sequence as in Theorem 4. Let n, k, Fk, and Gk as in the previous lemma. For any
z 2 @U and x D <.z/

jWRk.x/j D jz2 � 1jjwGk.z/jjwFk
.z/j D jz2 � 1jjwGk.z/jjwFk

.z/j: (12.55)

Consequently, for any j D 0; 	 	 	 ; k � 1
jW 0Rk

.rj/j D 2˛jjw0Gk
.j/jjwFk

.j/j; S (12.56)

where ˛j D 1 for every j except for j D 0 and j D 1 for which it is equal to 2.
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Proof. Given z; z0 2 @U , x D 1
2
.z C z/, and x0 D 1

2
.z0 C z0/, one has

2jx�x0j D 2
ˇ
ˇ̌ z C z�1

2
� z0 C z0�1

2

ˇ
ˇ̌ D

ˇ
ˇ̌
z�z0C1

z
� 1

z0
ˇ
ˇ̌ D jz�z0j

ˇ
ˇ̌
1� 1

zz0
ˇ
ˇ̌ D jz�z0jjz�z0j:

(12.57)

Since rj D <.j/ and j 2 @U for any j � 0,

jWRk.x/j D
k�1Y

jD0
2jx � rjj D

k�1Y

jD0
jz � jj

k�1Y

jD0
jz � jj:

In view of (12.54), taking into account that 0 D 1 and 1 D �1 are repeated twice in
the previous product, the first part in (12.55) follows. The second part is immediate
since z and z play symmetric roles. This result combined with identity (12.57) shows
that for every j D 1; 	 	 	 ; k � 1

jW 0Rk
.rj/j D lim

x!rj

jWRk.x/j
jx � rjj D lim

z!j

jz2 � 1jjwGk.z/jjwFk
.z/j

1
2
jz � jjjz � jj

;

where the limit limz!j is meant in the circle @U . The second result follows then

from the fact that limz! jz2 � 1j=jz � j is equal to 1 for every  2 @U , except for
 D 1 and  D �1 for which it is equal to 2. ut

In view of the above, we are now able to relate the Lagrange polynomials
associated with the sections Rk and those associated with the set Gk, hence the
Lebesgue functions associated with Rk and Gk. First, we introduce the quotient
notation

qk.z; / WD jwFk
.z/j

jwFk
./j ; z 2 @U ;  2 @U n Fk: (12.58)

Lemma 6. We have

LRk � 2LGk sup
z2@U
2Gk

qk.z; /: (12.59)

Proof. We denote by l0; : : : ; lk�1 the Lagrange polynomials associated with the sec-
tion Rk and by L0;L1;L.2;1/;L.2;2/; 	 	 	 ;L.2n;1/;L.2n;2/;L2nC1; 	 	 	 ;Lk�1, the Lagrange
polynomials associated with the set Gk following the order given in (12.54). For
convenience, we write the first polynomials as

lj.x/ WD WRk.x/

W 0Rk
.rj/.x � rj/

; x 2 Œ�1; 1�:
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In view of Lemma 5 and identity (12.57), we have for j D 0; : : : ; k � 1, z 2 @U and
x D <.z/

jlj.x/j D 1

˛j

ˇ̌
ˇ

z2 � 1
.z � j/.z � j/

ˇ̌
ˇ

jwGk.z/j
jw0Gk

.j/j
jwFk

.z/j
jwFk

.j/j (12.60)

where ˛j are defined as in Lemma 5. We observe that

ˇ̌
ˇ

z2 � 1
.z � /.z � /

ˇ̌
ˇ D

ˇ̌
ˇ

z � z

.z � /.z � /
ˇ̌
ˇ D

ˇ̌
ˇ

z �  C  � z

.z � /.z � /
ˇ̌
ˇ � 1

jz � j C 1

jz � j :
(12.61)

The last inequality applied with the real values  D 0 D 1 and  D 1 D �1 and
injected in (12.60), with ˛0 D ˛1=2, yields

jl0.x/j � qk.z; 0/jL0.z/j and jl1.x/j � qk.z; 1/jL1.z/j: (12.62)

Now for the indices j D 2; : : : ; 2n, since j and j play symmetric roles in the sense
<.j/ D <.j/ D rj and j; j 2 Gk, one observes that (12.56) yields

jw0Gk
.j/jjwFk

.j/j D 1

2
jW 0Rk

.rj/j D jw0Gk
.j/jjwFk

.j/j:

Taking this equality into account when injecting (12.61) into (12.60) and the fact
that ˛j D 1, we deduce

jlj.x/j � qk.z; j/L.j;1/.z/C qk.z; j/L.j;2/.z/: (12.63)

Finally for the indices j D 2n C 1; : : : ; k � 1, taking account of jz � j D jz � j and
the identity (12.55), which shows that jwGk.z/jjwFk

.z/j D jwGk.z/jjwFk
.z/j, when

injecting (12.61) into (12.60), we obtain

jlj.x/j � qk.z; j/Lj.z/C qk.z; j/Lj.z/: (12.64)

Summing the inequalities (12.62), (12.63), and (12.64), we conclude the proof. ut
In view of the previous lemma, we can derive Theorem 5 through a study of the

growth of the quotient function qk. By the main structure of Leja sequences on U
described by Theorem 2, we have that Fk D E2nC1;2nCk�1 is a k0-Leja section with
k0 D k � .2n C 1/ and 0 < k0 < 2n, therefore by (12.37), we derive

qk.z; / D jwFk.z/j
jwFk./j

� 2nC1�p0.k0/

j2n � e2
n

2nC1 j
:
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Since e2nC1 is a 2nC1-root of �1, .e2nC1 /2
n D ˙i. As for  2 Gk, since Gk � E2nC2 D

U2nC2 , 2
n 2 f1;�1; i;�ig. This shows that necessarily j2

n

� e2
n

2nC1 j � p
2, so that

sup
z2@U
2Gk

qk.z; / � 2nC 1
2�p0.k0/: (12.65)

This bound injected in (12.59) completes the proof of Theorem 5.

12.5 Growth of the norms of the difference operators

In this section, we focus our attention on the difference operators

�0 D I0; and �k D Ik � Ik�1; k � 1: (12.66)

associated with interpolation on Leja sequences on @U and <-Leja sequences on
Œ�1; 1�. We are interested in estimating their norm

Dk WD sup
f2C.X/�f0g

k�kf kL1.X/

kf kL1.X/
: (12.67)

We write Dk.Z/ when needed to emphasize the dependence on the sequence Z. It is
immediate that D0 D L0 D 1 and Dk � Lk C Lk�1 any for k � 1. We shall sharpen
the previous bound when Z has a particular structure, for instance, if Z is a Leja or
an <-Leja sequence.

We recall that Ik D IZkC1
. Similar to the expression of Lebesgue constant

in (12.19), we can express Dk using Lagrange polynomials. Indeed, using Lagrange
interpolation formula in fz0; : : : ; zkg, it can be easily checked that for any k � 1

�kf .z/ D
�

f .zk/ � IZk f .zk/
� wZk.z/

wZk.zk/
; z 2 X: (12.68)

This implies that

Dk.Z/ D sup
z2X

jwZk.z/j
jwZk.zk/j sup

f2C.X/�f0g
jf .zk/ � IZk f .zk/j

kf kL1.X/
: (12.69)

The second supremum in the previous equality is obviously bounded by 1C�Zk.zk/,
where �Zk is the Lebesgue function as defined in §12.2, see Remark 1. This bound
is actually attained: to see this, take f a function in C.X/ having a maximum value
equal to 1 and satisfying f .zk/ D �1 and f .zj/ D jlj.zk/j

lj.zk/
for every j D 0; : : : ; k � 1

where l0; : : : ; lk�1 are the Lagrange polynomials associated with Zk. Therefore

Dk.Z/ D
�
1C �Zk.zk/

�
sup
z2X

jwZk.z/j
jwZk.zk/j : (12.70)
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The previous formula shows in particular that if Z is a Leja sequence on X, then

Dk.Z/ D 1C �Zk.zk/: (12.71)

In particular, in view of the results on Leja sequences on the unit disk, more
precisely (12.36), we have

Theorem 6. Let E be a Leja sequence in U with initial value e0 2 @U . The norms
of the difference operators associated with E satisfy D0 D 1 and for k � 1

Dk � 1C k (12.72)

Combining this result with (12.23), we obtain the following stability estimate for
the multivariate interpolation operator.

Corollary 1. With X D U and E any Leja sequence with initial value e0 2 @U ,
one has

L� � .#.�//2; (12.73)

for any downward closed set �.

Formula (12.70) is convenient in the case of Leja sequences since it yields exact
values of the quantities Dk. In the case of <-Leja sequences, we opt for a different
expression of (12.70). From the formulas of Lagrange polynomials associated with
Zk, we may write (12.70) as

Dk D
� 1

jwZk.zk/j C
k�1X

jD0

1

jw0Zk
.zj/jjzk � zjj

�
sup
z2X

jwZk.z/j: (12.74)

We remark that jwZk.zk/j D jw0ZkC1
.zk/j and jw0Zk

.zj/jjzk � zjj D jw0ZkC1
.zj/j for any

j D 0; : : : ; k � 1, we may then rewrite (12.70) in a more compact form

Dk D
� kX

jD0

1

jw0ZkC1
.zj/j

�
sup
z2X

jwZk.z/j (12.75)

Now, we let R D .rj/j�0 be an <-Leja sequence. Using for this sequence the
polynomials WRk defined in (12.43) instead of wRk , we may rewrite (12.75) for R as

Dk.R/ D 2ˇk.R/ sup
x2Œ�1;1�

jWRk.x/j where ˇk.R/ WD
kX

jD0

1

jW 0RkC1
.rj/j :

(12.76)

We propose to bound separately the quantities ˇk.R/ and sup
x2Œ�1;1�

jWRk.x/j in this

order.
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Lemma 7. Let R be a <-Leja sequence. We have ˇ2n.R/ D 1
4

for any n � 0. More
generally, for k ¤ 2n � 1,

ˇk.R/ � 2
0.k/�p0.k/

2
; (12.77)

where 
0.k/ and p0.k/ are defined in (12.31).

Proof. We first assume that k D 2N � 4 is an even integer. We have

ˇk.R/ D 1

jW 0R2NC1
.1/j C 1

jW 0R2NC1
.�1/j C 1

jW 0R2NC1
.0/j C

NX

jD2

� 1

jW 0R2NC1
.r2j�1/j C 1

jW 0R2NC1
.r2j/j

�
: (12.78)

We introduce the shorthand S D R2 where R2 is the sequence depending on R
according to (12.42). Using Lemma 2, we deduce that

ˇk.R/ D 1

jW 0SNC1
.1/j C 1

jW 0SNC1
.�1/j C

NX

jD2

1

jW 0SNC1
.sj/j D ˇN.S/:

The same argument implies that ˇ2.R/ D ˇ1.S/, so that ˇ2N.R/ D ˇN.S/ is valid
for any N � 1. Since S is also an <-Leja sequence, see Lemma 1, the verification
ˇ2.S/ D ˇ1.S/ D 1

4
for any <-Leja sequence S implies the first result in the lemma

ˇ2n.R/ D 1
4

for any n � 0.
We now assume that k D 2N C 1 � 3 is an odd integer. First, we isolate the

last quotient in the sum giving ˇk.R/ and multiply the other quotients by 2jrj�rkC1j
2jrj�rkC1j

yielding

ˇk.R/ D 1

WRk.rk/
C

k�1X

jD0

2jrj � rkC1j
jW 0RkC2

.rj/j :

Since k D 2.N C1/�1 and k C2 D 2.N C2/�1, regrouping the sum as in (12.78)
and using Lemmas 2 and 3, we deduce

ˇk.R/ D 2jrkj
jWSNC1

.sNC1/j C 2
j1 � r2NC2j C j � 1 � r2NC2j

2jW 0SNC2
.1/j C 2

jr2NC2j
jW 0SNC2

.�1/j C

2
� NX

jD2

jr2j�1 � r2NC2j C jr2j � r2NC2j
2jW 0SNC2

.sj/j
�
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Since jx � rj C jx C rj � 2 for any x; r 2 Œ�1; 1� and r2j�1 D �r2j for every j � 2,
we deduce that

ˇk.R/ � 2

jWSNC1
.sNC1/j C 2

jW 0SNC2
.1/j C 2

jW 0SNC2
.�1/j C

NX

jD2

2

jW 0SNC2
.sj/j � 2ˇNC1.S/:

We introduce the sequence .ˇk/k�1 defined by

ˇk WD sup
n
ˇk.R/ W R isan <�Lejasequence

o
; k � 1:

Since S D R2 is also an <-Leja sequence, in view of the previous discussion, we
have ˇ1 D 1=4 and

ˇ2N D ˇN ; ˇ2NC1 � 2ˇNC1; N � 1:

The sequence .ˇk/k�1 is positive therefore it is bounded by the sequence 1
4
.uk/k�1

where .uk/k�1 is defined inductively by u1 D 1 and

u2N D uN ; u2NC1 D 2uNC1; N � 1:

The sequence .uk/k�1 is given by

u2n D 1; n � 0; uk D 2
0.k/�p0.k/C1; k ¤ 2n � 3:

Indeed, we check easily that u1 D 1 and u2N D uN . Let now N � 1. If N C 1 D 2n

for some n, then 2NC1 D 2nC1�1, so that u2NC1 D 2 D 2uNC1. Else if NC1 ¤ 2n,
then by “binary” subtraction we have


0.2N C 1/ D 
0.N/ D 
0..N C 1/ � 1/ D 
0.N C 1/ � p0.N C 1/C 1;

so that u2NC1 D 2uNC1. As a consequence, the sequence .ˇk/k�1 satisfies

ˇk � uk

4
D 2
0.k/�p0.k/

2
;

for any k ¤ 2n, which finishes the proof. ut
Lemma 8. Let R be an <-Leja sequence. For any k � 2,

sup
x2Œ�1;1�

jWRk.x/j � 4
1.k/Cp0.k/�1: (12.79)

Proof. Let n � 0, 2n C 1 < k < 2nC1 C 1, and k0 D k � .2n C 1/. By Lemma 5, for
z 2 @U and x 2 Œ�1; 1�, we have

jWRk.x/j D jz2 � 1jjwGk.z/jjwFk
.z/j � 2 
 2
1.2nC1Ck0/2
1.k

0/ D 4
1.k
0/C1;
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where we have used that Gk and Fk are, respectively, f2nC1 C k0g-Leja and k0-Leja
section of the unit disk and the second point in Theorem 3. When k D 2n C 1, the
section Rk corresponds to the Gauss-Lobatto points as in (12.41) and the set Gk to
the 2nC1-roots of 1, which shows that the above estimate remains valid since k0 D 0

and

jWRk.x/j D jz2 � 1jjwGk.z/j D j.z2 � 1/.z2nC1 � 1/j � 4:

In both cases, since 0 � k0 < 2n and k D k0 C 2n C 1, the number of ones in the
binary expansion of k0 satisfies 
1.k0/C 1 D 
1.k0C 2n/ D 
1.k � 1/. Observe that

1.k � 1/ D 
1.k/ � 1 if k is odd and 
1.k � 1/ D p0.k/ C 
1.k/ � 1 for k even,
therefore 
1.k0/C 1 D 
1.k/C p0.k/ � 1. We deduce that for any k � 2, we have
the bound

jWRk.x/j � 4
1.k/Cp0.k/�1;

which completes the proof. ut
In view of the two previous lemmas, we are now able to provide a bound on the

growth of the norms of the difference operators for <-Leja sequences.

Theorem 7. Let R be an <-Leja sequence in Œ�1; 1�. The norms of the difference
operators associated with R satisfy D0 D 1 and for k � 1

Dk � .1C k/2 (12.80)

Proof. For k D 1, we have ˇ1.R/ D 1=4 and WR1 .x/ D 2.x � 1/, therefore in
view of (12.76), we get D1.R/ � 2. For the values 2n < k < 2nC1, combining
formula (12.76) and the bounds (12.77) and (12.79) obtained in the two previous
lemmas, we deduce

Dk.R/ � 2 
 2
0.k/�p0.k/

2
4
1.k/Cp0.k/�1 D 22
1.k/Cp0.k/C
0.k/�2 � 22
1.k/C2
0.k/�2:

Since 
0.k/ C 
1.k/ D n C 1 for the values 2n < k < 2nC1, for such values
Dk.R/ � 22n � k2. The previous bound can be checked for k D 2n since ˇk D 1

4
.

We observe then that the bound .k C 1/2 is valid for any k � 1. ut
Combining this result with (12.23), we obtain the following stability estimate for

the multivariate interpolation operator.

Corollary 2. With X D Œ�1; 1� and Z an <-Leja sequence on Œ�1; 1�, one has

L� � .#.�//3; (12.81)

for any downward closed set �.
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Chapter 13
OperA: Operator-Based Annihilation
for Finite-Rate-of-Innovation Signal Sampling

Chandra Sekhar Seelamantula

Abstract We consider the problem of finite-rate-of-innovation (FRI) signal
sampling, which received a lot of attention from the sampling community in
the past decade. Specifically, we consider the mechanism of reconstruction based
on the notion of annihilation and show that one can design annihilators based
on linear differential operators and translation operators. By working in the
continuous domain, we show that annihilation can be achieved on nonuniform
grids using derivative-type sampling approaches and on interleaved sampling grids
using translation-operator-based annihilators. The standard annihilation procedure
operating in the discrete domain becomes a special case of this approach. We
show perfect reconstruction results with the sampling approaches considered and
present simulation results to support the theoretical calculations. We also establish
a link between annihilation and exponential-spline construction. Monte Carlo
performance analysis in the presence of noise shows that annihilation on interleaved
sampling grids leads to more noise-robust estimates than annihilation on uniform
sampling grids.

13.1 Introduction

Shannon’s sampling theorem [1] for bandlimited signals set the stage for analog-
to-digital conversion and revolutionized the way electrical engineers addressed the
problem of information transmission using digital means. Shannon’s sampling the-
orem guarantees that bandlimited signals can be reconstructed exactly from samples
taken at integer multiples of the sampling period provided that the sampling period
is chosen to satisfy the Nyquist criterion. The notion of perfect bandlimitedness
is not practical, as most real-world signals are not bandlimited. However, essential
bandlimitedness can be ensured by using an analog lowpass prefilter to suppress
frequencies beyond a chosen frequency. In the decades that followed Shannon’s
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celebrated paper, many attempts have been made to generalize Shannon’s theory
[2, 3]. One such generalization was provided by Papoulis (Papoulis’ Generalized
Sampling Theorem [4]), who considered the problem of reconstructing from the
samples of filtered versions of a bandlimited signal. Each channel operates at the
corresponding Nyquist rate and the overall sampling scheme operates at the Nyquist
rate corresponding to the full-band, bandlimited signal.

Another type of generalization came in the context of sampling and reconstruct-
ing signals that are not bandlimited, but lie in a shift-invariant subspace spanned
by an appropriately chosen generator kernel [3, 5]. The signal subspace structure in
this case is similar to that of Shannon’s where the generator kernel is a sinc function.
Some examples of generator kernels are basis splines (B-splines) [6–8], exponential
splines (E-splines) [9, 10], Gaussian functions, etc.

In the past one decade, extensive research has gone into the sampling and recon-
struction of signals that are not bandlimited, but possess a certain structure. The
structure could be in the form of sparsity in time or spatial domains or parsimony
of representation in a suitably chosen basis. In this direction, various techniques
and algorithms have been developed within the framework of Compressed Sensing
(CS) [11–15]. This is different from the classical sampling framework where one
addresses the question of analog-to-discrete-signal conversion in the process of
sampling, and vice versa, during reconstruction. The CS literature largely focuses
on finite-dimensional measurements and sequence recovery from projections, which
may also be random. Another direction of research within the framework of sparsity
goes by the name of finite-rate-of-innovation (FRI) signal sampling. The notion
of FRI was introduced by Vetterli et al. [16] to quantify the degrees of freedom
possessed by certain classes of parametric, not necessarily bandlimited, signals.
Specifically, a signal is said to have a finite rate of innovation if it has a fixed number
of degrees of freedom per unit time interval or spatial extent. Typical examples
of FRI signals are a stream of Dirac impulses, stream of differentiated Dirac
impulses, piecewise-constant signals [16], piecewise-polynomial or trigonometric
signals [17], nonuniform splines, superposition of amplitude-scaled and shifted
pulses, etc. The sampling mechanism for such signals comprises computing inner-
products (equivalently, filtering) with a suitable sampling kernel, resulting in a
sequence of measurements. Often, the number of such measurements required
for capturing the degrees of freedom is finite. The sampling kernel is carefully
designed such that the measurements or their linear combinations can be expressed
in the form of a power-sum sequence [18]. Some important examples of such
kernels are Gaussians, sinc functions [16], sum-of-sincs function [19], polynomial-
reproducing kernels (such as B-splines), exponential-reproducing kernels (such
as E-splines), and kernels associated with rational transfer functions [20], etc. In
particular, practically realizable kernels such as causal exponentials have given rise
to stable reconstruction algorithms in the multichannel setting [21, 22]. In many
formulations, the problem of FRI signal reconstruction is eventually reduced to

one of solving for the parameters of a sequence of the form f .n/ D
LX

`D1
a` un

`,
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where the parameters a`s and u`s are unknown and have to be solved for. Such
problems are encountered in various disciplines of engineering and science. In
signal processing, this problem has been extensively studied within the framework
of high-resolution spectral estimation. One of the early methods to solve the problem
in the context of harmonic retrieval dates back to the eighteenth century, when de
Prony [23] introduced the so-called annihilating filter methodology to solve for the
parameters. Subsequent developments in high-resolution spectral estimation led to
many important contributions such as the multiple signal classification (MUSIC)
algorithm [24], estimation of signal parameters via rotational invariance technique
(ESPRIT) [25], minimum-norm method [26], and their numerous variants [27, 28].

While there are strong similarities between the FRI methodology and high-
resolution spectral estimation, there are also differences and unique challenges
within the FRI context. For example, the kernel design is unique to FRI sampling
methods and is intimately tied to the FRI signal and the reconstruction methodology
adopted. In most cases, if one would like to deploy annihilation-based methods for
reconstruction, it would be convenient to have a kernel that is capable of reproducing
exponentials or polynomials (Strang-Fix condition [20], or its generalized version
[29]) so that the measurements can be expressed using linear operators as a
power-sum. There is a duality between harmonic retrieval and the reconstruction
of a periodic stream of Dirac impulses, but the link becomes weak when one
is interested in sampling more sophisticated and practically relevant FRI signals
such as piecewise-constant signals, piecewise-polynomial/sinusoidal signals, etc.
In other words, generic FRI signals do not have counterparts in the spectral
estimation paradigm. FRI methods have proved to be useful in improving the image
reconstruction quality in imaging modalities such as ultrasound [19, 30] and optical-
coherence tomography [31, 32].

13.1.1 This chapter

In this chapter, we address the core reconstruction methodology based on the
concept of annihilation. In most FRI methods, the reconstruction problem is reduced
to solving for the parameters of a linear combination of exponential functions.
Therefore, we focus on the sum-of-exponential signals and develop operator-based
annihilation (codenamed OperA) strategies. We work largely in the continuous
domain and address the reconstruction issue based on discrete measurements. We
take an ab initio approach and show that annihilation can be directly achieved using
linear differential operators (Section 13.2), which gives rise to a new type of Deriva-
tive Sampling, in which one measures the function (which is a sum of exponentials
or linearly modulated exponentials) and a minimal number of derivatives (deter-
mined by the order of the model) at synchronized time instants, and then computes
the parameters of the function within the annihilation framework. The interesting
aspect is that exact reconstruction is guaranteed in theory and the sampling grid is
not constrained to be uniform. We next demonstrate annihilation using translation
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operators (Section 13.3), which may be viewed as the finite-difference counterpart
of the differential operators. This approach has two advantages: (i) the annihilation
equation manifests in continuous time, which makes it possible to deviate from the
uniform sampling pattern to a more generic interleaved sampling pattern; and (ii)
it establishes a direct link between annihilation operators and exponential splines,
which play an important role in wavelet theory [33] and kernel design for FRI
problems. More precisely, we show that exponential annihilation and exponential-
spline localization filter design problems are equivalent. Monte Carlo performance
analysis in the presence of noise shows that annihilation on an interleaved sampling
grid leads to a significant improvement in estimation performance over annihilation
carried out on a uniform sampling grid.

13.1.2 Notations

The first-order derivative operator is denoted as D D d

dt
, while the higher-order

ones are denoted as Dk D dk

dtk
; k D 1; 2; 3; 	 	 	 . The identity operator is denoted

by I. Since D0 does not involve computing any derivative, naturally D0 D I. The
shift/translation operator is denoted by S� , where the subscript denotes the quantum
of shift; for example, S�ff .t/g D f .t � �/.

13.2 Annihilation based on differential operators

13.2.1 Sum of exponentials

Consider the differential equation Df D ˛ f , where ˛ 2 C. The nontrivial solution
of this differential equation is f .t/ D exp.˛ t/. In fact, f is also an eigenfunction of
the operator D. This fact can also be expressed equivalently as follows:

.D � ˛ I/f D 0: (13.1)

Thus, the operator L
�D .D�˛ I/maps f to 0. In other words, .D�˛ I/ annihilates f .

If we turn the problem the other way round and ask for what values of ˇ will
.D � ˇ I/ annihilate f ?, the answer would be ˇ D ˛. Therefore, .D � ˇ I/f .t/ D 0;

8t 2 R if and only if ˇ D ˛. Thus, in principle, given access to f and its
derivative, the parameter ˛ can be computed directly by asking for what value
of ˇ, .D � ˇ I/f .t/ vanishes, and that value would be ˛ (up to phase-wrapping
ambiguity). This property carries over to the multi-exponential generalization that
we shall soon attempt. Since the annihilation happens for all values of t, the function
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and its derivative are required to be measured only over a short interval or even at a
single point. Thus, given f and its derivative at a point, and the knowledge that f is
an exponential helps us determine the function for all values of t.

The function f .t/ is, in general, an unbounded function. For Ref˛g < 0, where Re
denotes the real part, the function blows up for t < 0 and vice versa for Ref˛g > 0.
For purely imaginary ˛, the function is oscillatory. In all these cases, the function
is neither integrable nor square integrable, a sought-after property in most signal
processing paradigms, which does not seem to be required here. Thus, annihilation
has little to do with function stability or boundedness. In practice, however, one
works with functions over a finite duration interval.

By taking into account linearity of the differential operator, we make a general-
ization. Consider the function

f .t/ D
pX

iD1
ai exp.˛i t/: (13.2)

Each of the constituents ai exp.˛i t/ is annihilated by the operator Li
�D .D � ˛i I/.

Hence, f .t/ is annihilated by the composite operator L D
pY

iD1
Li, which can be

expressed as
pX

iD0
�i Di with D0 D I and �p D 1. Consider the question of

determining the parameters of f .t/ given that it is of the form shown in (13.2).

Constructing L D
pX

iD0
�i Di, and enforcing Lf .t/ D 0, �i can be determined. Since

the annihilation holds for all values of t, and the number of unknowns in � is p,
we need Lf .ti/ D 0; i D 1; 2; 	 	 	 ; p, where ti are the observation/sampling instants,
which are not required to be uniformly spaced. In principle, any set of p points
would suffice for estimating the �i s. The system of equations that one has to solve
is the following:
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:::
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1
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:

„ƒ‚…
0

Thus, � is a vector that lies in the null-space of the matrix F. Incidentally, the
matrix F has an alternant structure. This is a linear system of equations involving
exponentials and one is interested in a non-trivial solution. In most cases, with
distinct exponentials, a unique non-trivial solution may exist, but generic guarantees
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on uniqueness are not yet available. Hence, given a function and its p derivatives at p
points, it is possible to estimate the coefficient vector, from which one can construct

the annihilator polynomial
pX

iD0
�i Di. By expressing the polynomial in terms of its

factors
pX

iD0
�i Di D

pY

iD1
.D � ˛i I/, the parameters ˛i may be computed by following

a root-finding procedure. Once the ˛s are obtained, one can obtain the ais in (13.2)
by solving the following linear system of equations:
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;

where f denotes the vector of measurements. Instead of f, one could also employ the
vector of derivatives or the higher-order derivatives f.k/, with matrix E constructed
accordingly. In any case, we have perfect reconstruction of the sum of exponen-
tials. A schematic of the differential-operator-based sampling circuit is shown in
Figure 13.1.

D

D

D

f(t)

f (1)(tk)

f (2)(tk)

f (p)(tk)

...

Timing circuit

f(tk)

Fig. 13.1 A schematic of the differential-operator-based sampling circuit. The set of measure-
ments have to be in time-synchrony for every tk, which is ensured by the timing circuit.
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We summarize the preceding analysis in the form of the following proposition:

Proposition 1. Given a function f .t/ to be of the form of a linear combination

of distinct exponentials: f .t/ D
pX

iD1
ai exp.˛i t/, p samples of the function and its

p derivatives, at p distinct known instants, are sufficient to fully characterize the
function f for all values of t.

The above proposition is reminiscent of the derivative sampling approach,
which, in turn is a special case of Papoulis’ generalized sampling theorem.
These approaches consider the reconstruction of a bandlimited function from
the knowledge of the function and its derivatives [34]. The difference between the
two approaches is that we are dealing with nonbandlimited functions in a finite
dimensional setting with no specific requirements of stability.

The key to reconstruction is annihilation using the differential operator; however,
annihilation is not the goal in itself, which can possibly be obtained in many
different ways. The goal is to come up with a signal-dependent annihilator in a
fashion that enables reliable estimation of the signal parameters.

13.2.2 Simulation results

To illustrate the accurate reconstruction capability of the operator-based sampling
approach, we consider a sum of five exponentials, with random parameters. In
theory, the exponentials are not required to be bounded, but keeping numerical pre-
cision issues in mind, we have considered exponential parameters with negative real
parts. The poles are complex-valued in general and their locations corresponding to
one such instantiation of the exponentials are shown in Figure 13.2.

The samples of the function and the derivatives were measured at fifty random
locations, generated by perturbing a uniform sampling grid at the integers 1
to 50. The perturbation has a uniform distribution over Œ0; 0:5�. The resulting
nonuniform locations are known to the reconstruction algorithm. The amplitudes
of the exponentials were chosen from a standard normal distribution (zero mean,
unity variance). The number of exponentials were assumed to be known in the
reconstruction process. The estimated poles coincided quite accurately with the
ground truth as shown in Figure 13.2. The complex-valued ground truth signal f .t/
and the reconstructed counterpart Of .t/ is shown in Figure 13.3. The reconstruction
error is quite low, of the order of 10�12.

13.2.3 Sum of linearly modulated exponentials

Consider the function

f .t/ D t exp.˛ t/; (13.3)
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Fig. 13.2 Pole configurations corresponding to the synthesized signal vis-a-vis the poles estimated
by the differential-operator-based-annihilation technique.

which is a ramp multiplied by an exponential. The function f satisfies the differential
equation

.D � ˛ I/2 f D 0; (13.4)

and the corresponding annihilator polynomial has repeated roots at ˛. Extending to
the multicomponent case, we have

f .t/ D
pX

iD1
ai t exp.˛i t/; (13.5)

which is annihilated by the composite operator L D
pY

iD1
L2i =

2pX

iD0
�i Di, where

�2p D 1. To determine the parameters of f .t/ given that it is of the form given
in (13.5), we enforce Lf .t/ D 0;8t 2 R. Since the annihilation holds for all values
of t, and the number of unknowns in the vector � is 2p, we need Lf .ti/ D 0; i D
1; 2; 	 	 	 ; 2p, where tis are the sampling instants. Observe that ti are not required to
be uniformly spaced. In principle, any set of 2p points would suffice for estimating
the �s. The system of equations that one has to solve is the following:
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Fig. 13.3 A comparison of the reconstructed signal (sum of exponentials) with the ground truth.
The first column shows the real and imaginary parts of the ground truth signal, the second column
that of the reconstruction, and the third column corresponds to the error signal in the real and
imaginary parts. Although theoretically, exact reconstruction is guaranteed, in practice, numerical
precision constraints imposed by the root-finding technique limit the achievable accuracy, and
hence the error signal shown in the third column is sufficiently small, but not vanishing.
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Thus, � lies in the null-space of the matrix F. This is a linear system of equations
with a non-trivial solution in general. Thus, given a function and its 2p derivatives
at 2p distinct points, it is possible to estimate the coefficient vector, from which one

can construct the annihilator polynomial
2pX

iD0
�i Di. By expressing the polynomial in

terms of its factors
2pX

iD0
�i Di D

pY

iD1
.D�˛i I/2, we compute the parameters ˛i (which
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have multiplicity 2) essentially by following a root-finding procedure. Once the ˛i s
are obtained, one can obtain the ais in (13.2) by solving the following linear system
of equations:

0

BB
BBB
@

t1 exp.˛1 t1/ t1 exp.˛2 t1/ t1 exp.˛3 t1/ 	 	 	 t1 exp.˛p t1/
t2 exp.˛1 t2/ t2 exp.˛2 t2/ t2 exp.˛3 t2/ 	 	 	 t2 exp.˛p t2/
t3 exp.˛1 t3/ t3 exp.˛2 t3/ t3 exp.˛3 t3/ 	 	 	 t3 exp.˛p t3/
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where f denotes the vector function measurements. Instead of f, we could also
employ the vector of derivatives or the higher-order derivatives f.k/, with correspond-
ing matrix E constructed accordingly. The preceding analysis leads to the following
proposition.

Proposition 2. Given a function f .t/ to be of the form of a linear combination of

p distinct exponentials: f .t/ D
pX

iD1
ai t exp.˛i t/, 2p samples of the function and

its derivatives at 2p distinct known instants are sufficient to fully characterize the
function f for all values of t.

The above proposition may also be viewed as a finite-dimensional counterpart of
Papoulis’ generalized sampling theorem for nonbandlimited signals. By considering
higher-order roots of the corresponding annihilator polynomial, we can develop
similar results, which can all be summarized in the following proposition.

Proposition 3. Given a function f .t/ to be of the form of a linear combination of

distinct polynomial modulated exponentials: f .t/ D
pX

iD1
ai tn exp.˛i t/, where n is a

natural number, np samples of the function and its derivatives at np distinct known
instants are sufficient to fully characterize the function f for all values of t.

13.2.4 Simulation results

We consider four randomly placed double (repeated) poles on the left-half s-plane
shown in Figure 13.4. The sampling instants were first chosen at the integers
1 to 50, followed by a uniformly distributed random perturbation over Œ0; 0:5�,
resulting overall in a nonuniform sampling grid. The corresponding signal f .t/
(which is a sum of linearly modulated exponentials), the reconstruction Of .t/, and
the reconstruction error in both real and imaginary parts are shown in Figure 13.5.
The error is of the order of 10�6 in comparison with the signal amplitude and
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Fig. 13.4 Pole configuration (repeated poles) for a sum of linearly modulated exponentials. The
estimated poles overlap accurately with the ground truth.

Fig. 13.5 A comparison of the reconstructed signal (sum of linearly modulated exponentials) with
the ground truth. The first column shows the real and imaginary parts of the ground truth signal,
the second column that of the reconstruction, and the third column corresponds to the error signal
in the real and imaginary parts.
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acceptable for practical applications. However, in comparison with the error for the
sum-of-exponentials signal, the error is higher in this case. We believe this is due to
numerical precision limitations in root-finding procedures.

13.2.5 Causal exponentials

The function types considered in the preceding analysis are not stable since they
contain exponentials that extend for all values of time. In practice, we have to deal
with their causal counterparts (which may not be stable), which can be obtained by
multiplying with the Heaviside function. This causes a small hurdle in applying the
results directly. The operator .D � ˛ I/ annihilates f .t/ D exp.˛ t/; 8t 2 R, but not
exp.˛ t/u.t/, where u.t/ denotes the Heaviside function, because

.D � ˛ I/f .t/ D ı.t/; (13.6)

where ı denotes the Dirac delta, which is caused by the derivative operator acting on
the Heaviside step discontinuity at t D 0. Since the discrepancy between the two-
sided exponentials and the causal ones is localized around the origin, the problem
can be overcome by taking measurements at instants away from the origin.

Practical linear circuits are governed by linear differential equations and their
responses are causal. The response can be sampled and the system behavior can
be analyzed by using the measurements. The exponential parameters are directly
related to the degrees of damping or oscillation in the system and hence can be
computed directly using the proposed approach.

13.3 Annihilation based on translation operators

Consider f .t/ D exp.˛ t/; and the translated version STff g.t/ �D f .t � T/ D
exp.˛ .t � T// D exp.�˛ T/ f .t/: Hence, .I � exp.˛ T/ST/ff g.t/ D 0;8t: Thus,

the operator M
�D .I � exp.˛ T/ST/ is also an annihilator of the exponential.

Since it is also linear and shift-invariant, the annihilation property holds for a
linear combination of exponentials. Thus, there is more than one way to annihilate
exponentials. Given a function f .t/ with an unknown parameter ˛, with the goal of
estimating ˛, we could construct an operator .I �exp.ˇ T/ST/ and determine for the
value of ˇ for which .I � exp.ˇ T/ST/ff g.t/ D 0: Comparing with the annihilation
based on the differential operator, we can view the operator .I � exp.˛ T/ST/ as
a weighted finite-difference operator, and as an approximation to the continuous-
domain derivative operator.
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Similar to the single exponent case, it is straightforward to verify that the

multi-exponent function f .t/ D
pX

iD1
ai exp.˛i t/ is annihilated for all time by the

operator M
�D

pY

iD1
.I � exp.˛i T/ST/„ ƒ‚ …

Mi

, which can be expressed in additive form as

M D
pX

iD0
�i SiT , where �0 D 1, and SiT is the i-times dilated version of the translation

operator ST and �is are dependent on the quantum of shift and the exponential
parameters. In principle, since the annihilation is valid for all values of t, one could

consider a generic annihilator
pY

iD1
.I � exp.˛i Ti/STi/, but we shall not consider the

generic one in the subsequent analysis.
To estimate the parameters ai and ˛i, we start with the annihilation equation using

operator M:

pX

iD0
�i f .t � i T/ D 0;8t; (13.7)

and setup a system of equations

pX

iD0
�i f .t` � i T/ D 0; ` D 1; 2; 3; 	 	 	 ; p; (13.8)

corresponding to a set of nonuniform sampling instants. However, from the preced-
ing equation, it is also clear that corresponding to each t`, the measurements are also
required at t` � iT , i D 0; 1; 2; 	 	 	 ; p, requiring a total of p.p C 1/ measurements of
f . The corresponding matrix equation for annihilation would be
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Once the � vector is computed, the roots of the polynomial
pX

iD0
�i xi are fe�˛i T ; i D

1; 2; 	 	 	 ; pg, from which ˛i can be calculated. Substituting the estimated ˛i and

the measurements in f .t/ D
pX

iD1
ai exp.˛i t/, the coefficients ai can be computed

directly by solving a linear system of equations.
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Fig. 13.6 Illustration of interleaved sampling grids. The nonuniform grid shown in the top most
plot is actually comprised of various uniform sampling grids.

Hence, the annihilation methodology, in its generic form, works with nonuni-
formly spaced samples, except that the type of nonuniformity is structured. The
sampling grid is doubly-indexed ft` � iT; i D 0; 1; 2; 	 	 	 ; pI ` D 1; 2; 3; 	 	 	 ; pg and
is actually interleaved in the sense that each of the grids corresponding to t1, t2,
etc. is uniform, but across grids, the sampling instants are not necessarily uniformly
spaced (cf. Figure 13.6).

We summarize the preceding developments in the form of the following
proposition.

Proposition 4 (Annihilation on interleaved sampling grids). Given a function
f .t/ to be of the form of a linear combination of distinct exponentials: f .t/ D

pX

iD1
ai exp.˛i t/, p.p C 1/ measurements coming from the function and its T 
 Z-

shifted versions at p distinct known instants on an interleaved sampling grid are
sufficient to fully characterize the function f for all values of t.

For illustration, consider a sum of five exponentials with poles selected randomly
from the left-half s-plane. One particular configuration of the poles is shown in
Figure 13.7. The amplitudes are chosen randomly from a uniform distribution over
Œ0; 1�. The sampling instants are random as well, chosen according to a uniform
distribution over Œ0; 50�. The value of T was set to unity. The reconstruction results
are shown in Figure 13.8.
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Fig. 13.7 The estimated pole locations in comparison with the ground truth poles.

13.3.1 Applications of interleaved sampling

Interleaved sampling may be viewed as a generalization of multicoset sampling,
which has found applications mainly in multiband, wideband communication appli-
cations such as cognitive radio. Interleaved sampling has already been considered
in the sampling literature and is known by the name periodic nonuniform sampling.
For example, Lin and Vaidyanathan proposed periodic nonuniform sampling and
reconstruction strategies for bandpass signals [35]. Lacaze proposed realizable
circuits to perform higher-order periodic nonuniform sampling [36]. Cheung and
Marks [37] showed that, when spectral holes exist within the support of two-
dimensional bandlimited signals, samples of the signal can be periodically deleted
and the deleted samples can be estimated from the retained ones using linear
interpolation. Vaidyanathan and Liu [38] and Foster and Herely [39] showed that
bandlimited signals can be reconstructed from nonuniformly decimated samples of
the corresponding sequences. Feng and Bresler [40] proposed periodic nonuniform
sampling or multicoset sampling for reconstruction of multiband signals at the
Landau minimum rate [41]. Venkataramani and Bresler [42, 43] carried out a
detailed analysis of the method and provided bounds on the aliasing error. More
recently, Mishali and Eldar [44] proposed a multicoset sampling approach for
multiband signals where the analog signal is reconstructed from interleaved samples
within the framework of compressive sensing. Interleaved sampling grids are also
used for sensing in capacitive touch-screen displays [45].
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Fig. 13.8 Visual assessment of the reconstruction performance of the proposed technique. The
first column shows the real and imaginary parts, respectively, of the ground truth signal, and
the second column shows the counterparts for the reconstructed signal. The third column shows
the instantaneous errors in estimating the real and imaginary parts. The error is of the order of
10�13, which is quite small in comparison with the sampled signal amplitude.

13.3.2 Simulation results

Given uniformly sampled measurements, one can also obtain interleaved data using
a random selection of a subset of samples. We illustrate the performance of the
technique and its noise robustness in such a scenario. Consider two complex
exponentials in white Gaussian noise:

f .n/ D a1 exp.j˛1 n/C a2 exp.j˛2 n/C w.n/; n D 0; 1; 2; 	 	 	 ;N � 1; (13.9)

where N D 128 and a1 D 1:1; a2 D 3:5; ˛1 D 0:2; ˛2 D 0:37 are randomly selected
parameters, but fixed throughout the subsequent experiment. w.n/ denotes samples
of a zero-mean, white Gaussian noise process with variance 
2. Interleaved subsets
of this sequence are generated by selecting random integer ni as ff .ni C jT/; i D
1; 2; 	 	 	 ;LI j D 0; 1; 2; 	 	 	 ; pg such that pT C max.fni; i D 1; 2; 3; 	 	 	 ;Lg/ < N,
which is the given sequence length. In the present experiment, L D 25, T D 6, and
p D 2. The interleaved sequences are stacked as
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In the presence of noise, since exact annihilation cannot be achieved, we solve the
minimization problem:

min
�

kF�k2 subject to k�k2 D 1; (13.11)

where � D
0

@
�0
�1
�2

1

A : � is the minimum eigenvector of F
H
F. From the estimated

� , the parameters ˛1 and ˛2 are obtained by computing the roots of a polynomial
with coefficient vector � . The amplitude parameters a1 and a2 are estimated using
a standard linear least-squares procedure. For every value of the signal-to-noise
ratio, 1000 Monte Carlo trials are conducted and the parameters estimated using
four different methods is carried out. The methods are the standard annihilating
filter method applied directly on f .n/, with and without Cadzow’s denoising method
[46, 47], ESPRIT, and proposed interleaved sampling method with and without
Cadzow’s denoising on f .n/. The Cramér-Rao lower bound on the variance of ˛1

and ˛2 is given by CRLB.˛`/ D 6 
2

N3 a2`
; ` D 1; 2 [27]. A comparison of the

bias, variance, and mean-square errors for the location and amplitude parameters
(˛1; ˛2 and a1 and a2, respectively) for different techniques is shown in Figures 13.9
and 13.10. Some observations are in order:

1. The performance of the interleaved sampling based annihilation method is
consistently better (in terms of bias, variance, and MSE) than the standard
annihilating filter method operating on uniform samples.

2. Cadzow’s denoising method significantly improves upon the performance of
the annihilating filter method operating on uniform sampling or interleaved
sampling grids.

3. The performance of the annihilation technique operating on interleaved sam-
pling grid is on par with that of ESPRIT and slightly better than ESPRIT for
SNR less than 0 dB.

4. Annihilation on interleaved or uniform sampling grids coupled with Cadzow’s
preprocessing step makes the performance meet the CRLB for SNR greater than
5 dB, making the estimators statistically efficient.

In the experiment, we considered integer values for n1; n2; 	 	 	 ; nL, which means
that the same set of measured samples, when rearranged in an interleaved form,
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a b

c d

e f

Fig. 13.9 (Color in electronic version) Squared bias (first row), variance (second row), and mean-
square error (third row) performance in estimation of the location parameters ˛1 (first column), and
˛2 (second column). AF: standard annihilating filter (Prony’s method); IS: interleaved sampling;
Cadzow-AF: AF preceded by Cadzow’s denoising method; Cadzow-IS: Interleaved sampling
method preceded by Cadzow’s denoising method.

lead to an improvement in performance. This is an interesting consequence in
favor of the interleaved sampling method, and requires much detailed investigation.
This property might be useful in practical imaging applications such as ultrasound
[19, 30] or frequency-domain optical-coherence tomography [32].
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a b

c d

e f

Fig. 13.10 (Color in electronic version) Squared bias (first row), variance (second row), and
mean-square error (third row) performance in estimation of the amplitude parameters a1 (first
column), and a2 (second column). AF: standard annihilating filter (Prony’s method); IS: interleaved
sampling; Cadzow-AF: AF preceded by Cadzow’s denoising method; Cadzow-IS: Interleaved
sampling method preceded by Cadzow’s denoising method.

13.3.3 From an interleaved grid, to a uniform grid

If equispaced sampling instants are chosen, that is, t` D `T , then we have the
discrete-time convolution-based annihilation equation:

pX

iD0
�i f .`T � i T/ D 0; ` D 1; 2; 3; 	 	 	 ; p; (13.12)
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and the corresponding matrix form would be

0

BBBBB
@

f .T/ f .0/ f .�T/ 	 	 	 f ..1 � p/T/
f .2T/ f .T/ f .0/ 	 	 	 f ..2 � p/T/
f .3T/ f .2T/ f .T/ 	 	 	 f ..3 � p/T/
:::

:::
:::

: : :
:::

f .pT/ f ..p � 1/T/ f ..p � 2/T/ 	 	 	 f .0/

1

CCCCC
A

„ ƒ‚ …
F

0

BBBBB
@

�0
�1
�2
:::

�p

1

CCCCC
A

„ƒ‚…
�

D

0

BBBBB
@

0

0

0
:::

0

1

CCCCC
A

„ƒ‚…
0

;

where the matrix F is Toeplitz. The number of measurements required in the uniform
sampling case is 2p as opposed to the nonuniform case where it is p.p C 1/. Once
� is estimated, the exponential parameters ˛i are estimated by root-finding and the
weights ai are estimated by solving a linear system of equations.

Proposition 5 (Annihilation on uniform sampling grids). Given a function f .t/
to be of the form of a linear combination of distinct exponentials: f .t/ D

pX

iD1
ai exp.˛i t/, 2p contiguous uniformly spaced measurements of the function are

sufficient to fully characterize the function f for all values of t.

13.3.4 Causal exponentials

Let us next consider the case of causal exponentials, which play a fundamental role
in linear system theory and circuit analysis. For the exponential, f .t/ D exp.˛ t/u.t/;
the annihilation equation .I � exp.˛ T/ST/ff g.t/ D 0 does not hold for all values
of t, but only for those values greater than T (Figure 13.11). For a p-component
function

pX

iD0
�i f .t � i T/ D 0; t > pT: (13.13)

Except for the difference in the interval over which annihilation takes place, the rest
of the machinery for estimating the parameters remains the same as in the case of
non-causal exponentials.

13.3.5 Translation-based annihilators and exponential splines

The translation-operator-based annihilator and causal exponentials have a close
link with exponential splines. For example, consider f .t/D exp.˛ t/u.t/; and the
annihilator .I � exp.˛ T/ST/ff g.t/D exp.˛ t/.u.t/� u.t � T//D 0 for t>T , which
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Fig. 13.11 A causal exponential (shown in blue) is annihilated over the interval ŒT;1� using
the translation-based localization operator, to generate an exponential spline of order zero (shown
in red).

is actually the first-order exponential spline with parameter ˛. The operator
.I � exp.˛ T/ST/ is essentially the spline localization operator. Also, the Green
function of the first-order operator D � ˛ I is the one-sided or causal exponential:
exp.˛ t/u.t/: In signal processing terms, f .t/ is the impulse response of the inverse

operator L�1. The Green function of the cascaded operator
pY

iD1
.D � ˛i I/ is the

convolution of the individual Green functions exp.˛i t/ u.t/, which is also causal.
The Green function of L can also be expressed as their linear combination: f .t/ D

pX

iD1
ai exp.˛i t/u.t/. The corresponding annihilator is

pY

iD1
.I � exp.˛i T/ST/, which

when acting on the Green function of L produces the exponential spline with
parameters f˛1; ˛2; 	 	 	 ; ˛pg: Hence, the process of annihilating a sum of causal
exponentials over a semi-infinite line can be viewed as equivalent to generating
the corresponding E-spline. When the parameters ˛i are zero, then we get the
corresponding polynomial B-spline, and the annihilator is actually the B-spline
localization filter [6, 7]. The spline link is important because spline functions and
their integer-shifted versions possess the Riesz bases property, which ensures sta-
bility of representation when transiting between continuous-domain functions and
their discrete manifestations.



482 C.S. Seelamantula

13.4 Conclusions

We investigated the aspect of annihilation in the context of FRI signal sampling and
reconstruction, and showed that annihilation operators can be designed effectively
using differential operators and translation operators. While most of the current FRI
literature focuses on annihilation of sequences using discrete operators, we adopted
a continuous-time approach, which resulted in many benefits. First, we realized
annihilation using differential operators as well as translation operators. Second,
the sampling geometry has been extended to include more generic versions such
as nonuniform sampling and interleaved sampling. Third, the analysis established a
direct link between the annihilator design and the localization filter in exponential
spline theory. Although we have demonstrated results only on sum-of-exponential
signals and linearly modulated exponentials, the key point is that the FRI signal
measurements can be reduced to one of these forms and consequently, the proposed
approaches become applicable to FRI signal sampling/reconstruction. Of particular
interest is the annihilation on interleaved sampling grids, which can be constructed
even from data measured on a uniform sampling grid. Monte Carlo performance
analysis in the presence of noise showed that significant gain in estimation
accuracy can be achieved by suitably interleaving the samples. We hope that such
improvement in accuracy will also translate to superior quality reconstruction in
ultrasound/optical imaging applications. The FRI sampling methods have been
shown to be efficient for ultrasound signal reconstruction with less number of
samples [19, 30]. Recently, we have also shown that FRI methods significantly
improve the image reconstruction quality in frequency-domain optical-coherence
tomography [32]. We hope that the approaches developed in this chapter will prove
to be useful in further enhancing the reconstruction quality and resolution in such
imaging modalities.

Acknowledgements I would like to thank my Ph.D. student Satish Mulleti for technical discus-
sions and for generating the Monte Carlo simulation results reported in this chapter.
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Chapter 14
Digital Adaptive Calibration of Data Converters
Using Independent Component Analysis

Yun Chiu

Abstract The theory and practice of applying a neural network model and learning
algorithm—Independent Component Analysis (ICA)—to the online adaptive cali-
bration of analog-to-digital converters (ADCs) is covered in this chapter. Exploiting
the independence between the input signal and an injected pseudorandom bit
sequence (PRBS), the technique attempts to blindly separate the two in the digital
conversion output, and while doing so, an equivalent model of the ADC non-
idealities is identified, resulting in the subsequent linearization of the conversion
process. The ICA framework offers new signal-processing insights into the widely
used correlation-based error-parameter identification method for the background
calibration of multistage ADCs. In addition, it provides a useful technique to
minimize the analog overhead associated with the calibration by simultaneously
identifying multiple model parameters using a single PRBS, improving the effi-
ciency and potentially the application regime of the online calibration approach for
data converters.

14.1 Background and Introduction

CMOS technology advancement has inspired a trend in mixed-signal IC design
to exploit the abundantly available on-chip digital processing power to help com-
pensate or improve the analog circuit performance. In analog-to-digital converters
(ADCs), the output bits naturally provide a digital means to infer the non-idealities
of the constituent, imperfect analog building blocks. While this statement is
nearly always true for any ADC types, those employing a multistage or multistep
conversion architecture probably benefited the most from the advocated digital
assistance.

The fundamental reason that a multistage or multistep ADC is more amenable to
the digital treatment is that, once the conversion is partitioned into multiple circuit
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stages, a succinct—often in closed form—relationship between the analog input
samples and the partial as well as the final digital output codes can be derived
without resorting to lookup tables, which are cumbersome to use for high-resolution
converters of 10 bits and above. Multistage/multistep ADCs commonly encountered
in practice are cyclic ADC, pipelined ADC, successive approximation register
(SAR) ADC, and multistage sigma–delta modulator (MASH). A brief overview of
some of these ADC architectures will be given in this section.

14.1.1 Overview of Multistage ADC Architectures

Analog-to-digital conversion is usually composed of a tandem of sampling and
quantization operations. The sampling action discretizes a continuous-time analog
signal into samples, stored as a voltage, charge, or current signal in a sample-
and-hold (S/H) circuit. The analog samples are then quantized by another circuit,
the quantizer, to obtain a fixed-point, digital representation of the analog value
of the samples. ADCs are categorized usually by the architecture of the quantizer
employed, as in practice the quantizer often occupies most of the silicon area and
consumes most of the power of the ADC (albeit the S/H also sets a fundamental
limit on the overall speed and accuracy performance).

The dominant analog tradeoff in ADC design is probably between the sample
rate (or, loosely speaking, the ADC speed) and the resolution (or, more precisely,
the signal-to-noise plus distortion ratio or SNDR). Fast ADC architectures such as
the flash ADC often produce low resolution in the range of 4–8 bits. To achieve
an accuracy of 10 bits and above, a multistage architecture is often the choice in
practice, in which the quantization operation is divided into multiple circuit stages,
each responsible for resolving a small number of bits. Once S/H circuits are inserted
in between the stages, the operation can be pipelined, resulting in the so-called
pipelined ADC. In the limiting case, a pipelined ADC resolves only one bit in each
stage while maintaining a simple analog circuit structure such that the sample rate
or conversion speed can be high.

14.1.1.1 A Two-Stage Pipelined ADC

The pipelined ADC architecture can be explained with the two-stage example shown
in Fig. 14.1, in which a one-bit first stage is connected with a backend 11-bit ADC
(assumed ideal for the sake of simplicity) through a feedback amplifier termed
the residue amplifier (RA). In normal operation, the sub-ADC of the first stage
resolves one bit (d1 D 0 or 1), the sub-DAC converts it back into the analog form
and subtracts it from the sampled-and-held input, and lastly the RA produces
an amplified version of the difference, i.e., the residue, of the unresolved 11-bit
information and passes it to the backend ADC for further processing. After the
residue is sampled by the backend ADC, the first stage is free to accept another
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Fig. 14.1 A 12-bit, two-stage ADC example: (a) block diagram, (b) interstage residue transfer
curve, and (c) overall ADC curve

input sample while the backend is working on resolving the 11-bit information from
the residue. This is how the conversion throughput can be improved at the cost of
latency, i.e., pipeline.

The residue transfer curve of the first stage is illustrated in Fig. 14.1b. The most-
significant bit (MSB) transition point is set by the sub-ADC (in this case, just one
comparator with a threshold of zero, i.e., the comparator output flips at Vi D 0). To
maintain the same signal swing for both of the stages, the RA must produce a residue
gain of 2
 exactly. Note that this interstage gain set by the RA needs to be very
accurate to guarantee the linearity of the ADC, often characterized as the integral
nonlinearity (INL) and the differential nonlinearity (DNL), is commensurate with its
resolution. For example, let us examine the points A and B, shown in Fig. 14.1b, on
the opposite sides of the MSB transition point. While the two points are located on
different segments of the residue transfer curve, since they correspond to the same
analog input (Vi D 0), they must resolve to the same output code if the ADC is ideal.
When the residue gain is exactly 2
, the two points will indeed rejoin each other at
the midpoint of the overall conversion curve, illustrated in Fig. 14.1c, once the two
partial decision codes (d1 and d2) from the two stages are weighted and combined.
In this example, the weighting factor is unity for d1 and ½ for d2.
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Fig. 14.2 A multistage pipelined ADC

14.1.1.2 Pipelined ADC and Cyclic ADC

Once we have the two-stage example laid out, it is not difficult to generalize the
concept to a multistage pipelined ADC, which can be simply conceived by imaging
that the 11-bit backend ADC is constructed in the same way with a two-stage
architecture; and then the 10-bit backend can also be constructed the same way;
and so on : : : At the end, we will end up with a pipelined multistage ADC that
has N stages, a total resolution of N bits, and each stage yields one bit. This ADC
is depicted in Fig. 14.2, wherein the switched-capacitor (SC) circuit realization of
a typical pipeline stage is also rendered [1]. Note that the sub-ADC consists of
two comparators with two threshold voltages, ˙VR/4, respectively, instead of one
comparator with a threshold of zero as introduced before. This has to do with the
internal redundancy of the pipelined ADC for circuit particularly comparator offset
tolerance. Redundancy will be introduced in Section 14.1.2.

In some applications where throughput is not the primary performance target,
large savings on the hardware cost of a pipelined ADC can be obtained by removing
all the conversion stages except the first one and iterating the conversion process
around it. This architecture is termed the cyclic or algorithmic ADC [2]. A block
diagram is shown in Fig. 14.3.

Notice that no matter for the pipelined or cyclic ADC the most critical circuit
accuracy concern always lies with the first conversion stage and this concern dimin-
ishes toward the LSB stage as more bits are resolved. In practice, all pipelined stages
are not designed with the same specs and power/area consumptions. Considering
the relaxed accuracy requirement, the later stages are often trimmed down for cost
reductions. However, we note that this is not possible for the cyclic ADC.
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Fig. 14.4 A SAR ADC: (a) block diagram and (b) typical SC realization

14.1.1.3 SAR ADC

Successive-approximation ADC is another multistep converter that is very efficient
in hardware construction, similar to the cyclic ADC. The operation principle of
the SAR ADC can be explained as follows. As shown in Fig. 14.4a, once the
input analog sample is acquired, the SAR ADC employs a binary search algorithm
to determine the digital code that best approximates the analog sample. This is
done sequentially for all the bits starting with the MSB. Taking the MSB cycle for
example, the N-bit DAC first produces an analog level corresponding to the midpoint
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of the ADC input range; the held analog sample is then compared to this DAC output
by a comparator; the decision (1 or 0) indicates whether the input resides in the upper
or lower half of the conversion range. Once the MSB is resolved, the procedure
moves on to determine the second significant bit, i.e., the DAC will produce another
analog level of ¼ or ¾ of the conversion range dependent on whether the MSB is
0 or 1, respectively; this DAC output is again compared to the analog sample and
its relative location is encoded (0 for below and 1 for above); thus the second bit is
determined. The procedure repeats itself until all the N bits are resolved.

Compared to the cyclic ADC, it is obvious that the SAR operates similarly except
that the residue production or amplification is absent during its bit cycles. A typical
SC circuit realization of the SAR ADC is rendered in Fig. 14.4b. The summing-node
(i.e., node Vx) subtraction operation is realized by the SC DAC using a process called
charge redistribution, which can be analyzed by noting that the total charge on the
high-impedance summing node must remain constant during the SAR bit cycles.
The threshold of the comparator is always zero, i.e., the comparator is simply a
zero-crossing detector.

14.1.2 Built-in Redundancy

The one-bit residue curve depicted in Fig. 14.1b is probably easier for conceptual
understanding than for practical circuit implementation. The problem can be
appreciated by examining the same residue transfer curve, reproduced in Fig. 14.5a,
representing the jth stage of a pipelined ADC (e.g., the one shown in Fig. 14.2) in
general. This stage receives an input residue signal Vj�1, resolves a digital code dj,
and produces an output residue Vj. Using a bipolar representation, the comparator
threshold is ideally placed at Vj�1 D 0 and the residue curve consists of two parallel
segments with an ideal slope of two. Now imagine that the comparator displays an
offset Vos and the decision threshold shifts away from the center point; in this case,
either an overflow (for a positive Vos) or an underflow (for a negative Vos) error will
be experienced by the backend ADC because its resolvable range is limited to [�VR,
CVR].1

Because circuit offset is inevitable in practice, a multistage pipelined ADC is
almost always realized with built-in redundancy. A well-known 1.5-bit-per-stage
architecture is shown in Fig. 14.2 [1, 2]. The transformation from a 1-bit topology
to a 1.5-bit one is illustrated with the diagrams shown in Fig. 14.5a–d. Note that
in the 1.5-bit architecture a small comparator offset will not cause any overflow or

1One can imagine this by sliding the threshold at zero to the left or right while confining it in
between the two parallel residue segments with a slope of two.



14 Digital Adaptive Calibration of Data Converters Using Independent. . . 491

VR /2

-VR /2

-VR

VR

VR

-VR

Vj

Vj-1

dj=1 dj=–1 dj=0 dj=1dj=0.5dj=0

dj=1dj=0.5dj = 0dj = 0 dj = 1

0

VR /2

-VR /2

-VR

VR

VR

-VR

Vj

Vj-1

0

VR/2

-VR/2

-VR

VR

VR

-VR

Vj

Vj-1

0

VR/2

-VR/2

-VR

VR

VR

-VR

Vj

Vj-1

0

-VR/4 VR/4

a b

c d

Fig. 14.5 Transformation of a 1-bit transfer curve without redundancy to a 1.5-bit one with
redundancy: (a) original 1-bit residue curve, (b) with an extra comparator added at VR/2, resolving
three digital levels, (c) both comparator thresholds shifted by �VR/4 to yield a symmetrical curve,
and (d) the resulting 1.5-bit residue curve. Note that the digital bits representing the three levels in
(d) are eventually all scaled by a factor of 2 and offset by �1

underflow error at either of the two MSB transition points (now located at ˙VR/4),
as the maximum values of the residue at these points are only half range ideally.2

Redundancy in SAR ADC works in a similar way, and it is also proven essential
to the proper operation of the SAR in presence of circuit non-idealities. We will skip
the discussion of SAR redundancy here. Interested readers are referred to [3–5] for
more readings.

2As quantization can be understood as division, the 1.5-bit topology is actually a realization of the
Sweeny–Robertson–Tocher (SRT) fast division algorithm well known in computer arithmetic.
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14.1.3 Error Model of Multistage ADC

As mentioned earlier, it is often possible to derive a closed-form expression to relate
the analog input and the digital output of a multistage ADC due to the explicit
residue transfer in between the stages. When represented in terms of the circuit
parameters of the ADC, the closed-form relationship thus describes a way by which
the digital output can be remapped or corrected to compensate certain non-idealities
of the analog-to-digital conversion process. Such a relationship is termed the error
model of an ADC. In this section, we formulate this model using the examples of a
simple two-stage ADC and a multistage pipelined ADC.

14.1.3.1 A Two-Stage Example of Interstage Gain Error

Let us reconsider the simple two-stage pipelined ADC example discussed in
Section 14.1.1.1, but this time with the first stage replaced by a realistic 1.5-
bit architecture. Again, the overall resolution is 12 bits and the backend ADC is
assumed ideal. The circuit diagram is redrawn in Fig. 14.6a.

A/D D/A

A/D

1.5 bits

Backend 
ADC

G ≈ 2

Vi
Vx

G

d1

d2

First stage

VR /2

-VR /2

-VR

VR

VR

d1=-1 d1=1d1=0

-VR

Vx

A

B

Vi

A

B

-VR/4 VR/4
Vi

-VR VR

d1=-1 d1=1d1=0

A

B

0

212

A

B
Do= 

d1+  d2

-VR/4 VR/4

a

b c

Fig. 14.6 A 12-bit, two-stage ADC example: (a) block diagram, (b) interstage residue transfer
curve assuming a 1.5-bit architecture, and (c) the overall ADC curve
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Due to the interstage built-in redundancy, the ADC operation can tolerate very
large comparator offsets. For example, as indicated by the 1.5-bit residue curve
in Fig. 14.6b, either comparator threshold can vary by as much as ˙VR/4 without
incurring an out-of-range residue. However, the offset tolerance does not relax the
2
 interstage gain accuracy when we attempt to deliver a precision analog residue
signal (Vx in Fig. 14.6a) to the backend ADC for further quantization. The residue
transfer function in this case can be derived as [1]

Vx.n/ D G 	 ŒVi.n/ � VR 	 d1.n/� ; (14.1)

where n is the sample index, d1 is the digital code resolved by the first stage, and
ideally G D 2. In a 12-bit ADC, this residue signal needs to be as accurate as 11-bit,
or 2�11  0.05 %. Figure 14.6b displays examples of the residue curve when such
an accuracy is satisfied (the solid line) as well as when it is not (the dashed line).
Ideally, if Vx is resolved to a digital code d2 by the backend stage,

Vx.n/ D VR 	 Œd2.n/C QN� ; (14.2)

where QN is the quantization noise of the backend stage, (14.1) can be reversed to
assemble the final digitization outcome Do,

Do.n/ D
�

Vi.n/

VR

�
D d1.n/C �.G/ 	 d2.n/; (14.3)

where � (G) D G�1 is the radix (weight) for d2. Note that the exact value of � (G)
depends on the interstage gain G. The value of � is ½ in this example when the
ADC is ideal. The final output code Do is plotted in Fig. 14.6c to illustrate the
ideal conversion curve (the solid line) of the ADC in contrast to the case when an
interstage gain error occurs (the dashed line)—the digital codes between points A
and B in Fig. 14.6c never appear (i.e., the vertical gap between A and B). This type
of conversion error is known as the missing code.

In solid-state technology, the RA is often realized by a feedback op-amp with a
high open-loop gain and a few precisely matched capacitors or resistors. It can be
shown that a 0.05 % residue accuracy leads to a 0.05 % matching accuracy of the
passive elements setting the closed-loop gain and at least a 72-dB open-loop gain
of the op-amp (accounting for a feedback factor of 0.5 for a closed-loop gain of 2),
which are difficult to achieve in monolithic forms in fabrication technologies such as
CMOS. Particularly, the simultaneous high-gain and wide-bandwidth requirements
for the op-amp constitute a keen challenge for the realization of high-performance
pipelined converters.
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Fig. 14.7 Circuit diagram of a 1.5-bit SC pipelined ADC stage

14.1.3.2 A General Multistage Gain Error Model

We further examine the interstage residue transfer function in terms of a realistic
1.5-bit SC RA, with its circuit schematics reproduced in Fig. 14.7. Note that we
also included a summing-node parasitic capacitor Cp and expressed the open-loop
gain of the op-amp as a function of its output voltage (i.e., accounting for the static
op-amp nonlinearity). The input and output residue signals can be related with the
following expression [6]:

Vj�1 D VR 	 dj 	
�

C2
C1 C C2

�
C Vj 	

"
C1

C1 C C2
C Cp C C1 C C2

A
	
Vj

 	 .C1 C C2/

#

; (14.4)

where dj 2 f�1; 0; 1g is the sub-ADC decision, A(Vj) is the open-loop gain of
the op-amp, and C1 and C2 are the sampling/DAC capacitors. In the ideal case, i.e.,
C1 D C2 and A D 1, we have

Vj�1 D VR 	 dj 	 ˛j C Vj 	 ˇj; (14.5)

where ˛j Dˇj D ½. If we divide both sides of (14.5) by VR and apply it to the first
three ADC stages, we have

Do D
�

Vi

VR

�

D d1 	 .˛1/C d2 	 .˛2ˇ1/C d3 	 .˛3ˇ2ˇ1/C : : : (14.6)

D d1 	 1
2

C d2 	 1
4

C d3 	 1
8

C : : :

Equation (14.6) essentially formulates the final ADC digital output code in the ideal
case. When the capacitors are not well matched and/or the op-amp gain is finite,
(14.6) is still valid as long as we neglect the nonlinearity in A(Vj), and we have
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Do D d1 	 �1 C d2 	 �2 C d3 	 �3 C : : : ; (14.7)

i.e., once we know the exact values of �1, �2 : : : , an ideal conversion still yields
[6]. Note that the weighted sum of (14.7) is performed on d1, d2 : : : only, i.e., the
operation is totally digital.

The formulation of (14.4) can also be easily generalized to multibit-per-stage
pipelined ADC architectures [7, 8]. Furthermore, when the nonlinearity of A(Vj) is
included, (14.5) can be rewritten as

Vj�1 D VR 	 dj 	 ˛j C f
	
Vj



 VR 	 dj 	 ˛j C
X

m

Vm
j 	 ˇj;m; (14.8)

where in the last step of (14.8) we replaced the nonlinear function f (Vj) by a power
series approximation considering the fact that op-amp circuits are mostly weakly
nonlinear. The value of m usually ranges from 3 to 5 in typical applications. Also, in
modern fabrication processes, the metal–metal and poly–poly capacitors are usually
linear up to 14 bits. Beyond this, capacitor voltage coefficients can also be included
in the calibration [9].

The bit weights �1, �2 : : : in (14.7) are sometimes referred to as the conversion
radices. In the 1.5-bit example, their ideal values are ½, ¼ : : : Interstage residue
gain error will result in nonideal bit weights, manifested as discontinuities in
the conversion curve. In an ADC with built-in redundancy, the discontinuity can
take one of two forms, a vertical nonoverlapping gap (i.e., missing code) or an
overlapping gap (i.e., non-monotonic code). The gaps in the dashed conversion
curve illustrated in Fig. 14.6c correspond to the missing-code case.

Once an error model is available, the remaining work is to identify the model
parameters, i.e., �1, �2 : : : in (14.7), ˛j and ˇj,m in (14.8), etc., to certain accuracy
level to suit a particular application. While the error models employed do not
vary much from work to work, the error-parameter identification process certainly
embraces much more varieties—in fact, a digital calibration technique is often
categorized according to the exact parameter identification procedure it employs.

14.2 Online ADC Calibration with PRBS Injection

Although digital calibration of data converters can be traced back to 1980s, utilizing
simple, two-level test signals for online calibration was probably first reported
in [10], in which a square-wave dither was injected into the first-stage quantizer
input of a 2-1 MASH sigma–delta modulator to eliminate the quantization noise
leakage. A square-wave dither was also later utilized in [11] to calibrate the multibit
DAC mismatch errors in a sigma–delta ADC. The square wave was revised to a
pseudorandom bit sequence (PRBS) in [12] and [13]. Around the same time, PRBS
injection was also utilized in the gain-mismatch calibration of time-interleaved
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pipelined ADCs [14]. Sub-DAC PRBS injection was reported in [15] and [16] to
correct the interstage residue gain error in pipelined ADCs. The method in [16]
was to seek the correct bit weight, and a mixed-signal correction was used in [15],
where the ADC reference voltage was digitally trimmed. The technique was also
applied to treating the capacitor mismatch errors in a multibit DAC of a pipelined
ADC in [17] using a multi-PRBS injection scheme, with each PRBS responsible for
identifying the mismatch coefficient of one capacitor. The technique was adapted
and further improved in [18–23]. A sub-ADC dither was exploited to calibrate the
interstage gain error and/or nonlinearity in pipelined [24, 25] and algorithmic [26]
ADCs. Lately, the sub-DAC injection method was also augmented (with a multi-
PRBS injection) to treating the residue-amplifier nonlinearity in pipelined ADCs
[27, 28].

14.2.1 Test-Signal Injection and Dither

The purpose of test signal injection is to let it traverse the conversion path of
the ADC and observe the digital outcome that may bear information of circuit
non-idealities. However, when operating in the online (background) mode, the coex-
istence of the test signal and the normal input signal may result in some undesirable
interference, restricting the choice of the test signal and its generation/injection
method. In practice, a single PRBS is often employed for such a purpose as it can be
realized, for example, by a small capacitor switching on and off randomly depending
on the value of a digital bit. In addition, a pseudorandom, two-level test signal has a
close-to-white spectrum, which reduces its chance of being cluttered by any narrow-
band input, resulting in improved robustness of treatment.

PRBS injection—a.k.a. dither—has been used as a dynamic-element matching
(DEM) technique to improve the spectral performance of converters. It works by
disrupting a deterministic, nonlinear conversion process with a PRBS injected into
either the signal path [29] or the sub-ADC path [30] of a multistage ADC. While the
PRBS needs to be removed subsequently in the digital domain in the former case,
it can be treated as dynamic comparator offset and safely neglected in the latter one
due to the built-in redundancy of the converter.

The sub-ADC dither can be explained as follows. A small PRBS is injected
into the first-stage sub-ADC path (i.e., the comparators) of a 1.5-bit, SC pipelined
ADC, as the one shown in Fig. 14.2. The net effect is that the two comparator
thresholds will shift slightly to the left or right dependent on the PRBS value. The
resulting residue curves of the first stage and the overall ADC curve are illustrated
in Fig. 14.8a and Fig. 14.8b, respectively. Dependent on the PRBS value, the ADC
will randomly pick one of the two (redundant) residue paths, i.e., the solid and
dashed paths shown in Fig. 14.8, whenever an input falls into the shaded regions.
When the ADC is ideal, the final digital outcome will be identical no matter which
path the conversion takes place. In contrast, once the residue production suffers
from a gain error, a gap ı1 exists at each of the two MSB transition points, shown in
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Fig. 14.8 Sub-ADC dither: (a) residue curve of the first stage with PRBS injection and (b) overall
ADC curve with discontinuities (ı1) at MSB transition points due to a residue gain error

Fig. 14.8b. The randomization essentially bounces the erroneous (and deterministic)
conversion process between two trajectories, thus making the ADC conversion error
also appear to be random. Although the absolute conversion error is not reduced at
all, the deterministic error structure is randomized, leading to improved spectral
performance of the ADC. This is the essence of dither.

14.2.2 Sub-ADC vs. Sub-DAC PRBS Injection

Albeit dither does not eliminate conversion errors, one can exploit the result of dither
to identify the non-idealities of a conversion process. For example, in Fig. 14.8, we
need to identify the value of the gap ı1 at the MSB transition points. We can employ
a PRBS injection to achieve this goal. Two injection methods are often encountered
in practice, i.e., the sub-ADC injection method and the sub-DAC injection method,
sketched in Fig. 14.9a and Fig. 14.9b, respectively.

14.2.2.1 Sub-ADC Injection

Suppose that an input sample falls into the shaded regions shown in Fig. 14.8a; in
the sub-ADC injection case, depending on the value of the PRBS, the conversion
will follow either the solid or the dashed curve and resolve to two digital codes
differing by ı1 on average, as indicated in Fig. 14.8b. Correlating the ADC output
code with the PRBS (thus the name correlation-based calibration) can effectively
measure the magnitude of ı1,

Do 	 T D 1

2
ı1 	 Pr .Vi falls into the shaded regions/ ; (14.9)
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where T is the injected PRBS and Pr(	) is the probability of Vi falling into the shaded
regions. As the input statistics is unknown, a gradient-descent (iterative) algorithm
can be used to estimate ı1,

$ı1 D �� 	 Do 	 T; (14.10)

where $ı1 is the incremental update for ı1 and � is a step size. Based on our
analysis, when (14.10) converges after removing the discontinuities in between
the segments of the ADC curve using the learned value of ı1, the linearity of the
conversion process can be restored.

The advantage of the sub-ADC injection method is that the PRBS does not need
to be removed from Do during the calibration. In addition, the exact size of injection
(i.e., the width of the shaded regions in Fig. 14.8) bears no consequence to the
learning accuracy. However, an increase of the sub-ADC resolution (usually a factor
of two) is often necessary to accommodate the comparator threshold shift as a result
of injection [24, 26].

14.2.2.2 Sub-DAC Injection

Alternatively, a PRBS can be injected into the sub-DAC to identify the error param-
eters, without needing the input to fall into the shaded regions [15, 16]. However,
in this case, the PRBS needs to be accurately removed from Do. Thus the exact size
of the injection circuit element, e.g., a capacitor, must be known. In addition, to
minimize the input dynamic range loss due to injection, a signal-dependent PRBS
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injection method can be employed [23]. Lastly, while the injection element must
be matched to the other DAC elements, it can be argued that the single (and small)
injection element leads to a minimum hardware cost of accommodating the test
signal relative to the sub-ADC case discussed above.

Lastly, compared to the online adaptive calibration approaches based on split-
ADC [31–35] or offset double conversion [5, 36, 37], the runtime of the correlation
in (14.9) tends to be much longer in order to obtain a clear observation of the error
parameters, especially in the presence of a large, potentially busy input signal [31].
In spite of the slow convergence, the analog simplicity of the PRBS injection method
(especially in the sub-DAC case) has popularized this calibration technique in recent
years.

14.3 ICA-Based Digital Online Calibration

In our examination of the sub-ADC dither technique in Section 14.2.1, we observed
that when the ADC is ideal, dither will produce no noticeable difference in the
final output due to the built-in redundancy. This observation delivers a very useful
intuition about online ADC calibration, i.e., one can potentially obtain information
about the non-idealities of the conversion process by observing the correlation
between the PRBS and the normal output of the ADC—when the ADC is ideal,
the two are obviously independent; conversely, the ADC output cannot be free
of residual PRBS information when the ADC is not fully linearized. Therefore, a
technique can be devised to separate the two in the digital output, and while doing
so, an error model of the ADC can be identified for digital calibration.

We will see in this section that a new approach for online digital calibration of
multistage ADCs is derived based on the above intuition. In addition, the technique
closely resonates with the neural network model and learning algorithm Independent
Component Analysis (ICA), which offers new signal-processing insights into the
widely used parameter identification methods based on PRBS injection. It also helps
minimize the analog overhead associated with the calibration by simultaneously
identifying multiple model parameters with a single PRBS.

14.3.1 Independent Component Analysis

ICA is a statistical signal-processing technique that finds a wide range of appli-
cations in signal processing, neural computing, statistics, communications, and
finance. Imagine that two persons speak simultaneously at a cocktail party as shown
in Fig. 14.10. There are two microphones at different locations in the room that
record the speeches, which we can denote by x1(t) and x2(t). Each of the recorded
signals is a weighted sum of the original speeches denoted by s1(t) and s2(t), i.e.,
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x1.t/ D a11 	 s1.t/ C a12 	 s2.t/;
x2.t/ D a21 	 s1.t/C a22 	 s2.t/;

or

�
x1.t/
x2.t/


D A

�
s1.t/
s2.t/


; (14.11)

where a11, a12, a21, and a22 are the weighting parameters depending on the distances
of the microphones to the speakers. It could be very useful if the original speech
signals s1(t) and s2(t) can be estimated using only the recorded signals x1(t) and
x2(t). When the mixing matrix A D [a11 a12; a21 a22] is known, solving (14.11) is
almost trivial; however, the problem becomes considerably more difficult without
a priori knowledge of A. This is a classic example of the Blind Source Separation
(BSS) problem [38–50].

One approach to solving the BSS problem is to use some information on the
statistical properties of s1(t) and s2(t), in which the signals are assumed statistically
independent. This is not an unrealistic assumption in many cases, and it need not be
exactly true in practice. One such technique is called the Independent Component
Analysis [38–50], which can be defined as follows: ICA of the random vector
x consists of finding a linear transform y D Wx so that the components yi are
as independent as possible, in the sense of maximizing some objective function
C(y1, y2, : : : ) that measures independence. The first attempt in line with the ICA
principle is the nonlinear de-correlation algorithm reported by Hérault–Jutten in
1986 [41], which can be illustrated for example by the two-cell structure, shown
in Fig. 14.11, to separate the two speeches in the cocktail-party problem. In this
case, W D [1 �c12; �c21 1]. It can be shown that if a gradient-descent method is
employed of the form,

dc12
dt D � 	 g1 .y1/ g2 .y2/ ;

dc21
dt D � 	 g2 .y1/ g1 .y2/ ;

(14.12)

for updating the two synaptic weights c12 and c21, the outcomes of the H-J
network—y1(t) and y2(t)—will converge within a scaling constant to s1(t) and
s2(t). In (14.12), g1(	) and g2(	) are some odd nonlinear functions satisfying certain
constraints [41] and � is the learning rate of the weights.
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Fig. 14.11 Two-cell example of the H-J network

14.3.2 Two-Stage ADC Example Revisited

A question arises as to how ICA can be useful to the design of converter circuits.
To identify this, let us revisit the interstage gain error problem of the two-stage
pipelined ADC, previously studied in Section 14.1.3.1.

The block diagram of the ADC is shown in Fig. 14.6. Suppose that a �10 %
residue gain error is the consequence of some poorly matched capacitors or an
insufficient op-amp gain. The resulting gain G D 1.8 leads to roughly 10 % of the
digital codes missing (the segments between A and B in Fig. 14.6c). However, if the
imperfect G is known precisely, we see that a simple scaling of the digital code d2 by
Gideal/Gactual D 2/1.8 can perfectly recover the ideal conversion curve, as illustrated
by the solid line in Fig. 14.6c. In addition, this operation can be accomplished with a
simple digital multiplier. The remaining question, obviously, is how to determine the
value of G precisely, given that it varies from chip to chip and process to process—
this is where the ICA technique enters the picture.

We note that although an interstage gain error stemming from capacitor mismatch
may not drift over time, the op-amp gain error, in contrast, can be supply voltage,
temperature, and circuit age dependent, thus necessitating an online treatment. Also,
as introduced in Section 14.1.3.2, a low op-amp gain is often accompanied by
nonlinearities that invalidate the simple piecewise-linear model of the ADC curves
depicted in Fig. 14.6c. A nonlinear treatment is necessary and will be covered in
Section 14.3.3.3.

14.3.2.1 ICA Calibration of Interstage Gain Error

Let us superpose the input signal Vi with an independent PRBS, T, at the ADC input
as shown in Fig. 14.12. Now the summation of Vi and T traverses the analog signal
path of the ADC and gets converted into digital code. Neglecting quantization noise,
(14.3) can be rewritten as3

3For simplicity and better clarity, we will drop the constant scaling factor VR in all the equations
from this point onward.



502 Y. Chiu

Vi

T

A/D D/A

A/D

1.5 bits

Vx
G

d1

d2

First stage

Backend
ADC

Fig. 14.12 Input PRBS injection in the two-stage ADC studied in Fig. 14.6
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Fig. 14.13 H-J algorithm applied to the two-stage ADC calibration. The second ADC path (the
lower half) to recover T does not need to be implemented as T is a known signal

Vi.n/C T.n/ D d1.n/C � 	 d2.n/: (14.13)

Suppose that the ADC in Fig. 14.12 is duplicated to form a second path to digitize
the sum of Vi and T as shown in Fig. 14.13. With the two ADCs and considering
potential analog mismatch errors in between the two otherwise identical paths, we
have

a11 	 Vi C a12 	 T D d11 C �1 	 d12;
a21 	 Vi C a22 	 T D d21 C �2 	 d22;

(14.14)

where [a11 a12; a21 a22] is the mismatch matrix for Vi and T, �1 and �2 are the
radices, and d11, : : : d22 are the stage decision codes of the two ADCs. To relate
this to the cocktail-party problem, we note that

1. Vi and T are s1 and s2 of the original two speeches, respectively;
2. The mismatch matrix is essentially the mixing matrix;
3. Vi, A, �1, and �2 are unknown while T, d11, d12, d21, and d22 are known;
4. The hypothesis is that Vi and T are independent.
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One key difference between the two problems is that, while s2 is unknown and
to be recovered in the speech problem, T is a known signal in the ADC problem but
the radices �1 and �2 are unknown. Thus our goal is to revise the ICA algorithm to
identify �1 and �2 instead of to recover T.

Figure 14.13 depicts how the H-J algorithm can be adapted to recover Vi and T
in a straightforward way. Under usual circumstances, the two outcomes Do1 and Do2

will converge within a scaling constant to Vi and T. However, a closer examination
reveals that the duplicate ADC path in Fig. 14.13 does not need to be implemented
at all since it is unnecessary to recover a known signal T. In addition, as this in turn
means that c21 and �2 do not need to be identified anymore, the second gradient in
(14.12) is reassigned to identify �1, which yields

c12 .n C 1/ D c12.n/ � �c 	 g1 .Do1/ g2.T/;
b�1 .n C 1/ Db�1.n/ � �� 	 g2 .Do1/ g1.T/:

(14.15)

Alternatively, we may scale d11 and d12 by a common factor in Fig. 14.13 while
setting c12 to unity, resulting in a more structural but equivalent adaptation scheme
shown in Fig. 14.14 (the path subscripts are also dropped in the notation after
deleting the second ADC path). Thus, we have

˛ .n C 1/ D ˛.n/ � �˛ 	 g1 .Do/ g2.T/;
ˇ .n C 1/ D ˇ.n/ � �ˇ 	 g2 .Do/ g1.T/;

(14.16)

where ˛ and ˇ are the effective conversion radices for d1 and d2, respectively. For
example, Fig. 14.15 shows the simulation results of a 12-bit ADC example using
(14.16), where a common choice of g1(x) D x and g2(x) D x3 was selected [40].
This results in the following update equations,

˛ .n C 1/ D ˛.n/ � �˛ 	 Do.n/ 	 T.n/;
ˇ .n C 1/ D ˇ.n/ � �ˇ 	 Do

3.n/ 	 T.n/;
(14.17)
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β

ICA
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Do (≈Vi)

Fig. 14.14 ICA-based weight adaptation and PRBS removal for the ADC interstage gain calibra-
tion (evolved from the upper half of Fig. 14.13)
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Fig. 14.15 Simulation results of the 12-bit ADC using H-J ICA algorithm: (a) learning trajectory
of ˛/2 and ˇ, (b) FFT spectrum of the ADC output before (˛/2DˇD 1), and (c) after learning.
The input has a frequency of 10 % of fs and occupies 85 % of the conversion range

as T takes on a value of C1 or �1. The simulation setup also includes approximately
a 10 % interstage gain error and a 30 % PRBS mismatch error, resulting in
˛D 2.8888 and ˇD 1.1556 in this example.

As illustrated in Fig. 14.15a, starting from the default value of unity, the learning
trajectory of ˛/2 and ˇ quickly approaches the locus of zero covariance before
turning more slowly toward the target point marked by the circle, displaying a
characteristic learning pattern of the H-J algorithm [40]. The step sizes in (14.17)
were chosen in the simulation to minimize the steady-state coefficient fluctuations.
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The effective number of bits (ENOB) of the 12-bit ADC before and after calibration
is 3.32 and 11.99, respectively. The convergence time is approximately 300 million
samples.4

In Fig. 14.14 two unknown parameters are identified with a single PRBS. This
stems from the fact that an ADC input PRBS injection is chosen instead of either
the sub-ADC or sub-DAC injection covered in Section 14.2.2. In the input-injection
method, the size of the (single) PRBS capacitor can be of free choice and its exact
value does not need to match to any other capacitors in the ADC. This compares to
the sub-DAC injection method in which the PRBS capacitor needs to be matched
to the sub-DAC capacitors [16, 17]. In contrast to the sub-ADC injection case
wherein the calibration functions only within a small region around the comparator
thresholds [26], every sample counts in the input-injection case—this usually means
a shorter convergence time of the treatment.

Lastly, about the magnitude of T, obviously, the larger the faster the convergence
of (14.17); however, a large T would also occupy too much of the input range,
effectively limiting the signal-to-noise ratio (SNR) of the input signal. In practice,
the amplitude of T can vary anywhere between 1 % and 10 % of the conversion
range of the ADC.

14.3.3 Application to Other ADCs

In Section 14.3.2.1, the groundwork was established to apply ICA to the adaptive
calibration of a two-stage ADC. The essence of the approach lies in the blind
separation of the input signal and the injected PRBS, possible only when the ADC is
a linear system, which is forced so upon the ICA training of the calibration engine.
The ICA approach also exhibits a distinctive advantage—multiple error parameters
can be identified simultaneously through the injection of a single, one-bit PRBS. As
the injection can be realized by a small capacitor (without knowing its exact value)
toggling between two voltage levels, the calibration overhead on the analog circuits
is nearly negligible. In this section, we will generalize this approach to apply to
some other types of data conversion circuits.

4The reported simulation results correspond to a sinusoidal input waveform in this example. The
convergence time and learning accuracy do not seem to depend on the input waveform much, as
long as it is busy and occupies most of the input range. The readers are referred to [6] for a more
detailed discussion on this.
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14.3.3.1 Cyclic ADC

The cyclic ADC shown in Fig. 14.16a can be considered as the simplest multistage
ADC that loops the digitization process around itself, resolving one or a few bits
during each iteration.

A 10-bit SC cyclic ADC employing the 1.5-bit architecture was modeled in the
computer simulation. The circuit schematic (omitted) is similar to that of the 1.5-
bit pipelined ADC shown in Fig. 14.2. A 15 % capacitor mismatch and a 20-dB
op-amp gain were included in the modeling. An H-J algorithm was used to identify
the bit weights resulting from the nonideal residue gain. Shown in Fig. 14.16b, the
convergence time of the calibration was around 20 million samples. The ADC output
spectra for a sinusoidal input before and after calibration are shown in Fig. 14.16c
and Fig. 14.16d, respectively. The ENOB was improved from 3.28 to 9.79.
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Fig. 14.16 ICA calibration of a 10-bit cyclic ADC: (a) block diagram and input PRBS injection,
(b) ENOB learning curve, (c) output spectrum before calibration, and (d) the same spectrum after
calibration
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In this example, although the total number of bits resolved is 12, the number
of independent bit weights is only two. In other words, the learning behavior is
actually quite similar to the two-stage ADC example studied in Section 14.3.2.1.
We will examine cases with more independent model parameters in the following
sections.

14.3.3.2 SAR ADC

A conventional charge-redistribution SAR ADC employing an SC DAC is shown
in Fig. 14.17. Because its operation does not require precision residue amplifiers,
SAR ADC scales in a similar way as digital circuits—which has been witnessed by
many recently reported SAR works [4, 5, 37, 51]. While the speed and bandwidth
performance of SAR is benefiting significantly from scaling, its SNR and linearity
performance are still largely limited by the decreasing supply voltage and the
matching accuracy of the constituent DAC, i.e., the capacitors CN�1 through C0

shown in Fig. 14.17. In an N-bit SAR ADC, the linearity of the DAC must be N-
bit as well. For example, if a 14-bit linearity is desirable, the maximum mismatch
error between any two of the N C 1 capacitors must be smaller than 2�14 of the
total capacitance of the array, which is very difficult to attain if no post-fabrication
laser trimming is allowed. As a result, while many SAR works of superior power
efficiency have been reported, few demonstrate an ENOB of 10 or above.

As the matching involves a total of N C 1 capacitors, a direct application of the
H-J algorithm would require N C 1 nonlinear functions to extract the mismatch
coefficients, dictating a large amount of digital computation. To resolve this
problem, a bitwise ICA algorithm was introduced in [51]:

wj .n C 1/ D wj.n/ � �j 	bdj 	 T; j D 0; : : : ;N � 1; (14.18)

SA Logic
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d2 d1 d0 D0
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V x

Fig. 14.17 PRBS injection in SAR ADC to identify the bit weights of DAC capacitors
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curve, and (c) SFDR learning curve

where wj D Cj/†C is the normalized weight of the jth capacitor andbdj is the jth bit
obtained by re-quantizing din—the digital version of Vin—using the learned weights
fwjg. A block diagram of the calibration engine is illustrated in Fig. 14.18a. The
computer simulation results are also shown in Fig. 14.18b and Fig. 14.18c for a
12-bit SAR ADC employing a sub-binary DAC using the bitwise ICA calibration
algorithm. The convergence time is around 200 million samples.

To better apprehend the bitwise ICA technique, one can perceive the re-
quantization intuitively as N nonlinear functionsbdj D gj .din/ that are followed by
the bitwise H-J de-correlation to identify all corresponding weights. Again, a single
PRBS is sufficient to identify all weights. Sincebdj and T are both one-bit signals,
the iteration of (14.18) can be efficiently executed in the digital domain.

In practice, only a few leading bit weights need to be calibrated. In a prototype
12-bit, 50-MS/s SAR ADC fabricated in a 90-nm CMOS process [51], the first 10
bit weights were calibrated. The chip measured a 66.5-dB SNDR and an 86.0-dB
SFDR with calibration, while occupying 0.05 mm2 and dissipating 3.3 mW from
a 1.2-V supply. The calibration engine was estimated to occupy 0.07 mm2 with a
power consumption of 1.4 mW in the same process. Lastly, the analog overhead of
the PRBS injection, as mentioned before, is nearly negligible.
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Fig. 14.19 A five-transistor amplifier: (a) circuit schematic, (b) simulated open-loop gain across
process corners, and (c) the resulting ADC nonlinearity when the amplifier is used in the RA shown
in Fig. 14.6

14.3.3.3 Nonlinear Amplifier

For simplicity, a piecewise-linear error model was adopted in Section 14.3.2
to capture the constant interstage gain error of a two-stage ADC. In practice,
nonlinearities are always present in an amplifier due to the signal-dependent I–V
characteristics of transistors. For example, a simple five-transistor amplifier is
shown in Fig. 14.19a; its signal-dependent small-signal gain extracted from a
transistor-level simulation is displayed in Fig. 14.19b. When this amplifier is used in
a two-stage ADC similar to the one shown in Fig. 14.6, severe nonlinear distortion
will result in addition to the missing codes, as indicated by the dashed conversion
curve in Fig. 14.19c.

In general, the voltage transfer function of a weakly nonlinear amplifier can be
approximated by a low-order power series,
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Vo D f .Vi/  a0 C a1Vi C a2Vi
2 C a3Vi

3 C : : : ; (14.19)

where a0 is the DC offset, a1 is the small-signal gain, and so on. For differential
circuits, the even-order coefficients are much smaller than the odd-order ones. Let
us pick a third-order polynomial that models the nonlinearity of a voltage buffer
with a0 D 0.1, a1 D 1, a2 D 0.01, and a3 D �0.15. A fifth-order power series trained
by the H-J algorithm is used to treat the resulting nonlinearity,

bj .n C 1/ D bj.n/ � �j 	 Do
j 	 T; j D 1; : : : ; 5: (14.20)

The setup of the calibration engine is sketched in Fig. 14.20a. Essentially, the
algorithm attempts to adjust the coefficients fbjg to make sure that the various
moment-correlation functions E[Do

j	T] identically go to zero, thus achieving
independence between Do (i.e., the digital version of Vi) and T. From our previous
discussions, this can be achieved only when the post-processing yields an optimum
inverse of the buffer transfer function in the mean-square sense.

Note that offset cannot be corrected since its correlation with a zero-mean PRBS
is always zero. However, this is in general not of concern since our focus is to treat
nonlinearity.

In computer simulation, the untreated buffer exhibits a �34.1-dB total harmonic
distortion (THD), which is reduced to �64.1 dB after 50 million iterations of
(14.20). In contrast, an ideal fifth-order polynomial inverse of f (Vi) yields a �65.5-
dB THD. The learning curve of the first-, third-, and fifth-order coefficients is
displayed in Fig. 14.20b. When a series of higher order is used, the linearity can
be further improved.

The simplicity of the ICA approach also compares favorably to other reported
works on amplifier linearization [27, 28], in which multiple PRBS injections are
necessary, with one responsible for learning one bj in (14.20). The resulting circuit
implementation is much more complicated.

The ICA amplifier linearization technique has recently been applied to treat the
RA nonlinear distortion in a two-step SAR ADC [52].

14.3.3.4 †	Modulator

Conventionally, circuit non-idealities in discrete-time †$ modulators are modeled
as linear effects, i.e., z-domain IIR-form signal transfer function (STF) and noise
transfer function (NTF) [13]. In the first-order modulator shown in Fig. 14.21a, the
quantizer output can be derived as

D.z/ D ˛ z�1

1C .˛ � � ˇ/ z�1
„ ƒ‚ …

STF

X.z/C
	
1 � ˇ z�1




1C .˛ � � ˇ/ z�1
„ ƒ‚ …

NTF

Eq.z/; (14.21)
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Fig. 14.21 (a) Conventional z-domain model and (b) output-referred nonlinear model of a first-
order †$ modulator. The signals X, Y, and D are the modulator input, integrator output, and
quantizer output, respectively

where ˛, ˇ, and � capture the signal-path circuit non-idealities including capacitor
mismatch, integrator leakage, and the DAC mismatch. In an ideal first-order
modulator, ˛DˇD � D 1 hold. A direct extension of the model of (14.21) to
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account for the signal-path nonlinearities, i.e., the signal dependence of ˛, ˇ, and � ,
yields complicated analysis and no readily useful results.

In contrast, a recently reported nonlinear model [53] is shown in Fig. 14.21b, in
which three additive error terms Ea, Eb, and Ec are used to represent the signal-path
distortions that are all dependent on the modulator output signal D. The quantizer
output can be derived as

x .n � 1/ D d.n/ � eq.n/C eq .n � 1/
„ ƒ‚ …

ideal modulator

�ea.n/ � eb .n � 1/C ec .n � 1/
„ ƒ‚ …

additive error terms

; (14.22a)

where

ea.n/ D 	
1 � 1

˛



y.n/ 

X

i

aiŒy.n/�
i 

X

i

aiŒd.n/�
i;

eb .n � 1/ D �
�
1 � ˇ

˛

�
y .n � 1/ 

X

i

biŒy .n � 1/�i 
X

i

biŒd .n � 1/�i;

ec .n � 1/ D � .1 � �/ d .n � 1/ D
X

i

ci di .n � 1/:
(14.22b)

A unique finding of [53] is that an FIR form, i.e., the two-tap model shown in (14.22)
for a first-order modulator is sufficient and accurate in representing the long-term
nonlinear memory errors of the modulator. Among the three terms, Ea and z�1Eb

(dependent on d(n) and d(n � 1), respectively) capture the integrator nonlinearity,
whereas z�1Ec (dependent on the DAC thermometer code di(n � 1)) expresses the
component mismatch error of the feedback DAC [54].

For model parameter identification, conventionally, a one-bit PRBS is used to
determine one parameter; an estimation of multiple nonlinear coefficients thus
dictates multiple PRBS injections, potentially degrading the ADC dynamic range
and complicating the analog circuitry involved for the injection. The learning
algorithm reported in [53], based on the principle of ICA, trains multiple model
parameters using a single PRBS injected into the input. Figure 14.22 illustrates
the general setup of the nonlinear calibration. In a first-order modulator, if both
Ea and Eb terms are properly removed by the adaptive polynomial transversal
filter (APTF), the calibrated output bX—a digitized version of the input X—will
not contain any intermodulation products between bX and T. Therefore, the model
parameters faig and fbig can be updated iteratively until all moment-correlation
terms are minimized, i.e.,

ai.n/ D ai .n � 1/C �ai 	 ".n/ 	 T .n � 1/ 	bxi�1
.n � 1/ ;

bi.n/ D bi .n � 1/C �bi 	 ".n/ 	 T .n � 2/ 	bxi�1
.n � 2/ : (14.23)

The DAC distortion term Ec, which is not shown, is identified by a second PRBS
injected into the DAC code [54].
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Fig. 14.22 Multiple nonlinear parameter identification with a single one-bit PRBS injection in a
first-order †$ modulator

A 1-0 MASH †$ ADC (Fig. 14.23a) was prototyped [55], using an ICA-
based digital calibration technique. The prototype employing 29-dB gain amplifiers
measured an 85-dB SFDR and a 67-dB SNDR for a �1-dBFS, 5-MHz sinusoidal
input at 240 MS/s. The core ADC consumes 37 mW from a 1.25-V supply
and occupies 0.28 mm2 in a 65-nm digital CMOS process. The measured ADC
output spectra are shown in Fig. 14.23b (before calibration) and Fig. 14.23c (after
calibration).

14.4 Summary and Remarks

In this chapter we developed a theoretical framework to apply ICA to the adaptive
online calibration of multistage/multistep ADCs. In this approach, the statistical
independence between an injected test signal (i.e., the PRBS) and the input signal is
exploited to blindly separate the two in the conversion output, and while doing so an
error model of the ADC circuit non-idealities is identified and subsequently applied
to postprocessing the ADC output to linearize the conversion process.

In a signal-processing sense, the online calibration process can be considered as
dynamic programming, to which many adaptive algorithms can be applied, includ-
ing the H-J stochastic de-correlation algorithm, maximum likelihood, Bussgang
method based on cumulants, negentropy method, and projection pursuit. In the
treatment of sensitive, potentially time-varying analog circuits, critical performance
parameters such as stability and convergence speed will need to be optimized. In
addition, any algorithm employed must be amenable to VLSI implementation when
operation speed and low power consumption are desirable.

Lastly, the ICA framework offers additional insights into the correlation-based
calibration techniques that have been deployed widely in practice but lacked a
rigorous theoretical treatment. For example, there is a well-known fact of ICA—the
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Fig. 14.23 Prototype 1-0 MASH†$ ADC with ICA calibration: (a) block diagram, (b) measured
ADC output spectrum before calibration, and (c) the same spectrum after calibration

key to estimating an ICA model is the non-gaussianity. The classic measure of non-
gaussianity is Kurtosis or the fourth-order cumulant [50], which is defined as

Kurt.y/ D E
�
y4
� � 3	E �y2�
2 (14.24)

for a random variable y. In [25], a technique exhibiting little dependence on the input
signal statistics was proposed to calibrate the interstage residue gain nonlinearity of
a pipelined ADC. The key term used in [25] to extract the third-order coefficient of
a polynomial inverse was derived from a heuristic function
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K.y/ D E
�
y4
� � 	

E
�
y2
�
2
: (14.25)

It appears that the authors of [25] have essentially (incidentally) maximized a
quantity of non-gaussianity alike in their work, implying that a more systematic
treatment of the problem can perhaps be approached using the ICA framework.
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