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Abstract. In this article, we present a unified perspective on the cog-
nitive internet of things (CIoT). It is noted that the CIoT design is the
convergence of energy harvesting, cognitive spectrum access and mobile
cloud computing technologies. We unify these distinct technologies into a
CIoT architecture which provides a flexible, dynamic, scalable and robust
network design road-map for a large scale IoT deployment. A general
statistical framework is developed and new metrices are introduced so
that the design space of the CIoT can be quantitatively explored in the
future. A brief overview of both the energy and spectral performances
of the CIoT network is presented and its possible future extensions are
highlighted.

Keywords: Internet-of-things · Cognitive radios · Cloud · Energy har-
vesting · Shared spectrum · Underlay · Interference

1 Introduction

The term ‘internet-of-things’ (IoT) was coined by Kevin Ashton in 1999. The
central idea was to empower everyday objects with internet connectivity thus
enabling pervasive and autonomous communication. The foundation of IoT is
based on Weiser’s [1] vision of profound software/hardware technologies that
weave themselves into fabric of everyday life such that they become indistin-
guishable. The functionality and modalities of these technologies is distributed
across a variety of interconnected objects. The inter-connectivity of these objects
is pivotal as the collective intelligence of the IoT network emerges from simple
object level interactions. In turn, such a collective intelligence can be credited
with driving significant innovations in the context of various applications under
the umbrella of smart homes and cities.
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1.1 The IoT Grand Challenge

A recent survey from EiU [2] indicated that around 75% of businesses are either
actively considering or employing IoT enabled solutions. It is projected that
around 500 billion [3] so-called ‘smart things’ will become part of our day-to-day
activities by 2020. Consequently, the IoT faces the challenge of becoming heavy
on ‘things’ while struggling on the connectivity frontier.

A quick glance at the frequency allocation charts provided by the regula-
tory bodies reveals that most of the prime spectrum is already assigned and
the margin for accommodating the emerging wireless applications such as IoT
is low. Consequently, it seems natural to think of the spectrum scarcity as a
real challenge posed due to the high utilization of the Hertzian medium. How-
ever, a reality check on the usage patterns of the available spectral resources
reveals that in a nutshell the spectrum scarcity is nothing but artificial. Spec-
trum occupancy measurements [4,5] have revealed that these licensed bands are
highly under-utilized across space and time. From 13% to 87% of the radio
spectrum remains unused across spatio-temporal domains. This sporadic uti-
lization of scarce electromagnetic spectrum creates an artificial scarcity which
in turn poses the inter-connectivity challenge for IoT. Regulatory bodies such as
the FCC (in the USA) and Ofcom (in the UK) have already noticed that such
under-utilization of the spectrum can be avoided by more flexible and dynamic
spectrum access (DSA) mechanisms [6]. Radio spectrum is a multidimensional
entity, i.e., frequency is not the only parameter/dimension which characterizes
the spectral opportunity. Space, time, transmission power, polarization, medium
access and interference all combinely shape the radio environment. The dynamic
spectrum access (DSA) mechanism employs one or more of these parameters to
break the shackles of rigidity imposed by the command and control mechanism.
Cognitive radios (CRs) are envisioned to be the key enablers for provisioning
DSA. CRs are based on opportunistic exploitation of radio spectrum across one
or more dimensions. Nevertheless, while the CR platform renders itself as a
promising solution for improving connectivity, its suitability in context of IoT is
limited due to two main reasons:

1. High cost: CRs employ sophisticated hardware to derive operational envi-
ronment awareness and so naturally the radio platforms costs are higher as
compared to dumb radio terminals. For IoT solutions, the radio platforms
will be embedded inside objects requiring both additional cost and form
factors. Thus the radio platforms should be as simple as possible, ideally
comprising of a single chip on which a radio transceiver is integrated with
the micro-controller unit (MCU). Manufacturers such as Texas Instrument,
Nordic Semi-conductor, Maxim, CSR ,etc., are already providing such simple
solutions.

2. Energy consumption and life-time: CR terminals often pay the cost of oppor-
tunism in terms of their higher energy consumption. More specifically, the
operational environment awareness is driven from the inference process which
consumes more energy as compared to simple radio platforms. For the wire-
less access applications, energy consumption is not considered as a design
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constraint due to supply of power from the grid. Nevertheless, for IoT based
applications energy-consumption is of the utmost important. As discussed
earlier, the radio platform is part of variety of objects, most of them having
no/limited access to the power running on coin cells, etc. In this context,
the cost of opportunism may be incurred in terms of the reduced operational
life-time of these objects.

While object life-time is a critical aspect of design, the issue of so called ‘green
design’ is further brought into play due to a predicted high volume of smart
things. Specifically, as predicted in a recent report by Ericsson [3], the CO2

emissions due to increased number of internet connected devices will increase
from 800 Mtonnes to 1200 Mtonnes by 2020. In terms of net emissions, ICT will
continue to maintain its 2 % contribution to the global carbon foot-print. Nev-
ertheless, according to the Intergovernmental Panel on Climate Change (IPCC)
current emission trends are far from sustainable, requiring exponential reduction
to meet a 2◦C rise in global temperature. In a recent survey by Cable News Net-
work (CNN) it was estimated that a 2◦C rise in global temperature will result in
a 100 billion US dollar expense rise for addressing various challenges due to cli-
mate change. In summary, like all other sectors ICT should exponentially reduce
energy consumption to operate in a eco-friendly manner. Thus in summary, for
deployment of 500 billion IoT devices a clean slate design is necessary to address
both energy and spectral efficiency issues.

1.2 Design Attributes and Proposed Architecture

The grand challenges posed in the context of the cognitive IoT (CIoT) can be
easily translated into design attributes/constraints. To summarize, the radio
platform employed in CIoT devices should be: (i) simple yet agile; (ii) spectrally
efficient and (iii) low power with a minituarized form factor. To satisfy these
design attributes, the definition of cognition in context of the IoT must be revis-
ited. In particular, not only spectral agility is of a prime importance but power
consumption awareness should also be embedded into the cognitive engine. We
advocate that the cognitive engine must be equipped with a potential to harvest
energy from ambient sources and in some cases from the objects themselves.
For instance, consider smart door locks installed in modern houses. The radio
transceivers on these locks can be powered using solar panels harvesting indoor
ambient light from both natural and synthetic sources. Moreover, these locks
can also harvest power from the mechanical motion of door itself. As smart
objects have a very low-duty cycled traffic harvested energy provides a signifi-
cant potential for designing self-sustainable so called ‘zero-energy consumption’
CIoT networks.

In this paper, we propose a cloud enabled CIoT platform as depicted in Fig. 1
to address the aforementioned challenges. From an object oriented programming
approach it is well known that an object can be adequately described by its
attributes and functionalites. These functionalites and attributes can be linked to
external stimuli characterizing events. The behavior of the object in response to
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Fig. 1. Proposed architecture for cognitive IoT networks

an external stimulus is defined by the device profile. External and internal stim-
ului may trigger interrupts which should be handled in accordance with device
profile and current state. We propose that this object related functionality should
be implemented in the so called ‘object manager’ which forms the central part of
CIoT engine. The object engine coordinates with both the energy and spectrum
managers to provide context awareness and indicate required quality-of-service
or quality-of-information constraints. The object management life cycle can be
simplified as most of the inference can be moved up to the centralized cloud
processor. Thus objects can be made simpler by implementing basic look-up
tables which map events, stimulus, attributes and functionality. Notice that the
cloud based architecture provides flexibility of re-configuring the object manage-
ment engine on the fly.

Spectrum and energy management engines are responsible for maximizing
the spectral and energy efficiencies of a CIoT network. We advocate the use
of a cognitive underlay based spectrum access which requires only transmit
power/medium access probability adaptation at the CIoT platforms [7]. The
intrinsic advantage of the proposed spectrum access is that its implementa-
tion is simple and does not require additional sophisticated hardware. Based
on the dynamics of the primary network, the cloud re-configuration engine can
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re-configure access probabilities and transmit power to guarantee that the QoS
of the legacy network is not violated. Thus, implementing a robust co-existence
framework between the primary users and the CIoT devices. The practical imple-
mentation of such a spectrum access would require a simple look up table at each
device, i.e. CIoT platforms do not lose either their cost-effectiveness or the form
factor through the implementation of the proposed cognitive access strategy.
A general framework for performance characterization of these engines is intro-
duced in a subsequent discussion.

2 Energy Outage Probability in Harvesting
Empowered CIoT

In order to maintain generality, in this article, we do not restrict our analytical
models to a particular scenario. We will present a general framework for perfor-
mance characterization of the CIoT networks which can be employed to study
various specific use-cases.

Harvesting energy from natural (solar, wind, vibration, etc.) and synthesized
(microwave power transfer) sources is envisioned as a key enabler for realizing
green wireless networks. In this context, the energy management engine plays a
central role. Energy harvested from the ambient sources such as natural and man-
made light, temperature gradients, vibrations and mechanical motions results in
an energy field which possesses the following form

IH (t,x) = ID (t,x) + IR (t,x) Watts/m2, (1)

where ID is the deterministic power density and IR captures random fluctu-
ations in ambient power field due to the environment. In general, the power
arrival process at a transducer has both spatial and temporal dynamics. For
instance, the power arriving at a indoor solar panel is a function of its latitude,
longitude, zenith angle, hour angle and the day number [8]. Transducers are not
ideal in converting the ambient energy into output power. Generally, the input-
output relationship of the transducer is non-linear. Thus the output load is often
matched to provide a maximum energy transfer. In general, the power output of
a transducer can be represented as

Pout (t,x) = fT (ID (t,x) + IR (t,x)) Watts. (2)

where fT (.) is the non-linear transducer response. For instance, for the PV panel
the output current can be expressed in terms of the ambient solar irradiance IH

(see eq. (1)) as follows [8]

IPV = Isc

[
1 − κ3

{
exp

(
VPV

κ4Voc

)
− 1

}]
, (3)

where κ3 =
(
1 − IMP P

Isc

)
exp

(
VMP P

κ4Voc

)
and κ4 =

(
VMP P

Voc
−1
)
/ln
(
1− IMP P

Isc

)
which

depends on the module parameters: (i) short circuit current Isc; (ii) open circuit
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voltage Voc; (iii) maximum power point voltage VMPP and (iv) maximum power
point current IMPP . These parameters can be expressed as a function of the
ambient temperature and global horizontal irradiance as

Isc = Iscs × IH

IS
× [1 + ς1(T − Ts)], (4)

Voc = Vocs + ς2(T − Ts), (5)

IMPP = IMPPS × IH

IS
× [1 + ς1(T − Ts)], (6)

VMPP = VMPPS + ς2(T − Ts), (7)

where Iscs, Vocs, IMPPS ,VMPPS are defined at standard conditions, i.e., IS =
100 mW/cm2 for outdoor/IS = 100 μW/cm2 for indoor and Ts = 25◦C with ς1 and
ς2 being the current and the voltage coefficients. These parameters are generally
provided in the data sheet of a PV module. From Eq. (3), the output power of the
PV panel can be computed as a function of the voltage as Pout = IPV VPV . Most
of the modern day panels are equipped with maximum power point tracking
algorithms1. The maximum output power can be extracted by adjusting the
cell load resistance. The maximum extracted power is denoted by Pmax

out and is
computed by maximizing PPV with respect to output voltage.

The short-fall of the energy for a certain desired power Preq can be measured
in terms of the ‘energy outage probability’ as

ε
{e}
out(t,x) = P {Pout < Preq} = P

{
IR < f−1

T (Preq) − ID

}
,

= FIR

(
f−1

T (Preq) − ID (t,x)
)
, (8)

where FIR
(.) is the cumulative density function of IR the random component of

the ambient energy field for a certain time t and location x. Generally, f−1
T (a) is

a monotonically decreasing function with respect to a and thus εout is increasing
function of Preq, i.e. with an increase in required power for a fixed time instance
and a spatial location the energy outage probability also increases towards unity.
The dynamics of the energy harvester and thus the management engine of a CIoT
platform can be completely characterized in terms of energy outage probability.

3 Spectral Access Outage Probability in CIoT

Consider a large scale CIoT network co-existing with the primary network.
The spatial distribution of both primary and CIoT nodes is captured by two
independent homogenous Poisson point processes (HPPPs) Πp (λp) and Πc (λc)
respectively2. Further assume that CIoT nodes employ a random access strategy
similar to the slotted ALOHA MAC protocol to schedule their transmissions over
1 Sometimes implemented at inverter level rather than panel level .
2 The HPPP assumption is reasonable in the context of CIoT as the objects are

deployed by the user and are spatially distributed across the entire city.
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a shared medium. More specifically, at an arbitrary time instant both the pri-
mary and the secondary devices can be classified into two distinct groups, i.e.,
nodes which are granted with the medium access and those whose transmissions
are deferred. If pi denotes the medium access probability (MAP) for an arbitrary
user x ∈ Πi

3, then the set of active users under slotted ALOHA MAC also forms
a HPPP:

Π
{TX}
i = {x ∈ Πi : 1(x) = 1} with densityλipi, (9)

where i ∈ {c, p}.

where 1(x) denotes a Bernoulli random variable and is independent of Πi. The
received SIR of a typical primary user can be characterized as

SIR = Γp =
hpl(rp)∑

i∈Π
{T X}
p \{x} hil (‖xi‖) +

∑
j∈Π

{T X}
c

ηgj l (‖xj‖)
,

= Γp =
hpl(rp)
Ip + ηIc

=
hpl(rp)

Itot
, (10)

where hp, hi, gj ∼ E(1) random variables capturing the effect of Rayleigh fading,
l(r) = r−α is the path-loss function with α ≥ 2 being the environment dependent
exponent, η = Pc

Pp
is the transmit power ratios of the CIoT and primary networks

and rp is the distance between primary transmitter and receiver.
The primary user’s QoS constraint can be expressed in terms of the desired

SIR threshold γ
{p}
th and an outage probability threshold

P
{p}
out (Pc, pc) = Pr

{
Γp ≤ γ

{p}
th

}
≤ ρ

{p}
out . (11)

Notice that the primary user’s outage probability is coupled with the aggregate
interference generated by the CIoT network. Consequently, secondary access is
limited subject to the constraint in Eq. (11). It can be easily shown that the
maximum permissible MAP for the CIoT devices can be characterized as

pc =
fMAP

(
λp, λc, ρ

{p}
out , γ

{p}
th

)

P
2/α

c

, (12)

where fMAP (.) depends on the primary networking parameters, the propagation
characteristics of the co-located networks and the required QoS requirements. For
an ad-hoc network fMAP (.) is characterized in [7] which can be easily extended
to the cellular primary network. Generally, fMAP (.) decreases with an increase in
the QoS requirement and/or the density of the primary transmitters. It decreases
with an increase in a CIoT transmit power and increases with a decrease in the
CIoT transmitter density. The spectral outage probability is the event that the

3 With a slight abuse of notation, x ∈ R
2 is employed to refer to the node’s location

as well as the node itself.
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CIoT transmitter is in a spectrum limited regime, i.e., it has had to defer its
transmission for the current slot. Thus

ε
{s}
out = 1 −

fMAP

(
λp, λc, ρ

{p}
out , γ

{p}
th

)

P
2/α

c

. (13)

Consequently, the relationship between spectral and energy outages can be char-
acterized as follows

ε
{e}
out = FIR

⎛
⎜⎝f−1

T

⎛
⎜⎝

⎛
⎝fMAP

(
λp, λc, ρ

{p}
out , γ

{p}
th

)

1 − ε
{s}
out

⎞
⎠

α
2
⎞
⎟⎠ − ID (t,x)

⎞
⎟⎠. (14)

For the case of indoor solar energy harvesting, the formulation can be simplified
using Eq. (3) as

ε
{e}
out = FIR

⎛
⎝Θ

(
1

1 − ε
{s}
out

)α
2
⎞
⎠, (15)

where f(x) = Θ(g(x)) implies that c1g(x) ≤ f(x) ≤ c2g(x) following the Landua
notation. From [9], we have that

ε
{e}
out =

1
2

⎡
⎢⎣1 + erf

⎛
⎜⎝

(
1 − ε

{s}
out

)−α/2

2

⎞
⎟⎠

⎤
⎥⎦. (16)

This provides us with the spectral-energy outage operating curve (SE-OPC) for
CIoT networks. The SE-OPC serves as a guideline to decide whether a CIoT
network is operating in energy limited regime or the spectrum limited regime.
The exact shape of the curve is coupled with the operating parameters of the
harvester and the network. However, in this study we are only interested in the
scaling behavior and thus do not consider the specific values.

4 Discussion and Future Directions

Figure 2 illustrates the SE-OPC for CIoT networks for the considered reference
scenario of an indoor solar panel. It is clear that both the energy and spectral
outage probability are positively coupled with each other. Specifically, both the
spectral and the energy outages are increasing functions of the CIoT platform
transmit power, i.e., a high transmit power for CIoT radio will result in:

1. vanishing transmission opportunities due to interference protection imple-
mented by the cloud controller to guarantee the primary user’s QoS require-
ment;

2. requiring an amount of energy for transmissions which cannot be fulfilled by
the harvester.
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Fig. 2. SE-OPC for CIoT network for varying path-loss exponents (see Eq. (16)).

This leads to the conclusion that adopting a low transmit power will reduce both
the energy and the spectrum outage probabilities. However, the low transmit
power employed by a CIoT platform may not be able to guarantee the required
QoS or QoI at each CIoT node. Consequently, the transmit power must be
optimized by considering all three factors, i.e., energy and spectral outages and
CIoTs throughput. Due to space limitations, the optimization of transmit power
is deferred for the journal version of this article.

From the energy outage perspective, there exist two distinct regions. These
regions mainly demonstrate the impact of an increase in the path-loss exponent.
An increase in the path-loss exponent results in: (i) signal power reduction;
(ii) rapid attenuation for co-channel interference. Thus intuitively these two
regions demonstrate the power limited vs. interference limited operation.

5 Conclusion

In this article, we provided a unified architecture for the cognitive internet-of-
things (CIoT) framework. We advocated that the definition of cognition must
be extended to incorporate IoT specific design challenges. We solicited a cloud
based cognitive underlay spectrum access for the IoT radio platforms. Further-
more, energy harvesting is proposed to attain so called self-sustainable network
design. We introduce a novel statistical framework to characterize the energy
and spectral outages in CIoT networks. The relationship between energy and
spectral outages was explored for a reference scenario of indoor solar energy
harvesting. It was shown that both outages are positively coupled as they are
governed by the same underlying parameter, i.e., transmit power. It was shown
that there exists tradeoff between minimizing the outages and maximizing the
QoS and thus optimal transmit power must be adopted to maximize network
level performance.
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