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Abstract With the generalization of real-time traveler information, the behavior of

modern transport networks becomes harder to analyze and to predict. It is now criti-

cal to develop simulation tools for mobility policies makers, taking into account this

new information environment. Information is now individualized, and the interaction

of a huge population of individually guided travelers have to be taken into account in

the simulations. However, existing mobility multiagent and micro-simulations can

only consider a sample of the real volumes of travelers, especially for big regions.

With distributed simulations, it would be easier to analyze and predict the status of

nowadays and future networks, with informed and connected travelers. In this paper,

we propose a comparison between two methods for distributing multiagent travelers

mobility simulations, allowing for the consideration of realistic travelers flows and

wide geographical regions.

1 Introduction

Transport systems are more and more complex and they have to evolve to integrate

more connected entities (mobile devices, connected vehicles, etc.). Indeed, we can

now provide optimal routes for the travelers but we are also able to update these

routes in real time based on new network status (congestions, accidents, bus down,

canceled carpooling, etc.). Giving information to the traffic network users is gener-

ally good and allows the improvement of the global network traffic flows. However,
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without control, the massive spread of information via billboards, radio announce-

ments and individual guidance may have perverse effects and create new traffic jams.

Indeed, with this generalization of real-time traveler information, the behavior of

modern transport networks becomes harder to analyze and to predict. It is then impor-

tant to model and simulate a realistic number of travelers to correctly observe these

effects.

The ability to run a traffic simulator with real volumes of travelers at a city, a

region or a country scale, would allow to observe the consequences of different infor-

mation strategies on the status of multimodal traffic before implementing them in

the real world. The management of millions of travelers in real time requires con-

siderable computational power and current mobility simulations do not scale up in a

way that would make it possible to predict the effects of regulation and information

actions on the network. Our main objective in this paper is to test the scalability of

this kind of simulators and develop scenarios at actual city scale. For this purpose,

we aim to split the simulation between several servers on a grid and balance the load

optimally between the servers while minimizing inter-server communications.

To have a generic distribution pattern, we propose a reference mobility simulator

based on the multiagent paradigm. The multiagent paradigm is relevant for the mod-

eling and simulation of transport systems [1]. This is why the multiagent approach

is often chosen to model, solve and simulate transport problems. This approach is

particularly relevant for the simulation of individual travels since the objective is to

take into account human behaviors that interact in a complex, dynamic and open

environment.

The remainder of this paper is structured as follows. In Sect. 2, we present the

previous proposals for travelers mobility simulation and the existing distributed mul-

tiagent platforms. Section 3 presents a formal definition of the multiagent environ-

ment. In Sect. 4, we describe two methods for distributing simulations over several

hosts. Section 5 explains our experimental setup and provides a comparison of the

two proposed methods, before concluding and describing some further work we are

pursuing.

2 Related Work

There exists several multiagent simulators for travelers mobility. For instance, MAT-

Sim [2] is a widely known platform for mobility micro-simulation. However, the

mobile entities in MATSim are passive and their state is modified by central mod-

ules, which limits its flexibility and its ability to integrate new types of (proactive)

agents. Transims [3] simulates multimodal movements and evaluates impacts of pol-

icy changes in traffic or demographic characteristics while Miro [4] reproduces the

urban dynamics of a French city and proposes a prototype of multiagent simulation

that is able to test planning scenarios and to specify individuals’ behaviors. Agent-

Polis [5] and SM4T [6] are also multiagent platforms for multimodal transportation.
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Finally, SUMO [7] is a widely used microscopic simulator mainly focused on traffic.

However, none of these proposals considers the distribution problem.

Some general-purpose multiagent platforms have been specifically developed for

large scale simulation in the last years. RepastHPC [8], a distributed version of

Repast Simphony, uses the same concepts of projections and contexts and adapts

them for distributed environments. Pandora [9] is close to RepastHPC and automat-

ically generates the code required for inter-server communications. GridABM [10]

is based on Repast Simphony but takes another approach and proposes to the pro-

grammer general templates to be adapted to the communication topology of his sim-

ulation.

However, these distributed platforms do not offer fine controls on how the com-

munications between hosts are performed. Indeed, the communication layer is trans-

parent for the programmer, which makes it easier for him to develop distributed sim-

ulations, but prevents him from optimizing the distribution. The best way to manage

the communications depends of the application and using such general platforms for

a travel simulator would not produce optimal results. More theoretical works study

general methods to address this problem. In [11] and [12] the authors propose to

relax some synchronization constraints to achieve a better scalability by reducing

the time the hosts wait for each other. In [13] and [14] the authors discuss the issues

related to multiagent simulation in a distributed virtual environment. In the present

paper, we propose specific approaches to distribute traffic-based simulations, which

could be of great benefit to the work on travelers mobility simulations.

3 The Multiagent Environment

3.1 The Model

The multiagent environment of a travel simulation is made of the transportation net-

work in which the traveler agents evolve. We model the transport network with a

graph G(V ,E) where E = {e1, ..., en} is a set of edges representing the roads and

V = {v1, ..., vn} is a set of vertices representing the intersections. A set of agents A is

traveling in this network from origins to destinations trying to minimize their travel

time. The travel time of an edge at time t depends on the number of agents using it.

To calculate this time, we use a triangular fundamental diagram of traffic flow that

gives a relation between the flow q (vehicles/hour) and the density k (vehicles/km).

The fundamental diagram suggests that if we exceed a critical density of vehicles kc,
the more vehicles are on a road, the slower their velocity will be. Here is the equation

we use to model this phenomena (Fig. 1):

q =
{

𝛼k if k ≤ kc
−𝛽(k − kc) + 𝛼kc if k > kc

(1)
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Fig. 1 Fundamental diagram with 𝛼 = 6, 𝛽 = 8 and kc = 15 (left). Speed in function of density

(right)

This equation is parametrized with 𝛼 the free flow speed on this road, 𝛽 the conges-

tion wave speed and kc the critical density. As v = q
k :

v =

{
𝛼 if k ≤ kc

−𝛽(k−kc)+𝛼kc
k if k > kc

(2)

Thus we can define a cost function that returns a travel time per distance units

(1∕v) in function of the number of agents |Ae| on this edge:

cost(|Ae|) =
{ 1

𝛼

if |Ae| ≤ kc|Ae|
−𝛽(|Ae|−kc)+𝛼kc if |Ae| > kc

(3)

Both edges and vertices are weighted with positive values evolving dynamically

with the number of agents present on them. Given Av, the set of agents on a vertex

v, and Ae, the set of agents on a edge e, we have |v| = |Av| representing the weight

of a vertex and |e| = |Ae| the weight of an edge. |V| = ∑
v∈V |v| is the weight of a

subset of vertices. In the same way, if |e| is the weight of a vertex, |E| = ∑
e∈E |e|

is the weight of a subset of edges.

3.2 The Simulator

We have developed a reference simulator where each agent represents a traveler

evolving in a multiagent environment as described in the previous paragraph. Agents

appear nondeterministically with an origin and a destination vertex. They compute

the shortest path based on the current status of the network before to start travel-

ing. They ask for a new shortest path each time they reach a vertex in their path, to

check wether a new shortest path becomes possible, following the dynamics of the
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network. At each time step of the simulation, if the agents are currently on an edge,

they go forward as far as the road state (current mean speed) allows them to go. The

simulation ends when all the travelers have reached their destinations or when a time

step threshold is reached.

4 Proposed Approach

To launch our simulation at a city scale, we need a large memory and computing

power. This is why we aim to deploy it on several machines. A simulation running on

a cluster is typically SPMD (Single Program Multiple Data), i.e. each processor runs

the same program but owns only a part of the program data in its private memory,

and all the processors are connected by a network. Communications are explicitly

declared by the programmer. The advantage of this approach is its high scalability;

it can be implemented on most parallel architectures and we can deploy the same

simulation on larger systems if we need more power.

In mobility simulations, traveler agents are moving on a transport network. To dis-

tribute such simulations, we have to split the workload between the available servers

efficiently. In our model, the main workload is generated by the calculation of the

shortest path. An agent’s path has to be recalculated each time this agent reaches a

new intersection (because the travel times evolve dynamically), thus an agent can

be considered as a unit of workload. Therefore, in order to distribute this model we

need to split the agents between the servers. To do so, we can either distribute the

environment, or the agents.

4.1 Agent Distribution

One approach would be to cut the set of agents in k equal parts (with k the number

of available servers), distribute each subset on a server and run the simulation. As

the travel times depend on the number of agents on each arc, all the agents need

to know at every step how many agents there are on each arc in order to compute

their shortest path. In our implementation, at each time step, if an agent managed

by a server quits or arrives on an edge, this server communicates the information to

all other servers. Thus at any time step, all the servers know the state of the entire

network. At the moment, it is the only communication needed for the simulation, so

the total communication cost is k|E|I, with I representing the size of an integer.
1

1
Coding the number of agents arriving or leaving an edge.
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4.2 Environment Distribution

The second distribution pattern tries to keep agents that are close in the graph on

the same server. Instead of distributing the agents, we distribute the vertices and

the outgoing edges (and thus the agents located on these vertices and edges) so the

agents that are in the same place of the graph are on the same server.

Each server is only aware of what is happening on the part of the graph that it

is managing. So at each time step, before the agents act, all the servers need to

synchronize with the servers running in other processes. There are now two types

of communications: the servers have to communicate the weight of their edges (the

number of agents on it) and when an agent moves to a vertex that is not on his cur-

rent server he has to move to that vertex’s server. Let C be the cost of the edge

communications and M the agents migration cost. At each step, the total communi-

cation cost is given by T = C+M. The cost of the edges weight communications is:

C = |E| × I. An agent could be coded with three integers (ID, current location and

destination). Let n be the number of migration for one step. Thus the agents migra-

tion cost is: M = 3In. There are on average |A|∕|E| agents per vertex. So with Ec the

set of edges between different servers we have on average n = |A|∕|E| × |Ec|. Thus

T = I(|E| + 3|A|∕|E| × |Ec|). As we could expect, the less edges there are between

two servers and the less the communication cost there is (Fig. 2).

Fig. 2 The graph is parted and each part are distributed between the available processes

So for the environment distribution method to be effective, we need to split the

vertices into k disjoint sets such that each set has approximately the same vertex

weight and such that the cut-weight, the total weight of edges cut by the partition, is

minimized. This problem is known as the (k, 1 + 𝜖)-balanced partitioning problem,

that is the problem of finding a collection of disjoint subsets V1,… ,Vk that cover

V , i.e., V = V1 ∪ ... ∪ Vk such as each part contains at most (1 + 𝜖) |A|k and |Ec| is

minimized.

The problem of partitioning a network has been widely studied in the scientific

literature. As demonstrated in [15] this is a NP-hard problem so trying to find an
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optimal solution with, for example, integer programming is not an option for large

graphs. This is why some heuristics have been proposed to solve this problem in

reasonable time. The multilevel partitioning method has been recognized as a very

powerful method that offers a more global vision on graphs than traditional tech-

niques. As the complexity of the partitioning problem is dependent on the size of

the partitioned graph, the simple idea of multilevel partitioning is to regroup the

vertices and to work with the groups instead of the independent vertices. The multi-

level partitioning has been formalized in a generic framework by Walshaw in [16].

To distribute the environment, we use a slightly modified version of the Differential

Greedy algorithm [17]. We modified this algorithm to use it with weighted vertices

and to produce more connected partitions.

5 Experiments and Results

5.1 Implementation

To test the effectiveness of our approach, we have implemented our model and

deployed it on an actual cluster. We choose Python to develop the model since this

language is efficient for quick prototyping. Python is a mature portable language with

a lot of well tested scientific libraries and is along with C and Fortran one of the most

used languages for high performance computing [18].

For the inter-process communications we use MPI, that is the de facto standard

language for parallel computing with a huge community of users. MPI offers a simple

communication model between the different processes in a program and has many

efficient implementations that run on a variety of machines. Moreover MPI4PY is

an efficient interface that allows to use MPI with Python.

5.2 Results

We have launched the distributed simulations on the Cardiff University cluster. For

our tests, we used eight hosts under CentOS Linux (kernel version 2.6.32-220) on

a processor Intel Xeon CPU E5-2620 (12 cores at 2Ghz) with 32GB of memory.

We ran the simulation on three configurations: the first is a sequential version of the

program on a single host (conf1), the second is a distributed version on the eight

hosts (conf2), and the last is run on the eight hosts using the 12 cores of each one

(conf3). The simulation is performed for 100 time steps on a 200 nodes power-law

graph generated with the Barabasi-Albert model [19]. We compared the two methods

of distribution (agent-based and environment-based distributions) on the different

configurations with an increasing number of agents (from 1,000 to 40,000) (Table 1).
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Table 1 Computational times (in seconds) for a 100 time steps simulation on a 200 nodes scale

free graph

number of agents 1000 5000 10000 20000 30000 40000

conf1 (1 core) 10 27 43 67 104 140

conf2 agent distribution (12 cores) 3 6 8 12 17 23

conf3 agent distribution (96 cores) 2 3 3 4 4 5

conf2 environment distribution

(12 cores)

6 13 17 22 31 41

conf3 environment distribution

(96 cores)

5 10 11 11 15 17

Fig. 3 Comparison of

computational times between

the different distribution

methods with conf3

As we could expect, the agent-based distribution is more effective than the

environment-based distribution with the proposed simulation model.
2

Indeed, at the

moment we have not defined any local interactions in our model. As a consequence,

we are in an perfect case for the agent base distribution since the amount of inter-

server communications will be limited. But with the further implementation of local

interactions (for example pursuit model or vehicle to vehicle communications) the

environment-based approach will be able to take advantage of the collocation in

the same server of physically close agents. Furthermore, there is at the moment no

dynamic load balancing mechanism for the environment distribution. Indeed, if an

important number of agents are concentrated in the same part of the network, they

will be nevertheless in the same server. It will hence take more time for this server

to calculate all the shortest paths and, all the other servers will have to wait for it.

Thus, if a server is overloaded it can slow down all the simulation (Fig. 3).

2
The computational times are not strictly growing with the number of agents for the environment-

based method. This is more likely due to the random origins and destinations of the agents. There-

fore the simulation could sometimes be more complex with fewer agents.
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Fig. 4 Speedup between

conf1 and conf3 with

environment distribution

Fig. 5 Speedup between

conf1 and conf3 with agent

distribution

The speedups between the sequential run and the two distribution methods per-

formed on conf3 are shown on Figs. 4 and 5. The speedup is a measures of how

much faster the simulation is on conf3 (96 cores) than on conf1. As we can see on

these figures, with 40000 agents for example, the simulation is 8 times faster with

the environment based distribution and 28 times faster with the agent based distrib-

ution. Both of these methods improve largely the execution time of our multiagent

traffic simulator. As explained above, the agent-based distribution method shows

better results due to the relative simplicity of the current model but after adding

inter-agents communications the difference in performance between the two meth-

ods should shrink.
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6 Conclusions and Perspectives

In this paper, we have presented two distribution methods of a multiagent travel

simulation over several hosts. The two methods are efficient to scale the simulation

up with the number of agents. With our current simulation model, the agent-based

method is more efficient than the environment-based distribution method. Our sim-

ulation model is very general, our proposals and findings are applicable to all the

state-of-the-art travel simulators.

Our future works will deal with two aspects. The first concerns the simulation

model. We will tackle more specific travel simulation models, where all types of

communications are present (local, global and community-based communications).

We expect the environment-based distribution method to show better performance

than with the current model. The second aspect concerns the environment-based

distribution method. The distribution is currently done statically at the beginning of

the simulation and we believe that the speedup could be largely improved by adding

dynamic load balancing mechanisms.
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