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Abstract In this introductory chapter it is introduced some aspects of paracon-
sistent logics, such as its brief historical developments, some main systems and
mention some applications. The chapter obviously does not cover many topics:
moreover it is far from to be complete. In fact, the theme is now widespread and
occupies a distinguished position in academia. The most part of the chapter focuses
on a special class of paraconsistent logic, namely the paraconsistent annotated
logics.
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1 Introduction

Nowadays its is accepted by innumerous logicians that the classical first order
predicate calculus (and some of its important subsystems like propositional calculus
and some of its extensions like ZF-set theory) constitutes the nucleus of the
so-called classical logic.

The term non-classical logic is a generic term which has been employed to refer
to any logic other than classical logic. Roughly they are divided in two groups:
those that complement or extend classical logic and those that rival classical logic.

The first group, complementary to the classical logic, keeps the classical logic on
its basis. It is supplemented by extending its language enriching its vocabulary
and/or the theorems of these non-classical logics supplement those of classical
logic. Thus all valid schemes of classical logic remains valid with the addition of
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new theorems. As example, modal logics add symbols like L (it is necessary that) in
its language to express modalities (also I—it is impossible that, C—it is contingent
that, M—it is possible that). Additional axiom schemes are added, e.g., A ! MA
(A implies that it is possible A) and appropriate inference rules are also considered.
In the same way, we can also consider deontic modalities O (it is obligatory that), P
(it is permitted that), F (it is forbidden that), etc. In the second group, rival logics (or
heterodox logics) substitute partially or even totally the classical logic. So, in
heterodox systems, some principles valid in classical logic are not valid in the last.
For example, let us consider the law of the excluded middle, in the form A or not
A. This is not valid, v.g. in intuitionistic logics, some many-valued logics, in
paraconsistent logics, etc.

It should be emphasized that such division is somewhat vague; in effect, there
are complementary logics that can be viewed as rival ones and vice versa. The
choice how to consider them should take into account pragmatic issues.

In this chapter we are concerned with a category of rival logics, namely the
paraconsistent logics.

1.1 Historical Aspects

The paraconsistent logic had as precursors the Russian logician Nicolai
Alexandrovich Vasiliev (1880–1940) and the Polish logician Jan Łukasiewicz
(1878–1956). Both, in 1910, independently published papers in which they treated
the possibility of a logic that does not eliminate ab initio the contradictions.
However, the works of these authors, regarding to paraconsistency, were restricted
to the traditional Aristotelian logic. Only in 1948 and 1954 that the Polish logician
Stanislaw Jaśkowski (1906–1965) and the Brazilian logician Newton C.A. da Costa
(1929), respectively, although independently, built the paraconsistent logic.

Jaśkowski has formalized a paraconsistent propositional calculus called discur-
sive (or discussive) propositional calculus while da Costa constructed for the first
time hierarchies of paraconsistent propositional calculi Cið1� i�xÞ, of paracon-
sistent first-order predicate calculi C�

i ð1� i�xÞ (with or without equality), of
paraconsistent description calculi Dið1� i�xÞ, and paraconsistent higher-order
logics (systems NFi, 1� i�x).

Also, in parallel (Nels) David Nelson (1918–2003) in 1959 investigated his con-
structive logics with strong negation closely related with ideas of paraconsistency.

The term ‘paraconsistent’ was coined by the Peruvian philosopher Francisco
Miró Quesada Cantuarias (1918) at the Third Latin America Conference on
Mathematical Logic held in State University of Campinas, in 1976. At the time
Quesada seems to have in mind the meaning ‘quasi’ (or ‘similar to, modelled on’)
for the prefix ‘para’.
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1.2 Inconsistent Theories and Trivial Theories

The most important reason to consider the paraconsistent logic is the construction
of theories in which inconsistencies are allowed without trivialization. In logics not
properly distinguishable from classical logic, it is valid in general the scheme
A ! ð:A ! BÞ (where ‘A’ and ‘B’ are formulas, ‘:A’ is the negation of ‘A’ and
‘!’ is the symbol of implication). Let us admit as premises contradictory formulas
A and :A. As noted above, A ! ð:A ! BÞ is a valid scheme. Taking into account
the assumptions made for the deduction, the Modus Ponens rule (from A and A !
B we deduce B) give us ð:A ! BÞ. By applying again the Modus Ponens rule to
this last formula and premises, we obtain B. Thus, from a contradictory formulas we
can deduce any statement. This is the trivialization phenomena.

It is worth mentioning that the converse is immediate: in fact, if all formulas of a
theory are derivable, in particular, it can be proved a contradiction. Thus in the
majority of the logical systems, a contradictory (or inconsistent) theory is trivial
and, conversely, if a theory is trivial, it is contradictory. Thus, in most logical
systems, the concepts of inconsistent and trivial theories coincide.

In fact, surely, when we think about applications, such property is not at all
intuitive and reveals how the classical logic is “fragile” in that scope. Imagine a
person reasoning and suppose he reaches a contradiction: it is unusual that in the
mind of such a person everything becomes true (unless the person presents a very
special insanity).

Still on contradictions, we finish this part, pointing out another implication of the
heterodox systems, with the famous paradox by Eubulides (or popularly, the liar
paradox), in the following form:

(S) I’m lying
We note that S is true if and only if S is false. It is important to emphasize that

the paradox of the liar, for many centuries after its discovery was an aporia.
After the considerations of Tarski based on his correspondence theory of truth, it

became a fallacy. Finally, with the advent of paraconsistent logics, there are
grounds for regard it as aporia again.

1.3 Basic Concepts

Let T be a theory founded on a logic L, and suppose that the language of T and L
contains a symbol for negation—if there are more negation operators, one of them
must be chosen for their formal-logical characteristics. T is said to be inconsistent if
it has contradictory theorems; i.e., one is the negation of the other; otherwise, T is
said to be consistent. T is said to be trivial if all formulas of L–or all closed
formulas of L—are theorems of T; otherwise T is said to be non-trivial.

Similarly, the same definition applies to systems of propositions, set of infor-
mation, etc. (taking into account, of course, the set of its consequences). In classical
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logic, and in many categories of logic, consistency plays a fundamental role.
Indeed, in the most usual logic systems, a theory T is trivial, then T is inconsistent
and vice versa.

A logic L is called paraconsistent if it can serve as a basis for inconsistent but
non-trivial theories.

Its dual concept is the idea of paracomplete logics. A logical system is called
paracomplete if it can function as the underlying logic of theories in which there are
formulas such that these formulas and their negations are simultaneously false.
Intuitionistic logic and several systems of many-valued logics are paracomplete in
this sense (and the dual of intuitionistic logic, Brouwerian logic, is therefore
paraconsistent).

As a consequence, paraconsistent theories do not satisfy the principle of
non-contradiction, which can be stated as follows: of two contradictory proposi-
tions, i.e., one of which is the negation of the other, one must be false. And,
paracomplete theories do not satisfy the principle of the excluded middle, formu-
lated in the following form: of two contradictory propositions, one must be true.

Finally, logics which are simultaneously paraconsistent and paracomplete are
called non-alethic logics.

1.4 Concepts Regarding Actual World

Almost all concepts regarding actual world encompasses a certain imprecision
degree. Let us take colors fulfilling a rainbow. Let us suppose, for instance that the
rainbow begins with yellow band and ends with red one. If we consider the
statement, “This point of the rainbow is yellow”, surely it is true if the point is on
the first band and false if it is on the last band. However, if the point ranges between
the extremes, there are points in which the statement is neither true nor false; or it
can be both true and false.

This is not because the particular instruments that we use nor it is lack of our
vocabulary. The vagueness of the terms and concepts of real science has no sub-
jective nature, arising from causes inherent to the observer, nor objective, in the
sense that the reality is indeed imprecise or vague.

Such a condition is imposed on us by our relationship with reality, how we are
constituted psycho-physiologically to grasp it, and also by the nature of the universe.

So when we need to describe portions of our reality, unavoidably we face with
imprecise description and inconsistency becomes a natural phenomena.

1.5 Some Motivations for Paraconsistent Logics

Problems of various kinds give rise to paraconsistent logics: for instance, the
paradoxes of set theory (v.g. Russell’s paradox), the semantic antinomies, some
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issues originating in dialectics, in Meinong’s theory of objects, in the theory of
fuzziness, and in the theory of constructivity.

However, since end of last century paraconsistent logics began to be applied in a
variety of themes: AI, automation and robotics, information systems, pattern rec-
ognition, computability beyond Turing, physics, quantum mechanics, besides in
human sciences, like issues in psychoanalysis, etc.

In the scope of this book, we will not consider the question whether our world, is
in fact, inconsistent or not. What is of interest for us is what we can call a kind of
‘weak ontology’: for instance, suppose that a doctor A says that patient P has a
certain disease, while another doctor B says that the same patient A has not such
disease. In an automated system, we have to make a decision from these conflicting
data. On the other hand, systems based on classical logic cannot deal it at least
directly. So we need another type of logic to deal with such contradictions without
the need for extra-logical devices.

1.6 The Systems Cn of da Costa

Presently it is known an infinitely many paraconsistent logic systems. One of the
first important systems in the literature is the (propositional) system Cnð1� n\xÞ
of da Costa which we sketch it briefly below.

A hierarchy of paraconsistent propositional calculi Cnð1� n\xÞ was intro-
duced by da Costa [21]. For each n, 1� n\x, we have different calculi symbolized
by Cn. Such calculi were formulated with the aim of satisfying the following
conditions:

(a) The principle of non-contradiction, in the form :ðA ^ :AÞ is not valid in
general;

(b) From two contradictory propositions, A and :A, we can not deduce any for-
mula B;

(c) The calculus should contain the most important schemes and inference rules of
the classic propositional calculus compatible with the conditions (a) and
(b) above.

The language of Cn calculi (1� n\x) is the same for all of them; let us denote it
by L. The primitive symbols of L are:

1. propositional variables: an denumerable set of symbols.
2. logical connectives: : (negation) ^ (conjunction), _ (disjunction) and !

(implication).
3. Auxiliary symbols: parentheses.

It is introduced usual syntactic concepts, for example, the idea of formula.
Let A be a formula. Then Ao abbreviates :ðA ^ :AÞ. Ai abbreviates Ao…o, where

the symbol o appears i times, i� 1. (thus, A1 is Ao). We write A(i) for
ðA ^ A1 ^ A2 ^ . . . ^ AiÞ.
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The postulates (axioms schemes and inference rules) of Cnð1� n\xÞ are as
follows: A, B and C denote any formulas.

(1) A ! ðB ! AÞ
(2) ðA ! ðB ! CÞÞ ! ððA ! BÞ ! ðA ! CÞÞ
(3) ððA ! BÞ ! AÞ ! A
(4) A; A ! B

B
(5) A ^ B ! A
(6) A ^ B ! B
(7) A ! ðB ! ðA ^ BÞÞ
(8) A ! A _ B
(9) B ! A _ B

(10) ðA ! CÞ ! ððB ! CÞ ! ððA _ BÞ ! CÞÞ
(11) B nð Þ ! ððA ! BÞ ! ððA ! :BÞ ! :AÞÞ
(12) ðAðnÞ ^ BðnÞÞ ! ððA ^ BÞðnÞ ^ ðA _ BÞðnÞ ^ ðA ! BÞðnÞÞ
(13) ðA _ :AÞ
(14) ::A ! A

The postulates of Cx are those Cn with the exception of (3), (11) and (12).
In the calculi Cnð1� n\xÞ the formula A(n) expresses the intuitively that the

formula A “behaves” classically; therefore motivation for postulates (11) and (12) is
clear. In addition, the postulates show us that the remaining connectives ^;_;!
have all properties of conjunction, disjunction and the classical implication
respectively.

We have the following result correlating to classical positive logic: in
Cnð1� n\xÞ is true all valid schemes of classical positive propositional logic. In
particular, the deduction theorem is valid in Cnð1� n\xÞ.

Cx contains the positive intuitionistic logic.
We write : nð ÞA for:A ^ A nð Þ.
In Cnð1� n\xÞ we have the following metatheorem: ‘:AðnÞ ! ð:AÞðnÞ
Also, the connective defined :ðnÞ has all the properties of classical negation. As a

result, the classical propositional calculus is contained in Cnð1� n\xÞ, although
the latter is a strict subcalculus of the first. In this way the previous conditions (a),
(b) and (c) are satisfied. Thus, the principle of non-contradiction :ðA ^ :AÞ is not
valid in general.

A semantical consideration can be made for Cn known as valuation theory. A and
B are any formulas. F symbolizes the set of formulas of C1 and 2 indicates the set
{0, 1}. An interpretation (or validation) for C1 is a function u : F ! 2 such that:

(1) u Að Þ ¼ 0 ) uð:AÞ ¼ 1;
(2) uð::AÞ ¼ 1 ) u Að Þ ¼ 1;
(3) u Boð Þ ¼ uðA ! BÞ ¼ uðA ! :BÞ ¼ 1 ) u Að Þ ¼ 0;
(4) uðA ! BÞ ¼ 0 ) u Að Þ ¼ 0 ou u Bð Þ ¼ 1;
(5) uðA ^ BÞ ¼ 1 ) u Að Þ ¼ u Bð Þ ¼ 1;
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(6) uðA _ BÞ ¼ 1 ) u Að Þ ¼ 1 ou u Bð Þ ¼ 1;
(7) u Aoð Þ ¼ u Boð Þ ¼ 1 ) uððA ! BÞoÞ ¼ uððA ^ BÞoÞ ¼ uððA _ BÞoÞ ¼ 1:

If we denote by C0 the classical propositional calculus, then the hierarchy
C0;C1; . . .;Cn; . . .;Cx is such that Ci is strictly stronger than Ci+1, for all
i; 1� i\x. Cx is the weakest calculus of the hierarchy. Notice that we can extend
Cn to the first order logic and higher order logics; also it can built strong set theories
based on these first-order logics. With the bi-valued semantic presented it can be
proved several basic metatheorems: soundness, strong and weak completeness, and
such calculi also are decidable.

Let us turn our attention to the calculus C1. It can be proved that it is a para-
consistent calculus and therefore we can use it to manipulate inconsistent sets of
formulas without immediate trivialization (this means that all formulas of language
can not be deduced from this inconsistent set of formulas, as has been noted before).
In C1 there are inconsistent theories that have models and, as a consequence, they
are not trivial. In other words, C1 may serve as underlying logic of paraconsistents
theories. However, it should be noted that when we are working with formulas that
satisfy the principle of non-contradiction, then C1 reduce to C0.

It should observed that the previous semantics is such that the criterion (T) by
Tarski remains valid. Indeed, if A is a formula and [A] its name, we have:

[A] is true (in a validation) if, and only if, A.
In a certain sense, the semantics proposed for Cn is a generalization of the usual

semantics.
The foregoing observations can be extended easily to other calculi

Cnð1� n\xÞ and to first order calculi Cn* and C¼
n ð1� n\xÞ. A similar semantics

can be constructed to Cx, as well as for C�
x and C¼

x .
Therefore the semantics for Cn extends the classical propositional calculus

semantics. In general, ‘paraconsistent’ semantics generalize the classical semantic.
So there are “Tarskian alternatives” of Tarski’s truth’s theory, and paraconsistent
logic again becomes a starting point for a dialectic of classical doctrine of logicism.

Moreover, the abstract and idealized pure semantic character, traditional or not,
shows that the logical systems are theoretical reconstructions of aspects of our
boundary; and, bearing in mind all the above observation, it becomes clear the
existence of large distance between logical systems and real logical structures.

1.7 Other Issues

Here if a modality which expresses knowledge is added to classical logic, we face
another undesirable aspect. In effect, one peculiarity of the deductive structure of
the usual modal logic is that an agent knows all logical consequences of their body
of knowledge, in particular, all tautologies. This property is known as the question
of logical omniscience. This context is not natural in general. Take the example of
human reasoning. When we think of agents as humans, surely they are not logically
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omniscient: in fact, a person can learn a set of facts without knowing all logical
consequences of this set of facts. For example, a person can know the chess game
rules without knowing whether the white pieces have a strategy to win or not. In
practice, the lack of logic omniscience can have several reasons. An obvious
example is the computational limitations; for example, an agent may simply not
have computing resources to see if the white pieces have a strategy to win at the
game of chess.

2 Paraconsistent Annotated Logic

Annotated logics are class of 2-sorted logics. They were introduced in logic pro-
gramming by Subrahmanian [39] and subsequently by Blair and Subrahmanian
[14]. Simultaneously, some other applications were made: declarative semantics for
inheritance networks [28], object-oriented databases [27], among other issues.

In view of the applicability of annotated logics to these differing formalisms in
computer science, it has become essential to study these logics more carefully,
mainly from the foundational point of view. In [22] the authors studied the prop-
ositional level of annotated systems. In sequence, Abe [1] studied the first order
predicate calculi Qs in details, obtaining completeness and soundness theorems for
the case when the associated lattice s is finite. Also this author has established some
main theorems concerning the theory of models (Łos theorem, Chang theorem,
interpolation theorem, Beth definability theorem, among others). Also an annotated
set theory was proposed [1, 18] ‘inside’ usual ZF set theory which encompasses the
fuzzy set theory in totum.

In general, annotated logics are a kind of paraconsistent, paracomplete, and
non-alethic logic.

2.1 The Annotated Logics Qs

Qs is a family of two-sorted first-order logics, called annotated two-sorted
first-order predicate calculi. They are defined as follows: throughout this paragraph,
s ¼ \jsj; � ; � [ will be some arbitrary, but finite fixed lattice of truth values
with the operator * : jsj ! jsj which constitutes the “meaning” of the negation of
Qs. The least element of s is denoted by ?, while its greatest element by >; _ and
^ denote, respectively, the least upper bound and the greatest lower bound oper-
ators (of s) .

The primitive symbols of the language L of Qs are the following:

1. Individual variables: a denumerable infinite set of variable symbols.
2. Logical connectives: :, (negation), ^ (conjunction), _ (disjunction), and !

(conditional).
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3. For each n, zero or more n-ary function symbols (n is a natural number).
4. For each n ≠ 0, zero or more n-ary predicate symbols.
5. Quantifiers: 8 (for all) and 9 (there exists).
6. The equality symbol: = .
7. Annotated constants: each member of s is called an annotational constant.
8. Auxiliary symbols: parentheses and commas.

For each n, the number of n-ary function symbols may be zero or non-zero, finite
or infinite. A 0-ary function symbol is called a constant. Also, for each n, the
number of n-ary predicate symbol may be finite or infinite.

In the sequel, we suppose that Qs possesses at least one predicate symbol.
We define the notion of term as usual. Given a predicate symbol p of arity n, an

annotational constant λ and n terms t1, …, tn, an annotated atom is an expression of
the form pλt1 … tn. In addition, if t1 and t2 are terms whatsoever, t1 = t2 is an atomic
formula. We introduce the general concept of formula in the standard way. Among
several intuitive readings, an annotated atom pλt1 … tn can be read is it is believed
that

pλt1 … tn’s truth value is at least λ.
Syntactical notions, as well as terminology, notations, etc. are those of current

literature with obvious adaptations. We will employ them without extensive
comments.

Definition 2.1 Let A and B formulas of L. We put
ðA $ BÞ ¼Def: ððA ! BÞ ^ ðB ! AÞÞ and ð:�AÞ ¼Def: ðA ! ððA ! AÞ ^ :

ðA ! AÞÞ:
The symbol ‘↔’ is called the biconditional and ‘¬*’ is called strong negation.

Let A be a formula. ¬0A indicates A, ¬1A indicates ¬A, and ¬nA indicates
(¬(¬n−1A)), (n ≥ 1). Also, if μ 2 τ, * 0μ indicates μ, * 1μ indicates * μ,

and * nμ indicates (* (*n−1μ)), (n ≥ 1).

Definition 2.2 Let pλt1 … tn be an annotated atom. A formula of the form
¬kpλt1 … tn (k ≥ 0) is called a hyper-literal. A formula other than hyper-literal is

called a complex formula.
We now introduce the concept of structure for L.

Definition 2.3 A structure S for L consists of the following objects:

1. A non-empty set |S|, called the universe of S. The elements of |S| are called
individuaIs of S.

2. For each n-ary function symbol f of L an n-ary function fS: jSjn ! jSj. (In
particular, for each constant e of L, eS is an individual of A.)

3. For each n-ary predicate symbol p of L an n-ary function pS: jSjn ! jsj.
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Let A be a structure for L. The diagram language LS is obtained as usual.
If a is a free-variable term, we define the individual S(a) of S. We use i and j as

syntactical variables which vary over names.
We define a truth value S(A) for each closed formula A in LS.

1. If A is a = b
S(A) = 1 iff S(a) = S(b); otherwise S(A) = 0.

2. If A is pλt1 … tn
S(A) = 1 iff pS(S(t1) … S(tn) ≥ λ
S(A) = 0 iff it is not the case that pS(S(t1) … S(tn) ≥ λ

3. If A is B ∧ C, or B ∨ C, or B → C, we let
S(B ∧ C) = 1 iff S(B) = S(C) = 1.
S(B ∨ C) = 1 iff S(B) = 1 or S(C) = 1.
S(B → C) = 0 iff S(B) = 1 and S(C) = 0.
If A is ¬kpλt1 … tn (k ≥ 1), then S(A) = S(¬k−1p*λt1 … tn).

4. If A is a complex formula, then, S(¬A) = 1—S(A).
5. If A is 9xB, then S(A) = 1 iff S(Bx[i]) = 1 for some i in LS.
6. If A is 8xB, then S(A) = 1 iff S(Bx[i]) = 1 for all i in LS.

A formula A of L is said to be valid in S if S(A’) = 1 for every S-instance A’ of A.
A formula A is called logically valid if it is valid in every structure for L. In this
case, we symbolize it by ⊧ A. If Γ is a set of formulas of L we say that A is a
semantic consequence of Γ if for any structure S in what S(B) = 1 for all B 2 Γ, it is
the case that S(A) = 1. We symbolize this fact by Γ ⊧ A. Note that when Γ = ∅, Γ ⊧
A iff ⊧ A.

Lemma 2.1 We have:

1. �p?t1. . .tn
2. �:kpkt1. . .tn $ :k�1p� kt1. . .tnÞ ðk� 1Þ
3. �pllt1. . .tn ! pl2t1. . .tn; l� l
4. �pl1t1. . .tn ^ pl2t1. . .tn ^ . . . ^ plmt1. . .tn ! p

l _m
i¼1

t1. . .tn

Now, we shall describe an axiomatic system which we call Aτ whose underlying
language is L: A, B, C are any formulas whatsoever, F, G are complex formulas,
and pλt1 … tn an annotated atom. Aτ consists of the following postulates (axiom
schemes and primitive rules of inference), with the usual restrictions:

ð!1Þ A ! ðB ! AÞ
ð!2Þ ðA ! ðB ! CÞ ! ððA ! BÞ ! ðA ! CÞÞ
ð!3Þ ððA ! BÞ ! A ! AÞ
ð!4Þ A;A!B

B Modus Ponensð Þ
ð^1Þ A ^ B ! A
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ð^2Þ A ^ B ! B
ð^3Þ A ! ðB ! ðA ^ BÞÞ
ð_1Þ A ! A _ B
ð_2Þ B ! A _ B
ð_3Þ ðA ! CÞ ! ððB ! CÞ ! ððA _ BÞ ! CÞÞ
ð:1Þ ðF ! GÞ ! ððF ! :GÞ ! :FÞ
ð:2Þ F ! ð:F ! AÞ
ð:3Þ F _ :F
ð91Þ A tð Þ ! 9xA xð Þ
ð92Þ AðxÞ!B

9xAðxÞ!B

ð81Þ 8xA xð Þ ! A tð Þ
ð82Þ B!AðxÞ

B!8xAðxÞ
ðs1Þ p?t1. . .tn
ðs2Þ :kpkt1. . .tn ! :k�1p� kt1. . .tn; k� 1
ðs3Þ pkt1. . .tn ! plt1. . .tn; k� l

ðs4Þ pk1t1. . .tn ^ pk2t1. . .tn ^ . . . ^ pkmt1. . . tn ! pkt1. . .tn; where k ¼ _m
i¼1

ki

¼1ð Þ x ¼ x
¼2ð Þ x ¼ y ! ðA x½ � $ A y½ �Þ

Theorem 2.12 In Qτ, the operator ¬* has all properties of the classical negation.
For instance, we have:

1. ‘ A _ :�A
2. ‘ :�ðA ^ :�AÞ
3. ‘ ðA ! BÞ ! ððA ! :�BÞ ! :�AÞ
4. ‘ A ! :�:�A
5. ‘ :�A ! ðA ! BÞ
6. ‘ ðA ! :�AÞ ! B

among others, where A, B are any formulas whatsoever.

Corollary 2.12.1 In Qτ the connectives ¬*, ∧, ∨, and → together with the
quantifiers 8 and 9 have all properties of the classical negation, conjunction,
disjunction, conditional and the universal and existential quantifiers, respectively.
If A, B, C are formulas whatsoever, we have, for instance:

1. ðA ^ BÞ $ :�ð:�A _ :�BÞ
2. :�8A $ 9x:�A
3. 9xB _ C $ 9x B _ Cð Þ
4. B _ 9xC $ 9x B _ Cð Þ

Theorem 2.13 If A is a complex formula, then ‘ :A $ : � A
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Definition 2.10 We say that a structure S is non-trivial if there is a closed anno-
tated atom pλt1 … tn such that S(pλt1 … tn) = 0.

Hence a structure S is non-trivial iff there is some closed annotated atom that is
not valid in S.

Definition 2.11 We say that a structure A is inconsistent if there is a closed
annotated atom pλt1 … tn such that

Sðplt1. . .tnÞ ¼ 1 ¼ Sðplt1. . .tnÞ:

So, a structure S is inconsistent iff there is some closed annotated atom such that
it and its negation are both valid in S.

Definition 2.12 A structure S is called paraconsistent if S is both inconsistent and
non-trivial. The system Qτ is said to be paraconsistent if there is a structure S for Qτ
such that S is paraconsistent.

Definition 2.13 A structure S is called paracomplete if there is a closed annotated
atom pλt1 … tn such that S(pλt1 … tn) = 0 = S(pλt1 … tn).

The system Qτ is said to be paracomplete if there is a structure S such that S is
paracomplete.

Theorem 2.14 Qτ is paraconsistent iff #|τ| ≥ 2.

Proof Suppose that #|τ| ≥ 2. There is at least one predicate symbol p. Let |τ| be a
non-empty set which #|τ| ≥ 2. Let us define pS:|S|

n → |τ| setting pS(a1, …, an) = ⊥
and pS(b1, …, bn) = ⊤ where (a1, …, an) ≠ (b1, …, bn).

Then, S(p⊥i1 … in) = 1, where ij the name of bj, j = 1, …, n, and S(¬p⊥i1 …
in) = 1. Likewise, S(p⊤j1 … jn) = 0, where ji is the name of ai, i = 1, …, n. So, Qτ is
paraconsistent. The converse is immediate.

Theorem 2.15 For all τ there are systems Qτ that are paracomplete; and also
systems that are not paracomplete. If Qτ is paracomplete, then #|τ| ≥ 2.

Proof Similar to the proof of the preceding theorem.

Definition 2.15 A structure S is called non-alethic if S is both paraconsistent and
paracomplete. The system Qτ is said to be non-alethic if there is a structure S for Qτ
such that S is non-alethic.

Theorem 2.16 For all #|τ| ≥ 2 there are systems Qτ that are non-alethic; and also
systems that are not non-alethic. If Qτ is non-alethic, then #|τ| ≥ 2.

Given a structure S, we can define the theory Th(S) associated with S to be the
set Th(S) = Cn(Γ), where Γ is the set of all annotated atoms which are valid in S
Cn(Γ) indicates the set of all semantic consequences of elements of Γ.

Theorem 2.17 Given a structure S for Qτ, we have:
1. Th(S) is a paraconsistent theory iff S is a paraconsistent structure. 2. Th(A) is

a paracomplete theory iff S is a paracomplete structure. 3. Th(S) is a non-alethic
theory iff S is a non-alethic structure.
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In view of the preceding theorem, Qτ is, in general, a paraconsistent, para-
complete and non-alethic logic.

We give a Henkin-type proof of the completeness theorem for the logics Qτ.

Definition 2.16 A theory T based on Qτ is said to be complete if for each closed
formula A we have ⊢TA or ⊢T¬*A.

Lemma 2.2 Let λ0 = ∨{λ 2 |τ|: ⊢Tpλt1 … tn}. Then ⊢Tpλ0t1… tn.
Now let T be a non-trivial theory containing at least one constant. We shall

define a structure S that we call the canonical structure for T. If a and b are
variable-free terms of T, then we define aRb to mean ⊢T a = b. It is easy to check
that R is an equivalence relation. We let |S| be the quotient set F/R, where F
indicates the set of all formulas of L. The equivalence class determined by a is
designed by ao. We complete the definition of S by setting

fS a01; . . .; a
0
m

� � ¼ fS a1; . . .; amð Þð Þ0and
pS a01; . . .; a

0
n

� � ¼ _fk 2 jtj : ‘spka1. . .ang

It is straightforward to check the formal correctness of the above definitions.

Theorem 2.18 If pλa1… an is a variable-free annotated atom, then

Sðpka1. . .anÞ ¼ 1 iff‘spka1. . .an:

Proof Let us suppose that S(pλa1… an) = 1. Then pS(a1
0,…, an

0) ≥ λ.

But pS(a1
0,…, an

0) = ∨{λ 2 |τ|: ⊢Tpλa1… an}; so, ⊢Tpλ0a1… an by the preceding
lemma. As λ0 ≥ λ, it follows that ⊢Tpλa1… an by axiom (τ3).

Conversely, let us suppose that ⊢Tpλa1… an. Then ∨{μ 2 |τ|: ⊢Tpμa1… an}. Let
λ0 = ∨{μ 2 |τ|: ⊢Tpμa1… an};). Then it follows that λ0 ≥ λ. But λ0 = pS(a1

0,…, an
0),

and so pS(a1
0,…, an

0) ≥ λ; hence S(pλa1… an) = 1.
A formula A is called variable-free if A does not contain free variables.

Theorem 2.19 Let a = b be a variable-free formula. Then S(a = b) = 1 iff
⊢Ta = b.
We define the Henkin theory as in the classical case. Now, suppose that T is a

Henkin theory and S the canonical structure for T.

Theorem 2.20 Let ¬kpλa1… an be a variable-free hyper-literal. Then

Sð:kpka1. . .anÞ ¼ 1 iff‘s:kpka1. . .an

Proof By induction on k taking into account the axiom (τ2) and theorem 2.7.

Theorem 2.21 Let T be a complete Henkin theory, S the canonical structure for T,
and A a closed formula. Then, S(A) = 1 iff A.
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Proof By induction on the length of A.

Corollary 2.21.1 Under the conditions of the theorem the canonical structure for T
is a model of T.

We construct Henkin theories as in the classical case.

Theorem 2.22 (Lindenbaum’s theorem). If T is a non-trivial theory, then T has a
complete simple extension.

Theorem 2.23 (Completeness theorem). A theory (consistent or not) is non-trivial
iff it has a model.

Theorem 2.24 Let Γ be a set of formulas. Then Γ ⊢ A iff Γ⊧ A.

Theorem 2.25 A formula A of a theory T is a theorem of T iff it is valid in T.

Hence usual metatheorems of soundness and completeness are valid for the
logics Qτ, as well as the usual theory of models can be adapted for these logics.
When the associated lattice τ of the logics Qτ is infinite, due the axiom scheme (τ4),
the logic Qτ is an infinitary logic.

2.2 The Paraconsistent Annotated Evidential Logic Eτ

One logic of particular importance among the family of logics Qτ is the paracon-
sistent annotated evidential logic Eτ. The lattice τ is composed by the set [0, 1] × [0,
1] together with the order relation defined as: (μ1, λ1) ≤ (μ2, λ2) ⇔ μ1 ≤ μ2 and
λ2 ≤ λ1 where [0, 1] is the real unitary interval with the real ordinary order relation.

The atomic formulas of the logic Eτ are of the type p(μ, λ), where (μ, λ) 2 [0, 1]2

(p denotes a propositional variable). p(μ, λ) can be intuitively read: “It is assumed
that p’s favorable evidence is μ and contrary evidence is λ.” Thus:

• p(1.0, 0.0) can be read intuitively as a true proposition.
• p(0.0, 1.0) can be read intuitively as a false proposition.
• p(1.0, 1.0) can be read intuitively as an inconsistent proposition.
• p(0.0, 0.0) can be read intuitively as a paracomplete proposition.
• p(0.5, 0.5) can be read intuitively as an indefinite proposition.

We introduce the following concepts (all considerations are taken with 0 ≤ μ,
λ ≤ 1):

• Uncertainty degree: Gun(μ, λ) = μ + λ–1
• Certainty degree: Gce(μ, λ) = μ–λ

Intuitively, Gun(μ, λ) show us how close (or far) the annotation constant (μ, λ) is
from Inconsistent or Paracomplete state. Similarly, Gce(μ, λ) show us how close (or
far) the annotation constant (μ, λ) is from True or False state. In this way we can
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manipulate the information given by the annotation constant (μ, λ). Note that such
degrees are not metrical distance.

With the uncertainty and certainty degrees we can get the following 12 output
states (Table 1.1): extreme states, and non-extreme states.

Some additional control values are:

• Vscct = maximum value of uncertainty control = Ftun
• Vscc = maximum value of certainty control = Ftce
• Vicct = minimum value of uncertainty control = -Ftun
• Vicc = minimum value of certainty control = −Ftce

Such values are determined by the knowledge engineer, depending on each
application, finding the appropriate control values for each of them.

Table 1.1 Extreme and Non-extreme states

Extreme states Symbol Non-extreme states Symbol

True V Quasi-true tending to Inconsistent QV → T

False F Quasi-true tending to Paracomplete QV → ⊥

Inconsistent T Quasi-false tending to Inconsistent QF → T

Paracomplete ⊥ Quasi-false tending to Paracomplete Qf → ⊥

Quasi-inconsistent tending to True QT → V

Quasi-inconsistent tending to False QT → F

Quasi-paracomplete tending to True Q⊥ → V

Quasi-paracomplete tending to False Q⊥ → F

QV T

QV

QT    V 

QF T QT    F

Q    V→

V

F T

⊥ ⊥ 

Q    F→⊥ ⊥ 

Q    F →

→ →

→

→

⊥ ⊥ 

⊥ ⊥ 

→

μ

λ

⊥ ⊥ 

Fig. 1.1 Lattice of extreme
and non-extreme states
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All states are represented in the next Figs. 1.1 and 1.2 includes their relationship
with certainty and uncertainty degrees.

Given the inputs μ-favorable evidence and λ—contrary evidence, there is the
Para-analyzer algorithm (below) which figure out a convenient output [4, 25].

3 Algorithm “Para-Analyzer”

Fig. 1.2 Certainty and
uncertainty degrees and
decision states
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4 Applications

Nowadays it is known innumerous applications of paraconsistent logics in various
fields of human knowledge. Here we restrict to a fragment of them, mainly having
as basis the annotated logics. A number of them were initiated by Abe around 1993
and together with some students have implemented an annotated logic program
dubbed Paralog (Paraconsistent Logic Programming) [12] independently of
Subrahmanian [39]. These ideas were applied in a construction of a specification
and prototype of an annotated paraconsistent logic-based architecture, which inte-
grates various computing systems—planners, databases, vision systems, etc.—of a
manufacture cell [36] and knowledge representation by Frames, allowing repre-
senting inconsistencies and exceptions [13].

Also, in [23, 25] it was introduced digital circuits (logical gates Complement,
And, Or) inspired in a class of paraconsistent annotated logics Pτ. These circuits
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allow “inconsistent” signals in a nontrivial manner in their structure. Such circuits
consist of six states; due the existence of literal operators to each of them, the
underlying logic is functionally complete.

There are various intelligent systems including nonmonotonic reasoning in the
field of AI. Each system has different semantics. More than two nonmonotonic
reasoning maybe required in complex intelligent systems. It is more desirable to
have a common semantics for such nonmonotonic reasoning. It was proposed a
common semantics for the nonmonotonic reasoning by annotated logics and
annotated logic programs [32–34].

Also, annotated systems encompass deontic notions in this fashion. Such ideas
were implemented successfully in safety control systems: railway signals, traffic
intelligent signals, pipeline cleaning system, and many other applications [34].

Annotated systems were extended to involve usual modalities [1] and this
framework was utilized to obtain annotated knowledge logics [5], temporal anno-
tated logics, deontic logics and versions of Jaśkowski systems. Also multimodal
systems were obtained as a formal system to serve as underling logic for distributed
systems in order to manage inconsistencies and/or paracompleteness [5].

Also a particular annotated version, namely, paraconsistent annotated evidential
logic Eτ was employed in decision-making theory in many questions in production
engineering [15] with the aid of Para-analyzer algorithm. An expert system can be
considered with the novelty that the database is constituted by date from experts
expressing their favorable evidence and unfavorable evidence regarding to the
problem. Some positive aspects: the formal language for the experts to express their
opinions is richer than ordinary ones. The study employing the logic Eτ was
compared with statistics [15–17] and with fuzzy set theory [15] (see also [8]).

Logical circuits and programs can be designed based on the Para-analyzer.
A hardware or a software built by using the Para-analyzer, in order to treat logical
signals according the structure of the logic Eτ, is a logical controller that we call
Para-control. It was built an experimental robot based on paraconsistent annotated
evidential logic Eτ which basically it has two ultra-sonic sensors (one of them
capturing a favorable evidence and another, the contrary evidence regarding to the
existing obstacles ahead) and such signals are treated according to Paracontrol. The
first robot built on the basis of Pacontrol was dubbed Emmy [24]. Also it was built a
robot based on a software using Paralog before mentioned, which was dubbed Sofya
[36]. Then several other prototypes were made with many improvements [40].

Also a suitable combination of such logical analyzer, it allowed to built a new
artificial neural network dubbed paraconsistent artificial neural network [24] and
innumerous applications were succeeded: in the aid of Alzheimer diagnosis [29,
30], Cephalometric analysis [31], speech disfluence [6], numerical recognition [38],
sample in Statistics, Robotics [40], decision-making theory, many disease auxiliary
diagnosis [2, 11], etc.

Also annotated logics encompass fuzzy set theory and we have presented even
an axiomatization of versions of Fuzzy theory [8].
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5 Conclusions

The paraconsistent annotated logic, still very young, discovered in the eventide of
the last century, is one of the great achievements in non-classical logics. Its com-
position as two-sorted logic, in which the set of one of the variables has a math-
ematical structure produced useful results regarding to computability and electronic
implementations. Its main feature is the capability of handling concepts such as
uncertainty, inconsistency, and paracompleteness.

We believe that the annotated logics has very wide horizons, with enormous
potential for application and also as a foundation for elucidating the common
denominator of many non-classical logics.

The appearance of the paraconsistent logics can be considered one of the most
original and imaginative logical systems in the beginning of last century. It con-
stitutes in a paradigm of the human thinking. As rationality and logicality were
identical until the advent of non-classical systems, nowadays it can be considered in
this way yet? Are there really alternatives to the classical logic? In consequence are
there distinct rationalities? All these questions occupy logicians, philosophers, and
scientists in general.

Notes

1. According to da Costa, in a personal letter to the author, Feb. 2015: “The term
“Curry Algebras”, when I’ve employed it for the first time had no relationship
directly with paraconsistent logics. In formulating the theory, based on Curry’s
work around l965, they were conceived as “algebras” containing non-monotonic
(i.e., non-compatible) operators regarding to their basic equivalence relations.
When I’ve made the algebraization of the paraconsistent Cn systems, I’ve noted
that the negations of my systems were not monotonic regarding to equivalence
relations of these algebras; therefore, they were Curry algebras. (Interestingly
enough, I personally spoke with Curry, asking him permission to use his name
for these algebras and the Curry’s response was: “You can do it, if the theory is
worthy of being named”. Note that what I call Curry algebra is not algebra in the
usual sense, as they have always equality as the basic relation. Curry was the
first to replace equality by an equivalence relation.) The first presentation of the
concept of Curry algebra appeared in C.R. Acad. Sc. Paris1, as you know.
Before it had appeared in my monograph “Algebras de Curry”2, which you also
know and it contains all the literature at the time.”
1N.C.A. da Costa, Opérations non monotones dans les treillis. Comptes Rendus
de l’Académie des Sciences. Série 1, Mathématique, Paris, v. 263, p. 429–432,
1966.
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1N.C.A. da Costa, Filtres et idéaux d`une algèbre Cn, Comptes Rendus de
l’Académie des Sciences. Série 1, Mathématique, Paris, v. 264, p. 549–552,
1967.
2N.C.A. da Costa, Álgebras de Curry, University of São Paulo, 1967.
So, “Curry algebras” is in homage to the American logician Haskell Brooks
Curry (1900–1982).

2. According to da Costa, in a personal letter to the author, Feb. 2015: “The
valuation theory appeared by first time, as I conceive it, in my seminars in
Campinas State University in the 60s or 70s. It applies to any usual logic, such
as intuitionistic and positive classical logic. Thus, it can be applied even in
paraconsistent logic. I did so, in the 70s, regarding to paraconsistent logics Cn,
which led me, in particular, to the decision processes for these calculi and
several others, such as intuitionistic. Such result was due not only to me but also
to the Campinas’ group. In fact, I showed the soundness and completeness
(Gödel) theorems for any logic system, via valuation theory (not only propo-
sitional calculi, but also quantification calculi and even for set theories, …).”

3. The name ‘Emmy’ for the first paraconsistent autonomous robot built with
hardware-based on paraconsistent annotated logic was suggested by Newton C.
A. da Costa and communicated personally to Jair M. Abe in 1999 at University
of São Paulo.

4. The name ‘Sofya’ for the first paraconsistent autonomous robot built with the
software based on paraconsistent annotated logic was also suggested by
Newton C.A. da Costa and communicated personally to Jair M. Abe in 1999 at
University of São Paulo.

5. The name ‘Emmy’ is a tribute to the mathematician Amalie Emmy Noether
(1882–1935). The name ‘Sofya’ is in honor to the mathematician Sofya
Kovalevskaya Vasil’evna (= Kowalewskaja) (1850–1891). Among other rea-
sons for the choice of names, da Costa commented that as such robots have
distinctive feature to deal with paraconsistency in a ‘natural way’ should receive
female names.
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