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Abstract We develop a method of grouping (clustering) variables based on fuzzy
equivalence relations. We first compute the pairwise relationship (correlation)
matrix between the variables and transform the matrix into a fuzzy compatibility
relation. Then a fuzzy equivalence relation is constructed by computing the tran-
sitive closure of the compatibility relation. Finally, by taking all appropriate
α-cuts, we obtain a hierarchical type of variable clustering. As examples, we use the
proposed method first as a variable clustering tool in a regression model and
secondly as a new way of performing factor analysis.

Keywords Fuzzy sets ⋅ Fuzzy equivalence relations ⋅ Clustering variables ⋅
Feature selection ⋅ Factor analysis ⋅ Regression analysis

1 Introduction

When modelling a system or a dependent variable, there is the problem of too many
independent variables. In regression analysis for example, too many variables might
lead to overfitting the data and render the model inefficient for the purpose of
prediction. Also too many variables lead to a complex model and hence it is difficult
to explain the interactions between all variables used in the model and how each
variable affects the system (Sanche and Lonergan 2006). The problem of many
variables is also known to affect cluster analysis. This is because for certain
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distributions, distances between data points become relatively uniform as the
dimension increases (Beyer et al. 1999). Variable reduction is therefore useful when
there are many observable variables and one need to choose a subset of these
variables (feature selection) or find a reduced set of latent variables (dimensionality
reduction) which explain a significant amount of the variance in the data.

Feature selection techniques are divided into wrapper, filters and embedded
methods. Wrapper methods assign scores based on the predictive performance of
each selected feature subset while filter methods use measures like correlation,
mutual information, etc., to assign scores to feature subsets. Wrapper methods are
known to be more accurate that filter methods but are computationally more
expensive (Guyon and Elisseeff 2003). Embedded methods perform feature selec-
tion as part of the model calibration process. Their goal is to shrink the regression
coefficients of all the variables in the model by constraining their sum to a specific
value (Tibshirani 1996). This procedure effectively reduces most of the coefficients
to zero leaving only the most important ones. Details about various variable
selection techniques can be found in (Guyon and Elisseeff 2003). One obvious
disadvantage of feature selection is that we only use a very few set of selected
variables out of all the variables without analyzing the relationship between them.

Dimensionality reduction can be done directly by principal component analysis
(PCA) or by first using K-means or other clustering techniques to partition the data
into a fixed number of clusters and then projecting the data matrix into the space
spanned by the centroid of the clusters (Karypis and Han 2000). Another method
similar to PCA is factor analysis. This method is preferred when the goal is to
describe the variance of a group of correlated variables with a single variable. This
is equivalent to clustering groups of linearly related variables around a small
number of latent variables called factors (Spearman 1904).

A disadvantage of dimensionality reduction techniques like PCA and factor
analysis is that we cannot explicitly define the relationship between the latent
(unobserved) variables and the observed variables. Also information is lost by using
a few principal components instead of all components. There is also the problem of
choosing how many latent variables or number of principal components. To solve
the problems encountered by feature selection and dimensionality reduction, a
method for variable reduction where all variables are retained is needed.

Variable clustering is a technique for reducing the number of variables to smaller
set of clusters where the variables in a cluster are similar to other variables in the
cluster and are dissimilar to other variables in another cluster. The similarity
measure used here is that of correlation or other measures with the same meaning
like mutual information. The advantage is that all variables are available for use
after the clustering process. For example, the procedures of feature selection can be
applied to the clustered variables by selecting variables from the clusters instead of
individually (Bühlmann et al. 2013).

In this research, we introduce the idea of clustering variables using fuzzy
equivalence relation. We also discuss the potential of the proposed model as both a
feature selection and dimensionality reduction preprocessing tool. The contribution
of this paper is to provide an alternative method to variable clustering and also give
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new interpretations to the clustered variables and discuss their relationship with
PCA, factor analysis, feature selection and high dimensional data clustering.

2 Literature Review

Although clustering variables is not as popular as data clustering, some advances
have been made in this area. The first approach to variable clustering used principal
component regression (Kendall 1957). Other variable clustering methods have been
developed with regression analysis in mind. This process leads to an algorithm that
performs variable clustering and model fitting at the same time. Examples of such
algorithms are the one proposed by Dettling and Bühlmann (2004) and the OSCAR
method developed by Bondell and Reich (2008).

Hastie et al. (2000) proposed the ‘gene shaving’ technique which uses principal
components analysis to find a group of highly correlated variables. This method
was applied to cluster genes and can either be unsupervised or supervised with a
response variable. Hastie et al. (2001) also proposed the ‘tree harvesting’ method to
select groups of predictive variables formed by hierarchical clustering in a super-
vised learning scheme.

For unsupervised variable clustering, other methods have been developed.
PROC VARCLUS is an unsupervised variable clustering algorithm developed by
SAS Institute Inc. This algorithm uses an iterative approach to find groups of
variables that are as correlated as possible among themselves and as uncorrelated as
possible with variables in other clusters. The algorithm begins with all variables in
one cluster. A cluster is then chosen to split into two clusters by using the first two
principal components and assigning the variables to the component with which they
have the highest correlation (Nelson 2001).

Vigneau et al. (2001) used a method similar to PROC VARCLUS for variable
clustering. In their approach, the goal was to maximize the correlation between the
variables and their cluster centroid. The algorithm is similar to K-means and
requires the user to specify the number of clusters. The authors also suggested a
hierarchical variable clustering algorithm based on the same criteria to help with the
selection of the number of clusters.

Palla et al. (2012) developed the Dirichlet Process Variable Clustering (DPVC).
They clustered the variables by partitioning the observed dimensions by the Chi-
nese Restaurant Process. DPVC exhibits the usual advantages over other methods
because it is probabilistic and non-parametric. It can handle missing data, learn the
appropriate number of clusters from data, and avoid overfitting.

Bühlmann et al. (2013) proposed a bottom-up agglomerative variable clustering
algorithm based on canonical correlation. The algorithm starts with all variables in
different clusters and successively merges the two clusters with the highest
canonical correlation.

To our knowledge, fuzzy equivalence relation has not been applied to cluster
variables. In this paper, we partition the variables into clusters using fuzzy equivalence
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relations. Our approach is clearly linked to the data clustering application of fuzzy
equivalence relations (Klir and Yuan 1995). All techniques used are the same as in
data clustering. The only difference is that the distance or similarity measure used is
the correlation among the variables. As noted earlier, we provide some new insight to
the interpretation of the clustered variables by giving example of how the method can
be used both as a standalone tool for unsupervised clustering of variables or as a
preprocessing tool for variable selection in regression analysis, factor analysis,
principal component analysis and clustering in high dimensional space. We consider
that these new interpretations will be useful for other variable clustering methods too.
The advantages of the proposed model over existing variable clustering methods are:

• Apart from using the correlation measures of the variables, the fuzzy proximity
matrix in our proposed method can also be constructed using expert opinion on
the relationship between the variables. This is very useful for variables that are
not quantifiable or with missing, incomplete or unreliable data. The other
methods mentioned above do not possess this flexibility, as they rely on the
correlation calculations or other estimations made from the available data.

• There is no need to specify the number of clusters. The method produces a
hierarchical cluster of all variables, if all α-cuts are used, and can also partition
variables into an appropriate number of clusters, by choosing an appropriate α-
cut most suitable for a particular application.

• The α-cut value used to cluster the variable represents the least correlation
strength of all variables in the cluster. All variables therefore are equivalent at
some level chosen by the user. This makes choosing one variable from the
cluster or using the centroid of the variables as a cluster representative mean-
ingful. Other existing methods do not have this property as they only find
variables with the highest correlation to the centroid of the variables in the
cluster or to other latent variable found by PCA.

3 Fuzzy Equivalence Relations

In the following we give some well-known notions and definitions.

Definition 1. Let X be a universal set. Every function of the form A: X → [0, 1] is
called a fuzzy set or a fuzzy subset of X and μA(x) is the membership degree of x in
the fuzzy set A.

Definition 2. The α-cut of the fuzzy set A is defined as the crisp set:

αA= fx ∈ R: μA xð Þ≥ ag, a∈ 0, 1ð �

Definition 3. Let X, Y be universal sets. Then R= f½ðx, yÞ, μRðx, yÞ�jðx, yÞ∈ X × Yg
is called a fuzzy relation on X × Y.

222 K.S. Adjenughwure et al.



Definition 4. Let R⊂X × Y and S⊂ Y × Z be two fuzzy relations. The max-min
composition R ◦ S is defined as:

R ◦ S= x, zð Þ, max
y

min
x, z

μRðx, yÞ, μSðy, zÞf g
� �� �

jx∈X, y∈Y , z∈Z
� �

Definition 5. A fuzzy relation R on X × X is called a fuzzy equivalence relation if it
satisfies the following conditions:

1. Reflexive, that is μRðx, xÞ=1, ∀ x∈X.
2. Symmetric, that is μRðx, yÞ = μRðy, xÞ, ∀x, y∈X.

3. Transitive, that is μRðx, zÞ≥ max
y

min
x, z

μRðx, yÞ, μRðy, zÞf g
� �

∀ x, y, z ∈X.

Definition 6. A fuzzy relation on X × X is called a fuzzy compatibility relation if it
is reflexive and symmetric.

Definition 7. The transitive closure RT of the fuzzy relation R is the relation that is
transitive, contains R and has the smallest possible membership grades.

Definition 8. Given a fuzzy compatibility relation R on X × X, the transitive closure
RT can be calculated (Klir and Yuan 1995) by using the algorithm below:

1. R′ =R ∪ R ◦Rð Þ.
2. If R′ ≠ R, make R = R′ and go to step 1.
3. Stop when R′ = RT.

The type of composition and set union in step 1 must be compatible with the
definition of transitivity used. The max-min transitive closure corresponds to using
the max-min composition and max operator for the set union.

Definition 9. The α-cut matrix of the fuzzy relation R is defined as:

Rα =
x, yð Þ, μRα

ðx, yÞ� �jμRα
ðx, yÞ=1, if μRα

ðx, yÞ≥ α,
μRα

ðx, yÞ=0, if μRα
ðx, yÞ< α, x, yð Þ∈X×Y, α∈ 0, 1½ �

� �

4 Proposed Method for Clustering Variables and Factor
Analysis Based on Fuzzy Equivalence Relation

Suppose we have N variables to use to model a system, where N is considerably
large. We form an N × N relation matrix R of the degree of ‘closeness’ between the
variables and we express this degree of closeness in the interval [0, 1]. The proximity
matrix of the variables is reflexive and symmetric and hence it is a fuzzy compati-
bility relation. The transitive closure RT of the fuzzy compatibility relation is then
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calculated using the algorithm in Definition 8. The new relation is now reflexive,
symmetric and transitive and hence a fuzzy equivalence relation. The variables can
then be clustered by choosing appropriate α-cuts. For anM × N data matrix X, where
the rows represent data samples and the columns represent variables, the variable
clustering procedure is summarized below.

Note that step 1 and step 2 above can be omitted if the fuzzy compatibility matrix is
formed using expert knowledge about the variables. Also step 2 can be omitted if all
values in R are in the interval [0, 1]. Finally any proximity metric which is reflexive
and symmetric and whose values lie in the closed interval [0, 1] can be used.

4.1 Empirical Example – Variable Clustering

We illustrate the variable clustering method using variables from a published
regression analysis of the annual railway passenger demand of Greece (Profillidis
and Botzoris 2005; Adjenughwure et al. 2013). There were a total of 12 independent
variables in the analysis: average rail passenger travel distance, unit cost of rail
transport, car ownership index, number of buses working in interurban routes, total
bus vehicle-km travelled in interurban routes, average bus vehicle-km travelled in
interurban routes, average bus passenger travel distance, unit cost of non-rail
transport, the ratio of unit cost of bus transport to the unit cost of rail transport, cost
of petrol, per capita Gross Domestic Product of Greece, and a variable which was
represents habitual inertia and constraints on supply.

The goal is to cluster the variables unsupervised and then use the results of the
clustered variables for further analysis. To enhance the readers understanding of the
method, we demonstrate a simple example with 7 independent variables.

Algorithm 1 – Variable clustering
Step 1 – Calculate the pairwise Pearson correlation (proximity) matrix of all
variables.

Step 2 – Convert the matrix to fuzzy compatibility relation R by taking the
absolute values of all entries. This is to make sure all values lie in the closed
interval [0, 1].

Step 3 – Find the transitive closure RT of the fuzzy compatibility relation
R using Definition 8.

Hierarchical clustering – Find all feasible clusters by using the α-cut
matrices (Definition 9) of all unique values in RT.

Partition clustering – Use prior knowledge about the variables or a cluster
validity index to choose a suitable α-cut value that gives the best number of
clusters.
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Step1−
Correlationmatrix:

R=

1 − 0.68 0.73 0.77 0.74 0.58 0.60
− 0.68 1 − 0.68 − 0.85 − 0.76 − 0.57 − 0.55
0.73 − 0.68 1 0.72 0.57 0.38 0.95
0.77 − 0.85 0.72 1 0.77 0.51 0.59
0.74 − 0.76 0.57 0.77 1 0.94 0.43
0.58 − 0.57 0.38 0.51 0.94 1 0.26
0.60 − 0.55 0.95 0.59 0.43 0.26 1

2
666666664

3
777777775

Step2−
Absolute value of
correlationmatrix:

R=

1 0.68 0.73 0.77 0.74 0.58 0.60
0.68 1 0.68 0.85 0.76 0.57 0.55
0.73 0.68 1 0.72 0.57 0.38 0.95
0.77 0.85 0.72 1 0.77 0.51 0.59
0.74 0.76 0.57 0.77 1 0.94 0.43
0.58 0.57 0.38 0.51 0.94 1 0.26
0.60 0.55 0.95 0.59 0.43 0.26 1

2
666666664

3
777777775

Step3−
Transitive closure of R:

RT =

1 0.77 0.73 0.77 0.77 0.77 0.73
0.77 1 0.73 0.85 0.77 0.77 0.73
0.73 0.73 1 0.73 0.73 0.73 0.95
0.77 0.85 0.73 1 0.77 0.77 0.73
0.77 0.77 0.73 0, 77 1 0.94 0.73
0.77 0.77 0.73 0.77 0.94 1 0.73
0.73 0.73 0.95 0.73 0.73 0.73 1

2
666666664

3
777777775

Example of partition
clustering ðα− cutmatrix

of RT for α=0.8Þ:
αRT =

1 0 0 0 0 0 0
0 1 0 1 0 0 0
0 0 1 0 0 0 1
0 1 0 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 1 1 0
0 0 1 0 0 0 1

2
666666664

3
777777775

Each row or column corresponds to a variable. If any rows are equal, then they
belong to the same cluster. From the matrix above, we find the clusters {1}, {2, 4},
{3, 7}, {5, 6}.

Example of hierarchical clustering: The unique value of RT are 0.73, 0.77,
0.85, 0.94, 0.95. We form the α-cut matrix of RT for each of these values and obtain
the clusters below:

1, 2, 3, 4, 5, 6, 7f g α=0.73
1, 2, 4, 5, 6f g, 3, 7f g α=0.77
1f g, 2, 4f g, 5, 6f g, 3, 7f g α=0.85
1f g, 2f g, 4f g, 5, 6f g, 3, 7f g α=0.94
1f g, 2f g, 4f g, 5f g, 6f g, 3, 7f g α=0.95
1f g, 2f g, 4f g, 5f g, 6f g, 3f g, 7f g α=1.00
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The clusters produced for the 12 variables by the Algorithm 1 for α = 0.85 is
shown below:

1, 3, 7, 8, 11f g, 2, 4f g, 5, 6f g, 9f g, 10f g, 12f g

As the researchers, now we have the clustered variables. We can select vari-
ables from the groups instead of individually as stated earlier. We can choose one
or more variables from each group using the same feature selection criteria that
we would use if the variables were not clustered. For instance, we can apply the
variable selection technique to the first cluster. So instead of selecting among 12
variables {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, we reduce the problem to selecting
among 5 variables {1, 3, 7, 8, 11}. This is then followed by selection among 2
variables {2, 4} and {5, 6}.

This technique has two significant advantages: firstly, the computation cost of
the feature selection algorithm is greatly reduced, and secondly, the grouping helps
to reduce the problem of omitting some relevant variables since the set to choose
from has been reduced. Note that the simplest way to select the variables is to pick
one or more variable from each group which has the highest correlation with the
dependent variable. This is of course not the best way as there are many other
factors to be considered when selecting the variables. Luckily, there are many
variable selection techniques any of which can be applied successively to the
clustered variables to get the final set of variables. There are also available tech-
niques specially made for selecting among clustered variables like the one used in
PROC VARCLUS (Nelson 2001), or the one proposed by Bühlmann et al. (2013).

In our example of regression analysis with statistical criteria, the appropriate
model was calibrated following the technique ‘general-to-specific model selection’
(Hendry 2000). The feature selection on all 12 variables with the dependent vari-
ables, gave the variables {2}, {3}, {9}, {10}, {11}, {12} as the best calibration
subset (Profillidis and Botzoris 2005; Adjenughwure et al. 2013). This is equivalent
to choosing variables {3} and {11} from the first cluster, choosing variable {2}
from the second cluster, variables {9}, {10} and {12} from the single clusters and
none from the cluster {5, 6}. We note that the criterion or method used for selecting
the variables after clustering is left to the user. Our main aim for the paper is to
propose an efficient method to quickly cluster variables unsupervised before the
feature selection process begins.

Apart from the advantages previously listed, the proposed method is easier to
implement compared to other variable clustering methods currently available. The
only parameter to choose is α. A very small α will give fewer clusters with weakly
correlated variables while a very large α will result in many clusters with highly
correlated variables. If the goal is mainly to reduce the computational cost of feature
selection algorithms, then use a small α to reduce the variables into few clusters and
perform feature selection on each cluster. On the other hand, if we want to find or
eliminate groups of highly correlated variables, we can use a bigger α. Note that the
smallestα is theminimumvalue of the transitive closurematrixwhile the largestα is 1.
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4.2 Empirical Example – Factor Analysis

We will use the proposed variable clustering based on fuzzy equivalence relation to
perform factor analysis on the quality of service of public transport in Greece. The
commuters’ perception on service quality offered by the public transport system of
the city of Thessaloniki (Greece’s second-largest city) was recently measured by
using customer satisfaction survey (nineteen closed-ended questions, five-point
Likert scale answers, 450 respondents) and an exploratory factor analysis was
performed to determine the principal components of service quality, (Delinasios
2014).

So, there are nineteen variables (the nineteen closed-ended questions) and our
goal is to represent all these variables by using latent variables called factors. The
procedure for factor analysis is almost the same as variable clustering with the only
difference being that a single variable cannot form a cluster. Any cluster with at
least two variables is called factor. The algorithm for factor analysis using fuzzy
equivalent relation is described below.

Step 1 – Hierarchical variable clustering:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19f g α=0.34
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18f g, 14, 15, 19f g α=0.40
1, 2, 3, 4, 16f g, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18f g, 14, 15, 19f g α=0.48
1, 2, 3, 16f g, 4f g, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18f g, 14, 15, 19f g α=0.49
1, 2, 3, 16f g, 4f g, 5, 6, 7, 8, 9, 10, 17f g, 11, 12, 13, 18f g, 14, 15, 19f g α=0.56
1, 2, 3, 16f g, 4f g, 5, 7, 8, 9, 17f g, 6f g, 10f g, 11, 12, 13, 18f g, 14, 15, 19f g α=0.57
. . . . . . . . . .
1f g, 2f g, 3f g, 4f g, 5f g, 6f g, 8f g, 10f g, 16f g, 7, 9, 17f g, 11, 12, 13, 18f g, 14, 15, 19f g α=0.61
. . . . . . . . .
1f g, 2f g, 3f g, 4f g, 5f g, 6f g, 7f g, 8f g, 9f g, 10f g, . . . , 15f g, 16f g, 17f g, 18f g, 19f g α=1.00

Algorithm 2 – Factor analysis
Step 1 – Perform hierarchical variable clustering using the Algorithm 1 for
variable clustering.

Step 2 (classical factor analysis) – Select the α-cut level with the highest
number of factors and choose the smallest α-cut level with the same number
factors as the selected.

Step 3 (variable assignment) – For each single non-assigned variable, use the
correlation matrix to find the variable with which it has the highest correlation
and assign the variable to the appropriate factor.

Step 4 (hierarchical factor analysis) – Repeat step 2 and step 3 for all unique
number of factors to form a hierarchical type of factor analysis.
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Step 2 – Classical factor analysis: Remember that a factor is a group of two or
more variables. From step 1, the highest number of factors is 4. There are many α-
cut levels with four factors. We choose the smallest which is α = 0.56.

1, 2, 3, 16f g, 4f g, 5, 6, 7, 8, 9, 10, 17f g, 11, 12, 13, 18f g, 14, 15, 19f g α=0.56

Step 3 – Variable assignment: Only the 4th variable was separated. Using the
correlation matrix, we find the variable to which {4} has the highest correlation.
This is the {16}, so we put {4} in the same group as {16} and the final result is:

1, 2, 3, 4, 16f g, 5, 6, 7, 8, 9, 10, 17f g, 11, 12, 13, 18f g, 14, 15, 19f g

This is exactly the factor analysis result with four factors as published by De-
linasios (2014).

Step 4 – Hierarchical factor analysis: We only need to find the unique number
of factors between the highest and the lowest number of factors from the α-cut
levels. Since the highest number of factors is 4 and the lowest number of factors is
1. We repeat step 2 and step 3 of Algorithm 2 for number of factors 2 and 3. The
smallest α-cut levels for 2 factors is α = 0.40, while for 3 factors, α = 0.48. The
hierarchical factor analysis is presented below, (Fig. 1):

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19f g 1 factor, α=0.34
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18f g, 14, 15, 19f g 2 factors, α=0.40
1, 2, 3, 4, 16f g, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18f g, 14, 15, 19f g 3 factors, α=0.48
1, 2, 3, 4, 16f g, 5, 6, 7, 8, 9, 10, 17f g, 11, 12, 13, 18f g, 14, 15, 19f g 4 factors, α=0.56

These are exactly the factor analysis results with 1, 2, 3, and 4 factors as
produced by SPSS. Note that in step 2 of Algorithm 2, any number of factors can
be selected as long as there is a corresponding α-cut level with the selected
number of factors. As an advantage, since the α-cut levels are ordered, step 2 is
equivalent to choosing the first α-cut level which has the same number of factors
as the desired.

Service quality of 
urban public transport 

Service organization,
Rolling stock, Bus stops

Drivers 
behaviour

Service 
organization

Rolling stock, 
Bus stops

Drivers 
behaviour

Drivers 
behaviour

Service 
organization

Rolling 
stock 

Bus stops

1 factor

2 factors

3 factors

4 factors

Fig. 1 The hierarchical factor analysis based on fuzzy equivalence relation
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5 Some Interpretations of the Clustered Variables

Although the proposed algorithms are quite different from classical factor analysis
and dimensionality reduction techniques, they share some similarities. Each cluster
can be viewed as a principal component or a latent variable (factor) formed using
the variables in that cluster. For example, we can form ‘factors’, ‘latent variables’ or
‘principal components’ by taking the average of the variables in each cluster
(Vigneau et al. 2001). Therefore, the clustered variables can be used as a
pre-processing tool to select the appropriate number of latent variables or principal
components for the purpose of factor analysis or principal components analysis.

We note that PCA can also be performed separately on each cluster. To do this,
we form the data matrix with rows as examples and columns as variables using only
the variables in the cluster. We can then choose one or more components from the
PCA of that cluster as the cluster representative. We underline that this last
advantage of variable clustering has not been explored in details and it would be
interesting to compare the components produced by the clustered variables with that
of direct PCA using all variables.

The clustered variables can also be useful for clustering high dimensional data.
This can be done either by doing data clustering using only variables in the same
group (a subspace of the ‘closest’ variables) or using one variable from each
variable cluster(subspace of the ‘farthest’ variables).

6 Conclusions

A variable clustering method based on fuzzy equivalence relation has been pro-
posed. We have applied the method to cluster variables from a regression analysis.
The results show that the method can be used to reduce the number of variables
used for modeling a system and thus is an alternative to other variable clustering
algorithm currently available. We have also modified the proposed method and
used it for factor analysis. The results show that the method yields similar results to
classical factor analysis.

The proposed method has some advantages over existing methods, as it does not
require specification of number of clusters or of number of factors. Additionally, it can
be implemented using expert opinion about the relationship of the variables. For
regression purpose, the clustered variables are considered equivalent at some chosen
level hence selecting one variable from each cluster or taking their average is justified.
Finally, some interpretations of clustered variables have been offered to help the reader
to better understand and use the results of variable clustering for other applications.
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