
Implementation and Performance
of Probabilistic Inference Pipelines

Dimitar Shterionov(B) and Gerda Janssens

Department of Computer Science, KU Leuven,
Celestijnenlaan 200A, bus 2402, 3001 Heverlee, Belgium

{dimitar.shterionov,gerda.janssens}@cs.kuleuven.be

Abstract. In order to handle real-world problems, state-of-the-art prob-
abilistic logic and learning frameworks, such as ProbLog, reduce the
expensive inference to an efficient Weighted Model Counting. To do so
ProbLog employs a sequence of transformation steps, called an infer-
ence pipeline. Each step in the probabilistic inference pipeline is called a
pipeline component. The choice of the mechanism to implement a com-
ponent can be crucial to the performance of the system. In this paper
we describe in detail different ProbLog pipelines. Then we perform a
empirical analysis to determine which components have a crucial impact
on the efficiency. Our results show that the Boolean formula conversion
is the crucial component in an inference pipeline. Our main contribu-
tions are the thorough analysis of ProbLog inference pipelines and the
introduction of new pipelines, one of which performs very well on our
benchmarks.

1 Introduction

Probabilistic Logic and Learning (PLL) software such as ProbLog [7,12] provides
a machinery to derive new knowledge from uncertain data. Performing proba-
bilistic inference or learning efficiently is a challenging task. In order to handle
real-world problems state-of-the-art PLL frameworks employ knowledge compi-
lation that reduces the initial inference or learning task into a weighted model
counting (WMC) problem. Knowledge compilation converts a Boolean formula
into another formula with special properties. These properties allow efficient
weighted model counting on the compiled formula.

The inference mechanism of ProbLog encompasses a sequence of transforma-
tion steps in order to first compile the initial ProbLog program together with
a set of query and evidence atoms and second to perform WMC on the com-
piled form. We call this transformation sequence an inference pipeline and the
transformation steps – pipeline components. There are four components in a
ProbLog pipeline – Grounding, Boolean formula conversion, Knowledge compi-
lation and Evaluation. Each of them can be implemented with a different tool or
algorithm, as long as the input/output requirements are respected. For example,
ProbLog1 [7] uses knowledge compilation to ROBDDs while ProbLog2 [8] uses
knowledge compilation to sd-DNNFs. In order to comply with these requirements
c© Springer International Publishing Switzerland 2015
E. Pontelli and T.C. Son (Eds.): PADL 2015, LNCS 9131, pp. 90–104, 2015.
DOI:10.1007/978-3-319-19686-2 7

Implementation and Performance of Probabilistic Inference Pipelines 91

it may be the case that an intermediate data formatting is needed. For example,
the Boolean formula that needs to be compiled to ROBDD or sd-DNNF needs
to be formatted as a BDD script or a CNF accordingly.

The performance of ProbLog pipelines depends on (i) how components are
implemented, i.e., what tools or algorithms are used in order to convey the
necessary transformations; and (ii) how they are linked together, i.e., how the
output from one component is used as input for the next one. In this paper we
investigate different implementations of each component in order to not only
determine the optimal pipelines but also the components with crucial impact on
the overall performance.

We compose 14 inference pipelines by substituting one algorithm by another
for the same component when this is feasible. Then we evaluate their performance
on 7 benchmark sets in order to determine the crucial component(s). These
benchmarks can be considered as standard ProbLog benchmarks as they have
been used in previous research to test different aspects of ProbLog inference and
they cover different kinds of ProbLog programs. Our contribution is twofold –
on the one hand it is the extensive analysis of ProbLog inference pipelines; and
on the other the introduction of new inference pipelines, one of which performs
very well on our benchmarks.

The paper is structured as follows. Section 2 gives background information on
the ProbLog language as well as on weighted model counting for ProbLog infer-
ence. Section 3 presents our analysis of the different components. In Section 4 we
present our experiments and discuss the results. Section 5 concludes our paper
and discusses some possibilities for future research.

2 Background

2.1 The Probabilistic Logic and Learning Language ProbLog

ProbLog [7,12] is a general purpose Probabilistic Logic and Learning (PLL)
programming language. It extends Prolog with probabilistic facts which encode
uncertain knowledge. Probabilistic facts have the form pi :: fi, where pi is the
probability label of the fact fi. Prolog rules define the logic consequences of
the probabilistic facts. Fig. 1 shows a probabilistic graph and its encoding as a
ProbLog program. The fact 0.6::e(a, b). expresses that the edge between nodes
a and b exists with probability 0.6.

0.6::e(a, b). 0.3::e(a, c). 0.8::e(b, c).
0.4::e(b, d). 0.7::e(c, d).
p(X, Y):- e(X, Y).
p(X, Y):- e(X, X1), p(X1, Y).

a) A probabilistic graph. b) A ProbLog program.

Fig. 1. A probabilistic graph and its encoding as a ProbLog program. The p/2 predi-
cate defines the (“path”) relation between two nodes: a path exists, if two nodes are
connected by an edge or via a path to an intermediate node.

92 D. Shterionov et al.

An atom which unifies with a probabilistic fact, called a probabilistic atom
can be either true with the probability of the corresponding fact or false with
(1−the probability). The choices of the truth values of all probabilistic atoms
define a unique model of the ProbLog program called a possible world.

Let Ω = {ω1, .., ωN} be the set of possible worlds of a ProbLog program.
Given that only probabilistic atoms have probabilities we see a single possible
world ωi as the tuple (ω+

i , ω−
i), where ω+

i is the set of probabilistic atoms in ωi

which are true and ω−
i the set of probabilistic atoms which are false1. Probabilis-

tic atoms are seen as independent random variables. A ProbLog program defines
a distribution over possible worlds as given in Equation 1 where pi denotes the
probability of the atom ai.

P (ωi) =
∏

aj∈ω+
i

pj

∏

aj∈ω−
i

(1 − pj) (1)

A query q is true in a subset of the possible worlds: Ωq ⊆ Ω. Each ωq
i ∈ Ωq has

a corresponding probability, computed by Equation 1. The (success or marginal)
probability of q is the sum of the probabilities of all worlds in which q is true:

P (q) =
∑

ωi∈Ωq

P (ωi) (2)

Example 1. The query p(a, d) for the program in Fig. 1 is true if there is at least
one path between nodes a and d. This holds in 15 out of the 24 = 32 possible
worlds each of them associated with a probability. Using Equation 2 gives the
marginal probability P (p(a, d)) = 0.54072.

The task of computing the marginal probability of a query (i.e. the MARG
task) is the most basic inference task of ProbLog. ProbLog can also compute the
conditional probability of the query given evidence (the COND task).

Example 2. For the program in Fig.1, the query p(a,d). and evidence e(a,b)=
false ProbLog computes the conditional probability P (p(a,d)|e(a,b)= false) =
0.21.

2.2 Weighted Model Counting by Knowledge Compilation

Enumerating the possible worlds of a ProbLog program and computing the
(marginal) probability of a query according to Equation 2 is a straightforward
approach for probabilistic inference. Because the number of possible worlds grows
exponentially with the increase of the number of probabilistic facts in a ProbLog
program, this approach is considered impractical.
1 The union ω+

i ∪ ω−
i is the set of all possible ground probabilistic atoms of the

ProbLog program with the truth value assignments specific for the possible world
ωi; the intersection ω+

i ∩ ω−
i is the empty set.

Implementation and Performance of Probabilistic Inference Pipelines 93

In order to avoid the expensive enumeration of possible worlds the inference
mechanism of ProbLog uses knowledge compilation and an efficient weighted
model counting method. Model Counting is the process of determining the num-
ber of models of a formula ϕ. The Weighted Model Count (WMC) of a formula
ϕ is the sum of the weights that are associated with each model of ϕ. For a given
ProbLog program L with a set of possible worlds Ω the WMC of a formula ϕ
coincides with Equation 2 when there is a bijection between the models (and
their weights) of ϕ and the possible worlds (and their probabilities) in Ω.

The task of Model Counting (and also its specialization Weighted Model
Counting) is in general a #P -complete problem. Its importance in SAT and in
the Statistical Relational Learning and Probabilistic Logic and Learning com-
munities has lead to the development of efficient algorithms [5] which have found
their place in ProbLog. By using knowledge compilation the actual WMC can be
computed linearly to the size of the compiled (arithmetic) circuit [5, Chapter12].

3 Inference Pipeline

In order to transform a ProbLog inference task into a WMC problem ProbLog
uses a sequence of transformation steps, called an inference pipeline. The starting
point of the inference pipeline is a ProbLog program together with a (possibly
empty) set of query and evidence atoms. The four main transformation steps, i.e.
components that compose an inference pipeline are: Grounding, Boolean formula
conversion, Knowledge compilation and Evaluation. The grounding generates a
propositional instance of the input ProbLog program. It ignores the probabilis-
tic information of that program, i.e. the probability label of each probabilistic
fact. Second, the propositional instance is converted to a Boolean formula. The
Boolean formula and the propositional instance have the same models. Third,
the Boolean formula is compiled into a negation normal form (NNF) with certain
properties which allow efficient model counting. Finally, this NNF is converted
to an arithmetic circuit which is associated with the probabilities of the input
program and weighted model counting is performed.

Each component can be implemented by different tools or algorithms, as
long as the input/output requirements between components are respected. For
example, ProbLog1 [7] uses knowledge compilation to Reduced Ordered Binary
Decision Diagrams (ROBDDs) [1] in order to reduce the inference task to a
tractable problem. Later, [9] illustrates an approach for ProbLog inference by
compilation to a smooth, deterministic, Decomposable Negation Normal Form
(sd-DNNF) [6]. Fig. 2 gives an overview of the different approaches that can
be used to implement a component and how they can be linked to form an
inference pipeline. In the remaining of this section we present in detail each
pipeline component and the underlying algorithms used to accomplish the nec-
essary transformations.

94 D. Shterionov et al.

Fig. 2. ProbLog
pipelines. Nodes repre-
sent Input/output formats.
Each edge states a transfor-
mation and points from the
output to the input. Solid
edges define an existing
pipeline. Default pipelines
are indicated by (*) for
MetaProbLog/ProbLog1
and (**) for ProbLog2.
Dashed edges indicate
a nonexistent pipeline.
Dashed nodes indicate
intermediate data formats.
The input ProbLog pro-
gram may contain query
and evidence atoms. Ver-
tical arrows alongside
the graph indicate the
components.

3.1 Grounding

A naive grounding approach is to generate the complete set of possible instances
of the initial ProbLog program according to the values a variable can be bound
to. Such a complete grounding may result in extremely big ground programs.
It is more efficient with respect to the size of the grounding and the time for
its generation to focus on the part of the ProbLog program which is relevant to
an atom of interest. A ground ProbLog program is relevant to an atom q if it
contains only relevant atoms and rules. An atom is relevant if it appears in some
proof of q. A ground rule is relevant with respect to q if its head is a relevant
atom and its body consists of relevant atoms. It is safe to confine to the ground
program relevant to q because the models of the relevant ground program are
the same as the models of the initial ProbLog program that entail the atom
q. That is, the relevant ground program captures the distribution P (q) entirely
(proof of correctness can be found in [8], Theorem 1).

To determine the relevant grounding a natural mechanism is SLD resolution.
Each successful SLD derivation for a query q determines one proof of q – a con-
junction of ground literals. Naturally, all proofs to a query form a disjunction
and therefore, can be represented as a Boolean formula in DNF. An SLD deriva-
tion may be infinite, e.g., in case of cyclic programs. In order to detect cycles
(i) auxiliary code can be introduced to the input ProbLog program in order to
store and compare intermediate results or (ii) SLG resolution [2] (that is, SLD
with tabling) can be used instead. Adding auxiliary code as in (i) can slow down
inference and is susceptible to user errors. That is why (ii), i.e. SLG resolution,
is preferable for ProbLog inference.

Implementation and Performance of Probabilistic Inference Pipelines 95

We distinguish between two representations of the relevant grounding of a
ProbLog program. ProbLog1 uses the nested trie structure as an intermediate
representation of the collected proofs. If SLD resolution is used (that is, no
tabling is invoked)2 there is only one trie. ProbLog2 considers the relevant
ground logic program with respect to a set of query and evidence atoms.

3.2 Boolean Formula Conversion

Logic Programs (LP) use the Closed World Assumption (CWA), which basically
states that if an atom cannot be proven to be true, it is false. In contrast,
First-Order logic (FOL) has different semantics: it does not rely on the CWA.
Consider the (FOL) theory {q ← p} which has three models: {¬q,¬p}, {q,¬p}
and {q, p}. Its syntacticly equivalent LP (q :- p.) has only one model, namely
{¬q,¬p}. In order to generate a Boolean formula from nested tries (ProbLog1,
MetaProbLog) or a relevant ground LP (ProbLog2), it is required to make the
transition from LP semantics to FOL semantics. When the grounding does not
contain cycles it suffices to take the Clark’s completion of that program [10,11].
When the grounding contains cycles it is proven that the Clark’s completion
does not result in an equivalent Boolean formula [11]. To handle cyclic groundings
ProbLog employs one of two methods. The proof-based approach [14] basically
removes proofs containing cycles as they do not contribute to the probability.
This approach is query-directed, i.e. it considers a set of queries and traverses
their proofs. The rule-based approach is inherited from the field of Answer Set
Programming. It rewrites a rule with cycles to an equivalent rule and introduces
additional variables in order to disallow cycles [11].

Once the cycles are handled, ProbLog1 rewrites the Boolean formula encoded
in the nested tries as BDD definitions. A BDD definition [14] is a formula with
a head and a body, linked with equivalence. The body of a BDD definition con-
tains literals and/or heads of other BDD definitions combined by conjunctions
or disjunctions. The logic operators are translated to arithmetic functions. A
BDD script is a set of BDD definitions.

In the case of ProbLog2, the Clark’s completion of the loop-free relevant
ground LP is used to generate a Boolean formula. This Boolean formula is then
rewritten in CNF. It can also be rewritten to BDD definitions. It is important
to exploit the structure of this Boolean formula during the rewrite, otherwise
the BDD script may blow up in size.

Example 3. For the ProbLog program in Fig 1 b) and the query p(b, d) the
Boolean formula associated with the completion of the relevant ground LP is:
(pbd ⇐⇒ (ebd ∨ (ebc ∧ pcd))) ∧ (pcd ⇐⇒ ecd), where pxy and exy denote p(x, y)

and e(x, y) respectively. Following are its equivalent representations as a CNF
and BDD definitions where a0 stands for an auxiliary Boolean variable:

CNF: (¬pbd ∨ ebd ∨ a0) ∧ (pbd ∨ ¬ebd) ∧ (pbd ∨ ¬a0) ∧ (a0 ∨ ¬ebc ∨ ¬pcd)∧
(¬a0 ∨ ebc) ∧ (¬a0 ∨ pcd) ∧ (pcd ∨ ¬ecd) ∧ (¬pcd ∨ ecd)

BDD definitions: pbd = ebd + a0 a0 = ebc * pcd pcd = ecd

2 ProbLog1 allows the user to select whether to use tabling or not. ProbLog2 always
uses tabling.

96 D. Shterionov et al.

Example 4. A CNF can be rewritten as BDD definitions and vice-versa by a set
of logical transformations. The following BDD definitions are generated from the
CNF in Example 3 and are equivalent to the formula in Example 3:
BDD a1 = pbd + ebd + a0 a2 = pbd + ~ebd a3 = pbd + ~a0 a4 = a0 + ~ebc + ~pcd

definitions: a5 = a0 + ebd a6 = ~a0 + pcd a7 = pcd + ~ecd a8 = ~pcd + ecd

a9 = a1 * a2 * a3 * a4 * a5 * a6 * a7 * a8

Example 3 shows how a Boolean formula that originates from Clark’s com-
pletion of the relevant ground LP can easily be rewritten in CNF as well as in
BDD definitions. It also shows that a CNF representation of such a formula is
less succinct ([6]) than the representation as BDD definitions. If though a CNF
formula is converted to BDD definitions as in Example 4 the BDD script blows
up in size. For the overall performance of a pipeline it is crucial to avoid such
a transformation. This phenomenon is discussed among others in [17]. In [8,9]
the authors consider a ProbLog pipeline in which a CNF formula is transformed
into BDD definitions as shown in Example 4, i.e. a relevant ground LP is first
converted to a Boolean formula in CNF which subsequently is converted to a
BDD script. Their experiments confirm that such an approach is inefficient for
ProbLog inference. We do not consider further inference pipelines which include
a transformation from CNF to BDD definitions. To the contrary, we introduce a
new pipeline which transforms the relevant ground program directly into BDD
definitions avoiding the blow up of the BDD script (see Table 1, pipeline P4).

3.3 Knowledge Compilation and Evaluation

ProbLog uses knowledge compilation to compile the Boolean formula to a nega-
tion normal form (NNF) that has the properties determinism, decomposability
and smoothness [6]. Such an NNF is then used for efficient WMC. In ProbLog’s
inference pipelines two target compilation languages have been exploited so far:
(i) ROBDDs [1] common for ProbLog1 (and MetaProbLog [13, Chapter6]) and
(ii) sd-DNNFs [6] employed by ProbLog2.

To compile a Boolean formula to a ROBDD ProbLog implementations
use SimpleCUDD (www.cs.kuleuven.be/∼theo/tools/simplecudd.html). Com-
piling to sd-DNNF is done with the c2d [3,4] or dsharp [15] compilers.

After the knowledge compilation step, the compiled formula is traversed in
order to compute the probabilities (i.e. the WMC) for the given query(ies) –
the evaluation step. ProbLog employs two approaches to traverse sd-DNNFs:
breadth-first and depth-first3) and one to traverse ROBDDs.

Sections 3.1 to 3.3 describe the components of the two mainstream ProbLog
pipelines – ProbLog1 and ProbLog2. The subprocesses which are used in these
pipelines constitute a set of interchangeable components which may form other
working pipelines. Fig. 2 gives an overview of the possible ProbLog pipelines. The
3 To invoke one of these two options in ProbLog2 one specifies either the fileopti-
mized (default) for the breadth-first implementation or python for the depth-first
implementation as evaluation options.

www.cs.kuleuven.be/~theo/tools/simplecudd.html

Implementation and Performance of Probabilistic Inference Pipelines 97

link between different components depends on the compatibility of the output
of a preceding subprocess with the input requirements of the next one. For
example, c2d cannot compile BDD definitions but requires CNFs. Earlier it was
shown that some pipelines are certain to perform worse than others: pipelines
with (naive) complete grounding; pipelines in which a CNF is converted to BDD
definitions (cf. Section 3.2). In addition, we prefer using SLG resolution for
grounding instead of SLD resolution in order to avoid possible cycles. This leaves
the 14 pipelines shown in Table 1. P4 and P9..P12 are previously unexploited
pipelines for ProbLog inference.

Table 1. Pipelines used in the experiments. X → Y stands for a transformation X
and the output representation Y (see Fig. 2).

Grounding Boolean formula Knowledge Evaluation New
conversion compilation Pipeline

P0 SLG→Rel. gr. LP Proof-based→CNF c2d→sd-DNNF Breadth-first No
P1 SLG→Rel. gr. LP Proof-based→CNF c2d→sd-DNNF Depth-first No
P2 SLG→Rel. gr. LP Proof-based→CNF dsharp→sd-DNNF Breadth-first No
P3 SLG→Rel. gr. LP Proof-based→CNF dsharp→sd-DNNF Depth-first No
P4 SLG→Rel. gr. LP Proof-based→BDD def. SimpleCUDD→ROBDD SimpleCUDD Yes
P5 SLG→Rel. gr. LP Rule-based→CNF c2d→sd-DNNF Breadth-first No
P6 SLG→Rel. gr. LP Rule-based→CNF c2d→sd-DNNF Depth-first No
P7 SLG→Rel. gr. LP Rule-based→CNF dsharp→sd-DNNF Breadth-first No
P8 SLG→Rel. gr. LP Rule-based→CNF dsharp→sd-DNNF Depth-first No
P9 SLG→Nested tries Proof-based→CNF c2d→sd-DNNF Breadth-first Yes
P10 SLG→Nested tries Proof-based→CNF c2d→sd-DNNF Depth-first Yes
P11 SLG→Nested tries Proof-based→CNF dsharp→sd-DNNF Breadth-first Yes
P12 SLG→Nested tries Proof-based→CNF dsharp→sd-DNNF Depth-first Yes
P13 SLG→Nested tries Proof-based→BDD def. SimpleCUDD→ROBDD SimpleCUDD No

4 Evaluation

4.1 Experimental Set-Up

Our experiments aim to determine the impact of the different components on the
performance of the 14 pipelines. And more specifically, the components which
have a crucial impact on the overall performance.

We run the 14 pipelines on 7 benchmark sets with in total 319 benchmark
programs: “Alzheimer” [7], “Balls” [20], “Dictionary” [18], “Grid” [8], “Les Mis-
erables” [18], “Smokers” [16], “WebKB” [9]. The programs from the “Alzheimer”,
“Dictionary”, “Les Miserables” and “WebKB” are built from real-world data;
the rest are based on artificial data.

The benchmarkprogramsweuse encode different directed probabilistic graphs.
The graphs corresponding to the “Grid” benchmarks are acyclicwith a hierarchical
structure and maximum in/out degree of 3. The rest are cyclic; the ones in the “Les
Miserables” and the “Dictionary” are sparse graphs (with density < 0.0012 and
< 0.0002 respectively). Probabilistic graphs are encoded as shown in Fig. 1. The
queries to these programs ask for the probability a path exists between two nodes.

98 D. Shterionov et al.

a) “Balls” benchmark set.

b) “Grid” benchmark set.

c) “Les Miserables” benchmark set.

d) “Smokers” benchmark set.

e) “WebKB” benchmark set.

Fig. 3. Run times for ProbLog pipelines per-
forming MARG inference

A program from the “Smokers” or
“WebKB” benchmark sets contains
multiple queries. The rest contain
one query. The variety of these
benchmarks ensures a close to real-
istic estimate of the general per-
formance of ProbLog pipelines. The
programs from the “Balls” bench-
mark set use annotated disjunc-
tions [21] to encode random events
with multiple outcomes. They are
acyclic.

Our benchmarks have been used
previously to evaluate different as-
pects of ProbLog implementations.
The benchmarks from the
“Alzheimer” set were used to moti-
vate the development and test the
performance of the first ProbLog sys-
tem. The “Smokers” and “WebKB”
benchmark sets are used for test-
ing ProbLog2, i.e. different loop-
breaking and knowledge compilation
approaches. Also, the “Grid” bench-
mark set was developed in the con-
text of ProbLog2 and to compare the
knowledge compilation to sd-DNNFs
with knowledge compilation to ROB-
DDs. The “Balls” benchmark set is
used to test the performance of a new
encoding of Annotated Disjunctions
for ProbLog programs (mainly affect-
ing the grounding). That is why we
believe our experiments will allow to
clearly determine the crucial compo-
nents in the inference pipeline.

In our experiments, we measure
the run times of each component
while performing the MARG or the
COND task for the given query(ies)
and evidence. Because the sd-DNNF
compilers are non-deterministic [3,
15], i.e. for the same CNF the com-
piled sd-DNNFs may differ, we run
all tests 5 times and report the

Implementation and Performance of Probabilistic Inference Pipelines 99

average run time. Previous tests with these compilers within ProbLog have shown
that the average time for 5 runs gives a realistic estimate on the performance.
We set a time-out of 540 seconds for each run.

Section 4.2 presents our experimental results. A discussion follows in
Section 4.3. Detailed description of our benchmarks, complete results and color
diagrams can be found in [19]. Enlarged and color version of the diagrams in
Fig. 3 and Fig. 4 are available in http://people.cs.kuleuven.be/∼dimitar.shterionov/pipeline

diagrams.pdf. Our benchmarks can be found at http://people.cs.kuleuven.be/∼dimitar.

shterionov/benchmarks pipelines.zip. In the future we would like to extend this set
with new problems in order to improve generality of our conclusions.

4.2 Results

We present the total run time (the sum of the grounding, Boolean formula
conversion, knowledge compilation and evaluation times) of each pipeline for
a benchmark program executing MARG or COND inference. The reason to
focus only on the total run time is that any change in the performance of two
pipelines which share all but one component will be due to the different compo-
nent. Whether the algorithm that implements the component, the compatibility
with the input data or the output have an affect on the overall performance is
not of importance. Rather, we are interested in how the different components’
implementations influence the pipeline as a whole. To get an idea of the impact
of individual components we compare the result for pipelines which differ by one
component. For example, comparing pipelines P0 − P8 to pipelines P9 − P13
will determine the effect of the two different grounding approaches. Fig. 3 shows
the total run time for performing MARG inference on the “Balls”, “Grid”, “Les
Miserables”, “Smokers” and “WebKB” benchmark sets. The results from the
“Les Miserables” benchmarks are similar to the “Alzheimer” and the “Dictio-
nary”; although the results from the “Smokers” benchmarks are similar to the
“WebKB” we show both diagrams so that later they can be compared to the
results from performing COND inference shown in Fig. 4.

In each figure a horizontal line is associated with one benchmark program
and shows the total run time (thus the lower the better) of each pipeline (x-axis)
executing the MARG or the COND task on that program. We use a logarithmic
scale for the time axis (the y-axis). We present the lines in different shades of
gray relative to the size of the dependency graph representing the program. The
black line parallel to the x-axis indicates the 540th second, that is, the time-out.

We also give the number of timeouts that occurred for each pipeline perform-
ing MARG and COND inference in Table 2 and Table 3 respectively. They show
the total number of timeouts and the relative number of timeouts with respect to
the total number of programs in a benchmark set for which at least one pipeline
terminated successfully. For example, P4 times out for a total of 11 benchmarks
when executing COND inference (see Table 3); 2 of the programs that time out
are from the “Smokers” set and 9 from the “WebKB” set; in total 20 programs
of the “Smokers” and 48 of the “WebKB” benchmark sets have been successfully
executed; we compute the relative number of timeouts as 2/20 + 9/48 = 0.2875.

http://people.cs.kuleuven.be/~dimitar.shterionov/pipeline_diagrams.pdf
http://people.cs.kuleuven.be/~dimitar.shterionov/pipeline_diagrams.pdf
http://people.cs.kuleuven.be/~dimitar.shterionov/benchmarks_pipelines.zip
http://people.cs.kuleuven.be/~dimitar.shterionov/benchmarks_pipelines.zip

100 D. Shterionov et al.

a) “Smokers” benchmark set. b) “WebKB” benchmark set.

Fig. 4. Run times for ProbLog pipelines performing COND inference

Table 2. Number of benchmark programs for which MARG inference times out

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
Total: 46 53 62 84 8 144 145 158 177 48 47 68 89 14
Total (relative): 3.14 3.48 4.35 5.34 0.72 7.76 7.94 8.8 9.28 3.95 4.12 5.04 5.71 1.64

Table 3. Number of benchmark programs for which COND inference times out

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
Total: 3 3 3 4 11 0 0 4 4 42 42 27 27 21
Total (relative): 0.15 0.15 0.15 0.2 0.29 0.0 0.0 0.2 0.2 1.25 1.25 0.94 0.94 0.55

4.3 Discussion

We discuss the results from our experiments with the MARG task separately
from the COND task. This is because computing the conditional probabilities in
MetaProbLog (whose components we use to build other pipelines) differs from
how conditional probabilities are computed in ProbLog2. The difference is due
to the way evidence is processed.

MARG Inference. Grounding Comparing pipelines P0, .., P4 to P9, .., P13 in
Fig. 3 shows that grounding to relevant ground LP and grounding to nested tries
have similar impacts on the performance. The default MetaProbLog pipeline,
P13 and pipeline P4 differ on the grounding representation. P13 appears to be
faster than the rest in almost all of the cases. The timeouts in Table 2 though
show that pipelines which use the relevant ground LP representation can solve
(relatively) more problems than the ones using the nested tries. In particular, we
notice that P4 outperforms P13. The effect of the one grounding representation
compared to the other is though small therefore we can state that the choice of
grounding representation is not crucial for the total inference performance.

Boolean Formula Conversion. When comparing pipelines P0, .., P3, to P5, .., P8
in Fig. 3 we observe that the Boolean formula conversion has a strong impact
on the performance. By itself the time for conversion is not significant but it
is the output Boolean formula that strongly influences the next components in
the inference pipeline – knowledge compilation and evaluation. Knowledge com-
pilation is computationally the most expensive task. The proof-based approach

Implementation and Performance of Probabilistic Inference Pipelines 101

generates Boolean formulae which are easier to compile, i.e. the compilation time
is lower than for the rule-based approach [19]. The time out results in Table 2
show that pipelines using the proof-based conversion time out 42% to 59%4 less
than pipelines using the rule-based approach.

For the effectiveness of the conversion of great importance is the presence
of cycles in the grounding. We notice (Fig. 3 a) and b)) that pipelines using
the rule-based conversion handle the acyclic graphs from the “Balls” and the
“Grid” benchmark sets equally well or even better than some of the pipelines
using the proof-based conversion. This is because the conversion does not need
to handle any cycles and the rule-based conversion which simply traverses the
ground program is not only faster (see Fig. 3 a) and Fig. 3 b)) but also generates
easy-to-compile Boolean formulae.

These results show that the Boolean formula conversion is crucial for the
inference pipeline.

Knowledge Compilation and Evaluation Knowledge compilation has the highest
impact on the inference run time. Generally, knowledge compilation to ROBDDs
is preferable for MARG inference (compare P4 and P13 to the rest in Fig. 3).

In the case of knowledge compilation to sd-DNNFs a pipeline which uses
c2d shows better scalability compared to one with dsharp but is slower for the
less complex problems. Furthermore, the breadth-first evaluation approach is in
general preferable to the depth-first approach (compare P0 to P1 or P11 to
P12 in Fig. 3 c)), although for the “Balls” benchmarks this evaluation approach
performs poorly (see P3, P8 and P12 in Fig. 3 a)). The reason is the structure
of the graph associated with the relevant ground LP – low out degree, i.e. 9,
long paths from the root to the nodes.

COND Inference. The conditional probability of a query q given evidence
E = e is computed as the ratio P (q|E = e) = P (q∧E=e)

P (E=e) . First both the nominator
and denominator need to be computed separately. Then their division gives the
final result. MetaProbLog and ProbLog2 use different approaches when it comes
to computing the conditional probabilities. In particular, there are differences
regarding the grounding to nested tries and compiling to ROBDDs compared to
grounding to a relevant ground LP and knowledge compilation to s-DDNNFs.

Grounding We notice from Fig. 4 a) and b) and Table 3 that grounding to nested
tries has a negative effect on the overall performance as compared to grounding
to a relevant ground LP. The former approach is: (i) for a query q and evidence
E = e a new query qE=e (i.e., q∧E = e) is created; (ii) qE=e and the atoms in E
are proven in order to determine the relevant grounding (stored as nested tries).
In the latter case, a query q and the atoms in E are used separately and not in a
conjunction to determine the relevant ground LP. Although the two approaches
result in very similar groundings, the evidence atoms and their predetermined
values make a difference for the performance of the next components.
4 We use the relative number of timeouts rather than the total number of timeouts in

order to determine a more general interval.

102 D. Shterionov et al.

Boolean Formula Conversion The Boolean formula is built by using either the
proof-based or the rule-based method. In the case of pipelines P0 to P9 the
Boolean formula (either represented as a CNF or as a BDD script) is augmented
with clauses to state the truth values for the evidence atoms. They often help
the knowledge compilation as they may prune parts of the compiled circuit. The
positive effect is obvious when comparing pipelines P0 to P4 with P9 to P13 in
Fig. 4 but also from Table 3.

Knowledge Compilation and Evaluation The additional clauses for the evidence
added to the Boolean formula improve the performance for pipelines P0 to P3
and P5 to P9 as compared to executing the MARG task. The two pipelines
using ROBDDs (P4 and P13) do not perform well. A reason for the decreased
performance of these pipelines is that for multiple queries (including evidence)
it is required to build and evaluate a forest of ROBDDs. In order to compute
the conditional probability of a query q given evidence E = e a ROBDD for the
conjunction q ∧E = e is added to the ROBDD forest even when the conjunction
is false (P (q ∧ E = e) = 0.0 therefore P (q|E = e) = 0.0), thus performing
unnecessary operations. Indeed, this slow down is observed for the “WebKB”
benchmark programs where a lot of the queries are false given that the evidence
is true. Fig. 4 shows that the ROBDD-based pipelines (P4 and P13) do not scale
as well as in the case of MARG inference. Which is also confirmed by Table 3.

5 Conclusions and Future Work

In this paper we presented a detailed description of the inference pipelines of
ProbLog and analyzed their performance on 7 benchmark sets. Our analysis
shows that the Boolean formula conversion has a crucial impact on the perfor-
mance of the inference pipeline for both MARG and COND tasks. We showed
that in most of the cases pipelines which use a proof-based conversion, knowl-
edge compilation to sd-DNNF with c2d and the breadth-first evaluation approach
and pipelines which use proof-based conversion and compilation to ROBDDs
perform better than the rest. P4 and P13 are the most efficient pipelines for
our benchmarks on performing MARG inference. P13 is the default pipeline
of MetaProbLog. P4 is one of the new pipelines we introduce with this paper
(combining ProbLog2 with ROBDDs).

We also showed that for COND inference it is crucial how the evidence is
handled. Pipelines which use compilation to sd-DNNF and breadth-first evalua-
tion outperform the rest. The most efficient pipeline for computing the COND
task is P0. We also determined that this difference is due to how evidence is
handled.

Our analysis determines two main directions for future research: (i) to improve
the Boolean formula conversion component and (ii) to investigate how to improve
ROBDDs with respect to computing conditional probabilities. Furthermore,
pipeline P4 which combines the grounding of ProbLog2 with the knowledge com-
pilation and evaluation of MetaProbLog via a direct conversion of the (loop-free)

Implementation and Performance of Probabilistic Inference Pipelines 103

relevant ground LP to BDD definitions shows very promising results. To deter-
mine its actual place among the different ProbLog implementations we plan to
further evaluate its performance on all inference and learning tasks supported by
ProbLog.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

2. Chen, W., Swift, T., Warren, D.S.: Efficient top-down computation of queries under
the well-founded semantics. J. Log. Program. 24(3), 161–199 (1995)

3. Darwiche, A.: A compiler for deterministic, decomposable negation normal form.
In: Dechter, R., Sutton, R.S. (eds). AAAI/IAAI, pp. 627–634. AAAI Press/MIT
Press (2002)

4. Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: Proceedings of the 16th European Conference on Artificial Intelligence,
pp. 328–332 (2004)

5. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press (2009) (chapter 12)

6. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (2002)

7. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic prolog and its
application in link discovery. In Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, pp. 2468–2473. AAAI Press (2007)

8. Fierens, D., Van Den Broek, G., Renkens, J., Shterionov, D., Gutmann, B., Thon,
I., Janssens, G., de Raedt, L.: Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory and Practice of Logic Programming,
Special Issue on Probability, Logic and Learning 15(3), 358–401 (2015)

9. Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B., De Raedt, L.: Inference
in probabilistic logic programs using weighted CNF’s. In: Proceedings of the 27th
Conference on Uncertainty in Artificial Intelligence, pp. 211–220 (2011)

10. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic
logic programs from interpretations. In: Gunopulos, D., Hofmann, T., Malerba,
D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS, vol. 6911, pp. 581–
596. Springer, Heidelberg (2011)

11. Janhunen, T.: Representing normal programs with clauses. In: Proc. of the 16th
European Conference on Artificial Intelligence, pp. 358–362. IOS Press (2004)

12. Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the imple-
mentation of the probabilistic logic programming language ProbLog. Theory and
Practice of Logic Programming 11, 235–262 (2011)

13. Mantadelis, T.: Efficient Algorithms for Prolog Based Probabilistic Logic Program-
ming. PhD thesis, Informatics Section, Department of Computer Science, Faculty
of Engineering Science, November 2012. Janssens, Gerda (supervisor)

14. Mantadelis, T., Janssens, G.: Dedicated tabling for a probabilistic setting. In:
Hermenegildo, M.V., Schaub, T. (eds) ICLP (Technical Communications), vol. 7
of LIPIcs, pp. 124–133. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

15. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: fast d-DNNF compila-
tion with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) Canadian AI 2012. LNCS,
vol. 7310, pp. 356–361. Springer, Heidelberg (2012)

104 D. Shterionov et al.

16. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg
(2008)

17. Rauzy, A., Châtelet, E., Dutuit, Y., Bérenguer, C.: A practical comparison of
methods to assess sum-of-products. Rel. Eng. & Sys. Safety 79(1), 33–42 (2003)

18. Shterionov, D., Janssens, G.: Data acquisition and modeling for learning and rea-
soning in probabilistic logic environment. In: Antunes, L., Pinto, H.S., Prada, R.,
Trigo, P. (eds) Proceedings of the 15th Portuguese Conference on Artificial Intel-
ligence, pp. 298–312 (2011)

19. Shterionov, D., Janssens, G.: Crucial components in probabilistic inference
pipelines: Data and results. Technical report, KU Leuven, 2014. Ref. number
CW679. http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW679.pdf

20. Shterionov, D., Renkens, J., Vlasselaer, J., Kimmig, A., Meert, W., Janssens, G.:
The most probable explanation for probabilistic logic programs with annotated
disjunctions. In: Proceedings of the 24th International Conference on Inductive
Logic Programming

21. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp.
431–445. Springer, Heidelberg (2004)

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW679.pdf

	Implementation and Performance of Probabilistic Inference Pipelines
	1 Introduction
	2 Background
	2.1 The Probabilistic Logic and Learning Language ProbLog
	2.2 Weighted Model Counting by Knowledge Compilation

	3 Inference Pipeline
	3.1 Grounding
	3.2 Boolean Formula Conversion
	3.3 Knowledge Compilation and Evaluation

	4 Evaluation
	4.1 Experimental Set-Up
	4.2 Results
	4.3 Discussion

	5 Conclusions and Future Work
	References

