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Abstract. State space planning algorithms have been considered as one
of the main classical planning techniques to solve classical planning prob-
lems since 1960. In this paper, we show that Transaction Logic is an
appropriate language and framework to study and compare these plan-
ning algorithms, which enables one to have more efficient planners in logic
programming frameworks. Specifically, we take STRIPS planning and
forward state space planning algorithms, and show that the specification
of these algorithms in Transaction Logic lets one implement complicated
planning algorithms in declarative programming languages (e.g. Prolog).
We first provide a formal representation of these planning algorithms in
Transaction Logic, which can be used to automatically translate STRIPS
planning problems in PDDL to Transaction Logic rules. Then, we use
the resulting Transaction Logic rules to solve planning problems and
compare the performance of those algorithms in our simple interpreter
implemented in XSB Prolog. We use several case studies to show how
the linear STRIPS planning algorithm is faster than forward state space
search. Our experiments highlight the fact that a planner implemented
by logic programming framework can become faster if an appropriate
planning algorithm is applied.

Keywords: Declarative planning algorithms · Planning in logic pro-
gramming · State space planning

1 Introduction

The classical automated planning has been used in a wide range of applications
such as robotics, multi-agent systems, and more. This wide range of applica-
tions has made automated planning one of the most important research areas
in Artificial Intelligence (AI). The history of using logical deduction to solve
classical planning problems in AI dates back to the late 1960s when situation
calculus was applied in the planning domain [30]. There are several planners
that encode planning problems into satisfiability problems [35][29][17] or con-
straint satisfaction problems (CSP) [47][18][2] and use logical deduction to solve
the planning problems. Beside planning as satisfiability and CSP, a number of
deductive planning frameworks have been proposed over the years. Linear con-
nection proof method [6][7][8], equational horn logic [32], and linear logic [34][15]
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are well-known examples of logic-based deduction methods applied for solving
classical planning problem. Answer set programming is another, more recent
logic based technique to solve planning problems [36][26][24][44].

There are several reasons that make logical deduction suitable to be used
by a classical planner [45][16]: (1) Logical deduction used in planning can be
cast as a formal framework that eases proving different planning properties such
as completeness and termination. (2) Logic-based systems naturally provide a
declarative language that simplifies the specification of planning problems. (3)
Logical deduction is usually an essential component of intelligent and knowl-
edge representation systems. Therefore, applying logical deduction in classical
planning makes the integration of planners with such systems simpler. In-depth
discussion of these reasons is beyond the scope of our paper. Despite the benefits
of using logical deduction in planning, many of the above mentioned deductive
planning techniques are not getting as much attention as algorithms specifically
devised for planning problems. There are several reasons for this state of affairs:

– Many of the above approaches invent one-of-a-kind techniques that are suit-
able only for the particular problem at hand. For instance, the effects or
preconditions of actions are sometimes encoded indirectly in answer set pro-
gramming planners. This makes the encoding of planning problem difficult,
and thus reduces the generality of this technique.

– These works generally show how they can represent and encode classical
planning actions and rely on a theorem prover of some sort to find plans.
Therefore, the planning techniques embedded in such planners are typically
some of the simplest state space planning strategies (e.g. forward state space
search) and they have extremely large search space. Consequently, they can-
not exploit heuristics and techniques invented by different classical and neo-
classical planning technique to reduce the search space.

In this paper, we show that a general logical theory, called Transaction Logic
(or T R) [12–14], addresses the above mentioned issues and also provides multiple
advantages for specifying, generalizing, and solving planning problems. Transac-
tion Logic is an extension of classical logic with dedicated support for specifying
and reasoning about actions. To illustrate this point, [5] has shown how state
space planning techniques, such as STRIPS (also known as goal-stack state space
planning) and forward state space planning algorithms, can be naturally repre-
sented and improved upon using Transaction Logic. Since planning techniques
are cast here as purely logical problems in a suitable general logic, a number
of otherwise non-trivial further developments became low-hanging fruits and
were gotten almost for free. In the present paper, based on the aforesaid rep-
resentations of planning algorithms in Transaction Logic, we develop a simple
translator that maps STRIPS planning problems (specified in PDDL [1]) and
planning algorithms to Prolog programs. This technique makes many already
existing Prolog based planners [4][49][3][48] more efficient. We emphasize that
this paper, unlike [5], does not propose new planning algorithms in Transaction
Logic. Instead, we use the sequential subset of Transaction Logic (i.e., without
concurrent transactions) to represent the linear STRIPS planning algorithm [19],
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as suggested in [11]. A more computationally complex strategy was proposed in
[5]. It deals with non-linear STRIPS and Concurrent Transaction Logic, and it
was shown to be complete. The present paper, in contrast, just shows how plan-
ning algorithms written in Transaction Logic can be simply mapped into Prolog
rules.

The next section briefly characterizes a planning problem and overviews
Transaction Logic. Section 3 explains how we formally encode planning tech-
niques in T R. Section 4 also provides the results of our simple experiments to
illustrate the practical applications of this method. Section 5 describes the rela-
tion of this work to PDDL and other research on planning with logic. The last
section concludes our paper.

2 Characterization of a Planning Problem

In this section, we briefly remind the reader the basic concepts of logic and
formally define an extended STRIPS planning problem. Then we briefly overview
Transaction Logic (T R) [11].

2.1 STRIPS Planning Problem

In a STRIPS planning problem, actions update the state of a system (e.g.
Knowledge-Base): Facts may be inserted into or removed from the state as a
result of execution of an action. We assume denumerable sets of variables X ,
constants C, and disjoint sets of predicate symbols, extensional (Pext) and inten-
sional (Pint) ones. A term is a variable or constant. Extensional (resp. inten-
sional) Atoms have the form p(t1, ..., tn), where ti is a term and p ∈ Pext (resp.
p ∈ Pint). A ground atom is a variable free atom. A literal is either an atom or
a negated extensional atom, ¬p(t1, ..., tn). Note that negative intensional atoms
are not literals. A substitution θ is a set of expressions of the form X ←− c,
where X ∈ X and c ∈ C. Given a substitution θ, an atom aθ is obtained from
atom a by replacing its variables with constants according to θ.

Intensional predicate symbols are defined by rules. A rule r, shown as head(r)
← b1 ∧ · · · ∧ bn, consists of an intensional atom head(r) in the head and a
conditional body, a (possibly empty) conjunction of literals b1, . . . , bn, where
bi ∈ body(r). A ground instance of a rule, rθ, is any rule obtained from r by a
substitution of head(r) and body(r) with ground atoms head(r)θ and body(r)θ
respectively. Given a set of literals S and a ground rule rθ, the rule is true in
S if either head(r)θ ∈ S or body(r)θ �⊆ S. A (possibly non-ground) rule is true
in S if all of its ground instances are true in S. A fact is a ground extensional
atom that can be inserted or deleted by STRIPS actions. A set S of literals is
consistent if there is no atom, a, such that {a,¬a} ⊆ S.

Definition 1 (State). Given a set of rules R, a consistent set S of literals is
called a state if and only if
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1. For each fact a, either, a ∈ S, or ¬a ∈ S.
2. Every rule of R is true in S.

Definition 2 (STRIPS action). A STRIPS action α = 〈pα(X1, ...,Xn), P re
(α), E(α)〉 consists of an intensional atom pα(X1, ...,Xn) in which pα ∈ Pint is
a predicate that is reserved to represent the action α and can be used for no other
purpose, a set of literals Pre(α), called the precondition of α, and a consistent
set of extensional literals E(α), called the effect of α. The variables in Pre(α) and
E(α) must occur in {X1, ...,Xn}.

Note that the literals in Pre(α) can be both extensional and intensional, while
the literals in E(α) can be extensional only.

Definition 3 (Execution of a STRIPS action). A STRIPS action α is
executable in a state S if there is a substitution θ such that θ(Pre(α)) ⊆ S.
A result of the execution (with respect to θ) is the state S′ such that S′ =
(S \ ¬θ(E(α))) ∪ θ(E(α)), where ¬E = {¬�|� ∈ E}.

Note that S is well-defined since E(α) is consistent. Observe also that, if α has
variables, the result of an execution, S, may depend on the chosen substitution
θ.

Definition 4 (Planning problem). Given a set of rules R, a set of STRIPS
actions A, a set of literals G, called the goal, and an initial state S, a planning
solution (or simply a plan) for the planning Π = 〈R,A, G,S〉 is a sequence of
ground actions σ = α1, . . . , αn such that for each 1 ≤ i ≤ n;

– there is a substitution θi and a STRIPS action α′
i ∈ A such that α′

iθ = αi;
and

– there is a sequence of states S0,S1, . . . ,Sn such that
• S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
• αi is executable in state Si−1 and the result of that execution is the state
Si.

2.2 Overview of Transaction Logic

To make this paper self-contained, we provide a brief introduction to the subset
of Transaction Logic (T R) [9,11–14] that are needed for the understanding of
this paper.

As an extension of first-order predicate calculus, T R is sharing most of its
syntax with the first-order predicate calculus’ syntax. One of the new connectives
that T R adds to the first-order predicate calculus is the serial conjunction ,
denoted ⊗. It is a binary associative, non-commutative connective. The formula
φ ⊗ ψ, showing a composite action, denotes an execution of φ followed by an
execution of ψ. When φ and ψ are regular first-order formulas, φ ⊗ ψ reduces
to the usual first-order conjunction, φ ∧ ψ. The logic also introduces other con-
nectives to support hypothetical reasoning, concurrent execution, etc., but these
are beyond the scope of this paper.
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To take the frame problem out of many considerations in T R, it has an extensi-
ble mechanism of elementary updates (see [10,11,13,14,42]). Due to the defini-
tion of STRIPS actions, we just need the following two types of elementary updates
(actions): +p(t1, . . . , tn) and −p(t1, . . . , tn), where p(t1, . . . , tn) denotes an exten-
sional atom. Given a state S and a ground elementary action +p(a1, . . . , an), an
execution of +p(a1, . . . , an) at state S deletes the literal ¬p(a1, . . . , an) and adds
the literal p(a1, . . . , an). Similarly, executing −p(a1, . . . , an) results in a state that
is exactly like S, but p(a1, . . . , an) is deleted and ¬p(a1, . . . , an) added. Appar-
ently, if p(a1, . . . , an) ∈ S, the action +p(a1, . . . , an) has no effect, and similarly
for −p(a1, . . . , an).

We can define a complex action using serial rule that is a statement of
the form

h ← b1 ⊗ b2 ⊗ . . . ⊗ bn. (1)

where h is an atomic formula denoting the complex action and b1, ..., bn are
literals or elementary actions. That means that h is a complex action and one
way to execute h is to execute b1 then b2, etc., and finally to execute bn. Note
that we have regular first-order as well as serial-Horn rules. For simplicity, we
assume that the sets of intensional predicates that can appear in the heads of
regular rules and those in the heads of serial rules are disjoint. Extensional atoms
and Intensional atoms compose state (see Definition 1) and will be collectively
called fluents. Note that a serial rule all of whose body literals are fluents is
essentially a regular rule, since all the ⊗-connectives can be replaced with ∧.
Therefore, one can view the regular rules as a special case of serial rules.

The following example illustrates the above concepts. All our examples use
the standard logic programming convention whereby lowercase symbols represent
constants and predicate symbols, while the uppercase symbols stand for variables
that are universally quantified outside of the rules. It is common practice to omit
such quantifiers.

move(X,Y ) ← (on(X,Z) ∧ clear(X)
∧ clear(Y ) ∧ ¬tooHeavy(X))⊗

−on(X,Z) ⊗ +on(X,Y )⊗
−clear(Y ).

tooHeavy(X) ← weight(X,W ) ∧ limit(L)∧
W < L.

? − move(blk1, blk15) ⊗ move(SomeBlk, blk1).

Here on, clear, tooHeavy, and weight are fluents and the rest of atoms represent
actions. The predicate tooHeavy is an intensional fluent, while on, clear, and
weight are extensional fluents. The actions +on(...), −clear(...), and −on(...)
are elementary and the intensional predicate move represents a complex action.
This example illustrates several features of Transaction Logic. The first rule is
a serial rule defining of a complex action of moving a block from one place to
another. The second rule defines the intensional fluent tooHeavy, which is used
in the definition of move (under the scope of default negation). As the second
rule does not include any action, it is a regular rule.
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The last statement above is a request to execute a composite action, which
is analogous to a query in logic programming. The request is to move block blk1
from its current position to the top of blk15 and then find some other block and
move it on top of blk1. Traditional logic programming offers no logical seman-
tics for updates, so if after placing blk1 on top of blk15 the second operation
(move(SomeBlk, blk1)) fails (say, all available blocks are too heavy), the effects
of the first operation will persist and the underlying database becomes corrupted.
In contrast, Transaction Logic gives update operators the logical semantics of an
atomic database transaction. This means that if any part of the transaction fails,
the effect is as if nothing was done at all. For example, if the second action in our
example fails, all actions are “backtracked over” and the underlying database
state remains unchanged.

T R’s semantics is given in purely model-theoretic terms and here we will
only give an informal overview. The truth of any action in T R is determined
over sequences of states—execution paths—which makes it possible to think
of truth assignments in T R’s models as executions. If an action, ψ, defined by a
set of serial rules, P, evaluates to true over a sequence of states D0, . . . ,Dn, we
say that it can execute at state D0 by passing through the states D1, ..., Dn−1,
ending in the final state Dn. This is captured by the notion of executional
entailment , which is written as follows:

P,D0 . . .Dn |= ψ (2)

Various inference systems for serial-Horn T R [11] are similar to the well-
known SLD resolution proof strategy for Horn clauses plus some T R-specific
inference rules and axioms. Given a set of serial rules, P, and a serial goal, ψ
(i.e., a formula that has the form of a body of a serial rule such as (1), these
inference systems prove statements of the form P,D · · · � ψ, called sequents. A
proof of a sequent of this form is interpreted as a proof that action ψ defined by
the rules in P can be successfully executed starting at state D.

An inference succeeds iff it finds an execution for the transaction ψ. The exe-
cution is a sequence of database states D1, . . . , Dn such that P,DD1 . . .Dn � ψ.
We will use the following inference system in our planning application. For sim-
plicity, we present only the version for ground facts and rules. The inference
rules can be read either top-to-bottom (if top is proved then bottom is proved)
or bottom-to-top (to prove bottom one needs to prove top).

Definition 5 (T R inference System). Let P be a set of rules (serial or reg-
ular) and D, D1, D2 denote states.

– Axiom: P,D · · · � (), where () is an empty clause (which is true at every
state).

– Inference Rules
1. Applying transaction definition: Suppose t ← body is a rule in P.

P,D · · · � body ⊗ rest

P,D · · · � t ⊗ rest
(3)
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2. Querying the database: If D |= t then

P,D · · · � rest

P,D · · · � t ⊗ rest
(4)

3. Performing elementary updates: If the elementary update t changes the
state D1 into the state D2 then

P,D2 · · · � rest

P,D1 · · · � t ⊗ rest
(5)

Aproof of a sequent, seqn, is a series of sequents, seq1, seq2, . . . , seqn−1, seqn,
where each seqi is either an axiom-sequent or is derived from earlier sequents by one
of the above inference rules. This inference system has been proven to be sound and
completewith respect to themodel theory ofT R [11].Thismeans that ifφ is a serial
goal, the executional entailmentP,DD1, . . . ,Dn |= φholds if and only if there is a
proof of P,D · · · � φ over the execution pathD,D1, . . . ,Dn, i.e.,D1, . . . ,Dn is the
sequence of intermediate states that appear in the proof andD is the initial state. In
this case,wewill also say that suchaproof proves the statementP,DD1 . . .Dn � φ.

3 T R Planners

The informal encoding of STRIPS and forward state space planning as sets of
T R rules first appeared in an unpublished report [11]. To use T R as a planning
formalism, we formally show how a planning problem specification can be trans-
formed into a set of T R rules that represent STRIPS and Forward State Space
planning techniques. From now on, we call Forward State Space planning tech-
nique naive planning, as it is one of the simplest possible state space planning
techniques. We also show that T R inference system uses those sets of T R rules
to construct a plan. To highlight the correspondence between these sets of T R
rules and original STRIPS and naive planning techniques, we first briefly review
these planning techniques in terms of imperative pseudo codes.

The original STRIPS planning algorithm, proposed by [19], maintains a stack
of goals and tries to achieve the goals from the top of the stack until the stack
gets empty. We can simply implement this technique using recursive functions
as depicted in Figure 1. Naive planning algorithm is based on depth first search.
As illustrated in Figure 2, it starts from initial state, iteratively chooses actions,
and moves to a new state until eventually finds a goal state.

The following definitions encode the aforesaid planning techniques as a set
of T R rules.

Definition 6 (Enforcement operator). Let G be a set of extensional literals.
We define Enf(G) = {+p|p ∈ G} ∪ {−p|¬p ∈ G}. In other words, Enf(G) is the
set of elementary updates that makes G true.

Next we introduce a natural correspondence between STRIPS actions and
T R rules.
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function STRIPS(R,A,S, G)
σ ← []
loop

if G ⊆ S then
return σ

else
A ← {αθ|α ∈ A, θ(E(α)) ⊆ G}
if A = ∅ then

reutrn failure
else

Choose non-deterministically α ∈ A
σ′ ← STRIPS(R,A,S, P re(α))
if σ′ = failure then

reutrn failure
else

S ← exec(S, σ′)
S ← (S \ ¬θ(E(α))) ∪ θ(E(α))
σ ← [σ|σ′|αθ]

end if
end if

end if
end loop
return σ

end function

Fig. 1. STRIPS Planning

function NAIVE(R,A,S0, G)
S ← S0

σ ← []
loop

if G ⊆ S then
return σ

else
A ← {αθ|α ∈ A, θ(Pre(α)) ⊆ S}
if A = ∅ then

reutrn failure
else

Choose non-deterministically α ∈ A
S ← (S \ ¬θ(E(α))) ∪ θ(E(α))
σ ← [σ|αθ]

end if
end if

end loop
return σ

end function

Fig. 2. Naive Planning
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Definition 7 (Actions as T R rules). Let α = 〈pα(X), P re(α), E(α)〉 be a
STRIPS action. We define its corresponding T R rule, tr(α), to be a rule of
the form

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u). (6)

Note that in (6) the actual order of action execution in the last component,
⊗u∈Enf(E(α))u, is immaterial, since all such executions happen to lead to the
same state.

We now give a set of T R clauses that simulates naive planning for STRIPS
planning problems [19]. For convenience, we use â⊗b as a shorthand for a ⊗
b ∨ b ⊗ a. This connective is called the shuffle operator in [11]. We define it
to be commutative and associative and thus extend it to arbitrary number of
operands.

Definition 8 (Näıve planning rules). Given a STRIPS planning problem
Π = 〈R,A, G,S〉 (see Definition 4), we define a set of T R rules, P(Π), which
simulate naive planning technique to provide a planning solution to the planning
problem. P(Π) has two parts, Pgeneral, PA, described below.

– The Pgeneral part: contains a couple of rules as follows;

plan ← .
plan ← execute action ⊗ plan.

(7)

These rules construct a sequence of actions and bind them to the plan.
– The Pactions part: for each α ∈ A, Pactions has a couple of rules as follows;

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u).
execute action ← pα(X).

(8)

This is the T R rule that corresponds to the action α, introduced in Defini-
tion 7 and generally links an action to a plan.

Given a STRIPS planning problem Π = 〈R,A, G,S〉, Definition 8 gives a set
of T R rules that specify a naive planning strategy for that problem. To find a
solution for that planning problem, one simply needs to place the request

? − plan ⊗ (∧gi∈Ggi). (9)

and use the T R’s inference system to find a proof. As mentioned before, a
solution plan for a STRIPS planning problem is a sequence of actions leading
to a state that satisfies the planning goal. Such a sequence can be extracted
by picking out the atoms of the form pα from a successful derivation branch
generated by the T R inference system. Since each pα uniquely corresponds to
a STRIPS action, this provides us with the requisite sequence of actions that
constitutes a plan.

Suppose seq0, . . . , seqm is a deduction by the T R inference system. Let
i1, . . . , in be exactly those indexes in that deduction where the inference rule
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(3) was applied to some sequent using a rule of the form tr(αir ) introduced in
Definition 7. We will call αi1 , . . . , αin the pivoting sequence of actions. The
corresponding pivoting sequence of states Di1 , . . . ,Din is a sequence where
each Dir , 1 ≤ r ≤ n, is the state at which αir is applied. One can show that the
pivoting sequence of actions generated from a deduction of (9) is a solution to
the planning problem. Completeness of a planning strategy means that, for any
STRIPS planning problem, if there is a solution, the planner will find at least
one plan. Based on the completeness of T R’s inference system, one can show
that the planner in Definition 8 is complete.

Definition 9 (STRIPS planning rules). Let Π = 〈R,A, G,S〉 be a STRIPS
planning problem (see Definition 4). We define a set of T R rules, P(Π), which
simulate STRIPS planning technique to provide a planning solution to the plan-
ning problem. P(Π) has three disjoint parts, PR, PA, and PG, described below.

– The PR part: for each rule p(X) ← p1(X1) ∧ · · · ∧ pk(Xn) in R, PR has a
rule of the form

achieve p(X) ← ̂⊗n
i=1achieve pi(Xi). (10)

Rule (10) is an extension to the classical STRIPS planning algorithm. It
captures intensional predicates and ramification of actions, and it is the only
major aspect of our T R-based rendering of STRIPS that was not present in
the original in one way or another.

– The part PA = Pactions ∪ Patoms ∪ Pachieves is constructed out of the actions
in A as follows:

• Pactions: for each α ∈ A, Pactions has a rule of the form

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u). (11)

This is the T R rule that corresponds to the action α, introduced in Def-
inition 7.

• Patoms = Pachieved ∪ Penforced has two disjoint parts as follows:
– Pachieved: for each extensional predicate p ∈ Pext, Pachieved has the

rules
achieve p(X) ← p(X).
achieve not p(X) ← ¬p(X).

(12)

These rules say that if an extensional literal is true in a state then
that literal has already been achieved as a goal.

– Penforced: for each action α = 〈pα(X), P re(α), E(α)〉 in A and each
e(Y ) ∈ E(α), Penforced has the following rule:

achieve e(Y ) ← ¬e(Y ) ⊗ execute pα(X). (13)

This rule says that one way to achieve a goal that occurs in the effects
of an action is to execute that action.
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• Pachieves: for each action α = 〈pα(X), P re(α), E(α)〉 in A, Pachieves has
the following rule:

execute pα(X) ← (̂⊗�∈Pre(α)achieve �) ⊗ pα(X). (14)

This means that to execute an action, one must first achieve the precon-
dition of the action and then perform the state changes prescribed by the
action.

– PG: Let G = {g1, ..., gk}. Then PG has a rule of the form:

achieveG ← (̂⊗k

gi=1achieve gi) ⊗ (∧k
i=1gi). (15)

Similar to naive planning, given a STRIPS planning problem Π = 〈R,A, G,S〉,
Definition 9 gives a set of T R rules. T R’s inference system can use those rules to
simulate STRIPS planning strategy for that problem. If one places the request

? − achieveG . (16)

the T R’s inference system will find a proof. It can be shown that the pivot-
ing sequence of actions generated from this proof is a solution to the planning
problem. One can also show that the linear planner provided by Definition 9 is
complete under the set of goal-serializable planning problems. We do not fur-
ther discuss these issues in this paper due to space limitations. One can also
show that with the help of existing tabling methods for T R’s inference systems,
STRIPS planner always terminates.

Definitions 8 and 9 are transforms that convert the specification of planning
problems to T R rules. The similarity of T R’s inference system in Definition 5
and well-known SLD resolution algorithm shows that one can use a similar app-
roach to encode planning algorithms in logic programming frameworks. Based
on Definitions 8 and 9, we can build a simple translator that constructs T R
rules out of planning problem specifications in PDDL.

4 Experiments

In this section we briefly report on our experiments that compare naive and
STRIPS planning. The test environment was a tabled T R interpreter [20] imple-
mented in XSB and running on Intel R©Xeon(R) CPU E5-1650 0 @ 3.20GHz
12 CPU, 64GB memory running on Mint Linux 14 64-bit. We use our trans-
lator to build T R rules out of PDDL files. We use the generated T R rules
and our interpreter to solve our planning problems, which are test cases taken
from [1]. We do not explain our test cases as they are well explained at http://
ipc.icaps-conference.org/ . Our test cases also can be found at http:// ewl.cewit.
stonybrook.edu/ planning/ along with our PDDL2TR translator, T R interpreter,
and all the necessary items needed to reproduce the results. The tests highlight
how the performance of the two planning techniques varies depending on the
domain of application.

http://ipc.icaps-conference.org/
http://ipc.icaps-conference.org/
http://ewl.cewit.stonybrook.edu/planning/
http://ewl.cewit.stonybrook.edu/planning/
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Table 1. Results for the Elevator test case (4 actions)

Test Case Naive STRIPS
CPU Mem CPU Mem

s1-0 0 19 0 17

s2-0 0.004 277 0 96

s3-0 0.092 3636 0.02 853

s4-0 1.352 54628 0.1 4152

s5-0 24.213 867806 0.348 14148

s6-0 463.908 13440627 1.032 44681

s7-0 1000> N/A 3.14 144060

s8-0 1000> N/A 9.564 430435

s9-0 1000> N/A 27.425 1212350

s10-0 1000> N/A 74.24 3115811

s11-0 1000> N/A 217.545 9074006

s12-0 1000> N/A 546.606 21151356

Table 2. Results for the Travelling and Purchase Problem test case (3 actions)

Test Case Naive STRIPS
CPU Mem CPU Mem

p01 0 22 0.004 121

p02 0.004 125 0.004 215

p03 0.024 664 0.016 878

p04 0.124 4040 0.056 2067

p05 41.43 2350601 0.592 19371

The main difference between the two test cases is that the Healthcare test
case has many more actions and intensional rules than the movie store case. As
seen from Tables 1 and 2, for both of these test cases, STRIPS planning gets to
about two orders of magnitude more efficient both in time and space.1 However,
STRIPS is not able to solve problems that are not goal serializable.

We do not compare and analyse the performances of studied planning tech-
niques in this paper as this study would be beyond the scope of this paper.
The aim of our experiments is to provide show the differences between planning
techniques in different application domains and to illustrate the ability of T R to
not only provide a theoretical framework for analysis of planning techniques, but
also to implement such techniques in a declarative way. Moreover, our experi-
ments also show that T R simplifies and eases the implementation of complicated
planning techniques, such as STRIPS.

5 Compatibility with PDDL and Related Work

The representation of planning algorithms in T R enables us to develop a simple
translator that constructs T R rules out of planning problems and algorithms.
1 Time is measured in seconds and memory in kilobytes.
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PDDL is a standard language intended to express planning problems [28] in
AIPS planning competitions [1]. Planning problems from AIPS planning compe-
titions are usually considered as standard benchmarks for planners. Therefore,
providing an automated method of translating PDDL planning domains shows
the generality of our approach.

A planning problem consists of domain predicates, possible actions, the struc-
ture of compound actions, and the effects of actions. To express a planning
problem, PDDL supports several syntactic features such as basic STRIPS-style
actions, conditional effects, universal quantifications in the effects, ADL features
[41], domain axioms, safety constraints, hierarchical actions, and more. The for-
malism in Section 2 also supports the basic STRIPS-style actions and domain
axioms. Clearly, it is simple to extend this formalism to include other features.
For instance, it is easy to show that T R is can represent most of the features
provided by different extensions of PDDL. The following list briefly shows how
T R can express some of these main features.

– ADL features [28,37]: in PDDL, actions can have a first order formula in
their precondition. The effect of an action can also include universal quan-
tifications over fluents. T R can use Lloyd-Topor transformation to support
first order formula (including universal and existential quantifiers and dis-
junction) in the precondition of actions. It also can simulate universal quan-
tifications over fluents in the effects of actions.

– Numerical extensions [22]: in PDDL, one can associate actions, objects, and
plans with numeric costs and use these costs in numerical expressions to com-
pute different planning metrics. This syntactical feature also needs PDDL
to include numerical operators. Since T R can express and encode numerical
operators and expressions as a part of its model theory, it can easily handle
this feature.

– Temporal extensions and durative actions [22,25,38,43]: PDDL is able to
express discretised and continuous actions [22]. T R is also able to represent
discretised and continuous actions because the notion of time can be encoded
in T R’s transactions.

– Plan and solution preferences and constraints [27,31]: In a planning problem,
it is possible that only a subset of goals can be achieved because of the
conflict between goals. In this situation, the ability to assign importance
and preferences to different goals is essential. PDDL provides such ability to
express such preferences among goals and planning solutions. T R augmented
with defeasible reasoning [21] also can easily provide this feature.

Answer set programming is one of the leading logic-based planning tech-
niques [36][24][44]. However, encoding a planning problem in answer set pro-
gramming requires the addition of inertia axioms to solve frame problem [23].
Clearly, T R-based planning does not face this problem. Our PDDL2TR trans-
lator also shows that T R-based planning is general enough to automatically
encode planning problems. Since T R’s model theory also avoids the frame prob-
lem and no inertia axioms are required in T R’s planning rules. Picat is another
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logic programming framework that relies on tabling. It has been shown to be
an efficient logic-based system for solving planning problems [4][49][3][48]. How-
ever, the techniques employed by Picat are orthogonal to the results presented
here and, we believe, this work provides a natural direction for incorporation of
complex planning algorithms, like STRIPS, into Picat.

6 Conclusion

This paper has demonstrated that Transaction Logic can bridge the gap between
AI planning and logic programming. Specially, we claim that T R is a general
framework for analysis and implementation in the area of planning, which does
not depend on any particular planning strategy.

As an illustration, we have shown that different planning strategies, such
as STRIPS, not only can be naturally represented in T R, but that also such
representations can be used to automatically translate planning problems and
algorithms into declarative programming languages (e.g. Prolog). We have also
shown that the use of this powerful logic opens up new possibilities for improve-
ment of existing planning methods in logic programming. For instance, we have
shown that the sophisticated STRIPS algorithm can be cast as a set of rules in
T R, which shows the ability of rule based systems to represent such planning
techniques.

These non-trivial insights were acquired merely due to the use of T R and not
much else. The same technique can be used to cast even more advanced strate-
gies such as ABSTRIPS [40], and HTN [39] as T R rules, and those techniques
can straightforwardly be used to solve planning problems in logic programming
frameworks.

There are several promising directions to continue this work. One is to investi-
gate other planning strategies and, hopefully, accrue similar benefits. Other pos-
sible directions include heuristics and plans with loops [33,34,46]. For instance
loops are easily representable using recursive actions in T R.
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