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Preface

Declarative languages build on sound theoretical bases to provide attractive frameworks
for application development. These languages have been successfully applied to many
different real-world situations, ranging from data base management to active networks
to software engineering to decision support systems.

New developments in theory and implementation have opened up new applica-
tion areas. At the same time, applications of declarative languages to novel problems
raise numerous interesting research issues. Well-known questions include designing for
scalability, language extensions for application deployment, and programming envi-
ronments. Thus, applications drive the progress in the theory and implementation of
declarative systems, and benefit from this progress as well.

PADL is a forum for researchers and practitioners to present original work empha-
sizing novel applications and implementation techniques for all forms of declarative
concepts, including, functional, logic, constraints, etc.

This volume contains the papers presented at PADL 2015: 17th International
Symposium on Practical Aspects of Declarative Languages held during June 18–19,
2015, in Portland, Oregon (USA).

Originally established as a workshop (PADL 1999 in San Antonio, Texas), the PADL
series developed into a regular annual symposium; the preceding editions took place in
San Antonio, Texas (1999), Boston, Massachusetts (2000), Las Vegas, Nevada (2001),
Portland, Oregon (2002), New Orleans, Louisiana (2003), Dallas, Texas (2004),
Long Beach, California (2005), Charleston, South Carolina (2006), Nice, France (2007),
San Francisco, California (2008), Savannah, Georgia (2009), Madrid, Spain (2010),
Austin, Texas (2012), Rome, Italy (2013), and San Diego, California (2014).

PADL 2015 was organized by the Association for Logic Programming (ALP), in
collaboration with the Organizing Committees of the co-located events at the 2015
ACM Federated Computing Research Conferences, the Department of Computer Sci-
ence at New Mexico State University, and the Department of Computer Science at the
University of Texas at Dallas.

The event received generous sponsorships from the Association for Logic Program-
ming, New Mexico State University, and the National Science Foundation. The orga-
nizers are also thankful for the in-cooperation support from ACM SIGPLAN.

Many people contributed to the success of the conference, to whom we would like
to extend our sincere gratitude. The members of the Program Committee provided in-
valuable help in the process of selecting papers and developing the conference program.
The numerous referees invested countless hours in reading submissions and providing
professional reviews.



VI Preface

Last but not least, we wish to extend our heartfelt thanks to all the authors who
submitted their excellent research contributions to the conference.

April 2015 Tran Cao Son
Enrico Pontelli
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Ontology-Driven Data Semantics
Discovery for Cyber-Security

Marcello Balduccini(B), Sarah Kushner, and Jacquelin Speck

College of Computing and Informatics, Drexel University, Philadelphia, USA
{mbalduccini,sak388,jspeck}@drexel.edu

Abstract. We present an architecture for data semantics discovery
capable of extracting semantically-rich content from human-readable files
without prior specification of the file format. The architecture, based on
work at the intersection of knowledge representation and machine learn-
ing, includes machine learning modules for automatic file format identi-
fication, tokenization, and entity identification. The process is driven by
an ontology of domain-specific concepts. The ontology also provides an
abstraction layer for querying the extracted data. We provide a general
description of the architecture as well as details of the current implemen-
tation. Although the architecture can be applied in a variety of domains,
we focus on cyber-forensics applications, aiming to allow one to parse
data sources, such as log files, for which there are no readily-available
parsing and analysis tools, and to aggregate and query data from multi-
ple, diverse systems across large networks. The key contributions of our
work are: the development of an architecture that constitutes a substan-
tial step toward solving a highly-practical open problem; the creation
of one of the first comprehensive ontologies of cyber assets; the devel-
opment and demonstration of an innovative, non-trivial combination of
declarative knowledge specification and machine learning.

Keywords: Data semantics discovery · Ontologies · Machine learning ·
Cyber-security

1 Introduction

An ad hoc data source is a data source for which parsing and analysis tools
are not readily available [6]. Even well-documented, established file formats can
evolve over time or change with various configuration settings, effectively becom-
ing ad hoc to users who have not followed the changes. Ad hoc data sources
present unique challenges for information technologists, cyber-security analysts,
and other professionals who must parse and interpret such data for diagnostic
or forensics purposes.

We attempt to address the challenges associated with ad hoc file formats
through development of an data semantics discovery architecture for extracting
semantically-rich content from human-readable files without prior specification

c© Springer International Publishing Switzerland 2015
E. Pontelli and T.C. Son (Eds.): PADL 2015, LNCS 9131, pp. 1–16, 2015.
DOI:10.1007/978-3-319-19686-2 1



2 M. Balduccini et al.

of the file format. The proposed system includes modules for automatic file for-
mat identification, tokenization, entity identification, and storage of extracted
records and entities. Using a process driven by an ontology of domain-specific
concepts, these components interact to parse data from an input file by identify-
ing file format, records and entities within them, and by associating the extracted
content with concepts from the ontology. Once data is extracted and stored, the
ontology also provides an essential abstraction layer for querying the extracted
data, with queries that can span across multiple file systems, file formats and
levels of abstraction. In the prototype implementation presented in this paper,
the ontology is tailored to cyber-security applications.

Searching for signs of a cyber attack in log files is one practical use for the
proposed architecture. Time constraints and lack of documentation can make
it difficult to find or create parsers for every log file format encountered, and
the magnitude of those challenges increases when dealing with large networks of
independent file systems. Security analysts must not only be aware of every type
of log available on every network node, but be able to correlate information from
multiple sources and reveal important underlying relationships between them.
As a motivating example, consider a scenario in which a cyber-security analyst
is notified of a new kind of cyber attack following this pattern:

1. A malicious e-mail with an attachment is received somewhere on the network.
The sender’s e-mail address varies, but it always ends in a “.net” suffix.

2. The recipient of the e-mail opens the attachment, unaware that it is a virus.
3. The virus establishes a DNS (Domain Name Server) tunnel1 towards a server

with the domain name “cyberattacks.com”

In this scenario, an analyst wishes to investigate whether this attack occurred
somewhere on his or her network. However, the network includes many nodes,
each with their own unique configuration, services, and corresponding log files
(see Figure 1). The information is stored using different formats depending on the

client 192.168.157.1#5544: query: maliciousserver.com IN AXFR +T
(192.168.157.129)

11/21/2013 2:15:59 PM 0A30 PACKET 00000085FD4B0610 UDP Snd
199.7.91.13 cf1b Q [0000 NOERROR] A (3)www(6)maliciousserver(3)com(0)

11/21/2013 2:16:01 PM 00D4 PACKET 00000085FD4B2320 UDP Snd
193.0.14.129 aba7 Q [0000 NOERROR] AAAA (3)www(6)maliciousserver(3)com(0)

Fig. 1. Sample DNS query records: bind format (top) vs MS DNS format (bottom)

node’s specific configuration and softwares used, and understanding the meaning
of a log entry requires knowledge that is not explicitly stated in the entry itself
(e.g., string “+T” in Figure 1). To make things worse, in realistic circumstances,
the analyst often has incomplete knowledge about the attack. In our case, for
1 http://beta.ivc.no/wiki/index.php/DNS Tunneling.

http://beta.ivc.no/wiki/index.php/DNS_Tunneling
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instance, the full address of the malicious DNS server and the e-mail address
from which the virus originates are both unknown. Although fictitious, this sce-
nario captures many challenges analysts are faced with in actual situations. In
particular, the large amounts of data and the disparate, hardly predictable ways
in which it may have been encoded make manual browsing of the files unfea-
sible. Additionally, traditional text-based search, which is relied upon by most
state-of-the-art cyber-forensics tools, is also not advisable, as it typically leads
to many irrelevant results and forces analysts to a time-consuming and error-
prone manual post-processing phase. For example, searching for strings or email
addresses (e.g., using regular expressions) with a “.net” suffix across all of the
files will likely return matches that have nothing to do with emails received by a
mail server, such as records from authentication logs. Furthermore, use of string
matching does not allow an analyst to specify additional constraints, such as
checking whether other logs indicate that the recipient’s computer may have
initiated a DNS tunnel to a certain family of servers.

Using our proposed architecture, the analyst can import log files from across
the network into a unified knowledge base. The architecture includes modules
capable of parsing all log files, regardless of configuration-dependent format vari-
ations. Finally, the analyst can ask queries that specify the types of information
they wish to find, while the system automatically identifies the correct sources
and content. This enables searching for signs of the cyber attack using high-level
queries that capture the entire attack, rather than having to piece by hand the
possible evidence of the individual stages.

The key contributions of our work are: the development of an architecture
that constitutes a substantial step toward solving an open problem of high prac-
tical importance; the creation of one of the first comprehensive ontologies of
concepts related to cyber assets; the development and demonstration of an
innovative, non-trivial combination of declarative knowledge specification and
machine learning techniques.

The remaining sections of this paper are organized as follows. Background on
existing solutions for the problems addressed by the architecture are described
in Section 2. Section 3 provides details of each component of the architecture.
An experimental evaluation of performance of the machine learning techniques
user by the architecture is presented in Section 4. Section 5 concludes the paper
and discusses possible directions of future work.

2 Related Work

To the best of our knowledge, our data semantics discovery architecture is the
first of its kind. It is worth pointing out that the problem being solved here is
substantially different from Natural Language Processing (NLP) and from tra-
ditional Information Extraction (IE). The data sources considered here typically
lack the grammatical structure considered by NLP and IE. Furthermore, differ-
ently from NLP and IE, the meaning of a record frequently depends on the file
that contains it – e.g., line “03/08/2015 10.0.0.1” describe very different events
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depending on whether it is found in a web server log file or in a DNS server log
file. For the most part, earlier and ongoing research has studied sub-problems
addressed by our architecture.

The problem of describing knowledge related to cyber-security scenarios is
the object of various proposed specifications, such as STIX, CybOX, MAEC.2

However, none of them provides a comprehensive and hierarchical description of
the software and hardware components of a system, covering operating system
objects and events.

Aggregating data from multiple file systems can help network administra-
tors detect network problems or diagnose potential causes of earlier problems.
Varying file formats and data schemas can complicate these tasks. Doan, et al.
present Learning Source Descriptions (LSD), a system for reconciling schemas
from disparate data sources using machine learning [5]. LSD learns semantic
mappings between multiple XML data sources, employing and extending estab-
lished machine learning techniques. LSD incorporates user feedback to improve
the accuracy of the mappings.

Splunk is a tool for aggregating massive heterogeneous datasets of log file
text into a semistructured time series database [3]. It claims to accept logs in
“any” format, and allows full text searches across various data sources via its
own query language. The decision to aggregate data into a time series database
was motivated in part by the fact that time stamps are one of the only common
fields among many different types of log data, and contain essential information
for many types of analysis (including cyber-forensics). Splunk exploits this time
series organization during searches, operating on only the time slices that inter-
sect the query target time. The Splunk query language supports a wide range
of complex functionality, including data mining techniques such as clustering,
anomaly detection, and prediction.

The presence of log file formats unfamiliar to network analysts often com-
plicates their diagnosis of system failures and vulnerabilities. SherLog is a diag-
nostic tool capable of reverse-engineering log file formats. However, SherLog is
limited to single file systems and only applies to log files produced by specific,
known executable programs [15].

Tupni, another tool for reverse-engineering both protocol and file formats,
expands beyond simple data types, extracting record types, record sequences,
and input constraints [4]. However, Tupni requires both a sample file and an
application capable of parsing the file as input. The tool therefore can not sup-
port ad hoc data sources, which have no readily available parsing tools. Splunk,
an aggregation tool discussed above, supports ad hoc formats in the sense that
users may configure arbitrary input types. However, it does not automatically
learn how to parse these input types. While Splunk does not require users to
specify a schema for the data to be indexed, users must specify fields and val-
ues to extract. It includes tools that guide the user through creating regular
expressions to extract fields and values for each incoming time-delineated event.

2 https://stix.mitre.org/.

https://stix.mitre.org/
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Tokenization and entity extraction form ad hoc data sources is one of the core
problems related to data semantic discovery. In-depth studies of the log analysis
process have found that non-technical users increasingly need data from log files,
but code development knowledge is a beneficial or even necessary prerequisite to
log file understanding [1,12]. A lack of documentation can also create difficulties
for technical users, who often have to sort through program code in order to
discover what information is logged. Technical and non-technical users would
benefit from tools that can automatically extract, categorize, and assign semantic
meaning to tokens from log files.

DEC0DE is a tool for recovering information frommobile phoneswith unknown
storage formats, to aid in criminal investigations [13]. The tool compares small
blocks of unparsed data to a library of known hashes in order to reveal information
of interest, then parses the remaining data with adapted NLP techniques. Fisher,
et al. introduced LearnPADS, an end-to-end system for generating data processing
tools directly from ad hoc data [6–8]. It employs a multi-phase algorithm for infer-
ring the structure of ad hoc data sources and generating templates in the PADS
data description language. The data itself is then used to generate a semistructured
query engine, format converters, statistical analyzers, and visualization routines,
withouthuman intervention.The systemhas similar goals to ourwork, but does not
include a method for storing and retrieving previously-recognized formats, which
would prevent repeating the structure-inference process every time a particular ad
hoc structure is encountered. Furthermore, unlike our work, the LearnPADS sys-
tem is not capable of inferring higher-level relationships from the available data in
order to establish links between information from multiple files, possibly across
multiple file systems (e.g., to allow a user to ask “show me all incoming traffic
from source IP 10.0.0.10”). Another drawback is the PADS language itself, which
requires users to provide a priori knowledge of the data formats present in the data
set to be analyzed. This means that LearnPADS can support ad hoc file formats,
but not ad hoc entity strings as our proposed architecture can.

After learning to parse and extract tokens from an ad hoc file format, it is
necessary to assign meaning to the extracted entities. Splunk relies on the user to
specify the semantic meaning of extracted entities that it does not already recog-
nize. Seaview uses fine-grained type inference to generate log file visualizations
based on the semantic meanings (e.g., “Student ID” as opposed to “Integer” or
“String”) of extracted tokens [9]. Seaview infers semantic relationships between
fields in log files, but does not represent record types or file types as our archi-
tecture does.

FlashExtract is a newer framework for extracting data from ad hoc docu-
ments using examples [10]. However, extraction is performed on a per-file basis,
requiring users to highlight examples in every individual input file instead of gen-
erating parsing templates for previously-seen formats. FlashExtract also does not
utilize an ontology to define semantic relationships between data entities.
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3 The Data Semantics Discovery Architecture

Figure 2 shows the proposed data semantics discovery and the relationships
between its components.

Fig. 2. Proposed architecture

The system includes a software
modules for File Format Identifi-
cation, Template Generation, Pars-
ing, Data Storage, and Querying.
The user provides an ontology of
domain-specific concepts and their
relationships, which captures the
concepts and the levels of abstrac-
tions that the user expects to later
use for querying. All of the classes
that one would expect for such a
domain-specific ontology are spec-
ified, including concepts file types,
record types, entity types, but also
processes, files, system queues, etc.
In addition to these typical com-
ponents, concepts descriptions in
the ontology also include, whenever
available, a specification of training
data in the form of collections of
labeled samples.

An overview of each compo-
nent is provided below. However,
any architectural component can
be modified or replaced to better
suit other applications.

In order to simplify the process,
our work relies on a few assumptions. The Template Generator and Parsing
components assume that alphanumeric characters are never used as delimiters
between tokens, and only non-alphanumeric characters may serve as delimiters.
However, the Template Generator lifts this assumption, as non-alphanumeric
characters are often part of data entities (e.g., “.” as part of an IP address token).
While the Template Generator does not assume structure to be homogeneous
throughout the entire input file, it assumes that the file contains at least one
group of lines that can be parsed using each set of delimiters. The process for
identifying delimiters is described in greater detail in later. Tokens from the same
column in any given line group are assumed to represent the same entity type
(e.g., if the token before the first delimiter on a line represents a timestamp, all
lines that are formatted the same way contain a timestamp in that position).
While all entities appearing on a given line of text are considered to be part of
the same record, their order is not considered for interpretation of the record.
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The architecture first identifies the format of the input using supervised
machine learning. The result dictates whether the system attempts to retrieve
the corresponding parsing template, or create one if no such template exists. The
Parser extracts tokens to match per-entity regular expressions in the template,
then disposes of duplicate or irrelevant entries. Finally, the extracted tokens
are classified by entity type (e.g., “Date-Time,” “IPV4,” etc.), and mapped to
the ontology as complete records. If it encounters information that does not
correspond to existing ontology classes, the system is capable of adding new
classes to the ontology. This feature is, however, beyond the scope of the present
paper and will be discussed separately.

3.1 Ontology

In the proposed architecture, an ontology provides domain knowledge about
cyber assets, associates type labels and samples, and stores the data extracted
from the files. The domain-specific knowledge contained in the ontology is of
the type that is found in textbooks or manuals. This information is specified at
development time, and we expect that it is sufficiently general to be sufficient
for most scenarios and applications, but obviously it can also be easily extended
at run-time. The two top-level classes of the ontology are events and objects,
described in more details next.
Events: this class is used to describe host-level events. The data semantics dis-
covery architecture views log files as collections of records of events, with each
log file potentially including multiple types of records. The sub-classes of events
include:

– Hardware Events : events that occurred at the hardware level. This category
contains sub-classes for events such as overheating, physical disk damage,
peripherals connected/disconnected, etc.

– OS Events: events relevant to the kernel, communications layer, software
processes, and user actions. Each is described by a different sub-classes, and
further divided as appropriate.

All event records identified by the system will be (direct or indirect) sub-classes
of the above. The latter class encompasses the largest set of sub-classes, and it
is likely that most ad hoc log formats encountered by users will describe events
from that category.
Objects: this class represents basic data entities, such as email addresses and net-
work addresses, as well as physical and software objects. Intuitively, events result
from actions performed by objects and/or on objects. The ontology includes all
objects related to events the user wishes to monitor through log file records.
Sub-classes capturing specific object types, including:

– Hardware Objects: physical components of a computer, such as a keyboard
or a video card.

– OS Objects: software objects for which the OS is directly responsible, such
as processes, threads, memory; also, objects that exist within, or are created
by, applications.
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Sub-classes of OS Objects include dhcp tables, which are maintained by the
dhcp service, and email messages, which are handled by the email daemon.
Files and directories are also OS Objects, and the various types of log files are
further sub-classes of files.

The links among the various objects and between objects and events are
expressed using a few general properties. For example, properties allow the sys-
tem to memorize in which log file a record was found. Some properties apply
to whole classes of the ontology, while others are specific to instances of classes
containing the information extracted from log files.

Fig. 3. Storage of a DNS Query Record

The most important property in
the first category is trainingSamples.
This property is applicable to any
class and specifies a path the file(s)
containing samples of that class to be
used for classifier training. Samples
are used as training data for extract-
ing and identifying information from
the data sources (see below). Prop-
erties that are applied to specific
instances include:

– in-file: applicable to any event
record (see Events class), this
property allows to specify in
which log file the record was.

– contains: this property is appli-
cable to event records as well, and
is used to specify which data enti-
ties were found in that record. For
example, many record types con-
tain a date-time entity.

– text: this property is applicable
to any data entity. It is used to
specify the text that was identi-
fied as describing that data entity.
For example, the value of the text
property for an IPv4Address data
entity could be “10.0.0.1.”

To see how the information from data sources is encoded by the architecture,
consider the sample DNS query record from Figure 1 (top), a special case of a
DNS record that a user might search for in the example from Section 1.

Examples of key ontology elements pertinent to the identification and storage
of this record are illustrated in Figure 3. Property trainingSamples of classes
DNSQueryRecord and IPv4Address provides the location of the training sam-
ples for the extraction algorithms. Parsing of the record, performed using the
algorithms described later, creates a new instance of the DNSQueryRecord class.
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This class is categorized as a Network Event, which is a sub-class of OSEvent. A
reference to the file in which the record was found is memorized by the instance’s
in-file property. Finally, the components of the record identified by the parsing
algorithms are stored as instances of appropriate data entity classes and linked
to the DNSQueryRecord instance via its contains property. For illustrative pur-
poses, here we visualize them as pairs of entity types and values:

– (IPPortPair, “192.168.157.1#5544”)
– (domainName, “maliciousserver.com”)
– (IPv4Address, “192.168.157.129”)
– (dnsQuery, “maliciousserver.com IN AXFR +T (192.168.157.129)”)

3.2 File Type Identification

Machine learning approaches for automatic classification can be divided into two
broad categories: supervised and unsupervised. Supervised methods both com-
pare unlabeled input samples to a set of labeled training samples. Unsupervised
approaches require no training data, instead labelling unknown input samples by
searching for hidden structures in the data set. A supervised approach best suits
our goal of categorizing formats according to labels from an ontology, although
exploration of semi-supervised approaches that require fewer labeled input sam-
ples is a goal for future work (see Section 5). The File Format Identification
component of our architecture identifies file types using a two-stage approach:

– Determining if file type is known: Has the system previously seen files of
the same type as the given input file? More generally, does this file contain
entities that the system is capable of identifying?

– Identifying the file type: If the given input file is of a known type, which
known type is it?

In order to train both classifiers, the architecture extracts training data from
the samples provided by the ontology, as discussed above.

The first stage of File Format Identification determines whether the input
file is of a “known” or “unknown” (i.e., not previously seen) type using a One-
Class Support Vector Machine (SVM) classifier for Novelty Detection. The One-
Class SVM is an adaptation of the traditional pairwise SVM, which determines
whether or not observed data points come from the same distribution by classify-
ing them as “in-distribution” or “outliers” [11]. Given a set of initial observations
from the same distribution, each described by p features, the classifier learns a
contour enclosing the distribution in p-dimensional space. If new observations lay
within the contour, they are considered to come from the same population as the
initial observation. If they lay outside the contour, they are considered “outliers”
belonging to some other distribution. We train a One-Class SVM to recognize all
files for which the system has data samples as “known” (i.e., “in-distribution”).
The second stage applies to input files classified as “known” during the first
stage, and determines which known file type the input corresponds to. Training
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data for this stage includes labels for each known file format, which coincide with
the corresponding class names from the ontology. For the second stage of File
Format Identification, we combine several “traditional” pairwise SVM classifiers
to create a multi-class classifier [14].

From a technical perspective, both classification stages of the file type iden-
tification process use, as features for the learning algorithms, n-grams of space-
delimited tokens. In early evaluations, a combination of tri-grams and 4-grams
produced the best performance with over 99% accuracy for the second stage
of File Format Identification. To reduce dependency on the appearance of spe-
cific string values, we perform pre-processing to replace characters with generic
character type labels, i.e. numeric characters are replaced by character “N” and
alphabetic characters are replaced by “A.” Punctuation characters are left as-is
because they are often important features of specific entities (e.g., “.” in the IP
address “192.168.1.1”).3

As an example of file type identification in the prototype implementation of
this system, consider a file being analyzed for the motivating use case introduced
in Section 1. An excerpt from the file is shown in Figure 1 (bottom).

After extracting features, we use novelty detection to determine whether the
file is of a recognized type. The file falls within the distribution of recognized
samples, and is classified as being of a known type. The second classification
stage compares the file to each class of known files, and identifies it as a MS
DNS log.

3.3 Template Generation and Parsing

When it encounters an unrecognized file format, the architecture uses structural
cues from the file to generate a parsing template. For the prototype implementa-
tion presented here, Template Generation is a two-stage approach, consisting of
Delimiter identification, which identifies groups of lines that are parsed similarly,
and then identifies the delimiters in each line group, and Regular Expression
Generation, which forms regular expressions for the entities in each line group
after separating tokens in each line group using the delimiters identified. Both
steps are detailed next. The output of this process is a template for parsing the
input file. The template contains a set of regular expressions for matching each
entity contained in the file.

Delimiter Identification. Many log file formats are “homogenous,” meaning
that all lines contain the same fields and use the same delimiter. Examples
of homogenous log file formats include Comma-Separated Values (CSV) files
and Tab-Separated Values files. For these log files, identifying the delimiter is
relatively straightforward. However, some log files include a variety of different
line formats, with varying delimiters, field types, and even numbers of fields on
each line. To account for these files, Template Generation begins by grouping
3 The evaluation of the effects of the replacement by character type labels and a

comparison with other possible approaches are in progress and will be discussed in
a separate article.
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lines in the input file that are formatted the same way. The remaining steps in
the Template Generation procedure are applied separately for each line group.

We have explored several methods for identifying line groups, largely based
on heuristics:

– Clustering by whitespace: lines with the same number of whitespace charac-
ters are clustered together.

– Clustering by all punctuation characters: similar to the first proposed method,
but considering the weighted counts of all punctuation characters.

– Clustering by alphabetic and numeric characters: considering weighted
counts of all types of characters.

In preliminary experiments with the prototype implementation, the first method
produced accurate templates for the files relevant to the scenarios of interest.

Delimiters are identified for each line group. We first identify candidate delim-
iters by counting the number of appearances of each punctuation character on
each line in the given line group, and counting the number of characters between
appearances on each line. The delimiter for the line group is the candidate that
meets the following criteria:

– Has the minimum standard deviation in its per-line count.
– Has the largest standard deviation in the character distance between its

appearances (only applies if multiple characters meet the first criterion).

The first criterion is motivated by the assumption that all lines within the same
group contain the same number of fields. If this is the case, a delimiter character
should appear the same number of times on each line. However, we allow for some
variation in the count in case the character also appears within a nested entity.
The second criterion only applies if multiple characters meet the first criterion,
and is motivated by the experimental observation that few entity types have
fixed character lengths.

Regular Expression Generation. Once data entities in a given line group
have been identified, by the process of elimination after identifying delimiters,
the Template Generator learns Regular Expressions representing each column
of tokens (i.e., tokens before the first delimiter in a line group, tokens between
the first and second delimiters, etc.) extracted from the input file. To generate
regular expressions that match each column of tokens from a given line group,
the prototype implementation uses a Genetic Programming algorithm similar
to the one described in [2]. Extracted tokens are first pre-processed to replace
alphanumeric characters with “A” or “N.” The pre-processed tokens are used as
inputs to the Genetic Programming algorithm, from which we obtain a regular
expression that best fits all of the tokens from the column.

The templates generated by this process contain lists of regular expressions
for each line group. This substantially simplifies the parsing process, allowing to
reduce it to the task of extracting strings using regular expressions.

A particularly challenging case for Template Generation and Parsing is that
of user-configurable file formats, such as that of Apache web server logs. The
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softwares that generate these logs provide users practically complete freedom
in the specification of which of the available data entities should appear in the
logs, and in which order. The Template Generation and Parsing component
accommodates these types of files by adopting two strategies:

– Allowing multiple templates for each file type: When multiple templates
exist, the Parser attempts to extract entities using all of them. The template
with the largest number of recognized entities extracted is considered to be
“correct” for our purposes.

– Generating a new template if too few recognized entities are extracted by the
Parser: When very few of the extracted tokens represent recognized entity
types, the system generates a new template and stores it with the existing
template(s) for the input file format. We apply a threshold for percentage
of recognized entity types to determine whether a new template should be
created.

3.4 Ontological Mapping

After parsing, the extracted tokens, records, and the files themselves are mapped
to the ontology, as follows.

The mapping algorithm begins with Entity Identification, in which tokens
extracted during the parsing process are mapped to data entities from the ontol-
ogy. The process is similar to that of File Type Identification: using the classes
and samples from the ontology as training data, first we determine if the input
token is a known entity type, then determine which type it is. We use SVMs for
this classification problem as well, with features extracted by applying the same
replacement by character type labels described earlier and by creating a count
vector of the character types (letters, numbers, and punctuation) for each token.

Once the extracted entities have been identified, combinations of entities are
stored as records as in the example from Section 3.1. The Mapper module must
determine which type of event record object to create (see Section 3.1 for an
overview of event types from the built-in ontology).

As before, training data for the record classification task is obtained from
the ontology, which specifies training samples and whose class names are used
as labels. The output of the File Format Identification module and the results of
the Entity Identification process described above are combined to form a feature
vector for supervised classification using SVMs.

The first element of the feature vector contains the file format label for the
input file, or the special label “UNKNOWN” if the file format was not recognized.
The remaining elements contain the count of every known entity type found
during Entity Type Identification, including the number of unrecognized entities.
For the kind of data considered here, the prototype implementation has shown
good results with this feature representation, which ignores the order of entities’
appearance in each record.

Finally, a supervised learning algorithm similar to the algorithm described
in Section 3.2 is used to classify the record as one of the known types from the
ontology.
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3.5 Querying

Once the information has been extracted and stored, the analyst can leverage
the hierarchical organization of the ontology to ask queries that span across
multiple files and are independent of how the information was originally encoded.
In the case of the motivating example from Section 1, our architecture enables
the analyst to check for instances of the cyber attack of interest by posing the
following query, encoded here in a simplified pseudo-language to simplify the
presentation:
SELECT R1, R2, R3 WHERE

R1 is a mailRecord,

R1.contains (emailAddress, .net),

R1.contains (DateTime D1),

R2 is a dnsQueryRecord,

R2.contains (DateTime D2),

D2 > D1,

R2.contains (domainName, *cyberattacks.com),

R2.contains (networkAddress, victimPC),

R3 is a dnsQueryRecord,

R3.contains (DateTime D3),

D3 > D2,

R3.contains (domainName, *cyberattacks.com),

R3.contains (networkAddress, victimPC)

The first four lines of the query identify receipt of an e-mail from a “.net”
e-mail address and the remaining lines identify two subsequent DNS queries to
the malicious server, both occurring on the same network node. The query also
requires that the email arrival precedes the DNS queries (conditions D2 > D1
and D3 > D2). The first line of the query specifies that the corresponding
records must be returned, although of course it would be easy to also return,
for example, the date times and address of the victim, or the complete sender
e-mail address.

Such a query can be easily expressed in a state-of-the-art query language such
as SPARQL; for example the following shows how the first 4 lines are translated:

SELECT ?r1 ?r2 ?r3 WHERE {
?r1 rdf:type dsd:mailRecord .
?r1 dsd:contains ?e1 .
?e1 rdf:type dsd:EmailAddress .
?e1 dsd:text ?addr .
FILTER (REGEX(str(?addr), ”.net”)) .
?r1 dsd:contains ?d1 .
?d1 rdf:type dsd:DateTime .
...

}
Queries can even be built automatically from a higher-level specification, which
for example could be part of a library of known cyber attacks.

It is important to stress the practical advantage of the design of the archi-
tecture for high-level query answering. In the case of the present example,
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analyst can identify which network node opened the DNS tunnel regardless of
how the DNS queries were actually logged by the server(s). In fact, depend-
ing on a server’s configuration, the information in the log files might identify
network nodes by their IPv4 addresses, their IPv6 addresses, or even their
MAC addresses. However, because class networkAddress is a super-class for
IPv4Address, IPv6Address, and MACAddress (see Figure 3), the use of the net-
workAddress class in the query encompasses all three network address types.
This additional level of abstraction allow analysts to disregard irrelevant low-
level details as needed.

4 Supervised Learning Evaluation

Successful identification and storage of known data types depends on the effec-
tiveness of supervised learning as described in Section 3. In this section, we
report on an empirical evaluation of the learning components of our architec-
ture to enable comparison with future approaches. We evaluate the performance
of the supervised learning modules for file format, entity, and record classifica-
tion with ten cross-fold validations. The data used for this evaluation consist
of 2,022 text files from 29 file classes, which contain a combined 12,622 distinct
record samples from 22 record classes. The data for entity classification consist
of 291 entity samples from 11 classes. The number of entity samples is small
compared to the number of record and file samples because we have accounted
for duplicates removed during the feature pre-processing step by replacement by
character type labels described earlier. Recall that this pre-processing replaces
specific alphanumeric characters with character type representations, reducing
the number of unique samples required. For all classification problems, the num-
ber of samples was distributed as close to uniformly as possible across all classes.

Common performance metrics for supervised learning include precision, the
fraction of retrieved instances that are relevant, recall, the fraction of relevant
instances that are correctly retrieved, and f-measure, the harmonic mean of pre-
cision and recall. Each metrics ranges from 0 to 1, with 1 being the best possible
score. The average metrics over all ten cross-validation folds are shown in Table 1.
Although the performance is, overall, satisfactory, a discussion of possible ways
to improve it is provided in the next section. SVMs were chosen for all three clas-
sification problems because they outperformed several other classifier types in
preliminary evaluations, but further evaluations of various classifier and feature
combinations will be included in future work (see Section 5).

Table 1. Supervised learning performance

Precision Recall F-Measure

File Format Identification 0.9791 0.9808 0.9799

Record Type Identification 0.835 0.8438 0.8394

Entity Type Identification 0.8279 0.7819 0.8042
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5 Conclusions and Future Work

We have presented a data semantics discovery architecture capable of parsing
and interpreting data from multiple ad hoc data sources, and of correlating infor-
mation from multiple sources regardless of the format and level of abstraction
at which the information was originally encoded. The extraction process is effec-
tively driven by an ontology of domain-specific concepts, which provides samples
and labels for the underlying algorithms. The same architecture is also used for
answering queries about the extracted data.

Our architecture moves beyond parsing techniques requiring prior knowledge
of file formats and is a step toward parsing data sources with completely arbitrary
formats. Any component of the architecture can be adjusted or replaced to better
suit a user’s needs or to perform comparative studies of alternative techniques.
The evaluation of the architecture in realistic conditions is under way.

From a practical point of view, our architecture improves upon existing search
methods common in cyber-security tools by adding a layer of semantic under-
standing of the extracted data via an ontology, which allows a user to ask higher-
level queries and at the same time tends to return more relevant results than
the string-based search methods used by most cyber-security tools.

This paper presented the overall architecture and described its use. Next, we
plan to study how the performance of the system (e.g., execution time, accu-
racy) is affected by the adoption of different techniques for the implementation
of its various components. For example, different combinations of features or use
of ensemble methods may improve classification performance over the metrics
presented in Section 4. In turn, improving classification performance may ben-
efit overall performance because the system naturally depends on accuracy of
classification during insertion of data into the knowledge base.

The use of the ontology may help to compensate for misclassifications or
ambiguities between related low-level data types. If, for example, an IPv4 address
is misclassified as an IPv6 address, it will still be identified as network address
and will be returned in response to queries for entities of that type. Exploration
and quantitative evaluation of this idea are another subject for future work.

Finally, although we have discussed our architecture in a cyber-security con-
text, we believe it to be applicable to a wide range of domains by simply providing
an appropriate ontology and training samples. Verification of this claim will be
another direction of future work.

Acknowledgments. The authors would like to thank Philip J. Yoon for useful dis-
cussions on the topic of ad hoc data sources.
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Abstract. State space planning algorithms have been considered as one
of the main classical planning techniques to solve classical planning prob-
lems since 1960. In this paper, we show that Transaction Logic is an
appropriate language and framework to study and compare these plan-
ning algorithms, which enables one to have more efficient planners in logic
programming frameworks. Specifically, we take STRIPS planning and
forward state space planning algorithms, and show that the specification
of these algorithms in Transaction Logic lets one implement complicated
planning algorithms in declarative programming languages (e.g. Prolog).
We first provide a formal representation of these planning algorithms in
Transaction Logic, which can be used to automatically translate STRIPS
planning problems in PDDL to Transaction Logic rules. Then, we use
the resulting Transaction Logic rules to solve planning problems and
compare the performance of those algorithms in our simple interpreter
implemented in XSB Prolog. We use several case studies to show how
the linear STRIPS planning algorithm is faster than forward state space
search. Our experiments highlight the fact that a planner implemented
by logic programming framework can become faster if an appropriate
planning algorithm is applied.

Keywords: Declarative planning algorithms · Planning in logic pro-
gramming · State space planning

1 Introduction

The classical automated planning has been used in a wide range of applications
such as robotics, multi-agent systems, and more. This wide range of applica-
tions has made automated planning one of the most important research areas
in Artificial Intelligence (AI). The history of using logical deduction to solve
classical planning problems in AI dates back to the late 1960s when situation
calculus was applied in the planning domain [30]. There are several planners
that encode planning problems into satisfiability problems [35][29][17] or con-
straint satisfaction problems (CSP) [47][18][2] and use logical deduction to solve
the planning problems. Beside planning as satisfiability and CSP, a number of
deductive planning frameworks have been proposed over the years. Linear con-
nection proof method [6][7][8], equational horn logic [32], and linear logic [34][15]
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are well-known examples of logic-based deduction methods applied for solving
classical planning problem. Answer set programming is another, more recent
logic based technique to solve planning problems [36][26][24][44].

There are several reasons that make logical deduction suitable to be used
by a classical planner [45][16]: (1) Logical deduction used in planning can be
cast as a formal framework that eases proving different planning properties such
as completeness and termination. (2) Logic-based systems naturally provide a
declarative language that simplifies the specification of planning problems. (3)
Logical deduction is usually an essential component of intelligent and knowl-
edge representation systems. Therefore, applying logical deduction in classical
planning makes the integration of planners with such systems simpler. In-depth
discussion of these reasons is beyond the scope of our paper. Despite the benefits
of using logical deduction in planning, many of the above mentioned deductive
planning techniques are not getting as much attention as algorithms specifically
devised for planning problems. There are several reasons for this state of affairs:

– Many of the above approaches invent one-of-a-kind techniques that are suit-
able only for the particular problem at hand. For instance, the effects or
preconditions of actions are sometimes encoded indirectly in answer set pro-
gramming planners. This makes the encoding of planning problem difficult,
and thus reduces the generality of this technique.

– These works generally show how they can represent and encode classical
planning actions and rely on a theorem prover of some sort to find plans.
Therefore, the planning techniques embedded in such planners are typically
some of the simplest state space planning strategies (e.g. forward state space
search) and they have extremely large search space. Consequently, they can-
not exploit heuristics and techniques invented by different classical and neo-
classical planning technique to reduce the search space.

In this paper, we show that a general logical theory, called Transaction Logic
(or T R) [12–14], addresses the above mentioned issues and also provides multiple
advantages for specifying, generalizing, and solving planning problems. Transac-
tion Logic is an extension of classical logic with dedicated support for specifying
and reasoning about actions. To illustrate this point, [5] has shown how state
space planning techniques, such as STRIPS (also known as goal-stack state space
planning) and forward state space planning algorithms, can be naturally repre-
sented and improved upon using Transaction Logic. Since planning techniques
are cast here as purely logical problems in a suitable general logic, a number
of otherwise non-trivial further developments became low-hanging fruits and
were gotten almost for free. In the present paper, based on the aforesaid rep-
resentations of planning algorithms in Transaction Logic, we develop a simple
translator that maps STRIPS planning problems (specified in PDDL [1]) and
planning algorithms to Prolog programs. This technique makes many already
existing Prolog based planners [4][49][3][48] more efficient. We emphasize that
this paper, unlike [5], does not propose new planning algorithms in Transaction
Logic. Instead, we use the sequential subset of Transaction Logic (i.e., without
concurrent transactions) to represent the linear STRIPS planning algorithm [19],
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as suggested in [11]. A more computationally complex strategy was proposed in
[5]. It deals with non-linear STRIPS and Concurrent Transaction Logic, and it
was shown to be complete. The present paper, in contrast, just shows how plan-
ning algorithms written in Transaction Logic can be simply mapped into Prolog
rules.

The next section briefly characterizes a planning problem and overviews
Transaction Logic. Section 3 explains how we formally encode planning tech-
niques in T R. Section 4 also provides the results of our simple experiments to
illustrate the practical applications of this method. Section 5 describes the rela-
tion of this work to PDDL and other research on planning with logic. The last
section concludes our paper.

2 Characterization of a Planning Problem

In this section, we briefly remind the reader the basic concepts of logic and
formally define an extended STRIPS planning problem. Then we briefly overview
Transaction Logic (T R) [11].

2.1 STRIPS Planning Problem

In a STRIPS planning problem, actions update the state of a system (e.g.
Knowledge-Base): Facts may be inserted into or removed from the state as a
result of execution of an action. We assume denumerable sets of variables X ,
constants C, and disjoint sets of predicate symbols, extensional (Pext) and inten-
sional (Pint) ones. A term is a variable or constant. Extensional (resp. inten-
sional) Atoms have the form p(t1, ..., tn), where ti is a term and p ∈ Pext (resp.
p ∈ Pint). A ground atom is a variable free atom. A literal is either an atom or
a negated extensional atom, ¬p(t1, ..., tn). Note that negative intensional atoms
are not literals. A substitution θ is a set of expressions of the form X ←− c,
where X ∈ X and c ∈ C. Given a substitution θ, an atom aθ is obtained from
atom a by replacing its variables with constants according to θ.

Intensional predicate symbols are defined by rules. A rule r, shown as head(r)
← b1 ∧ · · · ∧ bn, consists of an intensional atom head(r) in the head and a
conditional body, a (possibly empty) conjunction of literals b1, . . . , bn, where
bi ∈ body(r). A ground instance of a rule, rθ, is any rule obtained from r by a
substitution of head(r) and body(r) with ground atoms head(r)θ and body(r)θ
respectively. Given a set of literals S and a ground rule rθ, the rule is true in
S if either head(r)θ ∈ S or body(r)θ �⊆ S. A (possibly non-ground) rule is true
in S if all of its ground instances are true in S. A fact is a ground extensional
atom that can be inserted or deleted by STRIPS actions. A set S of literals is
consistent if there is no atom, a, such that {a,¬a} ⊆ S.

Definition 1 (State). Given a set of rules R, a consistent set S of literals is
called a state if and only if
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1. For each fact a, either, a ∈ S, or ¬a ∈ S.
2. Every rule of R is true in S.

Definition 2 (STRIPS action). A STRIPS action α = 〈pα(X1, ...,Xn), P re
(α), E(α)〉 consists of an intensional atom pα(X1, ...,Xn) in which pα ∈ Pint is
a predicate that is reserved to represent the action α and can be used for no other
purpose, a set of literals Pre(α), called the precondition of α, and a consistent
set of extensional literals E(α), called the effect of α. The variables in Pre(α) and
E(α) must occur in {X1, ...,Xn}.

Note that the literals in Pre(α) can be both extensional and intensional, while
the literals in E(α) can be extensional only.

Definition 3 (Execution of a STRIPS action). A STRIPS action α is
executable in a state S if there is a substitution θ such that θ(Pre(α)) ⊆ S.
A result of the execution (with respect to θ) is the state S′ such that S′ =
(S \ ¬θ(E(α))) ∪ θ(E(α)), where ¬E = {¬�|� ∈ E}.

Note that S is well-defined since E(α) is consistent. Observe also that, if α has
variables, the result of an execution, S, may depend on the chosen substitution
θ.

Definition 4 (Planning problem). Given a set of rules R, a set of STRIPS
actions A, a set of literals G, called the goal, and an initial state S, a planning
solution (or simply a plan) for the planning Π = 〈R,A, G,S〉 is a sequence of
ground actions σ = α1, . . . , αn such that for each 1 ≤ i ≤ n;

– there is a substitution θi and a STRIPS action α′
i ∈ A such that α′

iθ = αi;
and

– there is a sequence of states S0,S1, . . . ,Sn such that
• S = S0 and G ⊆ Sn (i.e., G is satisfied in the final state);
• αi is executable in state Si−1 and the result of that execution is the state
Si.

2.2 Overview of Transaction Logic

To make this paper self-contained, we provide a brief introduction to the subset
of Transaction Logic (T R) [9,11–14] that are needed for the understanding of
this paper.

As an extension of first-order predicate calculus, T R is sharing most of its
syntax with the first-order predicate calculus’ syntax. One of the new connectives
that T R adds to the first-order predicate calculus is the serial conjunction ,
denoted ⊗. It is a binary associative, non-commutative connective. The formula
φ ⊗ ψ, showing a composite action, denotes an execution of φ followed by an
execution of ψ. When φ and ψ are regular first-order formulas, φ ⊗ ψ reduces
to the usual first-order conjunction, φ ∧ ψ. The logic also introduces other con-
nectives to support hypothetical reasoning, concurrent execution, etc., but these
are beyond the scope of this paper.
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To take the frame problem out of many considerations in T R, it has an extensi-
ble mechanism of elementary updates (see [10,11,13,14,42]). Due to the defini-
tion of STRIPS actions, we just need the following two types of elementary updates
(actions): +p(t1, . . . , tn) and −p(t1, . . . , tn), where p(t1, . . . , tn) denotes an exten-
sional atom. Given a state S and a ground elementary action +p(a1, . . . , an), an
execution of +p(a1, . . . , an) at state S deletes the literal ¬p(a1, . . . , an) and adds
the literal p(a1, . . . , an). Similarly, executing −p(a1, . . . , an) results in a state that
is exactly like S, but p(a1, . . . , an) is deleted and ¬p(a1, . . . , an) added. Appar-
ently, if p(a1, . . . , an) ∈ S, the action +p(a1, . . . , an) has no effect, and similarly
for −p(a1, . . . , an).

We can define a complex action using serial rule that is a statement of
the form

h ← b1 ⊗ b2 ⊗ . . . ⊗ bn. (1)

where h is an atomic formula denoting the complex action and b1, ..., bn are
literals or elementary actions. That means that h is a complex action and one
way to execute h is to execute b1 then b2, etc., and finally to execute bn. Note
that we have regular first-order as well as serial-Horn rules. For simplicity, we
assume that the sets of intensional predicates that can appear in the heads of
regular rules and those in the heads of serial rules are disjoint. Extensional atoms
and Intensional atoms compose state (see Definition 1) and will be collectively
called fluents. Note that a serial rule all of whose body literals are fluents is
essentially a regular rule, since all the ⊗-connectives can be replaced with ∧.
Therefore, one can view the regular rules as a special case of serial rules.

The following example illustrates the above concepts. All our examples use
the standard logic programming convention whereby lowercase symbols represent
constants and predicate symbols, while the uppercase symbols stand for variables
that are universally quantified outside of the rules. It is common practice to omit
such quantifiers.

move(X,Y ) ← (on(X,Z) ∧ clear(X)
∧ clear(Y ) ∧ ¬tooHeavy(X))⊗

−on(X,Z) ⊗ +on(X,Y )⊗
−clear(Y ).

tooHeavy(X) ← weight(X,W ) ∧ limit(L)∧
W < L.

? − move(blk1, blk15) ⊗ move(SomeBlk, blk1).

Here on, clear, tooHeavy, and weight are fluents and the rest of atoms represent
actions. The predicate tooHeavy is an intensional fluent, while on, clear, and
weight are extensional fluents. The actions +on(...), −clear(...), and −on(...)
are elementary and the intensional predicate move represents a complex action.
This example illustrates several features of Transaction Logic. The first rule is
a serial rule defining of a complex action of moving a block from one place to
another. The second rule defines the intensional fluent tooHeavy, which is used
in the definition of move (under the scope of default negation). As the second
rule does not include any action, it is a regular rule.
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The last statement above is a request to execute a composite action, which
is analogous to a query in logic programming. The request is to move block blk1
from its current position to the top of blk15 and then find some other block and
move it on top of blk1. Traditional logic programming offers no logical seman-
tics for updates, so if after placing blk1 on top of blk15 the second operation
(move(SomeBlk, blk1)) fails (say, all available blocks are too heavy), the effects
of the first operation will persist and the underlying database becomes corrupted.
In contrast, Transaction Logic gives update operators the logical semantics of an
atomic database transaction. This means that if any part of the transaction fails,
the effect is as if nothing was done at all. For example, if the second action in our
example fails, all actions are “backtracked over” and the underlying database
state remains unchanged.

T R’s semantics is given in purely model-theoretic terms and here we will
only give an informal overview. The truth of any action in T R is determined
over sequences of states—execution paths—which makes it possible to think
of truth assignments in T R’s models as executions. If an action, ψ, defined by a
set of serial rules, P, evaluates to true over a sequence of states D0, . . . ,Dn, we
say that it can execute at state D0 by passing through the states D1, ..., Dn−1,
ending in the final state Dn. This is captured by the notion of executional
entailment , which is written as follows:

P,D0 . . .Dn |= ψ (2)

Various inference systems for serial-Horn T R [11] are similar to the well-
known SLD resolution proof strategy for Horn clauses plus some T R-specific
inference rules and axioms. Given a set of serial rules, P, and a serial goal, ψ
(i.e., a formula that has the form of a body of a serial rule such as (1), these
inference systems prove statements of the form P,D · · · � ψ, called sequents. A
proof of a sequent of this form is interpreted as a proof that action ψ defined by
the rules in P can be successfully executed starting at state D.

An inference succeeds iff it finds an execution for the transaction ψ. The exe-
cution is a sequence of database states D1, . . . , Dn such that P,DD1 . . .Dn � ψ.
We will use the following inference system in our planning application. For sim-
plicity, we present only the version for ground facts and rules. The inference
rules can be read either top-to-bottom (if top is proved then bottom is proved)
or bottom-to-top (to prove bottom one needs to prove top).

Definition 5 (T R inference System). Let P be a set of rules (serial or reg-
ular) and D, D1, D2 denote states.

– Axiom: P,D · · · � (), where () is an empty clause (which is true at every
state).

– Inference Rules
1. Applying transaction definition: Suppose t ← body is a rule in P.

P,D · · · � body ⊗ rest

P,D · · · � t ⊗ rest
(3)
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2. Querying the database: If D |= t then

P,D · · · � rest

P,D · · · � t ⊗ rest
(4)

3. Performing elementary updates: If the elementary update t changes the
state D1 into the state D2 then

P,D2 · · · � rest

P,D1 · · · � t ⊗ rest
(5)

Aproof of a sequent, seqn, is a series of sequents, seq1, seq2, . . . , seqn−1, seqn,
where each seqi is either an axiom-sequent or is derived from earlier sequents by one
of the above inference rules. This inference system has been proven to be sound and
completewith respect to themodel theory ofT R [11].Thismeans that ifφ is a serial
goal, the executional entailmentP,DD1, . . . ,Dn |= φholds if and only if there is a
proof of P,D · · · � φ over the execution pathD,D1, . . . ,Dn, i.e.,D1, . . . ,Dn is the
sequence of intermediate states that appear in the proof andD is the initial state. In
this case,wewill also say that suchaproof proves the statementP,DD1 . . .Dn � φ.

3 T R Planners

The informal encoding of STRIPS and forward state space planning as sets of
T R rules first appeared in an unpublished report [11]. To use T R as a planning
formalism, we formally show how a planning problem specification can be trans-
formed into a set of T R rules that represent STRIPS and Forward State Space
planning techniques. From now on, we call Forward State Space planning tech-
nique naive planning, as it is one of the simplest possible state space planning
techniques. We also show that T R inference system uses those sets of T R rules
to construct a plan. To highlight the correspondence between these sets of T R
rules and original STRIPS and naive planning techniques, we first briefly review
these planning techniques in terms of imperative pseudo codes.

The original STRIPS planning algorithm, proposed by [19], maintains a stack
of goals and tries to achieve the goals from the top of the stack until the stack
gets empty. We can simply implement this technique using recursive functions
as depicted in Figure 1. Naive planning algorithm is based on depth first search.
As illustrated in Figure 2, it starts from initial state, iteratively chooses actions,
and moves to a new state until eventually finds a goal state.

The following definitions encode the aforesaid planning techniques as a set
of T R rules.

Definition 6 (Enforcement operator). Let G be a set of extensional literals.
We define Enf(G) = {+p|p ∈ G} ∪ {−p|¬p ∈ G}. In other words, Enf(G) is the
set of elementary updates that makes G true.

Next we introduce a natural correspondence between STRIPS actions and
T R rules.
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function STRIPS(R,A,S, G)
σ ← []
loop

if G ⊆ S then
return σ

else
A ← {αθ|α ∈ A, θ(E(α)) ⊆ G}
if A = ∅ then

reutrn failure
else

Choose non-deterministically α ∈ A
σ′ ← STRIPS(R,A,S, P re(α))
if σ′ = failure then

reutrn failure
else

S ← exec(S, σ′)
S ← (S \ ¬θ(E(α))) ∪ θ(E(α))
σ ← [σ|σ′|αθ]

end if
end if

end if
end loop
return σ

end function

Fig. 1. STRIPS Planning

function NAIVE(R,A,S0, G)
S ← S0

σ ← []
loop

if G ⊆ S then
return σ

else
A ← {αθ|α ∈ A, θ(Pre(α)) ⊆ S}
if A = ∅ then

reutrn failure
else

Choose non-deterministically α ∈ A
S ← (S \ ¬θ(E(α))) ∪ θ(E(α))
σ ← [σ|αθ]

end if
end if

end loop
return σ

end function

Fig. 2. Naive Planning
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Definition 7 (Actions as T R rules). Let α = 〈pα(X), P re(α), E(α)〉 be a
STRIPS action. We define its corresponding T R rule, tr(α), to be a rule of
the form

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u). (6)

Note that in (6) the actual order of action execution in the last component,
⊗u∈Enf(E(α))u, is immaterial, since all such executions happen to lead to the
same state.

We now give a set of T R clauses that simulates naive planning for STRIPS
planning problems [19]. For convenience, we use â⊗b as a shorthand for a ⊗
b ∨ b ⊗ a. This connective is called the shuffle operator in [11]. We define it
to be commutative and associative and thus extend it to arbitrary number of
operands.

Definition 8 (Näıve planning rules). Given a STRIPS planning problem
Π = 〈R,A, G,S〉 (see Definition 4), we define a set of T R rules, P(Π), which
simulate naive planning technique to provide a planning solution to the planning
problem. P(Π) has two parts, Pgeneral, PA, described below.

– The Pgeneral part: contains a couple of rules as follows;

plan ← .
plan ← execute action ⊗ plan.

(7)

These rules construct a sequence of actions and bind them to the plan.
– The Pactions part: for each α ∈ A, Pactions has a couple of rules as follows;

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u).
execute action ← pα(X).

(8)

This is the T R rule that corresponds to the action α, introduced in Defini-
tion 7 and generally links an action to a plan.

Given a STRIPS planning problem Π = 〈R,A, G,S〉, Definition 8 gives a set
of T R rules that specify a naive planning strategy for that problem. To find a
solution for that planning problem, one simply needs to place the request

? − plan ⊗ (∧gi∈Ggi). (9)

and use the T R’s inference system to find a proof. As mentioned before, a
solution plan for a STRIPS planning problem is a sequence of actions leading
to a state that satisfies the planning goal. Such a sequence can be extracted
by picking out the atoms of the form pα from a successful derivation branch
generated by the T R inference system. Since each pα uniquely corresponds to
a STRIPS action, this provides us with the requisite sequence of actions that
constitutes a plan.

Suppose seq0, . . . , seqm is a deduction by the T R inference system. Let
i1, . . . , in be exactly those indexes in that deduction where the inference rule
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(3) was applied to some sequent using a rule of the form tr(αir ) introduced in
Definition 7. We will call αi1 , . . . , αin the pivoting sequence of actions. The
corresponding pivoting sequence of states Di1 , . . . ,Din is a sequence where
each Dir , 1 ≤ r ≤ n, is the state at which αir is applied. One can show that the
pivoting sequence of actions generated from a deduction of (9) is a solution to
the planning problem. Completeness of a planning strategy means that, for any
STRIPS planning problem, if there is a solution, the planner will find at least
one plan. Based on the completeness of T R’s inference system, one can show
that the planner in Definition 8 is complete.

Definition 9 (STRIPS planning rules). Let Π = 〈R,A, G,S〉 be a STRIPS
planning problem (see Definition 4). We define a set of T R rules, P(Π), which
simulate STRIPS planning technique to provide a planning solution to the plan-
ning problem. P(Π) has three disjoint parts, PR, PA, and PG, described below.

– The PR part: for each rule p(X) ← p1(X1) ∧ · · · ∧ pk(Xn) in R, PR has a
rule of the form

achieve p(X) ← ̂⊗n
i=1achieve pi(Xi). (10)

Rule (10) is an extension to the classical STRIPS planning algorithm. It
captures intensional predicates and ramification of actions, and it is the only
major aspect of our T R-based rendering of STRIPS that was not present in
the original in one way or another.

– The part PA = Pactions ∪ Patoms ∪ Pachieves is constructed out of the actions
in A as follows:

• Pactions: for each α ∈ A, Pactions has a rule of the form

pα(X) ← (∧�∈Pre(α)�) ⊗ (⊗u∈Enf(E(α))u). (11)

This is the T R rule that corresponds to the action α, introduced in Def-
inition 7.

• Patoms = Pachieved ∪ Penforced has two disjoint parts as follows:
– Pachieved: for each extensional predicate p ∈ Pext, Pachieved has the

rules
achieve p(X) ← p(X).
achieve not p(X) ← ¬p(X).

(12)

These rules say that if an extensional literal is true in a state then
that literal has already been achieved as a goal.

– Penforced: for each action α = 〈pα(X), P re(α), E(α)〉 in A and each
e(Y ) ∈ E(α), Penforced has the following rule:

achieve e(Y ) ← ¬e(Y ) ⊗ execute pα(X). (13)

This rule says that one way to achieve a goal that occurs in the effects
of an action is to execute that action.
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• Pachieves: for each action α = 〈pα(X), P re(α), E(α)〉 in A, Pachieves has
the following rule:

execute pα(X) ← (̂⊗�∈Pre(α)achieve �) ⊗ pα(X). (14)

This means that to execute an action, one must first achieve the precon-
dition of the action and then perform the state changes prescribed by the
action.

– PG: Let G = {g1, ..., gk}. Then PG has a rule of the form:

achieveG ← (̂⊗k

gi=1achieve gi) ⊗ (∧k
i=1gi). (15)

Similar to naive planning, given a STRIPS planning problem Π = 〈R,A, G,S〉,
Definition 9 gives a set of T R rules. T R’s inference system can use those rules to
simulate STRIPS planning strategy for that problem. If one places the request

? − achieveG . (16)

the T R’s inference system will find a proof. It can be shown that the pivot-
ing sequence of actions generated from this proof is a solution to the planning
problem. One can also show that the linear planner provided by Definition 9 is
complete under the set of goal-serializable planning problems. We do not fur-
ther discuss these issues in this paper due to space limitations. One can also
show that with the help of existing tabling methods for T R’s inference systems,
STRIPS planner always terminates.

Definitions 8 and 9 are transforms that convert the specification of planning
problems to T R rules. The similarity of T R’s inference system in Definition 5
and well-known SLD resolution algorithm shows that one can use a similar app-
roach to encode planning algorithms in logic programming frameworks. Based
on Definitions 8 and 9, we can build a simple translator that constructs T R
rules out of planning problem specifications in PDDL.

4 Experiments

In this section we briefly report on our experiments that compare naive and
STRIPS planning. The test environment was a tabled T R interpreter [20] imple-
mented in XSB and running on Intel R©Xeon(R) CPU E5-1650 0 @ 3.20GHz
12 CPU, 64GB memory running on Mint Linux 14 64-bit. We use our trans-
lator to build T R rules out of PDDL files. We use the generated T R rules
and our interpreter to solve our planning problems, which are test cases taken
from [1]. We do not explain our test cases as they are well explained at http://
ipc.icaps-conference.org/ . Our test cases also can be found at http:// ewl.cewit.
stonybrook.edu/ planning/ along with our PDDL2TR translator, T R interpreter,
and all the necessary items needed to reproduce the results. The tests highlight
how the performance of the two planning techniques varies depending on the
domain of application.

http://ipc.icaps-conference.org/
http://ipc.icaps-conference.org/
http://ewl.cewit.stonybrook.edu/planning/
http://ewl.cewit.stonybrook.edu/planning/
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Table 1. Results for the Elevator test case (4 actions)

Test Case Naive STRIPS
CPU Mem CPU Mem

s1-0 0 19 0 17

s2-0 0.004 277 0 96

s3-0 0.092 3636 0.02 853

s4-0 1.352 54628 0.1 4152

s5-0 24.213 867806 0.348 14148

s6-0 463.908 13440627 1.032 44681

s7-0 1000> N/A 3.14 144060

s8-0 1000> N/A 9.564 430435

s9-0 1000> N/A 27.425 1212350

s10-0 1000> N/A 74.24 3115811

s11-0 1000> N/A 217.545 9074006

s12-0 1000> N/A 546.606 21151356

Table 2. Results for the Travelling and Purchase Problem test case (3 actions)

Test Case Naive STRIPS
CPU Mem CPU Mem

p01 0 22 0.004 121

p02 0.004 125 0.004 215

p03 0.024 664 0.016 878

p04 0.124 4040 0.056 2067

p05 41.43 2350601 0.592 19371

The main difference between the two test cases is that the Healthcare test
case has many more actions and intensional rules than the movie store case. As
seen from Tables 1 and 2, for both of these test cases, STRIPS planning gets to
about two orders of magnitude more efficient both in time and space.1 However,
STRIPS is not able to solve problems that are not goal serializable.

We do not compare and analyse the performances of studied planning tech-
niques in this paper as this study would be beyond the scope of this paper.
The aim of our experiments is to provide show the differences between planning
techniques in different application domains and to illustrate the ability of T R to
not only provide a theoretical framework for analysis of planning techniques, but
also to implement such techniques in a declarative way. Moreover, our experi-
ments also show that T R simplifies and eases the implementation of complicated
planning techniques, such as STRIPS.

5 Compatibility with PDDL and Related Work

The representation of planning algorithms in T R enables us to develop a simple
translator that constructs T R rules out of planning problems and algorithms.
1 Time is measured in seconds and memory in kilobytes.
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PDDL is a standard language intended to express planning problems [28] in
AIPS planning competitions [1]. Planning problems from AIPS planning compe-
titions are usually considered as standard benchmarks for planners. Therefore,
providing an automated method of translating PDDL planning domains shows
the generality of our approach.

A planning problem consists of domain predicates, possible actions, the struc-
ture of compound actions, and the effects of actions. To express a planning
problem, PDDL supports several syntactic features such as basic STRIPS-style
actions, conditional effects, universal quantifications in the effects, ADL features
[41], domain axioms, safety constraints, hierarchical actions, and more. The for-
malism in Section 2 also supports the basic STRIPS-style actions and domain
axioms. Clearly, it is simple to extend this formalism to include other features.
For instance, it is easy to show that T R is can represent most of the features
provided by different extensions of PDDL. The following list briefly shows how
T R can express some of these main features.

– ADL features [28,37]: in PDDL, actions can have a first order formula in
their precondition. The effect of an action can also include universal quan-
tifications over fluents. T R can use Lloyd-Topor transformation to support
first order formula (including universal and existential quantifiers and dis-
junction) in the precondition of actions. It also can simulate universal quan-
tifications over fluents in the effects of actions.

– Numerical extensions [22]: in PDDL, one can associate actions, objects, and
plans with numeric costs and use these costs in numerical expressions to com-
pute different planning metrics. This syntactical feature also needs PDDL
to include numerical operators. Since T R can express and encode numerical
operators and expressions as a part of its model theory, it can easily handle
this feature.

– Temporal extensions and durative actions [22,25,38,43]: PDDL is able to
express discretised and continuous actions [22]. T R is also able to represent
discretised and continuous actions because the notion of time can be encoded
in T R’s transactions.

– Plan and solution preferences and constraints [27,31]: In a planning problem,
it is possible that only a subset of goals can be achieved because of the
conflict between goals. In this situation, the ability to assign importance
and preferences to different goals is essential. PDDL provides such ability to
express such preferences among goals and planning solutions. T R augmented
with defeasible reasoning [21] also can easily provide this feature.

Answer set programming is one of the leading logic-based planning tech-
niques [36][24][44]. However, encoding a planning problem in answer set pro-
gramming requires the addition of inertia axioms to solve frame problem [23].
Clearly, T R-based planning does not face this problem. Our PDDL2TR trans-
lator also shows that T R-based planning is general enough to automatically
encode planning problems. Since T R’s model theory also avoids the frame prob-
lem and no inertia axioms are required in T R’s planning rules. Picat is another
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logic programming framework that relies on tabling. It has been shown to be
an efficient logic-based system for solving planning problems [4][49][3][48]. How-
ever, the techniques employed by Picat are orthogonal to the results presented
here and, we believe, this work provides a natural direction for incorporation of
complex planning algorithms, like STRIPS, into Picat.

6 Conclusion

This paper has demonstrated that Transaction Logic can bridge the gap between
AI planning and logic programming. Specially, we claim that T R is a general
framework for analysis and implementation in the area of planning, which does
not depend on any particular planning strategy.

As an illustration, we have shown that different planning strategies, such
as STRIPS, not only can be naturally represented in T R, but that also such
representations can be used to automatically translate planning problems and
algorithms into declarative programming languages (e.g. Prolog). We have also
shown that the use of this powerful logic opens up new possibilities for improve-
ment of existing planning methods in logic programming. For instance, we have
shown that the sophisticated STRIPS algorithm can be cast as a set of rules in
T R, which shows the ability of rule based systems to represent such planning
techniques.

These non-trivial insights were acquired merely due to the use of T R and not
much else. The same technique can be used to cast even more advanced strate-
gies such as ABSTRIPS [40], and HTN [39] as T R rules, and those techniques
can straightforwardly be used to solve planning problems in logic programming
frameworks.

There are several promising directions to continue this work. One is to investi-
gate other planning strategies and, hopefully, accrue similar benefits. Other pos-
sible directions include heuristics and plans with loops [33,34,46]. For instance
loops are easily representable using recursive actions in T R.
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Abstract. Linear logic programs are challenging to implement efficiently
because facts are asserted and retracted frequently. Implementation is
made more difficult with the introduction of useful features such as rule
priorities, which are used to specify the order of rule inference, and com-
prehensions or aggregates, which are mechanisms that make data itera-
tion and gathering more intuitive. In this paper, we describe a compilation
scheme for transforming linear logic programs enhanced with those fea-
tures into efficient C++ code. Our experimental results show that com-
piled logic programs are less than one order of magnitude slower than
hand-written C programs and much faster than interpreted languages
such as Python.

1 Introduction

Linear Meld (LM) is a linear logic programming language aimed for the par-
allel implementation of graph-based algorithms [2]. LM is a high-level declar-
ative language that offers a concise and expressive framework to define graph
based algorithms that are provably correct. LM has been applied to a wide
range of problems and machine learning algorithms, including: belief propaga-
tion [6], belief propagation with residual splash [6], PageRank, graph coloring,
N-Queens, shortest path, diameter estimation, map reduce, quick-sort, neural
network training, minimax, and many others.

Like Datalog, LM is a forward-chaining logic programming language since
computation is driven by a set of inference rules that are used to update a
database of logical facts. In Datalog, programs are monotonic and therefore the
database grows in size as more facts are inferred from the logical rules. In LM,
logical facts are linear and thus can be retracted when a rule is inferred. The use
of linear facts greatly increases the power of the language but also increases the
complexity of the implementation since database facts are retracted often.

In previous work [3], we have described the implementation of the LM virtual
machine, including its data structures and how programs are parallelized. In
this paper, we describe our compilation strategy and how we have refitted the
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runtime system to allow stand-alone compilation of programs by transforming
logical rules into C++ code.

Our goal was to reduce the overhead of executing interpreted byte code and
better understand the effectiveness and limitations of the compilation scheme.
We present an algorithm that compiles logical rules, including comprehensions
and aggregates, into efficient iterator-based C++ code. The compiler supports
rule priorities, allowing the programmer to order rules based on their priority
of inference. To the best of our knowledge, this is the first available compilation
strategy for a linear logic language that supports these 3 features combined.
The contributions of this paper are then three-fold: (1) a novel algorithm to
compile prioritized linear logic rules with aggregates and comprehensions; (2) the
interplay between the database layout and compiled code; and (3) comparison
and analysis of our compilation with hand-written C programs and interpreted
code. Experimental results show that our compiled programs are only 1 to 5
times slower than hand-written C programs.

The remainder of the paper is organized as follows. First, we briefly introduce
the LM language. Next, we present an overview of the runtime support available
to compiled rules and we discuss our contributions which include the algorithm
for compiling rules into efficient iterator-based C++ code, and related work. We
then present experimental results comparing our compiled programs with the
old implementation and with hand-written C programs. The paper finishes with
some conclusions.

2 Linear Meld

LM is a forward-chaining linear logic programming language that allows logical
facts to be asserted and retracted in a structured fashion. A LM program can
be seen as a graph of nodes, where each node contains a database of facts. The
program is written as a set of inference rules that apply over the facts of a node.

LM rules have the form a(X), b(Y) -o c(X, Y) and can be read as follows:
if fact a(X) and fact b(Y) exist in the database then fact c(X, Y) is added to
the database. The expression a(X), b(Y) is called the body of the rule and
c(X, Y) is called the head of the rule. A fact is a predicate, e.g., a, b or c, and
its associated tuple of values, e.g., the concrete values of X and Y. Since LM
uses linear logic as its foundation, we distinguish between linear and persistent
facts. Linear facts are consumed (deleted) during the process of deriving a rule,
while persistent facts are not. Program execution starts by adding the initial
facts (called the axioms) to the database. Next, rules are recursively applied and
the database is updated by adding new facts or deleting facts used during rule
derivation. When no more rules are applicable, the program terminates. Rules
have a defined priority (their position in the source file) and highest priority
rules are fired first. If a new fact is derived and there is a set of applicable rules
to be fired, the higher priority rule is selected before the others.

To make these ideas concrete, Fig. 1 presents a simple example for the single
source shortest path (SSSP) program. The program computes the shortest dis-
tance from node @1 to all other nodes in the graph. The SSSP program starts
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1 type route edge(node, node, int).
2 type linear shortest(node, int, list int).
3 type linear relax(node, int, list int).
4

5 !edge(@1, @2, 3). !edge(@1, @3, 1).
6 !edge(@3, @2, 1). !edge(@3, @4, 5).
7 !edge(@2, @4, 1).
8 shortest(A, +00, []).
9 relax(@1, 0, [@1]).

10

11 shortest(A, D1, P1), D1 > D2, relax(A, D2, P2)
12 -o shortest(A, D2, P2),
13 {B, W | !edge(A, B, W) | relax(B, D2 + W, P2 ++ [B])}.
14

15 shortest(A, D1, P1), D1 <= D2, relax(A, D2, P2)
16 -o shortest(A, D1, P1).

Fig. 1. Single Source Shortest Path program code

(lines 1-3) with the declaration of the predicates. Predicates specify the facts
used in the program. The first predicate, edge, is a persistent predicate that
describes the relationship between the nodes of the graph, where the third argu-
ment represents the weight of the edge (the route modifier informs the compiler
that the edge predicate determines the structure of the graph). The predicates
shortest and relax are specified as linear facts and thus are deleted when
deriving new facts. In the example, every node has a shortest fact that can be
improved with new relax facts. Lines 5-9 declare the axioms of the program:
edge facts describe the graph; shortest(A, +00, []) is the initial shortest dis-
tance (infinity) for all nodes; and relax(@1, 0, [@1]) starts the algorithm by
setting the distance from @1 to @1 to be 0.

The first rule of the program (lines 11-13) reads as follows: if the current
shortest path P1 with distance D1 is larger than a new relax path with distance
D2, then replace the current shortest path with D2, delete the new relax and
propagate new paths to the neighbors (line 13) using a comprehension. The
comprehension iterates over the edges of node A and derives a new relax fact
for each node B with the distance D2 + W, where W is the weight of the edge.

The second rule of the program (lines 15-16) is read as follows: if the current
shortest distance D1 is shorter than a new relax distance D2, then delete the
new relax fact and keep the current shortest path. Figure 2 shows a graphical
representation of the application of the SSSP program rules.

2.1 LM Syntax

The abstract syntax for LM programs is presented in Fig. 3. A LM rule is written
as BE � HE where BE is the body and HE is the head of the rule. The body
may contain linear (L) and persistent (P ) fact expressions and constraints (C).
Fact expressions instantiate facts from the database and contain variables as
arguments that may or may not be bound to concrete values or to other variables.
Variables in the body of the rule can also be used in the head when instantiating
facts. Constraints are essential for matching rules since they represent database
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(a) (b)

(c)

Fig. 2. Graphical representation of the SSSP program: (a) represents the program
after propagating the initial distance at node @1, followed by (b) where the first rule
is applied in node @2 and by (c) that represents the final state of the program, where
all the shortest paths have been computed.

Program Prog ::= Σ, D
List Of Rules Σ ::= · | Σ, R
Database D ::= Γ ; Δ
Rule R ::= BE � HE | ∀x.R
Body Expression BE ::= L | P | C | BE, BE | 1
Head Expression HE ::= L | P | HE, HE | EE | CE | AE | 1
Linear Fact L ::= l(x̂)
Persistent Fact P ::= !p(x̂)
Constraint C ::= c(x̂)
Selector Operation S ::= min | max | random
Comprehension CE ::= { x̂; SB; SH }
Aggregate AE ::= [ A ⇒ y; x̂; SB; SH1; SH2 ]
Aggregate Operation A ::= min | max | sum | count | collect
Sub-Body SB ::= L | P | SB, SB | ∃x.SB
Sub-Head SH ::= L | P | SH, SH | 1
Known Linear Facts Δ ::= · | Δ, l(t̂)
Known Persistent Facts Γ ::= · | Γ, !p(t̂)

Fig. 3. Abstract syntax of LM

joins and database selects. While selects filter out possible combinations from the
database, body constraints (C) further restrict combinations by acting as guards
using small variables from fact expressions. Constraints use a small functional
language that includes mathematical operations, boolean operations, external
functions and literal values.
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The head of a rule, HE, contains linear (L) and persistent (P ) fact templates
which are uninstantiated facts and will derive new facts. The head can also have
comprehensions (CE) and aggregates (AE). All those expressions may use all
the variables instantiated in the body.

Comprehensions are similar to the functional programming construct of the
same name. Comprehensions are sub-rules that are applied for all possible com-
binations. In a comprehension { x̂; SB; SH }1, x̂ is a list of variables, SB is
the body of the comprehension and SH is the head. The body SB is used to
generate all possible combinations for the head SH, according to the facts in
the database. An example was shown in Fig. 1 (line 13), where !edge(A, B, W)
facts are iterated over in order to derive relax(A, D2 + W, P2 ++ [B]) facts
for each combination.

Aggregates build on top of comprehensions and allow the capture of values
that appear in each combination of the sub-rules. This list of values is then
combined using one operator into a single value and then used to derive a set of
fact expressions. In the abstract syntax [ A ⇒ y; x̂; SB; SH1; SH2 ], A is the
aggregate operation, x̂ is the list of variables introduced in BE and SH1 and y is
the variable in the body SB that represents the values to be aggregated using A.
Like comprehensions, we use x̂ to try all the combinations of SB, but, in addition
to deriving SH1 for each combination, we aggregate the values represented by
y into a new y variable that is used inside the head SH2. LM provides several
aggregate operations, including the min (minimum value), max (maximum value),
sum (add all numbers), count (count combinations) and collect (collect items
into a list). Consider, for example, the following rule:

const P = ... // number of nodes
const damp = ... // probability of random jump to another page (for PageRank computation)

update(A), pagerank(A, OldRank)
-o [sum => V | B | neighbor-pagerank(A, B, V) | neighbor-pagerank(A, B, V) |

pagerank(A, damp/P + (1.0 - damp) * V)].

The rule uses an aggregate to accumulate the sum of the neighbor’s PageRank
into a single value V. This aggregate value is then assigned to a new pagerank fact
via the expression damp/P + (1.0 - damp)*V, where V is the result of adding
all the V values in neighbor-pagerank(A, B, V) facts.

3 Supporting Runtime and Database Data Structures

In this section, we review the supporting runtime that is used by the compiler.
We focus mostly on the structure of the nodes since inference rules are compiled
from the point of view of the node data structure.

Figure 4 presents the layout of the node data structures. Each node of the
graph stores 4 main data structures: (1) the rule matching engine; (2) a fact
buffer for storing incoming and temporary facts; (3) the database of linear facts;
and (4) the database of persistent facts.
1 We substitute ; for | in the abstract syntax to avoid confusion with the grammar

choice operator.
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Fig. 4. Node data structures

The rule engine maintains a sim-
plified view of the two fact databases
and efficiently decides which rules
need to be executed. For instance, if
a rule r needs facts a and b to be
applied and the database already con-
tains a facts, once a b fact is derived,
the rule engine schedules r to be exe-
cuted. The compiler is responsible for
the code that is executed when a rule
is scheduled. A compiled rule contains
instructions to search and match facts
from the database and to derive new
facts when the body of the rule is
matched.

In this context, the organization
of the database structures is critical
because linear facts can be retracted
and asserted frequently. This means that the database needs to allow fast inser-
tions and deletions but also needs to have reasonably fast mechanisms for lookup.
The database of facts is partitioned by predicate, therefore, each predicate can
have its own data structure depending on the patterns of access for that partic-
ular predicate. Linear facts are stored using the following data structures:

– Doubly-Linked List Data Structures. Each linear fact is a node of the linked
list. Allows constant O(1) insertion and deletion of facts given the pointer
of the target node. Although lookup operations take linear time, this is not
critical since most predicates tend to have a small number of facts.

– Hash Table Data Structures. For predicates with many facts we use hash
tables. Hash tables are efficient for repetitive lookup operations using a spe-
cific argument (i.e., searching for facts with a concrete value) and build
upon lists by hashing facts using a specific argument and then using sep-
arate chaining with doubly-linked lists for collision resolution. Hash tables
are, on average, O(1) for insertion, deletion and lookup, however they require
more memory.

For persistent tuples, we use Trie Data Structures, which are trees where
facts are indexed by a common prefix. Since persistent facts are never deleted,
it’s not expensive to index facts by a common prefix, which also tends to save
memory in the long run.

4 Compiling Rules

In this section, we present the main algorithm of the compiler, that turns infer-
ence rules into C++ code, and we discuss the key optimizations for efficient code
execution.
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4.1 Constraints

After an inference rule is compiled, it must respect the fact constraints (facts
must exist in the database) and the join constraints that can be represented by
variable constraints and/or boolean expressions. For instance, consider again the
second rule of the SSSP program presented in Fig. 1:

shortest(A, D1, P1), D1 <= D2, relax(A, D2, P2)
-o shortest(A, D1, P1).

The fact constraints include the facts required to trigger the rule, namely
shortest(A, D1, P1) and relax(A, D2, P2), and the join constraints include
the expression D1 <= D2. However, rules may also have other less obvious join
constraints, such as variable constraints, as in the following rule:

new-neighbor-pagerank(A, B, New),
neighbor-pagerank(A, B, Old)

-o neighbor-pagerank(A, B, New).

where variable B must have the same value in both body facts2.

4.2 Iterators

The data structures for facts presented in Section 3 support the iterator pattern.
For linked lists, the iterator goes through every fact in the list while the hash
table iterator can either iterate through the whole table or iterate through a
single bucket. A bucket iterator is in fact a linked list iterator that starts from a
given argument. For tries, while the default iterator goes through every fact in
the trie, it can be customized with a matching specification in order to reduce
search. A matching specification includes argument assignments (e.g., argument
i = V , where V is a concrete value).

Iterators are heavily used in the compiled code. For instance, the second rule
of the SSSP program presented in Fig. 1 is compiled as follows:

1 for(auto it1(list("shortest").begin()); it1 != list("shortest").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("relax").begin()); it2 != list("relax").end(); ) {
4 fact *f2(*it2);
5 if(f1->get_int(1) <= f2->get_int(1)) { // D1 <= D2
6 fact *new_shortest(new fact("shortest"));
7 new_shortest->set_int(1, f1->get_int(1));
8 new_shortest->set_list(2, f1->get_list(2));
9 // new fact was derived

10 list("shortest").push_back(new_shortest);
11 // deleting facts
12 it1 = list("shortest").erase(it1); // remove from list
13 it2 = list("relax").erase(it2);
14 return;
15 }
16 ++it2;
17 }
18 ++it1;
19 }

2 Rule taken from an asynchronous PageRank program.
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The compilation algorithm iterates through the fact expressions in the body
of the rule and creates nested loops to try all the possible combinations of facts.
For this rule, all pairs of shortest and relax facts must be matched until the
constraint D1 <= D2 is true. First, an iterator for shortest is created that will
loop through all shortest facts in the list. Inside the loop, a nested iterator
is created for predicate relax. This inner loop includes a check for the D1 <=
D2 constraint. If the constraint fails, another relax fact is then attempted by
incrementing it2. Likewise, if the current f1 fact fails for all f2 facts, then it1 is
incremented in order to try the next shortest fact. Otherwise, if the constraint
succeeds then the rule matches and a new shortest fact is derived. Additionally,
the two used linear facts are retracted by erasing the iterators from the linked
lists. Note that after the rule is derived, the code must return since there is
a higher priority rule that may be triggered with the new shortest fact (see
Fig. 2). This enforces the priority semantics of the language.

Figure 5 presents the algorithm for compiling rules into C++ code. First, we
split the body of the rule into fact expressions and constraints. Fact expressions
map directly to iterators while fact constraints map to if expressions. A possible
compilation strategy is to first compile all the fact expressions and then compile
the constraints. However, this may require unneeded database lookups since
some constraints may fail early. Therefore, our compiler introduces constraints
as soon as all the variables in the constraint are all included in the already
compiled fact expressions. The order in which fact expressions are selected for
compilation does not interfer with the correctness of the compiled code, thus our
compiler selects the fact expressions (RemoveBestFactExpr) by their potential
to activate constraints, therefore avoiding undesirable database lookups. If two
fact expressions have the same number of new constraints, then the compiler
always picks the persistent fact expression since persistent facts are not deleted.

Derivation of new facts belonging to the local node implies adding the new
fact to the local node data structure. Facts that belong to other nodes are sent
using an appropriate runtime API.

4.3 Persistence Checking

Not all linear facts need to be deleted. For instance, in the compiled rule above,
the fact shortest(A, D1, P1) is re-derived in the head. Our compiler is able
to turn linear loops into persistent loops for linear facts that are retracted and
then asserted. The rule is then compiled as follows:
1 for(auto it1(list("shortest").begin()); it1 != list("shortest").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("relax").begin()); it2 != list("relax").end(); ) {
4 fact *f2(*it2);
5 if(f1->get_int(1) <= f2->get_int(1)) {
6 it2 = list("relax").erase(it2);
7 goto next;
8 }
9 ++it2;

10 next: continue;
11 }
12 ++it1;
13 }
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Data: Rule R1, Rules
Result: Compiled Code
FactExprs ←− FactExprsFromRule(R1);
Constraints ←− ConstraintsFromRule(R1);
Code ←− CreateFunctionForRule();
Iterators ←− [];
CompiledFacts = [];
while FactExprs not empty do

Fact ←− RemoveBestFactExpr(FactExprs);
CompiledFacts.push(Fact);
Iterator ←− Code.InsertIterator(Fact);
Iterators.push(Iterator);
/* Select constraints that are covered by CompiledFacts. */

NextConstraints ←− RemoveConstraints(Constraints, CompiledFacts);
Code.InsertConstraints(NextConstraints);

end
HeadFacts = HeadTemplatesFromRule(R1);
while HeadFacts not empty do

Fact ←− RemoveFact(HeadFacts);
Code.InsertDerivation(Fact);

end
for Iterator ∈ Iterators do

if IsLinear(Iterator) then
Code.InsertRemove(Iterator);

end

end
/* Enforce rule priorities. */

if FactsDerivedUsedBefore(Head, Program, R1) then
Code.InsertReturn();

else
Code.InsertGoto(FirstLinear(Iterators));

end
return Code

Fig. 5. Compiling LM rules into C++ code

In this new version of the code, only the relax facts are deleted, while the
shortest facts remain untouched. In the SSSP program, each node has one
shortest fact and this compiled code simply filters out the relax facts with
the distances that are equal or greater than the current best distance. Note that
now we have a goto statement (line 7) that is executed when the rule is fired. In
this case, since no new shortest fact was derived, we avoid returning to enforce
rule priorities and continue to try to fire the rule as many times as possible.

All the rule combinations are attempted in cases where a rule does not derive
any facts or the facts derived do not appear before the rule, that is, the new facts
are only used in lower priority rules. This is specified in the final if statement in
Fig. 5. If the rule does not return, then we always jump to the first loop that
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uses linear facts. We must jump to the first linear loop because we cannot use
the next fact from the deepest loop since we may have constraints between the
first linear loop and the deepest loop that were previously validated using facts
that were deleted in the meantime.

4.4 Updating Facts

Many inference rules retract and then derive the same predicate but with dif-
ferent arguments. The compiler recognizes those cases and instead of retracting
the fact from its linked list or hash table, it updates the fact in-place. As an
example, consider the following rule:

new-neighbor-pagerank(A, B, New),
neighbor-pagerank(A, B, Old)

-o neighbor-pagerank(A, B, New).

Assuming that neighbor-pagerank is stored in a hash table and indexed by
the second argument, the code for the rule above is as follows:

1 for(auto it1(list("new-neighbor-pagerank").begin()); it1 !=
2 list("new-neighbor-pagerank").end(); )
3 {
4 fact *f1(*it1);
5 // hash table for neighbor-pagerank is indexed by the second argument therefore
6 // we search for the bucket using the second argument of new-neighbor-pagerank
7 hash_bucket bucket(hash_table("neighbor-pagerank").find(f1->get_node(1));
8 for(auto it2(bucket.begin()); it2 != bucket.end(); ) {
9 fact *f2(*it2);

10 if(f1->get_node(1) == f2->get_node(1)) {
11 f2->set_float(2, f1->get_float(2)); // update neighbor-pagerank
12 it1 = list("new-neighbor-rank").erase(it1);
13 goto next;
14 }
15 ++it2;
16 }
17 ++it1;
18 next: continue;
19 }

Note that neighbor-pagerank is updated using set float. The rule also
does not return since this is the highest priority rule. If there was a higher
priority rule using neighbor-pagerank, then the code would have to return
since an updated fact represents a new fact.

4.5 Enforcing Linearity

We have already introduced the goto statement as a way to avoid reusing
retracted linear facts. However, this is not enough in order to enforce linear-
ity of facts. Consider the following inference rule:

add(A, N1), add(A, N2) -o add(A, N1 + N2).

Using the standard compilation algorithm, two nested loops are created, one
for each add fact. However, notice that there is an implicit constraint when
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creating the iterator for add(A, N2) since this fact cannot be the same as the
first one. That would invalidate linearity since a single linear fact would be used
to prove two linear facts. This is easily solved by adding a constraint for the
inner loop that ensures that the two facts are different (line 5).

1 for(auto it1(list("add").begin()); it1 != list("add").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("add").begin()); it2 != list("add").end(); ) {
4 fact *f2(*it2);
5 if(f1 != f2) {
6 f1->set_int(1, f1->get_int(1) + f2->get_int(1));
7 it2 = list("add").erase(it2);
8 goto next;
9 }

10 ++it2;
11 }
12 ++it1;
13 next: continue;
14 }

Figure 6 presents the steps for executing this rule when the database contains
three facts. Initially, the two iterators point to the first and second facts and the
former is updated while the latter is retracted. The second iterator then moves
to the next fact and the first fact is updated again, now to the value 6, the
expected result.

Fig. 6. Executing the add rule

4.6 Comprehensions

Comprehensions were initially presented in the first rule of the SSSP program.

shortest(A, D1, P1), D1 > D2, relax(A, D2, P2)
-o shortest(A, D2, P2), {B, W | !edge(A, B, W) | relax(B, D2 + W, P2 ++ [B])}.

The attentive reader will remember that comprehensions are sub-rules, there-
fore they should be compiled like normal rules. However, they do not need to
return due to rule priorities since all the combinations of the comprehension
must be derived. However, the rule itself must return if any of its comprehen-
sions has derived a fact that is used by a higher priority rule. In the case of the
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above example, the rule does not need to return since it has the highest priority
and the relax facts derived in the comprehension are all sent to other nodes.
The code for the rule is shown below:

1 for(auto it1(list("shortest").begin()); it1 != list("shortest").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("relax").begin()); it2 != list("relax").end(); ) {
4 fact *f2(*it2);
5 if(f1->get_int(1) > f2->get_int(1)) {
6 // comprehension code
7 for(auto it3(trie("edge").begin()); it3 != trie("edge").end(); ) {
8 fact *f3(*it3);
9 fact *new_relax(new fact("relax"));

10 new_relax->set_int(1, f2->get_int(1) + f3->get_int(2));
11 new_relax->set_list(append(f2->get_list(2), list(f3->get_node(1))));
12 send_fact(new_relax, f3->get_node(1));
13 ++it3;
14 }
15 f1->set_int(1, f2->get_int(1));
16 f1->set_list(2, f2->get_list(2));
17 it2 = list("relax").erase(it2);
18 goto next;
19 }
20 ++it2;
21 }
22 ++it1;
23 next: continue;
24 }

Special care must be taken when the comprehension’s sub-rule uses the same
predicates that are derived by the main rule. Rule inference must be atomic in the
sense that after a rule matches, the comprehensions in the head of the rule can
use the facts that were present before the body of the rule was matched. Consider
a rule with n comprehensions or aggregates, where CBi and CHi are the body
and head of the comprehension/aggregate, respectively, and H represents the
fact templates found in the head of the rule. The formula used by the compiler
to detect conflicts between predicates is the following:

n
⋃

i

[CBi ∩ H] ∪
n
⋃

i

[CBi ∩
n
⋃

j

[CHj ]]

If the result of the formula is not empty, then the compiler disables optimiza-
tions for the conflicting predicates and derives the corresponding facts into the
fact buffer that are then added back into the database. Fortunately, most rules
in LM programs do not show conflicts and thus can be fully optimized.

4.7 Aggregates

Aggregates are similar to comprehensions. They are also sub-rules but a value
is accumulated for each combination of the sub-rule. After all the combinations
are inferred, a final head term is derived with the accumulated term. Consider
again the following PageRank rule:

update(A), pagerank(A, OldRank)
-o [sum => V | B | neighbor-pagerank(A, B, V) | neighbor-pagerank(A, B, V) |

pagerank(A, damp/P + (1.0 - damp) * V)].
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The variable V is initialized to 0.0 and sums all the PageRank values of the
neighbors as seen in the code below. The aggregate value is then used to update
the second argument of the initial pagerank fact.

1 for(auto it1(list("pagerank").begin()); it1 != list("pagerank").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("update").begin()); it2 != list("update").end(); ) {
4 fact *f2(*it2);
5 double acc(0.0); // aggregate accumulator.
6 for(auto it3(list("neighbor-pagerank").begin()); it3 !=
7 list("neighbor-pagerank").end(); ) {
8 fact *f3(*it3);
9 acc += f3->get_float(2);

10 ++it3; // the sub-rule has no head since neighbor-pagerank is re-derived
11 }
12 // head of the aggregate
13 f1->set_float(1, damp / P + (1.0 - damp) * V);
14 goto next;
15 }
16 ++it1;
17 next: continue;
18 }

5 Related Work

LM shares many similarities [1] with Constraint Handling Rules (CHR) [5]. CHR
is a concurrent committed-choice constraint language used to write constraint
solvers. A CHR program is a set of rules and a set of constraints. The constraint
store can be seen as a database of facts and rules manipulate the constraint store.
Many basic optimizations used in the LM compiler such as join optimizations and
the use of different data structures for indexing facts were inspired in work done
on CHR [7]. Wuille et al. [9] have described a CHR to C compiler that follows
some of the ideas presented here and De Koninck et al. [4] showed how to compile
CHR programs with dynamic priorities into Prolog. Our work distinguishes itself
from these two works by supporting a novel combination of comprehensions,
aggregates and rule priorities. Compilation of LM programs is also novel due to
the implicit parallelism of rules, allowing for programs to be parallelized [2].

6 Experimental Results

This section presents experimental results for our compilation strategy. We com-
pare the execution speed of our new compiled code against hand-written imple-
mentations in C of the same programs. We also compare the results against
interpreted execution in order to help us understand the limitations of the com-
pilation scheme when removing the interpretation overhead.

For our experimental setup, we used a computer with a 24 (4x6) Core AMD
Opteron(tm) Processor 8425 HE @ 800 MHz with 64 GBytes of RAM memory
running the Linux kernel 3.15.10-201.fc20.x86 64. The C++ compiler used is
GCC 4.8.3 (g++) with the flags: -O3 -std=c+0x -march=x86-64. We run all
experiments 3 times and averaged the execution time.

We have implemented 5 different LM programs and their corresponding C
versions. The programs are the following:
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– Shortest Path (SP): a slightly modified version of the program presented in
Fig. 2, where the shortest distance is computed from all nodes to all nodes.

– N-Queens: the classic puzzle for placing queens on a chess board so that no
two queens threaten each other.

– Belief Propagation: a machine learning algorithm to denoise images.
– Heat Transfer: an asynchronous program that performs transfer of heat

between nodes.
– MiniMax: the AI algorithm for selecting the best player move in a Tic-Tac-

Toe game. The initial board was augmented in order to provide a longer
running benchmark.

Table 1 presents experimental results comparing the compiled and interpreted
code versions against the C program versions. Comparisons to other systems
are shown under the Other column. Note that for some programs, we present
different program sizes shown in ascending order.

Table 1. Experimental results comparing different programs against hand-written
versions in C. For the C versions, we show the execution time in seconds (column C
Time (s)). For the other approaches, we show the overhead ratio compared with the
corresponding C version. The overhead numbers (lower is better) are computed by
dividing the execution time of the approach on that column by the execution time of
the similar hand-written version in C.

Program Size C Time (s) Compiled Interpreted Other

Shortest Path
US Airports 0.1 3.9 13.9 13.3 (python)

OCLinks 0.4 5.6 14.2 11.2 (python)
Powergrid 0.9 3.5 11.3 10.6 (python)

N-Queens

11 0.2 1.4 3.9 20.8 (python)
12 1.3 3.2 5.3 24.1 (python)
13 7.8 3.8 6.6 26.0 (python)
14 49 4.5 8.9 28.0 (python)

Belief Propagation

50 2.8 1.3 1.4 1.1 (GL)
200 51 1.3 1.4 1.1 (GL)
300 141 1.3 1.4 1.1 (GL)
400 180 1.3 1.4 1.1 (GL)

Heat Transfer
80 7.3 4.6 9.9 -
120 32 5.3 10.5 -

MiniMax - 7.3 3.2 7.1 9.3 (python)

The Shortest Path program shows good improvements from the interpreted
version, since the run time is reduced between 61% and 72%. The good perfor-
mance results come from the fact that the program performs repeated compar-
isons between integer numbers, which tend to be slower in interpreted code, and
from the fact that the program has only two rules where the shortest distance
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fact is updated or kept. The distance facts are also indexed by the source node,
which helps the code filter through the candidate distances faster. This is helpful
since the program computes the shortest distance between pairs of nodes.

N-Queens presents some scalability issues for our compilation scheme due
to the exponential increase of facts as the problem size increases. The same
behavior can be observed for the Python programs. Regarding the comparison
with the interpreted version, the compiled version reduces the interpreted run
time by almost 50% which indicates that there are more database operations in
N-Queens than in Shortest Path.

The Belief Propagation program is made of many expensive floating point
calculations. The interpreted version used external functions written in C to
implement those operations because otherwise it would be too slow. Therefore,
and since the rules tend to manipulate a small number of facts, the interpreted
and compiled versions perform about the same. This program has also the best
results which proves that the program spends a huge amount of time performing
floating point calculations. For comparison purposes, we used GraphLab [8] (GC
in the table), an efficient machine learning framework for writing parallel graph-
based machine learning algorithms in C++. GraphLab’s version of the algorithm
is slightly slower than the C version.

The Heat Transfer program also performs floating point operations but in a
much smaller scale than Belief Propagation. This is noticiable from the results
since the slowdown is much larger than Belief Propagation. The program also
needs to compute many sum aggregates, which makes the interpreted version
incur in some overhead due to the integer operations.

While all the other programs perform computations on a pre-defined set
of nodes, the MiniMax program creates the nodes of the graph dynamically.
Creating new nodes requires creating new databases which tends to take a con-
siderable fraction of the run time. However, we have seen a good reduction in
run time when compared to the interpreted version, which we think is the result
of low-level optimizations that were applied in the compiled version.

It should be noted that in these programs there is a parallelization overhead
since LM’s supporting runtime is designed to explore parallelism implicitly. For
instance, we measured a 20% overhead for N-Queens, a program that needs to
reference count many lists during run time. Fortunately, if the programmer takes
advantage of the parallel facilities of LM, she will be able to run most of these
programs faster than C by using between 2 and 4 threads.

7 Conclusions

In this paper, we have presented a compilation strategy for linear logic programs
with comprehensions, aggregates and rule priorities. Rule priorities allow the
programmer to assign priorities to rules so that higher priority rules are applied
before lower priority rules, while comprehensions and aggregates allow a more
expressive way for the programmer to iterate through the database to derive new
facts or aggregate data. To the best of our knowledge, our compilation strategy



On Compiling Linear Logic Programs with Comprehensions, Aggregates 49

is the first to consider programs with these three important features and the
first efficient compilation strategy for forward-chaining linear logic programs.
We have also implemented and described important optimizations such as fact
updates and persistence checking and the importance of choosing the right data
structures for the needs of linear logic programs. Our experimental results show
that LM is competitive when compared to hand-written C programs.
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Abstract. In this paper we present several examples of solving algo-
rithmic problems from the Google Code Jam programming contest with
Picat programming language using declarative techniques: constraint
logic programming and tabled logic programming. In some cases the use
of Picat simplifies the implementation compared to conventional impera-
tive programming languages, while in others it allows to directly convert
the problem statement into an efficiently solvable declarative problem
specification without inventing an imperative algorithm.

1 Introduction

Google Code Jam1 (GCJ) is one of the biggest programming competitions in the
world: almost 50,000 participants registered in 2014, and 25,462 of them solved
at least one task.

GCJ competitors are allowed to use any freely available programming lan-
guage or system (including Picat 2 described in this paper). We show examples
of solving GCJ problems with Picat using constraint logic programming and
tabled logic programming.

Picat is a new logic-based multi-paradigm programming language. Picat
shares many features with Prolog, especially B-Prolog [4], but also has many
distinct features: optional destructive assignments, functions in addition to pred-
icates, explicit non-determinism, list comprehensions [5].

Picat Implementation of TPK Algorithm

To give an idea of Picat syntax to a reader unfamiliar with the language we
present an implementation of TPK algorithm. TPK is an algorithm proposed
by D. E. Knuth and L. T. Pardo [2] used to show basic syntax of a programming
language. The algorithm allows a user to input 11 real numbers (a0 . . . a10).
After that for i = 10 . . . 0 (in that order) the algorithm computes value y = f(ai),
where f(t) =

√

|t|+5t3, and outputs a pair (i, y) if y ≤ 400, or (i, TOO LARGE)
otherwise.

1 https://code.google.com/codejam
2 http://picat-lang.org/
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1 f(T) = sqrt(abs(T)) + 5 * T**3.
2 main =>
3 N = 11,
4 As = to_array([read_real() : I in 1..N]),
5 foreach (I in N..-1..1)
6 Y = f(As[I]),
7 if Y > 400 then
8 printf("%w TOO LARGE\n", I - 1)
9 else

10 printf("%w %w\n", I - 1, Y)
11 end
12 end.

Listing 1.1. TPK algorithm in Picat

Line 1 defines a function to calculate the value of f (a function in Picat is
a special kind of a predicate that always succeeds with a return value). Lines
2–12 define the main predicate. Line 4 uses list comprehension to read 11 space-
separated real numbers into array As. Line 5 defines a header of foreach loop:
I goes from 11 to 1 with the step -1 (in Picat array indices are 1-based). Lines
6–11 calculate the value of y and print the result using an ‘if-then-else’ construct.
printf is similar to the corresponding C language function; %w can be seen as a
“wildcard” control sequence to output values of different types.

2 The Problems

For this section we have chosen a set of GCJ problems from different years to
demonstrate different useful aspects of Picat: constraint programming, top-down
dynamic programming with tabling, and the planner module.

Triangle Areas3

“Triangle Areas” is a problem from the round 2 of GCJ 2008. The problem gives
integers N , M and A and asks to find any triangle with vertices in integer points
with coordinates 0 ≤ xi ≤ N and 0 ≤ yi ≤ M that has an area S = A

2 , or to
decide that it does not exist.

“Triangle Areas” is almost perfect for solving with constraint logic program-
ming. Variables are discrete, constraints are non-linear, and we are looking for
any feasible solution. To come up with an effective model we need to notice that
one vertex of the triangle can be chosen arbitrarily. With this observation, the
most convenient way to calculate the doubled triangle area is to place one vertex
in (0, 0); then 2S = A = |x2y3 − x3y2|. (The same formula can be used in an
imperative solution.)

For this problem we present complete source code of the solution. For sub-
sequent problems we omit the main predicate to save space.

3 Problem link: http://goo.gl/enHWlq

http://goo.gl/enHWlq
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1 import cp.
2 import util.
3 model(N, M, A, Points) =>
4 [X2, X3] :: 0..N,
5 [Y2, Y3] :: 0..M,
6 A #= abs(X2 * Y3 - X3 * Y2),
7 Points = [X2, Y2, X3, Y3].
8 do_case(Case_num, N, M, A) =>
9 printf("Case #%w: ", Case_num),

10 if model(N, M, A, Points), solve(Points) then
11 printf("0 0 %s\n", join([to_string(V) : V in Points]))
12 else
13 println("IMPOSSIBLE")
14 end.
15 main =>
16 C = read_int(),
17 foreach (Case_num in 1..C)
18 N = read_int(), M = read_int(), A = read_int(),
19 do_case(Case_num, N, M, A)
20 end.

Listing 1.2. Complete Picat program for the “Triangle Areas” problem

Lines 1–2 load Picat modules for constraint programming and utility func-
tions. Lines 3–7 define the model with input parameters N, M, A and a list of out-
put parameters [X2, Y2, X3, Y3]. :: and #= are from the ‘cp’ module. With
:: we define possible domains for X2, X3, Y2, Y3 variables, and #= constrains
both left and right parts to be equal. After model evaluation X2, X3, Y2, Y3
variables will not necessarily be instantiated to concrete values, but they will
have reduced domains with possible delayed constraints and will be instantiated
later with solve.

Lines 8–14 define the do case predicate to process a single input case. Line 9
outputs case number according to the problem specification. Lines 10–14 are an
‘if-then-else’ construct that outputs point coordinates if it is possible to satisfy
our model predicate and solve (assign concrete values from the domain to every
variable) the constraint satisfaction problem, or “IMPOSSIBLE” otherwise. Line
11 uses an interesting Picat feature – list comprehension – which is very similar
to what Python and many other modern programming languages have.

Lines 15–20 define the main predicate that reads the number of test cases C
and for each test case reads N, M, A parameters and executes do case.

This Picat program is very similar to our constraint programming solution
in ECLiPSe CLP [1].

Apossible imperative solution in amainstreamprogramming language requires
a more in-depth analysis of the problem. First observations will be the same. We
will also note that it is impossible to find required triangle if A > M × N , and for
A = M × N triangle (0, 0), (N, 0), (0,M) is a valid answer. Now, for A < M ×
N we can represent A as M(A div M) + (A mod M), 0 < A div M < N, 0 <
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A mod M < M . If we match this representation with the area formula, we can see
that points (0, 0), (1,M), and (−A div M,A mod M) form a triangle with area A

2 .
If we shift this triangleA div M units in positive direction along the x axis, we will
get a triangle (A div M, 0), (A div M + 1,M), (0, A mod M) that will match all
the requirements.

Arguably, our declarative solution in Picat is simpler and leaves less space
for a possible mistake.

Interestingly, in our tests the running time of our solution in Picat 0.9 on
small input is about 2.5 times larger than on the large input (table 1). This is
probably related to the implementation details and could change in the future
versions.

Welcome to Code Jam4

“Welcome to Code Jam” is a problem from the qualification round of GCJ 2009.
The task is to calculate the last 4 digits of the number of times the string
“welcome to code jam” (S) appears as a subsequence of the given string (T ).

This is a typical dynamic programming problem. The problem state dp[i][j]
is the number of times the substring of T of length i contains the substring
of S of length j (modulo 10000). The recurrence relation is: if T [i] = S[j],
dp[i][j] = dp[i − 1][j − 1] + dp[i − 1][j], otherwise dp[i][j] = dp[i − 1][j].

Our Picat program uses tabling [3] (a kind of memoization) to implement
the described dynamic programming solution in a top-down fashion.

1 s() = to_array("welcome to code jam").
2 table
3 ways(_, _, 0) = 1.
4 ways(_, 0, _) = 0.
5 ways(T, I, J) = W =>
6 S = s(),
7 if T[I] == S[J] then
8 W = (ways(T, I - 1, J) + ways(T, I - 1, J - 1)) mod 10000
9 else

10 W = ways(T, I - 1, J)
11 end.
12 do_case(Case_num, T) =>
13 W = ways(T, length(T), length(s())),
14 printf("Case #%w: %04d\n", Case_num, W).

Listing 1.3. Picat solution for the “Welcome to Code Jam” problem

Line 1 defines the string S from the problem statement as a functional fact.
Lines 2–11 defines recursive ways function for dynamic programming. The calls
to this function are automatically tabled (memoized) because of the table decla-
ration. Lines 3 and 4 describe base cases for the recursion. Lines 5–11 specify the

4 Problem link: http://goo.gl/qeLls4

http://goo.gl/qeLls4
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recurrence relation. The do case predicate in lines 12–14 calls the ways function
and prints the results according to the problem specification.

An imperative solution can rely on the same recurrence relation, but might
require more code to implement it either as a bottom-up dynamic programming
or as a top-down recursion with memoization.

Bribe the Prisoners5

“Bribe the Prisoners” was the hardest problem from the round 1C of GCJ 2009.
In it we have an array of P prison cells, each cell is either empty or contains
a prisoner. Every time a prisoner from one of the cells is released, all prisoners
housed on either side of that cell until cell 1, cell P, or an empty cell get one
coin each. Initially all cells contain prisoners. Given a list of indices of prisoners
to be released, find the minimum total number of coins that will be spent if the
prisoners will be released in an optimal order.

This is an another dynamic programming problem. For each pair of cells
A ≤ B, dp[A][B] is the best answer if prisoners occupy only cells from A to
B, inclusive. If the first prisoner between A and B to be released is in cell X,
(B − A) coins are to be paid out immediately after his release, and then the
smaller subproblems dp[A][X − 1] and dp[X + 1][B] have to be solved. The final
answer dp[1][P ] corresponds to the initial state of all cells occupied.

Our Picat program uses mode-directed tabling [6].

1 table (+, +, +, min)
2 cost(A, B, FreeList, Cost) ?=>
3 foreach(X in FreeList)
4 (X < A ; X > B)
5 end,
6 Cost = 0.
7 cost(A, B, FreeList, Cost) =>
8 member(X, FreeList),
9 X >= A, X =< B,

10 cost(A, X - 1, FreeList, CostLeft),
11 cost(X + 1, B, FreeList, CostRight),
12 Cost = B - A + CostLeft + CostRight.
13 do_case(Case_num, P, FreeList) =>
14 cost(1, P, FreeList, Cost),
15 printf("Case #%w: %w\n", Case_num, Cost).

Listing 1.4. Picat solution for the “Bribe the Prisoners” problem

The first line declares the tabling mode for the cost predicate: first 3 param-
eters are input parameters, and the last parameter is an output parameter (the
cost of releasing all prisoners in FreeList that occupy cells in the [A;B] range)
that must be minimized. Lines 2–12 define two clauses of the cost predicate; the
predicate is non-deterministic, and the first rule is declared backtrackable using
5 Problem link: http://goo.gl/pSbrTk

http://goo.gl/pSbrTk
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?=> syntax instead of =>. The first clause states that if no prisoners in FreeList
occupy cells between A and B, the cost of their release will be 0. The second
clause calculates the release cost of prisoner X as described by the recurrence
relation. The do case predicate in lines 13–15 calls the cost function for the
whole range of cells and prints the result according to the problem specification.

As with the previous problem, an imperative solution can use the same recur-
rence relation, but might require more code for a bottom-up or top-down app-
roach implementation, including explicit comparison of release costs of different
prisoners to find the minimum. Our Picat solution replaces most of the auxiliary
code with a single table declaration.

Osmos6

“Osmos” is a problem from the round 1B of GCJ 2013. The problem describes
“motes” of different integer sizes. One mote (Armin) is controlled by a player,
the rest are passive. If Armin is of size X, it can absorb any passive mote of size
Y < X and grow to size X+Y as a result. You are given the initial size of Armin
and the sizes of passive motes. You can add a passive mote of any positive size, or
you can remove any existing passive mote. Minimize the number of addition and
removal operations required for Armin to be able to absorb all passive motes.

Our Picat program uses the planner module [7].
To come up with an effective planning solution we need to notice that there

always exists an optimal solution in which Armin absorbs passive motes in order
from smallest to largest (if there is a pair of motes absorbed in different order,
they can be swapped without increasing the number of operations needed).

1 import planner.
2 final([_, []]) => true.
3 action([Armin, Others], NewState, Action, Cost) ?=>
4 Others = [Min | Rest],
5 Armin > Min,
6 NewArmin is Armin + Min,
7 Action = absorb,
8 Cost = 0,
9 NewState = [NewArmin, Rest].

10 action([Armin, Others], NewState, Action, Cost) ?=>
11 Others = [Min | _Rest],
12 Armin =< Min,
13 append(NewOthers, [_], Others),
14 Action = remove,
15 Cost = 1,
16 NewState = [Armin, NewOthers].
17 action([Armin, Others], NewState, Action, Cost) =>
18 Others = [Min | _Rest],

6 Problem link: http://goo.gl/0N5zB8

http://goo.gl/0N5zB8


56 S. Dymchenko and M. Mykhailova

19 Armin =< Min,
20 NewItem is Armin - 1,
21 NewOthers = [NewItem | Others],
22 Action = add,
23 Cost = 1,
24 NewState = [Armin, NewOthers].
25 do_case(Case_num, Armin, Others) =>
26 Limit = length(Others),
27 best_plan([Armin, sort(Others)], Limit, _Plan, Cost),
28 printf("Case #%w: %w\n", Case_num, Cost).

Listing 1.5. Picat solution for the “Osmos” problem

Solving a planning problem in Picat requires a final predicate and an action
predicate. Line 2 defines the final predicate which has one parameter – the
current state – and succeeds if the state is final. In our program a state is
represented as a 2-element list: the first item is the Armin size, and the second
item is a sorted list of the sizes of passive motes (Others). A state is final if the
Others list is empty.

Lines 3–24 define the action predicate which has three clauses – one for
absorb, remove and add actions – and has four parameters: current state, new
state, action name, and action cost. Lines 3–9 define the absorb action which
can be used if Armin is bigger than the first of the other motes at the cost of 0.
Lines 10–16 define the remove action which removes the last (the largest) mote
from Others at the cost of 1. The append predicate and the [ | ] syntax for
getting the head and the tail of a list work exactly the same way as in Prolog.
Lines 17–24 define the add action which adds a mote of size Armin − 1 to the
beginning of the Others (so it can be absorbed by the next absorb action) at
the cost of 1.

Picat’s predicate for finding an optimal plan – best plan – has two input
parameters: the initial state and the resource limit, and two output parameters:
the best plan and its cost. To find an optimal plan the system uses tabling and
iterative deepening depth-first search-like algorithm. If no plan was found and
the maximum resource limit was reached, the predicate fails. In this problem
the resource limit for best plan is the initial number of passive motes, because
there is an obvious plan of this cost to remove all the motes.

This solution is a declarative specification of the problem statement which
relies on just a few observations about the problem. An imperative solution
would require much more insight into the problem. One could notice that in an
optimal solution if a mote is removed, all motes of equal or greater sizes are also
removed (if one of larger motes is absorbed, so can be the mote in question).
Thus, a greedy solution is: keep absorbing passive motes from smallest to largest
while absorbing the next one is possible. After this, either remove all passive
motes left or keep adding motes of size one less than Armin’s current size and
immediately absorbing them until Armin can absorb the smallest passive mote
left. Repeat until Armin absorbs the last of the given passive motes.
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Table 1. Running times for small (4 minutes time limit) and large (8 minutes) inputs7

Problem Technique Small Large

Triangle Areas constraint programming 2.4s 0.9s
Welcome to Code Jam dynamic programming 0.0s 0.3s
Bribe the Prisoners dynamic programming 0.0s 4.8s
Osmos planning 0.0s 0.1s

3 Conclusions

We have given several examples of declarative solutions for GCJ problems with
Picat using constraint logic programming and tabled logic programming.

We considered using Picat’s mixed integer programming module which might
be useful for solving many GCJ problems [1], but currently there is no easy way
to suppress log messages written to standard output by the underlying solver.

Compared to Prolog, Picat code can be more compact because of functions
(function calls can be nested, so there is no need for intermediate variables), list
comprehensions, and more convenient console input/output. Also, while many
modern Prolog systems have loop constructs, Picat loop syntax looks much
cleaner because neither global nor local variables need to be explicitly declared.

Running times of our Picat programs are several orders of magnitude smaller
than the time limit imposed by GCJ rules (table 1).

We also have found that GCJ problems can be complex and large enough to
exercise many different aspects of a programming language implementation: we
discovered and reported two serious bugs in the version 0.8 of the Picat system
while working on this paper (the bugs were promptly fixed for Picat 0.9).
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Abstract. Modern web applications are heavily dynamic. Several
approaches, including functional reactive programming and data binding,
allow a presentation layer to automatically reflect changes in a data layer.
However, many of these techniques are prone to unpredictable memory
performance, do not make guarantees about node identity, or cannot eas-
ily express dynamism in the dataflow graph.

We identify a point in the design space for the creation of statically-
typed, reactive, dynamic, single-pageweb applications for theWebSharper
framework in the functional-first language F#. We provide an embedding
abstraction to link a dynamic dataflow graph to a DOM presentation layer
in order to implement dynamic single-page applications, and show how the
technique can be used to support declarative animation.

Keywords: Functional programming · Reactive web applications · F#

1 Introduction

The web has grown from a collection of static, textual websites to a platform
allowing complex, fully-fledged applications to run in a browser. A key advance
has been the ability of page content to change, in particular as a result of changes
to underlying data.

Changing the DOM via callback functions is adequate for small applications,
but the inversion of control introduced by callback functions makes it difficult
to maintain larger applications, and the code to update the presentation layer
invariably becomes entangled with application logic. Techniques such as data
binding allow mutable data to be inserted into the DOM, with the presentation
layer automatically reflecting these changes. Functional reactive programming
(FRP) [7] introduces Signals and Behaviours, where values can be treated as a
function of time. Several successful implementations exist: React [1] provides an
efficient data-binding system, and Elm [5] is a popular language designed for
creating reactive web applications using FRP.

The design space, however, is vast. FRP, while having an extremely clean and
expressive semantics, is prone to memory leaks when using higher-order signals.
c© Springer International Publishing Switzerland 2015
E. Pontelli and T.C. Son (Eds.): PADL 2015, LNCS 9131, pp. 58–73, 2015.
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As a result, Elm’s type system forbids higher-order signals and the creation
of new signals, using signal transformers from arrowised FRP [13] to achieve
dynamism. Applications written with React are not statically-typed and make
few guarantees about the preservation of the identity, including internal state,
such as focus, of DOM nodes.

WebSharper1 is a framework allowing web applications to be written entirely
in the functional-first language F# [17]. This is achieved by compiling quoted
F# expressions to JavaScript, with raw DOM elements and events encapsulated
using a functional interface. Designing a framework, UI.Next, for reactive single-
page applications in WebSharper required us to identify a point in the design
space fulfilling the following key properties.

Dynamism. It must be possible for the dataflow graph to consist of dynamic
sub-graphs, where the structure of these sub-graphs may change over the
course of the application’s execution.

Predictable Memory Usage. Purely monadic FRP systems must sometimes
retain the entire history of a value in order to use higher-order signals. The
framework must not mandate such memory leaks in order to preserve the
semantics of the reactive system.

Composability. It should be simple to compose elements in both the dataflow
and presentation layers. Layers in the dataflow layer should compose using
applicative and monadic abstractions, and it should be simple to integrate
the dataflow and presentation layers.

Standard Type Systems. The system should not require any non-standard
type system features in order to fulfil the above properties.

Control over Node Identity. The user should be able to explicitly specify
whether DOM nodes are shared or regenerated upon changes in data.

1.1 Contributions

As a result of our design and implementation guided by the above principles, we
report on the following scientific contributions.

– We describe a dynamic dataflow graph consisting of parameterised views
of data sources, connected in a weak fashion by Snaps, a specialised exten-
sion of the IVar primitive [15]. This connects parameterised views of data
sources in the dataflow graph, supporting asynchronous loading of variables,
preventing glitches, and ensuring the graph is amenable to garbage collection
(Section 3).

– We introduce a monoidal API for specifying DOM elements, provide abstrac-
tions to integrate this reactive DOM layer with the dynamic dataflow graph,
and describe the implementation of this integration (Section 4).

– We demonstrate how a declarative animation API can be integrated with the
DOM layer, making use of limited history-dependence, and can be backed
by the dataflow graph (Section 5).

1 http://www.websharper.com

http://www.websharper.com
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UI.Next is freely available online at http://www.github.com/intellifactory/
websharper.ui.next. Example applications can be found at http://intellifactory.
github.io/websharper.ui.next.samples; the samples site itself is also written using
UI.Next.

2 UI.Next by Example

UI.Next focuses on the creation of reactive, single-page applications. Before
describing the implementation in detail, we provide an example of a calculator
application, with standard and scientific modes.

We begin by defining data types for modes, a set of binary and unary oper-
ations, and a record to model the calculator. The calculator has one number in
its memory in order to support binary operations, and a current operand and
operation. We also define functions to execute the numerical operations.

type Mode = Standard | Scientific
type BinOp = Add | Sub | Mul | Divide | Exp | Mod
type UnOp = Sin | Cos | Tan | Squared
type Op = BinaryOp of BinOp | UnaryOp of UnOp
type Calculator = { Memory : float ; Operand : float ; Operation : Op }

let binOpFn = function
| Add -> (+) | Sub -> (-)
| Mul -> ( * ) | Divide -> (/)
| Exp -> ( ** ) | Mod -> (%)

let unOpFn = function
| Squared -> fun x -> pown x 2
| Sin -> sin | Cos -> cos
| Tan -> tan

There are two main reactive primitives in UI.Next: Vars, which can be thought
of as observable mutable reference cells, and Views, which are read-only pro-
jections of Vars in the dataflow graph, and can be combined using applicative
and monadic functional abstractions. In the following functions, rvCalc is a Var
containing the current calculator state. Var.Update updates a variable based on
its current value.

When a number button is pressed, the number is added to the current
operand multiplied by 10 (pushInt). Pressing a unary operation button applies
it to the current operand. When a binary operation is pressed, the number is
placed into the memory, the operation is stored, and the operand is set to zero
(shiftToMem). The user can then type another number, and pressing the equals
button will apply the operation to the number in memory and current operand
(calculate).

let pushInt x rvCalc =
Var.Update rvCalc (fun c -> { c with Operand = c.Operand * 10.0 + x})

let shiftToMem op rvCalc =
Var.Update rvCalc (fun c ->

{ c with Memory = c.Operand; Operand = 0.0; Operation = op })

let calculate rvCalc =
Var.Update rvCalc (fun c ->

let ans =
match c.Operation with

| BinaryOp op -> binOpFn op c.Memory c.Operand
| UnaryOp op -> unOpFn op c.Operand

{ c with Memory = 0.0 ; Operand = ans ; Operation = BinaryOp Add } )

http://www.github.com/intellifactory/
websharper.ui.next
http://intellifactory.github.io/websharper.ui.next.samples
http://intellifactory.github.io/websharper.ui.next.samples
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The next step is to create a view for the model, allowing it to be embedded
into a web page. In order to do this, we create and combine elements of type
Doc, a monoidally-composable representation of a DOM tree, which may contain
both static and reactive fragments.

The “screen” of the calculator should display the current operand. This is
done by mapping a serialisation function onto the current operand, converting it
to a string (resulting in a type of View<string>), and creating a Doc.TextView
representing a DOM text node which will update every time the View updates.
We make use of the F# ‘pipe’ operator (a |> f = f a).

let numberDisplay rvCalc =
let rviCalc = View.FromVar rvCalc
View.Map (fun c -> string c.Operand) rviCalc |> Doc.TextView

We next define the “keypad” of the calculator. We define several button
creation functions using the Doc.Button function, which takes as its arguments
a caption, list of attributes, and a callback function to update the calculator
state. Div0 constructs a Doc representing a <div> tag, without attributes.

let calcBtn i rvCalc = Doc.Button (string i) [] (fun _ -> pushInt i rvCalc)

let cbtn rvCalc = Doc.Button "C" [] (fun _ -> Var.Set rvCalc initCalc)

let eqbtn rvCalc = Doc.Button "=" [] (fun _ -> calculate rvCalc)

let uobtn o rvCalc = Doc.Button (showOp o) [] (fun _ -> setOp o rvCalc; calculate

rvCalc)

let bobtn o rvCalc = Doc.Button (showOp o) [] (fun _ -> shiftToMem o rvCalc)

let keypad rvCalc =

let btn num = calcBtn num rvCalc

Div0 [

Div0 [btn 1.0 ; btn 2.0 ; btn 3.0 ; bobtn (BinaryOp Add) rvCalc]

Div0 [btn 4.0 ; btn 5.0 ; btn 6.0 ; bobtn (BinaryOp Sub) rvCalc]

Div0 [btn 7.0 ; btn 8.0 ; btn 9.0 ; bobtn (BinaryOp Mul) rvCalc]

Div0 [btn 0.0 ; cbtn rvCalc; eqbtn rvCalc; bobtn ( BinaryOp Divide) rvCalc]

]

We may then declare the operations which are present in scientific mode, and
two rendering functions, standardCalc and scientificCalc, composing each
set of components.

let scientificOps rvCalc =
Div0 [

bobtn (BinaryOp Exp) rvCalc ; bobtn (BinaryOp Mod) rvCalc
uobtn (UnaryOp Sin) rvCalc ; uobtn (UnaryOp Cos) rvCalc
uobtn (UnaryOp Tan) rvCalc ; uobtn (UnaryOp Squared) rvCalc

]
let standardCalc rvCalc = Div0 [ numberDisplay rvCalc; keypad rvCalc ]
let scientificCalc rvCalc =

Div0 [ numberDisplay rvCalc; scientificOps rvCalc; keypad rvCalc ]

Finally, we create two radio buttons to switch between standard and scientific
modes, which set the rvMode variable accordingly, and create a View of rvMode.
We then map the appropriate rendering function to create a View<Doc>, which
can be embedded using the Doc.EmbedView: View<Doc> -> Doc function.

let calcView rvCalc rvMode =

let modeButtons =

[Div0 [Doc.Radio [] Standard rvMode ; Doc.TextNode "Standard"]

Div0 [Doc.Radio [] Scientific rvMode ; Doc.TextNode "Scientific"]] |> Doc.Concat

View.FromVar rvMode
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|> View.Map (fun mode ->

let body =

match mode with | Standard -> standardCalc | Scientific -> scientificCalc

[body rvCalc; modeButtons] |> Doc.Concat

) |> Doc.EmbedView

3 Dataflow Layer

The dataflow layer exists to model data dependencies and consequently to per-
form change propagation. The layer is specified completely separately from the
reactive DOM layer, and as such may be treated as a render-agnostic data model.

The dataflow layer consists of two primitives: reactive variables, Vars, and
reactive views, Views. A Var is a data source, parameterised over a type: this is
equivalent to a mutable reference cell with the notable exception that it may be
observed by Views. A View represents a snapshot of a Var, and may be composed
using applicative and monadic functional combinators.

In terms of the dataflow graph, a Var is a source node, and can have no incom-
ing edges. A View is a node which must have at least one incoming edge. Edges
in the graph are not direct pointers between nodes: nodes can be abstractly con-
sidered as communicating processes using a Snap, a novel, specialised variation
of the Concurrent ML IVar primitive. As a result, the dataflow layer is amenable
to garbage collection: if a Var or View becomes eligible for garbage collection, all
dependent Views in the dataflow graph will be automatically garbage collected
without the need for explicit unsubscription.

type View =

static member Const : ’T -> View <’T>

static member FromVar : Var <’T> -> View <’T>

static member Sink : (’T -> unit) -> View <’T> -> unit

static member Map : (’A -> ’B) -> View <’A> -> View <’B>

static member MapAsync : (’A -> Async <’B>) -> View <’A> -> View <’B>

static member Map2 : (’A -> ’B -> ’C) -> View <’A> -> View <’B> -> View <’C>

static member Apply : View <’A -> ’B> -> View <’A> -> View <’B>

static member Join : View <View <’T>> -> View <’T>

static member Bind : (’A -> View <’B>) -> View <’A> -> View <’B>

Vars can be initialised, their values can be set, or they can be marked as
finalised if their value no longer changes. FromVar creates a View which observes a
Var, and Const creates a View which consists of a static, non-changing value. The
Sink function acts as an imperative observer of the View – that is, the possibly
side-effecting callback function of type (’T -> unit) is executed whenever the
value being observed changes. We use the Sink function to integrate the dataflow
layer with the reactive DOM layer, which is further explained in Section 4.

The remaining abstractions are standard combinators for applicative and
monadic composition. Monadic composition allows dynamism in the dataflow
graph, which is crucial for implementing dynamic single-page applications.

3.1 Implementation

In this section, we describe the implementation of the dataflow layer. A Var
consists of a current value, a flag describing whether or not the Var is finalised
and will not change, and a Snap.
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type Var <’T> = { mutable Const : bool; mutable Current : ’T; mutable
Snap : Snap <’T> }

A Snap can be thought of as an observable and stateful snapshot of the
contents of a Var. At its core, a Snap is based on the notion of an immutable
variable, or IVar [15]. An IVar is created as an empty cell, which can be written
to only once. Attempting to read from a ‘full’ IVar will immediately yield the
value contained in the cell, whereas attempting to read from an ‘empty’ IVar
will result in the thread blocking until such a variable becomes available. This
is shown in Figure 1a.

Emptystart

Full

Put (notify

blocked

threads)

Get (queue request)

Get (return value)

(a) IVar

Waitingstart

Readystart

Forever

Obsolete

MarkReady MarkObsolete

MarkForever

MarkObsolete

(b) Snap

Fig. 1. State Transition Diagrams for IVars and Snaps

A simple way of implementing change propagation using IVars instead of
pointers is to associate Vars and Views with an IVar obsolete of unit type.
Dependent nodes read an initial value from the data source, attempt to perform
the Get operation on obsolete, and block since obsolete is empty2. Upon
changing the value, Put is called on obsolete, and all dependent nodes are
notified and can fetch the latest value. Finally, obsolete is replaced by a fresh
IVar, and the process repeats.

This model is intuitive and conveys the essence of the approach. The reali-
sation of this technique in UI.Next, a Snap, is slightly more complex in order
to support applicative and monadic combinators, perform certain optimisations,
prevent certain classes of leaks, and to better support asynchronously populating
a View from an external data source using the MapAsync operation. A Snap can
be thought of as a state machine consisting of four states:

Ready: A Snap containing an up-to-date value, and a list of threads to notify
when the value becomes obsolete.

Waiting: A Snap without a current value. Contains a list of threads to notify
when the value becomes available, and a list of threads to notify should the
Snap become obsolete prior to receiving a value. This is required for the

2 We make use of the F# asynchronous programming model on the client by using
a custom scheduler built into the WebSharper runtime: creating threads is done by
queueing functions for execution, which are executed in a round-robin style.
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implementation of the MapAsync combinator, and represents a Snap wherein
a request has been made for a value, but it has not yet been received.

Forever: A Snap containing a value that will never change. This prevents nodes
waiting for the Snap to become obsolete when this will never be the case.

Obsolete: A Snap containing obsolete information, signifying that the View
should obtain a new snapshot.

The state transition diagram for a Snap is shown in Figure 1b. Snaps can be
modified by three operations. MarkForever updates the Snap with a value which
will never change, transitioning to the Forever state. MarkReady marks the Snap
as containing a new value, notifying all waiting threads. Finally, MarkObsolete
marks the Snap as obsolete. An additional operation MarkDone checks if the
Snap is in the Forever state, and if not, transitions to the Ready state. Snaps
support a variety of applicative and monadic combinators in order to implement
the operations provided by Views: to implement Map2 for example, a Snap must
be created which is marked as obsolete as soon as either of the two dependent
Snaps becomes obsolete.

Vars support an operation, SetFinal, which marks the value as finalised,
preventing further writes to the variable. This prevents a class of leaks wherein
a Var which remains static is continually observed.

Snaps are used to drive change propagation. When the value of a Var is
updated, the current Snap is marked as obsolete and replaced by a new Snap in
the Ready state.

type View <’T> = V of (unit -> Snap <’T>)
static member FromVar var = V (fun () -> var.Snap)
static member Set var val =

if var.Const then () // Invalid
else Snap.MarkObsolete var.Snap;

var.Current <- val; var.Snap <- Snap.CreateWithValue val

At its core, a View consists of a function observe to return a Snap. The
simplest View directly observes a single Var: this simply accesses the current
Snap associated with that Var, updating whenever the Snap becomes obsolete.

At a high level, implementing View combinators for applicative and monadic
composition involves creating a View with an observation function which uses the
underlying Snap combinators. Views are created lazily, and results are cached for
efficiency. When a Snap becomes obsolete, the observation functions are called
to yield new Snaps.

static member Map fn (V observe) =

View.CreateLazy (fun () -> observe () |> Snap.Map fn)

static member Map2 fn (V o1) (V o2) =

View.CreateLazy (fun () -> let s1 = o1 (); let s2 = o2 () Snap.Map2 fn s1 s2)

static member CreateLazy observe =
let cur = ref None
let obs () =

match !cur with
| Some s when not (Snap.IsObsolete s) -> s
| _ -> let sn = observe (); cur := Some sn; sn

V obs



Reactive Single-Page Applications with Dynamic Dataflow 65

In order to react to lifecycle events and trigger change propagation through
the dataflow graph, the When eliminator function is used.

val When : Snap <’T> -> ready: (’T -> unit) -> obsolete: (unit ->
unit) -> unit

The When function takes a Snap and two callbacks: ready, which is invoked
when a value becomes available, and obsolete, which is invoked when the Snap
becomes obsolete. This is implemented by matching on the state of the Snap,
and adding the callback to the appropriate queue.

let Map fn sn =
let res = Create ()
When sn (fn >> MarkDone res sn) (fun () -> MarkObsolete res) ; res

let Map2 fn sn1 sn2 =
let res = Create (); let v1 = ref None; let v2 = ref None
let obs () = v1 := None; v2 := None; MarkObsolete res
let cont () =

match !v1, !v2 with
| Some x, Some y -> MarkReady res (fn x y) | _ -> ()

When sn1 (fun x -> v1 := Some x; cont ()) obs
When sn2 (fun y -> v2 := Some y; cont ()) obs ; res

The Snap.Map function takes a dependent Snap sn and a function fn to apply
to the value of sn when it becomes available. Firstly, an empty Snap, res, is
created. This is passed to the When eliminator along with two callbacks: the first,
called when sn is ready, marks res as ready, containing the result of fn applied
to the value of sn. The second, called when sn is obsolete, marks res as obsolete.

The Snap.Map2 function applies a function to multiple arguments, which can
in turn be used to implement applicative combinators. In order to do this, a Snap
res and two mutable reference cells, v1 and v2, are used. When either of the
dependent Snaps sn1 or sn2 update, the corresponding reference cell is updated
and the continuation function cont is called. If both of the reference cells contain
values, then the continuation function marks res ready, containing the result of
fn applied to sn1 and sn2. If either of the dependent Snaps become obsolete, then
res is marked as obsolete. This avoids glitches, which are intermediate states
present during the course of change propagation, and avoids such intermediate
states being observed by the reactive DOM layer.

3.2 Identity-Preserving Conversion Functions

We provide several transformation functions on reactive collections, which allow
stateful conversion by using shallow memoisation: that is, where inputs are equal,
previous outputs are re-used. Only one previous value for each entry in the
sequence is stored, meaning that the memory usage of these functions is lin-
ear in the size of the longest sequence in the View. This allows identity to be
preserved: this is particularly useful for sharing Docs upon updates, preventing
needless DOM node regeneration and loss of internal DOM node state. This
allows the transformations to have an amount of history-dependence: this is
important when incorporating the notion of identity into animations, for exam-
ple, as described in Section 5.2. Conversion functions are parameterised over
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either two or three type parameters; ’A and ’B are the input and output types
respectively, while ’K is the type of an equality key. The when ’A : equality
constraint specifies that the ’A type must support equality testing.

static member Convert <’A,’B when ’A : equality >:
(’A -> ’B) -> View <seq <’A>> -> View <seq <’B>>

static member ConvertBy <’A,’B,’K when ’K : equality >:
(’A -> ’K) -> (’A -> ’B) -> View <seq <’A>> -> View <seq <’B>>

static member ConvertSeq <’A,’B when ’A : equality >:
(View <’A> -> ’B) -> View <seq <’A>> -> View <seq <’B>>

static member ConvertSeqBy <’A,’B,’K when ’K : equality >:
(’A -> ’K) -> (View <’A> -> ’B) -> View <seq <’A>> -> View <seq <’B>>

The Convert function can be thought of as converting a sequence of val-
ues, and re-using output values from the previous step should the inputs be
determined to be equal. The ConvertSeq function is an extension of this notion,
wherein the conversion function accepts a reactive view: changes to each indi-
vidual item of the collection (as detected by either a machine- or user-specified
notion of equality) are propagated on the item-level using this View.

4 Reactive DOM Layer

The Reactive DOM layer exists as a presentation layer for the dynamic dataflow
graph, allowing changes in the dataflow graph to be automatically propagated
to the DOM. In this section, we detail the design and implementation of the
reactive DOM layer, showing how an in-memory representation of the DOM
can be linked with the dataflow graph. We show how this can be used to batch
updates, prevent visual glitches, and preserve the identity (internal state such
as focus) of nodes. The simplest example of the integration of the dataflow and
DOM layers is a text label which mirrors the contents of an input text box.

let rvText = Var.Create "" ; let inputField = Doc.Input [] rvText
let label = Doc.TextView rvText.View ; Div0 [ inputField; label ]

We begin by declaring a variable rvText of type Var<string>, which is a reactive
variable to hold the contents of the input box. Secondly, we create an input box
which is associated with rvText, meaning that whenever the contents of the
input field changes, rvText will be updated accordingly. Next, we create a label
using Doc.TextView, which we associate with a view of rvText. Finally, we
construct a <div> tag using a monoidal DOM API.

Another example is that of a to-do list, where the item should be rendered
with a strikethrough if the task has been completed. Arguably the most impor-
tant function within the Reactive DOM layer is the Doc.EmbedView function:

static member EmbedView : View <Doc > -> Doc

Semantically, this allows us to embed a reactive DOM fragment into a larger
DOM tree. This is the key to creating reactive DOM applications using the
dataflow layer: by using View.Map to map a rendering function onto a variable,
we can create a value of type View<Doc> to be embedded using EmbedView.

We begin by defining a simple type, with a reactive variable of type
Var<bool> which is set to true if the task has been completed. An item can
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be rendered by mapping a rendering function onto a View of this variable; note
that in the code listing below, Del0 is a notational shorthand for an HTML
<del> element without any attributes, and Doc.TextNode creates a DOM text
node.

type TodoItem = { Done : Var <bool > ; TodoText : string }

View.FromVar todo.Done |> View.Map (fun isDone ->

if isDone then Del0 [ Doc.TextNode todo.TodoText ] else Doc.TextNode todo.TodoText)

|> Doc.EmbedView

4.1 Design

Reactive elements are created using the Doc.Element function, which takes as
its arguments a tag name, a sequence of attributes, and a sequence of child
elements.

static member Element : name: string -> seq <Attr > -> seq <Doc > -> Doc

Reactive attributes have type Attr and can be static, dynamic, or animated.
Static attributes correspond to simple key-value pairs, as found in traditional
static sites, whereas dynamic attributes are instead backed by a View<string>.
We defer discussion of animation attributes to Section 5.

A key design decision is to use a monoidal interface for both DOM elements
and attributes. All DOM elements in the reactive DOM layer are of type Doc. To
form a monoid, Docs support Empty, and Append and Concat functions. Reactive
attributes of type Attr support the same interface.

4.2 Implementation

The Reactive DOM layer consists of a skeleton representation of the DOM tree
in memory. Each node in this skeleton representation contains a View of unit
type, and updates are propagated upwards through the tree. When the DOM
skeleton is marked as changed, a message is sent to an update process, which
applies the changes to the DOM.

DOM Skeleton Representation. The internal structure of a Doc is a pair
of a DocNode, which indicates what the Doc represents, and a View updates of
type View<unit>, which is used to notify the update process that part of the
tree has changed.
type DocNode =

| AppendDoc of DocNode * DocNode | ElemDoc of DocElemNode
| EmbedDoc of DocEmbedNode | EmptyDoc | TextDoc of DocTextNode

type DocTextNode = {Text:TextNode; mutable Dirty:bool;mutable Value:string}
type DocElemNode = {Attr:Attrs.Dyn;Children:DocNode;El:Element;ElKey:int}
type DocEmbedNode = {mutable Current:DocNode;mutable Dirty:bool}

Moreover, DocNode is a discriminated union consisting of five possible types
of node. To support the monoidal interface, AppendDoc denotes two sibling nodes,
and EmptyDoc denotes the absence of an element.
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An ElemNode represents a DOM element, consisting of the attributes associ-
ated with the elements, the skeleton representation of the children of the element,
the DOM element itself, and a key which is used for equality testing.

A TextNode represents a DOM text node, consisting of the current value, the
current in-memory DOM node, and a Dirty flag used for DOM synchronisation.
Finally, an ElemNode is used to represent a reactive View embedded into the
tree. This consists of a mutable DocNode to represent the changes, and Dirty
flag to specify that either the entire subtree, or an element within the subtree
has changed.

Integration with Dataflow Layer. The main entry point to a reactive appli-
cation is the Doc.Run function, which attaches a reactive DOM fragment of
type Doc with a standard DOM element. The Doc.Run function is implemented
by spawning an update process providing actor-like concurrency. Whenever a
message is received by this update process, the update process firstly performs
any animations that may be necessary (described further in Section 5.1), and
synchronises the in-memory DOM representation with the physical DOM.

The key to the integration between the dataflow and reactive DOM layers
is the Updates View associated with each Doc. The key idea for the integration
of these two layers is that a notification for an update is propagated upwards
through the tree. Once the notification propagates to the top of the Doc tree,
the update process is notified in order to trigger any animations and synchronise
the virtual and physical DOM representations.

Combining the Views associated with each Doc is done through the use of the
standard View combinators. As an example, consider the Doc.Append function,
which appends two Docs as siblings. The AppendDoc node requires an update
either of the two contained Docs require an update: this can be achieved using
the Map2 combinator. Docs.Mk is simply a constructor for Doc. The ||> operator
is similar to |>, but takes a tupled argument, applying both arguments to the
function.

static member Append a b =
(a.Updates , b.Updates) ||> View.Map2 (fun () () -> ())
|> Docs.Mk (AppendDoc (a.DocNode , b.DocNode))

EmbedView Implementation. EmbedView allows a reactive DOM segment
to be embedded within the DOM tree, with any updates in this segment being
reflected within the DOM.

static member EmbedView view =

let node = Docs.CreateEmbedNode ()

view |> View.Bind (fun doc -> Docs.UpdateEmbedNode node doc.DocNode; doc.Updates)

|> View.Map ignore |> Docs.Mk (EmbedDoc node)

EmbedView works by creating a new entry in the dataflow graph, depend-
ing on the reactive DOM segment. Conceptually, this can be thought of as a
View<View<Doc>>, which would not be permissible in many FRP systems. Here,
the monadic Bind operation provided by the dynamic dataflow layer is cru-
cial in allowing us to observe not only changes within the Doc subtree (using
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doc.Updates), but changes to the Doc itself: when either change occurs, the
DocEmbedNode is marked as dirty, and the update is propagated upwards through
the tree.

Synchronisation. The synchronisation algorithm recursively checks whether
any child nodes have been marked as dirty.

In the case of EmbedNodes, it is not only necessary to check whether the
EmbedNode itself is dirty but also whether the current subtree value represented
by the EmbedNode is dirty: this ensures that both global (entire subtree changes)
and local (changes within the subtree) changes have been taken into account. If
so, then the updates are propagated atomically to the DOM.

An important consideration of the synchronisation algorithm is the preserva-
tion of node identity – that is, the internal state associated with an element such
as the current input in a text box, and whether the element is in focus. For this
reason, when updating the children of a node, simply removing and reinserting
all children of an element marked dirty is not a viable solution: instead we asso-
ciate a key with each item, which is used for equality checking, and perform a
set difference operation to calculate the nodes to be removed.

As the synchronisation process is only triggered when updates are required,
the synchronisation process applies updates in a batched fashion, meaning that
there is no visible ‘cascade’ of updates.

5 Declarative Animation

Animations in web applications are typically implemented as an interpolation
between attribute values over time. CSS has some native animation functionality,
but the approach founders when animations depend explicitly on dynamic data
and cannot be determined statically. The D3 library [4] provides more powerful
animation functionality, with a particular focus on data visualisation, but targets
a more imperative style of programming.

UI.Next animations can be attached directly to elements and therefore react
directly to changes within the dataflow graph. An animation is defined using
the Anim<’T> type, where the ’T type parameter defines the type of value to be
interpolated during the animation. An Anim<’T> type is internally represented
as a function Compute, mapping a normalised time to a value, and the duration
of the animation.

type Anim <’T> = { Compute : Time -> ’T; Duration : Time }

An animation can be constructed using the Anim.Simple function, which
takes as its arguments an interpolation strategy, an easing function, the duration
of the animation, the delay of the animation in milliseconds, and the start and
end values. Collections of animations can be described using a monoidal interface.

static member Anim.Simple :
Interpolation <’T> -> Easing -> duration: Time -> delay: Time ->

startValue: ’T -> endValue: ’T -> Anim <’T>
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Transitions are specified using the Trans type.
static member Create : (’T -> ’T -> Anim <’T>) -> Trans <’T>
static member Trivial : unit -> Trans <’T>
static member Change : (’T -> ’T -> Anim <’T>) -> Trans <’T> -> Trans <’T>
static member Enter : (’T -> Anim <’T>) -> Trans <’T> -> Trans <’T>
static member Exit : (’T -> Anim <’T>) -> Trans <’T> -> Trans <’T>

A transition can either be created with the Trivial function, meaning that
no animation occurs on changes, or with an animation. Enter and exit transitions,
which occur when a node is added or removed from the DOM tree respectively,
can be specified using the Enter and Exit functions.

An animation is embedded within the reactive DOM layer as an attribute
through the Attr.Animated function:

static member Animated : string -> Trans <’T> -> View <’T> -> (’T -> string) -> Attr

This function takes the name of the attribute to animate, a transition, a view
of a value upon which the animation depends (for example, an item’s rank in
an ordered list), and a projection function from that value to a string, in such a
way that it may be embedded into the DOM.

5.1 Implementation

Animations are triggered as a result of transitions. In order to support transi-
tions, a set of nodes from the previous update is kept at each invocation of the
update process. The update process can perform the appropriate set difference
operations on these two sets in order to ascertain the sets of animations which
must be played as a result of nodes being added or removed.

The JavaScript requestAnimationFrame notifies the browser of the intent
to perform an animation, and schedules a callback to be performed upon the
next browser redraw cycle. The argument provided to this callback is the cur-
rent timestamp: by calculating the difference between this timestamp and the
timestamp at the beginning of the animation, the current point in the animation
can be passed to the Compute function to calculate the new attribute value.

Animated attributes have an Updates View, which is triggered whenever an
animation updates the current value of the attribute. This is linked with the
remainder of the DOM synchronisation function in the ElemNode to which the
Attr is attached, as the Updates View of the element is triggered whenever
the element or any of its attributes are updated.

5.2 Example: Object Constancy

Object Constancy is a technique for allowing an object representing a partic-
ular datum to be tracked through an animation: consider the case where the
underlying data does not change, but can be filtered or sorted. In such a case,
the objects representing the data remaining in the visualisation should not be
removed and re-added, but instead should transition to their new positions: this
relies crucially on the preservation of node identity. Bostock [3] discusses an
example displaying the top ten US states for a particular age bracket, sorted by
population percentage. We begin by defining a data model.
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type AgeBracket = AgeBracket of string; type State = State of string

type StateView = {

MaxValue : double; Position : int; State : string; Total : int; Value : double }

type DataSet =

{ Brackets : AgeBracket []; Population : AgeBracket -> State -> int;

States : State [] }

Here, AgeBracket and State are representations of age brackets and states
respectively, and DataSet represents data read from an external source. The
StateView record specifies details about how a state should be displayed based
on other visible items.

let SimpleAnimation x y =
Anim.Simple Interpolation.Double Easing.CubicInOut 300.0 x y

let SimpleTransition = Trans.Create SimpleAnimation let
InOutTransition = SimpleTransition

|> Trans.Enter (fun y -> SimpleAnimation Height y)
|> Trans.Exit (fun y -> SimpleAnimation y Height)

Using this, it is possible to define an animation lasting for 300ms between 2
given values. With the animation, we can then create two transitions: an uncon-
ditional transition SimpleTransition, and a transition InOutTransition which
is triggered when a DOM entry is added (Enter) and removed (Exit). The Enter
and Exit transitions interpolate the y co-ordinate of a bar between the bottom
of the SVG graphic (Height) and a given position. The element will transition
from the origin position to the desired position on, and to the origin on exit.

We now specify a rendering function taking a View<StateView> and return-
ing a Doc to be embedded within the tree.

let Render (state: View <StateView >) =

let anim name kind (proj: StateView -> double) =

Attr.Animated name kind (View.Map proj state) string

let x st = Width * st.Value / st.MaxValue

let y st = Height * double st.Position / double st.Total

let h st = Height / double st.Total - 2.

S.G [Attr.Style "fill" "steelblue"] [

S.Rect [

"x" ==> "0"; anim "y" InOutTransition y; anim "width" SimpleTransition x

anim "height" SimpleTransition h ] []

]

We specify three projection functions for the width, Y position, and height
of the bar, and animated attributes for each. Finally, we create a selection
box to allow the user to modify the age bracket. To implement object con-
stancy, we use a key which uniquely identifies the data [9]. For StateView,
this is State, used when embedding the current set of visible elements using
ConvertSeqBy. The shownData argument is a View of the data to be displayed,
of type View<seq<StateView>>.

S.Svg ["width" ==> string Width; "height" ==> string Height] [
shownData |> View.ConvertSeqBy (fun s -> s.State) Render
|> View.Map Doc.Concat |> Doc.EmbedView ]

6 Related Work

Functional Reactive Programming [7] provides Behaviours or Signals, represent-
ing values as a function of time. Early implementations of FRP [7] supported
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higher-order signals by storing every signal value, creating a memory leak. Arro-
wised FRP [13] allows only combinators on primitive signals, manipulated using
the Arrow abstraction [10], but avoids memory leaks as a result. The lack of first-
class signals makes many GUI programming patterns difficult to implement.

Elm [5] is an FRP-based web programming language. Higher-order signals are
forbidden by Elm’s type system, allowing history-dependent transformations and
avoiding memory leaks. In order to achieve dynamism, Elm implements arrowised
FRP. Elm’s history-dependence allows the elegant implementation of applications
such as games, but without first-class signals and monadic composition, does not
support our dynamic SPA pattern. UI.Next does not implement FRP signals, but
retains first-class dataflow nodes and monadic composition as a result.

Krishnaswami [11] describes a language implementing FRP semantics while
guaranteeing leak freedom by dividing expressions into those which may be eval-
uated immediately, and those which depend on future values; obsolete behaviour
values are aggressively deleted. The approach relies on a specialised type system.

React [1] is a reactive DOM library which uses an automated ‘diff’ algorithm
driven by browser redraw cycles instead of the approach we have described. We
decided on a dataflow-backed system instead of a diff algorithm to retain com-
plete control over DOM node identity. Flapjax [12] provides similar functionality
to UI.Next, but has an entirely different approach to the dataflow graph and
integrates with the DOM layer differently: signals are instead inserted manually.

The iTask framework [14] allows applications to be developed using work-
flows. Interconnected forms are combined using a rich set of combinators. Task-
oriented programming is high-level, but is not our target in the design space;
abstractions such as Flowlets [2] can handle scenarios such as dependent sequen-
tial forms.

SMLtoJS [8] also compiles an ML language (SML) to JavaScript and provides
an interface to the DOM API.

7 Conclusion and Future Work

In this paper, we have presented a framework in F#, UI.Next, facilitating the
creation of reactive applications backed by a dynamic dataflow graph. Snaps, an
extension IVars, are used as weak links within the dataflow graph to make the
graph more amenable to garbage collection and prevent glitches. The DOM layer
allows reactive DOM fragments to be embedded using the EmbedView function,
and uses a monoidal interface. Finally, we have presented an interface for declar-
ative animation which integrates directly into the reactive DOM layer as reactive
attributes. We are currently investigating the use of an F# type provider [16] for
reactive templating, and are working on formalising the semantics of UI.Next,
to give a semantics to reactive abstractions such as Flowlets [2] and Piglets [6].
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Abstract. Constraint Handling Rules (CHR) is a rule-based language
to specify application-oriented constraint solvers. CHR requires a host
language that provides the basic constraints used in a CHR program.
In this paper, we argue that an integrated functional logic language like
Curry is an appropriate host language for CHR since it supports a natural
formulation of constraint handling rules and a seamless integration into
a typed environment. As a proof of concept, we describe CHR(Curry),
an integration of CHR into Curry, together with two implementations.
The first is an interpreter of CHR’s refined operational semantics imple-
mented in Curry, and the second compiles CHR rules into Prolog which
can be directly used in Prolog-based Curry implementations, such as
PAKCS.

1 Motivation

Functional logic languages [4,15] integrate the most important features of func-
tional and logic languages in order to provide a variety of programming concepts.
They support functional concepts like higher-order functions and lazy evaluation
as well as logic programming concepts like non-deterministic search and com-
puting with partial information. This combination allows better abstractions for
application programming and has also led to new design patterns [1,5] as well as
better abstractions in application programs such as implementing graphical user
interfaces [12] or web frameworks [17]. The declarative multi-paradigm language
Curry [11,18] is a modern functional logic language with advanced concepts for
application programming [2,3].

An important application area of declarative, and in particular, logic pro-
gramming languages is constraint programming [19,22]. Since logic program-
ming is a subset of functional logic programming, there exist various attempts
to extend functional logic languages with constraint solving facilities (see [24] for
a survey). For instance, Lux [21] describes an implementation of a solver for real
arithmetic constraints for Curry, and the inclusion of finite domain constraints
in the functional logic language TOY [20] is described in [9].

An alternative to using a fixed set of constraint solvers are Constraint Han-
dling Rules (CHR) [10]. CHR is a declarative language for specifying application-
oriented constraint systems. They are useful for applications that require specific
constraints for which no standard solvers (like solvers for finite domain or real
c© Springer International Publishing Switzerland 2015
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arithmetic constraints) exist. CHR defines the processing of multisets of con-
straints by the specification of multi-headed simplification or propagation rules.
Thus, CHR is a high-level language to specify and implement constraint solvers
for various application domains (see [10,27] for more detailed surveys).

Since CHR consists only of rewrite rules, CHR programs require a host lan-
guage H. On the one hand, the results of CHR computations are intended to
be used in some application program, written in H, that interacts with users,
databases etc. On the other other hand, CHR is based on the existence of a set
of basic constraints and data types that are used inside CHR rules. In order
to make the reference to the host language H explicit, the notation CHR(H) is
used. Most CHR systems implement CHR(Prolog) so that Prolog predicates can
be used as basic constraints in CHR programs.

Example 1. The following CHR(Prolog) program [10] defines a generic less-than-
or-equal relation leq.
reflexivity @ leq(X,Y) <=> X=Y | true.

antisymmetry @ leq(X,Y), leq(Y,X) <=> X=Y.

transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

The first rule uses the Prolog predicate “=” to check the equality of the leq

arguments, i.e., if both arguments are equal, then the CHR constraint leq(X,Y)

can be omitted (or replaced by true). The second rule uses the same predicate
as a constraint that unifies the arguments X and Y in order to enforce the anti-
symmetry property of leq. The detailed meaning of these rules will be explained
in Section 3.

Most implementation and research efforts have been done for CHR(Prolog). Nev-
ertheless, Prolog does not seem the most natural host language since non-Prolog
features, like evaluable expressions, are sometimes used in example programs.

Example 2. The following simple CHR program, presented in [8], calculates the
greatest common divisor (gcd) of two integers:
gcd1 @ gcd(0) <=> true.

gcd2 @ gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

The intended use of this program is to put two CHR constraints gcd(A) and
gcd(B) into the initial store. The second rule replaces the larger value by smaller
ones (if N is positive) so that, after removing one CHR constraint by the first
rule, the remaining CHR constraint contains the greatest common divisor.

Although the authors of [8] use the general notation of CHR(Prolog), they
remark that the term M-N occurring in the second rule is not treated as in Prolog
but it is “automatically evaluated” (as in functional programming). Since such
functional notations occur also in many other examples (and they are translated
in the actually implemented examples into non-declarative Prolog features), it
seems that a functional logic language is a more appropriate host language than
Prolog. In order to show that this idea is feasible, we propose in this paper
CHR(Curry). Curry as a host language for CHR has the following advantages:
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– The natural functional notation can be used in CHR rules.
– All functions defined in a Curry program as well as all predicates or con-

straints can be used in CHR rules.
– CHR constraints can be used in Curry programs. In particular, one can

define application-oriented constraint solvers as high-level CHR rules and
use them as any other predefined constraint.

– One can use high-level APIs developed in functional logic style to visual-
ize the results of CHR computations, e.g., in graphical user interfaces [12],
interactive web pages [13], or web frameworks [17].

– If CHR is embedded into a strongly typed host language, such as Curry, one
gets type safety and (polymorphically) typed CHR constraints for free.

We develop CHR(Curry) as follows. In a first step, we show how CHR rules can
be written in Curry without any language extension, i.e., we basically develop an
eDSL (embedded domain specific language) for CHR in Curry. In a second step,
we sketch two implementations of this eDSL: an interpreter oriented towards the
refined operational semantics of CHR [8], and a compiler that translates CHR
rules into an existing CHR(Prolog) implementation.

In the next section, we introduce some concepts of functional logic program-
ming and the language Curry. Section 3 reviews the basic ideas of CHR. Section 4
contains our proposal to integrate CHR in Curry. Sections 5 and 6 sketches the
implementations of this proposal before we conclude with a review of related
work in Sections 7 and 8.

2 Basic Elements of Curry

We briefly review those elements of Curry which are necessary to understand the
contents of this paper. More details can be found in recent surveys on functional
logic programming [4,15] and in the language report [18].

Curry is a multi-paradigm declarative language that combines in a seamless
way features from functional, logic, and concurrent programming and supports
application-oriented programming (with types, modules, encapsulated search,
monadic I/O [29]). The syntax of Curry is close to Haskell [23], i.e., type vari-
ables and names of defined operations usually start with lowercase letters and
the names of type and data constructors start with an uppercase letter. Func-
tional types are “curried,” i.e., α → β denotes the type of all functions mapping
elements of type α into elements of type β, and the application of an operation
f to an argument e is denoted by juxtaposition (“f e”).

In addition to Haskell, Curry allows free (logic) variables in rules and initial
expressions. Function calls with free variables are evaluated by a possibly non-
deterministic instantiation of demanded arguments.

Example 3. The following Curry program defines the data type of polymorphic
lists and operations to concatenate two lists and compute the last element of a
list:
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data List a = [] | a : List a

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] → a

last xs | _ ++ [x] =:= xs

= x

where x free

The data type declaration defines [] (empty list) and : (non-empty list) as the
constructors for polymorphic lists (a is a type variable ranging over all types and
the type “List a” is written as [a] for conformity with Haskell). The (optional)
type declaration (“::”) of the operation “++” specifies that “++” takes two lists
as input and produces an output list, where all list elements are of the same
(unspecified) type. Since “++” can be called with free variables in arguments,
the equation “_ ++ [x] =:= xs” in the condition of last is solved by instantiating
the anonymous free variable _ to the list xs without the last argument, i.e., the
only solution to this equation satisfies that x is the last element of xs.

The (optional) condition of a program rule is a constraint, where a constraint is
any expression of the built-in type Success. Each Curry system provides at least
equational constraints of the form e1 =:= e2 which are satisfiable if both sides e1
and e2 are reducible to unifiable data terms. “c1 & c2” denotes the concurrent con-
junction of the constraints c1 and c2, i.e., this expression is evaluated by proving
both argument constraints concurrently. Some Curry systems also support more
powerful constraint structures, like arithmetic constraints on real numbers or
finite domain constraints, as in the PAKCS implementation [16]. The purpose of
this paper is to provide a mechanism to specify application-oriented constraint
solvers on the level of Curry programs.

3 Constraint Handling Rules

In this section we review the basic ideas of the language CHR. More details about
the concept and implementation of CHR can be found in the surveys [10,27] and
the CHR website1.

A CHR program describes the processing of a multiset of user-defined con-
straints (also called the constraint store) by two kinds of rules. Simplification
rules specify the replacement of several constraints by a multiset of constraints.
Propagation rules specify the propagation of new constraints from several exist-
ing constraints, i.e., the new constraints are added to the constraint store. In
order to restrict the applicability of rules, rules can contain guards that consist
of predefined (built-in) primitive constraints. Such primitive constraints can also
occur in the right-hand sides of simplification or propagation rules.
1 http://dtai.cs.kuleuven.be/CHR/

http://dtai.cs.kuleuven.be/CHR/
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For instance, the CHR program shown in Example 1 contains two simplifi-
cation rules (reflexivity, antisymmetry) and one propagation rule (transitivity).
Simplification and propagation rules are denoted by “<=>” and “==>”, respec-
tively. The primitive constraints to the left of the symbol “|” constitute the
guard of a rule. Multiple constraints are separated by commas which are inter-
preted as logical conjunction. The rule
reflexivity @ leq(X,Y) <=> X=Y | true.

specifies that an occurrence of a constraint leq(X,Y) can be eliminated provided
that X=Y holds, i.e., both arguments are syntactically identical. The rule
antisymmetry @ leq(X,Y), leq(Y,X) <=> X=Y.

specifies that occurrences of both leq(X,Y) and leq(Y,X) in the constraint store
can be replaced by X=Y that enforces the syntactic identity of X and Y. Note
the different rôles of the primitive constraint X=Y in both rules. This constraint
acts in rule reflexivity as a condition (test) to determine the applicability of
the rule, whereas in rule antisymmetry it enforces the equality by manipulating
the constraint store. In general, the applicability of a rule is tested without
modifying the constraint store (in contrast to predicates in logic programming
that are applied by instantiating the actual arguments), i.e., the left-hand side
and the condition must be entailed by the constraint store before the constraints
in the right-hand side are added to the store. The rule
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

propagates a new constraint, i.e., leq(X,Z) is added to the constraint store if the
store already contains the constraints leq(X,Y) and leq(Y,Z). The redundancy
in the constraint store caused by propagation is useful to enable the application
of further simplification rules. For instance, if the constraint store contains
leq(X1,X2), leq(X3,X1), leq(X2,X3)

the application of rule transitivity adds the new constraint leq(X1,X3) so
that the application of rule antisymmetry deletes the constraints leq(X3,X1) and
leq(X1,X3) and enforces the syntactic equality between X1 and X3. As a conse-
quence, the remaining two constraints can be deleted by enforcing the equality
between X1 and X2.

Since the uncontrolled application of propagation rules might lead to non-
terminating derivations, the operational semantics of CHR (see Section 5) defines
conditions to restrict the application of such rules. Sometimes it is useful to
combine a simplification and a propagation rule into one rule, called simpagation
rule, where the left-hand side contains two parts separated by “\”, as shown in
Example 2:
gcd2 @ gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

The part to the left of “\” is kept like in a propagation rule and the right part
is deleted like in a simplification rule. Actually, simpagation rules can also be
seen as the most general form of CHR rules. This is further discussed in the
following section where we present our syntactic embedding of CHR in Curry so
that CHR rules become regular Curry expressions.
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4 Constraint Handling Rules in Curry

As already mentioned in Section 1, instead of extending the syntax of Curry in
order to deal with CHR, we want to embed CHR rules into Curry programs. For
this purpose, we represent CHR rules as data objects in Curry. Remember that
the most general form of a CHR rule is the simpagation rule

r @ H1 \ H2 ⇐⇒ g | B

where r is a name of the rule, H1 and H2 are sequences of CHR (user-defined)
constraints, the guard g is a sequence of built-in (primitive) constraints and B is
a sequence of CHR and built-in constraints. Simplification and propagation rules
are special cases of the simpagation rule with H1 = ∅ and H2 = ∅, respectively.
Hence, it suffices to specifiy a data structure to represent simpagation rules.

In order to abstract from the set of CHR constraints used in actual programs,
we assume that the type variable chr denotes the type of CHR constraints, which
is usually an enumeration of the various CHR constraints occurring in a CHR
program. Furthermore, the variables occurring in CHR rules have a distinct
domain (e.g., Int in case of the gcd rules shown in Example 2) which we denote
by the type variable dom. Using a single domain in CHR rules is not a restriction
since this domain could also be a union type. Therefore, we can specify the
structure of a CHR rule by the following data type:
data CHR dom chr =

SimpaRule [chr] [chr] [PrimConstraint dom] (Goal dom chr)

The four arguments of SimpaRule correspond to the components H1, H2, g, and
B of a simpagation rule. We do not include the name r of the rule since we
will identify rules by program objects. The type Goal denotes sequences of user-
defined and primitive constraints and is defined as follows:
data Goal dom chr = Goal [CHRconstr dom chr]

data CHRconstr dom chr = PrimCHR (PrimConstraint dom)

| UserCHR chr

Hence, CHRconstr is the union of primitive and user-defined constraints.
Finally, the type PrimConstraint contains the primitive (built-in) CHR con-

straints such as equality, disequality, etc. Moreover, one can also embed any
constraint defined in a Curry program as a primitive constraint. For this pur-
pose, we define this type as follows:
data PrimConstraint a =

Eq a a -- equality

| Neq a a -- disequality

| Fail -- always unsatisfiable

| Compare (a → a → Bool) a a -- ordering constraint

| Ground a -- ground value?

| Nonvar a -- bound variable?

| AnyPrim (() → Success) -- user-defined primitive
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Although constraints like Nonvar and Ground have a non-declarative flavor, they
are often used in CHR rules to control the application of rules. The argument
type of AnyPrim reflects the fact that any constraint abstraction available in
Curry can be used as a primitive constraint.

Although these type definitions cover the essential structure of CHR rules,
it would be tedious to use them for writing concrete rules. Therefore, we define
a bunch of operations as syntactic sugar for writing CHR rules. Since some spe-
cial characters (comma, vertical bar) belong to the syntax of Curry and are
not allowed as operators, we can not provide the exact Prolog-oriented syntax
of CHR. Nevertheless, we want to be very close to this syntax. For this pur-
pose, we use a goal-oriented syntax to define CHR rules. For instance, to define
simplification rules, we will define an operator of type
(<=>) :: Goal dom chr → Goal dom chr → CHR dom chr

where the left- and right-hand sides are goals. To construct goals in a readable
manner, we define the operator “/\” for the conjunction of two goals:
(/\) :: Goal dom chr → Goal dom chr → Goal dom chr

(/\) (Goal c1) (Goal c2) = Goal (c1 ++ c2)

Similarly, we define true as the always satisfiable (empty) goal:
true :: Goal dom chr

true = Goal []

To support a nice notation for primitive constraints, we define a generic embed-
ding of primitive constraints into goals by
primToGoal :: PrimConstraint dom → Goal dom chr

primToGoal pc = Goal [PrimCHR pc]

and introduce some operators2 to denote the various primitive constraints:
fail = primToGoal Fail

x .=. y = primToGoal (Eq x y)

x ./=. y = primToGoal (Neq x y)

x .>=. y = primToGoal (Compare (>=) x y)

. . .

Finally, we introduce operators to write CHR rules in the usual way:
(<=>) :: Goal dom chr → Goal dom chr → CHR dom chr

g1 <=> g2 | null (primsOfGoal g1)

= SimpaRule [] (uchrOfGoal g1) [] g2

(==>) :: Goal dom chr → Goal dom chr → CHR dom chr

g1 ==> g2 | null (primsOfGoal g1)

= SimpaRule (uchrOfGoal g1) [] [] g2

Here we use operations primsOfGoal and uchrOfGoal that extract the list of prim-
itive and user-defined CHR constraints from a goal. The condition expresses the
2 We omit in this paper the definition of the operator priorities since they should be

clear from the context.
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fact that primitive constraints are not allowed in the left-hand sides of CHR
rules.3 To denote simpagation rules, we introduce the operator “\\”:
(\\) :: Goal dom chr → CHR dom chr → CHR dom chr

g \\ (SimpaRule h1 h2 c b) | null (primsOfGoal g) && null h1

= SimpaRule (uchrOfGoal g) h2 c b

To attach a condition to a CHR rule, we define a guard operator “|>” (note that
the right-hand side of the already existing rule becomes the condition of the new
rule by the use of this operator):
(|>) :: CHR dom chr → Goal dom chr → CHR dom chr

(SimpaRule h1 h2 _ c) |> b | null (uchrOfGoal c)

= SimpaRule h1 h2 (primsOfGoal c) b

In order to exploit the strong type system of the host language in CHR programs,
we introduce user-defined CHR constraints as a data type. For instance, the CHR
program of Example 1 contains rules for a single CHR constraint leq. Since the
arguments of leq are compared by equality in the reflexivity and antisymmetry
rule, they can be arbitrary but have to be of the same type.4 Thus, we define
the following data type to represent this CHR constraint:
data LEQ a = Leq a a

Since user-defined CHR constraints should be embedded into CHR goals, our
CHR implementation defines a generic embedding of binary constraints (actually,
it defines a family of embeddings for various arities):
toGoal2 :: (a → b → chr) → a → b → Goal dom chr

toGoal2 c x y = Goal [UserCHR (c x y)]

Hence, we define leq as a goal corresponding to the CHR constraint Leq:
leq = toGoal2 Leq

With this preparation and our CHR operators introduced above, we can write
the rules of Example 1 as the following Curry program:
reflexivity [x,y] = leq x y <=> x .=. y |> true

antisymmetry [x,y] = leq x y /\ leq y x <=> x .=. y

transitivity [x,y,z] = leq x y /\ leq y z ==> leq x z

Apart from small syntactic differences, this is the “standard” notation for CHR
rules. Note that all variables occurring in a CHR rule have to be introduced
at some point. In Curry, they could be declared either as free variables or as
parameters. In our eDSL for CHR, we decided to introduce these variables as
parameters. The name of each CHR rule is represented by the name of the opera-
tion defining this rule. Thus, a CHR program consists of a list of operations (not
a set, which is relevant for the refined operational semantics of CHR, see below)

3 Our actual implementation yields also a sensible error message if this condition is
not satisfied.

4 In Haskell, they should have the type class context Eq, but the current version of
Curry does not support type classes so that equality is syntactically defined on any
type.
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defining the various rules. As shown later, such a list is the input parameter to
our implementations.

In a well typed CHR program, all rules have the same type, i.e., they operate
over the same domain type and specify the semantics of user-defined constraints
of the same type. For instance, the reflexivity rule (as well as all other leq rules)
has the type:
reflexivity :: [a] → CHR a (LEQ a)

It should be noted that the polymorphic type system of Curry automatically
yields a polymorphic type system for CHR. This is in contrast to [6] where
a separate (monomoprhic) type system and type checker for CHR has been
developed. The soundness of our typing of CHR rules will be an immediate
consequence of our well-typed interpreter (see below).

Example 4. As a final example of this section, we show the implementation of
Example 2 in our framework. First, we define the type of gcd constraints
data GCD = GCD Int

and embed them into goals by
gcd = toGoal1 GCD

Then, we can easily write the two rules:
gcd1 [] = gcd 0 <=> true

gcd2 [m,n] = gcd n \\ gcd m <=> m .>=. n |> gcd (m-n)

Thanks to our embedding into Curry, we can actually use the functional notation
(m-n) for the argument of gcd in rule gcd1 without any further transformation,
in contrast to CHR(Prolog).

5 Interpretation

In order to provide a first implementation of our embedded CHR language, we
implement an interpreter for CHR in Curry. Since the interpreter is written in
a strongly typed language, it also ensures the type correctness of CHR rules:
since it manipulates a typed constraint store, the type system of Curry (which is
a Hindley-Milner like polymorphic type system [7]) ensures that the constraint
store always contains type-correct constraints.

The implementation of the interpreter is oriented towards the operational
semantics of CHR. The original operational semantics of CHR [10] is defined as
a transition system that describes the application of the different kinds of CHR
rules. Since simpagation rules are the most general kind of CHR rules, it suffices
to consider such kind of rules only. A state of the transition system is a triple
〈G,S,B〉 where the goal G and the store S are multi-sets of constraints and B
consists of built-in constraints. The initial state has the form 〈G, ∅, true〉 and is
reduced according to the following transition steps (A � B denotes the disjoint
union of the multi-sets A and B):

1. Solve: 〈{c} � G,S,B〉 �−→ 〈G,S, c ∧ B〉 if c is a built-in constraint
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2. Introduce: 〈{c}�G,S,B〉 �−→ 〈G, {c}�S,B〉 if c is not a built-in constraint
3. Apply: 〈G,H1 � H2 � S,B〉 �−→ 〈C � G,H1 � S,H ′

1 = H1 ∧ H ′
2 = H2 ∧ B〉

where r @ H ′
1 \ H ′

2 ⇐⇒ g | C is a renamed CHR rule and B → ∃x(H ′
1 =

H1 ∧ H ′
2 = H2 ∧ g) (i.e., the rule heads match and the condition is satisfied

w.r.t. B)

Although these transition rules specify a superset of all possible evaluations,
they are too weak to be used in practice. First of all, they do not include any
mechanism to avoid trivial infinite propagations. This can be improved by adding
a propagation history so that a rule is not applied again to the same literals [8].
Even with this improvement, the semantics is still a “theoretical only” semantics
and not used in practice (i.e., not implemented by CHR systems). For instance,
consider the gcd rules of Example 2 (which is a popular CHR example and one
of the first appearing on the CHR website). With this theoretical semantics,
the program is non-terminating since rule gcd2 can always be applied to the
constraints gcd(0) and gcd(2) so that the constraint gcd(2) is added to the
goal in every application step. In practice, this is avoided by ordering rules
and constraints and considering CHR constraints as procedure calls or active
constraints that try to find matching partners constraints to apply a rule. For
instance, the gcd solver immediately removes the constraint gcd(0) with the first
rule gcd1 so that the infinite loop is avoided.

A refined operational semantics covering these issues has been precisely
defined in [8] by a refined set of transition rules. Due to lack of space, we do not
recapitulate them here. In a declarative programming language, the transition
rules can be implemented with reasonable effort. Hence, we have written a sim-
ple interpreter (approximately 50 lines of code) based on these transition rules
in Curry. Since the standard evaluation mode of Curry is narrowing (i.e., uni-
fication + functional reduction), it cannot be directly used to implement CHR
rules since the application of a rule requires the check for the applicability of a
rule without instantiating free variables in a goal. Therefore, our implementa-
tion exploits the predefined operation rewriteSome of the library Findall5 which
evaluates an expression by term rewriting, i.e., without binding free variables.

The basic interface to our CHR interpreter has the following type:
runCHR :: [[dom] → CHR dom chr] → Goal dom chr → [chr]

Hence, it takes as input a list of CHR rules and a goal and returns, in case of a
successful evaluation, the list of remaining user-defined constraints. For instance,
the evaluation of the expression
runCHR [gcd1,gcd2] (gcd 16 /\ gcd 28)

yields the result [GCD 4]. In order to embed CHR constraints into Curry as
predefined constraints, there is also an operation
solveCHR :: [[dom] → CHR dom chr] → Goal dom chr → Success

This solver succeeds in case of a successful evaluation and, in addition, it issues
a warning if there are some remaining (suspended) constraints. Using solveCHR,

5 http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Findall.html

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Findall.html
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we can use CHR constraints as any other constraint in Curry programs, e.g.,
we can write CHR constraints in conditions of defined operations in order to
restrict their applicability.

As already mentioned, the type system of Curry ensures that well-typed CHR
rules yield well-typed CHR computations, i.e., we obtain a polymorphic CHR
type system for free. In particular, we can also define CHR rules for polymorphic
constraints.

Example 5. The union-find algorithm is an interesting example to demonstrate
the power of CHR [26]. The algorithm maintains a collection of disjoint subsets
with canonical elements (representatives) and operations union and find. Since
the type of the elements is not important, the sets can be modeled as a poly-
morphic data type. Thus, the CHR(Prolog) program presented in [26] can be
defined in a type-safe manner in CHR(Curry) as follows:
data UF a = Root a | Arrow a a | Make a

| Union a a | Find a a | Link a a

root = toGoal1 Root (~>) = toGoal2 Arrow make = toGoal1 Make

union = toGoal2 Union find = toGoal2 Find link = toGoal2 Link

makeI [a] = make a <=> root a

unionI [a,b,x,y] = union a b <=> find a x /\ find b y /\ link x y

findNode [a,b,x] = a ~> b \\ find a x <=> find b x

findRoot [a,x] = root a \\ find a x <=> x .=. a

linkEq [a] = link a a <=> true

linkTo [a,b] = link a b /\ root a /\ root b <=> b ~> a /\ root a

Since the type UF is polymorphic, this union-find algorithm can be applied to
sets of various types (e.g., sets containing integers, characters, or strings) and
the type system ensures that sets of different types can not be mixed.

6 Compilation

Since our CHR interpreter is parameterized over the list of CHR rules, it is
useful to develop and test CHR programs. For instance, one can evaluate CHR
goals with different sets of rules or rules in various orders. However, due to the
interpretive approach and purely declarative implementation without any side
effects or global state, the implementation is quite inefficient compared to native
CHR implementations. As an alternative, one can reuse existing CHR imple-
mentations to which we can compile our CHR(Curry) programs. For instance,
there are good CHR(Prolog) implementations available for SICStus- or SWI-
Prolog [25]. Since the Curry system PAKCS [16] compiles Curry programs into
SICStus- or SWI-Prolog programs, it is reasonable to compile CHR(Curry) pro-
grams into CHR(Prolog) programs. For this purpose, our CHR library contains
an operation
compileCHR :: String → [[dom] → CHR dom chr] → IO ()

The first argument is the name of the target Curry module into which the CHR
rules, specified in the second argument, are compiled. Actually, the generated
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Curry module only contains an interface to access the compiled CHR constraints
from Curry programs. The generated CHR(Prolog) constraints are accessed from
this module by the usual foreign function interface provided by PAKCS.

As an example, consider the CHR(Curry) program to compute the greatest
common divisor (Example 4). The call “compileCHR "GCDC" [gcd1,gcd2]” gener-
ates the following Curry module:
module GCDC where

import CHRcompiled

gcd :: Int → Goal GCD

gcd x1 = Goal (prim_gcd $!! x1)

prim_gcd external 〈internal code to call the CHR Prolog code 〉
The imported module CHRcompiled contains some definitions that are required to
handle (typed!) CHR goals also in combination with compiled CHR programs.
For instance, there is the definition
data Goal chr = Goal Success

Hence, the argument of the data constructor Goal is a constraint, which is reason-
able since it is a container for the compiled CHR(Prolog) constraints. However,
the type is parameterized by a phantom type chr in order to avoid a mixture
of CHR constraints with incompatible types. For instance, the conjunction of
constraints is defined in the module CHRcompiled by
(/\) :: Goal chr → Goal chr → Goal chr

(/\) (Goal g1) (Goal g2) = Goal (g1 & g2)

so that only goals over the same domain can be combined. Hence, mixing union-
find constraints (Example 5) over sets of integers and sets of characters in the
same goal would be rejected by Curry’s type system. In order to embed the
CHR(Prolog) solver as a Curry constraint, CHRcompiled also defines the operation
solveCHR :: Goal chr → Success

which solves the CHR goal and issues a warning if there are some remaining
(suspended) constraints.

It should be noted that the generated operation gcd evaluates its argument
(by the strictly evaluating application operator “$!!”) before putting the con-
straint into the constraint store. This is necessary to interface the functional
features of Curry with CHR. Since the CHR semantics (see Section 5) does
not evaluate arguments but consider them as free Herbrand terms as in logic
programming, defined functions need to be evaluated before passing the CHR
constraints to the CHR solver. Hence, we can write in the application program
“gcd (6+9*4)” which is passed as the constraint gcd(42) to CHR(Prolog).

The actual CHR(Prolog) program is generated by a straightforward transfor-
mation of the CHR(Curry) rules. The only interesting aspect is the interfacing
between the CHR(Prolog) solver and Curry, because CHR(Curry) rules can also
contain calls to operations defined in Curry programs (e.g., calls to the greater-
or-equal or subtraction operations in rule gcd2). Since CHR(Prolog) allows the
use of any Prolog predicate inside rules and Curry operations are compiled into
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Prolog predicates by PAKCS, interfacing CHR(Prolog) and Curry is not difficult.
For instance, rules gcd1 and gcd2 of Example 4 are translated into the following
CHR(Prolog) rules (the code is simplified since the actual code requires addi-
tional control information for PAKCS):
gcd(0) <=> true.

gcd(N) \ gcd(M) <=> eq(’Prelude.>=’(M,N),’Prelude.True’)

| eq(X,’Prelude.-’(M,N)), gcd(X).

The Prolog predicate eq implements the strict unification operator “=:=”, i.e.,
both arguments are evaluated to normal form and unified. Thus, the original
argument (m-n) of gcd in rule gcd2 is evaluated by applying the subtraction
operation defined in the standard prelude of Curry (Prelude.-) and X is bound
to the result before the constraint gcd(X) is activated. In this way any (type-
correct) operation implemented in Curry can be used in CHR rules.

Compiled CHR constraints can be solved by solveCHR as any other Curry
constraint, e.g., in initial goals or conditions of defined operations. In contrast
to the interpreter “runCHR”, remaining (suspended) CHR constraints are not
returned but it is intended that all user-defined constraints should be removed
at the end. This can usually be obtained by adding rules and specific constraints
to access information contained in the constraint store. For instance, to retrieve
the value of the greatest common divisor that would remain in the constraint
store, we replace rule gcd1 by the following new rule (we omit here the simple
extension of the data type GCD):
gcda [n,x] = gcd 0 /\ gcd n /\ gcdanswer x <=> x .=. n

With this rule, the constraint gcd 0 is not simply discarded but, at the same time,
the argument of the constraint gcdanswer is unified with the remaining value and
all three constraints are discarded. If we compile the rules [gcda,gcd2], we yield
for the Curry goal
solveCHR (gcdanswer x & gcd 16 & gcd 28) where x free

the answer substitution {x=4}.
The concrete implementation of our compiler is rather technical so that

we omit a more detailed description here. The complete implementation of
CHR(Curry), i.e., the eDSL operations shown in Section 4, the interpreter and
the compiler, is freely available as a Curry module (CHR) in recent distribu-
tions of PAKCS [16]. As shown by the examples above, operations defined in
Curry can be used inside CHR(Curry) rules and CHR constraints can be used
in Curry programs so that we obtained a thorough embedding of CHR in Curry.
In addition to the examples presented in this paper, various constraint solvers
have been implemented in CHR(Curry), like Boolean constraints, finite domain
constraints, prime numbers, Gaussian elimination to solve linear equalities, or
computing Fibonacci numbers (as shown in [8]). The latter example also demon-
strates the improved efficiency of the compilation approach: our CHR interpreter
needs 1.4/9.7 seconds to compute the 50./100. Fibonacci number, whereas the
compiled CHR code computes these numbers in less than 10 milliseconds (with
an Intel Core i7-4790/3.60Ghz processor).
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7 Related Work

Since there are a lot of publications related to CHR ([10,27] provide good surveys
on different stages of the CHR development), we compare our work to some
closely related work only.

HaskellCHR6 is an implementation of CHR in Haskell. It mainly emphasizes
on the implementation of the operational semantics of CHR in Haskell but does
not provide a deeper embedding of CHR rules in Haskell programs, e.g., nei-
ther a specific syntactical embedding nor a type system for CHR. It has been
successfully used in the Chameleon system [28] to implement advanced type
systems.

HCHR [6] is a deeper embedding of CHR into Haskell. Although HCHR
implements a monadic interpreter for CHR in Haskell (including an implementa-
tion of logic variables and unification), HCHR is more restricted and less flexible
than our approach. Since HCHR uses a specific syntactic extension to write CHR
rules, it does not use Haskell’s type system for CHR. Actually, it implements a
monomorphic type system for CHR and transforms rules into Haskell operations
so that the Haskell type checker is used to detect type errors.

The CHR(Prolog) implementation distributed with SICStus-/SWI-Prolog [25]
also supports the declaration of type annotations to CHR constraints. Although
one can introduce polymorphic data structures like lists, the type annotations to
CHR constraints are restricted to monomorphic types.

An early predecessor of this work [14] contained a first proposal to integrate
CHR into Curry. This implementation was much more restricted than the current
approach. Only goals of a predefined set of types were supported, user-defined
Curry operations were not allowed inside CHR rules, and the implementation
was only a compiler into untyped CHR(Prolog) so that it was not clear that type
correct CHR rules do not yield type errors at run time. All these restrictions are
removed in our new framework.

8 Conclusion

In this paper we presented CHR(Curry), an embedding of CHR into the func-
tional logic host language Curry. To avoid a CHR-specific language extension of
Curry, we presented an eDSL to embed CHR rules into Curry programs with a
notation closely related to “standard” CHR programs. This representation has
the advantage that one can use functional notation in CHR rules, and Curry’s
type system can be exploited to check the well-typedness of CHR rules. Since
we implemented the refined operational semantics of CHR in Curry, the strong
type system of Curry ensures that well-typed CHR programs do not yield ill-
typed constraints at run time. Since Curry’s type system supports parametric
polymorphism, one can also specify polymorphic constraints, as shown in the
less-or-equal or union-find solvers. Due to the thorough embedding of CHR into
Curry, one can use operations defined in Curry programs inside CHR rules and
6 http://www.comp.nus.edu.sg/~gregory/haskellchr/

http://www.comp.nus.edu.sg/~gregory/haskellchr/
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one can use CHR constraints in conditions of rules defining Curry operations.
Hence, one can exploit the advantage of CHR to write application-specific con-
straint solvers.

The use of a functional logic host language instead of a purely logic host
language for CHR has various advantages. For instance, the natural functional
notation can be directly applied in CHR rules. This notation is often used in
examples in papers about CHR but then manually translated into a flat relational
notation in case of Prolog as a host language. Since our host language Curry
comes with a polymorphic type system, we obtain a polymorphic type system
for CHR for free.

We presented two implementations of CHR(Curry), an interpreter imple-
mented in Curry and a compiler to CHR(Prolog). Whereas the interpreter is
useful to develop and test various constraint solvers, the compiler is necessary to
use CHR(Curry) in practice. For future work, it might be interesting to explore
methods to improve the efficiency of the interpreter, e.g., advanced data struc-
tures, states, monadic computations, in order to get a more efficient implemen-
tation to quickly test also larger CHR systems.
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8. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined oper-
ational semantics of constraint handling rules. In: Demoen, B., Lifschitz, V. (eds.)
ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)
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Abstract. In order to handle real-world problems, state-of-the-art prob-
abilistic logic and learning frameworks, such as ProbLog, reduce the
expensive inference to an efficient Weighted Model Counting. To do so
ProbLog employs a sequence of transformation steps, called an infer-
ence pipeline. Each step in the probabilistic inference pipeline is called a
pipeline component. The choice of the mechanism to implement a com-
ponent can be crucial to the performance of the system. In this paper
we describe in detail different ProbLog pipelines. Then we perform a
empirical analysis to determine which components have a crucial impact
on the efficiency. Our results show that the Boolean formula conversion
is the crucial component in an inference pipeline. Our main contribu-
tions are the thorough analysis of ProbLog inference pipelines and the
introduction of new pipelines, one of which performs very well on our
benchmarks.

1 Introduction

Probabilistic Logic and Learning (PLL) software such as ProbLog [7,12] provides
a machinery to derive new knowledge from uncertain data. Performing proba-
bilistic inference or learning efficiently is a challenging task. In order to handle
real-world problems state-of-the-art PLL frameworks employ knowledge compi-
lation that reduces the initial inference or learning task into a weighted model
counting (WMC) problem. Knowledge compilation converts a Boolean formula
into another formula with special properties. These properties allow efficient
weighted model counting on the compiled formula.

The inference mechanism of ProbLog encompasses a sequence of transforma-
tion steps in order to first compile the initial ProbLog program together with
a set of query and evidence atoms and second to perform WMC on the com-
piled form. We call this transformation sequence an inference pipeline and the
transformation steps – pipeline components. There are four components in a
ProbLog pipeline – Grounding, Boolean formula conversion, Knowledge compi-
lation and Evaluation. Each of them can be implemented with a different tool or
algorithm, as long as the input/output requirements are respected. For example,
ProbLog1 [7] uses knowledge compilation to ROBDDs while ProbLog2 [8] uses
knowledge compilation to sd-DNNFs. In order to comply with these requirements
c© Springer International Publishing Switzerland 2015
E. Pontelli and T.C. Son (Eds.): PADL 2015, LNCS 9131, pp. 90–104, 2015.
DOI:10.1007/978-3-319-19686-2 7
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it may be the case that an intermediate data formatting is needed. For example,
the Boolean formula that needs to be compiled to ROBDD or sd-DNNF needs
to be formatted as a BDD script or a CNF accordingly.

The performance of ProbLog pipelines depends on (i) how components are
implemented, i.e., what tools or algorithms are used in order to convey the
necessary transformations; and (ii) how they are linked together, i.e., how the
output from one component is used as input for the next one. In this paper we
investigate different implementations of each component in order to not only
determine the optimal pipelines but also the components with crucial impact on
the overall performance.

We compose 14 inference pipelines by substituting one algorithm by another
for the same component when this is feasible. Then we evaluate their performance
on 7 benchmark sets in order to determine the crucial component(s). These
benchmarks can be considered as standard ProbLog benchmarks as they have
been used in previous research to test different aspects of ProbLog inference and
they cover different kinds of ProbLog programs. Our contribution is twofold –
on the one hand it is the extensive analysis of ProbLog inference pipelines; and
on the other the introduction of new inference pipelines, one of which performs
very well on our benchmarks.

The paper is structured as follows. Section 2 gives background information on
the ProbLog language as well as on weighted model counting for ProbLog infer-
ence. Section 3 presents our analysis of the different components. In Section 4 we
present our experiments and discuss the results. Section 5 concludes our paper
and discusses some possibilities for future research.

2 Background

2.1 The Probabilistic Logic and Learning Language ProbLog

ProbLog [7,12] is a general purpose Probabilistic Logic and Learning (PLL)
programming language. It extends Prolog with probabilistic facts which encode
uncertain knowledge. Probabilistic facts have the form pi :: fi, where pi is the
probability label of the fact fi. Prolog rules define the logic consequences of
the probabilistic facts. Fig. 1 shows a probabilistic graph and its encoding as a
ProbLog program. The fact 0.6::e(a, b). expresses that the edge between nodes
a and b exists with probability 0.6.

0.6::e(a, b). 0.3::e(a, c). 0.8::e(b, c).
0.4::e(b, d). 0.7::e(c, d).
p(X, Y):- e(X, Y).
p(X, Y):- e(X, X1), p(X1, Y).

a) A probabilistic graph. b) A ProbLog program.

Fig. 1. A probabilistic graph and its encoding as a ProbLog program. The p/2 predi-
cate defines the (“path”) relation between two nodes: a path exists, if two nodes are
connected by an edge or via a path to an intermediate node.
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An atom which unifies with a probabilistic fact, called a probabilistic atom
can be either true with the probability of the corresponding fact or false with
(1−the probability). The choices of the truth values of all probabilistic atoms
define a unique model of the ProbLog program called a possible world.

Let Ω = {ω1, .., ωN} be the set of possible worlds of a ProbLog program.
Given that only probabilistic atoms have probabilities we see a single possible
world ωi as the tuple (ω+

i , ω−
i ), where ω+

i is the set of probabilistic atoms in ωi

which are true and ω−
i the set of probabilistic atoms which are false1. Probabilis-

tic atoms are seen as independent random variables. A ProbLog program defines
a distribution over possible worlds as given in Equation 1 where pi denotes the
probability of the atom ai.

P (ωi) =
∏

aj∈ω+
i

pj

∏

aj∈ω−
i

(1 − pj) (1)

A query q is true in a subset of the possible worlds: Ωq ⊆ Ω. Each ωq
i ∈ Ωq has

a corresponding probability, computed by Equation 1. The (success or marginal)
probability of q is the sum of the probabilities of all worlds in which q is true:

P (q) =
∑

ωi∈Ωq

P (ωi) (2)

Example 1. The query p(a, d) for the program in Fig. 1 is true if there is at least
one path between nodes a and d. This holds in 15 out of the 24 = 32 possible
worlds each of them associated with a probability. Using Equation 2 gives the
marginal probability P (p(a, d)) = 0.54072.

The task of computing the marginal probability of a query (i.e. the MARG
task) is the most basic inference task of ProbLog. ProbLog can also compute the
conditional probability of the query given evidence (the COND task).

Example 2. For the program in Fig.1, the query p(a,d). and evidence e(a,b)=
false ProbLog computes the conditional probability P (p(a,d)|e(a,b)= false) =
0.21.

2.2 Weighted Model Counting by Knowledge Compilation

Enumerating the possible worlds of a ProbLog program and computing the
(marginal) probability of a query according to Equation 2 is a straightforward
approach for probabilistic inference. Because the number of possible worlds grows
exponentially with the increase of the number of probabilistic facts in a ProbLog
program, this approach is considered impractical.
1 The union ω+

i ∪ ω−
i is the set of all possible ground probabilistic atoms of the

ProbLog program with the truth value assignments specific for the possible world
ωi; the intersection ω+

i ∩ ω−
i is the empty set.
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In order to avoid the expensive enumeration of possible worlds the inference
mechanism of ProbLog uses knowledge compilation and an efficient weighted
model counting method. Model Counting is the process of determining the num-
ber of models of a formula ϕ. The Weighted Model Count (WMC) of a formula
ϕ is the sum of the weights that are associated with each model of ϕ. For a given
ProbLog program L with a set of possible worlds Ω the WMC of a formula ϕ
coincides with Equation 2 when there is a bijection between the models (and
their weights) of ϕ and the possible worlds (and their probabilities) in Ω.

The task of Model Counting (and also its specialization Weighted Model
Counting) is in general a #P -complete problem. Its importance in SAT and in
the Statistical Relational Learning and Probabilistic Logic and Learning com-
munities has lead to the development of efficient algorithms [5] which have found
their place in ProbLog. By using knowledge compilation the actual WMC can be
computed linearly to the size of the compiled (arithmetic) circuit [5, Chapter12].

3 Inference Pipeline

In order to transform a ProbLog inference task into a WMC problem ProbLog
uses a sequence of transformation steps, called an inference pipeline. The starting
point of the inference pipeline is a ProbLog program together with a (possibly
empty) set of query and evidence atoms. The four main transformation steps, i.e.
components that compose an inference pipeline are: Grounding, Boolean formula
conversion, Knowledge compilation and Evaluation. The grounding generates a
propositional instance of the input ProbLog program. It ignores the probabilis-
tic information of that program, i.e. the probability label of each probabilistic
fact. Second, the propositional instance is converted to a Boolean formula. The
Boolean formula and the propositional instance have the same models. Third,
the Boolean formula is compiled into a negation normal form (NNF) with certain
properties which allow efficient model counting. Finally, this NNF is converted
to an arithmetic circuit which is associated with the probabilities of the input
program and weighted model counting is performed.

Each component can be implemented by different tools or algorithms, as
long as the input/output requirements between components are respected. For
example, ProbLog1 [7] uses knowledge compilation to Reduced Ordered Binary
Decision Diagrams (ROBDDs) [1] in order to reduce the inference task to a
tractable problem. Later, [9] illustrates an approach for ProbLog inference by
compilation to a smooth, deterministic, Decomposable Negation Normal Form
(sd-DNNF) [6]. Fig. 2 gives an overview of the different approaches that can
be used to implement a component and how they can be linked to form an
inference pipeline. In the remaining of this section we present in detail each
pipeline component and the underlying algorithms used to accomplish the nec-
essary transformations.
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Fig. 2. ProbLog
pipelines. Nodes repre-
sent Input/output formats.
Each edge states a transfor-
mation and points from the
output to the input. Solid
edges define an existing
pipeline. Default pipelines
are indicated by (*) for
MetaProbLog/ProbLog1
and (**) for ProbLog2.
Dashed edges indicate
a nonexistent pipeline.
Dashed nodes indicate
intermediate data formats.
The input ProbLog pro-
gram may contain query
and evidence atoms. Ver-
tical arrows alongside
the graph indicate the
components.

3.1 Grounding

A naive grounding approach is to generate the complete set of possible instances
of the initial ProbLog program according to the values a variable can be bound
to. Such a complete grounding may result in extremely big ground programs.
It is more efficient with respect to the size of the grounding and the time for
its generation to focus on the part of the ProbLog program which is relevant to
an atom of interest. A ground ProbLog program is relevant to an atom q if it
contains only relevant atoms and rules. An atom is relevant if it appears in some
proof of q. A ground rule is relevant with respect to q if its head is a relevant
atom and its body consists of relevant atoms. It is safe to confine to the ground
program relevant to q because the models of the relevant ground program are
the same as the models of the initial ProbLog program that entail the atom
q. That is, the relevant ground program captures the distribution P (q) entirely
(proof of correctness can be found in [8], Theorem 1).

To determine the relevant grounding a natural mechanism is SLD resolution.
Each successful SLD derivation for a query q determines one proof of q – a con-
junction of ground literals. Naturally, all proofs to a query form a disjunction
and therefore, can be represented as a Boolean formula in DNF. An SLD deriva-
tion may be infinite, e.g., in case of cyclic programs. In order to detect cycles
(i) auxiliary code can be introduced to the input ProbLog program in order to
store and compare intermediate results or (ii) SLG resolution [2] (that is, SLD
with tabling) can be used instead. Adding auxiliary code as in (i) can slow down
inference and is susceptible to user errors. That is why (ii), i.e. SLG resolution,
is preferable for ProbLog inference.
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We distinguish between two representations of the relevant grounding of a
ProbLog program. ProbLog1 uses the nested trie structure as an intermediate
representation of the collected proofs. If SLD resolution is used (that is, no
tabling is invoked)2 there is only one trie. ProbLog2 considers the relevant
ground logic program with respect to a set of query and evidence atoms.

3.2 Boolean Formula Conversion

Logic Programs (LP) use the Closed World Assumption (CWA), which basically
states that if an atom cannot be proven to be true, it is false. In contrast,
First-Order logic (FOL) has different semantics: it does not rely on the CWA.
Consider the (FOL) theory {q ← p} which has three models: {¬q,¬p}, {q,¬p}
and {q, p}. Its syntacticly equivalent LP (q :- p.) has only one model, namely
{¬q,¬p}. In order to generate a Boolean formula from nested tries (ProbLog1,
MetaProbLog) or a relevant ground LP (ProbLog2), it is required to make the
transition from LP semantics to FOL semantics. When the grounding does not
contain cycles it suffices to take the Clark’s completion of that program [10,11].
When the grounding contains cycles it is proven that the Clark’s completion
does not result in an equivalent Boolean formula [11]. To handle cyclic groundings
ProbLog employs one of two methods. The proof-based approach [14] basically
removes proofs containing cycles as they do not contribute to the probability.
This approach is query-directed, i.e. it considers a set of queries and traverses
their proofs. The rule-based approach is inherited from the field of Answer Set
Programming. It rewrites a rule with cycles to an equivalent rule and introduces
additional variables in order to disallow cycles [11].

Once the cycles are handled, ProbLog1 rewrites the Boolean formula encoded
in the nested tries as BDD definitions. A BDD definition [14] is a formula with
a head and a body, linked with equivalence. The body of a BDD definition con-
tains literals and/or heads of other BDD definitions combined by conjunctions
or disjunctions. The logic operators are translated to arithmetic functions. A
BDD script is a set of BDD definitions.

In the case of ProbLog2, the Clark’s completion of the loop-free relevant
ground LP is used to generate a Boolean formula. This Boolean formula is then
rewritten in CNF. It can also be rewritten to BDD definitions. It is important
to exploit the structure of this Boolean formula during the rewrite, otherwise
the BDD script may blow up in size.

Example 3. For the ProbLog program in Fig 1 b) and the query p(b, d) the
Boolean formula associated with the completion of the relevant ground LP is:
(pbd ⇐⇒ (ebd ∨ (ebc ∧ pcd))) ∧ (pcd ⇐⇒ ecd), where pxy and exy denote p(x, y)

and e(x, y) respectively. Following are its equivalent representations as a CNF
and BDD definitions where a0 stands for an auxiliary Boolean variable:

CNF: (¬pbd ∨ ebd ∨ a0) ∧ (pbd ∨ ¬ebd) ∧ (pbd ∨ ¬a0) ∧ (a0 ∨ ¬ebc ∨ ¬pcd)∧
(¬a0 ∨ ebc) ∧ (¬a0 ∨ pcd) ∧ (pcd ∨ ¬ecd) ∧ (¬pcd ∨ ecd)

BDD definitions: pbd = ebd + a0 a0 = ebc * pcd pcd = ecd

2 ProbLog1 allows the user to select whether to use tabling or not. ProbLog2 always
uses tabling.
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Example 4. A CNF can be rewritten as BDD definitions and vice-versa by a set
of logical transformations. The following BDD definitions are generated from the
CNF in Example 3 and are equivalent to the formula in Example 3:
BDD a1 = pbd + ebd + a0 a2 = pbd + ~ebd a3 = pbd + ~a0 a4 = a0 + ~ebc + ~pcd

definitions: a5 = a0 + ebd a6 = ~a0 + pcd a7 = pcd + ~ecd a8 = ~pcd + ecd

a9 = a1 * a2 * a3 * a4 * a5 * a6 * a7 * a8

Example 3 shows how a Boolean formula that originates from Clark’s com-
pletion of the relevant ground LP can easily be rewritten in CNF as well as in
BDD definitions. It also shows that a CNF representation of such a formula is
less succinct ([6]) than the representation as BDD definitions. If though a CNF
formula is converted to BDD definitions as in Example 4 the BDD script blows
up in size. For the overall performance of a pipeline it is crucial to avoid such
a transformation. This phenomenon is discussed among others in [17]. In [8,9]
the authors consider a ProbLog pipeline in which a CNF formula is transformed
into BDD definitions as shown in Example 4, i.e. a relevant ground LP is first
converted to a Boolean formula in CNF which subsequently is converted to a
BDD script. Their experiments confirm that such an approach is inefficient for
ProbLog inference. We do not consider further inference pipelines which include
a transformation from CNF to BDD definitions. To the contrary, we introduce a
new pipeline which transforms the relevant ground program directly into BDD
definitions avoiding the blow up of the BDD script (see Table 1, pipeline P4).

3.3 Knowledge Compilation and Evaluation

ProbLog uses knowledge compilation to compile the Boolean formula to a nega-
tion normal form (NNF) that has the properties determinism, decomposability
and smoothness [6]. Such an NNF is then used for efficient WMC. In ProbLog’s
inference pipelines two target compilation languages have been exploited so far:
(i) ROBDDs [1] common for ProbLog1 (and MetaProbLog [13, Chapter6]) and
(ii) sd-DNNFs [6] employed by ProbLog2.

To compile a Boolean formula to a ROBDD ProbLog implementations
use SimpleCUDD (www.cs.kuleuven.be/∼theo/tools/simplecudd.html). Com-
piling to sd-DNNF is done with the c2d [3,4] or dsharp [15] compilers.

After the knowledge compilation step, the compiled formula is traversed in
order to compute the probabilities (i.e. the WMC) for the given query(ies) –
the evaluation step. ProbLog employs two approaches to traverse sd-DNNFs:
breadth-first and depth-first3) and one to traverse ROBDDs.

Sections 3.1 to 3.3 describe the components of the two mainstream ProbLog
pipelines – ProbLog1 and ProbLog2. The subprocesses which are used in these
pipelines constitute a set of interchangeable components which may form other
working pipelines. Fig. 2 gives an overview of the possible ProbLog pipelines. The
3 To invoke one of these two options in ProbLog2 one specifies either the fileopti-
mized (default) for the breadth-first implementation or python for the depth-first
implementation as evaluation options.

www.cs.kuleuven.be/~theo/tools/simplecudd.html
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link between different components depends on the compatibility of the output
of a preceding subprocess with the input requirements of the next one. For
example, c2d cannot compile BDD definitions but requires CNFs. Earlier it was
shown that some pipelines are certain to perform worse than others: pipelines
with (naive) complete grounding; pipelines in which a CNF is converted to BDD
definitions (cf. Section 3.2). In addition, we prefer using SLG resolution for
grounding instead of SLD resolution in order to avoid possible cycles. This leaves
the 14 pipelines shown in Table 1. P4 and P9..P12 are previously unexploited
pipelines for ProbLog inference.

Table 1. Pipelines used in the experiments. X → Y stands for a transformation X
and the output representation Y (see Fig. 2).

Grounding Boolean formula Knowledge Evaluation New
conversion compilation Pipeline

P0 SLG→Rel. gr. LP Proof-based→CNF c2d→sd-DNNF Breadth-first No
P1 SLG→Rel. gr. LP Proof-based→CNF c2d→sd-DNNF Depth-first No
P2 SLG→Rel. gr. LP Proof-based→CNF dsharp→sd-DNNF Breadth-first No
P3 SLG→Rel. gr. LP Proof-based→CNF dsharp→sd-DNNF Depth-first No
P4 SLG→Rel. gr. LP Proof-based→BDD def. SimpleCUDD→ROBDD SimpleCUDD Yes
P5 SLG→Rel. gr. LP Rule-based→CNF c2d→sd-DNNF Breadth-first No
P6 SLG→Rel. gr. LP Rule-based→CNF c2d→sd-DNNF Depth-first No
P7 SLG→Rel. gr. LP Rule-based→CNF dsharp→sd-DNNF Breadth-first No
P8 SLG→Rel. gr. LP Rule-based→CNF dsharp→sd-DNNF Depth-first No
P9 SLG→Nested tries Proof-based→CNF c2d→sd-DNNF Breadth-first Yes
P10 SLG→Nested tries Proof-based→CNF c2d→sd-DNNF Depth-first Yes
P11 SLG→Nested tries Proof-based→CNF dsharp→sd-DNNF Breadth-first Yes
P12 SLG→Nested tries Proof-based→CNF dsharp→sd-DNNF Depth-first Yes
P13 SLG→Nested tries Proof-based→BDD def. SimpleCUDD→ROBDD SimpleCUDD No

4 Evaluation

4.1 Experimental Set-Up

Our experiments aim to determine the impact of the different components on the
performance of the 14 pipelines. And more specifically, the components which
have a crucial impact on the overall performance.

We run the 14 pipelines on 7 benchmark sets with in total 319 benchmark
programs: “Alzheimer” [7], “Balls” [20], “Dictionary” [18], “Grid” [8], “Les Mis-
erables” [18], “Smokers” [16], “WebKB” [9]. The programs from the “Alzheimer”,
“Dictionary”, “Les Miserables” and “WebKB” are built from real-world data;
the rest are based on artificial data.

The benchmarkprogramsweuse encode different directed probabilistic graphs.
The graphs corresponding to the “Grid” benchmarks are acyclicwith a hierarchical
structure and maximum in/out degree of 3. The rest are cyclic; the ones in the “Les
Miserables” and the “Dictionary” are sparse graphs (with density < 0.0012 and
< 0.0002 respectively). Probabilistic graphs are encoded as shown in Fig. 1. The
queries to these programs ask for the probability a path exists between two nodes.



98 D. Shterionov et al.

a) “Balls” benchmark set.

b) “Grid” benchmark set.

c) “Les Miserables” benchmark set.

d) “Smokers” benchmark set.

e) “WebKB” benchmark set.

Fig. 3. Run times for ProbLog pipelines per-
forming MARG inference

A program from the “Smokers” or
“WebKB” benchmark sets contains
multiple queries. The rest contain
one query. The variety of these
benchmarks ensures a close to real-
istic estimate of the general per-
formance of ProbLog pipelines. The
programs from the “Balls” bench-
mark set use annotated disjunc-
tions [21] to encode random events
with multiple outcomes. They are
acyclic.

Our benchmarks have been used
previously to evaluate different as-
pects of ProbLog implementations.
The benchmarks from the
“Alzheimer” set were used to moti-
vate the development and test the
performance of the first ProbLog sys-
tem. The “Smokers” and “WebKB”
benchmark sets are used for test-
ing ProbLog2, i.e. different loop-
breaking and knowledge compilation
approaches. Also, the “Grid” bench-
mark set was developed in the con-
text of ProbLog2 and to compare the
knowledge compilation to sd-DNNFs
with knowledge compilation to ROB-
DDs. The “Balls” benchmark set is
used to test the performance of a new
encoding of Annotated Disjunctions
for ProbLog programs (mainly affect-
ing the grounding). That is why we
believe our experiments will allow to
clearly determine the crucial compo-
nents in the inference pipeline.

In our experiments, we measure
the run times of each component
while performing the MARG or the
COND task for the given query(ies)
and evidence. Because the sd-DNNF
compilers are non-deterministic [3,
15], i.e. for the same CNF the com-
piled sd-DNNFs may differ, we run
all tests 5 times and report the
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average run time. Previous tests with these compilers within ProbLog have shown
that the average time for 5 runs gives a realistic estimate on the performance.
We set a time-out of 540 seconds for each run.

Section 4.2 presents our experimental results. A discussion follows in
Section 4.3. Detailed description of our benchmarks, complete results and color
diagrams can be found in [19]. Enlarged and color version of the diagrams in
Fig. 3 and Fig. 4 are available in http://people.cs.kuleuven.be/∼dimitar.shterionov/pipeline

diagrams.pdf. Our benchmarks can be found at http://people.cs.kuleuven.be/∼dimitar.

shterionov/benchmarks pipelines.zip. In the future we would like to extend this set
with new problems in order to improve generality of our conclusions.

4.2 Results

We present the total run time (the sum of the grounding, Boolean formula
conversion, knowledge compilation and evaluation times) of each pipeline for
a benchmark program executing MARG or COND inference. The reason to
focus only on the total run time is that any change in the performance of two
pipelines which share all but one component will be due to the different compo-
nent. Whether the algorithm that implements the component, the compatibility
with the input data or the output have an affect on the overall performance is
not of importance. Rather, we are interested in how the different components’
implementations influence the pipeline as a whole. To get an idea of the impact
of individual components we compare the result for pipelines which differ by one
component. For example, comparing pipelines P0 − P8 to pipelines P9 − P13
will determine the effect of the two different grounding approaches. Fig. 3 shows
the total run time for performing MARG inference on the “Balls”, “Grid”, “Les
Miserables”, “Smokers” and “WebKB” benchmark sets. The results from the
“Les Miserables” benchmarks are similar to the “Alzheimer” and the “Dictio-
nary”; although the results from the “Smokers” benchmarks are similar to the
“WebKB” we show both diagrams so that later they can be compared to the
results from performing COND inference shown in Fig. 4.

In each figure a horizontal line is associated with one benchmark program
and shows the total run time (thus the lower the better) of each pipeline (x-axis)
executing the MARG or the COND task on that program. We use a logarithmic
scale for the time axis (the y-axis). We present the lines in different shades of
gray relative to the size of the dependency graph representing the program. The
black line parallel to the x-axis indicates the 540th second, that is, the time-out.

We also give the number of timeouts that occurred for each pipeline perform-
ing MARG and COND inference in Table 2 and Table 3 respectively. They show
the total number of timeouts and the relative number of timeouts with respect to
the total number of programs in a benchmark set for which at least one pipeline
terminated successfully. For example, P4 times out for a total of 11 benchmarks
when executing COND inference (see Table 3); 2 of the programs that time out
are from the “Smokers” set and 9 from the “WebKB” set; in total 20 programs
of the “Smokers” and 48 of the “WebKB” benchmark sets have been successfully
executed; we compute the relative number of timeouts as 2/20 + 9/48 = 0.2875.

http://people.cs.kuleuven.be/~dimitar.shterionov/pipeline_diagrams.pdf
http://people.cs.kuleuven.be/~dimitar.shterionov/pipeline_diagrams.pdf
http://people.cs.kuleuven.be/~dimitar.shterionov/benchmarks_pipelines.zip
http://people.cs.kuleuven.be/~dimitar.shterionov/benchmarks_pipelines.zip
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a) “Smokers” benchmark set. b) “WebKB” benchmark set.

Fig. 4. Run times for ProbLog pipelines performing COND inference

Table 2. Number of benchmark programs for which MARG inference times out

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
Total: 46 53 62 84 8 144 145 158 177 48 47 68 89 14
Total (relative): 3.14 3.48 4.35 5.34 0.72 7.76 7.94 8.8 9.28 3.95 4.12 5.04 5.71 1.64

Table 3. Number of benchmark programs for which COND inference times out

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
Total: 3 3 3 4 11 0 0 4 4 42 42 27 27 21
Total (relative): 0.15 0.15 0.15 0.2 0.29 0.0 0.0 0.2 0.2 1.25 1.25 0.94 0.94 0.55

4.3 Discussion

We discuss the results from our experiments with the MARG task separately
from the COND task. This is because computing the conditional probabilities in
MetaProbLog (whose components we use to build other pipelines) differs from
how conditional probabilities are computed in ProbLog2. The difference is due
to the way evidence is processed.

MARG Inference. Grounding Comparing pipelines P0, .., P4 to P9, .., P13 in
Fig. 3 shows that grounding to relevant ground LP and grounding to nested tries
have similar impacts on the performance. The default MetaProbLog pipeline,
P13 and pipeline P4 differ on the grounding representation. P13 appears to be
faster than the rest in almost all of the cases. The timeouts in Table 2 though
show that pipelines which use the relevant ground LP representation can solve
(relatively) more problems than the ones using the nested tries. In particular, we
notice that P4 outperforms P13. The effect of the one grounding representation
compared to the other is though small therefore we can state that the choice of
grounding representation is not crucial for the total inference performance.

Boolean Formula Conversion. When comparing pipelines P0, .., P3, to P5, .., P8
in Fig. 3 we observe that the Boolean formula conversion has a strong impact
on the performance. By itself the time for conversion is not significant but it
is the output Boolean formula that strongly influences the next components in
the inference pipeline – knowledge compilation and evaluation. Knowledge com-
pilation is computationally the most expensive task. The proof-based approach
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generates Boolean formulae which are easier to compile, i.e. the compilation time
is lower than for the rule-based approach [19]. The time out results in Table 2
show that pipelines using the proof-based conversion time out 42% to 59%4 less
than pipelines using the rule-based approach.

For the effectiveness of the conversion of great importance is the presence
of cycles in the grounding. We notice (Fig. 3 a) and b)) that pipelines using
the rule-based conversion handle the acyclic graphs from the “Balls” and the
“Grid” benchmark sets equally well or even better than some of the pipelines
using the proof-based conversion. This is because the conversion does not need
to handle any cycles and the rule-based conversion which simply traverses the
ground program is not only faster (see Fig. 3 a) and Fig. 3 b)) but also generates
easy-to-compile Boolean formulae.

These results show that the Boolean formula conversion is crucial for the
inference pipeline.

Knowledge Compilation and Evaluation Knowledge compilation has the highest
impact on the inference run time. Generally, knowledge compilation to ROBDDs
is preferable for MARG inference (compare P4 and P13 to the rest in Fig. 3).

In the case of knowledge compilation to sd-DNNFs a pipeline which uses
c2d shows better scalability compared to one with dsharp but is slower for the
less complex problems. Furthermore, the breadth-first evaluation approach is in
general preferable to the depth-first approach (compare P0 to P1 or P11 to
P12 in Fig. 3 c)), although for the “Balls” benchmarks this evaluation approach
performs poorly (see P3, P8 and P12 in Fig. 3 a)). The reason is the structure
of the graph associated with the relevant ground LP – low out degree, i.e. 9,
long paths from the root to the nodes.

COND Inference. The conditional probability of a query q given evidence
E = e is computed as the ratio P (q|E = e) = P (q∧E=e)

P (E=e) . First both the nominator
and denominator need to be computed separately. Then their division gives the
final result. MetaProbLog and ProbLog2 use different approaches when it comes
to computing the conditional probabilities. In particular, there are differences
regarding the grounding to nested tries and compiling to ROBDDs compared to
grounding to a relevant ground LP and knowledge compilation to s-DDNNFs.

Grounding We notice from Fig. 4 a) and b) and Table 3 that grounding to nested
tries has a negative effect on the overall performance as compared to grounding
to a relevant ground LP. The former approach is: (i) for a query q and evidence
E = e a new query qE=e (i.e., q∧E = e) is created; (ii) qE=e and the atoms in E
are proven in order to determine the relevant grounding (stored as nested tries).
In the latter case, a query q and the atoms in E are used separately and not in a
conjunction to determine the relevant ground LP. Although the two approaches
result in very similar groundings, the evidence atoms and their predetermined
values make a difference for the performance of the next components.
4 We use the relative number of timeouts rather than the total number of timeouts in

order to determine a more general interval.
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Boolean Formula Conversion The Boolean formula is built by using either the
proof-based or the rule-based method. In the case of pipelines P0 to P9 the
Boolean formula (either represented as a CNF or as a BDD script) is augmented
with clauses to state the truth values for the evidence atoms. They often help
the knowledge compilation as they may prune parts of the compiled circuit. The
positive effect is obvious when comparing pipelines P0 to P4 with P9 to P13 in
Fig. 4 but also from Table 3.

Knowledge Compilation and Evaluation The additional clauses for the evidence
added to the Boolean formula improve the performance for pipelines P0 to P3
and P5 to P9 as compared to executing the MARG task. The two pipelines
using ROBDDs (P4 and P13) do not perform well. A reason for the decreased
performance of these pipelines is that for multiple queries (including evidence)
it is required to build and evaluate a forest of ROBDDs. In order to compute
the conditional probability of a query q given evidence E = e a ROBDD for the
conjunction q ∧E = e is added to the ROBDD forest even when the conjunction
is false (P (q ∧ E = e) = 0.0 therefore P (q|E = e) = 0.0), thus performing
unnecessary operations. Indeed, this slow down is observed for the “WebKB”
benchmark programs where a lot of the queries are false given that the evidence
is true. Fig. 4 shows that the ROBDD-based pipelines (P4 and P13) do not scale
as well as in the case of MARG inference. Which is also confirmed by Table 3.

5 Conclusions and Future Work

In this paper we presented a detailed description of the inference pipelines of
ProbLog and analyzed their performance on 7 benchmark sets. Our analysis
shows that the Boolean formula conversion has a crucial impact on the perfor-
mance of the inference pipeline for both MARG and COND tasks. We showed
that in most of the cases pipelines which use a proof-based conversion, knowl-
edge compilation to sd-DNNF with c2d and the breadth-first evaluation approach
and pipelines which use proof-based conversion and compilation to ROBDDs
perform better than the rest. P4 and P13 are the most efficient pipelines for
our benchmarks on performing MARG inference. P13 is the default pipeline
of MetaProbLog. P4 is one of the new pipelines we introduce with this paper
(combining ProbLog2 with ROBDDs).

We also showed that for COND inference it is crucial how the evidence is
handled. Pipelines which use compilation to sd-DNNF and breadth-first evalua-
tion outperform the rest. The most efficient pipeline for computing the COND
task is P0. We also determined that this difference is due to how evidence is
handled.

Our analysis determines two main directions for future research: (i) to improve
the Boolean formula conversion component and (ii) to investigate how to improve
ROBDDs with respect to computing conditional probabilities. Furthermore,
pipeline P4 which combines the grounding of ProbLog2 with the knowledge com-
pilation and evaluation of MetaProbLog via a direct conversion of the (loop-free)
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relevant ground LP to BDD definitions shows very promising results. To deter-
mine its actual place among the different ProbLog implementations we plan to
further evaluate its performance on all inference and learning tasks supported by
ProbLog.
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Abstract. Obtaining good performance when programming heteroge-
neous computing platforms poses significant challenges for the program-
mer. We present a program transformation environment, implemented
in Haskell, where architecture-agnostic scientific C code is transformed
into a functionally equivalent one better suited for a given platform.
The transformation rules are formalized in a domain-specific language
(STML) that takes care of the syntactic and semantic conditions required
to apply a given transformation. STML rules are compiled into Haskell
function definitions that operate at AST level. Program properties, to
be matched with rule conditions, can be automatically inferred or, alter-
natively, stated as annotations in the source code. Early experimental
results are described.

Keywords: High-performance computing · Scientific computing · Het-
erogeneous platforms · Rule-based program transformation · Domain-
specific language · Haskell

1 Introduction

There is currently a strong trend in high-performance computing towards the
integration of various types of computing elements: vector processors, GPUs
being used for non-graphical purposes, FPGA modules, etc. interconnected in
the same architecture. Each of these components is specially suited for some
class of computations, which makes the resulting platform able to excel in per-
formance by mapping computations to the unit best able to execute them and
is proving to be a cost-effective alternative to more traditional supercomputing
architectures [4]. However, this specialization comes at the price of additional
hardware and, notably, software complexity. Developers must take care of very
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Fig. 1. A sequence of transformations of a C code that computes c = av + bv

different features to make the most of the underlying computing infrastructure.
Thus, programming these systems is restricted to a few experts, which hinders its
widespread adoption, increases the likelihood of bugs and greatly limits porta-
bility.

Defining programming models that ease the task of efficiently programming
heterogeneous systems is the goal of the ongoing European research project
POLCA.1 The project specifically targets scientific programming on heteroge-
neous platforms, due to the performance attained by certain hardware compo-
nents for some classes of computations – e.g., GPUs and linear algebra – and
to the energy savings achieved by heterogeneous computing in scientific applica-
tions characterized by high energy consumption [4,7]. Additionally, most scien-
tific applications rely on a large base of existing algorithms that must be ported
to the new architectures in a way that gets the most out of their computational
strengths, while avoiding pitfalls and bottlenecks, and preserving the meaning
of the original code. Porting is carried out by transforming or replacing certain
fragments of code to improve their performance in a given architecture while
preserving their meaning. Unfortunately, (legacy) code often does not spell its
meaning or the programmer’s intentions clearly, although scientific code usually
follows patterns rooted in its mathematical origin.

Our proposal is to develop a framework for semantic-based program transfor-
mation of scientific code where the validity of a given transformation is guided
by high-level annotations expressing the mathematical foundation of the source
code. Fig. 1 shows a sample code transformation sequence, containing the original
fragment of C code along with the result of applying loop-fusion, reorganizing
assignments, algebraic rewriting based on distributivity and moving invariant
expressions out of a loop body. Some of these transformations are currently
done by existing compilers. However, they are performed internally, and we need
them to be applied at the source code level, since they may enable further source
code-level transformations.

1 Programming Large Scale Heterogeneous Infrastructures, http://polca-project.eu.

http://polca-project.eu
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Due to space limitations, we are not showing the code annotations required
to associate algebraic properties with variables and operators, etc.2 – in this
paper we will focus on the design of the tool implementing them.

The decision of whether to apply a given transformation depends on many
factors. First, it is necessary to ensure that applying a rule at a certain point
is sound. Several sources of information can be used here, from static analyzers
(e.g., to extract data dependency and type information) to inline code anno-
tations provided by the programmer. Second, whether the transformation may
improve efficiency, which is far from trivial: Cost models for different target archi-
tectures are needed, as the transformation process will eventually be guided by
estimations of the final performance (which may bring problems such as local
optima). Finally, the transformed code may contain new derived annotations
that can affect subsequent steps.

Despite the broad range of compilation and refactoring tools available [1,
8,10], no existing tool fitted the needs of the project, so we decided to imple-
ment our own transformation framework, including a domain specific language
for the definition of semantically sound code transformation rules (STML), and
a transformation engine working at AST level (http://goo.gl/yuOFiE). Declar-
ative languages are used in different ways in this project. First, the rewriting
engine itself is implemented in Haskell; second, STML rules have a declarative
flavor as they are rewriting rules whose application should not change the seman-
tics of the program being rewritten; and last, the rules themselves are translated
into Haskell code. Rules are written using a C-like syntax, which makes it easy
for C programmers to understand their meaning and to define them, while the
rules can transparently access core functionality provided by the Haskell rewrit-
ing engine, and be accessed by it.

The engine selects rules and blocks of code where these rules can be safely
applied. There may be several possibilities, and the engine is able to return all
of them in a list. In the final tool we plan to use heuristics to select the most
promising transformation chain (Section 4) and to have available an interactive
mode which can interplay with the guided search when it is not possible to
automatically determine whether some rule can / should be applied or when the
programmer so desires it. At the moment, only the interactive mode is imple-
mented.3

2 Tool Description

The main two functionalities of our tool are: 1) to parse transformation
rules written in our domain-specific language (Semantic Transformation Meta-
Language, STML), and to translate them into Haskell; and 2) to perform source-
to-source C code transformation based on these rules, possibly making use of

2 The full example code can be found at http://goo.gl/LWRNOy.
3 As an temporary step, useful for validation, random selection of rules and locations

up to a certain number of transformations, is also available.

http://goo.gl/yuOFiE
http://goo.gl/LWRNOy
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information provided in code annotations (pragmas). Occasionally, new prag-
mas can be injected in the transformed code.

The transformation tool is written in Haskell. The Language.C library [5] is
used to parse the input C code and build its abstract syntax tree (AST), which
is then manipulated using the Scrap Your Boilerplate (SYB) [6] Haskell library:
functions like everything and everywhere allow us to easily extract information
from the AST or modify it with a generic traversal of the whole structure. Both
libraries are used to perform the transformation, but also for the translation of
STML rules into Haskell: the STML rules themselves are expressed in a subset
of C and are parsed using the same Language.C library. The tool is composed
of four main modules:

– Main.hs: Implements the tool’s workflow: calls the parser on the input C
code which builds the AST, links the pragmas to the AST, executes the trans-
formation sequence (interactive or automatically) and outputs the trans-
formed code.

– PragmaPolcaLib.hs: Reads pragmas and links them to their corresponding
AST. Restore / injects pragmas in transformed code.

– Rul2Has.hs: Translates STML rules (stored in an external file) into Haskell
functions which actually perform the AST manipulation. Reads and loads
STML rules as an AST and generates the corresponding Haskell code in a
Rules.hs file.

– RulesLib.hs: Supports Rules.hs to identify STML rule applicability
(matching, preconditions, etc.) and execution (AST traversal and mutation).

2.1 The Rule Language and Its Translation

The rule language used by our tool is inspired by CML [3], which is in turn
an evolution of CTT [2]. We named it Semantic Transformation Meta-Language
(STML), to highlight the use of information beyond the syntax of the language
to transform (inferred or provided in code annotations). STML is syntactically
simpler than CML and closer to C, but it features additional functionality, such
as richer conditions or the ability to express only once antecedents common to
several transformation rules.

Fig. 2. Rule template

Fig. 2 shows a rule template: whenever a piece of
code matching the code in the pattern section is
found which meets a series of conditions stated in
the condition section, the matched code is replaced
by the code in the generate section. The symbols in
pattern are meta-variables which are substituted for
the actual symbols in the code before performing the
translation. The conditions can refer to both syntac-

tic and semantic properties. The generated code can have additional (semantic)
properties which can be explicitly stated in the assert section to make the
application of other rules possible.



A Haskell Implementation of a Rule-Based Program Transformation 109

Table 1. Basic functions for the condition section of rules

Function Description

is identity(Eop,E) E is an identity for Eop
no writes(Ev,(S|[S]|E)) Ev is not written in (S|[S]|E)

no reads(Ev,(S|[S]|E)) Ev is not read in (S|[S]|E)

no rw(Ev,(S|[S]|E)) Ev is neither read nor written in (S|[S]|E)

pure((S|[S]|E)) There is not any assignment in (S|[S]|E)

is const(E) There is not any variable inside E

is block(S) S is a block of statements
not(Econd) Econd is false

Table 2. Language constructs and functions for the generate section of the rules

Function/Construct Description

subs((S|[S]|E),Ef,Et) Replace each occurrence of Ef in (S|[S]|E) for Et
if then:{Econd;(S|[S]|E);} If Econd is true, then generate (S|[S]|E)

if then else:{Econd; If Econd is true, then generate (S|[S]|E)t,
(S|[S]|E)t;(S|[S]|E)e;} else generate (S|[S]|E)e

gen list:{[(S|[S]|E)];} Each statement/expression in [(S|[S]|E)]

produces a different rule consequent.

Fig. 3. Distributive property

Fig. 3 shows a simple example: a rule which
applies the distributive property to optimize
code by transforming code like ((a[i] - 1)
* v[i]) + (v[i] * f(b,3)) into v[i] *
((a[i] - 1) + f(b,3)). Meta-variables are
marked to denote their role, i.e. what type of
syntactic entity they can match: an expres-
sion (cexpr(·)), a statement (cstmt(·)), or
a sequence of statements (cstmts(·)). In the
example, meta-variables a, b, and c will only
match expressions. Tables 1 and 2 briefly
describe additional constructions which can

be used in the condition and generate sections to check for properties of
the code being matched (e.g., is identity(·, ·)) and to have a more flexible
and powerful code generation (e.g., subs(·,·,·)). In these tables, E represents
an expression, S represents a statement, and [S] represents a sequence of state-
ments. Additionally, other constructs such as bin oper(Eop,El,Er) can be used
both to match and generate previously matched syntactic constructs (a binary
operand, in this case). The tables are not meant to be exhaustive and, in fact,
they can be extended to incorporate whatever property imported from external
analysis tools.
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Fig. 4. Augmented addition: STML rule and Haskell code

2.2 Matching and Generating Code Through Synthesized Haskell

The actual transformation of the AST is performed by Haskell code automati-
cally synthesized from STML rules, and contained in the file Rules.hs. We can
classify STML rules among those which operate at expression level (easier to
implement) and those which can manipulate both expressions and (sequences
of) statements. The latter need to consider sequences of statements (cstmts) of
unbound size, for which Haskell code that explicitly performs an AST traversal
is generated.

When generating Haskell code, the rule sections (pattern, condition,
generate, assert) generate the corresponding LHS’s, guards, and RHS’s of a
Haskell function. If the conditions to apply a rule are met, the result is returned
in a triplet (rule_name, old_code, new_code) where the two last components
are, respectively, the matched and transformed sections of the AST. Since sev-
eral rules can be applied at several locations of the AST, the result of applying
the Haskell function implementing an STML rule is a list of tuples, one for each
rule and location where the rule can be applied. This list will in a future have
a heuristically determined benefit associated, which would make it possible to
prioritize them. The transformation stops when either no more rules are appli-
cable, or a stop condition is found – e.g., no applicable rule increase code quality
above some threshold or a maximum number of rule applications is reached.

Example 1 (Augmented Addition). The rule in Fig. 4a transforms the augmented
assignment += to a simple assignment: x += f(3) is transformed into x = x +
f(3). Fig. 4b shows its Haskell translation. Note that v[i++] += 1 can not be
transformed because v[i++] is not pure – one of the conditions required by
the rule. When conditions are present in the rule, the transformation express
them in the Haskell code. In this case, the purity condition pure(cexpr(a))

is translated to the Haskell guard (null (allDefs [(CBlockStmt (CExpr (Just

var_a_463) undefNode))])), which constructs an artificial block of statements
containing only the expression var_a_463 and checks that the list of variables
assigned inside it (returned by function allDefs from RulesLib.hs) is empty.
Symbols CBlockStmt, CExpr, and undefNode are defined in Language.C.

Example 2 (Undo Distributive). Consider again the STML rule in Fig. 3. This
rule is translated into the code in Fig. 5, where some clauses have been omitted:
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Fig. 5. Haskell code compiled from the undo distributive rule

the commutative properties of addition and multiplication, known by the tool,
force the generation of eight clauses. Checking the applicability of the rule (either
because of the pattern or because of the conditions) is again implemented as
clause guards. One example of the former is (exprEqual var_a_79 var_a_77),
that checks that both expressions matching “a” are indeed the same. The code
for pure(cexpr(a)) (cf. b and c) is the same as in the previous example.

Fig. 6. Rule to remove useless assignments

Our final example shows the trans-
lation of a rule which transforms
a sequence of statements. The code
produced for this case is more com-
plex than for the case of expression-
transforming rules. Due to space
limitations, we will just provide some
insight on how the translation is done.

Example 3 (Useless Assignment Removal). The STML rule in Fig. 6 removes
an assignment that does not change the expression being evaluated nor the
l-value, i.e. it would remove v[i] = v[i], but not v[i++] = v[i++] because
v[i++] is not pure.4 Fig. 7 shows its Haskell translation. The helper func-
tion rule_useless_assign_503 searches for the rule pattern: the assignment
cexpr(lhs)= cexpr(lhs) and its surrounding “holes” (cf. ctstms(_)). Func-
tion rule_useless_assign_504 builds the consequent of the rule, checking
the guard conditions and generating, for each occurrence of the pattern in
the block, the corresponding consequent. The rule itself is implemented by
function rule_useless_assign_501 which is, essentially, a Haskell list com-
prehension calling rule_useless_assign_503 in its generator expression and
rule_useless_assign_504 in the construction expression, to return the list of
triples.

4 It is debatable whether that rule can be applied to human-produced code. However,
it is useful when several rules are chained (see the Identity Matrix example at http://
goo.gl/LWRNOy).

http://goo.gl/LWRNOy
http://goo.gl/LWRNOy
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Fig. 7. Haskell code obtained from rule useless assign

3 Experimental Evaluation

We have implemented (among others) the transformation rules mentioned in
Fig. 1 and checked that the tool can successfully apply them in sequence. We
have also carried out a preliminary performance test. The code in Fig. 1, which
implements the C equivalent of the linear algebra c = av+bv, was compiled using
gcc -O3 in all cases and cache misses, number of floating point (FP) operations,
and execution time were measured. We performed the evaluation with gcc 4.47
in a Linux CentOS 6.5 with kernel 2.6.32 running in an Intel i7 3770, using
PAPI 5.4.0 to profile the execution. The number of cache misses is of interest
for CPU-based (multicore) architectures, and therefore also relevant for parallel
platforms using the OpenMP and MPI programming models. The number of FP
operations is interesting for CPU-based architectures and also for systems with
scarce computational resources (like FPGAs and SoC platforms).

Table 3 shows, cumulatively, the effect of the transformation sequence in
Fig. 1 on cache misses, FP operations, and execution time as percentages of the
initial values (which is, for execution time, 46 ms.). These values are significantly
reduced: ∼50% for execution time and L1 misses and ∼33% for FP operations.
These results were obtained averaging values for 30 runs. For all parameters, the
standard deviation was lower than 0.46% during the runs.

4 Conclusions and Future Work

We have briefly presented the goals and internal design of a tool to perform
rule-based refactoring of procedural programs. The tool is written in Haskell,
and the rules it executes are of a declarative nature. The use of Haskell (instead
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Table 3. Impact of successive code transformations in Fig. 1 on several metrics

Metric original For-LoopFusion AugAdditionAssign JoinAssignments UndoDistribute LoopInvCodeMotion

TIME 100,00 50,23 50,22 49,83 49,85 49,32
FP OPS 100,00 99,88 99,89 99,95 33,34 33,34
L1 MISS 100,00 49,62 49,62 49,62 49,62 49,62

of, for example, the infrastructure provided by LLVM) has proven to simplify
and accelerate the development of the tool without compromising its speed /
scalability so far. An experimental validation of a simple but relevant case, which
uses algebraic properties of the code under transformation, has shown substantial
improvements. The tool (http://goo.gl/yuOFiE) is being applied to a series of
examples [9] elicited within the POLCA project, and to other examples (http://
goo.gl/LWRNOy) where e.g., complexity reductions have been achieved for some
cases.

As future work, we plan to implement metrics-based heuristics to perform
an automatic (guided) search through the space of transformations. While we
have already defined some metrics to determine the adequacy of transformations
for different architectures, this is ongoing research within the consortium. We
plan also to improve the interface to external analysis tools, of which we have
identified those performing dependency analysis (e.g., polytope-based compila-
tion) and reasoning over heap pointers (e.g., separation logic) as immediately
applicable. A (more) formal definition of STML is now on the works.
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Abstract. We introduce a compressed de Bruijn representation of
lambda terms and define its bijections to standard representations. Com-
pact combinatorial generation algorithms are given for several families of
lambda terms, including open, closed, simply typed and linear terms as
well as type inference and normal order reduction algorithms. We specify
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ative ways on unification of logic variables, cyclic terms, backtracking and
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1 Introduction

Lambda terms [1] provide a foundation to modern functional languages, type
theory and proof assistants and have been lately incorporated into mainstream
programming languages including Java 8, C# and Apple’s Swift. Generation of
lambda terms has practical applications to testing compilers that rely on lambda
calculus as an intermediate language, as well as in generation of random tests
for user-level programs and data types. At the same time, several instances of
lambda calculus are of significant theoretical interest given their correspondence
with logic and proofs.

Prolog’s underlying backtracking and unification make it an ideal tool for
defining compact combinatorial generation algorithms for various families of
lambda terms. Of particular interest are representations that are canonical up to
alpha-conversion (variable renamings) among which the most well-known ones
are de Bruijn’s indices [2], representing bound variables as the number of binders
to traverse to the lambda abstraction binding them.

However, a sequence of binders in de Bruijn notation, can be seen as a natu-
ral number expressed in unary notation. This suggests introducing a compressed
c© Springer International Publishing Switzerland 2015
E. Pontelli and T.C. Son (Eds.): PADL 2015, LNCS 9131, pp. 115–131, 2015.
DOI:10.1007/978-3-319-19686-2 9
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representation of the binders that puts in a new light the underlying combina-
torial structure of lambda terms and highlights their connection to the Catalan
family of combinatorial objects [3], among which binary trees are the most well
known. The proposed compressed de Bruijn notation also simplifies generation
of some families of lambda terms.

At the same time, the use of Prolog’s unification of logic variables is instru-
mental in designing compact algorithms for inferring simple types or for gener-
ating linear, linear affine or lambda terms with bounded unary height as well as
in implementing normalization algorithms.

To be able to use the most natural representation for each of the proposed
algorithms, we implement bijective transformations between lambda terms in
standard as well as de Bruijn and compressed de Bruijn representation.

The paper is organized as follows. Section 2 introduces the compressed de
Bruijn terms and bijective transformations from them to standard lambda terms.
Section 3 describes generation of binary trees and mappings from lambda terms
to binary trees representing their inferred types and and their applicative skele-
tons. Section 4 describes generators for several classes of lambda terms, including
closed, simply typed, linear, affine as well as terms with bounded unary height
and terms in the binary lambda calculus encoding. Section 5 describes a normal
order reduction algorithm for lambda terms relaying on their de Bruijn repre-
sentation. Section 6 discusses related work and section 7 concludes the paper.

The paper is structured as a literate Prolog program. The code has been
tested with SWI-Prolog 6.6.6 and YAP 6.3.4. It is also available as a separate
file at http://www.cse.unt.edu/∼tarau/research/2015/dbx.pro.

2 A Compressed de Bruijn Representation of Lambda
Terms

We represent standard lambda terms [1] in Prolog using the constructors a/2 for
applications and l/2 for lambda abstractions. Variables bound by the lambdas
as well as their occurrences are represented as logic variables. As an example,
the lambda term λx0.(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))) will be represented
as l(A,a(l(B,a(A,a(B,B))),l(C,a(A,a(C,C))))).

2.1 De Bruijn Indices

De Bruijn indices [2] provide a name-free representation of lambda terms. All
terms that can be transformed by a renaming of variables (α-conversion) will
share a unique representation. Variables following lambda abstractions are omit-
ted and their occurrences are marked with positive integers counting the number
of lambdas until the one binding them is found on the way up to the root of
the term. We represent them using the constructor a/2 for application, l/1 for
lambda abstractions (that we will call shortly binders) and v/1 for marking the
integers corresponding to the de Bruijn indices.

http://www.cse.unt.edu/~tarau/research/2015/dbx.pro
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For instance, the term l(A,a(l(B,a(A,a(B,B))),l(C,a(A,a(C,C))))) is
represented as l(a(l(a(v(1),a(v(0),v(0)))),l(a(v(1),a(v(0),v(0)))))),
corresponding to the fact that v(1) is bound by the outermost lambda (two
steps away, counting from 0) and the occurrences of v(0) are bound each by the
closest lambda, represented by the constructor l/1.

From de Bruijn to Lambda Terms with Canonical Names. The predicate
b2l converts from the de Bruijn representation to lambda terms whose canoni-
cal names are provided by logic variables. We will call them terms in standard
notation.

b2l(DeBruijnTerm,LambdaTerm):-b2l(DeBruijnTerm,LambdaTerm,_Vs).

b2l(v(I),V,Vs):-nth0(I,Vs,V).

b2l(a(A,B),a(X,Y),Vs):-b2l(A,X,Vs),b2l(B,Y,Vs).

b2l(l(A),l(V,Y),Vs):-b2l(A,Y,[V|Vs]).

Note the use of the built-in nth0/3 that associates to an index I a variable
V on the list Vs. As we initialize in b2l/2 the list of logic variables as a free
variable Vs, free variables in open terms, represented with indices larger than the
number of available binders will also be consistently mapped to logic variables.
By replacing Vs with [] in the definition of b2l/2, one could enforce that only
closed terms (having no free variables) are accepted.

From Lambda Terms with Canonical Names to de Bruijn Terms. Logic
variables provide canonical names for lambda variables. An easy way to manipu-
late them at meta-language level is to turn them into special “$VAR/1” terms -
a mechanism provided by Prolog’s built-in numbervars/3 predicate. Given that
“$VAR/1” is distinct from the constructors lambda terms are built from (l/2
and a/2), this is a safe (and invertible) transformation. To avoid any side effect
on the original term, in the predicate l2b/2 that inverts b2l/2, we will uniformly
rename its variables to fresh ones with Prolog’s copy term/2 built-in. We will
adopt this technique through the paper each time our operations would mutate
an input argument otherwise.

l2b(StandardTerm,DeBruijnTerm):-

copy_term(StandardTerm,Copy),

numbervars(Copy,0,_),

l2b(Copy,DeBruijnTerm,_Vs).

l2b(’$VAR’(V),v(I),Vs):-once(nth0(I,Vs,’$VAR’(V))).

l2b(a(X,Y),a(A,B),Vs):-l2b(X,A,Vs),l2b(Y,B,Vs).

l2b(l(V,Y),l(A),Vs):-l2b(Y,A,[V|Vs]).

Note the use of nth0/3, this time to locate the index I on the (open) list of
variables Vs. By replacing Vs with [] in the call to l2b/3, one can enforce
that only closed terms are accepted.

Example 1. Illustrates the bijection defined by predicates l2b and b2l.
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?- LT=l(A,l(B,l(C,a(a(A,C),a(B,C))))),l2b(LT,BT),b2l(BT,LT1),LT=LT1.

LT = LT1, LT1 = l(A, l(B, l(C, a(a(A, C), a(B, C))))),

BT = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))).

2.2 Going One Step Further: Compressing the Blocks of Lambdas

Iterated lambdas (represented as a block of constructors l/1 in the de Bruijn
notation) can be seen as a successor arithmetic representation of a number that
counts them. So it makes sense to represent that number more efficiently in
the usual binary notation. Note that in de Bruijn notation blocks of lambdas
can wrap either applications or variable occurrences represented as indices. This
suggests using just two constructors: v/2 indicating in a term v(K,N) that we
have K lambdas wrapped around variable v(N) and a/3, indicating in a term
a(K,X,Y) that K lambdas are wrapped around the application a(X,Y).

We call the terms built this way with the constructors v/2 and a/3 com-
pressed de Bruijn terms.

2.3 Converting Between Representations

We can make precise the definition of compressed deBruijn terms by providing
a bijective transformation between them and the usual de Bruijn terms.

From de Bruijn to Compressed. The predicate b2c converts from the usual
de Bruijn representation to the compressed one. It proceeds by case analysis
on v/1, a/2, l/1 and counts the binders l/1 as it descends toward the leaves
of the tree. Its steps are controlled by the predicate up/2 that increments the
counts when crossing a binder.

b2c(v(X),v(0,X)).

b2c(a(X,Y),a(0,A,B)):-b2c(X,A),b2c(Y,B).

b2c(l(X),R):-b2c1(0,X,R).

b2c1(K,a(X,Y),a(K1,A,B)):-up(K,K1),b2c(X,A),b2c(Y,B).

b2c1(K, v(X),v(K1,X)):-up(K,K1).

b2c1(K,l(X),R):-up(K,K1),b2c1(K1,X,R).

up(From,To):-From>=0,To is From+1.

From Compressed to de Bruijn. The predicate c2b converts from the com-
pressed to the usual de Bruijn representation. It reverses the effect of b2c by
expanding the K in v(K,N) and a(K,X,Y) into K l/1 binders (no binders when
K=0). The predicate iterLam/3 performs this operation in both cases, and the
predicate down/2 computes the decrements at each step. We will reuse the pred-
icates up/2 and down/2 that can be seen as abstracting away the successor/pre-
decessor operation.
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c2b(v(K,X),R):-X>=0,iterLam(K,v(X),R).

c2b(a(K,X,Y),R):-c2b(X,A),c2b(Y,B),iterLam(K,a(A,B),R).

iterLam(0,X,X).

iterLam(K,X,l(R)):-down(K,K1),iterLam(K1,X,R).

down(From,To):-From>0,To is From-1.

Example 2. Illustrates the bijection defined by the predicates b2c and c2b.

?- BT=l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),b2c(BT,CT),c2b(CT,BT1).

BT = BT1, BT1 = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),

CT = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))) .

A convenient way to simplify defining chains of such conversions is by using
Prolog’s DCG transformation. For instance, the predicate c2l/2 (which expands
to something like c2l(X,Z):-c2b(X,Y),b2l(Y,Z)), converts from compressed
de Bruijn terms and standard lambda terms using de Bruijn terms as an inter-
mediate step, while l2c/2 works the other way around.

c2l --> c2b,b2l.

l2c --> l2b,b2c.

2.4 Open and Closed Terms

Lambda terms might contain free variables not associated to any binders. Such
terms are called open. A closed term is such that each variable occurrence is
associated to a binder.

Closed terms can be easily identified by ensuring that the lambda binders
on a given path from the root outnumber the de Bruijn index of a variable
occurrence ending the path. The predicate isClosed does that for compressed
de Bruijn terms.

isClosed(T):-isClosed(T,0).

isClosed(v(K,N),S):-N<S+K.

isClosed(a(K,X,Y),S1):-S2 is S1+K,isClosed(X,S2),isClosed(Y,S2).

3 Binary Trees, Lambda Terms and and Types

We can see our compressed de Bruijn terms as binary trees decorated with
integer labels. The binary trees provide a skeleton that describes the applicative
structure of the underlying lambda terms. At the same time, types in the simple
typed lambda calculus [4] share a similar binary tree structure.

Binary trees are among the most well-known members of the Catalan family
of combinatorial objects [3], that has at least 58 structurally distinct members,
covering several data structures, geometric objects and formal languages.
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Generating Binary Trees. We will build binary trees with the constructor
->/2 for branches and the constant o for its leaves. This will match the usual
notation for simple types [4] of lambda terms that can be represented as binary
trees.

A generator / recognizer of binary trees of a fixed size (seen as the number
of internal nodes, counted by entry A000108 in [5]) is defined by the predicate
scat/2.

scat(N,T):-scat(T,N,0).

scat(o)-->[].

scat((X->Y))-->down,scat(X),scat(Y).

Note the creative use of Prolog’s DCG-grammar transformation. After the DCG
expansion, the code for scat/3 becomes something like:

scat(o,K,K).

scat((X->Y),K1,K3):-down(K1,K2),scat(X,K2,K3),scat(K3,K4).

Given that down(K1,K2) unfolds to K1>0,K2 is K1-1 it is clear that this code
ensures that the total number of nodes N passed by scat/2 to scat/3 controls
the size of the generated trees. We will reuse this pattern through the paper, as
it simplifies the writing of generators for various combinatorial objects. It is also
convenient to standardize on the number of internal nodes as defining the size
of our terms.

Example 3. Illustrates trees with 3 internal nodes (built with the constructor
“->/2”) generated by scat/2.

?- scat(3,BT).

BT = (o->o->o->o) ;

BT = (o-> (o->o)->o) ;

BT = ((o->o)->o->o) ;

BT = ((o->o->o)->o) ;

BT = (((o->o)->o)->o) .

Note the right associative constructor “->” reducing the use of parentheses.

3.1 Type Inference with Logic Variables

Simple types, represented as binary trees built with the constructor “->/2” with
empty leaves representing the unique primitive type “o”, can be seen as a “Cata-
lan approximation” of lambda terms, centered around ensuring their safe and
terminating evaluation (strong normalization).

While in a functional language inferring types requires implementing unifi-
cation with occur check, as shown for instance in [6], this operation is available
in Prolog as a built-in. Also a “post-mortem” verification that unification has
not introduced any cycles is provided by the built-in acyclic term/1.

The predicate extractType/2 works by turning each logical variable X into
a pair :TX, where TX is a fresh variable denoting its type. As logic variable
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bindings propagate between binders and occurrences, this ensures that types are
consistently inferred.

extractType(_:TX,TX):-!. % this matches all variables

extractType(l(_:TX,A),(TX->TA)):-extractType(A,TA).

extractType(a(A,B),TY):-extractType(A,(TX->TY)),extractType(B,TX).

Instead of (inefficiently) using unification with occur-check at each step, we
ensure that at the end, our term is still acyclic, by using the built-in ISO-Prolog
predicate acyclic term/1.

hasType(CTerm,Type):-

c2l(CTerm,LTerm),

extractType(LTerm,Type),

acyclic_term(LTerm),

bindType(Type).

At this point, most general types are inferred by extractType as fresh variables,
somewhat similar to multi-parameter polymorphic types in functional languages,
if one interprets logic variables as universally quantified. However, as we are only
interested in simple types, we will bind uniformly the leaves of our type tree to
the constant “o” representing our only primitive type, by using the predicate
bindType/1.

bindType(o):-!.

bindType((A->B)):-bindType(A),bindType(B).

We can also define the predicate typeable/1 that checks if a lambda term is
well typed, by trying to infer and then ignoring its inferred type.

typeable(Term):-hasType(Term,_Type).

Example 4. Illustrates typability of the term corresponding to the S combinator
λx0. λx1. λx2.((x0 x2) (x1 x2)) and untypabilty of the term corresponding to

the Y combinator λx0.( λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))), in de Bruijn form.

?- hasType(a(3,a(0,v(0,2),v(0,0)),a(0,v(0,1),v(0,0))),T).

T = ((o->o->o)-> (o->o)->o->o).

?- hasType(

a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),T).

false.

4 Generating Special Classes of Lambda Terms

To generate lambda terms of a given size, we can write generators similar to the
ones for binary trees in section 3. Moreover, we have the choice to use generators
for standard, de Bruijn or compressed de Bruijn terms and then bijectively morph
the resulting terms in the desired representation, as outlined is section 2.
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Generating Motzkin Trees. Motzkin-trees (also called binary-unary trees)
have internal nodes of arities 1 or 2. Thus they can be seen as an abstraction
of lambda terms that ignores de Bruijn indices at the leaves. The predicate
motzkinTree/2 generates Motzkin trees with L internal and leaf nodes.

motzkinTree(L,T):-motzkinTree(T,L,0).

motzkinTree(u)-->down.

motzkinTree(l(A))-->down,motzkinTree(A).

motzkinTree(a(A,B))-->down,motzkinTree(A),motzkinTree(B).

Motzkin-trees are counted by the sequence A001006 in [5]. If we replace the
first clause of motzkinTree/2 with motzkinTree(u)-->[], we obtain binary-
unary trees with L internal nodes, counted by the entry A006318 (Large Schröder
Numbers) of [5].

4.1 Generation of de Bruijn Terms

We can derive a generator for closed lambda terms in de Bruijn form by extending
the Motzkin-tree generator to keep track of the lambda binders. When reaching
a leaf v/1, one of the available binders (expressed as a de Bruijn index) will be
assigned to it nondeterministically.

The predicate genDB/4 generates closed de Bruijn terms with a fixed number
of internal (non-index) nodes, as counted by entry A220894 in [5].

genDB(v(X),V)-->{down(V,V0),between(0,V0,X)}.

genDB(l(A),V)-->down,{up(V,NewV)},genDB(A,NewV).

genDB(a(A,B),V)-->down,genDB(A,V),genDB(B,V).

The range of possible indices is provided by Prolog’s built-in integer range gen-
erator between/3 that provides values from 0 to V0.

Our generator of deBruijn terms is exposed through two interfaces: genDB/2
that generates closed de Bruijn terms with exactly L non-index nodes and
genDBs/2 that generates terms with up to L non-index nodes, by not enforc-
ing that exactly L internal nodes must be used.

genDB(L,T):-genDB(T,0,L,0).

genDBs(L,T):-genDB(T,0,L,_).

Like in the case of Motzkin trees, a slight modification of the first clause of
genDB/4 will enumerate terms counted by sequence A135501 in [5].

Example 5. Illustrates the generation of terms with up to 2 internal nodes.

?- genDBs(2,T).

T = l(v(0)) ;

T = l(l(v(0))) ;

T = l(l(v(1))) ;

T = l(a(v(0), v(0))) ;



On Logic Programming Representations of Lambda Terms 123

4.2 Generators for Closed Terms in Compressed de Bruijn Form

A generator for compressed de Bruijn terms can be derived by using DCG syntax
to compose a generator for closed de Bruijn terms genDB and genDBs and a
transformer to compressed terms b2c/2.

genCompressed --> genDB,b2c.

genCompresseds--> genDBs,b2c.

4.3 Generators for Closed Terms in Standard Notation

genStandard-->genDB,b2l.

genStandards-->genDBs,b2l.

Example 6. Illustrates generators for closed terms in compressed de Bruijn and
standard notation with logic variables providing lambda variable names.

?- genCompressed(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)).

?- genStandard(2,T).

T = l(_G3434, l(_G3440, _G3440)) ;

T = l(_G3434, l(_G3440, _G3434)) ;

T = l(_G3437, a(_G3437, _G3437)).

4.4 Generating Closed Lambda Terms in Standard Notation

With logic variables representing binders and their occurrences, one can also gen-
erate lambda terms in standard notation directly. The predicate genLambda/2
equivalent to genStandard/2, builds a list of logic variables as it generates
binders. When generating a leaf, it picks nondeterministically one of the binders
among the list of binders available, Vs. As usual, the predicate down/2 controls
the number of internal nodes.

genLambda(L,T):-genLambda(T,[],L,0).

genLambda(X,Vs)-->{member(X,Vs)}.

genLambda(l(X,A),Vs)-->down,genLambda(A,[X|Vs]).

genLambda(a(A,B),Vs)-->down,genLambda(A,Vs),genLambda(B,Vs).

4.5 Generating Typeable Terms

The predicate genTypeable/2 generates closed typeable terms of size L. These
are counted by entry A220471 in [5].

genTypeable(L,T):-genCompressed(L,T),typeable(T).

genTypeables(L,T):-genCompresseds(L,T),typeable(T).



124 P. Tarau

Example 7. Illustrates a generator for closed typeable terms.

?- genCompressed(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)).

4.6 Generating Normal Forms

Normal forms are lambda terms that cannot be further reduced. A normal form
should not be an application with a lambda as its left branch and, recursively,
its subterms should also be normal forms. The predicate nf/4 defines this induc-
tively and generates all normal forms with L internal nodes in de Bruijn form.

nf(v(X),V)-->{down(V,V0),between(0,V0,X)}.

nf(l(A),V)-->down,{up(V,NewV)},nf(A,NewV).

nf(a(v(X),B),V)-->down,nf(v(X),V),nf(B,V).

nf(a(a(X,Y),B),V)-->down,nf(a(X,Y),V),nf(B,V).

As we standardize our generators to produce compressed de Bruijn terms, we
combine nf/4 and the converter b2c/2 to produce normal forms of size exactly
L (predicate nf/2) and with size up to L (predicate nfs/2).

nf(L,T):-nf(B,0,L,0),b2c(B,T).

nfs(L,T):-nf(B,0,L,_),b2c(B,T).

Example 8. Illustrates normal forms with exactly 2 non-index nodes.

?- nf(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)) .

The number of solutions of our generator replicates entry A224345 in [5] that
counts closed normal forms of various sizes.

4.7 Generation of Linear Lambda Terms

Linear lambda terms [7] restrict binders to exactly one occurrence.
The predicate linLamb/4 uses logic variables both as leaves and as lambda

binders and generates terms in standard form. In the process, binders accumu-
lated on the way down from the root, must be split between the two branches of
an application node. The predicate subset and complement of/3 achieves this
by generating all such possible splits of the set of binders.

linLamb(X,[X])-->[].

linLamb(l(X,A),Vs)-->down,linLamb(A,[X|Vs]).

linLamb(a(A,B),Vs)-->down,

{subset_and_complement_of(Vs,As,Bs)},

linLamb(A,As),linLamb(B,Bs).
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At each step of subset and complement of/3, place element/5 is called to
distribute each element of a set to exactly one of two disjoint subsets.

subset_and_complement_of([],[],[]).

subset_and_complement_of([X|Xs],NewYs,NewZs):-

subset_and_complement_of(Xs,Ys,Zs),

place_element(X,Ys,Zs,NewYs,NewZs).

place_element(X,Ys,Zs,[X|Ys],Zs).

place_element(X,Ys,Zs,Ys,[X|Zs]).

As usual, we standardize the generated terms by converting them with l2c to
compressed de Bruijn terms.

linLamb(L,CT):-linLamb(T,[],L,0),l2c(T,CT).

Example 9. Illustrates linear lambda terms for L=3.

?- linLamb(3,T).

T = a(2, v(0, 1), v(0, 0)) ;

T = a(2, v(0, 0), v(0, 1)) ;

T = a(1, v(0, 0), v(1, 0)) ;

T = a(1, v(1, 0), v(0, 0)) ;

T = a(0, v(1, 0), v(1, 0)) .

4.8 Generation of Affine Linear Lambda Terms

Linear affine lambda terms [7] restrict binders to at most one occurrence.

afLinLamb(L,CT):-afLinLamb(T,[],L,0),l2c(T,CT).

afLinLamb(X,[X|_])-->[].

afLinLamb(l(X,A),Vs)-->down,afLinLamb(A,[X|Vs]).

afLinLamb(a(A,B),Vs)-->down,

{subset_and_complement_of(Vs,As,Bs)},

afLinLamb(A,As),afLinLamb(B,Bs).

Example 10. Illustrates generation of affine linear lambda terms in compressed
de Bruijn form.

?- afLinLamb(3,T).

T = v(3, 0) ;

T = a(2, v(0, 1), v(0, 0)) ;

T = a(2, v(0, 0), v(0, 1)) ;

T = a(1, v(0, 0), v(1, 0)) ;

T = a(1, v(1, 0), v(0, 0)) ;

T = a(0, v(1, 0), v(1, 0)) ;

Clearly all linear terms are affine. It is also known that all affine terms are
typeable.
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4.9 Generating Lambda Terms of Bounded Unary Height

Lambda terms of bounded unary height are introduced in [8] where it is argued
that such terms are naturally occurring in programs and it is shown that their
asymptotic behavior is easier to study.

They are specified by giving a bound on the number of lambda binders from
a de Bruijn index to the root of the term.

boundedUnary(v(X),V,_D)-->{down(V,V0),between(0,V0,X)}.

boundedUnary(l(A),V,D1)-->down,

{down(D1,D2),up(V,NewV)},

boundedUnary(A,NewV,D2).

boundedUnary(a(A,B),V,D)-->down,

boundedUnary(A,V,D),boundedUnary(B,V,D).

The predicate boundedUnary/5 generates lambda terms of size L in com-
pressed de Bruijn form with unary hight D.

boundedUnary(D,L,T):-boundedUnary(B,0,D,L,0),b2c(B,T).

boundedUnarys(D,L,T):-boundedUnary(B,0,D,L,_),b2c(B,T).

Example 11. Illustrates terms of unary height 1 with size up to 3.

?- boundedUnarys(1,3,R).

R = v(1, 0) ;

R = a(1, v(0, 0), v(0, 0)) ;

R = a(1, v(0, 0), a(0, v(0, 0), v(0, 0))) ;

R = a(1, a(0, v(0, 0), v(0, 0)), v(0, 0)) ;

R = a(0, v(1, 0), v(1, 0)) .

4.10 Generating Terms in Binary Lambda Calculus Encoding

Generating de Bruijn terms based on the size of their binary lambda calculus
encoding [9] works by using a DCG mechanism to build the actual code as a list
Cs of 0 and 1 digits and specifying the size of the code in advance.

blc(L,T,Cs):-length(Cs,L),blc(B,0,Cs,[]),b2c(B,T).

blc(v(X),V)-->{between(1,V,X)},encvar(X).

blc(l(A),V)-->[0,0],{NewV is V+1},blc(A,NewV).

blc(a(A,B),V)-->[0,1],blc(A,V),blc(B,V).

Note that de Bruijn binders are encoded as 00, applications as 01 and de Bruijn
indices in unary notation are encoded as 00. . .01. This operation is preformed
by the predicate encvar/3, that, in DCG notation, uses down/2 at each step to
generate the sequence of 1 terminated 0 digits.

encvar(0)-->[0].

encvar(N)-->{down(N,N1)},[1],encvar(N1).
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Example 12. Illustrates generation of 8-bit binary lambda terms (Cs) together
with their compressed de Bruijn form (T).

?- blc(8,T,Cs).

T = v(3, 1),

Cs = [0, 0, 0, 0, 0, 0, 1, 0] ;

T = a(1, v(0, 1), v(0, 1)),

Cs = [0, 0, 0, 1, 1, 0, 1, 0] .

Note that while not bijective, the binary encoding has the advantage of being a
self-delimiting code. This facilitates its use in an unusually compact interpreter.

5 Normalization of Lambda Terms

Evaluation of lambda terms involves β-reduction, a transformation of a term like
a(l(X,A),B) by replacing every occurrence of X in A by B, under the assumption
that X does not occur in B and η-conversion, the transformation of an application
term a(l(X,A),X) into A, under the assumption that X does not occur in A.

The first tool we need to implement normalization of lambda terms is a
safe substitution operation. In lambda-calculus based functional languages this
can be achieved through a HOAS (Higher-Order Abstract Syntax) mechanism,
that borrows the substitution operation from the underlying “meta-language”.
To this end, lambdas are implemented as functions which get executed (usually
lazily) when substitutions occur. We refer to [10] for the original description
of this mechanism, widely used these days for implementing embedded domain
specific languages and proof assistants in languages like Haskell or ML.

While logic variables offer a fast and easy way to perform substitutions, they
do not offer any elegant mechanism to ensure that substitutions are capture-free.
Moreover, no HOAS-like mechanism exists in Prolog for borrowing anything
close to normal order reduction from the underlying system, as Prolog would
provide, through meta-programming, only a call-by-value model.

We will devise here a simple and safe interpreter for lambda terms supporting
normal order β-reduction by using de Bruijn terms, which also ensures that terms
are unique up to α-equivalence. As usual, we will omit η-conversion, known to
interfere with things like type inference, as the redundant argument(s) that it
removes might carry useful type information.

The predicate beta/3 implements the β-conversion operation corresponding
to the binder l(A). It calls subst/4 that replaces in A occurrences corresponding
the the binder l/1.

beta(l(A),B,R):-subst(A,0,B,R).

The predicate subst/4 counts, starting from 0 the lambda binders down to an
occurrence v(N). Replacement occurs at at level I when I=N.

subst(a(A1,A2),I,B,a(R1,R2)):-I>=0,

subst(A1,I,B,R1),

subst(A2,I,B,R2).
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subst(l(A),I,B,l(R)):-I>=0,I1 is I+1,subst(A,I1,B,R).

subst(v(N),I,_B,v(N1)):-I>=0,N>I,N1 is N-1.

subst(v(N),I,_B,v(N)):-I>=0,N<I.

subst(v(N),I,B,R):-I>=0,N=:=I,shift_var(I,0,B,R).

When the right occurrence v(N) is reached, the term substituted for it is shifted
such that its variables are marked with the new, incremented distance to their
binders. The predicate shift var/4 implements this operation.

shift_var(I,K,a(A,B),a(RA,RB)):-K>=0,I>=0,

shift_var(I,K,A,RA),

shift_var(I,K,B,RB).

shift_var(I,K,l(A),l(R)):-K>=0,I>=0,K1 is K+1,shift_var(I,K1,A,R).

shift_var(I,K,v(N),v(M)):-K>=0,I>=0,N>=K,M is N+I.

shift_var(I,K,v(N),v(N)):-K>=0,I>=0,N<K.

Normal order evaluation of a lambda term, if it terminates, leads to a unique
normal form, as a consequence of the Church-Rosser theorem, elegantly proven
in [2] using de Bruijn terms. Termination holds, for instance, in the case of simply
typed lambda terms. Its implementation is well known; we will follow here the
algorithm described in [11]. We first compute the weak head normal form using
wh nf/2.

wh_nf(v(X),v(X)).

wh_nf(l(E),l(E)).

wh_nf(a(X,Y),Z):-wh_nf(X,X1),wh_nf1(X1,Y,Z).

The predicate wh nf1/3 does the case analysis of application terms a/2. The
key step is the β-reduction in its second clause, when it detects an “eliminator”
lambda expression as its left argument, in which case it performs the substitution
of its binder, with its right argument.

wh_nf1(v(X),Y,a(v(X),Y)).

wh_nf1(l(E),Y,Z):-beta(l(E),Y,NewE),wh_nf(NewE,Z).

wh_nf1(a(X1,X2),Y,a(a(X1,X2),Y)).

The predicate to nf implements normal order reduction. It follows the same
skeleton as wh nf, which is called in the third clause to perform reduction to
weak head normal form, starting from the outermost lambda binder.

to_nf(v(X),v(X)).

to_nf(l(E),l(NE)):-to_nf(E,NE).

to_nf(a(E1,E2),R):-wh_nf(E1,NE),to_nf1(NE,E2,R).

Case analysis of application terms for possible β-reduction is performed by
to nf1/3, where the second clause calls beta/3 and recurses on its result.

to_nf1(v(E1),E2,a(v(E1),NE2)):-to_nf(E2,NE2).

to_nf1(l(E),E2,R):-beta(l(E),E2,NewE),to_nf(NewE,R).

to_nf1(a(A,B),E2,a(NE1,NE2)):-to_nf(a(A,B),NE1),to_nf(E2,NE2).

The predicates to nf provides a Turing-complete lambda calculus interpreter
working on de Bruijn terms. It is guaranteed to compute a normal form, if it
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exists. The predicate evalStandard/2 works on standard lambda terms, that
in converts to de Bruijn terms and then back after evaluation. The predicate
evalCompressed/2 works in a similar way on compressed de Bruijn terms. We
express them as a composition of functions (first argument in, second out) using
Prolog’s DCG notation.

evalStandard-->l2b,to_nf,b2l.

evalCompressed-->c2b,to_nf,b2c.

Example 13. Illustrates evaluation of the lambda term SKK =
(( λx0. λx1. λx2.((x0 x2) (x1 x2)) λx3. λx4.x3) λx5. λx6.x5) in compressed
de Brijn form, resulting in the definition of the identity combinator I = λx0.x0.

?- S=a(3,a(0,v(0,2),v(0,0)),a(0,v(0,1),v(0,0))),K=v(2,1),

evalCompressed(a(0,a(0,S,K),K),R).

S = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))),

K = v(2, 1),

R = v(1, 0).

6 Related Work

The classic reference for lambda calculus is [1]. Various instances of typed lambda
calculi are overviewed in [4]. De Bruijn’s notation for lambda terms is introduced
in [2]. The compressed de Bruijn representation of lambda terms proposed in this
paper is novel, to our best knowledge.

The combinatorics and asymptotic behavior of various classes of lambda
terms are extensively studied in [6,7,12]. Distribution and density properties
of random lambda terms are described in [13].

Lambda terms of bounded unary height are introduced in [8]. John Tromp’s
binary lambda calculus is only described through online code and the Wikipedia
entry at [9].

Generators for closed and well-typed lambda terms, as well as their normal
forms, expressed as functional programming algorithms, are given in [6], derived
from combinatorial recurrences. However, they are significantly more complex
than the ones described here in Prolog. On the other hand, we have not found
in the literature generators for linear, linear affine terms and lambda terms
of bounded unary height. Normalization of lambda terms and its confluence
properties are described in [1] and [14] with functional programming algorithms
given in [11] and HOAS-based evaluation first described in [10].

In a logic programming context, unification of simply typed lambda terms
has been used in as the foundation of the programming language λProlog [15,16]
and applied to higher order logic programming [17].

7 Conclusion

We have described compact (and arguably elegant) combinatorial generation
algorithms for several important families of lambda terms. Besides the newly
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introduced a compressed form of de Bruijn terms we have used ordinary de
Bruijn terms as well as a canonical representation of lambda terms relying on
Prolog’s logic variables. In each case, we have selected the representation that
was more appropriate for tasks like combinatorial generation, type inference
or normalization. We have switched representation as needed, though bijective
transformers working in time proportional to the size of the terms. Our combi-
natorial generation algorithms match the corresponding sequence of counts by
size, given in [5] as an empirical validation of their correctness. Our techniques,
combining unification of logic variables with Prolog’s backtracking mechanism
and DCG grammar notation, recommend logic programming as an unusually
convenient meta-language for the manipulation of various families of lambda
terms and the study of their combinatorial and computational properties.
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Benôıt Vaugon1(B), Philippe Wang2, and Emmanuel Chailloux2

1 U2IS, ENSTA ParisTech, Palaiseau, France
benoit.vaugon@ensta.fr

2 LIP6, CNRS UMR 7606, UPMC, Paris, France
philippe.wang@gmail.com,

emmanuel.chailloux@lip6.fr

Abstract. PIC microcontrollers are low-cost programmable integrated
circuits,consume very little energy, but are hard to program due to very
little available resources. They are traditionally programmed using low-
level languages (e.g., assembler or subsets of C), which provide very few
safeguards if any. This paper presents the issues we had to solve to suc-
cessfully port a modern multi-paradigm general-purpose programming
language, which notably provides automatic memory management and
strong static type checking, to this rather peculiar hardware.

Keywords: Microcontroller · Virtual machine · Programming language
implementation · OCaml · Applications

1 Introduction

Microcontrollers are programmable integrated circuits. Within a single chip, they
contain a processing unit, various volatile and nonvolatile memory units, and a
set of “internal interfaces” facilitating communications with the outside world.
They are designed to be programmed, and then placed in an electronic circuit
in which they perform more or less complex work.

The PIC microcontrollers are commercialized by the Microchip company.
There are hundreds of PIC microcontrollers models, classified in different series
(PIC16, PIC18, etc.) according to their characteristics. Machine word size
depends on the series: 8 bits for the most available series (PIC10, PIC12, PIC16
and PIC18), 16 bits (PIC24, PIC30, PIC33) or 32 bits for the most recent and
powerful series (PIC32). Such capacities may be compared to 1980’s micropro-
cessors (e.g., Intel 8080, Zilog Z80).

We focus on the PIC18 series, which provides the minimum performance
required for us to work with. Without the use of any external component, this
series provides in a chip at most 4 KiB of RAM, 128 KiB of program memory and
the maximum CPU speed is 64 MHz. They are traditionally programmed using
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low-level languages (e.g., assembler and subsets of C or Basic). PIC instruction
sets are rather peculiar, making code generation challenging. For instance, there
is no hardware implementation of the division operation on the PIC18 series and
multiplication is absent for anterior series. Many compilers provide only minimal
support for language constructions and standard libraries.

In this paper, we propose to use a modern high-level functional-based multi-
paradigm general-purpose programming language, which notably provides auto-
matic memory management, freeing the developer so they may focus on other
tasks and is quite useful against segmentation faults, and strong static type
checking, which intends to help catch errors of a certain class at compile-time
instead of runtime. We chose OCaml, which is a particularly rich programming
language, developed and distributed by Inria since 1990s. Of course, other lan-
guages could have been used instead, and the principles presented in this paper
may be adapted or applied to many other languages.

To this end, we first developed a virtual machine (VM), largely based on
the standard OCaml VM, and a relevant standard library. Then, to address the
size of the generated binaries, we developed several tools to reduce their size,
using different techniques: first we modified the bytecode format to reduce the
size of binaries by about 75%; and then we developed a tool to remove unnec-
essary computations. In order to facilitate testing and debugging processes, we
developed two simulators, one that simply uses the standard OCaml compiler
and links to alternative libraries, and another that emulates the PIC18 environ-
ment. All those development tools have been tested by several implementations
on actual hand-crafted hardware.

The rest of this paper is organized as follows. In the next section we briefly
describe the two opposite worlds: the PIC microcontrollers families and the
OCaml language. In section 3, we describe our implementation of a modified
OCaml VM, a specific runtime library, and a modified standard library. Section 4
offers several ways to reduce the size of programs, in order to allow more pro-
grams to work on PIC. Then, section 5 presents two OCaPIC simulation tools
that have been very useful during development. Section 6 presents some imple-
mentations that use OCaPIC, including a two-player board game and a pro-
grammable calculator. Finally, in section 7, we discuss various experiments on
PIC programming with high-level languages and compare them to ours, on the
execution speed and memory occupation, and conclude on our experience in
section 8.

2 Two Worlds: PIC Microcontrollers and the OCaml
Language

2.1 PIC Microcontrollers

The PIC microcontrollers (PICs) have small instruction sets (RISC) that are
composed of arithmetic and logical instructions, branching instructions, and
some special instructions, notably to access the flash memory containing the
program.



134 B. Vaugon et al.

PICs usually have four separate memory units. One is a nonvolatile memory
using flash technology, called “program memory”. Its size varies from hundreds
of bytes to hundreds of KiB depending on the model. Our testing model, the
PIC18F4620 contains 64 KiB of program memory (see Fig. 1). As its name
suggests, it stores the program to execute and some constant data. Programming
a PIC consists in writing the program into this memory. It is generally rewritable
from 1,000 to 100,000 times depending on the model.

Model Architecture Flash memory Registers EEPROM Speed I/O pins

18F4620 8 bits 64 KiB 3968 B 1024 B 10 MIPS 36

Fig. 1. PIC18F4620 features

To dynamically store information, PICs only use tens to hundreds of thou-
sands of General Purpose Registers (GPRs). They are accessible for reading and
writing by the computing unit in two different ways: either directly by storing
register indexes into instructions as usually, or indirectly to access registers of
indexes that are computed dynamically with a complex indirection mechanism.

To configure a PIC (change the clock speed, lock/unlock flash accesses, etc.),
communicate with internal hardware modules (timers, PWM modules, serial
port encoders/decoders, etc.) and external modules (digitally or analogically)
via the pins, a PIC uses about a hundred of Special Function Registers (SFRs).
From the program, SFRs are mapped to reading and/or writting registers. Inter-
nally, the SFRs memory is electrically connected to the different hardware inter-
faces. Moreover some PICs have a small readable and writable EEPROM. (from
some B to some KiB). These memory units are generally rewritable between
1,000,000 and 10,000,000 times.

In our implementation, the assembler code was written for the PIC18 series,
and therefore concerns a bit more than 210 models of PIC currently in pro-
duction. This series has the distinction of having an “extended instruction set”,
originally created to facilitate compilation from the C language. These instruc-
tions ease OCaml’s stack management and significantly improve performance.
Specifically, our tests were made on a PIC 18F4620. It was chosen primarily for
its relatively large number of registers. The amount of dynamic memory is the
factor which gives the greatest constraints in adapting OCaml programs for PIC.

2.2 The OCaml Language and Its Virtual Machine

The OCaml language is a high-level multi-paradigm programming language
of the ML family. It implements functional, imperative, modular and object-
oriented paradigms. Its main characteristics come from its type system provid-
ing a strong static type checking with type inference. The standard distribution
comes with two compilers. The first one emits bytecode for its VM (also known as
the ZAM)[6]. The second one emits native code. Both compilers share a runtime
library implemented in C.

The OCaml VM, precisely described in [4], is a stack-based VM for a
functional-based programming language with exceptions and objects. It uses
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7 virtual registers: an accumulator to store one value (usable, for instance, as
an operand of an arithmetic operation), a code pointer (containing the address
of the next instruction to interpret), a stack pointer, a pointer for the clos-
est exception handler, an extra-arguments counter (used for special function
calls), an environment (pointing to the closure corresponding to the function
that is currently executed) and a global data array (used to store static values
such as static strings, and to make communications possible between modules).
It is rather high-level, e.g., it has a subset of instructions for a general apply
mechanism (apply, appterm, return, grab, restart). The instruction set
contains 148 different instructions, but about 60% of which are shortcuts for sev-
eral instructions combinations. No type verifications are made at runtime by the
interpreter because the compiler guaranties that type checking is unnecessary at
runtime [15].

3 The OCaml Virtual Machine on a PIC

The standard OCaml VM is implemented in C code. An obvious approach to
consider is compiling this VM for the PIC18 architecture. However, the complete
OCaml VM – that is the interpreter with the runtime library plus the bytecode
loader – is about 22 000 lines of C code. The compiled runtime library alone is
more than 250 KiB, which is more than four times the size of the available flash
memory on most of PIC18 microcontrollers.

3.1 Bytecode Interpreter

The original interpreter component is about 1,000 lines of C code. One approach
could be to provide a much simplified alternative runtime library (perhaps based
on the work of Pagano et al.[13]) and an alternative bytecode loader for the VM
to fit. Indeed, on a PIC, we do not need such a complex generational and incre-
mental garbage collector (Stop&Copy+Mark&Sweep+Compact[3, Chapter9]),
neither do we need to check the bytecode integrity. However, most C compilers
provide poor performance when compiling for PICs, especially for VM imple-
mentations. PICOBIT uses a VM-specialized C compiler that was developed
specifically for this use[16].

Instead of using C, we chose to develop an OCaml VM directly in PIC18
assembler. Our VM is consequently usable for all models of the PIC18 series
(about 210 models), the portability of this solution is discussed in section 7.4.
This choice allowed to save a lot of space. This constraint of space also drove us to
choose to implement a 16-bit VM rather than a 32-bit one. On a microcontroller
that has at most 4 KiB of RAM, a factor of 2 is quite important and having
32-bit words is not quite relevant as most of the time we would not need that
much. Moreover, it remains possible to use larger integers if need be, as we do
provide the Int32 and Int64 modules. Just like standard OCaml implementations,
we use the least-significant bit to distinguish a pointer from an immediate value.
Therefore, we provide 15-bit (signed) integers by default.
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Another issue is floating-point numbers. Standard OCaml uses IEEE 754
double precision (64-bit) floats. On a PIC18, we probably do not want to have
such precision because the performance would be poor as there is no hardware
implementation for floating point numbers. As software floating point operations
have a non negligible cost, we have decided to provide 32-bit floats with basic
arithmetic operations. Going down to 16 bits does not feel relevant because of
the very poor precision. All in all, we use runtime representations that are very
similar to those of standard OCaml, except that we have to use less space.

Assembler OCaml Binary Size

Bytecode interpreter 2,500 LoC - 5,000 B

Runtime library (w/o GC) 200 LoC - 400 B

Stop & Copy GC 150 LoC - 250 B

Mark & Compact GC 550 LoC - 1,000 B

Standard library 7,000 LoC 12,000 LoC [variable]

Fig. 2. Sizes of implementations

3.2 OCaml Runtime Library Implementation

Several aspects of implementing a runtime library for an ML language are well
known to be difficult. One of them is the garbage collector. Standard OCaml’s
garbage collector uses two heaps that we may call the “young” and the “old”
heaps, and three collection algorithms [3, Chapter 9]. The minor collection imple-
ments a Stop&Copy algorithm to copy surviving values from the young heap to
the old heap. The major collection implements a Mark&Sweep algorithm and a
Compact algorithm.

On a microcontroller, we can ill afford such a complex garbage collector
because it would use a large part of the available flash memory. Instead, we
implemented two garbage collectors (also in PIC18 assembler) selectable at
link time: a small and simple Stop&Copy, and a more complex and heavier
Mark&Compact. Of course, the disadvantage of the Stop&Copy algorithm on a
microcontroller is very clear: since we have so little memory, “wasting” half of
it for a Stop&Copy algorithm seems unacceptable. However, Stop&Copy uses
constant memory (just some bytes) for collection and has additional crucial
advantages. Indeed, it is particularly easier both to implement and to debug
than Mark&Sweep or Mark&Compact, and appears usable in practice. Also, the
execution time for a collection is very low because of the size of the heap. On a
PIC18 with 4 KiB of RAM, a collection never takes more than 7ms, and this is
easy to determine because there is no issue related to the memory cache since
there is none. Conversely, the Mark&Sweep implementation allow to use the
entire available memory. However, the Mark&Sweep implementation is clearly
slower (a bit more than 5 times when the heap is full) since it uses three passes
on blocks to update pointers while the Stop&Copy needs only one pass.

Using a garbage collector raises another issue regarding hardware interrup-
tion management from OCaml. Indeed, an OCaml program can be interrupted
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to call an arbitrary OCaml function only when the heap is in a consistent state.
As for Unix systems, we define in assembler an interruption handler that raises a
flag and stores the interruption metadata in a neutral space of the PIC memory,
and when the VM knows that the heap is consistent, it checks this flag and calls
the OCaml interruption handler if needed.

3.3 OCaml Standard Library Implementation

Most of the OCaml standard library is implemented in OCaml. The rest is
implemented in C code and may be divided in two parts: the one that is relevant
to embed on a microcontroller (e.g., value comparison), and the one that is not
(e.g., Unix socket operations).

For the part that is tightly bound to the runtime library, such as value
comparison, the external functions are implemented in PIC18 assembler. Such
functions are invoked using the various ccall instructions of the OCaml VM.
Let us note that in the standard OCaml VM, the ccall instructions are used
to call C functions but in our case they are used to invoke assembler.

For the part that is not relevant on a microcontroller, it is simply removed.
However, we do provide instead a microcontroller-specific library for input/out-
put operations. Otherwise, we would never observe anything coming from the
microcontroller. Therefore, just as the OCaml Unix library provides a typed
interface to Unix operations, we have implemented a typed interface to micro-
controller-specific input/output operations, which prevents many unsound oper-
ations thanks to ML’s type system. And this may be particularly appreciated
when debugging a program, as loading even a tiny program onto a PIC18 micro-
controller may take tens of seconds. Also, let us note that there is in general
no operating system on a PIC to prevent a wrong program from damaging the
hardware. Using an ML-based type system prevents many wrong programs to
make it to the hardware.

As such, a typed library is provided to manipulate PIC18 special function
registers. Writing and reading those “registers” is the normal way to config-
ure the hardware, to manipulate PIC’s interfaces (e.g., the serial interface), to
catch interruptions, and to program unsafe I/O operations on the PIC micro-
controllers. Instead of asking the programmers to provide integers to change the
bits of those registers, we use sum algebraic data types to provide a statically
well-typed interface. The standard library implementation (see Fig. 2) includes
490 specific lines to the PICs, and only 4 modules out of 35 have been modified
in order to fit the PICs better.

4 Tools for Reducing Code Size

4.1 Elimination of Non-useful Bytecode: ocamlclean

Before having non-useful code elimination, our project could already run several
small OCaml programs, including the board game described later, but could
easily exhaust available memory, both RAM (because of unnecessary closures)



138 B. Vaugon et al.

and flash. For instance, the object-oriented paradigm was unusable because it
uses the module CamlinternalOO, which provides “run-time support for objects
and classes”[7], and this module creates a lot of closures at runtime that could
not be collected in time even when they were completely useless. Actually, any
libraries with too numerous or too large modules were unusable as well because
using one function of a module makes the whole module and its dependencies
be loaded at runtime. For instance, using Core or Batteries libraries was out of
question and even the standard OCaml library could easily make the bytecode
too large. Those issues were solved by designing and implementing a tool to
remove all, or almost all, unnecessary bytecode. We called this tool ocamlclean,
and it can be applied to any standard OCaml bytecode binary (regardless of
its relation to OCaPIC since it outputs standard OCaml bytecode binaries).
Figure 3 details the workflow from an OCaml program to a PIC microcontroller
and shows where ocamlclean’s action takes place.

Fig. 3. From OCaml to PIC

The ocamlclean algorithm is not a simple reachability analysis because, in
an OCaml bytecode program produced by ocamlc, all base blocks are reach-
able. The reason is that for all function codes, a closure creation is performed
at the initialization step of the container module or inside an other function.
To eliminate dead code in a functional language like OCaml, it is important
to observe the dynamic representation of data that may point (directly or indi-
rectly) to code sections. In practice, OCaml modules are implemented at runtime
by blocks dynamically allocated in the heap. Modules usually contain functions
stored in the heap as closures containing code pointers. A bytecode cleaner needs
to compute which closures may be used at runtime and which may not. Code
elimination is then performed in three steps, looping on them until a fixpoint is
reached:

1. The first step consists in detecting blocks (corresponding to modules, in
particular) in which we may eliminate some fields without changing the
program behavior. To do this, ocamlclean starts with a data flow analysis
based on an abstract interpretation of the program, and selects blocks on
which it controls all accesses. It then cleans these blocks by removing unused
cells allocations/initializations, and remapping usages.

2. By a second data flow analysis, ocamlclean computes for each code section
the stack cells of the current stack frame that are written and never read.
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It then selects closures that are no longer stored thanks to step 1 and removes
their allocations.

3. At last, ocamlclean performs standard dead code elimination and removes
code sections that are mentioned nowhere. Such code sections are left behind
by the removal of some closure allocations at step 2.

Since code elimination potentially generates new block fields as candidates
for step 1, ocamlclean loops on steps 1, 2 and 3 until no more dead code is
eliminated. In practice, on our test programs, we need between 2 and 13 passes to
reach the fixpoint. To emphasize the usability and effectiveness of ocamlclean,
let us note that this tool has been shown useful in a large project where OCaml
is used to program small and secure operating systems destined to the cloud[8].

4.2 Bytecode Format

The standard OCaml bytecode format is optimized for classical computers where
memory alignment and simpler code clearly justify the loss of a few bytes. For
instance, while the bytecode instructions can easily be represented by a single
byte, since there are exactly 148 of them, each uses four bytes without counting
their arguments. This means that each uses three non-significant zero-bytes. On
a microcontroller, we can hardly afford to have so many non-significant zeros.

Our bytecode format takes back the non-significant zeros and an instruction
is then represented with a single byte, plus zero, one or two bytes for its possible
arguments. For instance, the instruction constint places its argument (which
is an integer literal) in the accumulator register. Instead of taking eight bytes, in
our bytecode format it takes three bytes, since we use one byte for the instruction
code and two for a 16-bit integer.

Since arithmetic operations may have a significant cost on microcontrollers,
integers are directly encoded with their memory representation, i.e., integer n
is directly encoded as 2n + 1 so that this conversion does not have to occur at
runtime. Indeed, we use a runtime representation very similar to the one used
by standard OCaml.

Our bytecode format reduces the binary size by about 3.5 times, which has
the additional advantage of speeding up reading of the bytecode on the microcon-
troller by the same factor. Another format modification is the pre-computation
of the initial state of the VM. The standard OCaml VM deserializes the table of
global data when it loads a program. Instead of doing such work, we pre-compute
the states in which the stack and the heap would be in after global data loading,
and we put it into the program memory. The VM would copy it verbatim into
the RAM before starting interpreting the bytecode. This improves the perfor-
mance such that the initialization may never take more than 2.5 milliseconds on
a 4 KiB-RAM PIC18 microcontroller running at 10 MIPS.

5 Simulators

In order to make debugging a lot easier, we developed two simulators to run the
programs on a basic personal computer. This is largely similar to what is done
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with smartphone applications development where the software may be tested in
a simulator prior to loading it on an actual phone.

Debugging activities involving a PIC microcontroller are difficult because of
the limited interactions. There is not always an LCD, almost never a keyboard,
and even if there were, when a program crashes, the PIC stops communicating.
In such a case, it is not possible to investigate the state of the memory nor to
stop the wrong program without powering the device off.

5.1 Runtime Simulator

When a program is compiled by OCaPIC, it is first compiled with the standard
ocamlc compiler (see Fig. 3). The first simulation technique consists in linking
the resulting binary with a simulator-specific runtime library, in which specific C
functions replace the PIC18 assembler functions. This technique is particularly
simple and the simulation runs very fast. This is useful mainly when searching
for functional-related or algorithmic-related bugs.

However, this technique has a significant drawback. Some errors cannot be
detected because it uses a standard VM, which works with 31-bit or 63-bit
integers, rather than 15-bit integers. Also, there is a lot of memory on any
modern personal computer compared to any PIC, that is why stack overflow
and out of memory are not detected by this simulation technique.

1 ./hw ’ocapic_lcd_simulator \
2 16x2 \
3 e=RD0 \
4 rs=RD2 \
5 rw=RD1 bus=PORTC ’

Fig. 4. Screenshot of the simulated LCD display (2×16 chars)

5.2 Microcontroller Simulator

To address those issues, we implemented another simulator that directly inter-
pretes the assembly code (which is normally transferred onto the PIC) according
to the PIC specifications. This technique allows to test an OCaml program as if
it were running on a PIC. This has been very useful in particular for the devel-
opment of OCaPIC’s version of the OCaml VM and its libraries, as they are
implemented (partly or entirely) in PIC18 assembler.

5.3 Configuration Description

PIC simulators are numerous, they are generally used to analyze the state of a
PIC’s memory or to test a PIC on some external components (e.g., LEDs, LCD,
buttons). However, the code that is executed on a PIC is not the OCaml code
of the programmer but the code of the specific OCaml VM. Few people are used
to OCaml bytecode and to OCaml runtime data representation. Therefore, it
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is not very useful to show them the state of the memory even if it is possible
with our second simulator. However, this simulator can work with any simulated
electronic circuit. To do that, the simulator interacts with a set of programs
that are in charge of simulating the electronic circuit, and communicates with
them via a textual protocol using standard file descriptors. OCaPIC provides a
few simulated components, such as LEDs, push-buttons, switches, a keyboard, an
LCD, etc. To illustrate the use of our simulators, we shall note that we wrote 108
lines of OCaml to transform an existing board game implementation (presented
in the next section) into a game running on a modern personal computer with
a graphical user interface, and this works for both simulators.

6 Hand Crafted Applications Using OCaPIC

This section relates our experience with the hand-crafted applications we have
built over the past four years.

6.1 A Board Game

For testing and education purpose, we took an existing implementation in OCaml
of a commercialized two-player board game (the standard version of Gobblet,
edited by Gigamic and authored by T. Denoual). The initial version of the
OCaml implementation was developed as a student project and used the Graph-
ics module from the standard OCaml library. Our implementation is designed
for a human player to play against the computer, and implements a classical
min-max[12] algorithm. Porting this game for the PIC18 microcontroller was as
simple as it could have been. The graphical user interface was replaced by a
text-based interface displayed on a small LCD monitor (2 inches2, for 10×100
pixels) to escort a board with a network of push-buttons (one for each square
of the board). The min-max algorithm depth was adjusted so that it could run
with the small amount of memory available on a PIC18F4620, i.e., 4 KiB of
RAM, which is actually the maximum for the PIC18 series. We did not need to
adjust the code of the algorithm at all although it was initially designed to work
on a modern personal computer.

The PIC18 implementation wins against beginner human players with only a
few steps, and often (most of the time) beats experienced players when we inject a
little randomization of the computer’s decisions. Indeed, without randomization,
we may detect a pattern to win against the computer since it would be completely
deterministic and would play the same moves again and again. All in all, it results
in a highly playable game, where the microcontroller computes a move in a few
milliseconds at the beginning of a game, up to one or two seconds near the
end of a long lasting game. The implementation is about 700 lines of OCaml
(see Fig. 6). Implementing this game in another language (amongst those that
are available for PIC18s) would have been a lot more difficult, notably because
manually managing a PIC’s memory is a challenge.
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6.2 A Programmable-in-OCaml Calculator

As a two-student project, a board with a few buttons and a small 4×20-character
LCD wired to a PIC18 microcontroller has been designed and implemented using
OCaPIC. This board can be easily programmed in OCaml and can be used as
a classical arithmetic calculator, but also as a lambda-term evaluator, or any
application that may use the same hardware.

An interesting fact about this implementation is that the LCD was discovered
to be soldered upside down to the board by the students. Using OCaml as the
programming language allowed them to easily modify the OCaml code in order to
software-rotate the display. We believe this small and complete implementation
(see Fig. 6) could be used as a pedagogical base for teaching programming, or
basic electronics, for instance in high schools.

Figure 5 describes main part of the electronic circuit of the calculator. Basi-
cally, the PIC receives inputs from the 20 push-buttons (on the left of the dia-
gram) and displays expressions and results on a 4×20-character LCD display
(on the right). The connection to the LCD display is very standard: data are
transferred via the 8-wire bus in both directions between the port C of the PIC
and the display, and connections E-D0, RS-D1 and RW-D2 are used for con-
trol. The E-D0 connection is the clock used to synchronize transfers on the bus,
the PIC use the RS-D1 connection to tell if it transfer data (i.e., characters to
be displayed) or instructions (e.g., SHIFT-LEFT, CLEAR-SCREEN, MOVE-
CURSOR), and the RW-D2 connection is used to specify the direction of the
transfer (from the PIC to the display or the reverse).

Fig. 5. Circuit of the programmable-in-OCaml calculator

The input is more interesting. It is important to know that, when using a
microcontroller, we have no “high-level” protocol to connect a keyboard and
receive data via an “abstract pipe”. In practice, we have to explicitly send
impulses and measure voltages on the pins to know which button is pushed
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and which is not. That’s the role of the small circuit described on the left of the
schema. To test which button is pushed, the PIC repeatedly sends impulses on
its outputs A0..A4, and measures voltages on its inputs B0..B3. For example,
when it sends 5V on A3, it measures 5V on B0, it knows that the corresponding
button is pushed. This kind of input circuit is interesting to reduce the number
of pins used on the microcontroller, since to connect n×p buttons (here, n = 4
and p = 5), only n + p pins are needed.

Obviously, the software management of this kind of input is complicated and,
if not properly managed, tends to pollute the code. Indeed, during all the calculus
performed by the PIC, the program has to regularly shift impulses sent on A0-
A4, and slightly after each shift, measure voltages on B0-B3, compare them with
the preceding measure, and in the case where the state of a button has changed,
stop or trigger a corresponding action if necessary. Hardware interruptions are
of course very useful to shift impulses and perform measures in parallel with the
program execution, but interactions between the code of the interruptions and
the rest of the algorithm remain a problem.

6.3 A Precise Heater

The propose of this heater is to precisely heat a recipient or a liquid to a tem-
perature set by the user. For instance, such a device is very helpful to melt
some chocolate at 45◦C and keep it at this temperature for hours, which may
be required in the pre-crystallization of chocolate, which is a process to obtain
stable cocoa butter (i.e., when the crystals of the cocoa butter are all in the
stable beta form; in unstable forms, the cocoa butter will separate from the rest
of the chocolate in matters of hours or less). Another example is that perfect
soft-boild eggs may be obtained by leaving fresh eggs in some water maintained
at 63◦C for 90 minutes, as the yolk will not coagulate at this temperature but
the white will; and as a bonus, maintaining eggs at such a temperature for such
a long time eliminates the potential risks of salmonella.

This device consists in a circuit with a temperature probe, a heater and an
LCD monitor with two push-buttons. The analog-digital converter of the micro-
controller is used to measure the voltage given by the temperature probe. This
implementation has the particularity of making intensive use of the floating-
point library and of using the EEPROM to memorize the last measured temper-
ature with a cache mechanism that protects the EEPROM from being written
to often (otherwise the EEPROM could “fry”). The temperature stabilization
algorithm is based on a software simulation of a PID (proportional-integral-
derivative) controller. The source code of this application is about 250 lines of
OCaml (see Fig. 6).

7 Discussion on Efficiency, Debugging and Portability

7.1 Execution Speed and Memory Occupation

On a PIC18F4620, the maximum execution speed of programs is 10,000,000
machine instructions per second, with an average close to 280,000 bytecode
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instructions per second on standard examples. However, the number of bytecode
instructions per second depends on the program, and is not significant when
external routines (like sleep) are called. Anyway, we deduce that on our code
examples, it takes an average of 36 machine instructions to execute a bytecode
instruction. Note that a bytecode instruction makes much more work than a
machine instruction, this factor is close to the comparison between the bytecode
size and the size of the equivalent native code. We may also observe from our
VM implementation that an average of 7.5 machine cycles are spent to handle
a bytecode instruction, which represent only 21% of the run time.

There are 3,968 B of RAM on a PIC18F4620, shared by the execution stack,
the heap, the VM registers (39 B), and the special function registers (128 B).
The proportion between the size of the stack and the heap size is set at compile
time. By default, the stack size was arbitrarily set to 172 levels, and if the
Stop&Copy memory management algorithm is selected, the resulting heap size
is 3,584/2=1,792 B, while with the Mark&Compact one, the heap size is 3,584 B.

The size of a PIC18F4620’s program memory is 64 KiB. The size of the binary
associated with the interpreter and runtime only depends on the GC algorithm
used. It is about 5.5 KiB when the Stop&Copy is used and about 6.2 KiB when
the Mark&Compact is used. The size of the binary associated with the assembly
part depends on which routines are used. In practice, it is between 1 KiB and
12 KiB. Therefore, the maximum size of the bytecode that can be put in this PIC
in the worst case is 48.5 KiB, which represents 76% of the total flash memory.

Project Source Interp. + Runtime Native Lib. Bytecode Total

Gobblet 714 LoC 5.5 KiB 2.6 KiB 5.5 KiB 13.6 KiB

Calculator 1,704 LoC 5.5 KiB 3.7 KiB 6.2 KiB 15.4 KiB

Heater 238 LoC 5.5 KiB 9.0 KiB 12.9 KiB 27.4 KiB

Fig. 6. Program memory usage for some hand crafted applications

The figure 6 shows usages of the program memory for the different appli-
cations described in section 6. Due to the dead-code elimination of bytecode
(thanks to ocamlclean), elimination of unused assembler routines (thanks to the
assembler preprocessor), and heterogeneous usages of the standard library, no
direct relations exist between the size of source codes and the size of the different
parts of the produced binaries.

7.2 The VM Approach: Programming and Debugging

The main problem in running complex algorithms on microcontrollers is the defi-
ciency of resources, and especially of volatile memory. The use of a garbage col-
lector is then very useful to both facilitate code writing and memory occupation
optimization. In that way, two algorithms have been implemented: a Stop&Copy
and a Mark&Compact, both written in assembler code.

The OCaml VM is simple enough to be encoded directly in assembly, but pro-
vides high-level instructions that directly implement partial call, method access
for object programming, exception management, etc. In addition to the OCaml
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language constructions, it becomes possible to add other programming models
like constraints programming (thanks to the Facile library), concurrent program-
ming with a preemptive model (using VM-threads implemented using the hard-
ware timers and interruptions offered by the PIC) or cooperative models (using
reactive-ML or LWT-like approaches). The statically typed context help imple-
ment polymorphic data structures and generic libraries. Finally, let us note that
programming environments like hardware and VM simulators allow to perform
lots of verifications before transferring the code on the hardware. It is of course
essential, before any test in real situation, to trace, profile and debug code in a
comfortable environment. This VM approach is a good way to do that, it had
also been tested (in other projects) to analyze code coverage by modifying the
runtime environment without touching application codes [18].

7.3 Other Languages and Virtual Machines

The MPLAB development environment shipped with PIC microcontrollers offers
an assembler (MPASM), a linker (MPLINK) and a simulator to test and debug
an executable. It is possible to program using high-level languages, but we mainly
found subsets of C and Basic (interfaced or not with MPLAB).

The other languages have three techniques to target PICs: native compi-
lation (like C), interpretation (like Basic), compilation to a VM for bytecode
interpretation as presented in this article.

For the native compilers, there are variations on the Pascal language such
as Pic Micro Pascal[14] which is integrated with MPASM/MPLINK tools (from
MPLAB) and offers its own IDE. Another language, between Basic and Pascal,
Jal[1] proposed in 2004 a free compiler. A new version, Jal2, is supported by a
still active community.

For interpreters, several implementations of the Forth language exist. Forth
has the advantage of being small, and therefore can easily fit on a microcon-
troller. FlashForth[10] is a standalone Forth system implemented on PIC18F
that provides an interpreter and a compiler/loader. There are also Forth com-
pilers allowing to load their generated code as Rforth1[17]. The management of
ports and interrupts is usually easy to manipulate in Forth.

We are not the first to use the VM approach to target the PIC architecture.
Indeed, the design of a Scheme VM for PIC has already been undertaken within
projects PICBIT[5] and PICOBIT[16] for a subset of R4RS. PICBIT adapted
for the PIC18 series a very compact Scheme environment. The VM is imple-
mented in C. PICOBIT extends this approach and attaches a C compiler, called
SIXPIC specific to the PIC to obtain better code especially for the VM. As
indicated during performance analysis, implementing an OCaml VM directly in
PIC18 assembler, combined with code compaction techniques, gives very good
performance. On this point, PICOBIT and OCaPIC approaches diverge, as the
first focuses on the portability to other architectures while the second bets on
efficiency.

We also find this VM approach for the Java language with Java
Card Platform[11]. However, even by severely limiting the Java language
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(e.g., restrictions on automatic memory management, removal of 64-bit inte-
gers and threads) and by writing in an imperative style, we still get a too large
code.

The Darjeeling project[2] is also an interesting port of the Java VM on
AVR128 and MSP430 (a Texas Instruments family of microcontrollers). Like
us, they compress the bytecode before its transfer to the microcontroller. An
interest of this project is that they are able to compare performances of their
VM approach to native code compilation. However, their number of AVR cycle
per JVM instruction is close to 115, while with OCaPIC, the number of PIC cycle
per OCaml VM instruction is close to 36. This difference may be explained by
fundamental differences between architectures and bytecodes, and in particular
complex JVM instructions like Java method calls.

7.4 Other Microcontrollers

Microcontroller families are numerous. We chose the PIC18 family because we
had some experience with PIC16 before, and we did not chose the latter since
it seemed too difficult to make OCaml work with even fewer resources. Notably,
on series prior to the PIC18 series, the return stack for function calls is a specific
stack, separated from the registers, and limited to 8 stages, at most. On PIC18,
a set of specific instructions and registers were added to implement a call stack
inside the PIC registers, and it is one of its most important “new” features
because it makes compiling for PIC18 much easier than for any other previous
series.

Porting our work from PIC18 to any higher PIC series would be relatively
easy as the PIC24 and PIC32 assembly languages are basically supersets of
the PIC18’s. The main difficulty would be to benefit from the new instructions
and hardware mechanisms to improve the VM and the runtime implementa-
tions. OCaPIC could inspire a similar implementation for architectures other
than PICs, e.g., ARMs (used on STM-Nucleo boards, for example), Atmel-AVR
(used on the well known Arduino boards), etc. However, in a way, ARMs were
fundamentally less in need of improvements of their programming environment
than PICs, mainly because their instruction sets are more friendly for people
writing compilers. Actually a native port is already supported by the Inria’s
distribution.

The Arduino platform is widely used by hobbyists, in particular in the
robotics field. In this world where a kind of artificial intelligence is omnipresent, a
higher level language than the usual C/C++ might be appreciated. The resources
of Arduino are very similar to the PIC18s, both in memory and speed, and we
presume that a similar approach would be relevant.

8 Conclusion

We have presented our port of the full OCaml language to program PIC18 micro-
controllers, which have less than 4 KiB of RAM. To our knowledge, OCaml has
become the richest language available to program this class of microcontrollers.
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OCaPIC does not embed the richest library (yet), since there have been large
libraries developed in C code over years and interfacing OCaml with C is not
trivial (even in standard OCaml). For instance, Microchip provides a TCP/IP
implementation for PIC18 in C code, which allows to host an HTTP server on a
PIC18. However, we provide the possibility to interface OCaPIC to use external
code just as we can interface standard OCaml with other languages using C code
interface, except that we directly interface with assembler. As future work, we
plan to provide more interfaced libraries, including USB features, trigonometry
operations, external memory management, etc.

We started experimenting with Reactive ML[9] because it would be nice
to program microcontrollers using this OCaml extension implementing the syn-
chronous reactive model of Boussinot1. We managed to make it work on a PIC18
microcontroller after having defunctorized most functors used by Reactive ML.
This was necessary because ocamlclean is currently not very efficient on func-
tors, which consume too much memory.

Our project, OCaPIC, has been pretty stable for a while and is distributed
as free open source software at http://www.algo-prog.info/ocapic.
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