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Abstract We first present a brief review of the essentials fuzzy system models:
Namely (1) Zadeh’s rulebase model, (2) Takagi and Sugeno’s model which is partly
a rule base and partly a regression function and (3) Türkşen fuzzy regression
functions where a fuzzy regression function correspond to each fuzzy rule. Next we
review the well known FCM algorithm which lets one to extract Type 1 mem-
bership values from a given data set for the development of Type 1 fuzzy system
models as a foundation for the development of Full Type 2 fuzzy system models.
For this purpose, we provide an algorithm which lets one to generate Full Type 2
membership value distributions for a development of second order fuzzy system
models with our proposed second order data analysis. If required one can generate
Full Type 3,…, Full Type n fuzzy system models with an iterative execution of our
algorithm. We present our application results graphically for TD_Stockprice data
with respect to two validity indeces, namely: (1) Çelikyılmaz-Türkşen and
(2) Bezdek indeces.

1 Fuzzy System Models

Here first, historically significant fuzzy system model developments are reviewed in
order to identify their unique structures and to point out how they differ from each
other. Then we show the details of our FULL TYPE 2 Fuzzy System developments
with a new algorithm.
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2 Type 1 Fuzzy Rule Base Models

The most commonly applied fuzzy system models are fuzzy rule bases. Here, we
only deal with Multi-Input Single Output (MISO) systems. Generally fuzzy system
models represent relationships between the input and output variables which are
expressed as a collection of IF-THEN rules that utilize linguistic labels, which are
represented with fuzzy sets. The general fuzzy rule base structure which is known
as Zadeh- Fuzzy Rule Base, Z-FRB, can be written as follows:

R: ALSO
c*

i = 1
IF antecedentiTHENconsequentið Þ,

where c* is the number of rules in a rule base either given by experts or it is
determined by a fuzzy clustering algorithm such as FCM, Fuzzy-C-Means (Bezdek
[1]) or IFC, Improved Fuzzy Clustering (Çelikyılmaz and Türkşen [2]). The fuzzy
rule base structures determined by various alternatives mainly differ in the repre-
sentation of the consequents. If the consequent is represented with fuzzy sets then
the fuzzy rule base is known as Zadeh [13] version which is originally applied by
Mamdani, et al., [3], and a modified version is proposed by Sugeno and Yasukawa,
SY-FRB, [6]. Whereas, if the consequents are represented with linear equations of
input variables, then the rule base structure is the Takagi-Sugeno Fuzzy Rule Base,
TS-FRB, [5] structure. These are the main models amongst others which we do not
review in this paper. In particular Zadeh Fuzzy Rule Bases, Z-FRB can be for-

malized as: R: ALSO
c*

i=1
IF x∈X isr Ai THEN y∈Y isr Bið Þ

In general, let nv be the number of selected input variables in the system. Then,
the multidimensional antecedent, x, can be defined as x = (x1,x2,…,xnv), where xj is
the jth input variable of the antecedent and the domain of x in X, can be defined as
X = X1 × X1 × … × Xnv, Xj ⊆ ℜ.

In particular, the Z-FRB structure can be expressed as follow, where the
multi-dimensional antecedent fuzzy subset of ith rule is Ai. This multi-dimensional
antecedent fuzzy subset determination eliminates the search for the appropriate
t-norm for the combination of antecedent fuzzy subsets with “AND”.

Thus, variations of Z-FRB are Sugeno-Yasukawa, SY-FRB, and Takagi-Sugeno
(TS-FRB) Fuzzy Rule Base structures:

SY−FRBð Þ R: ALSO
c*

i=1
IF x∈X isr Ai THEN y∈ Y isr Bið Þ

TS−FRBð Þ R: ALSO
c*

i=1
ðIF antecedenti THEN yi = aixT + biÞ

where, antecedenti = x ∈ X isr Ai, and ai = (ai,1,…, ai,NV) is the regression coef-
ficient vector associated with the ith rule together with bi which is the scalar
associated with the ith rule. For these special cases of Z-FRB, again each degree of
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firing, di, associated with the-ith rule, is determined directly from the corresponding
ith multi-dimensional antecedent fuzzy subset Ai and applied to the consequent
fuzzy subset for the SY-FRB or to the classical ordinary regression for the case of
TS-FRB.

3 Fuzzy Regression Functions

There are a number of variations of the proposed Fuzzy Regression Functions. We
discuss here only one alternative in this paper, namely, Fuzzy Regression Functions
which we have proposed with LSE.

3.1 Fuzzy Regression Functions with LSE (FF-LSE)

In ordinary LSE (Least Square Estimation) method, the dependent variable, y, is
assumed to be a linear function of input, variables, x, plus an error component:

y= β0 + β1x1 + . . . + βnvxnv + ϵ

where y is the dependent output, xj’s are the explanatory variables input, for j = 1,
…, nv, nv is the number of selected inputs and ε is the independent error term which
is typically assumed to be normally distributed. The goal of the least squares
method is to obtain estimates of the unknown parameters, βj’s, j = 0,1,…, nv, which
indicate how a change in one of the independent variables affects the dependent
variable.

β= XTX
� �− 1

XTy

The proposed generalization of LSE as FF-LSE (Fuzzy Functions with LSE,
more appropriately know as Fuzzy Regression Functions with LSE), requires
that a fuzzy clustering algorithm, such as FCM, or IFC be available to determine the
interactive (joint) membership values of input-output variables in each of the fuzzy
clusters that can be identified for a given training data set. Let (Xk,Yk), k = 1,…, nd,
be the set of observations in a training data set, such that Xk = (xjk | j = 1,…, nv).
First, one determines the optimal (m*, c*) pair for a particular performance mea-
sure, i.e., a cluster validity indeces such as Bezdek […], and Celikyılmaz and
Türkşen […] with an iterative search and an application of FCM or IFC algorithm,
where m is the level of fuzziness (in our experiments we usually take m = 1.4,
…,2.5), Ozkan and Turksen […]) and c is the number of clusters (in our experi-
ments we usually take c = 2,…,10). The well known FCM (Bezdek 1973) algo-
rithm can be stated as follows:

Type 1 and Full Type 2 Fuzzy System Models 645



min JðU,VÞ= ∑
nd

k= 1
∑
c

i=1
ðuikÞmð xk − vik kÞA

s. t. 0≤ uik ≤ 1, ∀i, k

∑
c

i=1
uik =1, ∀k

0≤ ∑
nd

k =1
uik ≤ nd, ∀i

,

where J is objective function to be minimized, ||.||A is a norm that specifies a
distance based similarity between the data vector xk and a fuzzy cluster center vi. In
particular, A = I is the Euclidian Norm and A = C−1 is the Mahalonobis Norm, etc.

Once the optimal pair (m*, c*) is determined with the application of FCM
algorithm, and a cluster validity index, one next identifies the

cluster centers for m = m* and c = 1,…,c* as:

vXjY , j
m*

= ðxc1, j, x
c
2, j,⋯, xcnv, j, y

c
jÞ

From this, we identify the cluster centers of the input space again for m = m*
and c = 1,…,c* as: vX, j

m*
= ðxc1, j, xc2, j,⋯, xcnv, jÞ.

Next, one computes the normalized membership values of each vector of
observations in the training data set with the use of the cluster center values
determined in the previous step. There are generally two steps in this calculations:

First we determine the (local) optimum membership values uik‘s and then
determine µik ‘s that are above an α- cut in order to eliminate harmonics generated
by FCM as:

uik = ∑
c

j=1

xk − vX, ik k
xk − vX, j
�� ��

 ! 2
m− 1

0
@

1
A

− 1

, μik ≥ α,

where µik denotes the membership value of the kth vector, k = 1,…,nd, in the ith rule,
i = 1,…,c* and xk denotes the k

th vector and for all the input variables j = 1,…, nv,
in the input space. (2) Next, we normalize them as:

γijðxjÞ=
μijðxjÞ

∑
c

i0 =1
μi0jðxjÞ

where γij is the normalized membership value of xj, j = 1,…, nv, in the ith rule,
i = 1,…,c*, which in turn will indicate the membership value that will constitute an
new input variable in our proposed scheme of function identification for the
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representation of ith cluster. Let Γi = ðγijji=1, . . . , c*; j=1, . . . , nvÞ be the mem-
bership values of X in the ith cluster, i.e., rule.

Next we determine a new augmented input matrix X for each of the clusters
which could take on several forms depending on which transformations of mem-
bership values we want to or need to include in our system structure identification
for our intended system analyses. Examples of these are:

X′

i = 1,Γi,X½ �, X′
0
i = 1,Γ2

i ,X
� �

, X′′′

i = 1,Γ2
i ,Γ

m
i , expðΓiÞ,X

� �
,

etc., where Xi′, Xi″, Xi″′ are the new input matrices to be used in least squares
estimation of a new system structure identification where

Γi = ðγijji=1, . . . , c*; j=1, . . . , nvÞ.

The choice depends on whether we want to or need to include just the mem-
bership values or some of their transformations as new input variables in order to
obtain a best representation of a system behavior. In particular, this is done in order
to get a higher value of R2 to show that a better model is obtained for an appli-
cation. A new augmented input matrix, say Xi′, would look as shown below for the
special case of X = Xj, i.e., the matrix X is just a vector of a single variable, Xj = (xjk
|k = 1,…,nd) for the jth variable:

X′

ij = ½1,Γi,Xij�=
1 γi1 xij1
⋮ ⋮ ⋮
1 γind xijnd

2
4

3
5

Thus the fuzzy regression function, Yi = βi0 + βi1Γi + βi2Xij, that represents the i
th

rule corresponding to the ith interactive (joint) cluster in space ðYi,Γi,XjÞ,
β*i = ðXij′

TX′

ijÞ− 1ðXij′
TYiÞ, X′

ij = 1,Γi,Xij
� �

.

Such that β*i = ðβ*i0, β*i1, β*i2Þ and the estimate of Yi would be obtained as
Y*
i = β*i0 + β*i1Γi + β*i2Xij.
Within the proposed framework, the general form of the shape of a cluster can be

conceptually captured by a second order (cone) in the space of U × X × Y which
can be illustrated with a prototype shown in Fig. 1.

One usually determines Type 1 membership values with an application of FCM
[…] algorithm shown below:
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where Eq. 1 stated in the algorithm above is:

μðtÞik = ∑
c

j=1

d xk , υ
ðt− 1Þ
i

� �
d xk , υ

ðt− 1Þ
j

� �
0
@

1
A

2
m− 1

2
64

3
75

− 1

And Eq. 2 is:

γji

•

•

xji0.0

y

Fig. 1 A Fuzzy cluster in U
× X × Y space
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υðtÞi = ∑
n

k =1
μðtÞik
� �m

xk

	 
�
∑
n

k=1
μðtÞik
� �m

, ∀i=1, . . . , c

4 Generation of Full Type 2 Membership Values

For this purpose, we propose and hence introduce an new algorithm in order to
generate Full Type 2 membership value distribution from the results obtained with
an application of FCM which produce a Type 1 membership value distribution for
our studies of Full Type 2 investigations.

5 Full Type 2 Fuzziness i.e., Membership of Membership

Here we want to show how one determines the second order degree of fuzziness in
order to develop Full Type 2 fuzzy system models.

It should be noted that depending on where x∈X is there may be more than one
second order membership value distribution.

6 Full Type 2 Fuzzy Set Extraction Algorithms

We propose the following Full Type 2 fuzzy set extraction algorithm from a given
data set called FT2FCM (Türkşen, 2012):

Full Type 2 Fuzzy Clustering Algorithm

Min j′ðU′ðUÞ, WÞ=

= ∑
nd

k =1
∑
c′

i=1
∑
1

l=0
μμi xkð Þ Zð Þ
� �

μμi xkð Þ Zlð Þ− μ ̄ xkð Þ Zlð Þ Ak
���� �

, k=1, . . . , nd;

i=1, . . . , c′

st. 0≤ μμi xkð ÞðZÞ≤ 1

0≤ μi xkð Þ≤ 1

0≤ ∑
nd

k=1
μi xkð Þ≤ nd

Type 1 and Full Type 2 Fuzzy System Models 649



μi xkð Þ ϶ 0, 1½ �; μμiðxkÞðZÞ ϶ 0, 1½ �; l ϶ 0, 1½ �

where j′ is the objective function to be minimized for a given xk ∈X, .k kA is a
norm, i.e., Euclidian or Mahalanobis, that specifies a distance measure based on a
membership values for a given xk ∈X and its second order fuzzy cluster center
μī xkð Þ.

Next one computes the normalized membership values of these Full Type 2
membership values for each vector of membership values obtained in an initial
application of the original FCM or IFC algorithm in the first stage.

There are generally two steps in these calculations:
We first determine (local) optimum membership of membership values μμi xkð Þ’s

and then apply an α-cut in order to eliminate the second order harmonics generated
by an application of FT2FCM as:

μμi xkð Þ
xk ∈X

= ∑
c′

i=1

μμi xkð Þ− μ ̄i xkð Þ�� ��
μμi xkð Þ− μj xkð Þ�� ��

 ! 2
m− 1

2
4

3
5

− 1

γ′μμi ðxkÞ =
μμiðxkÞ xk ∈Xj
∑c′

i=1 μμiðxkÞ
, μμiðxkÞ≥ α, γ′μμi ðxkÞ ≥ α

where γ′μμi ðxkÞ
denotes the membership values of the membership values of the kth

vector k = 1,..,nd in the ith rule, or ith fuzzy regression function (Türkşen, 2012)
and xk ∈X denotes the kth vector and for all the input variables, k = 1,.., nd in the
input space.

Recall that we are able to obtain the membership value distribution as:

X′

ij = ½1,Γi,Xij�=
1 γi1 xi1
⋮ ⋮ ⋮
1 γind xind

2
4

3
5

Γi = ðγikji=1, . . . , c*; k=1, . . . , ndÞ

Γi = γijji=1, . . . , c*; j=1, . . . , nd
� �

Γi =
γ11 γ21 ⋯γc*1
⋮ ⋮ ⋮

γ1nd γ2nd ⋯γc*nd

2
4

3
5

We process each γi via our Full Type 2 clustering algorithm given above, called
FT2FCM, to determine Full Type 2 distribution for each cluster i, Γi = γijji=1,

�
. . . , c*; j=1, . . . , ndÞ.

Thus we apply to each Γi, ALGORITHM 2 given below to generate Full Type
2 membership, values, i.e., membership of membership.

650 I. Burhan Türkşen



7 Experimental Results

We present here our experimental results for TD_Stock Price Data set that is
available for all researchers on the internet.

Çelikyılmaz-Türkşen’s validity index results for TD_Stockprice data:
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Fuzzy classification of TD_Stockprice data: (c* = 2,m* = 1.8)

Cluster-2 view for TD_Stockprice data:
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Çelikyılmaz-Türkşen’s Validity Index for µik data:

-30 -20 -10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

y

m
u

ik

cluster2
cluster1

652 I. Burhan Türkşen



Cluster-2 results of TD-Stockprice data (c* = 2,m* = 1.8)
According Çelikyılmaz-Türkşen index, the suitable number of cluster

should be chosen as c’ = 2 (µik data is the membership values of first study’s
cluster-2). Where c’ = 2, m’ = 1.8.
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µlk(µik) for Cluster1 and 2 are shown above:
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A possible three cluster view:

TD_Stockprice Data set:
According to Bezdek’s validity index results (shown as follows), the suitable

number of cluster was chosen as c* = 3:
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Fuzzy classification of TD_Stockprice data: (c* = 3,m* = 2.0)
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Cluster-2 view for TD_Stockprice data:
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Çelikyılmaz-Türkşen’s Validity Index for µik data:
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Cluster-2 results of TD-Stockprice data (c* = 3,m* = 2.0) for membership
of membership.

According Çelikyılmaz-Türkşen index, the suitable number of cluster
should be chosen as c’ = 2 (the µik data is the membership values of first
study’s cluster-2). Where c’ = 2,m’ = 2.0.
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A possible three cluster view:
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8 Conclusions

In this paper, we have first review the essentials fuzzy system models: such as
(1) Zadeh’s rulebase model, (2) Takagi and Sugeno’s partly a rule base and partly a
regression function model and (3) Türkşen’s “Fuzzy Regression Functions” model
where a fuzzy regression function correspond to each fuzzy rule and thus a fuzzy
rule base is replaced with “Fuzzy Regression Functions” model. Next we review the
well known FCM algorithm which lets one to extract Type 1 membership values
from a given data set for the development of “Type 1” fuzzy system models as a
foundation for the development of “Full Type 2” fuzzy system models. For this
purpose, we provide an algorithm which lets one to generate Full Type 2 mem-
bership value distributions for a development of second order fuzzy system models
with our proposed second order data analysis. If required one can generate Full
Type 3,…, Full Type n fuzzy system models with an iterative execution of our
algorithm. Finally we present our results graphically for TD_Stockprice data with
respect to two validity indeces, namely: (1) Çelikyılmaz-Türkşen and (2) Bezdek
indeces. Based on our development, we expect in the future new results would be
obtained in “Full Type 3,…, Full Type n” fuzzy system model analyses.
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