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Preface

As early as in the era of Lady Ada Loveable and Babbage, scientists seriously
considered the possibility of assigning certain complex activities performed by
human beings to machines. This direction of research has significantly intensified,
with the development of digital computers, through immense contributions by
Turing and von Neumann and the progress in the discipline of artificial intelligence
(AI). Following a period of enthusiasm about the possibility on one hand, and
computer phobia on the other hand, many of the active Al researchers have faced,
and attempted to resolve, an apparent obstacle. The formal philosophical and
mathematical paradigms applied in Al and related research areas seemed to fall
short of the capability to emulate human reasoning. In some sense, the issue was
that the formalisms were very rigid and did not match the fuzzy nature of human
perception of sets and inference.

A pioneer of artificial intelligence, L.A. Zadeh was concerned with the dichot-
omy between human reasoning and classical-logic/mathematical/machine precision.
As early as 1961 (and most likely before) Zadeh attempted to resolve this
dichotomy with a formal, mathematical theory of imprecision, aka Fuzzy Set
Theory and Fuzzy Logic. The first documented reference to the need for this theory
appears in his 1962 paper “From Circuit Theory to System Theory.” The first
formulation of a solution to the dichotomy is proposed in his seminal paper ‘“Fuzzy
Sets” published in Information and Control in 1965. These concepts, as well as
several derivatives of the ideas, such as linguistic variables, Type-2 Fuzzy Logic,
and Z-numbers, introduced by Zadeh, have opened the door to highly fruitful
directions of research, development, and deployment in several areas.

Zadeh’s 1965 paper and subsequent papers have sparked the interest of
numerous researchers and practitioners and resulted in rapid developments in the
fields of Fuzzy Set Theory, Fuzzy Logic, Fuzzy Systems, and related disciplines.
The five decades that followed the 1965 paper and his pioneering work have
produced a multitude of research work and applications related to artificial intel-
ligence, control theory, inference, and reasoning. In recent years, Fuzzy Logic has
been applied in many areas, including neural networks, clustering, data mining, and
software testing.
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viii Preface

The present volume, entitled “Fifty Years of Fuzzy Logic and its Applications,”
was conceived as a way of academic celebration of the fifty years’ anniversary
of the 1965 paper. It includes papers from pioneers and prominent scholars engaged
in research on the theory and applications of fuzzy logic and uncertainty
management. The papers cover a wide range of the spectrum and gamut of
“Fuzziness.”

The volume editors extend sincere gratitude to the distinguished chapter authors
for their invaluable contributions and their kind patience in complying with the
bureaucratic procedures involved in publishing this volume.
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Toward a Restriction-Centered Theory
of Truth and Meaning (RCT)

Lotfi A. Zadeh

Abstract What is truth? The question does not admit a simple, precise answer.
A dictionary-style definition is: The truth value of a proposition, p, is the degree to
which the meaning of p is in agreement with factual information, F. A precise
definition of truth will be formulated at a later point in this paper. The theory
outlined in the following, call it RCT for short, is a departure from tradi-
tional theories of truth and meaning. In RCT, truth values are allowed to be
described in natural language. Examples. Quite true, more or less true, almost true,
largely true, possibly true, probably true, usually true, etc. Such truth values are
referred to as linguistic truth values. Linguistic truth values are not allowed in
traditional logical systems, but are routinely used by humans in everyday reasoning
and everyday discourse. The centerpiece of RCT is a deceptively simple concept—
the concept of a restriction. Informally, a restriction, R(X), on a variable, X, is an
answer to a question of the form: What is the value of X? Possible answers: X = 10,
X is between 3 and 20, X is much larger than 2, X is large, probably X is large,
usually X is large, etc. In RCT, restrictions are preponderantly described in natural
language. An example of a fairly complex description is: It is very unlikely that
there will be a significant increase in the price of oil in the near future. The
canonical form of a restriction, R(X), is X isr R, where X is the restricted variable,
R is the restricting relation, and r is an indexical variable which defines the way in
which R restricts X. X may be an n-ary variable and R may be an n-ary relation.
The canonical form may be interpreted as a generalized assignment statement in
which what is assigned to X is not a value of X, but a restriction on the values
which X can take. A restriction, R(X), is a carrier of information about X.
A restriction is precisiated if X, R and r are mathematically well defined. A key idea
which underlies RCT is referred to as the meaning postulate, MP. MP postulates
that the meaning of a proposition drawn from a natural language, p—or simply p—
may be represented as a restriction, p — X isr R. This expression is referred to as the
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2 L.A. Zadeh

canonical form of p, CF(p). Generally, the variables X, R and r are implicit in
p. Simply stated, MP postulates that a proposition drawn from a natural language
may be interpreted as an implicit assignment statement. MP plays an essential role
in defining the meaning of, and computing with, propositions drawn from natural
language. What should be underscored is that in RCT understanding of meaning is
taken for granted. What really matters is not understanding of meaning but prec-
isiation of meaning. Precisiation of meaning is a prerequisite to reasoning and
computation with information described in natural language. Precisiation of
meaning is a desideratum in robotics, mechanization of decision-making, legal
reasoning, precisiated linguistic summarization with application to data mining, and
other fields. It should be noted that most—but not all—propositions drawn from
natural language are precisiable. In RCT, truth values form a hierarchy. First order
(ground level) truth values are numerical, lying in the unit interval. Linguistic truth
values are second order truth values and are restrictions on first order truth values.
n™ order truth values are restrictions on (n-1) order truth values, etc. Another key
idea is embodied in what is referred to as the truth postulate, TP. The truth pos-
tulate, TP, equates the truth value of p to the degree to which X satisfies R. This
definition of truth value plays an essential role in RCT. A distinguishing feature of
RCT is that in RCT a proposition, p, is associated with two distinct truth values—
internal truth value and external truth value. The internal truth value relates to the
meaning of p. The external truth value relates to the degree of agreement of p with
factual information. To compute the degree to which X satisfies R, it is necessary to
precisiate X, R and r. In RCT, what is used for this purpose is the concept of an
explanatory database, ED. Informally, ED is a collection of relations which rep-
resent the information which is needed to precisiate X and R or, equivalently, to
compute the truth value of p. Precisiated X, R and p are denoted as X', R  and p,
respectively. X and R are precisiated by expressing them as functions of ED. The
precisiated canonical form, CF (p), is expressed as X isr R". At this point, the
numerical truth value of p, nt,, may be computed as the degree to which X" satisfies
R”. In RCT, the factual information, F, is assumed to be represented as a restriction
on ED. The restriction on ED induces a restriction, t, on nt,, which can be computed
through the use of the extension principle. The computed restriction on nt, is
approximated to by a linguistic truth value, lt,,. Precisiation of propositions drawn
from natural language opens the door to construction of mathematical solutions of
computational problems which are stated in natural language.

Keywords Precisiation of meaning - Computation with restrictions « Assessment
of truth values - Formalization of everyday reasoning
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1 Introduction

The concepts of truth and meaning are of fundamental importance in logic, infor-
mation analysis and related fields. The theory outlined in this paper, call it RCT for
short, is a departure from traditional theories of truth and meaning, principally
correspondence theory, coherence theory, Tarski semantics, truth-conditional
semantics and possible-world semantics [1-3, 5-9].

In large measure, traditional theories of truth and meaning are based on bivalent
logic. RCT is based on fuzzy logic. Standing on the foundation of fuzzy logic, RCT
acquires a capability to enter the realm of everyday reasoning and everyday dis-
course—a realm which is avoided by traditional theories of truth and meaning
largely because it is a realm that does not lend itself to formalization in the classical
tradition.

In RCT, truth values are allowed to be described in natural language. Examples.
Quite true, very true, almost true, probably true, possibly true, usually true, etc.
Such truth values are referred to as linguistic truth values. Linguistic truth values
are not allowed in traditional logical systems.

The centerpiece of RCT is the deceptively simple concept—the concept of a
restriction. The concept of a restriction has greater generality than the concept of
interval, set, fuzzy set and probability distribution. An early discussion of the con-
cept of a restriction appears in [12]. Informally, a restriction, R(X), on a variable, X,
is an answer to a question of the form: What is the value of X? Example. Robert is
staying at a hotel in Berkeley. He asks the concierge, “How long will it take me to
drive to SF Airport?” Possible answers: 1 h, one hour plus/minus 15 min, about 1 h,
usually about 1 h, etc. Each of these answers is a restriction on the variable, Driving.
time. Another example. Consider the proposition, p: Most Swedes are tall. What is
the truth value of p? Possible answers: true, 0.8, about 0.8, high, likely high, possibly
true, etc. In RCT, restrictions are preponderantly described as propositions drawn
from a natural language. Typically, a proposition drawn from a natural language is a
fuzzy proposition, that is, a proposition which contains fuzzy predicates, e.g., tall,
fast, heavy, etc., and/or fuzzy quantifiers, e.g., most, many, many more, etc., and/or
fuzzy probabilities, e.g., likely, unlikely, etc. A zero-order fuzzy proposition does
not contain fuzzy quantifiers and/or fuzzy probabilities. A first-order fuzzy propo-
sition contains fuzzy predicates and/or fuzzy quantifiers and/or fuzzy probabilities. It
is important to note that in the realm of natural languages fuzzy propositions are the
norm rather than exception. Traditional theories of truth and meaning provide no
means for reasoning and computation with fuzzy propositions.

Basically, R(X) may be viewed as a limitation on the values which X can take.
Examples.

X=5

X is between 3 and 7

X is small

X is normally distributed with mean m and variance *
It is likely that X is small
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Summers are usually cold in San Francisco (X is implicit)
Robert is much taller than most of his friends (X is implicit)

As a preview of what lies ahead, it is helpful to draw attention to two key ideas
which underlie RCT. The first idea, referred to as the meaning postulate, MP, is that
of representing a proposition drawn from a natural language, p, as a restriction
expressed as

p— XisrR,

where X is the restricted variable, R is the restricting relation, and r is an indexical
variable which defines the way in which R restricts X. X may be an n-ary variable,
and R may be an n-ary relation. Generally, X and R are implicit in p. Basically, X is
the variable whose value is restricted by p. X is referred to as the focal variable. In
large measure, the choice of X is subjective, reflecting one’s perception of the
variable or variables which are restricted by p. However, usually there is a con-
sensus. It should be noted that a semantic network representation of p may be
viewed as a graphical representation of an n-ary focal variable and an n-ary
restricting relation. The expression on the right-hand side of the arrow is referred
to as the canonical form of p, CF(p). CF(p) may be interpreted as a generalized
assignment statement [17]. The assignment statement is generalized in the sense
that what is assigned to X is not a value of X, but a restriction on the values which
X can take. Representation of p as a restriction is motivated by the need to rep-
resent p in a mathematically well-defined form which lends itself to computation.

The second key idea is embodied in what is referred to as the truth postulate, TP.
The truth postulate equates the truth value of p to the degree to which X satisfies R.
The degree may be numerical or linguistic. As will be seen in the sequel, in RCT
the truth value of p is a byproduct of precisiation of the meaning of p.

Note. To simplify notation in what follows, in some instances no differentiation
is made between the name of a variable and its instantiation. Additionally, in some
instances no differentiation is made between a proposition, p, and the meaning of p.

2 The Concept of a Restriction—A Brief Exposition

The concept of a restriction is the centerpiece of RCT. As was stated earlier, a
restriction, R(X), on a variable, X, may be viewed as an answer to a question of the
form: What is the value of X? The concept of a restriction is closely related to the
concept of a generalized constraint [18].

R(X) may be viewed as information about X. More concretely, R(X) may be
expressed in a canonical form, CF(R(X)),

CF(R(X)): XisrR,
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where X is the restricted variable, R is the restricting relation, and r is an
indexical variable which defines the modality of R, that is, the way in which R
restricts X. X may be an n-ary variable and R may be an n-ary relation. A restriction
is precisiated if X, R and r are mathematically well defined. Precisiation of
restrictions plays a pivotal role in RCT. Precisiation of restrictions is a prerequisite
to computation with restrictions. Here is an example of a simple problem which
involves computation with restrictions.

Usually Robert leaves his office at about 5 pm.
Usually it takes Robert about an hour to get home from work.
At what time does Robert get home?

Humans have a remarkable capability to deal with problems of this kind using
approximate, everyday reasoning. One of the important contributions of RCT is that
RCT opens the door to construction of mathematical solutions of computational
problems which are stated in a natural language.

2.1 Types of Restrictions

There are many types of restrictions. A restriction is singular if R is a singleton.
Example. X = 5. A restriction is nonsingular if R is not a singleton. Nonsingularity
implies uncertainty. A restriction is direct if the restricted variable is X. A restriction
is indirect if the restricted variable is of the form f(X). Example.

b
R(p): /p(u)p(u)du is likely,

is an indirect restriction on p.

Note. In the sequel, the term restriction is sometimes applied to R.

The principal types of restrictions are: possibilistic restrictions, probabilistic
restrictions and Z-restrictions.

Possibilistic restriction (r = blank)

R(X): Xis A,

where A is a fuzzy set in a space, U, with the membership function, ps. A plays the
role of the possibility distribution of X,

Poss(X=u) =p, (u).
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Example.

X is  small
? 4

restricted variable restricting relation (fuzzy set)
The fuzzy set small plays the role of the possibility distribution of X. (Fig. 1)
Example.

Leslie is taller than Ixel —>
(Height(Leslie), Height(Ixel)) is taller

restricted variable restricting relation (fuzzy relation)

The fuzzy relation taller is the possibility distribution of ((Height(Leslie), Height
(Ixel)).
Probabilistic restriction (r = p)

R(X): Xis pp,
where p is the probability density function of X,
Prob(u<X <u+du) = p(u)du.

Example.

X isp \/%exp(-(X-m)Z/ZGZ).
A A

restricted variable restricting relation (probability density function)

Z-restriction (r = z, s is suppressed)
X is a real-valued random variable.
A Z-restriction is expressed as

R(X): XizZ,
where Z is a combination of possibilistic and probabilistic restrictions defined as
Z: Prob(X is A)is B,

in which A and B are fuzzy numbers. Usually, A and B are labels drawn from a
natural language. The ordered pair, (A,B), is referred to as a Z-number [19]. The
first component, A, is a possibilistic restriction on X. The second component, B, is a
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Fig. 1 Possibilistic u

restriction on X
1 [

A
membership function of A

possibility distribution of X

0 X

possibilistic restriction on the certainty (probability) that X is A. A Z-interval is a
fuzzy number in which the first component is a fuzzy interval.

Examples.

Probably Robert is tall - Height(Robert) iz (tall, probable)

Usually temperature is low — Temperature iz (low, usually)

Note.

Usually X is A,

is a Z-restriction when A is a fuzzy number.

A Z-valuation is an ordered triple of the form (X,A,B), and (A,B) is a Z-number.
Equivalently, a Z-valuation, (X,A,B), is a Z-restriction on X,

(X,A,B) = Xiz(A,B).

Examples.

(Age(Robert), young, very likely)

(Traffic, heavy, usually).

Note. A natural language may be viewed as a system of restrictions. In the realm
of natural languages, restrictions are predominantly possibilistic. For this reason, in
this paper we focus our attention on possibilistic restrictions. For simplicity, pos-
sibilistic restrictions are assumed to be trapezoidal.

Example. Figure 2 shows a possibilistic trapezoidal restriction which is associated
with the fuzzy set middle-age.
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Fig. 2 Trapezoidal m membership function of
possibilistic restriction on middle age
Age Ip=====--y
0.8"""""~
0 —
definitely not definitely definitely not
middle-age middle-age middle-age

Note. Parameters are context - dependent.

2.2 Computation with Restrictions

Computation with restrictions plays an essential role in RCT. In large measure,
computation with restrictions involves the use of the extension principle [10, 13].
A brief exposition of the extension principle is presented in the following. The
extension principle is not a single principle. The extension principle is a collection
of computational rules in which the objects of computation are various types of
restrictions. More concretely, assume that Y is a function of X, Y = f(X), where X
may be an n-ary variable. Assume that what we have is imperfect information
about X, implying that what we know is a restriction on X, R(X). The restriction on
X, R(X), induces a restriction on Y, R(Y). The extension principle is a computa-
tional rule which relates to computation of R(Y) given R(X). In what follows, we
consider only two basic versions of the extension principle. The simplest version
[10] is one in which the restriction is possibilistic and direct. This version of the
extension principle reduces computation R(Y) to the solution of a variational
problem,

Y = f(X)

R(X): XisA

R(Y): py(v) =sup,(pa(u))
subject to

v=1f(u),

where s and py are the membership functions of A and Y, respectively. Simply
stated,

If Xis Athen Yisf(A),

where f(A) is the image of A under f. A simple example is shown in Fig. 3.
An inverse version of this version of the extension principle is the following.
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Y/iv

l_f

f(A)

A

Fig. 3 Possibilistic version of the basic extension principle. f(A) is the image of A under f. What
is shown is a trapezoidal approximation to f(A)

Y/v

l_f

Xh
preimage of B under f

Fig. 4 Inverse version of the basic possibilistic extension principle. The induced restriction on X
is the preimage of B, the restriction on Y

Simply stated, A is the preimage of B under f. (Fig. 4)
A slightly more general version [13] is one in which R(X) is possibilistic and
indirect.

Y = f(X)
R(X):g(X)is A
R(Y): py (v) = sup, (na (g(w)))
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subject to

Example.

Given, p: Most Swedes are tall.
Question, q: What is the average height of Swedes?

The first step involves precisiation of p and q. For this purpose, it is expedient to
employ the concept of a height density function, h.

h(u)du = fraction of Swedes whose height lies in the interval [u, u + du].

If hy,i, and hy,., are, respectively, the minimum and maximum heights in the
population, we have

hﬂ\ﬂX
/ h(u)du=1.

Bmin

In terms of the height density function, precisiations of q and p, g* and p*, may
be expressed as

hﬂ]ﬁ)&
q: 7hge = / uh(u)du,
h min

hmin
P / Mo (W)h(u)du is most,

himin

where L, is the membership function of tall. Applying the basic, indirect, possi-
bilistic version of the extension principle, computation of h,,. is reduced to the
solution of the variational problem

h max
()= 502 [ a0
subject to

hmax
V= / uh(u)du,

himin
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and

hlnaX
/ h(u)du=1.

h min

In RCT, for purposes of reasoning and computation what are needed—in
addition to possibilistic versions of the extension principle—are versions in which
restrictions are probabilistic restrictions and Z-restrictions. These versions of the
extension principle are described in [21].

3 Truth and Meaning

It is helpful to begin with a recapitulation of some of the basic concepts which were
introduced in the Introduction.

There is a close relationship between the concept of truth and the concept of
meaning. To assess the truth value of a proposition, p, it is necessary to understand
the meaning of p. However, understanding the meaning of p is not sufficient. What
is needed, in addition, is precisiation of the meaning of p. Precisiation of the
meaning of p involves representation of p in a form that is mathematically well
defined and lends itself to computation. In RCT, formalization of the concept of
truth is a byproduct of formalization of the concept of meaning. In the following,
unless stated to the contrary, p is assumed to be a proposition drawn from a natural
language. Typically, propositions drawn from a natural language are fuzzy prop-
ositions, that is, propositions which contain fuzzy predicates and/or fuzzy quanti-
fiers and/or fuzzy probabilities.

The point of departure in RCT consists of two key ideas: The meaning postulate,
MP, and the truth postulate, TP. MP relates to precisiation of the meaning of
p. More concretely, a proposition is a carrier of information. Information is a
restriction. Reflecting these observations, MP postulates that the precisiated
meaning of p—or simply precisiated p—may be represented as a restriction. In
symbols, p may be expressed as

p— XisrR,

where X, R and r are implicit in p. The expression X isr R is referred to as the
canonical form of p, CF(p). In general, X is an n-ary variable and R is a function of
X. Basically, X is a variable such that p is a carrier of information about X. X is
referred to as a focal variable of p. In large measure, the choice of X is subjective. It
should be noted that when X is an n-ary variable, a semantic network representation
of p may be viewed as a graphical representation of the canonical form of p.
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Examples.

p: Robert is young —> Age(Robert) is young
t t
X R
p: Most Swedes are tall —»
Proportion(tall Swedes/Swedes) is most
X R

p: Robert is much taller than most of his friends — Height(Robert) is much taller than
most of his friends

p: Usually it takes Robert about an hour to get home from work —Travel time from
office to home iz (approximately 1 hr., usually).

The truth postulate, TP, relates the truth value of p to its meaning. More con-
cretely, consider the canonical form

CF(p): XisrR.

TP postulates that the truth value of p is the degree to which X satisfies R.

In RCT, truth values form a hierarchy: First-order (ground level), second order,
etc. First order truth values are numerical. For simplicity, numerical truth values are
assumed to be points in the interval. (Fig. 5)

A generic numerical truth value is denoted as nt. Second order truth values are
linguistic. Examples. Quite true, possibly true. A generic linguistic truth value is
denoted as It. In RCT, linguistic truth values are viewed as restrictions on numerical
truth values. In symbols, 1t = R(nt). A generic truth value is denoted as t. t can be nt
or It.

3.1 Precisiation of X, R and P

Typically, X and R are described in a natural language. To compute the degree to
which X satisfies R it is necessary to precisiate X and R. In RCT, what is used for this
purpose is the concept of an explanatory database, ED [16, 20]. Informally, ED is a
collection of relations which represent the information which is needed to precisiate
X and R or, alternatively, to compute the truth value of p. Example. Consider the
proposition, p: Most Swedes are tall. In this case, the information consists of three
relations, TALL[Height;u], MOST[Proportion;u] and POPULATION[Name;
Height]. In TALL, u is the grade of membership of Height in tall. In MOST, u is the
grade of membership of Proportion—a point in the unit interval—in most. In POP-
ULATION, Height is the height of Name, where Name is a variable which ranges
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n
1 L
linguistic truth
value
0 > numerical
truth
values

Fig. 5 Hierarchy of truth values. A numerical truth value is a first-order (ground level) truth value.
A linguistic truth value is a second-order truth value. A linguistic truth value is a restriction on
numerical truth values. Typically, a linguistic truth value is a fuzzy set or, equivalently, a
possibility distribution

over the names of Swedes in a sample population. Equivalently, and more simply,
ED may be taken to consist of the membership function of tall, gy, the membership
function of most, 0, and the height density function, h. h is defined as the fraction,
h(u)du, of Swedes whose height is in the interval [u,u + du].

X and R are precisiated by expressing them as functions of ED. Precisiated X, R
and p are denoted as X, R™ and p’, respectively. Thus,

X" =f(ED), R* =g(ED).

The precisiated canonical form, CF (p), is expressed as X ist” R". At this point,
the numerical truth value of p, nt,, may be computed as the degree to which X"
satisfies R”. In symbols,

nt, =tr(ED)

in which tr is referred to as the truth function (Fig. 6).

What this equation means is that an instantiation of ED induces a value of nt,.
Varying instantiations of ED induces what is referred to as the truth distribution of
p, denoted as Tr(pl[ED). The truth distribution of p may be interpreted as the
possibility distribution of ED given p, expressed as Poss(EDIp). Thus, we arrive at
an important equality

Tr(p|ED) =Poss(ED|p).

In RCT, the precisiated meaning of p is expressed in three equivalent forms. First,
as the precisiated canonical form, CF"(p). Second, as the truth distribution of p, Tr(pl
ED). Third, as the possibility distribution, Poss(EDIp). These representations of the
precisiated meaning of p play an essential role in RCT. The precisiated meaning of p
may be viewed as the computational meaning of p. Of the three equivalent
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Fig. 6 A numerical truth
value, nt, is induced by an
instantiation of ED. tr is the 1

truth function nt numerical
tr truth value

instantiation
of ED

instantiations of ED numerical truth values

definitions stated above, the definition that is best suited for computational purposes
is that which involves the possibility distribution of ED. Adopting this definition,
what can be stated is the following.

e Definition. The precisiated (computational) meaning of p is the possibility
distribution of ED, Poss(EDIp), which is induced by p.

A simple example. Consider the proposition, p: Robert is tall. In this case, ED
consists of Height(Robert) and the relation TALL[Height; pu] or, equivalently, the
membership function p,;. We have,

X =Height(Robert), R=tall.
The canonical form reads
Height (Robert) is tall.
The precisiated X and R are expressed as
X" = Height(Robert), R* =tall,

where tall is a fuzzy set with the membership function, piy.
The precisiated canonical form reads

Height (Robert) is tall.

Note that in this case the unprecisiated and precisiated canonical forms are
identical. The truth distribution is defined by

nty = py (h),

where h is a generic value of Height(Robert).
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The basic equality reads
Tr(p/h) = Poss(h|p).

More specifically, if h = 175 cm and pi(175¢my = 0.9, then 0.9 is the truth value
of p given h = 175 cm, and the possibility that h = 175 cm given p (Fig. 7).

Example. Robert is handsome. In this case, assume that we have a sample popu-
lation of men, Name,, ..., Name, with ; being the grade of membership of Name;
in the fuzzy set handsome. The meaning of p is the possibility distribution asso-
ciated with the fuzzy set handsome—the possibility distribution which is induced
by p. The possibility that Name; is handsome is equal to the grade of membership of
Name; in handsome.

A less simple example. Consider the proposition, p: Most Swedes are tall. In this
case, X = Proportion(tall Swedes/Swedes) and R = most. The canonical form of p is

Proportion (tall Swedes/Swedes) is most.

The precisiated X and R may be expressed as

hmax
X' = / h(u)pyy (u)du,

Bmin

R = most,

where most is a fuzzy set with a specified membership function, g
The precisiated canonical form reads

hﬂlﬂX
CF": / h(u)py (u)du is most.

Bimin

1¢ +— tall

0.9

0 Height
175cm

Fig. 7 0.9 = truth value of the proposition Robert is tall, given that Robert’s height is 175 cm.
0.9 = possibility that Robert’s height is 175 cm, given the proposition Robert is tall
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The truth distribution, Tr(plED), is defined by computing the degree, nt,, to

which X satisfies R,
hmax
ntp = Hmost (/h h(ll) ulalldu)

Note that an instantiation of ED induces a numerical truth value, nt,.

Another example. Consider the proposition, p: Robert is much taller than most of
his friends. In this case, assume that X = Proportion of friends of Robert in relation
to whom Robert is much taller, and R = most. The explanatory database, ED,
consists of the relations FRIENDS[Name;u], HEIGHT[Name;Height], MUCH.
TALLER[Height,;Height,;u], and Height(Robert). Equivalently, ED may be
expressed as ug(Name;), h;, and yr(hhy), i = 1, ..., n. In this ED, h = Height
(Robert), h; = Height(Name;), ug(Name;) = grade of membership of Name; in the
fuzzy set of friends of Robert, and uyr(h,h;) = grade of membership of (h, hi) and
the fuzzy set much taller. Precisiated X and R are expressed as,

, 1 "
X = <— Y pyer(hy hy) A pF(Namei)> , R =most,
n-;
The precisiated meaning of p is expressed as,
1 .
Poss(EDIP) = Hmose | 2 kvrr ( hi) Apg(i) ).

where A denotes conjunction.

Note. The concept of an instantiated ED in RCT is related to the concept of a
possible world in traditional theories. Similarly, the concept of a possibility dis-
tribution of the explanatory database is related to the concept of intension.

Precisiation of meaning is the core of RCT and one of its principal contributions.
A summary may be helpful.

3.2 Summary of Precisiation

The point of departure is a proposition, p, drawn from a natural language. The
objective is precisiation of p.

1. Choose a focal variable, X, by interpreting p as an answer to the question: What
is the value of X? Identify the restricting relation, R. R is a function of X. At
this point, X and R are described in a natural language.

2. Construct the canonical form, CF(p) = X isrR.
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3. Construct an explanatory database, ED. To construct ED, ask the question:
What information is needed to express X and R as functions of ED? Alterna-
tively, ask the question: What information is needed to compute the truth value
of p?

4. Precisiate X and R by expressing X and R as functions of ED. Precisiated X and

R are denoted as X" and R, respectively.

Construct the precisiated canonical form,CF"(p): X" isr" R".

Equate precisiated p to CF (p).

CF(p) defines the possibility distribution of ED given p, Poss(ED|p).

CF’(p) defines the truth distribution of the truth value or p given ED, Tr(p|ED).

Poss(ED|p) = Tr(p|ED).

Define the precisiated (computational) meaning of p as the possibility distri-

bution of ED given p, Poss(ED|p). More informatively, the precisiated (com-

putational) meaning of p is the possibility distribution, Poss(ED|p), together
with the procedure which computes Poss(ED|p).

SwooNow;

3.3 Truth Qualification. Internal and External Truth Values

A truth-qualified proposition is a proposition of the form t p, where t is the truth
value of p. t may be a numerical truth value, nt, or a linguistic truth value, It.
Example. It is quite true that Robert is tall. In this case, t = quite true and
p = Robert is tall. A significant fraction of propositions drawn from a natural
language are truth-qualified. An early discussion of truth-qualification is contained
in [14]. Application of truth-qualification to a resolution of Liar’s paradox is
contained in [15].

In a departure from tradition, in RCT a proposition, p, is associated with two
truth values—internal truth value and external truth value. When necessary, internal
and external truth values are expressed as Int(truth value) and Ext(truth value), or
Int(p) and Ext(p).

Informally, the internal numerical truth value is defined as the degree of
agreement of p with an instantiation of ED. Informally, an external numerical truth
value of p is defined as the degree of agreement of p with factual information, F.
More concretely, an internal numerical truth value is defined as follows.

Definition.
Int(nt,) =tr(ED).
In this equation, ED is an instantiation of the explanatory database, Int(nt,) is the

internal numerical truth value of p, and tr is the truth function which was defined
earlier.
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More generally, assume that we have a possibilistic restriction on instantiations
of ED, Poss(ED). This restriction induces a possibilistic restriction on nt, which can
be computed through the use of the extension principle. The restriction on nt, may
be expressed as tr(Poss(ED)). The fuzzy set, tr(Poss(ED)), may be approximated by
the membership function of a linguistic truth value. This leads to the following
definition of an internal linguistic truth value of p.

Definition.
Int(1t, ) ~tr(Poss(ED)).

In this equation, ~ should be interpreted as a linguistic approximation. In words,
the internal linguistic truth value, Int(lt,), is the image—modulo linguistic
approximation—of the possibility distribution of ED under the truth function, tr. It
is important to note that the definition of linguistic truth value which was stated in
the previous subsection is, in fact, the definition of internal linguistic truth value of

p (Fig. 8).

Note. Poss(ED), tr(Poss(ED)) and It, are fuzzy sets. For simplicity, denote these
fuzzy sets as A, B and C, respectively. Using the extension principle, computation
of It, reduces to the solution of the variational problem,

pp(v) =sup,p, (u)
subject to
v=tr(u)
Hc ~ Hg-

The external truth value of p, Ext(p), relates to the degree of agreement of p with
factual information, F. In RCT, factual information may be assumed to induce a

tr (Poss (ED)) 1

tr

—

Poss (ED) |:

instantiations of ED numerical truth values

Fig. 8 A linguistic truth value, lItp, is induced by a possibilistic restriction on instantiations of ED,
Poss(ED). Itp is a linguistic approximation to the image of Poss(ED) under tr
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possibilistic restriction on ED, Poss(EDIF). In particular, if F instantiates ED, then
the external truth value is numerical. This is the basis for the following definition.

Definition. The external numerical truth value of p is defined as
Ext(nt,) =tr(ED|F),

where ED is an instantiation of the explanatory database induced by F.

Simple example. In Fig. 7, if the factual information is that Robert’s height is
175 cm, then the external numerical truth value of p is 0.9.

More generally, if F induces a possibilistic restriction on instantiations of ED,
Poss(EDIF), then the external linguistic truth value of p may be defined as follows.

Definition.
Ext(lt, ) ~tr(Poss(ED|F)).

In this equation, ~ should be interpreted as a linguistic approximation. In words,
the external linguistic truth value of p is—modulo linguistic approximation—the
image of Poss(EDIF) under tr.

Example. Consider the proposition, p: Most Swedes are tall. Assume that the
factual information is that the average height of Swedes is around 170 cm. Around
170 cm is a fuzzy set defined by its membership function, U,.170cm- In terms of the
height density function, h, the average height of Swedes may be expressed as

hmmx
hye = / uh(u)du.

Bimin

The explanatory database consists of P, Mmost and h. Assuming that p,; and
Mmost are fixed, the possibilistic restriction on ED is induced by the indirect pos-
sibilistic restriction

hmax
/ uh(u)du is around 170cm

hmin

which is equivalent to the possibility distribution of h expressed as

hmax
Poss (h|h,.) = Har. 170em (/ uh(u)du) :
hmin

An important observation is in order. An internal truth value modifies the
meaning of p. An external truth value does not modify the meaning of p; it places in
evidence the factual information, with the understanding that factual information is
a possibilistic restriction on the explanatory database.
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1
]<_ It,
preimage of _, r

Poss (EDIIt )
20

instantiations of ED numerical truth values

Fig. 9 Modification of meaning of p. Modified meaning of p is the preimage of ltp under tr

How does an internal truth value, t, modify the meaning of p? Assume that the
internal truth value is numerical. The meaning of p is the possibility distribution,
Poss(EDIp). The meaning of nt p is the preimage of nt under the truth function, tr. In
other words, the meaning of p, expressed as the possibility distribution, Poss(EDIp),
is modified to the possibility distribution Poss(EDInt,). If the internal truth value is
linguistic, 1t,, the modified meaning is the preimage of lt,, Poss(EDIIt,), under tr
(Fig. 9). More concretely, using the inverse version of the basic extension principle,
we can write

HPOSS(EDWP) (u) = p'lr(Poss(ED|ltp)) (tr(u))’

where u is an instantiation of ED, UpossEDiiyp) and MirpossEDilpy) are the membership
functions of Poss(EDIIt,) and tr(Poss(EDIIt,)), respectively.

Simple example. In Fig. 7, the preimage of 0.9 is 175 cm. The meaning of p is the
possibility distribution of tall. The truth value 0.9 modifies the possibility distribution
of tall to Height(Robert) = 175 cm. More generally, when the truth value is linguistic,
It,, the modified meaning of p is the preimage of 1t, under tr (Fig. 10).

There is a special case which lends itself to a simple analysis. Assume that It is of
the form h true, where h is a hedge exemplified by quite, very, almost, etc. Assume
that p is of the form X is A, where A is a fuzzy set. In this case, what can be
postulated is that truth-qualification modifies the meaning of p as follows.

htrue(Xis A)=XishA.

h A may be computed through the use of techniques described in early papers on
hedges [4, 11].

Example.

(usually true) Snow is white = snow is usually white.
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Fig. 10 An internal linguistic u
truth value modifies the
meaning of p 1  tall
0.9
It,
0 Height

175cm

preimage of It , (modified meaning of p)

I I3
1 1
«— very true T tall
F true rvery tall
u Height
0 1 0 e

Fig. 11 Meaning-modification induced by hedged truth-qualification

Example. (Fig. 11).
Itis very true that Robert is tall = Robertis very tall.

A word of caution is in order. Assume that there is no hedge. In this case, the
equality becomes

true(XisA) = Xis A.

If truth is bivalent, and true is one of its values, this equality is an agreement with
the school of thought which maintains that propositions p and p is true have the
same meaning. In RCT, p and p is true do not have the same meaning. There is a
subtle difference. More concretely, the meaning of p relates to the agreement of p
with a possibilistic restriction on ED. The meaning of p is true relates to a possi-
bilistic restriction which is induced by factual information.

When It, is an external truth value, the meaning of p is not modified by It,.
In RCT, a simplifying assumption which is made regarding the factual informa-
tion, F, is that F may be described as a possibility distribution of instantiations
of ED, Poss(EDIF). The external truth value, lt,, identifies the factual information as
the preimage of It, under tr,
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Ext(lt,) = tr(Poss(ED|F))
F =Poss(ED|Ext(lt,)).

In conclusion, truth-qualification in RCT is paralleled by probability-qualification
in probability theory and by possibility-qualification in possibility theory.
Truth-qualification, probability-qualification and possibility-qualification are
intrinsically important issues in logic, information analysis and related fields.

4 Concluding Remark

The theory outlined in this paper, RCT, may be viewed as a step toward formal-
ization of everyday reasoning and everyday discourse. Unlike traditional theories—
theories which are based on bivalent logic—RCT is based on fuzzy logic. Fuzzy
logic is the logic of classes with unsharp(fuzzy) boundaries. In the realm of
everyday reasoning and everyday discourse, fuzziness of class boundaries is the
rule rather than exception. The conceptual structure of RCT reflects this reality.

The theory which underlies RCT is not easy to understand, largely because it
contains many unfamiliar concepts. However, once it is understood, what is
revealed is that the conceptual structure of RCT is simple and natural.
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Functional Solution of the Knowledge
Level Control Problem: The Principles
of Fuzzy Logic Rules and Linguistic
Variables

Ali M. Abbasov and Shahnaz N. Shahbazova

Abstract This paper addresses the problem of imitating a teacher evaluating the
students’ levels of knowledge. It proposes application of fuzzy logic to construct
and manage a knowledge control system used for generating evaluating questions.
The system contains a knowledge base with relevant information and a set of rules.
Students build the rules based on the analysis of answers and relevant reactions to
questions. The algorithms governing the system allow for an automatic selection of
sequences of appropriate and customized questions. The presented system for
knowledge control and generating questions is comparable in quality and efficiency
with the real teacher’s questioning process.

Keywords Decision making - Uncertainty « Fuzzy logic -+ Neuro-fuzzy expert
systems - Complex systems - Expert knowledge

1 Introduction

A system for evaluating learnt knowledge and managing it is one of the main
elements of successful educational or research activities. An efficient and effective
process of appraising gained knowledge — called hereafter a knowledge control
process — influences all aspects of education and research as they rely on the
outcome of learning activities.
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From a practical point of view, procedures of knowledge control should allow for
questioning students with the aim of verifying their knowledge and skills in the field
of study. The effective control of knowledge should be able to mimic a teacher of the
relevant subject. Therefore, a system that is able to simulate the teacher’s behavior is
the most reasonable to develop. The analysis of the teacher’s behavior in performing
an evaluation process leads to construction of a system for an automated knowledge
control. This system is able to conduct evaluation of students’ knowledge, and
determine correctness and incorrectness of provided answers.

2 Implementation of Intelligent System in Educational
Process

The quality of a teaching system depends on the precise definition of the charac-
teristics of several key factors defining the student’s knowledge level and abilities:
results of absorbing material recently presented to her, mastering the material
presented in the past, and current moral and psychological state of the student.

The problem of selecting further actions is solved by the system based on these
key factors. The possible actions may be: continuation of the teaching process,
asking questions related to the previous material, repetition of already asked and
answered questions, or completion of the training process.

The system’s electronic catalog stores all data related to the student’s abilities,
her test schedule, etc. In addition, it contains personal data of the student.

In the process of working with the program, the student is able not only to test
her knowledge, but also to learn. This is achieved by the way questions are asked,
and by the presence of all of the questions, comments, and explanations given by
the teacher. Access to the Internet provides the student with the ability to explore
information anywhere in the world, including the best libraries, archives, etc.

Once the sustainable results are achieved for a certain part of the material, the
student can proceed to the next level of difficulty of questions. This transition will
allow the student to continue her learning process further.

This step-wise training process gives the student the necessary time to fully
master and strengthen the knowledge of a given material, and then to move to a
new, more difficult material. Each transition is accompanied by a small test on the
previous material, and an analysis of its mastery.

To this date, the work has been done on learning and testing of a group of
students at the same time. A teacher creates shared folders on a particular subject or
subjects. Using these shared folders, the teacher can give tasks and exercises to a
group of students, as well as check their solutions and results. The shared folders
are structured in a way that simplifies the work with groups of students. The teacher
has access to the working directories of students, and is allowed to deal individually
with each student. The same thing happens when a re-take of a course is recom-
mended, or a more detailed analysis of errors in the shared directories is required.
The sophistication of the Intelligent Information System of Learning and Control of
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Knowledge (IISLCK) allows the teacher to add and edit her material, and to make
corrections according to the latest achievements of science and culture [1].

One of possible ways to improve the functionality of the systems of technical
control of knowledge is the application of intelligent technologies in particular
methods based on the diverse hybrid Expert Systems (ESs). Hybrid ESs represent
different kinds of knowledge and are equipped with conceptual, expert, and factual
methods of its processing.

The main task of the development of hybrid systems is to combine different
forms of representing knowledge and methods of its processing, and merge them
with decision-making approaches of ES. This means, that the actual problem is to
investigate the possibilities of optimal connection of different mechanisms of
knowledge processing to improve the quality, mobility and efficiency of ES in
solving problems of a knowledge control process in conditions of uncertainty.

The mobility of ES is due to the mobility of the knowledge base (KB) and its
ability to replenish material/facts/data from different information components
(database, bases of expert knowledge (BEK), the base of conceptual knowledge
(BCK), dynamic files, etc.), as well as various procedures of drawing conclusions.
The concretization of knowledge processing in solving problems decomposes them
into accurate and inaccurate, complete and incomplete, static and dynamic, single-
valued and multi-valued, etc. In addition, the expert knowledge is inaccurate due to
their subjective character. The approximation and multiple meanings of knowledge
processing means that the ES has to deal with several alternative areas. Therefore,
the processing of incomplete knowledge can use several sources of knowledge.

The application of a fuzzy logic hybrid ES for knowledge control may have at
least three implementations:

(1) Processing of fuzzy uncertainty of expert expressions, i.e. when the pre-
condition is fuzzy variables, but an inference machine is a data extraction
mechanism from these preconditions.

(2) Using a matrix of fuzzy connections, determining a number of factors and
preconditions. The matrix contains the fuzzy relations between variables,
represented as real numbers [0, 1], and determines the cause of a condition.
The matrix and factors form equations of fuzzy relations. The resulting system
is solved using minimum-maximum fuzzy inference mechanism.

(3) Using fuzzy conclusions. This approach is most often used in the construction
of fuzzy knowledge bases [2].

The application of fuzzy hybrid ES to solve problems and control parameters of
knowledge processing extends the capabilities of this class of intelligent systems, as
well as increases their flexibility and mobility. This allows conducting expert
evaluation of a large number of variants, increasing the credibility and accuracy of
the evaluation of the results.

In this paper, the main principles of construction of a neuro-fuzzy hybrid ES
with diverse knowledge and its analysis in conditions of uncertainty of its
parameters are considered. Additionally, the application of a dynamic knowledge
base combined with neural networks (NN) is being investigated [3].
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In the neuro-fuzzy hybrid ES, standard model (SM) is stored in the knowledge
base containing processed knowledge, and is refined in the process of acquiring new
knowledge. The real model is formed in a database environment, and communica-
tion with the EM is achieved via the user’s requests. Solving the problem of
designing an intelligent system for quality knowledge control built based on a hybrid
ES is done with taking into account the characteristics of the environment of ES.

The hybrid ES consists of the following parts: a database that stores standard and
factual evidence about the process; the results of their comparison, conceptual,
physical and info logical models; knowledge base (KB) — its static part (knowledge
is stored in the form of expert knowledge (of products) as well as formulas, facts,
dependencies, tables, concepts specific subject area), and its dynamic part (the
knowledge is stored in combined models of NN in the form of standard of dynamic
processes taking into account the partial or complete uncertainly parameter of
control); a mechanism of logic inference that is based on an algorithm for gener-
ating cause and effect network of events functional-structural model; adaptation
mechanism to coordinate the work of the database (DB) and KB in the process of
logical inference depending on the situation, explaining the mechanism, which is an
interpretation of the process of logical inference; planner coordinating the process
of solving the problem; solver for finding effective solutions to positive, negative
and mixed statements of problems.

The content, form and algorithms for representing information inside the hybrid
ES are flexible and depend on the complexity of a situation being modeled, and the
specific and individual characteristics of the user.

The expert presents her knowledge in the form of sets of examples. A derivation
tree is used as the internal form of presentation of the knowledge. A set of examples
is described by attributes. All examples of the same structure, as defined by its
attributes, are linked by logical transitions. In this case, the relevant trees of
inference are combined in such a way that at the terminal vertex of one tree another
tree is added.

The Computational Model of the ES and the DB in solving problems under
uncertainty is given in the form:

W=<A,D,B, F, H>, (2.1)

where A — is a set of attributes of DB and KB; D — denotes domains (attribute
values of DB and KB); B — is a set of functional dependencies defined over the
attributes; F — denotes descriptions of all types used in the functional dependencies
B; and H - is a set of fuzzy relations over a set of attributes A [4].

One of the most difficult aspects to achieve in the hybrid ES is the requirement of
dealing with different forms of knowledge representation, such as frames, semantic
networks, databases, the concepts presented in KB, neural networks, fuzzy logic,
genetic algorithms. All of these components have to share a single information
space in the hybrid ES. For example, in the hybrid ES, diverse knowledge is stored
in static components of ES, while dynamic knowledge about the current state of
information is stored in neural networks. The modern information and database
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technology (for example, Object Linking and Embedding paradigm) can easily
share diverse knowledge within a single information space [5].

It should be noted that the approach considered here, i.e., the application of
hybrid ES as the basis for the intelligent system for knowledge control in the
presence of uncertainty allows for:

(1) Actively applying the diverse knowledge (conceptual, structural, procedural,
factual, base rule with membership function, rules and fuzzy rules of DB, KB,
BEK procedures) together with inference mechanisms for finding effective
solutions to the problem of determining the level of student’s knowledge;

(2) Summarizing and improving the conceptual model of representation of diverse
knowledge among relational DB and the managed DBMS; and interacting
with the core of hybrid ES;

(3) Effectively solving the problem of optimizing and distributing information
streams among individual subsystems of the hybrid ES under the conditions of
uncertainty.

The methodology of constructing diverse knowledge storage for hybrid neuro-
fuzzy ES includes the following stages [6]:

(1) The formalization of the domain (the development of a conceptual model);

(2) The description of knowledge model as individual concepts (knowledge) in
the KB;

(3) The formation of KB with the base rule as a managing components of intel-
ligent core;

(4) The description of diverse information to control the student’s knowledge in
the individual sub-systems of the hybrid ES (DB, KB, EKB, a graphical DB,
the computed files);

(5) Selecting a neural-network model and learning rules;

(6) Development of fuzzy logic procedures;

(7) Distribution of information streams between the ES and its individual
subsystems;

(8) Testing individual subsystems of the ES;

(9) Testing the neuro-fuzzy hybrid ES.

3 The Methodology for Knowledge Control

An important element of the learning system is its ability to make decisions
regarding the level of difficulty of questions which should be posed to students.
This should be preformed based on the results of answering previous questions. The
solution to this problem depends on numerous parameters, most of which are
unknown to the system. A fairly accurate answer can be found with the help of the
mathematical apparatus of fuzzy logic [7].
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The analysis of the current situation depends on following:

(1) Questions answered correctly by a student;

(2) Questions answered incorrectly by a student;

(3) Question answered incorrectly to previous questions by a student;

(4) Preliminary analysis of a student’s ability;

(5) The number of correct answers coupled with their difficulty and in respect to
erroneous answers.

This list reflects the real computational tasks. A decision-making process is
carried out in order to select questions, which according to the program, corre-
sponds to student’s ability. An incorrect answer triggers a re-valuation process of
the data about the student and leads to less difficult questions to be asked in the next
time. In the case of a correct answer, the program asks questions with progressive
difficulty. This decision-making method allows an individual to make a progress
during the learning process [8]. Furthermore, it gives the most accurate evaluation
of the student abilities.

At the end of the evaluation process, when both student and teacher want to sum
up the result of the educational session, the program analyses the number of correct
answers and their complexity. It starts with updating the relevant database record of
the student, and then begins the process of analysis that aims at providing updated
and correct information about the student.

This information can include: the current level of mastery of the subject of the
student; comparison with previous results of analysis of the student’s incorrect
responses, the visualization of the correct answers with commentary, as well as
comments provided by the teacher while entering questions into the database [9].

The importance of evaluation of the executed test could be adjusted by the
program and/or by the teacher. This approach allows for performing individual
pretests and tests at different levels of difficulty.

As stated, due to the large number of external parameters a decision-making
process is done with the help of the mathematical apparatus of fuzzy logic. The
responsible subsystem also includes conducting tests that satisfy the following
requirements [10, 11]:

(1) Protecting answers from unauthorized access;

(2) Preventing a student from modification of the number of correct answers to
questions;

(3) Providing equal conditions for the tests.

During the process of testing, the next question is read from the database based
on the inference result obtained from a knowledge base located in the network. The
question is displayed in a form convenient for the student (Fig. 1).
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Fig. 1 Simplified block-schema of the control system of knowledge

These expressions can be represented in the form of conditional statements of
complicated structure. As a very simple example is the expression of the form:

If the Previous Answer = Right,
THEN Correct Answers = Correct Answers + 1

The next level of complication of the statements is to generate weighted ques-
tions (complexity):

If the Previous Answer = right,
Then Weight Correct Answer = Weight Correct Answer +
Table Weight (Index Current Answer)

The level of intelligence of the subsystems can be increased by adding records of
the elapsed time and other parameters, and providing complicated logic expres-
sions. In such a case the level of testing provided by subsystems can be compared
with surveys conducted by the real teacher [12]. Additional parameters in mathe-
matical expressions provide the descriptions of the following characteristics: the
ability to remember, attentiveness, reaction speed, decision-making speed, reading
speed, etc.

In the process of working with the program, the student cannot only test her
knowledge, but also learn. This is accomplished when the question is asked, and
also with the access to all of the comments and explanations given by the teacher.

Once stable results are obtained for a certain group of questions, the student can
move on to the questions on the next level of complexity [13]. This transition
enables the student’s further development without being stack at the achieved
results.
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A gradual learning process gives the student the necessary time to complete
mastering and strengthening the material, and then transit to a new, more complex
material. Each transition is accompanied by a small test containing questions related
to the previous material, and an analysis of its mastering.

4 Decision Making and the Knowledge Control
in the Managing System

The algorithm of choosing the first and subsequent questions uses the results of
carrying out the following tasks.

e preliminary analysis — used to evaluate the level of student’s knowledge for
making a decision regarding the first question (students lagging in knowledge
assimilation are asked questions from a group of simple questions, while pre-
pared students are given more difficult questions) [1] (Fig. 2).

Questions from
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prepared student
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i

3
i

£

£
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£
£
iy

Questions from
which begins
lagging student

The most common Questions of average The most difficult
questions (Min) difficulty questions (Max)

Fig. 2 Strategy for selection of the first question

e The formula below represents one of functions of the decision making block. Its
essence comes down to choosing the next question, which corresponds to the
student’s level of knowledge. If an incorrect answer is chosen during the
evaluation, the student will be given a less difficult question (2). If the correct
answer is selected, the program will choose the more difficult question (1). The
decision process can be described in the following way.
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e A student answers the previous question correctly: in such a case the student is
asked a question of increased difficulty (Fig. 3). The formula for selecting the

next question is [6]:

(Max(A*) + Max(A™))
2

0=

+2%

(4.1)

where, Q is the next question, (A+) is the level of difficulty of a correctly answered
question, Max(A+) is the maximum level of difficulty of the questions to which
the student gave the correct answers, (A-) is the level of difficulty of an incorrectly
answered question, and Max(A-) is the maximum level of difficulty of the
question to which the student gave the incorrect answer. In case the student has not
given an incorrect answer yet, the assigned value is the maximum level of diffi-
culty of the questions for this course. + 2 % is the maximum deviation in the level
of the next asked question, and it represents randomness in a selection process.

The process of testing Decision making after the
a student first asked question
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SR
N
S

<350
e
S
e

e

2
R
S

<

<
S

s

<
S

e e e

SR
< D
E§g¢¢ N

o

o
R
s

<

o
GRS

oo
o

o

o

o

R
230505
s

et

%
%
2
3
3
3
#
3
2
2
2
2
2
e
et
o
i
&
255

BRSS!

2
A
£S5

o o AR R o

5

e A student answers the previous question incorrectly: in this case the student is
asked a less difficult question (Fig. 4). The selection formula of the next

question is [7]:

(Max(A~™) + Min(A™))

0= 2

+2%

(4.2)

where, Min(A+) is the minimum level of difficulty of the correctly answered
question, while Max(A-) is the maximum level of difficulty of the question to
which the student gave the incorrect answer. If the correct answer was not given
by the student, the assigned value is the minimum level of difficulty of the

questions for this course.
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The process of Decision making after the
testing a student second asked question
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Fig. 4 A strategy for selecting the next question after an incorrect answer

The deviation included in the formulas ensures that for every student group
there are no be two students that are given the same questions, even if the order
of correct and incorrect answers are the same [2].

e processing the results and making a decision related to the final evaluation or
continuation of testing — the number of correctly answered questions multiplied
by their difficulty in relation to the number of mistakes and sets of correctly and
incorrectly answered questions are the input to the decision-making subpro-
gram; this results in a final evaluation or, if there remains a high probability of
uncertainty, in continuation of testing (according to formula 4).

é (A7) é (Aj_>

Z+jP=f N s

AT AT LA [AT LAY, LA

(4.3)

where, Z — evaluation of knowledge, P — uncertainty of evaluation, f — the decision
making subprogram which works based on the following characteristics of conducted
testing, (Aj+) — the set of difficulty levels of correctly answered questions, (A;—) — the
set of difficulty levels of incorrectly answered questions, N — number of questions
with the correct answers, M — number of questions with the incorrect answers [5].
The result of the formula 4 is a complex number. This number represents the
response of the decision making subprogram and indicates a degree of uncertainty
in the students’ knowledge [3]. This uncertainty provides a level of confidence in
the evaluation process. Its value relates to the coverage of questions in the learning
process. Higher the coverage less the uncertainty, which depends on the number of
asked questions (Fig. 5). For example, the student can answer only a few questions
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and obtain an excellent score, but the uncertainty in this case would be very high,
due to the fact that only several questions covering a significant amount of extre-
mely difficult course material have been asked.

Fig. 5 Example distribution

of answers after testing The result of testing of
students
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e
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chchel
£

e
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Thus, the system containing the flexible algorithm of questioning, allows the
teacher to decide about the volume of material covered in the course and the
number of questions that should be asked to students in order to make an accurate
determination of students’ knowledge [4]. The preformed test may be an inter-
mediate exam related to a small amount of learning material (10-20 questions in
20-30 min), or a full-scale exam based on the entire volume of the studied material
(100-150 questions in 3—4 h).

5 Conclusion

The developed decision-making algorithm can determine the level of knowledge of
a tested person on the basis of questioning with the minimum possible number of
questions. This allows providing an evaluation of the students’ knowledge level,
over a short period of time, with a high degree of reliability when compared to the
traditional method of questioning conducted by a teacher. Hence, an ingenious
system of knowledge control has been developed via the application of fuzzy logic.
It is very close to imitating the teacher’s behavior in the process of student’s
questioning. It includes ability and precision that have not been seen before in any
automated system. The proposed system integrates elements of expert systems,
processes of development and populating a database, as well as construction of
powerful and flexible rules. All system’s aspects described above indicate effec-
tiveness and flexibility of algorithms and functions used to build the knowledge
control system. and confirm usefulness of applied newest technologies.
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Learning Systems with FUZZY

Sang Wan Lee and Z. Zenn Bien

Abstract Fuzzy techniques have been proven to effectively tackle the problems of
uncertainty in relationships among variables in systems that learn to adapt to a
changing environment. This paper outlines our challenges for the last 25 years to
design learning systems with fuzzy techniques and their applications to many real
world problems. We then focus on the development of human-in-the-loop systems,
such as a smart home or an assistive robotic environment, that involve different
types of learning strategies. This warrants a full consideration of learning mecha-
nisms in humans that mediate action-selection. We envisage that the principles of
fuzzy theory, when combined with what we know about computational learning
mechanisms in the human brain, will offer a practical guidance on how we design
learning systems to advance user’s experience in real-world scenarios.

Keywords Learning system + Fuzzy < Human-in-the-loop system - System
design + Human brain - Smart home - Multiple learning systems

1 Introduction

Many real-world problems pose daunting challenges for the design of engineering
systems. The crux of them is arguably uncertainty inasmuch as one variable may
not be exclusively dedicated to a single part of a system. There is a grey area where
one variable has multiple roles in a system while there is a black and white area
where contribution of a variable to the system is distinctive. Fuzzy theory directly
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addresses the problem of uncertain nature of the relationship among variables,
affording the fuzzy systems the leverage to model uncertain environments.

One other problem that raises challenges is the fact that a situation changes over
time. This is why a system lacking an ability to cope with it sometimes fails to
deliver credible performance in real-world situations even though the system has
been previously proven to work well in a controlled environment. The system
therefore needs to learn to adapt to a changing environment.

This paper describes our challenges for the last 25 years to design learning
systems with fuzzy techniques as well as their applications to many real world
problems. First, we introduce a few examples of designing fuzzified controllers that
replace conventional control systems. These techniques are also applied to build
human-in-the-loop systems in two different levels — one focusing on action rec-
ognition and the other focusing on intention reading underlying those actions. We
then show how these ideas lead to an invention of integrated systems, such as a
smart home or an assistive robotic environment. Since we have learned that design
of such integrated systems essentially involves a combination of multiple learning
systems, we finally suggest a new direction of system design based on what have
been known about learning mechanisms in the human brain.

2 Reinventing Control Systems

Performance of an inference system depends on how accurately it describes rela-
tionships among variables. Considering that the degree of complexity exponentially
increases with the number of internal variables, designing such systems inevitably
entails the risk of overfitting. This means that the system is vulnerable to noise or
change in an environment. Fuzzy logic remedies this problem by quantifying the
amount of uncertainty in the relationships among internal variables of an inference
system [1, 2]. The fuzzy technique has also been proven to be effective in designing
an adaptive controller for nonlinear systems [3].

The idea of encoding uncertainty by means of fuzzy rule bases has been suc-
cessfully applied to designing a fuzzy controller for many real-world applications.
The technique allows a system to effectively resolve inconsistency in fuzzy rule
bases [4]. This encourages us to deal with more realistic issues, such as multi-
objective or time-delayed system design [5, 6].

Another line of research is to maintain reliable system performance in a dynamic
environment. To meet this need, we attempted to design a nonlinear multi-input-
multi-output system (MIMO) in such a way that incorporates learning capability
[7]. The first challenge was that it is difficult to determine whether we create a new
rule base or modify existing ones when we have a new set of observations. We
solved this problem by borrowing an idea from rough set theory, by which we can
find a minimal set of rules given new examples [8]. The next challenge was that the
learning requires supervision for fine-tuning. The reinforcement learning, a semi-
supervised learning technique based on Markovian decision process [9], have been
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shown to be a necessary component for dealing with system uncertainty [10, 11].
The combination of fuzzy systems and reinforcement learning techniques evolved
into more sophisticated system designs incorporating a various types of neural
networks, demonstrating that the combined system yields dramatic performance
improvement in many real-world applications, such as gesture recognition, facial
expression recognition, and even general-purpose on-line adaptive system, [12—15].

3 Learning in Human-in-the-Loop Systems

There has been a steadily-growing interest in developing service robotic systems
that are capable of serving for human directly. For effective control and manage-
ment, the robots and human are often equally considered as subsystems of the
system: this type of system is called a “human-in-the-loop system”, where the
occurrence of two-way interactions between human and robots is inevitable (for
example, see Fig. 1a). In our studies, we restricted our attention to service robotic
systems that are intended to assist the elderly or the persons with physical disability,
and advocated that one of the major considerations for designing such robotic
systems is “human-friendliness”. In doing so, the robot agents need to exert all the
possible functional capabilities when interaction takes place, including sensing,
recognition, and decision making, to the extent that the system places a minimum-
possible burden to the on-users.

Technical challenge arises when designing each individual robot agents. In order
for the robot agents to function as a viable observer or controller, it is necessary to
learn to recognize various forms of human physical motion. However, difficulty
arises when there is uncertainty either in human motions or in environment. Sub-
stantial progress has been made for the last twenty years toward developing reliable
systems that directly tackle this challenge.

The study focuses on two different levels of recognition. The lower level of
recognition deals with physical motions, such as gesture or footprint, and the higher
level of recognition considers subtle features that underlies such motions, such as
facial expressions, emotional states, or action planning. It is noted that the former
approach enables us to design more reliable and robust system, while the latter
creates an opportunity for more efficient two-way interactions between a human and
robots by making predictions about future actions.

3.1 Learning to Recognize Observable States — Physical
Motions

In many real world applications, an image processing lacking robustness against
variability of color or edge is often doomed to failure of recognition. Our previous
studies have demonstrated that fuzzy technique is an efficient tool for robust image
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Fig. 1 Different types of human-in-the-loop systems. (a) KARES robotic agent [35]. The system
is equipped with a robotic arm, an eye-mouse, and EMG-based control module. (b) Multiple types
of recognition systems. The fuzzy technique has been applied to various recognition problems,
demonstrating its effectiveness in resolving uncertainty in patterns of physical motions, such as
hand gestures (upper-left), walking (upper-right), electromyography (EMG) signals (lower-left).
The fuzzy learning technique has been also shown to be useful for reading-out of human intention,
such as facial expressions (lower-right)
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recognition [16—18]. This is perhaps not a surprising success considering how
efficiently the fuzzy rule deals with uncertainty in these variables.

We then focused on developing a robust gesture recognition system: how does
the system successfully learn to recognize hand commands or a sign language when
faced with subjective and noisy representation of gestures? We tackled this problem
by combining a multi-layered neural network and a fuzzy rule base that translates
dynamic trajectories of gestures into discrete entities [13, 19]. This implementation
has led to more interesting idea that the gesture can be used as a soft remote
controller in service robotic environment [20] (Fig. 1b; upper-left), and later
evolved to design of a beat gesture recognition system that interacts with an
automatic music agent, such as a piano playing robot [21]. This technique has also
been applied to systems with adaptation capability, in which the system can explore
a new type of gestures [22] and automatically learn to recognize a new user’s
gestures [23]. It is noted that our studies on gesture recognition over the 10 years
ensued an integrated sign language recognition system that is capable of recog-
nizing and rendering more than 400 sign word gestures in real-time [13, 19, 24], as
well as a patent on baby sign-language recognition [25] and a spin-off product
which is now manufactured by a company.

The developments for dynamic hand gestures recognition and learning systems
afford insight into how the fuzzy technique and learning mechanisms serve to
resolve uncertainty in human motions in general. It stimulates another type of
studies that focus on person identification based on dynamic patters of walking
(Fig. 1b; upper-right). Specifically, the system recognizes a sequence of footprints
by means of an estimation of foot shapes and a trajectory of center of gravity
[26, 27]. By virtue of the fact that the recognition process requires a minimal effort
but natural walking, it suggests an alternative to conventional identification based
on finger prints or eyes which require extra processes for authentication. It also
opens up a possibility of providing personalized services in a service robotic
environment [28].

Whilst a camera and a pressure sensor have been demonstrated to be an effective
means to learn from gesture and walking patterns, respectively, Electromyography
(EMG) offers us more detailed guidance on what motions they actually plan to
perform (Fig. 1b; lower-left). We have demonstrated that application of fuzzy
techniques surmount a difficulty in counteracting adverse effects, such as fatigue or
class inseparability [18, 29]. It is noted that this type of systems is particularly
useful for the disabled or amputees given that the brain sends a distinctive signal
pertaining to an intended motion to peripheral muscles.

3.2 Learning to Recognize Latent States — Intention Reading

The above mentioned systems are expected to function to learn from observations.
However, perhaps more fundamental challenge to the study of human motions is
how these actions take place in the first place, in other words, what are the hidden
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states underlies these actions. We hypothesized that motivational/emotional states
play a pivotal role in galvanizing us into those actions.

A large amount of literatures assume that facial expression is an embodiment of
emotional states, and this premise indeed helped us work out a practical solution to
many human-robot interaction problems [30, 31]. In particular, wrinkles or stret-
ched shapes of a face are known to be very effective features for recognizing facial
emotions [32]. We have made a series of attempts to take these features into account
(Fig. 1b; lower-right). First off, a system was proposed to establish a solid
knowledge base of human experts, namely “fuzzy observer”, which indirectly
quantifies the amount of uncertainty in linguistic variables of the knowledge base
[33]. This system is built upon a multiplayer neural network to perform parameter
adjustment of the fuzzy observer. The idea has then developed into an adaptive
learning scheme, dubbed as “personalized” facial expression recognition, where an
addition of a new classifier, a modification of an existing classifier, and a feature
selection process are streamlined and guided in an integrated fashion [15, 34].

4 Design of Integrated Learning Systems

4.1 Application to Smart Homes for Aiding the Disables

The “human-in-the-loop” system, in which both service robots and a human are
considered as a part of its control loop, essentially addresses a need for seamless
operation in our living environment, such as a smart home. It is particularly useful
for people with movement disabilities because the system is required to engage in
daily activities of the users with minimal interruption.

Our first effort has been made to design an intelligent robotic agent as a means to
offer various kinds of proactive assistance [35]. The crux of the design was to
balance usability with complexity of functions of a system; a user would be
overwhelmed by the system if it had a complex user interface, regardless of how
versatile the system is. We argued that the remedy to this problem lies in the
psychological implications of how much the users feel comfortable to access a
various functions of the system, called “human-friendly service” [36, 37]. A variety
of human-robot interfaces have been implemented accordingly, including eye-
mouse, head and shoulder user interfaces, and EMG signal interfaces, meeting the
needs of different levels of disability.

From solicited feedbacks on these system from potential end-users with spinal
cord injury, we learned that, in the presence of multiple robotic agents, an inter-
mediate decision maker is required to facilitate effective communication between a
user and individual modules and also to increase accessibility for novice users [37].
This stimulated designing a new type of a service robot, called “Steward robot”
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[38]. The steward robot system has two novel features. First, it learns from user’s
behavioral patterns on a daily basis, providing personalized services. Second, the
user interface is equipped with an emotional interaction module, which is intended
to offer a human-friendly environment, as well as to enable the system to collect
natural behavioral data. Taken together, we have demonstrated that a proper
combination of fuzzy learning techniques is essential for efficient human-machine
interaction in a smart home environment.

4.2 Integrating Multiple Learning Systems

We have undergone a transition from the design of each individual learning agent to
the integration of these learning systems. Our earlier studies have focused on a low-
level communication architecture of the smart home for the disabled, where a single
control unit controls communication among multiple devices and robotic agents
[39]. In a subsequent study, we have proposed higher level functional architecture
to exert control over multiple robotic modules [40]. The proposed integrated system
spanned all levels of control, from user interfaces to action units. The first layer,
functioning as input devices, provides a user with human-machine interactions in
manifold forms, such as a soft remote controller operated by hand gestures, a voice
recognition system, and other types of sensory devices (a joystick or a touch
screen). The second layer, functioning as monitoring devices, consists of a pressure
sensor-based bed that detects body movement and postures and a health monitoring
system that collect bio-signals. This layer also deals with environment parameters
(illumination, humidity, and temperature). The next layer, a central control unit,
receives inputs from the first two layers to execute a command for a variety of
action units. The action units is the last layer of this architecture, which include a
bed-mounted rehabilitation robot, mobile robots, a wheelchair-mounted robot, an
intelligent bed, a robotic hoist, home appliances.

A considerable challenge arises when designing the last action unit layer is how
to organize low-level commands (e.g., “move the robotic hoist”, “turn off the light”,
or “position the wheelchair in front of the hoist”) that is necessary for achieving an
abstract-level goal set by a user (e.g., “I want to go out” or “I want to go to bed”).
Motivated by the way humans draft a plan, the task knowledge organization system
has been proposed by combining a top-down scenario analysis and a bottom-up
commands development [41, 42]. The top-down process develops specific task
structure by configuring task knowledge from the user’s point of view, and then in
the subsequent bottom-up process, the system simulates the user’s scenario to
assess validity of the developed tasks before actually executing a complete task
sequence. This idea has been demonstrated in the KAIST’s intelligent sweet home
(ISH; Fig. 2) scenarios [42].
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Fig. 2 KAIST’s intelligent sweet home scenario. Multiple agents interact to provide a user with
disabled lower-limbs a variety of proactive services, which consists of multiple low-level
commands carried out by a transferring robot (shown in the upper left), a steward robot (shown in
the upper right), a hand gesture-based soft remote control system (shown in the lower left), and an
intelligent bed with a robotic arm (shown in the lower right)

4.3 Multiple Learning Systems: Algorithms Versus
Human Brains

The integrated learning system in the last resort needs to be built upon the
understanding of how humans learn and choose different strategies to reinforce
behavior in a coherent manner. This leads to an emergence of an applicability of
neural theory to the design of learning system. A series of seminal studies in
neuroscience, in which dopamine neurons in behaving non-human primates and
those target areas in humans implement a prediction error from a temporal differ-
ence reinforcement learning algorithm [43, 44], encourage us to utilize those types
of learning model for system design. Subsequent studies combining the learning
algorithms and neural data also found that multiple learning systems were imple-
mented in human brains as opposed to just a single system [45]. This remarkable
resemblance between the learning algorithm and the human brains, combined with
our computational proposal of control of multiple learning algorithms to guide
integrated behaviors [46], merits a test to understand how human brains exert
control over these multiple learning systems. Our study recently demonstrated that
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such control mechanism is indeed implanted in the brain, specifically the allocation
of control is based on the relative degree of “uncertainty” in the estimates from the
two learning systems [47]. We thus envision that fuzzy theory might be useful again
as we begin to understand that human brains use uncertainty information to
implement a control for multiple learning strategies.

5 Outlook

The last three decades is the crucial period in the evolution of fuzzy theory. The
effectiveness in dealing with uncertainty in system variables indeed enables itself to
make a significant contribution to designing learning systems. Our developments
using fuzzy techniques span a wide range of learning systems, demonstrating
effectiveness in handling human users as a component in the control loop. The
techniques also lend themselves well to formulating a design principle of an inte-
grated system for the smart home for the disabled, in which multiple learning agents
effectively interact to provide aids for the user.

On the other hand, we begin to understand how our brain learns from experi-
ences, and more importantly, when and how it exerts control over multiple types of
learning strategies based on uncertainty information. A few recent studies, directly
pitting different types of computational learning models against each other to
understand how the human brain arbitrate multiple learning systems, have provided
us with an insight into how we design an integrated learning systems for real-world
applications.

Taken all together, we envisage that the principles of fuzzy theory, when
combined with what we know about computational learning mechanisms in the
human brain, will not only advance user’s experience in real-world scenarios but
also offer a practical guidance on how we design learning systems.
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Fuzzy Modifiers at the Core of Interpretable
Fuzzy Systems

Bernadette Bouchon-Meunier and Christophe Marsala

Abstract Fuzzy modifiers associated with linguistic hedges have been introduced
by L.A. Zadeh at the early stage of approximate reasoning and they are fundamen-
tal elements in the management of interpretable systems. They can be regarded as
a solution to the construction of fuzzy sets slightly different from original ones. We
first present the main definitions of modifiers based on mathematical transforma-
tions of membership functions, mainly focusing on so-called post-modifiers and pre-
modifiers, as well as definitions based on fuzzy relations. We show that measures of
similarity are useful to evaluate the proximity between the original fuzzy sets and
their modified form and we point out links between modifiers and similarities. We
then propose an overview of application domains which can take advantage of fuzzy
modifiers, for instance analogy-based reasoning, rule-based systems, gradual sys-
tems, databases, machine learning, image processing, and description logic. It can
be observed that fuzzy modifiers are either constructed in a prior way by means of
formal definitions or automatically learnt or tuned, for instance in hybrid systems
involving genetic algorithm-based methods.

Keywords Fuzzy modifiers « Linguistics hedges * Similarity

1 Introduction

Human beings are very efficient in coping with real world complexity and human-
like automated systems have been constructed for decades now, with the purpose
of managing large size data, subjective and imperfect information and ill-known
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environments. Concepts managed by human beings are often imprecise, with a core
of easy to classify instances and a shadow of other instances [1].

Fuzzy modeling is well-suited for their representation and their use in automated
systems. It is the reason why fuzzy systems have been a key solution to the man-
agement of complex systems since the introduction of linguistic variables and fuzzy
if-then rules by Lotfi A Zadeh [2-5]. They are based on approximate descriptions of
fuzzy variables by means of fuzzy modalities and relations between such descrip-
tions. Qualities of fuzzy systems such as their expressiveness and their capacity to
manage gradual knowledge have taken a large part in their success in real-world
applications. Similarity, or its brother concepts resemblance, closeness, proximity,
analogy, has been pointed out as fundamental in a number of domains, such as lin-
guistics, semiology, psychology. It is particularly useful in computational intelli-
gence, and especially in fuzzy modeling in which it takes part in the modeling of
imprecision and classes with unsharp boundaries.

We focus in this paper on a particular representation of similarity between con-
cepts by means of the utilization of fuzzy modifiers. In his seminal paper [6], L.A.
Zadeh introduced the concept of modifier to represent linguistic hedges such as very,
more or less, slightly, by means of a mathematical transformation of membership
functions based on power functions. Psychometrical analyses and empirical studies
were then proposed by [7-9]. The concept of modifier was extensively studied from a
psychometrical or an empirical point of view [10—13] and gave rise to various works
on mathematical, algebraic, or logical approaches [14, 15] as well as proposals to
use fuzzy modifiers in soft computing.

In the first section of this paper, we first summarize the main formal definitions of
modifiers, based on mathematical transformations or fuzzy relations. Then we con-
sider modifiers from the point of view of measures of similarity. The main purpose
of fuzzy modifiers being to take a part in the interpretability of fuzzy systems, we
devote the second part to application domains which have made good use of modi-
fiers. We conclude on the importance to preserve the link with fuzzy modifiers and
linguistic hedges.

2 Fuzzy Modifiers

Let U be an ordered universe of discourse and F(U) the set of fuzzy sets of U. For
instance, U could be the set of real numbers R, or a subset of that set. By convention,
we use the same symbol A for a fuzzy set and its membership function. Given the
various forms of linguistic hedges (very, more or less, strongly, at least, extremely,
etc.), we summarize several approaches to their formal definition.

For membership degrees A(x) associated with elements x of U, the general idea
is to construct a new membership function, denoted by m o A deduced from “close”
elements of x in U or to consider a proximity between A(x) and m o A(x) for every
x. In a more complex approach, it is also possible to consider a proximity between
A(x) and m o A(y), for elements y “close” to x.
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2.1 Fuzzy Modifiers Defined by Mathematical
Transformations

To represent these two proximities, one on U and the other one on [0, 1], we consider
the following generic definition of fuzzy modifiers [16].

A fuzzy modifier can be regarded as a pair m = (g, h), where g : [0, 1] — [0, 1]
and & : U — U are functions.

If A is a fuzzy set of U, then m o A is also a fuzzy set of U defined for every x in U
by: m o A(x) = goA o h(x). This definition is very general and corresponds to various
transformations of a given fuzzy set, not necessarily related to proximities.

Complementation is one of them, even though the transformation is extreme,
associated with the identity function / and the function defined by g(x) = 1 — x,
representing the linguistic hedge not.

Normalization is another one, not associated with a linguistic hedge, but to a
technical transformation defined by the function A(x) = kx, k being the largest value
of x in U where A attains its maximum and g(x) = fﬁ in [17]. We can also imagine
the simple normalization based on the identity function 4 and the function defined
by g(x) = Ja—‘ with a = m;le(x).

Sharpeners or contrast intensification operators [ 18] are also fuzzy modifiers, such
that £ is again the identity function and g is a function such that g(x) > x if x > %

and g(x) < xifx < % The most drastic sharpener corresponds to g(x) = 1 if x > %

and g(x) = 0if x < %

We present in the sequel the most important classes of fuzzy modifiers used in
formal or applied research, with a focus on their interpretability, associated with
linguistic hedges.

The following contrast enhancement operator is indicated by [19] for information
fusion in signal and image processing:

gr)=2x% if x< %

and
gx)y=1-201 —)c)2 otherwise.

2.2 Post-modifiers

If A is the identity function on U, then m is called a post-modifier [20]. Typical post-
modifiers are reinforcing modifiers and weakening modifiers [21, 22] which extend
the seminal forms of modifiers introduced by Zadeh [6], defined by g(x) = x*, with
respectively @« > 1 in the case of reinforcing modifiers, and @ < 1 in the case of

weakening modifiers.
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More generally, reinforcing modifiers are such that m o A(x) < A(x) for every x
in U and correspond to linguistic modifiers such as very, really, or strongly with the
idea of a more restrictive view of the underlying concept. The fuzzy set m o A is more
specific and/or more precise than A. The category described by moA is included in
the category described by A.

Weakening modifiers are such that moA(x) > A(x) for every x in U and correspond
to linguistic modifiers such as approximately, rather or about [21] which yield m o A
less specific and/or less precise than A.

Examples of functions g are homotheties applied to membership functions, either
preserving the support of A and decreasing its specificity by extending its kernel
(approximately), or preserving the kernel of A and extending its support to decrease
its precision (rather). A softer form of modifier extends both kernel and support to
decrease the specificity and the precision of A (about). In all these cases, the category
represented by m o A is wider than the category represented by A, with less sharp
boundaries.

2.3 Pre-modifiers

It should be remarked that such fuzzy modifiers do not cover all forms of linguistic
hedges. In some cases, a reinforcement or a weakening of the description represented
by A corresponds to a decrease or an increase of the values of U in its kernel or its
support. For instance, if U is a universe of length, it is very common to consider that
the fuzzy set representing very small has a kernel or a support “before” the kernel or
the support of small, with respect to the order on U. Symmetrically, very long will
be represented by a fuzzy set with a kernel or a support “after” the one of long. This
example shows the complexity of linguistic modifiers and the necessity to introduce
another form of fuzzy modifiers, as follows.

If g is the identity function on [0, 1], then m is called a pre-modifier [20]. Typical
forms of pre-modifiers are translatory modifiers [23] associated with functions A
defining translations on U to the right or to the left, h(x) = x + ¢ for every x in U, for
a positive or negative parameter ¢, to answer the above remark on the direction of the
necessary modification according to the meaning of the description represented by A.
Such modifiers are neither reinforcing nor weakening. The fuzzy set m o A represents
a category which is shifted to the upper zones of U or to the lower ones with respect
to the original category represented by A. Such an approach can be useful in case of
evolving categories, progressively moving on U over time.

2.4 Fuzzy Relation-Based Modifiers

The original concept of modifier was introduced to handle similar categories we
can distinguish by means of subtle differences, for instance expressed by linguistic
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hedges. It is therefore natural to use measures of similarity [24] or fuzzy relations
[25] to introduce and study fuzzy modifiers.

Let us consider a fuzzy relation R on U. [25] introduces families of relation-based
modifiers. Let us focus on the family based on a conjonction operator T, such that:

mo A(x) = sup T(A(y), R(y, x)), for every x € U. (1)
yeU

The particular case where T is the minimum yields a membership degree of every
Xx to mo A defined as the maximum value of membership degrees assigned to ele-
ments of U in relation R with x.

Some of these relation-based modifiers are expansive or restrictive. In this case,
we can imagine R as a similarity relation, m o A being then the maximum member-
ship degree of all elements of U similar to x.

In the case where T is a t-norm and E a T — equivalence (reflexive, transitive
and T-transitive), we can consider a fuzzy ordering R such that R(x,y) > E(x,y) and
T(R(x,y), R(y,x)) < E(x,y) for every x and y in U [26]. Then Equation (1) yields
a fuzzy modifier expressed as at least A. If we take the inverse ordering defined by
RED(x,y) = R(y, x), then we obtain a representation of the linguistic hedge at most.

3 Similarites and Modifiers

Another manner to take resemblances into account [24] consists in evaluating the
“closeness” of A and m o A in order to measure their similarity. We consider a fuzzy
set measure M : F(U) — R such that M(@#) = 0 and M is monotonous with
respect to the classic inclusion of fuzzy sets C. We also consider a difference ©
between fuzzy sets, such that A © B is monotonous with respect to A and A C B
implies A © B = 0.

Such a measure can be used to evaluate the similarity between A and m(A) for
a modifier m. We restrict ourselves to so-called (M, e, A)-modifiers [27] such that
M(moABSA) =1—-eand M(A© moA) =1 — A, for two parameters € and A in
[0, 1].

Particular cases of such (M, e, A)-modifiers are (M, e, 1)-modifiers which are
expansive, (M, 1, A)-modifiers which are restrictive, and translatory modifiers being
particular cases of (M, €, €)-modifiers. (M, 1, 1)-modifiers can be regarded as pro-
viding the closest modified forms of the primitive fuzzy set.

An example is the linguistic hedge approximately represented by
my o A(x) = min(1, € - A(x)),

for every x in U, for € € [0, 1], corresponds to a modifier preserving the support of
A and extending its kernel to decrease its specificity.
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It is easy to see [27] that it can be considered as a (M|, 1, 1)—modifier if we define

MA) = / A(x)dx and the difference between fuzzy sets as A ©, B = A(x) if
xeU

B(x) = 0and A ©, B = 0 if B(x) > 0, It can also be regarded as a (M,, %, 1)
when we define M,(A) = sup,c A(x) with the difference A ©; B = max(0,A(x) —
B(x)). This points out the role of the perception of “similarity”, strongly dependent
on parameters € and 4, as well as chosen operators M and ©. Another simple form
of modifier is the representation of uncertainty as follows:

m, 0 A(x) = max(A(x), €),

for every x in U, which can be expressed as A with an uncertainty €. Such modi-
fiers are (M,, 1 — €, 1)-modifiers with the difference &, which shows that they are
not far from the original description A.

Going further in the use of similarities between fuzzy descriptions and their
modified forms, we consider a measure of similarity S on U defined as a function
S F(U)x F(U) — [0, 1], such that S(A,B) = F(IM(AN B),M(A& B), M(B&S A))
is non-decreasing with respect to M(A N B) and non-increasing with respect to
M(A © B) and to M(B © A).

Particular measures are defined, according to their specific properties [28]. A
measure of satisfiability is exclusive, which means that S(A, B) = 0 when ANB = 4,
and independent of M(A © B). A measure of inclusion is also exclusive. In addition,
it is independent of M(B © A). They correspond to the idea that A is a reference to
which B is compared, the measure of inclusion being only interested in the extent
to which B can be considered as a particular case of A. A measure of resemblance
is symmetric in M(A © B) and M(B © A), which means that there is no reference
and both A and B have the same status in the research of similarity. It is easy to see
that, if the modifier m is expansive, then A and m o A will be compared through a
measure of satisfiability. If m is restrictive, A and m o A will be compared through a
measure of inclusion. If m is translatory, A and m o A will be compared by means of
a measure of resemblance [24].

4 Application Domains Using Modifiers

4.1 Analogy-Based Reasoning

Evaluations of the proximity or similarity between A and m(A) mentioned previously
can for instance be used in an analogy-based reasoning, or case-based reasoning, to
construct interpretable conclusions from observations [24].

Starting from a rule such as If X is A, then Y is B, for i = 1, ..., n, or cases such
that X is A at the same time as Y is B, an observation A’ will be compared to A to
evaluated their similarity S(A,A’). One way to determine the description B’ of Y is
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to assume that S(A,A’) = S(B,B’) and to make a choice among all fuzzy sets B’
satisfying this constraint.

Using modifiers limits the number of solutions and provides an easily inter-
pretable solution. According to the relations between measures of similarity and
modifiers, we use an expansive modifier m to describe B* = mo B if we choose
a measure of satisfiability S.

As an example, let us consider the following measure of satisfiability: S(4,A") =
1 — M,(A’ © A). If the value of S(A,A") is o, then we can use a modifier such as
my for the parameter i interpreted as approximately, or m, for the parameter 1 — o,
interpreted as A with an uncertainty 1 — o.

If we use a measure of inclusion S, a restrictive modifier is convenient to express
the difference between the two fuzzy sets. For instance, let us consider the following
measure of inclusion: S(4,A”) = 1 — M,(A © A”). If & is the obtained value, we can
think of a modifier m such as m o B(x) = min(o, B(x)).

If we use a measure of resemblance, we associate it with a translatory modifier
that we will not describe in detail.

4.2 Rule-Base Systems

Rule-based systems and the particular case of fuzzy control are the first domains
where modifiers help to obtain interpretable results. The interpretability of rule-
based systems is complex and has given rise to various analyses. We can mainly
point out three important factors of this interpretability: the easily understandable
linguistic description of variables, the number of rules and the number of premises
in each rule.

One of the first attempts to manage linguistic labels in a fuzzy knowledge-based
system was the linguistic approximation used in the MILORD system to deal with
both uncertainty and imprecision [29].

With regard to easily understandable descriptions of variables, reasoning with
modifiers provides interpretable conclusions when using generalized modus ponens
[16, 22] with rules of the form : If X is A; then Y is B;, fori =1, ... ,n.

In particular, if we use restrictive modifiers, we obviously obtain a conclusion
identical with the conclusion of the rule with all classic fuzzy implications [21].
When we use expansive modifiers such as approximately defined by m; o A; to
describe observations, for instance, such rules provide conclusions of the form
m; o B, itself, or m, o B; (representing an uncertainty on B;), or mj3 o B; for some
other expansive modifier m;. These forms of conclusions are easily interpretable,
which is not the case when using general modus ponens with any observation. We
can conclude that, if an observation is similar to a premise A; through a modifier, the
obtained conclusion is also similar to the conclusion of the rule through a modifier
when using the most classic fuzzy implications.
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Fuzzy modifiers are also useful to adjust the shape of membership functions
dynamically in the design of a fuzzy controller. In [30], the number of premises
is limited to three to simplify the design of fuzzy controllers. A so-called linguistic
hedge module is added to the fuzzy controller to play the role of powered modifiers
and dynamically modify the shape of membership functions to the feedback signal, to
provide additional information without increasing the number of rules. Genetic algo-
rithms are used to tune membership functions by means of modifiers in the design
of the rule base.

In a different approach, [31] proves that modifiers are useful to find a trade-off
between interpretability and accuracy in the construction of rule-based systems. The
authors propose to extend the initial list of linguistic descriptions and to create new
rules of the form: If X| is m; 0 A;;, and X, is myy oA, and ... then Y is m; o B, for
i = 1,...,n. They consider powered, expansive or restrictive modifiers, as well as
translatory ones.

In [32], the authors propose fuzzy modifiers to be learnt to obtain the best fuzzy
rule-based classification system. After a prior rule base is constructed on the basis
of pre-defined linguistic descriptions represented by fuzzy sets, a genetic algorithm-
based method is used to select the best subset of rules and to learn the set of linguistic
modifiers to apply to the linguistic variables for the considered fuzzy logic system.

Gonzalez et al. [33] consider also linguistic hedges included in a genetic algo-
rithm in the framework of the inductive learning algorithm called Structural Learn-
ing Algorithm on Vague Environment. They help the user to learn and tune fuzzy
rules.

In [26], it is proposed to introduce modifiers to reduce the size of a fuzzy rule
base and thus to enhance its interpretability and expressiveness. The proposal is,
first of all, to group rules leading to the same output decision, and to rank them
according to the input parameters they involve. Then, such “neighboring” rules can
be merged and replaced by a rule which summarizes their premises into a single one
constructed by means of a modifier. For instance, in a PD-style fuzzy controller set
of rules, “Negative Big”, “Negative Small” and “Zero” are grouped and these three
fuzzy values are replaced by “ar most Zero”. Moreover, the authors highlight the fact
that modifiers could be very useful in interpolative reasoning when the fuzzy rule
base has been constructed incomplete. The proposed work in this paper is based on
the use of a fuzzy ordering (see Sect. 2.4).

4.3 Gradual Systems

Their ability to manage graduality is an important property of fuzzy set-based rep-
resentations. The most basic view of graduality corresponds to the unsharp bound-
aries of a category represented by A, in which we enter progressively with slightly
increasing membership degrees and from which we get out with slightly decreasing
membership degrees when we progress along U. This graduality is handled by the
concept of fuzzy set itself.
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A second type of graduality corresponds to a change in the boundaries of a cate-
gory, reducing or extending it according to the context or the observations, and this
graduality is clearly handled by means of weakening or reinforcing post-modifiers.

A third type of graduality corresponds to a progression along U, in the case where
we have a family of fuzzy sets A, ..., A,,, describing a variable defined on U, for
instance classes of a fuzzy partition of U. This graduality corresponds to values of the
variable smoothly evolving from a category A; to the next one A, ;. This graduality
is clearly related to the use of adaptive pre-modifiers.

A deductive management of graduality [22] enables to take into account various
forms of fuzzy rules. One of the most natural forms of gradual knowledge for human
experts is the following: The more (less) X is A, the more (less) Y is B, for which
solutions are not obvious in automated systems.

Generalized modus ponens and the use of modifiers to represent more or less
leads to an automated deductive system translating such rules directly or with con-
sideration of uncertainties, according to the chosen fuzzy implication, in rules of the
form: It is rather certain that the less X is A, the less X is B, or the more certain X
is A, the more certain Y is B. This graduality can be considered as restricted to one
rule and then local.

A global graduality can be managed through a collection of rules such as: The
more (less) X is A;, the more (less) Y is B;, for i between 1 and n, the conclusion
moving progressively from B; to B, or B,_; when the observation varies from A;
t0A; jorA,_;.

4.4 Other Uses of Modifiers

More generally, modifiers have been introduced in several other kinds of applica-
tions.

Databases is a domain where linguistic hedges are often seen useful (for instance,
in [34, 35]). In [34], modifiers are integrated in SQLf, a fuzzy extension of SQL, the
well-known query language for databases. Here, the “where” part of a select query
is associated with a fuzzy condition that could be defined by means of a modifier.
A modifier is used to define a partition of the tuples from the database that can be
searched for, for instance, “select * from ... where salary is more or less equal to
..”. As a consequence, querying becomes more naturally expressed thanks to inter-
pretable conditions.

An example of use of modifiers in a machine learning task could be found in [36].
In this work, the linguistic hedges (Zadeh’s form) have been introduced in a mining
fuzzy association rules process. Various hedges are generated in order to increase a
fuzzy taxonomy associated with a transaction. The mining of fuzzy association rules
is done with this augmented fuzzy taxonomy in order to find a maximum of rules,
taking into account linguistic descriptions.

In [37], a fuzzy description logic is introduced that handles hedges. Concept mod-
ifiers are introduced as a chain of hedges. The sign of a hedge is used to position the
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hedge with regards to the associated primitive concept. For instance, the sign of very
large is positive with regards to large, and the sign of more or less large is negative.
Modifier Memberships are those of Zadeh (exponentiation). The authors introduce a
semantic based on hedge algebras and propose a decision procedure and an approach
to determine the satisfiability of fuzzy constraints in their fuzzy description logic.

Image processing or image-based retrieval, in which a linguistic description of
images could be very useful to summarize their content, or to enhance their inter-
pretability, are often based on the use of linguistic hedges. Among existing works,
we can cite [38] which introduces linguistic hedges to model the feedback of the
user when the retrieved image is not fully satisfactory. The user proposes a modifier
on the current query to create a new query that could be processed to enhance the
search.

In the acoustics domain, [39] has proposed the used of modifiers in a vocabulary
used to describe noise annoyance expresses by users with different languages. Simi-
larity measures are then used to match foreign terms and find correspondence among
them.

5 Conclusion

We have presented the main solutions to construct fuzzy modifiers associated with
linguistic hedges, in an attempt to expand the vocabulary available to describe
objects, either in a knowledge-base or in the outcomes of a fuzzy system. The purpose
is to provide a flexible way to represent knowledge without increasing the complexity
of the system. The main qualities of fuzzy systems are kept in mind: first their inter-
pretability and their ability to handle easy to understand descriptions of objects, and
second the graduality inherent in their definitions, providing soft transitions between
descriptions and mimicing a very natural facet of human reasoning.

Fuzzy modifiers are defined in a prior way on the basis of expert knowledge or
psychometric analyses. Among the various approaches enabling to provide their def-
initions, we have given priority to those which are involved in the interpretability of
fuzzy systems. We have shown that fuzzy modifiers can also be learnt or tuned auto-
matically, for instance with the help of genetic algorithms in hybrid systems. It is
clear that these ways to obtain linguistic modifiers are similar to those providing
membership functions of fuzzy sets representing linguistic descriptions of variables.
They can be regarded as a kind of standardization of linguistic terms easy to handle
and to share with experts or end users of fuzzy systems.

Future works can focus on the specific methods to use fuzzy modifiers in new
areas, such as fuzzy case-based reasoning, fuzzy inductive learning or fuzzy sum-
marization, to name but a few.
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Human and Machine
Intelligence — Between Fuzzy
Logic and Daoist Thought

Liya Ding and Xiaogan Liu

Abstract The theory of fuzziness, offering an important scientific approach in
building intelligent machines, has been researched and developed in the past fifty
years from various perspectives and applied for real world problem solving in many
areas. Daoist thought, being one of the most influential schools of Chinese phi-
losophy, has been studied for more than two thousand years and its wisdom
exploited from generation to generation. Would a natural echo exist between the
modern fuzzy thinking and the ancient oriental Daoist thought?

Keywords Fuzzy logic - Precisiation + Computing with words « Daoism -
Nonaction

1 Fuzziness in Modeling Reality

Mathematical models are built for human dealing with the real world. However, the
subtle behavior of the natural world (as we perceive it) cannot be modelled by rigid
axioms. Most human concepts lack a rigorous definition for its vagueness and
imprecision as well as its changing meaning reflecting evolving nature and human
societies, the more rigorous the model, the less similar to reality. The great
achievement of the theory of fuzziness is to have succeeded to build models for
entities that lack a rigorous definition.

The famous Turing Test remains a dream of artificial intelligence until today.
Human intelligence has been taken as the gold standard of machine intelligence, but
such gold standard also lacks a rigorous definition. We apprehend the inner and the
outer world by vague feelings, which become progressively more precise. “... the
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machinery of fuzzy logic is needed for mechanization of human reasoning. In this
perspective, fuzzy logic is of direct relevance to achievement of human level
machine intelligence.” (Zadeh) [1]

To further emphasize why and how we can expect that fuzzy logic plays the role
of a bridge from natural to machine intelligence, Professor Zadeh has put forward
the following words:

“Science deals not with reality but with models of reality. In large measure, scientific
progress is driven by a quest for better models of reality. In the real world, imprecision,
uncertainty and complexity have a pervasive presence. In this setting, construction of better
models of reality requires a better understanding of how to deal effectively with impreci-
sion, uncertainty and complexity. To a significant degree, development of fuzzy logic has
been, and continues to be, motivated by this need.” (Zadeh) [2]

What can be read out from the words above are guiding ideas and thought that
are significant both technically and philosophically. From technical perspective, the
development of a good model of reality needs to take into account imprecision,
uncertainty and complexity. From philosophical perspective, humans deal with
reality not directly but through models that are only approximation of the real
world, and the better we handle imprecision, uncertainty and complexity, the better
the model we may be able to build.

It is the philosophized thought of fuzzy logic that inspires us to further discuss
some fundamental questions about human and machine intelligence, and explore a
natural echo between fuzzy logic and Daoist thought, being one of the most
influential schools of Chinese philosophy.

2 Admission of Imperfection

“A concept which has a position of centrality in fuzzy logic is that of a fuzzy set. Informally,
a fuzzy set is a class with a fuzzy boundary, implying a gradual transition from membership
to nonmembership. A fuzzy set is precisiated through graduation, that is, through asso-
ciation with a scale of grades of membership. Thus, membership in a fuzzy set is a matter of
degree. Importantly, in fuzzy logic everything is or is allowed to be graduated, that is, be a
matter of degree. Furthermore, in fuzzy logic everything is or is allowed to be granulated,
with a granule being a clump of attribute-values drawn together by indistinguishability,
equivalence, similarity, proximity or functionality. Graduation and granulation form the
core of fuzzy logic.” (Zadeh) [2]

The concept of “graded membership” applies to a class that lacks a rigorous def-
inition. Such concept is often confused with the concept of probability, which is
caused by an underlying random process or by lack of information. A situation of
lack of information may be improved when more information and data become
available, especially with the growth of big data and information technologies. The
lack of definition, however, relates to a more fundamental limitation in human’s
cognitive ability.
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Although imprecision is a phenomena rooted at the limitation in human’s cog-
nitive ability, the idea of fuzziness is not universally accepted even today. To this
situation, Professor Zadeh says, “there are many misconceptions and misunder-
standings regarding fuzzy set theory and fuzzy logic. To some, I was advocating an
abandonment of the deep-seated tradition of striving for rigor and precision.”’
While most scientists are used to consider that accuracy and certainty are essential
principle for exploring true nature of the world, Daoist thinkers believe that the
ultimate source and true nature of the universe is uncertain and obscure.

As many philosophical and religious traditions, Daoism has its reflection and
doctrine about the source and ground of the universe, which is not so certain and
acknowledgeable. One significant piece on this theme, which is found in the Laozi
[3], is not providing merely theory about the beginning of our world and myriad
things in the universe, but also the foundation of all other Daoist teachings and
characters. The unique speculation and reflection about the possible entity and state,
from which the universe comes, is a key for understanding the general attributes
and uniqueness of Daoist philosophy. There are noticeable points of Daoist thought,
and one comes of the most significant points is concerning the true nature of the
universe.

There was something undifferentiated and yet complete,
Which existed before heaven and earth. (Chap. 25)

The word “undifferentiated” in the above quotation is a render of the Chinese
word “hun” which may suggest mixture, unclear, or shapeless etc. The state of the
origin and the formation of the beginning of the world, and the ground that sustains
myriad things are merely ambiguous. In the Laozi, all sentences related to the
ultimate reason and truth share the same style. Thus Daoist statements about the
true nature of the universe are always hesitating; at least they seem to reflect non-
perfect confidence. Thus, the Laozi further states:

It may be considered the mother of the universe.
I do not know its name; I style it “Dao” (Tao, Way).
If forced to give it a name, I shall call it Great. (ibid.)

The author of Laozi frankly admits that he does not know what is the origin or
the mother of the universe. Dao is just a styled symbol or nickname of the source

"Lotfi A. Zadeh has distributed the same message repeatedly, the quotation here is from his
message distributed to BISC online discussion group on Oct 2013.

>The word Daoism suggests complicated thought system (or Daoist philosophy) and Daoist
religious movements. In this essay, the Daoist theories are mainly based on the first Daoist text
Daodejing (Tao-te-ching) or the Laozi (Lao-tzu). This has nothing to do with Daoist religious
teachings. The quotations from the Laozi are based on Liu’s complication and adaptation from
various versions and translations, unless specific citations provided otherwise.
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and ground of the universe. It has no proper name. If being forced to give it a name,
he will call it Great. Obviously, great, similar to good, bad, big, small, etc., cannot
be used as a proper name. What the author repeatedly emphasizes is that no one
knows exactly the foundation and true nature of the world, though the author does
believe there is something functioning as the ultimate source and ground of all
beings in the world.

This makes Daoism different from many religious and philosophical doctrines.
The Bible describes clearly and precisely the processing of God’s creation of the
universe; Plato’s theory sees it specifically and systematically as the relation
between the transcendent kingdom of perfect ideas and the empirical world of
imperfect myriad things. Even in other Chinese or oriental religious and philo-
sophical schools, we find such differences from Daoism. Buddhism confidently
disserts that the truth of world is essentially empty, all existence we can see and feel
are just delusion and untrue; Confucian thinkers strongly believe that the moral
doctrine fian-li (heavenly principle) is the ultimate truth of the world.

Further examining, we find some key concepts in which both the theory of
fuzziness and the thought of Daoism surprisingly coincide. Here we list a few.

A. True and False
In fuzzy logic everything is, or is allowed to be graduated, that is, be a matter of
degree. Fuzzy logic allows no clear distinguishing between true and false, and
introduces a numerical grade or word to indicate the degree of truth of a piece of
knowledge or information. In fuzzy inference systems, a perfect truth is not required
for data, information and knowledge, and the executions of inference are done on
an approximate basis. This greatly extends the ability of precise reasoning in
handling real world problems with imprecision, incompleteness, or partial truth. In
such, fuzzy logic establishes fuzzy reasoning containing precise reasoning as its
special case.

From the Daoist viewpoint, there is nothing absolutely right and true, yet true
and false dose not distinct clearly. The Laozi claims in Chap. 41:

The Dao which is bright appears to be dark.

The Dao which goes forward appears to fall backward.
The Dao which is level like a valley (hollow).

Great purity appears like disgrace.

Far-reaching virtue appears as if insufficient.

True substance appears to be changeable.

Solid virtue appears as if unsteady.

True substance appears to be changeable.

([4]: 160)

B. Good and Bad

The idea that “membership in a fuzzy set is a matter of degree” made a fundamental
revolution to classical set theory, that is membership and non-membership are not
in an absolute distinguishing. This is depicted in Fig. 1.
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Fig. 1 The concepts of a set and a fuzzy set are derived from the concept of a class through
precisiation. A fuzzy set has a fuzzy boundary. A fuzzy set is precisiated through graduation
(Fig. 1 from Zadeh in [2])

In our everyday life, good and bad are often treated as two opposite concepts.
However, when the two are applied to make evaluation with the same criteria, they
both appear to be fuzzy sets with unsharpened boundary and possible overlap in
between. The same spirit applies to many pairs of concepts that are usually con-
sidered opposite, such as long and short, big and small, high and low, fast and slow,
etc. The distinguishing factors between these paired concepts are only relative.
Some well accepted and widely adopted schemes in our life, such as “passing” or
“failure” of school examination, are a binary precisiation of “good-bad” defined as
crisp sets on numerical scores. The theory of fuzzy set provides a mathematical tool
to handle concepts that are not fully distinguishable and differentiable.

The sentences previously quoted from Laozi Chap. 41 reveal Daoist position that
everything appears as containing the opposite elements, which are in contradiction
and mutual transformation. In addition, the uncertainty comes from the transfor-
mation of the oppositional elements in all beings or things. For example, the Laozi
argues in Chap. 58:

Calamity is that upon which happiness depends;
Happiness is that in which calamity is latent. ...
Then the correct again becomes the perverse
And the goodness will again become evil.

([4]: 167)

Similar argument stated in Chap. 2 of Laozi:

When the people of the world all know [certain] beauty as beauty,
There arises the recognition of ugliness.

When they all know the good as good,

There arises the recognition of evil.

Therefore:

Being and non-being produce each other;

Difficult and easy complete each other;

Long and short contrast each other;


http://dx.doi.org/10.1007/978-3-319-19683-1_2

70 L. Ding and X. Liu

High and low distinguish each other;

Front and back follow each other.

Therefore the sage manages affairs without action.
And spreads doctrines without words. ([4]: 140)

According to the Laozi, all seemingly quite different oppositions are actually in
transition and mutually effected. All these oppositional transformations suggest the
difficulty of our knowledge and recognition in reality. It should be noticed that
when mentioning “manages affairs without action” and “spreads doctrines without
words” the Laozi does not mean to do nothing, but special action different from
regular actions by common rulers and people. We shall relate to this point in Sect. 4
with fuzzy decision.

The important finding here is that both Fuzzy Logic and Daoist thought are
aware of the fundamental limitation in human’s cognitive ability in handling the
complexity of real world. While Daoism establishes the philosophical foundation
for the discussion of this limitation, fuzzy logic provides a practical mathematical
tool to describe concepts that are not fully distinguishable and differentiable. In
other words, Daoism explores the limitations and the reasons that they exist, and
fuzzy logic discusses how we can act under such limitations.

3 Precisiation and Description

In order to have a machinery to deal with imprecision in reality, we need precis-
iation for our understanding and description of reality. Informally, precisiation is an
operation which transforms an object, p, into another object, p*, which is more
precisely defined, in some specified sense, than p. [2]. This is depicted in Fig. 2.

Precisiation Language

p: Object of Precisiation p*: Result of Predsiation
Precisiend Precisiation » Precisiand
t )
Cointension

Fig. 2 Basic concepts relating to precisiation and cointension. (Fig. 14 from Zadeh in [2])

The significance of the theory of precisiation may be understood from two
aspects: a technical aspect, and a philosophical aspect. From the technical aspect,
with the utilization of fuzzy sets, fuzzy truths, fuzzy numbers, type-2 or higher order
fuzziness, it allows but not ignores or rejects undifferentiation; it provides a spec-
trum between true and false, know and don’t-know, to more naturally reflect the
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human knowledge imperfection; it offers tools for describing highly complex sit-
uation with mixed types of imperfection involved.

From the philosophical aspect, it accepts the limitations in human cognitive
ability, therefore sets up a rational foundation for discussion of machine intelligence
having human intelligence as the gold standard. There are many things in the
universe that we don’t know, and more importantly there are also many things we
don’t know how much we know, or don’t know how to describe or evaluate what
we know. Precisiation is a process through which we describe, and evaluate the
world we perceive with our limited capability and resources. The result of precis-
iation is a simplified model of reality but not the true reality, referring to Fig. 2, we
have p* # p.

The philosophical thinking behind the fuzziness and precisiation finds an echo
from the Daoist admission of the limitation of human’s cognition.

The general feature of Dao combines both being and nonbeing, though not in a
strait forward way. All descriptions of Dao seem to suggest non-being (wu), in the
sense that human beings cannot grasp it because it is not any concrete thing humans
can perfectly capture. The Laozi, in Chap. 14, describes it this way:

We look at it and do not see it,

its name is the invisible.

We listen to it and do not hear it,
its name is the inaudible.

We touch it and do not find it,

its name is the subtle (formless)....
Infinite and boundless,

it cannot be given any name [‘unnameability’]
It reverts to nothingness,

this is called shape without shape,
image without entity...

([4]: 1406)

“It cannot be given any name” or it cannot be nameable implies the impossibility
for human beings to cognize Dao, because it is transcendent and out of our
approach. Similar ideas are presented in the Laozi Chap. 25, which reveals the
Daoist conception of the source and ground of the universe. Here it reads:

There was something undifferentiated and yet complete,

Which existed before heaven and earth.

Soundless and formless, it depends on nothing, and does not change.
It may be considered the mother of the universe.

1 do not know its name; I style it “Dao” (Tao, Way).

If forced to give it a name, I shall call it Great.

Now being great means functioning everywhere.

Functioning everywhere means far-reaching.

Being far-reaching means returning to the original state.

This is a reflection of Daoist attitude towards human being’s capacity of cog-
nition and understanding. Daoism has little dogmatic assertion; instead, Daoism
intends to faithfully represent the difficulty and limitation of human beings obser-
vation and understanding.
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The words “soundless and formless” in the above-quoted passage is also a kind
of description of Dao in coping with the ambiguity. Without a definition a
“description” leaves a room of tolerance for imprecision and vagueness. The lim-
itation of human beings’ intelligence and cognition is an important concern of
Daoism. We can further examine knowing and unknowing in dealing the reality to
better understand Dao. In Chap. 1, the Laozi argues:

The way can be spoken of,

but it will not be the constant way;

The name can be named,

but is will not be the constant name.

The nameless is the beginning of myriad things,

The named is the mother of myriad things. ([S]: 267)

Here the nameless and the named are two characteristic aspects of Dao, which
refer to the human faculty of recognition of Dao and also its limitation.

Furthermore from the admission of the fundamental limitation in human’s
cognitive ability, another important finding here is that both Fuzzy Logic and
Daoist thought are aware of the gap existing between any description (model) and
the reality being described. While Daoism has this idea supported by its ancient
wisdom, fuzzy logic names precisiation as one of the unique characteristics in
human thinking towards modern machine intelligence.

4 Decision with Imperfection and Action with Nonaction

Fuzzy decision [6], or decision in fuzzy environment, is the confluence of fuzzy
goals and constraints that reflect naturally real world situations. One of the key
features found in fuzzy decision is that the decision maker is not forced to give a
precise formulation, merely for the sake of mathematical reasons. A fuzzy decision
is made with a compromise of the satisfaction of multiple constraints and objectives
that are described with fuzziness. The importance or proportion of contribution of
each constraint or objective may be arranged in appropriate ways.

There are two key ideas here that attract our attention. The first is that one is not
forced to provide a precise formulation, if the original problem comes from a fuzzy
environment; the second is that a decision is made as the confluence of fuzzy goals
and constraints for a compromise.

Let’s examine Daoist perspectives in decision and action. Viewing the inevitable
transformation of everything in the world, the Laozi argues for a distinctive way of
actions, of which the complicated meaning cannot be translated, therefore we take a
compromised way using nonaction as a token for the Chinese term wu-wei. Lit-
erally, it sounds like no action at all, but actually, it implies a special way of action,
a negation of regular ways, for transcendent and better results. That is summed as a
famous saying: “To do nothing yet leave nothing undone.” This way is different or
opposite from common ways to deal with governance, as well as general affairs.


http://dx.doi.org/10.1007/978-3-319-19683-1_1

Human and Machine Intelligence ... 73

The spirit of nonaction is to do business for better or distinctive outcomes and
minimum side or bad effects.

Aiming at a confluence of fuzzy goals and constraints allows one to make an
optimal decision with multiple criteria and objectives taken into account. Without
requiring forced precision in modeling fuzzy decision making, one will be able to
keep more information (with imprecision and vagueness) from reality and bring that
to final decision; and will also be able to minimize the extra inaccuracy introduced
through forced precision in early stages. In other words, no forced action for
precision leads to more accuracy to reality. At this point, we find another consis-
tency between the spirits of fuzzy logic and Daoism in their deep roots.

For the Daoist aspects, a typical manner of nonaction is assisting (fu in the
original Laozi literature, which can be translated as to assist, help, or support, etc.)
From the Laozi Chap. 64, we read:

Therefore the sage desires not to desire,

And does not value goods that are hard to come by;
He studies what is not studied,

And makes good of the mistakes of the multitude.
And so the sage is

able to assist the myriad things’ naturalness,

but is unable to act [in the common manner]

As for the meaning of fu or assisting, it is better understood as a spectrum
between two extremes. One extreme is restraint, manipulation, interruption, inter-
ference, exploitation, control, and oppression; the other is pampering, spoiling,
indulgence, permissiveness, and over-protection. Thus, fu or assistance is the
careful and prudent art of sagely leadership; its purpose and objective are com-
pletely aimed at benefiting the myriad things, no aspect of which shows off the
sage’s own importance and intelligence or accrues personal benefits. This fiu or
assistance is a typical example of nonaction for better results from unusual actions.
The key point lies in the last sentence: the sage assists the myriad creatures to
realize their natural prosperousness, but dares not to act generally in the manner of
the common people. In this way, the sage seems to do nothing yet reaches the best
result: all things get the right chance to develop themselves in a harmony condition.

In the past fifty years Lotfi A. Zadeh, the founding father of fuzzy logic, has
selflessly provided his support, and assistance to thousands of scientists and
researchers by guiding new directions, encouraging discussions, and listening to
comments and even disagreements. Without his guidance and continuous efforts in
establishing a friendly, an encouraging, and a harmony environment in the fuzzy
logic community, the achievement of fuzzy logic research would never be the same.
The success of fuzzy logic witnesses how the spirit of fu helps our development in
science and technology.

The study of fuzzy decision has made an important foundation of utilizing
human intelligence for decision making in a fuzzy environment. “Humans have
many remarkable capabilities. Among them there are two that stand out in
importance. First, the capability to converse, communicate, reason and make
rational decisions in an environment of imprecision, uncertainty, incompleteness of
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information, partiality of truth and partiality of possibility. ...” (Zadeh) [2]. In spite
of the limited cognitive ability in describing the real world with imprecision,
uncertainty, and partial truth, humans are able to approximate the reality for their
problem solving with amazingly simplified models, through observation and intu-
ition, as well as rational analyses. One important evidence is that a fuzzy rule-based
system in general uses a far less number of rules compared to a typical rule-based
expert system for the same application, through appropriate fuzzy granulation.
Computing with words [1, 2] opens the door for further exploring potential utili-
zation of human wisdom toward the development of human level machine
intelligence.

5 Between Fuzzy Logic and Daoist Thought

Fuzzy logic as a principal member of soft computing has been considered to be
positioned in a “soft” branch of science among the others. On the other hand,
Chinese philosophy has been considered less strict compared to Western philoso-
phy, and Daoist thought is one of the most influential schools of Chinese philos-
ophy. Inspired by the philosophized thought of fuzzy logic, we have made an
attempt to explore an echo between fuzzy logic and Daoist thought, and compare
similarities of some key concepts from both theories. Table 1 briefly summarizes
our key findings.

Table 1 Similarities of concepts of fuzzy logic and daoism

Similarities Differences

1 Understanding the world: Admission of
ambiguity, complex, and transience of the
world surrounding us.

Daoist philosophy is supported by the
metaphysical concept of Dao, though
Dao’s certain features are the
representatives of our empirical world.

Fuzzy logic makes generalization of
classical mathematical tools to deal with
reality, with tolerance of imprecision.

Describing the world: Human’s common
talent or capability is not enough for
recognizing the objective world. In other
words, human being’s cognitive ability is
limited.

Daoism emphasizes the infinite and
transience of myriad things in the world.

Fuzzy Logic aims at practical approach for
human intellectual activities through
precisiation.

Acting: Human beings should and can try
to approximate the truth through irregular
way of knowing. This approximation is
more accurate than certain precise
descriptions or claims because many
boundaries in the real world are not clear.

Daoist thought develops its theory through
rational observation and analyses, as well
as intuition to approximate the true nature
of the world.

Fuzzy Logic has graduation and
granulation as keys to approach the infinite
and complex reality.
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In summary, our motivation and the significance of such comparison are sup-
ported by several points.

(1) Finding the mutual support between scientific approaches and philosophical
wisdom, between the modern and antique, and between the West and East
cultures.

(2) Having found more broad and solid theories to correct dogmatic and romantic
belief about infinite human knowledge and capability.

(3) Further exploring human wisdom in rational action with knowledge imper-
fection toward future human level machine intelligence.

(4) The research in Daoism and fuzzy logic can be inspired from each other to
further develop their theories and argumentations.

6 Conclusion

We have argued that important concepts in fuzzy logic and Daoist thought echo each
other from afar. The values of Daoism to modern society have recently been sig-
nificantly recognized in critical issues, such as environment protection, social har-
mony, and management science [7-9]. Would the application of fuzzy thinking make
it more executable in modern society for some of the key ideas of Daoist thought?
Would it be possible to further exploit human wisdom in ancient thoughts through
the channel of fuzzy thinking, to support future development of machine intelli-
gence? We do not yet have concrete answers and our findings are still very pre-
liminary, but we believe such discussion will be beneficial for building a more bright
future of the world, either from system engineering or human society point of view.
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Abstract This paper examines the relationship and establishes the equivalence
between a class of dynamic fuzzy models, called Fuzzy State Models (FSM), and
recently introduced Markov Chain models with fuzzy encoding. The equivalence
between the two models leads to a methodology for learning FSMs from data and a
systematic way for model based design of rule-based fuzzy controllers. The pro-
posed approach is demonstrated on a case study of vehicle adaptive cruise control
system in which an FSM is identified from simulation data and a fuzzy feedback
controller is generated by exploiting the Stochastic Dynamic Programming (SDP).
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1 Introduction

Fuzzy systems are widely used in process modeling and control as tools for han-
dling system complexity and accounting for information uncertainty. Most of the
dynamic system applications of the fuzzy systems exploit the following two
interpretations of system dynamics within the If ... Then rule framework.

The first approach follows Mamdani’s concept of fuzzy control [1, 2] in which a
family of If ... Then rules with fuzzy predicates are used to define a control algo-
rithm realizing nonlinear PI, PD or PID-like control strategies. These are nonlinear
mappings from the state space to the space of control variables that implement
intuitive control strategies with no requirements for an explicit plant model.

The second approach is based on the Takagi-Sugeno (TS) models [3] which
exploit families of rules with fuzzy predicates and functional consequences. The
antecedents of the rules decompose the state space into a set of regions with
corresponding linear deterministic models. The state of the TS model is a nonlinear
combination of the states of the subsystem models. This approach may be viewed as
a generalization of the gain-scheduling technique in which piecewise linear models
that are associated with multiple fuzzily defined regions of the state space are
combined.

Both types of fuzzy models are focused on the deterministic, i.e. the defuzzified
value of the system output. In recent years much progress has been made on
techniques for improving the performance of fuzzy control algorithms, stability
analysis, and systematic design of fuzzy controllers based on TS state and
input-output models of the plant. With the fuzzy decomposition, the non-linear
system is represented by a polytopic nonlinear system of coupled linear models [4,
5]. This polytopic representation leads to sufficient stability conditions for the TS
systems and a systematic design methodology that is based on solving Linear
Matrix Inequalities (LMlIs), e.g. [6]. The TS approach, with its strong theoretical
underpinnings, addresses some of the major criticisms regarding the lack of rig-
orous analytical framework of the fuzzy control and places fuzzy control as one of
the tools of modern control theory. However, despite the progress made towards the
development of formal analytical model-based approaches for designing TS fuzzy
control systems, most of the practical fuzzy system applications remain centered
around heuristic rule-based control utilizing If ... Then rules. One of the reasons for
this is that the TS approach, although based on the methodology of approximate
reasoning, is mostly focused on linear models with little if any ability to incorporate
subjective information and heuristics. It seems that this observation only confirms
the original assertion of Mamdani who introduced fuzzy logic control as a powerful
tool to “convert heuristic control rules stated by a human operator into an automatic
control strategy” [2].

The progress in Markov Chain models with fuzzy encoding [7-9] suggests that
the If ... Then rules that have been mostly used as static mappings or as fuzzy
controllers have the potential for addressing some of the deficiencies of the existing
fuzzy models, especially when they are applied to dynamic systems. This includes
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the ability to represent the system states as possibility distributions, to analytically
describe the evolution of the states, and to formulate and solve general multistage
decision problems in uncertain environment, including optimization problems that
were originally formulated by Bellman and Zadeh in [10].

Specifically, we are interested in determining an optimal control strategy for a
general time invariant finite state dynamic system in which the state variable x takes

values from a finite set of states A={A;,Az, ...,A,} and the control variable
u ranges over a finite set B={B;,By, ...,B,}. We assume that the states
A;ie{l, ...,n}, and the controls B;,j€ {1, ..., r}, are fuzzy subsets of the state

and control universes X and U. We also assume that system dynamics are described
by a set of rules expressing the following equation,

xt =f(x,u),

where f: X X U — X is a specified random function defining the transition from the
current state x to the next state x* under the control u. We refer to this special type
of dynamic system models as the Fuzzy State Models (FSMs).

The considered encoding of the state and control variables into fuzzy subsets is
inspired by the ability of the fuzzy partitioning to address the uncertainty in the
coding of the continuous signals [7, 9]. Our interest in dynamic optimization
problems for FSMs is motivated by the growing interest in the applications of the
stochastic dynamic programming and stochastic model predictive control [11-14]
based on Markov Chain Models for on-board applications, especially for the
automotive and aerospace systems exposed to rapid transients and disturbances.

In this paper we address the basics of the FSMs by expanding the recent results
on Markov Chain models with fuzzy encoding [7, 9]. We propose a calculus for
formalizing the FSMs by using concepts and results from the Dempster-Shafer
theory of evidence [15, 16]. By examining the relationship between the possibility
and probability theory [17, 18] we demonstrate the equivalence between the FSMs
and the Markov Chain models with fuzzy encoding [9]. We further investigate the
mechanism of propagating possibility distributions by FSMs and derive a recursive
analytical expression for the possibility distribution that is inferred by a model of
this type. The developments in the paper pertain to the critical question [19]
challenging the ability of the theory of approximate reasoning to deal with prop-
agating the possibility distributions by a fuzzy system. This important theoretical
problem is discussed throughout the paper by utilizing the established relationships
and similarities between fuzzy systems, belief structures, and Markov Chain
models. From that perspective our approach differs from the works on the abstract
dynamic fuzzy system theory, e.g. [20]. Based on the proven equivalence between
the FSMs and the Markov Chain models with fuzzy encoding we propose a sys-
tematic approach to learning FSM from data. We also reveal how the learned FSMs
can be used in conjunction with SDP for model based design of fuzzy controllers.
Results are demonstrated on a case study exploiting a FSM of car following
dynamics and followed by SDP based synthesis of an adaptive cruise controller
implementing rule base type fuzzy control algorithm.
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2 Fuzzy State Models

The conventional fuzzy rule models of the type,
IfuisA;thenyisB;, i={1,2, ...,m}, (1)

define mappings from the fuzzy partitioning of the input space (rule antecedents) to
a corresponding partitioning of the output space (rule consequents), and can be
viewed as approximations of static input-output functions of the form, y=T(u).
Many of the fuzzy control applications exploit the Mamdani controller [1, 2]
approach. This approach uses static model (1) representing controller dynamics by
rules mapping the state space (the vector of the error and its derivative) to the space
of control variables:

If xisA;thenuisB;, i={1,2, ...,m},

i.e., models of the form u=G(x). These models generalize the structure of the
widely used industrial look-up table (LUT) controllers [21]. Although highly effi-
cient for designing practical heuristic control strategies, these models cannot be
used for plant modeling, model-based design, and for analysis of the stability and
performance of feedback control systems. Their main drawback is the lack of
efficient mechanism to describe the state dynamics and the interaction between the
system inputs, states, and outputs.

Yet a large number of fuzzy models that are used to approximate system
dynamics belong to the TS type [3]:

If xisA;jthenxt =Fx+Gu, i={1,2, ...,m} (2)

Such models use nonlinear weighting functions to combine multiple linear state
models, i.e.,

X+=

™=

1 vi(x) (Fix + G,‘u).

1

These models result in polytopic representations of the nonlinear dynamics and
have become one of the common tools for modeling and control of piecewise linear
systems. Their main drawback is in their limited interpretability since the entire
model dynamics are captured by the linear subsystems and the role of the fuzziness
is to determine the regions where the linear subsystems are defined. Thus one of the
prospects of introducing the fuzzy system concept — the opportunity of infusing
heuristic information and human knowledge in the control system design — is not
completely utilized in the TS models (2) and the associated control design methods.

Multiple attempts to develop fuzzy system models of Mamdani type (1) that can
be applied to model based design of fuzzy controllers, see e.g. [18, 22-25] have not
resulted in a practical systematic methodology for identification of fuzzy models
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and subsequent synthesis of fuzzy controllers For example, in [18] we examined a
family of fuzzy state models defined by static rules for representing the state space
dynamics,

If uis Byand xis A; Thenx™ is A;
If uisBsand xis A; Thenyis Dy,

where B.V,A,-,Aj and D, are fuzzy subsets defined in the input, current /next state,
and output domain. Some of the main difficulties with the practical use of this type
of models remained the lack of a well-defined mechanism for determining the two
families of fuzzy subsets A; and Aj that describe the logic of state transitions, the
mappings between the input, state, and output space, and the complexity of dealing
with MIMO fuzzy systems.

In this paper we consider the FSMs of the Mamdani type (1) as a different class
of dynamic fuzzy models which can represent the state dynamics in cases where the
system states are vaguely defined and are formalized as fuzzy subsets. We limit the
discussion to rule-based models that involve families of rules of the form:

If xis A; Thenx™ is A, with probability p;
A, with probability p; (3)

A, with probability p;,, i={1,2, ...,n}.

The main reason for considering this kind of models is that they can be viewed
as representing an uncertain dynamic system of the type,

x* =f(x),

where x €X is a state variable taking values from the universe of all states X,
xt €X is a variable representing the next state, and Ay, A,, ---A,, are fuzzy subsets
of X. The fuzzy subsets are defined by their membership functions, ¢;(x), on the
universe of x. The probabilities p;; are the conditional probabilities satisfying

[),:/'=P(.X+ EA_,'|.XEA,‘), Zp,;,-=1(foralll§j§n), (4)
i=1

and describing the probability of transitions between the current and the next states.
The definition of the probabilities of fuzzy states A, A,, ...,A, follows Zadeh’s
definition [26] of the probability P(F) of a fuzzy event F as the Lebesgue-Stieltjes
integral of the membership function pg(x) of F,

P)= [ nrxyap,
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We can expect that the possibility distribution inferred by the FSM (3) depends
on the transition probabilities and the fuzzy subsets Aj,A;, ...,A,. One special
case of the FSM (3) is the model with no randomness:

If xisA; thenxisA;,  i,j={1,2, ...,n}.

This model is obtained from the FSM (3) for the case when only one of the
possible transitions from the state i is 100 % certain, i.e. p;j=1 and p;;=0 for
s€{l, ...,n}, s#j. Thus the assumption of no randomness essentially transforms
the FSM (3) into the conventional fuzzy model (2).

Further generalizations of the FSM concept (3) can include the dependence of
the transition probabilities on time and external control and disturbance inputs;
these generalizations are not addressed in the present paper, but will be pursued in
the future publications.

As an example, consider a FSM which represents the average traffic conditions
on a certain road section during the day [27]. The typical traffic states can be
described as fuzzy variables (Freely Flowing, Slightly Congested, Moderately
Congested, Jammed) defined on the Navteq Jam Factor Scale (this is a 0—10 scale,
similar to the Richter Scale, characterizing the overall traffic conditions with 0 and
10 being, respectively, the best and the worst traffic conditions) See Fig. 1.

Fig. 1 Fuzzy variables:
Freely Flowing (A;), Slightly
Congested (A;), Moderately
Congested (A3), Jammed (A4)
Traffic defined on the Navteq
Jam Factor scale
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0.7
0.6
0.5
0.4
0.3

02

0.1

o 10

Jam Factor Scale [1-10]
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The average traffic dynamics can be summarized by the set of rules that capture
all possible combinations between the states while taking into account the infor-
mation about the probabilities of transitioning between states:

IfxisA; ,1<i<4,thenx is A, with probability p;;
Ay with probability pi;
A3 with probability p;s;
Ay with probability piy.
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The conditional probabilities p;. can be learned from the normalized
sigma-counts c;; [7, 9] of observed transitions between the states A; and A;,

Cij
pPiiR—,
Coi
over a given time interval, where
n
Coi = E Cijs
j=1

is the total number of transitions that are initiated from the state A;.

For example, a change in the traffic Jam Factor from x=7 to x* =2 affects to
different degree the current (A;(7)=0,A,(7)=0.04,A5(7)=0.71,A4(7)=0.14)
and next (4;(2) =0.41,A,(2)=0.25,A43(2) =0,A4(2) =0) states and changes the
sigma counts, respectively the probabilities, associated with the transitions between
the states in Fig. 1 as follows:

cii= cip+ 0; crp= ci2+ 0;

ci3= ci3+ 0; ci4= ci4+ 05

cy1 = cp1 +0.04%0.41; Cco = ¢ +0.04%0.25;
c3= ¢33+ 0; Cou= cu+ 0;

c31= ¢33 +0.71%0.41; c3p = c3p +0.71%0.25;
c33= ¢33+ 0; c3= c3u+ 0;

cq1 = c41 +0.14%0.41; cqp = cqp +0.14%0.25;
3= cy3+ 05 Cys= C44+ 05

Co1 = co1 + 0; Co2= cp2+ 0;

Models of the type (3) are dynamic models that have not been commonly used in
the literature. In what follows, we apply the Dempster aggregation rule in order to
derive a method for formalizing the FSM dynamic fuzzy model (3) that is consistent
with the theory of approximate reasoning.

In the basic fuzzy model (1), the consequent of each rule consists of a fuzzy
subset B;. The use of a fuzzy subset implies a special kind of uncertainty associated
with the output of a rule. This kind of uncertainty is called a possibilistic uncer-
tainty, and it is a reflection of a lack of precision in describing the output. The use of
this imprecision allows one to represent a complex nonlinear function in terms of a
collection of simpler fuzzy rules. The consequent of the FSM (3) includes possi-
bilistic uncertainty - a collection of fuzzy subsets Aj, ...,A,. In addition to the
possibilistic uncertainty, the consequent of the FSM features an additional proba-
bilistic uncertainty that is represented by the probability of selecting between
multiple consequent fuzzy subsets. A natural way to deal with both types of
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uncertainty is to consider the consequents to be fuzzy Dempster—Shafer granules
(see, for instance, [18, 27, 28]). Therefore, the output of each rule can be viewed as
a belief structure M; with focal elements Ay, ..., A, that are fuzzy subsets of the
universe X and have weights M;(A;). The FSM (3) is then replaced by the following
set of rules and belief structures

If xisA;thenx™ isM;, i={1,2,...,n}, (5)

where each of the belief structures M; includes n focal variables that coincide with
the states A; and are assigned weights as follows:

M,
Ay Mi(Ay)=pn
Ay M (A2)=p12
An Ml(An) =Pln
M,
A My (Ay)=pa
Ay My (Ar) =po
An MZ(An) =P2n
M,
Al Mn<A1):pn1
A2 Mn(AZ) =DPn2
An Mn (An) =Pnn-

We note the antecedent portion of the rules in (3) and (5) is unchanged. The
inclusion of a belief structure to model the output of a rule essentially means that
M;(4;) is the probability that the output of the ith rule belongs to the set A;. So
rather than being certain as to in which set the output of the ith rule lies we
introduce some degree of randomness in the determination of the outcome set. As
we mentioned above, the use of a Dempster-Shafer belief structure to model the
consequent of a rule brings with it the option of fusing multiple types of uncertainty.
The first type of uncertainty is the randomness associated with determining which
of the focal elements of the belief structure M; is in effect if the rule fires. This
selection is essentially determined by a random experiment that uses the corre-
sponding weights, the M;(A;), as the associated probabilities.
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The weights M;(A;) correspond to the conditional probabilities defined in (4). In
order to simplify the exposition we consider the case of two states, n=2, and a
model defined by the following rules and belief structures:

If xisAj thenx™ isM,
If xis Ay thenx™ is M,

(6)

where
M,
Ay M (A)=pu
As M (A1) =p
M,
Ay M (A)=pu
A M (A2)=p1
and where

putpr=1, p+pn=1

Suppose that for a given crisp value xy or a possibility distribution y,(x) of the
state x, the firing levels of the two rules are 7| and 7, where

Ti=ai(xo), resp. 7; = \/x (ai(x)y(x)). (8)

The output of each rule can now be viewed as a new belief structure Mi =17;M;
defined on X. The focal elements of Z\Al,- are

Fi =1a,

Fp=rtia,,

where F is a fuzzy subset of X. The weights associated with these new focal
elements remain the same as the ones in M; [28], i.e. M, (Fj) =M;(A)). Then
following [27] we obtain the possibility distribution y* inferred by the rules
(assuming a summation type of aggregation and a normalizing coefficient g that
scales y* to the unit interval):

N PSP
X :§<M1+M2):5(71M1+‘[2M2)
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that can be expressed for each of the focal elements as follows:

~

M,
Fii=11a4
M (A1) =pu
Fpn=rnia;

1(A2) =p12

M,
F=na
M>(Ay) =pa
Fpn=na
M>(A2)=pxn

D. Filev et al.

We further obtain summation of these two belief structures. The focal elements

of M are obtained according to the Dempster rule as follows:

Ei=Fu+ Fy =tia1+1na; M(E)=pi1*pu
Ey=Fi+ Fp=tia1+1na, M(E)=pi*pxn
Es=Fp+ Fy=tiaa+1ma; M(E3)=pin*pa
Ey=Fin+ Fp=tiay+1a, M(E;)=p1o¥pxn

By aggregating the focal elements and taking into account (7) we obtain:

+ 1
X = 5((71611 +n2a1)puipa + (t1a1 + 12a0)pripae + (1162 + T201)p1apai

+ (t1a2 + 12a2)p12p22)

1
= 5 (ria1p11 + T2a1p21 + T1a2D12 + T2a2D22)

Apparently,

M
M

q:

1

Tip;i =71 + 72

1j=1

is one possible normalizing coefficient that scales y ™ to the unit interval since the

terms

P _ TPii .
LI < [ P )
g nin {12}
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sum to one, i.e. this type of normalization is equivalent to a weighted aggre-
gation of the focal elements.

The extension of this analytical expression for the possibility distribution
inferred by a FSM for n> 2 is straightforward:

+ 1 n n n
x =—(Z ai Y Tji’ﬁ)»q: 2T
qg \i=1 i=1 i=1

Alternatively, the above inferred possibility distribution can be formalized using
an equivalent vector/matrix expression:

tIla tIla
> el ©
i=17Ti

where a = [a;(x)a12(x) . .. a,(x)]" is a matrix of the uniformly sampled membership
functions of the subsets A, A, -+, and A,;; 7 is a row vector of the firing levels,

t=[r172. .. Tp)s

_ T
T=Gn >

Zi:l Ti

is the vector of the normalized firing levels, IT is the matrix formed by the con-
ditional probabilities p;;, and e is the column vector of ones of size n.

3 Markov Chain Models with Fuzzy Encoding and Fuzzy
State Models Are Equivalent Concepts

Markov Chain models with fuzzy encoding were introduced in [7], motivated by
the approximation properties of fuzzy granules. Following the theory of approxi-
mate reasoning [18], we considered the partitioning the universes of x and x* into
n fuzzy subsets, A;. Subsets A; are defined by their membership functions,

aj(x): X —1[0,1;Vxe X, 3j,1 <j<n,a;(x) #0.

As we now discuss, the FSMs that use a set of appropriately defined rules and
belief structures are similar to Markov Chain models with states being defined as
fuzzy subsets See Fig. 2.

More specifically, the Markov Chain models with fuzzy granulation [29] can be
expressed as a collection of n? rules with fuzzy predicates of the form,
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Fig. 2 Markov Chain Model A A A
with fuzzy granulation; the
states are fuzzy subsets [9]

<
7 Pu | Pz |Pus
e X
NERTArE
x— o | 21 | P2z 22
= | P31 | Pz | P
x+

IF xis A; Thenx™ is A; with probability p;;

where probabilities p;;, i,j € {1, -=-n},, are the elements of the transition probability
matrix, I1. The antecedent and consequent subsets are defined by their membership
functions a(x) on the universe of x. Note that each of the cells of the Markov Chain
Model with fuzzy encoding corresponds to a rule expressing the relationship
between the possible antecedents and consequents. In [9] we showed that when the
current state of the Markov Chain with fuzzy encoding is deterministic, the
expressions for the next state (fuzzy or deterministic) are given by:

Tioiailxo) Yo Py Yiey (%)
i1 ai(xo) '
ot = iz i) Xic Py
0 i1 ai(xo)

Taking into account that a;(xo) essentially corresponds to the degree of firing 7;
of the rule with predicate a;(x) by (8) we can rewrite (10) into a vector/matrix form:

Xt (x)= (10)

(11)

that is identical to (9). Furthermore, the deterministic output of the Markov Chain
with fuzzy encoding (11) corresponds to the defuzzified valued of the fuzzy state
model (9).

We summarize this important result in the following proposition.

Proposition: The Fuzzy State Model and the Markov Chain model with fuzzy
encoding are equivalent models.

In [9, 30] we showed that for Markov Chain models with fuzzy encoding there
exists an analytical expression of the mapping between a given possibility distri-
bution y,(x) and the inferred possibility distribution, y*:
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va' Ila

p—
X4y

7t =d'la= , (12)

where the membership function of y,(x) is represented by a row vector ¥ and
Go= Y_, a;. This result was obtained under the following assumptions:

Al. Uniformly sampled (discrete) membership functions a; and possibility dis-
tributions y and y * yielding s —~dimensional vectors @; = [a,;ay; . . . )], ¥ and ¥ .

A2. Use of a correlation type measure

ya =ylala;...a'],
of compatibility between the vectors y and EJ-T instead of the more conventional
max-product or max-min type similarity measures.

The assumption (A1) simplifies the exposition and can be easily relaxed, for
instance, by replacing the inner product of possibilistic vectors by an integral of a
product of two possibilistic distribution functions over a domain. The assumption
(A2), on the correlation measure, is more critical, but it is reasonable in treating
many application problems. In addition to replacing the nonlinear maximum
operation by a linear inner product operation, this correlation measure may in many
problems provide a more complete characterization of the overall similarity
between the vectors ¥ and EI-T (see, for instance, [18, 25]). Under the above
assumptions, the degrees of firing 7 and their normalized counterparts 7 in (8) can be
expressed as follows:

t=[t172 ... 1) =flal @ a'l=ya"
T ya’ ya’

T= = — =
it Xioxal o pal

where a, = Zln: 1 a;. Henceforth, under those assumptions expression (9) can be
rewritten in a vector form:

X
Qu
QU

(13)

Il

Al

N

Ql

Il
R
S5

that is identical to (13).

Therefore, the FSM and the MC with fuzzy encoding are also equivalent under
the assumptions Al and A2. Consequently, the calculus and conclusions related to
the latter can be applied to the former. The following figure summarizes the result
of this section (Fig. 3).
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X X, X,
<
/ Pu | Pi2 | P13
If xis A; then x* is A; with probability p;, < X
L,j=12 3. R L P2y | P22 | P23
AN P31 | P32 | P33
x*

Fig. 3 Equivalence between Fuzzy State Models and Markov Chain models with fuzzy encoding

4 Generalized Dynamic Fuzzy Models

The demonstrated equivalency between Markov models with fuzzy encoding and
the FSMs has thus far covered only one special class of first order dynamic systems,

x(k+1) =f(x(k)),

where the scalar variable x denotes the state of the system and f is a nonlinear
mapping. We now discuss an extension to systems with multiple state variables (x is
an n-dimensional vector rather than a scalar).

First, we show that higher order dynamic fuzzy models, e.g.:

If xy is A} and x, is A} Then x}" is A} and x} is A;, (14)

where n; subsets A} and n, subsets A]Z partition the universes of the state variables
x1 and x,, and are defined by the respective membership functions,

ail(xl):Xl —[0,1];Vx; €X;,3i, 1 Si,sSnl,ai] (x1) #0,
ajz()Q)IXz —1[0,1];Vx, € X2, 3j, 1 Sj,tﬁnz,a}(xg)yéo,

can be transformed to the first order model (9). By aggregating the state variables x;

and x;, and corresponding subsets A}, Al-z, and substituting in (12) we obtain the

following rule,
If zis C; Then z* is C;j, (15)

where the new variable z is defined in the two-dimensional Cartesian space X; X X;.
C; and C; are fuzzy subsets (granules) of X; X X». Numerically, they are represented
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by the vector products of the discretized membership functions c‘zill and c‘zjzl of the
subsets, Al-ll and A]zl,

Al

i=a,a. (16)

By rearranging the elements of C, in a vector ¢; we obtain a vector representation
for the membership function of the subset C; that is formally identical to the single
dimensional case and satisfying assumption Al and A2. We will further denote by
the symbol X the combined operation of vector product followed by a transfor-
mation to a single dimensional vector, i.e.:

¢i=a; xa;, (17)

where ¢; stands for the vector expression of the membership function of the subset
C;. Therefore, if the granules are considered Markov states and they satisfy the
Markov assumption the system can be modeled as a Markov chain with fuzzy
encoding:

If zis C; Thenz™* is C; with probability p;. (18)

The probabilities, p;, i,j=1, -, n, where n = nn,, are the elements of the
transition probability matrix II covering the transitions between the subsets, C;.
pi=P(z" €CilzeC), Y;=1Pi=1. Consequently, expression (11) applies and
determines the possibility distribution inferred by the dynamic fuzzy model (14).

Similarly, the Markov chain theory can also be extended to the case of fuzzy
modeling of stochastic dynamic multiple-state, multiple-input systems:

x(k+1) =f(x(k), u(k)), (19)

where x and u are of dimensions n and r, respectively. In order to simplify the
notations we consider dynamic fuzzy models of the type:

If uyis B} and uy is B,i and x; isAf and x» isAJZ

(20)

Then xi is Al and x;t is A%,
where u; € Uy and uy € U, and B} and B2 are fuzzy subsets of U; and U, with
cardinalities | and r,. Based on the discussion about higher order state model we
can assume that the state variables are granulated as in (12). Similar aggregation of
the input variables u; and u, into a new variable, w, and corresponding subsets B}
and B2 into a new subset Dy yields:
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If wisDyand zis C; Thenz™ is C; (21)
Alternatively, this rule can be rewritten in the form:

If wis Ds Then

: . (22)

If zis C; Then 27 is C;.

Such a granulation of the inputs and states defines a partitioning of the com-

pound Cartesian input/state space into rn fuzzy granules, where r =r|r,. Assuming

further that the granules C; satisfy the Markov assumption, the system can be
modeled as a Markov chain with fuzzy encoding

If wis Dy Then
B (23)
If zis C; Thenz™ is C;with probability p;;

(s)
i
matrices I1) the are defined as the following condition probabilities:

where the transition probabilities p;;’ and corresponding transition probability

pY=P(z* €ClzeC)weDys=1,2, ...,rij=12,..n.  (24)

In order to include the impact of the input w on the inferred possibility distri-
bution by (14) we aggregate the corresponding possibility distributions that are
inferred under different degrees of membership of the input w to the subsets
D,,s=1,2,...,r, 1e.,

r v r v 7a'm" a

=+ _ s =171(s) 7 — s

X = 2471_1 a= —_
s=1 er:lyf s=12zr=1’/l )(aoT

(25)

where v, is the degree of membership of the input w in the subsets
Dg,s=1,2,...,r.

We can visualize the transition probabilities PE;)
matrices TT) of size (nxn) that are associated with the corresponding subsets D;
proportionally to the degrees of membership of the input w in Dy, s=1,2, ...,r.

Figure 2 illustrates the transition probabilities for a system with 2 input and 2

state variables that are defined on continuous universes (Fig. 4).

as r transition probability
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p,=Plz'eC,|ze C,we D)5, j =[118],s =[1,6]
u, s

JI®
(18X18)
%

Fig. 4 Example of a vehicle model with 2 state variables (x; and x,) and 2 input variables («; and u;)
that are defined on continuous universes, e.g. speed and acceleration can be thought as the state
variables and the accelerator and brake pedal positions can be thought of as the inputs. The inputs are
partitioned into 2 and 3 intervals respectively defining 6 input granules, D,. The ranges of possible
values of the state variables are partitioned into 6 and 3 fuzzy subsets, respectively, defining 18 fuzzy
subsets, C;. For different input conditions and states, the transition probabilities are described by 6
transition probability matrices ¥ with the elements, Dsij = P(z+ eCjlzeC,we Dx) JIL,jE
{1,2,-,18},s€{1,2,-,6}

5 Learning Generalized Dynamic Fuzzy Models
from Data

In the fuzzy models that were discussed above we considered the case of a second
order system with 2 inputs. The formal extension to the multiple input systems of a
higher order is straightforward and is omitted.

The method and algorithm for learning the transition probabilities for Markov
Chains with fuzzy encoding were discussed in detail in [9]. Leveraging the
equivalence between both models and by applying the learning algorithm from [9]
we get for the transition probability matrix in (18),

11 (k) = diag(Fo(k)) ™' F(k), (26)

where
F(k)=F(k—1)+B(z(k)y (k)" —=F(k—1)), (27)
Fo(k)=Fo(k=1)+p (z(k)y(k)" 1y = Fo(k— 1)), (28)

B is the learning rate, and z(k) and y(k) are the vectors of membership of the
aggregated vectors z= z(k) and z* = z(k+ 1) in the subsets C; and C;. The algo-
rithm is initialized as follows:
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F(0)=€E; F,(0) = F(0) 1y, (29)

with E being a matrix of compatible size and unit elements, and ¢ being a small
nonnegative constant introduced to avoid singularity.

As follows from (24), for the case of multiple inputs, the number of transition
probability matrices corresponds to the number of fuzzy subsets D;, s=1,2, ...,r
of the aggregated input variables. Apparently, all transition probability matrices are
created in the same way since they summarize the transitions between the states.
However, since the input vector can belong to each of the subsets D, with a
different degree of membership vy, we use this membership to weigh the contri-
butions of corresponding transitions.

Assuming a set of observations (w(k), z(k)), k = 1, 2, ..., K and fuzzy subsets

Dy, s=1,2, ...,r for w, then for each of the r transition probability matrices we get
IL,(k) = diag (Fyo(K)) ™' Fi (k). (30)

where
Fy(k)=Fy(k=1)+ plus(k)e(k)y (k)" = Fy(k=1)), (31)
Foo(k) = Fyo(k=1) + p(us (k)z(k)y (k) 1y = Foo (k= 1)), (32)

B is the learning rate,z(k) and y(k) are the vectors of membership of the aggregated
vectors z=z(k) and z* =z(k+ 1) in the subsets C; and C;, and v; is the degree of
membership of the input w in the subsets Dy, s=1,2, ...,r. The algorithm is
initialized as follows:

Fs(0)=€E;Fso(0)=Fs(0) Ly (33)

6 Case Study

We consider an example of adaptive cruise control of a vehicle following another
vehicle in traffic. The model is given by

dt+1 ) d(1) + ATv(1),
v(t+1) =v(t) + AT (u(t) —w(?)),

where AT =0.25 s is the sampling period, d(t) =p(t) — p,,m is the deviation of the
relative distance, p(¢), from the nominal safe following distance p,,,, (for sim-
plicity, we refer to d(z) as the relative distance), v(z) is the relative speed, w(r) is the
acceleration of the lead vehicle in traffic, and u(r) is the acceleration of the follower
vehicle that hosts the control algorithm.

(34)
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Our objective is to develop a model-based control algorithm for the host vehicle
acceleration, u(t), that maintains the relative distance and vehicle following. As a
first step, we define a fuzzy state model of the two vehicles. We model the two
states (the relative distance to a vehicle in traffic, d(¢), and the relative speed, v(¢))
and the control input (the host vehicle acceleration, u(r)) by partitioning their
ranges into 3 fuzzy subsets. The rules derived from this partitioning are of the form,

If uis Dy andvisAi1 andsisA}
Thenv* is A, and s* is A}, ,i,j,k,1€{1,2,3}

where Dy stands for the fuzzy subsets Negative, Zero, and Positive of the Host
Vehicle Acceleration u, A} and A} stand for the fuzzy subsets Negative, Zero, and
Positive of the Relative velocity v, and AJ? and Al2 stand for the fuzzy subsets

Negative, Zero, and Positive of the Relative Distance d. The fuzzy subsets are
modeled by the membership functions depicted on Fig. 5. A discrete set of control
actions, representing the follower vehicle accelerations,

ueU={-05,0,0.5}

was considered.

Fig. 5 Membership functions
of Relative Velocity and
Relative Distance
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Following the discussion in the previous section we introduce the Cartesian
product subsets of the state variables,

Ci=Aland A?,i,je{1,2,3},1<1<9,

representing the aggregated states v and s. For example, the fuzzy subset C; =A]
and A3 represents the following conjunction,
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Relative Speed is Negative and Relative Distance is Zero.
Therefore, the dynamic fuzzy model describing the relative distance and velocity
of the two vehicles can be written as a set of the following 243 rules:

If uis Dy Then

If zis C; Then z* is C; with probaility p.)’,

(35)

where the transition probabilities p§j>

matrices I1¢) the are defined as the following conditional probabilities:

and corresponding transition probability

py) =P(z* €ClzeCrLueD,),s€{1,2,3},i,je{1,2,-,9}

Fig. 6 Sample trajectories of 5F
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To determine the transition probabilities, first a speed trajectory of the lead
vehicle was defined varying between 20 and 30 m/s based on a Markov Chain with
—1, 0 and 1 m/s vehicle speed change per time step with respective probabilities of
0.3, 0.4 0.3 except for the lower (upper) boundaries, where staying at the same
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value or transitioning to upper (lower) value was permitted with respective prob-
abilities of 0.5. Then model (34) was simulated for three different values of
ueU={-0.5,0,0.5}. To avoid values outside of the range of interest, the relative
distance state was saturated between —20 and 150 m while the relative velocity state
was saturated between —5 and 5 m/s. The transition probability matrices were
learned from the simulated trajectories of lead and host vehicle acceleration, relative
distance, and relative speed (selected sections of state trajectories for u=0.5 are
shown in Fig. 6) by applying the learning algorithm (30)—(33). These transition
probability matrices are visualized in Fig. 7.

5 s S 5

Next State z* Current State z Next State z* Current State z

5

Next State z* Current State z

Fig. 7 Transition Probability Matrices, nv, s=1,2,3

The resulting rules reflect the car following dynamics. As an example, noting
that

C;=A}and A =

Relative Speed is Positive and Relative Distance is Negative,

Cs=A}and A} =

Relative Speed is Positive and Relative Distance is Zero
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the rule

If uis Dy Then
If 7is C; Thenzt is Cg with probabilitypgy,

is equivalent to the following rule

If Host Vehicle Acceleration is Negative Then
If Relative Speed is Positive and Relative Distance is Negative Then
Next Relative Speed is Positive and
Relative Distance is Zero with probability 0.41

or

If Host Vehicle Acceleration is Negative and Relative Speed is Positive
Relative Distance is Negative Then
Next Relative Speed is Positive and Next Relative Distance is Zero
with probability 0.41.

Low rule probability indicates low weight (impact) of a specific rule and allows
it to be eliminated from the model. In this example 71 rules with probabilities less
than 0.01 were eliminated without affecting the model performance.

In the next step we use the model (35) to design a fuzzy controller that maintains
the relative distance and speed. We apply Stochastic Dynamic Programming (SDP) to
determine the control actions corresponding to the aggregated fuzzy subsets, C,,
t€{1,2,--,9}. The penalty function, L(C;), corresponding to the fuzzy subsets, C,,
te{l,2,---,9}, was chosen to discourage subsets that are further away from the
origin, i.e. away from the state of v=0,d=0. We assign lower penalty to the
“self-correcting states” corresponding to relative distance and velocity with opposite
signs. This leads to the choice of penalty for individual states presented in Table 1.

Table 1 Penalty selection for dly Negative Joro s
different states of relative T - 1000 o -
distance and velocity egative
Zero 200 0 200
Positive 0 500 1000

To generate the control policy, the Value Iteration Algorithm was applied to the
Markov Chain model with fuzzy encoding with transition probability matrices
visualized in Fig. 7 and the penalty function defined in Table 1. The value iterations
take the following form,
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V,(C) = min, ¢ y{L(C) + gE[V,-1(C*)]},

with discount factor g =0.90. Figure 8 shows the value iteration convergence.

Fig. 8 Maximum difference 10000
between value functions in s
two subsequent iterations over
the domain 8000
>.C 6000
c
=
3 4000
E [e]
2000}
.
0
0 80 100

40 60
Iteration No

The optimal control values for each of the fuzzy subsets C;, t € {1, 2, ---,9}, we
determined from SDP are summarized in Table 2.

Table 2 Consequent centroids corresponding to the different states of relative distance and
velocity as calculated from the optimal policy derived by the application of the Value Iteration
Algorithm

dlv Negative Zero Positive
Negative -0.5 -0.5 0

Zero -0.5 0 0.5
Positive 0 0.5 0.5

Thus the optimal controller comprises the following rule base:

If Relative Speed is Negative and Relative Distance is Negative then u = — 0.50
If Relative Speed is Negative and Relative Distance is Zero then u = —0.50

If Relative Speed is Negative and Relative Distance is Positive then u=0

If Relative Speed is Zero and Relative Distance is Negative then u = —0.50

If Relative Speed is Zero and Relative Distance is Zero then u =0

If Relative Speed is Zero and Relative Distance is Positive then u = 0.50

If Relative Speed is Positive and Relative Distance is Negative then u=0

If Relative Speed is Positive and Relative Distance is Zero then u=0.50

If Relative Speed is Positive and Relative Distance is Positive then u =0.50
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By using the Simplified Reasoning Method [18] (weighed average aggregation
of the centers of gravity of rule consequents), the controller rule base produces a
control policy, usPP (v,d), as a function of the relative speed, v, and relative dis-

tance, d shown in Fig. 9.

Fig. 9 Control surface
derived from the optimal
controller rule-base under the
Simplified Reasoning Method

Fig. 10 Relative Speed
(top) and Relative Distance
(bottom) under the application
of the fuzzy controller with
consequents calculated by the
SDP algorithm when
following a randomly
accelerating vehicle with
acceleration varying between
—1 and 1 m/s®
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Fig. 11 Relative Speed 1
(top) and Relative Distance
(bottom) under the application
of the fuzzy controller with
consequents calculated by the
SDP algorithm when
following a lead vehicle
moving at constant speed
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Figure 10 illustrates that the host vehicle is able to maintain relative speed and
relative distance in a small range while following a randomly accelerating lead
vehicle with acceleration magnitude between —1 and 1 m/s” exceeding the follower
vehicle acceleration authority.

Figure 11 illustrates the closed-loop response when the lead vehicle is moving at
a constant speed, i.e., w=0. The closed-loop trajectories converge so that v(z) -0
and d(t) -0 m as t — oo, where the equilibrium values of the speed and distance
are the roots of uSPP(v,d) =0. The response is lightly damped but asymptotically
stable. By linearizing the model (34) with u=u"F (v, d) and w =0 numerically, the
closed-loop eigenvalues are 0.9928 +0.0740;j and are inside the unit disk, con-
firming that the closed-loop system is asymptotically stable.

7 Summary and Conclusions

In this paper we analyzed the equivalency between the Fuzzy State Models and the
Markov Chains with fuzzy encoding and demonstrated that these approaches are
identical under certain assumptions. This allowed us to analytically describe the
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propagation of possibility distribution by a dynamic feedback fuzzy system and to
derive an analytical model of the possibility distribution inferred by a Fuzzy State
Model. We also showed that the methodology for developing and learning Markov
Chain models with fuzzy encoding can be extended to FSMs of higher order and
multiple inputs. Results were illustrated on a case study where a FSM for vehicle
following dynamics has been learned from sample trajectory data and Stochastic
Dynamic Programming (SDP) was applied to generate a fuzzy controller stabilizing
the relative speed and distance between two vehicles. We believe that these
developments will lead to a framework for systematically addressing the problems
of model-based design, stability, and optimal control of fuzzy systems.
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Incremental Granular Fuzzy Modeling
Using Imprecise Data Streams

Daniel Leite and Fernando Gomide

Abstract System modeling in dynamic environments needs processing of streams
of sensor data and incremental learning algorithms. This paper suggests an incre-
mental granular fuzzy rule-based modeling approach using streams of fuzzy inter-
val data. Incremental granular modeling is an adaptive modeling framework that uses
fuzzy granular data that originate from unreliable sensors, imprecise perceptions, or
description of imprecise values of a variable in the form fuzzy intervals. The incre-
mental learning algorithm builds the antecedent of functional fuzzy rules and the
rule base of the fuzzy model. A recursive least squares algorithm revises the para-
meters of a state-space representation of the fuzzy rule consequents. Imprecision in
data is accounted for using specificity measures. An illustrative example concerning
the Rossler attractor is given.

1 Introduction

Data produced by real world systems result from nonlinear, uncertain, and time-
varying dynamic processes. The description of the underlying dynamical behavior
using data models derived from first-principles remains unrealistic. Data-driven ori-
entation is becoming increasingly important as a key to complement first-principles
orientation. Modeling from data streams requires adaptive adjustment of models to
the dynamic variation of the data. Stream-based modeling algorithms need to be
developed with emphasis on the evolution of the data. The modeling process should
account for data distribution drifts and shifts triggered by the dynamics and the con-
text of the data. Because the volume of data increases continuously, it is not feasible
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to process the data efficiently using multiple passes. Typically learning procedures
must be designed to operate with one pass of the data.

Granular data emerge as a consequence of the concepts of indistinguishability,
similarity, proximity and functionality [1]. Data granulation can be viewed as a form
of lossy data compression in an environment of imprecision. In many cases, data
streams contain more information than is needed for a particular purpose [2, 3]. For
example, in practice, measurements do not contain more details than the sensors can
distinguish.

A granular mapping is defined on information granules and a quotient structure.
Mapping of granular data consists in associating a set of granules expressed in some
input space to another set of granules draw in an output space. Granular mappings
are frequently encountered in rule-based systems, where the mapping is given by
If-Then type of statements. Computing with granules emphasizes multiple levels of
understanding, analyzing and representing information. Fuzzy granular computing
[4-6] hypothesizes that accepting some level of imprecision may be beneficial and
therefore suggests a balance between precision and uncertainty.

Linguistic and functional rule-based systems are widely known types of fuzzy
systems, which emerged years ago from studies in linguistic modeling and control
systems. Both systems share the same rule antecedent structure, but differ in the way
the consequents are formed. Linguistic fuzzy rules use fuzzy set-based consequents
whereas functional fuzzy rules use functions of the antecedent variables as conse-
quent [7]. Linguistic and functional rule-based systems have been used in granular
data modeling [8, 9].

This chapter addresses system modeling using streams of fuzzy interval data. The
idea is to start with imprecise description of the values of data attributes and represent
them in terms of formal fuzzy objects and functional fuzzy rules whose consequents
are discrete-time state space models. The purpose is to represent nonlinear dynamic
time-varying processes using conceptual entities, such as data granules and associ-
ation rules, with no prior assumption about statistical properties of data. Granular
fuzzy models rely on the concepts of information granule and granular mapping to
encapsulate the imprecision in data streams, and to turn information granules into
knowledge in the form of fuzzy rules.

The chapter is structured as follows. Section 2 addresses an incremental, evolv-
ing modeling approach able to process imprecise data streams. The approach is a
continuous learning algorithm that process pointwise or fuzzy data; does not store
previous samples; does not depend upon prior structural knowledge; self-adapts the
model structure whenever needed; is independent of statistical properties of data;
and does not require ‘prototype’ initialization. A specificity-weighted recursive least
squares algorithm is used to handle imprecise data when updating the parameters of
the rule consequents. Section 3 presents an illustrative application on one-step esti-
mation of the Rossler system. Section 4 concludes the chapter summarizing the ideas
and suggesting issues for further development.
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2 Incremental Granular Modeling

2.1 Fuzzy Modeling

Incremental, evolving modeling concerns the gradual development of the model
structure (the fuzzy rule-base) and its parameters. Because data streams often are
non-stationary, the structure of the underlying data model should also be dynamic.
Model adaptation should continuously learn from the information contained in new
data and integrate new information in the current model.

A functional fuzzy rule-based model built from a stream of data is attractive
whenever the underlying process is unknown or changes over time. Usually, a finite
number of past states x(k), x(k — 1), ..., Xx(k — m), outputs and other exogenous vari-
ables can be part of the fuzzy rules antecedents. This chapter assumes functional
fuzzy rules of the form

R 1F x; (k) is ./} AND ... AND xy (k) is .4,
THEN x‘(k + 1) = A’x(k)

where x(k) = [x; (k) ... xw(k) x,,(k)]T is the state at k; i = 1, ..., ¢ is the number of
rules. In incremental modeling, A’ is a matrix of appropriate dimension with variable
entries; ///Vi,, v = 1,..., ¥, are membership functions built using the data available.

The number of rules Ri, i = 1, ..., ¢, is also variable. Superscript i on the left-hand

side of the consequent equation means a local estimation. We assume that all state

variables x(k) are measurable. State observers are not addressed in this chapter.
Consequent matrices and the state vector can be extended to include affine terms

as follows:
~ 10 ~ 1
L . . =
A _[36A1]7 X [X]’ (1)

T Rules R’ can be rewritten as:

i .

i 1,0 i
where a, = [alo e g e alpo]

0
R':TF x; (k) is .| AND ... AND xy (k) is .4,
THEN Xi(k + 1) = A'X(k)

In the rest of the paper we omit the tilde from the notation for short, and consider
affine models. For the same reason, the time index k is omitted from the time-varying
membership functions .#! and matrices A'.

The state estimate from the functional fuzzy model is found as the weighted
average:

x(k+1) = 2 Uik + 1), 2)

i=1
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where y'" is the rescaled activation degree of the i-th rule,
u' CM , so that g > 0 and Z u=1. 3)

z Hi i=1

i=1

Activation degrees y' are computed using any conjunctive aggregation operator,
typically a t-norm [7, 10]. t-norms are commutative, associative and monotone oper-
ators on the unit hypercube [0, 1]” whose boundary conditions are T(®, @, ...,0) = 0
and T(w, 1, ...,1) = w, w € [0, 1]. The neutral element of t-norms is ¢ = 1. In this
work we use the product t-norm. Thus

14
=TT w *

w=1

where /,tflj is the degree of membership of x,, (k) in ///y’/ While it is common to assume

that the activation degree u' of at least one rule R’ is nonzero, this is not the case
in evolving modeling because no fuzzy set exists a priori. Fuzzy sets and rules are
created and developed to gradually cover the input data domain. The number of rules
¢ increases by a unit if u' = 0Vi. In this case, /,t"+1 = 1, that is, the fuzzy sets of the
new rule match the input data. Incremental development of fuzzy sets and rules is
taken up in the next sections.

2.2 Fuzzy Data

Fuzzy data may originate from measurements of unreliable sensors, expert judgment,
imprecision introduced in pre-processing steps, and summarization of numeric data
over time periods (time granulation). Fuzzy data modeling generalizes pointwise
data modeling by allowing fuzzy interval granulation [4, 5].

This chapter concerns fuzzy functional rule-based models and trapezoidal fuzzy
data. A trapezoidal fuzzy set .4 = (I,4,A,L) allows the modeling of a wide class of
granular objects [11]. A triangular fuzzy set is a trapezoid where A=A; an interval is
a trapezoid where /=4 and A=L; a singleton is a trapezoid where [=A=A=L. Addi-
tional features that make the trapezoidal representation attractive include: (i) ease
of acquiring the necessary parameters: only four parameters need to be captured. A
trapezoidal fuzzy set can be formed straightforwardly from a trapezoidal datum; and
(if) many operations on trapezoids can be performed using the endpoints of inter-
vals, which are level sets of trapezoids. The piecewise linearity of the trapezoidal
representation allows calculation of only two level sets (core and support) to obtain
a complete instance.
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A fuzzy set A : X — [0, 1] is upper semi-continuous if the set {x € X|u(x) > a}
is closed, that is, if the a-cuts of .4  are closed intervals. If the universe X is the
set of real numbers and .4 is normal, u(x) = 1 Vx € [A, A], then .4 is a model of
a fuzzy interval, with monotone increasing function ¢ 4 : [, A[— [0, 1], monotone
decreasing function 1 4: ]A,L] — [0, 1], and zero otherwise [7]. A fuzzy interval
4 has the following canonical form:

CW? xe[l’l[
_ L xema
N x - ukx) = L. xe AL Q)

0, otherwise
where x is a real number in X. The fuzzy interval .4 satisfies the conditions of

normality (u(x) = 1 for at least one x € X) and convexity (u(xx! + (1 — k)x?) >
min{pu(x"), u(cH}, x1,x* € X, k € [0,1]). If

Cyp = and (6)

- , 7
) (N

then the fuzzy interval (5) reduces to the model of a trapezoidal membership func-
tion. Moreover, when A = A, u(x) = 1 for a single element x in X. In this case, the
corresponding fuzzy entity is a fuzzy number.

Let x = (x,x,X,X) be a trapezoidal datum. The membership degree of x in the
fuzzy set A can be obtained from (5) if x is degenerated into a singleton. Otherwise,
if x is a symmetric object, i.e. if x —x = X — X # 0, its membership degree in .4” can

be computed using the midpoint of x:

X+x
mp(x) = — ®)
The center of gravity
X+ 5x+5x+ X
CoG(x) = —— )

12

is useful when x is asymmetric. Even though it is apparent that these approximations
of the true value are useful to facilitate computations, they contradict the purpose
of taking into account the data uncertainty into fuzzy models. Additionally, in some
situations, as that shown in Fig. 1, the midpoint (or center of area) approximation
can give zero (or low) membership degree to significantly overlapped fuzzy objects.
A measure of similarity between fuzzy granular data is needed to properly consider
all relevant situations.
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2.3 Similarity Between Fuzzy Sets

Similarity is a fundamental notion to construct rule-based systems from streams of
data. In this work, data are trapezoidal fuzzy sets. A possible similarity measure for
trapezoids, say x and .Z', is:

S, 4 =1 - D(x, 4", (10)
where D(x, .#") is a distance measure computed as follows:

lx = | + 2|x — 4| + 2|% — Af] + [T = L|

Dx, #") = = < ) (11)

The value of S equals 1 for identical trapezoids and indicates the maximum degree of
matching between them. S decreases linearly as x and .#" depart from each other. In
particular, (11) is a Hamming-like distance where the parameters of the trapezoids
are directly compared. Core parameters have double weight in relation to support
parameters. Although (10) - (11) are simple to compute, involving only basic arith-
metic operations, there are no strong principled reasons to choose this measure. In
fact, there is no generally accepted consensus on a best similarity measure [12].
Let the expansion region of a set .#' be denoted by

E' = [L'=p, I'+p], (12)
where p is the maximum width that the set .#" is allowed to expand to fit a datum

x; L' = I < p at any k. Define the membership degree of the datum x in the fuzzy set
M as ut = S(x, A" if x € E', and ' = 0 otherwise.

Fig.1 Case where the i (’TJ)

membership degree of the T N

fuzzy datum x in the fuzzy

set ./ obtained by (8)is zero

despite their significant

similarity t I
mp(z) X

The similarity measure (10) can be generalized for vectors of trapezoids, say x =
[xX) . X, ... Xp]" and A" = [A] ... t///u’/ o AT, as follows

I'd
i _ 1 i i
Sx, M) =1 =5 Zl(l):cw_l"’l +20x, — A1+
]’/:

+2I%, — AL+ %, — L] D). (13)
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then u' = S(x, .#") if x € E'. Refer to [12] for a thorough discussion about similarity
measures.

2.4 Incremental Adaptation

The purpose of simultaneously adapting the structure and parameters of dynamic
fuzzy models is to use current information about the process to keep its represen-
tation updated. This section develops model structure identification and antecedent
parameter estimation. An incremental learning method is introduced to avoid time
consuming training common in multiple passes learning methods.

Expansion regions E', see (12), help to verify if new input data belong to a granule
in the input space. Different values of p produce different representations of the same
data set in different levels of granularities. For normalized data, p assumes values in
[0, 1]. If p is equal to O, then granules are not expanded. Learning creates a new rule
for each sample, which causes overfitting and excessive complexity. If p is equal to 1,
then a single granule covers the entire data domain. Evolvability is reached choosing
intermediate values for p.

A rule is created whenever one or more entries of X are not within the expansion
regions E of .4 i, i =1,...,c. A new associated granule .# +1 is constructed from
fuzzy sets t///l;“, v = 1,..., ¥, whose parameters match x, that is,

j/ucl'ﬂ — (l;“,/l;H,A;H,L;H) =(x ’)_Cu/’)_clll’§ll/)' (14)
L

Adaptation of an existing granule .#" consists in expanding the support (. L;,1

and updating the core [/1:',/, Afy ] of its fuzzy sets. Among all granules .# ! that can
be expanded to include a sample x, the one with highest similarity according to (13)
is chosen. Adaptation proceeds depending on where the datum x,, is placed. The
conditions to expand the support are:

If ):Cw IS [L;/ - p, l;j] then liy(new) = ):cw, and

= i i _=
If X, € [Lv/’lw + p] then Lw(new) =X,
The parameters of the core are recursively updated using:

‘ w —DA +x

A new) = ———2 ¥ and (15)
174 wi

, w —1DA +%

Al (new) = —WW (16)
v wi
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where w' is the number of times that the granule .#"° was chosen to be adapted.
Figure 2 shows seven possible adaptation situations. In the figure, the datum x =

(x, x, X, X) places either outside, partially inside or inside the fuzzy set .#' i The learn-

ing procedure creates a new granule .#“*! or adapts the parameters of .# accord-
ingly.

2.5 Specificity-Weighted Recursive Least Squares Algorithm

A recursive least squares-like (RLS) algorithm is used to adapt the parameters of the
rule consequents as follows. _
Consider the consequent of rule R':

xi(k+ 1) = A’x(k) (17)

where x = [1x; ... x, ... xp]”. The elements of A’ are denoted af//w/z’ VW, =

0,...,%. Rule R is chosen to be adapted whenever its antecedent part .#" is more
similar to x(k) than the antecedent part of the remaining rules. When instance x(k+1)
becomes known, equation (17) can be solved for A'.

Expanding the y-th row of (17) we have

Xy k+ D) =al a5 () + o+ a2 (K). (18)

The standard RLS algorithm can be used for each row of (17) if we replace the trape-
zoids x,, by their midpoint (8) or center of gravity (9), depending on their symmetry.
Imprecision in the data can be accounted for by weighing the adjustment of afm v
using specificity measures. Specificity measures refer to the amount of information
conveyed by a fuzzy datum [13]. A highly imprecise fuzzy datum (lower specificity)
may not be as important as a more precise (higher specificity) datum.

Let afV = [afp o a;/ - afy 17 be the vector of unknown coefficients; X = [1
CoG(x)(k) ... CoG(xy)(k)] be the regression vector; and ¥ = [CoG(xW)(k + D).
Then, in matrix form, equation (18) becomes

Y = xa;. (19)



Incremental Granular Fuzzy Modeling Using Imprecise Data Streams 115

Fig. 2 Creation and

recursive adaptation of fuzzy et = (x7x72,3:c) 4 4(x) .r i
sets % ﬂ /_\
E =
li(new) = é’ and “'H{J') i J,\Ai
core adaptation: ﬂ /_\
Eqgs. (15) (16) ; . 5
o X
E*
An'”{_j.) . .
Core adaptation: M
Egs. (15) (16) ‘_\
Jou X
rle) .
M
Core adaptation: :
Eqgs. (15) (16) . | X
E? X
Trlx) -
Core adaptation: M'a
Egs. (15) (16) /l
E’ L
i = () )
L'(new) =X, and e e
core adaptation: /_\ ﬂ
Eqgs. (15) (16) ——_ . o
E
F S { )
) M i
M = (x,x,%,%) A’;\ o



116 D. Leite and F. Gomide
To estimate the coefficients afﬂ we let
9 = Xa) + =, (20)
where & := [g,(k+ 1)] and
g,(k+1) = CoG(x,)(k+ 1) — CoG(x,)(k + 1) 21
is the approximation error. While in batch estimation the rows in ), X and £ increase

with the number of available samples, in recursive mode only two rows are kept and
we reformulate equations (19)-(21) as follows:

_ CoG(x,,)(k) = _ g, (k)
9= [CoG(xW)y(/k+ 1)] == [EW(‘I]/(-F 1)] and
[l CoGeep)k = 1) ... CoGlag )k — 1)
*= [1 CoGU)K) . CoGlrg)(K) ] ' 2

The rows of the matrices in (22) refer to values before and just after adaptation. The
RLS algorithm chooses a, to minimize the functional

J(afy) =5TE. (23)
afll is given by
af,/ = &%) 'x7y. (24)

Let Q = (X7%)~'. From the matrix inversion lemma [14] we avoid inverting X7 %
using:

X7 X0(old)

O(new) = Q(old) |1 — (25)

where [ is the identity matrix, and X ) is the second row of X. In practice it is
usual to choose large initial values for the entries of the main diagonal of Q. We use
0(0) = 10°] as the default value.

Performing simple mathematical transformations, the vector of coefficients can
be rearranged recursively as

afp(new) = afy(old) + Q(new)X7 (Y — Xafy(old)) (26)
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or, similarly,
afy(new) = afy (old) + Q(new) ¥’ . 27)
Yager [11] defines the specificity of a trapezoid x,, as
sp(xw) =1- wdt(xw(oj)). (28)

This form of specificity measure means one minus the width of the 0.5 level set of
X, In terms of the parameters of x,, we get

Gy +3,)— (x, + x)

sp(x,,,) =1- 5 . 29)

Let the specificity of x be the diagonal matrix:

sp(x) = diag([1 sp(x)) ... spCrp)). (30)

Thus, we may add specificity into equation (27) to account for data uncertainty as
follows:

afy(new) = afy(old) + sp(x)Q(new) X’ = (31)

Figure 3 gives the idea of the specificity-weighted RLS algorithm. In the figure in
the left, the coefficients a’(old) of the approximation function result from recursive
adaptation based on x(1), x(2) and x(3). Note that the data granules x(1), x(2) and x(3)
are of the same size and thus have the same specificity. When the new datum x(4)
arrives (with the same specificity as that of previous data), the algorithm weights its
contribution equivalently to the contribution of previous data to adapt a(old) and
yield a’(new). Conversely, on the right side, the specificity of the new datum x(4) is
lower than that of x(1), x(2) and x(3). The higher uncertainty on the value of x(4)
causes a smaller adjustment of the approximation function toward x(4).

Trapezoidal datum
— Approximation function

Q] a‘(old)

a‘(new)
@x(-l)

X

Fig. 3 Specificity-weighted RLS algorithm

B x(1)

v
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The specificity-weighted RLS algorithm described in this section is repeated for
w = 1,..., ¥ at each step. Detailed derivations of the RLS algorithm can be found in
[15]. A convergence analysis is given in [16].

3 The Rossler Attractor

This section addresses an application example to show the potential of the evolving
fuzzy granular modeling approach. The Rossler attractor [17] is a system of three
nonlinear ordinary differential equations that exhibits chaotic dynamics. The equa-
tions have been commonly used as a model of equilibrium in chemical reactions. An
orbit within the attractor follows an outward spiral around an unstable fixed point,
close to the x; —x, plane. Once the orbit spirals out enough, it is influenced by a sec-
ond fixed point that causes a rise and twist in the x; dimension. In the time domain,
irregular oscillations bounded in a range of values are perceptible.

Here, we use the Rossler equations only to generate a data stream. The objective
is to obtain a fuzzy model of an “unknown” nonlinear dynamical system based on
the data stream. The discrete-time Rossler equations are:

X1 (k + 1) = xl(k) + (_XZ(k) - X3(k))dt + n
Xy(k + 1) = x5 (k) + (x1(k) + ax,(k))dt + 1,
X3k + 1) = x3(k) + (b + x; (k)x3(k) — cx3(k))dt + 13 (32)

The nonlinearity is x;x;. Similar to many articles, we considered a = b = 0.1, and
¢ = 14. dt is the sampling period; #; is a random value in [—0.5, 0.5]. The initial state
x(0) is (1;0; 0). The error introduced by the discretization of the original equations
is negligible for sampling periods dt sufficiently small compared with the significant
time constant of the system. As shown in Fig. 4, the trajectory of the system states
in the phase space settles into an aperiodic oscillation. Trajectories are confined to a
fractal set.

In a first experiment a fuzzy model is evolved to approximate (32). The equa-
tions are perceived through pointwise input ([x; (k) x, (k) x5(k)]) and output ([x; (k +
1) x5(k + 1) x3(k + 1)]) data. Data become available gradually to simulate a data
stream. No data is available before learning starts. In addition, no data is stored dur-
ing the entire learning process. The one-step forecasting given by the evolving fuzzy
model using the maximum width allowed for granules, p, equal to 2 is shown in
Fig.5. The sampling period was chosen to be dr = 0.005 in this experiment. The
figure shows the results for k = 10500, ..., 16000. The root mean square error, calcu-
lated as

k. 3
RMSE = kl 3 Dk 1 =5+ D2, (33)
¢ k=1 j=1
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Fig. 4 Rossler chaotic system: phase space trajectory

is RMSE = 0.0372 for k. = 60000. Five rules were developed during the simulation
period. Their parameters are:

Rule 1:

A} = (~0.9981,0.0010,0.0010, 1.0000)
A}y =(0,0.7781,0.7781, 1.5562)
A} = (~0.0178,0.0066, 0.0066, 0.0310)

1 0 0 0
—0.0494 0.0049 —0.9385 —2.7209
—0.0151 1.0415 0.1366 0.1307
0.1351 0.0073 —0.0709 —14.0967

Al =

Rule 2:

//l% = (—1.1365,-0.1378, —0.1378, 0.8608)
///% = (—1.2667, -0.3420, —0.3420, 0.5826)
///% = (—0.0086, 0.0077,0.0077,0.0241)

1 0 0 0
—0.0243 —0.0065 —0.9531 3.9008
—0.0994 1.0198 0.0227 2.8007
0.2135 0.0194 0.0153 -22.7749

A% =

Rule 3:

///f = (0.8690, 1.1200, 1.1200, 1.3710)
///; =(-0.9937,0.0061,0.0061, 1.0058)
///g = (—0.0141,0.0073,0.0073,0.0287)
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1 0 0 0
-0.1717 0.1292 -1.0691 1.1173
—0.1491 1.1051 0.1056 4.7427
0.7875 —0.5095 0.1014 —17.0389

A3 =

Rule 4:

///? = (-1.6920,-1.3501, —-1.3501, —1.0083)
///21 = (-0.7079,0.2867,0.2867, 1.2813)
t///;1 = (—0.0043, 0.0098, 0.0098, 0.0238)

1 0 0 0
0.1070 0.0906 —1.0105 5.5327
0.6310 1.4638 0.1224  1.2655
1.7437 0.8991 —0.3307 —25.7244

A* =

Rule 5:

///? = (—1.5243,-0.5816,—-0.5816,0.3612)
//lg = (—1.7995, -1.2594, —1.2594, —0.7193)
///2 = (—0.0082, 0.0088, 0.0088, 0.0257)

1 0 0 0
0.6108 0.0624 —0.6953 —8.7299
—0.7245 0.8414 —0.2828 5.8742
—0.4074 —0.2262 —0.2866 —23.5195

AS =

From Fig. 5, the effectiveness of the evolving approach in predicting nonlinear
systems without prior knowledge about the data and system equations can be verified.
The error signals have relatively small amplitudes compared to the amplitudes of
the system states. An important point in this experiment is that due to exponential
divergence of the trajectories for small differences in the measurements, parameters
or initial states, a non-evolving (offline-trained) modeling method is unlike to track
the trajectory of the states. Another point is that the higher the number of granules
and rules, the more accurate the state estimation tends to be. However, the state
estimation depends on the availability of sufficient data for setting local parameters.

A second experiment consisted in evaluating the ability of the modeling approach
in handling fuzzy data, and detecting and reacting to concept drifts and shifts. We
considered the data as perceptions of the values of a variable. Imprecision of the
values of x; is represented by a fuzzy object of the form (x; — 0.5, x;, x;, x; + 0.5). At
k = 11500, the parameters of the Rossler equations are shifted to a = b = 0.2 and
¢ = 3 to simulate a concept shift. At each step after k = 14000, an offset of 0.02 is
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T T T T T

10500 12500 14500 16500
Time index

Fig. 5 One-step estimation of the Rossler map

added to ¢ whereas an offset of —0.02 is added to b and ¢ to produce gradual change
of parameters. Figure 6 shows the results for the state variable x;. The results for the
remaining state variables are essentially the same.

14500 16500
Time index

Fig. 6 One-step estimation of the variable x, of the Rossler system subject to abrupt (k = 11500)
and gradual (k = 14000, ...) changes of parameters

Note from Fig. 6 that the oscillations of the error rate are stronger after the concept
shift, but the quality of state estimates improves after few time steps. To maintain
an acceptable level of prediction performance when the large and unknown change
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occurred, the learning algorithm created an additional fuzzy rule - a 6" rule. Con-
versely, when gradual change of the values of the parameters occurred, the learning
algorithm basically adapted the parameters of existing rules to track the trajectory of
the states. The evolving granular modeling method has shown to be robust to time-
varying parameters and able to handle fuzzy data streams.

The granular incremental modeling was compared with alternative state-of-the-
art evolving modeling approaches. The following models were considered: evolving
Takagi-Sugeno (eTS) [18], Dynamic evolving Neuro-Fuzzy Inference System (DeN-
FIS) [19], extended Takagi-Sugeno (xTS) [20], and the evolving Granular Fuzzy
Model (abbreviated in Table 1 as eGFM) described in this paper. We prioritized
model compactness and estimation performance. The models were developed from
scratch, with no rules nor pre-training. Table 1 summarizes the results of one-step
state forecasting of the Rossler chaos. The RMSE is calculated over non-normalized
data and averaged over 10 runs. The number of samples, k., see (33), is equal to
60000 in each of the simulations.

Table 1 Rossler Chaos - Prediction Performance

Model Avg. Rules RMSE Best RMSE Avg.

xTS 23.7 0.0727 0.0744 + 0.0015
eTS 55 0.0511 0.0619 + 0.0096
DENFIS 34.7 0.0485 0.0528 + 0.0032
eGFM 55 0.0303 0.0407 + 0.0100

The results of Table 1 show that, strictly speaking, eGFM is the most accurate
model from the best and average RMSE point of view. The eGFM produces an aver-
age of 5.5 rules, a rule base as compact as that of eTS. In other words, the granular
modeling approach does not take advantage from a large amount of local processing
units (granules/rules) to achieve the average performance of 0.0407. eGFM benefits
from a combination of ingredients concerning with structural assumptions, peculiar-
ities of the learning algorithm, and fuzzy granular framework to attain that perfor-
mance. The effectiveness of the granular evolving approach in one-step estimation
without prior knowledge about the data is verified in this experiment.

4 Conclusion

This chapter has introduced an incremental fuzzy granular approach for evolving
modeling of nonlinear time-varying systems. The approach is capable to process
and learn from numeric and/or fuzzy data incrementally. Imprecise data is handled
using specificity measures of the input data during learning. Experiments with the
time-varying Rossler attractor show the usefulness of the method developed; mean-
while, comparisons with state-of-the-art evolving approaches show its effectiveness.
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Further research is needed to manage unmeasurable state variables. A systematic
design method for evolving fuzzy observers using input-output data shall be con-
sidered. We will also look into issues related to different kinds of nonstationarities
and uncertainties in data streams. Stability analysis and stabilization of time-varying
nonlinear systems is also an important issue to be investigated.
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Fuzzy Measures and Integrals: Recent
Developments

Michel Grabisch

Abstract This paper surveys the basic notions and most important results around
fuzzy measures and integrals, as proposed independently by Choquet and Sugeno,
as well as recent developments. The latter includes bases and transforms on set func-
tions, fuzzy measures on set systems, the notion of horizontal additivity, basic Cho-
quet calculus on the nonnegative real line introduced by Sugeno, the extension of the
Choquet integral for nonmeasurable functions, and the notion of universal integral.

1 Introduction

This paper gives a survey of the research done on fuzzy measures and integrals
since Sugeno proposed in 1974 the concept of fuzzy measure, with an emphasis
on recent results. This field of research lies at the intersection of several independent
domains, which makes it very active and attractive, namely, measure theory, the-
ory of aggregation functions, cooperative game theory, combinatorial optimization,
pseudo-Boolean functions and more generally theoretical computer sciences. As an
illustration of this fact, the word “fuzzy measure” which was coined by Sugeno,
has many different names according to the field where it is used: nonadditive mea-
sure, capacity, monotone game, pseudo-Boolean function, rank function of a poly-
matroid, etc. Evidently, this short paper cannot make a complete account of all the
research undertaken in this area, a whole book will hardly suffices. Indeed, the author
is preparing a monograph on this topic, with the title: “Set functions, games and
capacities in decision making”, to be published by Springer around the end of 2015.
This paper gives a kind of quick and necessarily simplified summary of selected top-
ics. We recommend the interested reader to consult the main (available) monographs
dealing with fuzzy measures and integrals: Pap [1], Denneberg [2], Wang and Klir
[3], the Handbook of measure theory edited by Pap [4], as well as the edited book [5],
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and the survey paper [6]. The latter focusses on application in multicriteria decision
making, an aspect which is not covered by this paper, restricting to theory.

To avoid intricacies, in the whole paper the universal set X is finite, with | X| = n.
We often use V, A, which collapse to maximum and minimum on finite sets.

2 Fuzzy Measures

Fuzzy measures introduced by Sugeno [7] are generalization of classical measures,
i.e., additive and nonnegative set functions, whose domain is an algebra F on X. As
we will see in Sect. 2.4, the structure of algebra is not needed here, and various struc-
tures can be thought of. For simplicity, we assume F = 2% in the first subsections,
the general case will be addressed in the last one.

2.1 Definition, Main Families and Properties

A fuzzy measure on X is a set function 4 : 2¥ — R such that (@) = 0 and
u obeys monotonicity: A € B C X implies u(A) < u(B). Fuzzy measures are
also called capacities (after Choquet [8]), nonadditive measures (Denneberg [2]),
monotone measures (Wang and Klir [3]), etc. If in addition u(X) = 1, then the fuzzy
measure is said to be normalized.

If monotonicity is dropped from the definition, we obtain nonmonotonic fuzzy
measures, more commonly called games, denoted usually by v.

One of the most important property of fuzzy measures (or games as well) is con-
vexity, ak.a. supermodularity. A fuzzy measure y is convex if for all A,B € 2X,
HAUB)+ uAnB) = u(A) + u(B). If the reverse inequality holds, y is said to
be concave or submodular. Convexity is generalized by the so-called k-monotonicity
property: u is k-monotone for some fixed 2 < k < n if for any family of k sets
Ay, ... A €2X,

k

w(Ua)z Y come(Na) M

i=1 1c{1,...k} il

Moreover, u is totally monotone if it is k-monotone for every k > 2 (in fact, 2 < k <
2" —2 suffices). The k-alternating property is defined similarly, interchanging (") and
|J and reversing inequality. Lastly, u is said to be maxitive if u(AUB) = pu(A)V u(B),
and minitive if u(A N B) = u(A) A u(B).
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The simplest fuzzy measures which can be thought of are 0-1-fuzzy measures:
their range is simply {0, 1}. In game theory, they are called simple games and are
useful in voting theory. Among them, particularly useful are unanimity games (a.k.a.
simple support functions): for any @ # A C X, the unanimity game u, is defined by

®) 1, ifB2A
u =
A 0, otherwise.

The next remarkable families are possibility and necessity measures: a possibility
(resp., necessity) measure is a normalized maxitive (resp., minitive) fuzzy measure
(Zadeh [9], Dubois and Prade [10]). Necessity measures are particular cases of belief
functions, as proposed by Shafer [11] (similarly, plausibility functions generalize
possibility measures). Mathematically speaking, a belief (resp., plausibility) function
is a normalized totally monotone (resp., alternating) fuzzy measure.

2.2 Transforms and Bases

The set of games, as well as the set of set functions, form a vector space of dimension
2" — 1 (resp., 2™). This is not the case for the set of fuzzy measures, which is only
a cone, while the set of normalized capacities is a polytope, whose vertices are the
0-1 fuzzy measures (Stanley [12], Radojevic [13]). In the rest if this section, we deal
with the vector space of set functions (the results can be however easily adapted to
the set of games).

A transform is a mapping ¥ : REY [R(2N), assigning to any set function &
the set function ¥¢. If the transform is linear and invertible, then it induces a basis
of the vector space of set functions (and similarly for games). Conversely, any basis
induces a linear invertible transformation. This is explicited in the next lemma.

Lemma 1 (Faigle and Grabisch [14]) For every basis {bg} seox of sz, there exists
a unique linear invertible transform ¥ such that for any & € R2",

E= ) WES)bs, 2)

Se2X

whose inverse ¥~ is given by & — whH = ZTGZX E(T)by.

Conversely, to any transform ¥ corresponds a unique basis {bg}scox such that
(2) holds, given by bg = (P~)%, where 8 is a 0-1-valued set function defined by
6g(T)=1ifandonly T = S.

It is well known that the set of unanimity games forms a basis of the set of games.
Adding the 0-1-valued set function ugy defined by u(S) = 1 if and only if S = @,
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we get a basis for the vector space of set functions. By Lemma 1, the corresponding
transform, denoted by m, satisfies

(A=Y m(B) (A€’

BCA

which yields

mE(A) = Y (=DM @ e %),

BCA

This transform is known as the Mdbius transform, famous in combinatorics. Among
the many existing transforms, at least two of them have a special interest. The inter-
action transform [15], generalizing the Shapley value [16] and the interaction index
of Murofushi and Soneda [17], has the following expression:

BCX\A +l)' i nm—a+1)!

for all A C X, where a, b, k are cardinalities of subsets A, B, K, respectively, and
ApE(B) = Y g (=DM\KIE(BUK). This transform enables the interpretation of fuzzy
measures in a multicriteria decision making context [6, 18]. The inverse transform
is given by

IYES) = Y, Bl €K,
KcXx

with coefficients ﬁ]l( given by

k
g=y (’?)B,_,- k<D,

=N

where the Bj’s are the Bernoulli numbers. It follows from Lemma 1 that the corre-
sponding basis is
I _ alTl X
b (S) = ﬁlms' (S, T € 2%).

The interaction transform of & can be expressed in a simple way through its Mobius
transform:

Fay= Y, (B, 3)

B2A
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The second transform of interest is the so-called Fourier transform, well known
in computer sciences (see, e.g., de Wolf [19] and O’Donnell [20]). The Fourier trans-
form of a set function ¢ is defined by

FE®) = 5 2 (D KIE),

Kcx

Interestingly enough, it is auto-inverse up to the factor 1/2":

(FTHES) = Y (=DIKlg(k).

KCX
The corresponding basis is therefore

RSy = Y (=DIKls (k) = (~DITT (5,7 € 2).
KCcX

The vectors of this basis (not that these are not games) are called parity functions
in the literature of computer sciences. They are up to a recoding equal to the Walsh
functions wg(T) = (—=1)IS\T! (indeed, bL.(S) = wg(X \ T)). These are a finite version
of the original functions proposed by Walsh (see Hurst et al. [21]), who form a orho-
normal basis of the set of square integrable functions on [0, 1]. The major advantage
of the Fourier (or Walsh) basis is that it is orthonormal, in the sense that (bF s bg y=1
if § = T, and 0 otherwise, where the inner product is defined by

1

D ESHE .

Se2X

Another remarkable property is that the Fourier transform turns the convolution
product into an ordinary product (like with the original definition of the Fourier
transform):

Ff*f' = F¢ F§'

where the convolution product of two set functions is defined by

1
E* &) = o Z &(SAT)E (T)

Te2X

(SAT is the symmetric difference, i.e., (SUT) \ (SN T)).
We finish this section by giving the bounds of the Mobius transform for a normal-
ized fuzzy measure. Surprisingly, the interval in which the Mobius transform of a

normalized fuzzy measure can vary is not [—1, 1], but its bounds grow rapidly with n,
approximately in 22 as shown in [22] (corrected version of an earlier publication

7n

2
[23]). The precise result is as follows.
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Theorem 1 For any normalized fuzzy measure u, its Mobius transform satisfies for

anyACN, |A| > 1:
Al -1 -
—<| l, ><m"(A>< ('A' 1>,
i Iy

A Al -1
llAlzzl%J, Iy = l—l '4 J+1 @)

and for |Al =1 < n:

with

0<m"A) <1,

and m"*(A) = 1 if |A| = n = 1. These upper and lower bounds are attained by the
normalized fuzzy measures iy, pa,, respectively:

[y

. iflIAl =1, S IBNA| < |A]
Wy(B) = FIAL= la :
0, otherwise

—_—

, if|Al=-I, <|BNnA|l<|A
0, otherwise

forany B C N.
We give in Table 1 the first values of the bounds.

Table 1 Lower and upper bounds for the Mobius transform of a normalized fuzzy measure
|A| 1 2 3 4 5 6 7 8 9 10 11 12
u.b. of m#(A)| 1 1 1 3 6 10 15 |35 |70 126 210 | 462
Lb.of m*(4)|1(0) |-1 |-2 |-3 |—-4 |-10 |20 |-35 |-56 |—126|—-252|—-462

2.3 k-additive and p-symmetric Fuzzy Measures

A fuzzy measure y is additive if u(A U B) = u(A) + u(B) for every disjoint
A,B € 2X. Normalized additive fuzzy measures therefore coincide with probabil-
ity measures. Observing that the Mobius transform of an additive fuzzy measure u
satisfies m*(A) = O for all A € 2X such that |[A| > 1, a natural generalization of
additivity is k-additivity: a fuzzy measure y is k-additive (1 < k < n) it m"(A) =0
for all A € 2X such that |A| > k, and there exists at least one A € 2% such that
m*(A) # 0 (Grabisch [15]). It follows that a k-additive fuzzy measure needs only

(T) + (;) + e+ (Z) coefficients to be defined, instead of 2" — 1.
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Due to (3), an equivalent definition is: y is k-additive if its interaction transform
I* vanishes for subsets of more than k elements, and there exists a subset A of k ele-
ments such that /#(A) # 0. Since the interaction transform has a clear interpretation
in the context of multicriteria decision making, k-additive fuzzy measures are of par-
ticular interest. Especially, 2-additive fuzzy measure have the advantage of being the
simplest fuzzy measures (in terms of number of free coefficients) able to represent
interaction between two elements.

k-additive fuzzy measures are families of fuzzy measures which are of poly-
nomial complexity instead of the exponential complexity of general fuzzy mea-
sures. Another set of such families is provided by the concept of p-symmetric
fuzzy measure (Miranda and Grabisch [24, 25]). A fuzzy measure yu is symmetric if
u(A) = u(B) whenever |A| = |B|. Furthermore, two distinct elements i,j € X are
symmetric w.r.t. a fuzzy measure u (denoted by i ~ p Nif u(Aui) = u(A uj) for
every A C X \ {i,j}. Note that ~, is an equivalence relation, and let us consider its
equivalence classes, which forms a partition of X. Clearly, a symmetric fuzzy mea-
sure has only one such equivalence class, which is X. A natural generalization is:
a fuzzy measure is p-symmetric if ~, has p equivalence classes. It follows that any
fuzzy measure is p-symmetric for some 1 < p < n (by the way, also k-additive for
some 1 <k < n).

Consider a p-symmetric fuzzy measure u, with set of equivalence classes {A;,
...»Ap}, and a subset B C X. Clearly, the value y(B) depends uniquely on the num-
bers by, ... ,bp, with b; := |A; n B|. Since 0 < b; < |4;], it follows that u needs
Hfz L(IA;] + 1) coefficients to be defined.

2.4 Fuzzy Measures on Set Systems

A set system F on X is a subcollection of 2% containing @ and covering X, that is,
UierA = X. We consider in this section fuzzy measures whose domain is a set
system.

We begin by introducing the main families of set systems of interest. The most
classical example borrowed from measure theory is algebra. An algebra is a set sys-
tem closed under finite union and complementation. Although complementation is
fundamental in classical measure theory, this is no more the case for fuzzy measures
and games, so that other algebraic structures arise:

(i) Set systems closed under union and intersection: (Faigle and Kern [26]) It
follows that such set systems contain X and are distributive lattices. Under the
additional condition that there is no macro-element (i.e., a subset M C X with
M| > 1 such that forany A € F, either M C A or ANM = @), from Birkhoff’s
representation theorem, the set of all such set systems is in bijection with the set
of partial orders on X. In other words, any such F is generated by a partial order
on X, which can be interpreted as a kind of hierarchy of the elements in X. This
is particularly meaningful when X is a set of players, agents, etc., or criteria.
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(i) Weakly union-closed set systems: (Algaba [27], Faigle and Grabisch [28, 29])
F is weakly union-closed if A,B € F,ANB # @ imply AUB € F. This larger
family is motivated by communication graphs. Suppose that a graph (X, E) is
defined on X, with X being the set of nodes, and E being the set of edges, i.e.,
pairs {i,j} withi,j € X and i # j. Say that a subset A C X is connected if for any
distinct i, j € A, there exists a sequence i = iy, 1, ... ,iq = j of elements of X
such that {iy,i,,,} € Efork =1,...,q— 1. Defining F as the set of connected
subsets of X, it follows that 7 is weakly union-closed (this is however not a
characterizing property).

(iii) Regular set systems: [30, 31] a set system F is regular if it contains X and
any maximal chain! from @ to X has length n. Every distributive lattice is a
regular set system. The motivation for such sets systems is more mathemati-
cal: it happens that many concepts around games and fuzzy measures are based
on maximal chains of length n (Shapley value, marginal vectors, Choquet inte-
grals, etc.).

If F is a lattice (in particular, if F is closed under union and intersection), the
definition of k-monotonicity is easily adapted by substituting U, N in (1) by Vv, A of
the lattice. It is well-known that when 7 = 2%, there is an equivalence between
total monotonicity and the nonnegativity of the Mobius transform. It has been for a
long time an unsolved issue whether this equivalence still holds if F is a lattice, only
recently solved:

Theorem 2 Let u be fuzzy measure on a lattice F. Then u is totally monotone if and
only if it has a nonnegative Mobius transform.

The “only if” part was shown by Barthélemy [32], and the “if part” recently by
Zhou [33].

3 The Choquet and Sugeno Integrals

The term “fuzzy integral” has been introduced by Sugeno [7] in 1974, and is now
most commonly called the Sugeno integral. However, Choquet already in 1954 pro-
posed a functional w.r.t. a fuzzy measure (or capacity), referred now as the Choquet
integral. As we will see in Sect. 3.8, other integrals w.r.t. fuzzy measures have been
proposed. We study in detail the Choquet and Sugeno integrals, which can be con-
sidered as the most representative (and still very different) fuzzy integrals. Except
for Sect. 3.7, we assume that fuzzy measures are defined on F = 2X,

'A chain from @ to X is a sequence @ = Ag, Ay, ... ,Aq = X of sets in F such that Ay CA; C --- C
A,. Its length is g, and the chain is maximal if no other chain from @ to X contains it.



Fuzzy Measures and Integrals: Recent Developments 133

3.1 Definitions and Basic Properties

We begin by introducing the general definition, which is valid for arbitrary spaces.
For this, we need decumulative distribution functions. Let y be a fuzzy measure and
f X = R. The decumulative distribution of f w.r.t. u is

G =pl{xeX|f) 21}  (eR).

We consider first nonnegative functions. Let f : X — R, and yu be a fuzzy
measure. The Choquet integral of f w.r.t. u is defined by

/ fdu= /0 G, /(ndr, 5)

where the right hand-side integral is the Riemann integral. The Sugeno integral of
f w.r.t. pu is defined by

][ fadu=\/(G,;0rD= \G, )V

=0 =0

In words, the Sugeno integral is the abscissa of the intersection point between the
diagonal and the decumulative function, while the Choquet integral is the area below
the decumulative function. It can be proven that it is equivalent to consider a strict
inequality in the definition of G, ;. Another equivalent formula for the Sugeno inte-
gral is

Frau=\/ ( \so nucn)
A€EF

X€EA

Note that the Choquet integral can be defined w.r.t. games as well. However, since
the decumulative function is no more monotone with games, the definition of the
Sugeno integral is restricted to fuzzy measures. An elementary property is that for
everyA C X, / 14 du = u(A), where 1, is the characteristic function of A. The latter
property holds also for the Sugeno integral, provided y is normalized. In view of this
property, the Choquet and Sugeno integrals can be considered as extensions of fuzzy
measures.

When X = {x{, ..., x,}, the formulas can be made more explicit. For a function
f X = R_,letf; denotes f(x;) for simplicity, and take a permutationc on {1, ..., n}
such that f; (1) <« < fo(n)- DeﬁneAl(i) = {Xo(i)> Xo(i1)s -+ s Xom -1 = 1, ...,n. The
Choquet integral is given by
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/ Fau= 3oty = Foior) AL D) (©)
i=1

= Y foiy (HALG) = AL+ 1)), (7)
i=1

with the conventions f,, = 0 and A(T,(n +1)=0@.
For the Sugeno integral, we obtain:

n

Frau=\/ oo A ual) ®)
i=1

=\ (o v AL + 1)) ©)
i=0

with the same conventions.

We consider now the case of real-valued integrands. For any f : X — R, we write
f=fT=f7, withfT=0Vf, f7=(H"

Then the symmetric Choquet integral (a.k.a. Sipo§ integral [34]) is defined by

/fdﬂ=/f+dﬂ—/f_dﬂ~ (10)

The asymmetric Choquet integral, which is the usual definition, is defined by

/fdu=/f+du—/f'dﬁ, an

where u is the conjugate fuzzy measure, defined by u(A) = u(X) — u(X \ A) for
any A € 2X. The asymmetric Choquet integral is translation invariant (it is the only
extension having this property), while the symmetric integral satisfies

/(—f)du = —/fdu.

The case of the Sugeno integral is more cumbersome, essentially due to the fol-
lowing problem. The Sugeno integral is defined through the Vv, A operators, playing
the role of addition and product respectively (compare (6) with (8)). Remembering
that on the ring of real numbers, a — b is shorthand for a + (—b), a transposition of
formula (10) for the Sugeno integral would read
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][fdﬂ=][f+dﬂ@(—][f‘du> (12)

where @ is an extension of V for real numbers (i.e.,a @ b = aVvb whenever a,b > 0)
such that a @(—a) = 0. Surprisingly, such an operator @ would be necessarily nonas-
sociative. Indeed,

(-3)©3)©2)=09©2=0v2=2
(-3)©GB©2)=(-3)©B8Vv2)=(-3)©3=0.

The lack of associativity forbids to infer the so-called rule of sign, i.e., (—a) @(=b) =
—(a @ b), which is necessary for the symmetry of the integral:

f(—f)du =][f‘vd/4© ( ~frra)=-((-fr dﬂ) ofr dﬂ)
=—][fd;4. (13)

It can be shown [35] that the best operator (in the sense that it is associative on the
largest domain) satisfying the above requirements (including the rule of sign) is the
symmetric maximum, defined by

—(la| v |b]), if b # —a and either |a| V |b| = —a or = —b
a@b =10, ifb=—a (14)
lal v |b|, otherwise.

The symmetric Sugeno integral [36] is therefore defined by (12) and @. Up to now,
there is no adequate definition of an asymmetric Sugeno integral.

3.2 The Choquet Integral as a Linear Interpolator

Consider the following problem: a function 7 : [0, 1]* — [0, 1] is known only on the
vertices of the hypercube [0, 1] (in particular /(0) = 0, where 0 is the O vector), and
has to be determined everywhere in the hypercube. This is an interpolation problem,
and there exists many ways to make the interpolation. Noting that the vertices of the
hypercube correspond bijectively to the subsets of X (with |X| = n), it follows that
I is necessarily an extension of a game v: I(1,) = v(A) for every A € 2X_ Hence the
Choquet and Sugeno integrals could be candidate.

Even if we restrict to a linear interpolation, there are still many ways of doing the
interpolation, depending on which vertices are chosen, but there exist two extreme
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ways. If all vertices are used for each point f € [0, 1]”, we get the multilinear model
(owen, citeowe88), given by:

=Y W]
i€eA

ACX,A#varnothing

where m” is the Mobius transform of v, defined by v(A) = I(1,) for every A €
2X. The other extreme case would be to take the minimum number of vertices so
that the considered vector x is contained in the convex hull of the selected vertices
(parsimonious interpolation). Then this number is n + 1, the number of vertices of
a n-dimensional simplex, and the problem of choosing the right simplices for each
f amounts to the triangulation problem of the hypercube. There is one triangulation
of particular interest since it leads to an interpolation where all constant terms are 0,
the triangulation in the n! canonical simplices, where each simplex is induced by a
permutation ¢ on {1, ...,n}:

Se ={f €10, 11" | fo(1) S o) € = <Som -

Then it can be shown that the parsimonious linear interpolation based on the canon-
ical simplices is the Choquet integral. This fact was remarked by Singer [37], and
also Marichal [38].

3.3 Expression W.r.t Transforms

The Choquet integral being linear w.r.t. the game, it is easy to get its expression when
the game is expressed by some linear invertible transform (equivalently, in some
other basis). Let ¥ be a linear invertible transform, and {bf\/ } ae2x the corresponding
basis of set functions given by Lemma 1. Since these set functions are not necessarily
games, and the Choquet integral needs games to be well defined, we build a basis of
games {b'} cox (o) as follows:

, ) bs(D), ifT#@ %
by = {0, otherwise (Se2"\ {2h. 15

Then for every f € RX and every game v,

/fdv=/fd< > W"(A)bf) =) W(A)/fdbjf’. (16)
G#ACX @

#ACX

It is therefore sufficient to compute / f dbi;‘” forevery A C X, A # @.
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Applying this to the Mobius transform immedaitely yields the following well-
known formula:
/fdv= > m' @) )\ i (17)
ACX ieA

The same methodology is not applicable to the Sugeno integral since it is not
linear w.r.t. the fuzzy measure. It is possible however to obtain a formula similar to
(17), by means of the ordinal Mobius transform. The ordinal Mébius transform of a
fuzzy measure u is the interval [m] := [m,, m*], with m* = y, and

(A CX). (18)

m.(A) = u(A), if u(A) > u(A\i),vie A
e 0, otherwise

The above formula has been first proposed in [39, 40], then developed in [35]. Then,
it can be proved that the Sugeno integral takes the form:

][fdu= V </\ﬁAm(A)> (19)
ACX

i€A

where m is any function in [m,, m*].

3.4 Properties

The next propositions summarize the main elementary properties of Choquet and
Sugeno integrals. In the whole section, X is supposed to be finite, and F = 2%,

Theorem 3 Letf : X — R be a function and a game v. The following properties
hold for the Choquet integral.

(i) Positive homogeneity:

/afdv:a/fdv (a20)

(ii) Homogeneity of the symmetric Choquet integral:

/afdv:a fdv (¢ €eR)

(iii) Translation invariance:

/(f+a1X)dv=/fdv+av(X) (x € R)
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/(—f)dV=—/de

where V is the conjugate game;
(v) Scale inversion:

(iv) Asymmetry:

/(alx—f)dv=(xv(X)—/fd§ (x € R)
(vi) Monotonicity w.r.t. the integrand: for any fuzzy measure p,
f<f’=>/fdpt</f’du
(vii) Monotonicity w.r.t. the game for nonnegative integrands: if f > 0,

v<v'=>/fdv§/fdv'

(viii) Linearity w.r.t. the game:

/fd(v+av’)=/fdv+a/fdv', (x eR)

(ix) Boundaries: inf f and sup f are attained:

inff = / f it SUDS = / £ bt

with pin(A) =0 forall A C X, and p,,.(A) = 1 for all nonempty A C X;
(x) Continuity.

Theorem 4 Letf : X — R, and y a fuzzy measure on X. The following properties
hold for the Sugeno integral.

(i) Positive A-homogeneity:
][(alx/\f)dyza/\][fdﬂ (a > 0)

(ii) Positive V-homogeneity if supf < u(X):

][(alx Vf)du=a\/][fd/4 (a € [0, supf]).
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(iii) Hat function: for every a > 0 and for every A € F,
][alAdy =a A ulA)

(iv) Scale inversion: if supf < u(X),

][ (UOOTy ) djt = () — ][ £ iR,

where u is the conjugate fuzzy measure;
(v) Scale translation:

][(f+061x)duS][fdu+][adu=][fdﬂ+a/\u(X) (>0
(vi) Monotonicity w.r.t. the integrand:
res s frasfra s e

(vii) Monotonicity w.r.t. the fuzzy measure:

M<M’=>][fdus][fdu'

(viii) Max-min linearity w.r.t. the fuzzy measure:

][fd(ﬂV(aAﬂ’))=][fdM v (a/\/fdﬂ’) (@3> 0)

(ix) Boundaries: inf f and sup f are attained:

inff = ][ f it SUDS = ][ £ Qb

With ppin, Bmax defined as in Theorem 3;
(x) Lipschitz continuity:

]][fdu —][gdu‘ <UOA -l (g € BYFY)

with ||f|| = sup,ex [f(x)| (Chebyshev norm). Hence, if u is normalized and
f, g are valued on [0, 1], we obtain that the Sugeno integral is 1-Lipschitzian
for the Chebyshev norm.
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A fundamental feature of both Choquet and Sugeno integrals is their relation with
comonotonic functions. Two functions f, g : X — R are comonotonic if there is no
x,x' € X such that f(x) < f(x) and g(x) > g(x') (equivalently, in the case of a
finite universe, if there exists a permutation ¢ on X such that f;; ;) < -+ < f,(,) and

8o(1) < < ga(n))-

Theorem 5 Let f, g be comonotonic functions on X (finite). Then for any game v, the
Choquet integral is comonotonically additive, and the Sugeno integral is comonoton-
ically maxitive and minitive for any fuzzy measure y:

/(f+g)dv=/fdv+/gdv
][(ng)dﬂ=][fd/4 V][gdﬂ
][(f/\g)dﬂ=][fd/4 /\][gdu.

A more recently introduced type of additivity is called horizontal additivity (see
Sipo$ [34], and Benvenuti et al. [41]). Given a function f : X — R and a constant
¢ € R, the horizontal min-additive decomposition of f is:

f=0nAcly)+ (= Acly)).

This amounts to “cut” horizontally the function at level c. Similarly, the horizontal
max-additive decomposition of f is:

f=0veln)+ (= vely)).

A functional I : RX — R is horizontally min-additive if for every f : X — R and
ceR,

1) = I(f Acly) + I(f — (f Acly)).

Horizontal max-additivity is defined similarly. It turns out that these notions are
equivalent to comonotonic additivity, as shown by Couceiro and Marichal [42]. A
related notion is horizontal median-additivity, introduced by Couceiro and Marichal
[42]. Lastly, we introduce comonotonic modularity. A functional 7 : RY > R is
modular if for every f, g : X - R,

IV +I(fAg)=1()+1(2)

It can be easily shown that the Choquet integral is comonotonically modular, i.e., for
any comonotonic functions f, g it holds



Fuzzy Measures and Integrals: Recent Developments 141

/(ng)dv+/(ng)dv=/fdv+/gdv.

This also holds for the Sugeno integral.

The next theorem clarifies the important case of supermodular fuzzy measures
for the Choquet integral.

Theorem 6 For any game v, the following conditions are equivalent:

(i) v is supermodular;
(ii) The Choquet integral is superadditive, that is,

/(f+g)dv>/fdv+/gdv
forallf,g : X - R

(iii) The Choquet integral is supermodular, that is,

/(f\/g)dv+/(f/\g)dv>/fdv+/gdv

forallf,g : X - R;
(iv) The Choquet integral is concave, that is,

/(/1f+(1—A)g)dv;/lfdv+(l—/1)/gdv

forall A€ [0,1], f,g : X - R.
(v) The Choquet integral yields the lower expected value onthe core of v:

/ fdv= min / fdg, (20)

where core(v) is the set of additive games ¢ on X such that p(X) = v(X) and
d(S) = v(S) for all S € 2X.

Lastly, we give the properties of the Sugeno integral concerning maxitivity and
minitivity.
Theorem 7 The following holds:

(i) ]L(f Vv g)du =ff du V/—g dy for all f, g € BT (F) if and only if u is maxitive;
(ii) ]L(f Ag)du =ff du Af—g du for all f, g € BT (F) if and only if u is minitive.
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3.5 Characterizations

The most famous characterization of the Choquet integral is due to Schmeider [43],
whose adaptation to the finite case (|X| = n) and F = 2% is as follows.

Theorem 8 Let I : RX — R be a functional. Define the set function v(A) = I(1,)
on 2X. The following propositions are equivalent:

(i) I is monotone and comonotonically additive;
(ii) v is a fuzzy measure, and for all f € RV, I(f) = ff dv.

The discrete version (with a redundant axiom) was shown by de Campos and Bolafios
[44]. A similar characterization for the Choquet integral w.r.t. games was obtained
by Murofushi et al. [45].

In the discrete case, a characterization using comonotonic modularity was
obtained by Couceiro and Marichal [46, 47].

Theorem 9 Let |X| = nand F = 2%, and let I : RX — R be a functional. Define
the set function v(A) = I(1,), A C X. The following propositions are equivalent:

(i) 1 is comonotonically modular and satisfies I(alg) = |a|l(sign(a)lg) for all
a €Rand S C X, and I(1x\5) = I(1x) + I(=1g);
(ii) vis a game and I(f) = ffdv.
The Sugeno integral was characterized in the discrete case by de Campos and
Bolafios [44]. Here follows a simplified and more general version.

Theorem 10 Let |X| =n, F =2%, andlet I : (R+)X — R, be a functional. Define
the set function u(A) = I(1,), A C X. The following propositions are equivalent:

(i) I is comonotonically maxitive, satisfies I(al,) = a AI(1,) for every a > 0 and
ACX andI(1y) =1;

(ii) u is a normalized fuzzy measure on X and I(f) = f—f du.
The next characterization is due to Marichal [48]. Still others can be found in this
reference.
Theorem 11 Let |X| = n, F = 2%, and let I : [0,11X — [0, 1] be a functional.
Define the set function u(A) = I(1,), A € X. The following propositions are equiva-
lent:

(i) Iis nondecreasing, V-homogeneous and A-homogeneous;
(ii) u is a normalized fuzzy measure on X and I(f) = ff du.

3.6 The Choquet Integral on the Nonnegative Real Line

As remarked by Sugeno in two recent papers [49, 50], so far there is no “Choquet
integral calculus”, similar to classical integral calculus, even if one restricts to func-
tions and measures on the real line. By means of the Laplace transform, Sugeno
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established in these two papers the basis of Choquet integral calculus. For this, the
Choquet integral on a restricted domain is used:

/fdﬂ=/ooﬂ({XZt}ﬂA)dt
A 0

for some A C X. We give now the fundamental theorem.

Theorem 12 Let f : R, — R, be nondecreasing and continuously differentiable,
and let y be a continuous fuzzy measure on R, such that u([z,t]) is differentiable
w.r.t. T on [0, ] for every t > 0, and u({t}) = 0 for every t > 0. Then

t
Fdu=-— / W ef@de  (>0)
[0.] 0o 07

where the righthand side integral is the Riemann integral. In particular, for a dis-
torted Lebesgue measure uy, with h being continuously differentiable, we obtain

_ ["on
Sfdu, = a—(t —1)f(r)dz. 20
[0,1] 0o 07

Equation (21) can be computed very easily through the Laplace transform. Denoting
by £7! the inverse Laplace transform, and by H(s) and F(s) the Laplace transforms
of h and f, we have:

/ fdw, = L7 (sH(s)F(s)).
[0,1]

3.7 The Choquet Integral of Nonmeasurable Functions

So far we have considered that F = 2%, so that every subset is measurable and con-
sequently any function is measurable too (i.e., its level sets belong to 7). In the case
where F C 2%, what about the integral of a nonmeasurable function? The question
may appear quite odd, but makes sense in practical situations, for example in multi-
criteria decision making. In this field, X is the set of criteria and u(A) for some A C X
is interpreted as the overall evaluation of an alternative being satisfactory on criteria
in A, and unsatisfactory or neutral on the others. It may be the case that such an alter-
native is not conceivable, and so no value can be assigned to u(A). However, when
computing the overall score of an alternative, knowing the vector f of its scores on
every criterion, the set A may be a level set of f (i.e., A = {x € X | f(x) > ¢} for some
t), so that f is not measurable and its Choquet integral cannot be computed. In this
section we indicate how to extend the Choquet integral to nonmeasurable functions.
This work is based on [28].
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Let F be a fixed set system. We decompose any game von F as v = v + v~

where v*, v~ are two totally monotone fuzzy measures:
vi= Y m@Auy, v = ) (emi Ay (22)
AEF|m"(A)>0 A€EF|m"(A)<0

We first define the Choquet integral w.r.t. a totally monotone fuzzy measure b on F
as follows (f is assumed to be nonnegative):

/fdhzmax{ZaAb(AH ZaAlAsf,aAZO,VAEP} (23)
F

A€EF AEF

= min {Zpif,. | Y\ P;>b(A).VAEF.P; > O,VieX} @

ieX i€A

It can be proved that this is the smallest functional 7 satisfying positive homogeneity,
superadditivity and /(14) > b(A) for all A € F. Now, the Choquet integral for any
function f : X — R w.r.t. a game v is defined by

/rfdv=/rfdv+—/rfdv_. (25)

We summarize the main properties of this integral.

Theorem 13 Letf : X — R, be a function and v be a game on (X, F), where F is
any set system. The following properties hold.

(i) Positive homogeneity:

/afdv:a/fdv (a=0)
F F

(ii) ForanyS € F,

/Ffdus =minf;

where ug is the unanimity game w.r.t. S;
(iii) If F is weakly union-closed,

/r fdv=3 m'(S)minf,

SeFr

where m” is the Mdbius transform of v;
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(iv) If F is weakly union-closed,

/rfdv=/fd9

where the right-hand side integral is the ordinary Choquet integral, and V is a
game on (X, 2%) defined by

W)= [ lgdv= F S e 2%,
V()/r” Y. v se?h

F maximum in F(S)

with F(S)={FeF|FCS}.
(v) If F is weakly union-closed, /F -dv is superadditive if and only if it is concave
if and only if V is supermodular.

From (iv) we see that this integral is essentially the Choquet integral w.r.t. a modified
game ¥, and therefore inherits all of its properties. Moreover, ¥ is an extension of v in
the sense that it coincides with v on F. It turns out that this integral yields the Choquet
integral for measurable functions, and is indeed an extension of the Choquet integral.
Note however that if v is monotone, ¥ is not necessarily so.

More results can be obtained if F is closed under union. In this case, it can be
shown that a fuzzy measure i on F is supermodular if and only if /i is, where super-
modularity for yu is defined as follows: for any S, T € F,

HESUT)+u((SNT)) > u(S) + u(T),

where (SN T) is the largest subset of S N T in F. Moreover, the following holds.

Theorem 14 Let F be a set system closed under union, and u be a fuzzy measure
on (X, F). The following are equivalent:

(i) Forevery functionf . X - R,

/rfdﬂzmax{ 3 dsu(S) | szlssf,uo}

SeF SeF
- min{ > P | P(S)> u(S).¥S € F.P > 0},
ieX

where 0 indicates the 0 vector.
(ii) /F -du is superadditive;
(iii) p is supermodular.
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3.8 Other Integrals

We describe briefly other kinds of integrals defined with respect to fuzzy measures.

Pseudo-additive integrals and fuzzy t-conorm integrals It is possible to define other
integrals by simply replacing the operations used in the definitions of Choquet and
Sugeno integrals (sum, product, max, min) by other ones, generally speaking, by
pseudo-additions and pseudo-multiplications. There has been many studies in this
direction, starting from Weber [51] and Kruse [52], then later Sugeno and Murofushi
[53], Murofushi and Sugeno (fuzzy t-conorm integral) [54], Klement, Mesiar and
Pap ((S,U)-integral) [55], Benvenuti et al. [41], and more recently the impressive
study by Sander and Siedekum [56-58].

Basically, the (S, U)-integral uses as basis operators a continuous t-conorm S and
a uninorm U which is distributive w.r.t. S in the following sense:

Ux,8(y,2)) = S(U(x, y), U(x, 2))

for all x,y, z € [0, 1] such that S(y, z) < 1.

The fuzzy t-conorm integral proposed by Murofushi and Sugeno uses three con-
tinuous t-conorms S, S,, 53 which are either the maximum or Archimedean, plus a
pseudo-multiplication ®, being nondecreasing in each place, continuous on ]0, 1]?,
and satisfying a © x = 0 implies either a = 0 or x = 0, and two distributivity
properties:

(D1) S,(a,b) < 1 implies (S,(a, b)) © x = S3((a © x), (b © x))
(D2) S,(x,y) < 1 implies a © (S,(x,y)) = S3((a © x), (a O y)).

The definition of the fuzzy t-conorm integral is then:
—q Si
(81,582,83.0) [ fdpu 1= S3(fpiy = foii=1) © H(Asu)
i=1

. . S; . . .
with same notation as above, and = is the residuated difference w.r.t. S 1> defined by

aXbi=inf{c| S, b o) > a)

for any (a, b) in [0, 1]2. The Choquet integral is recovered with Sy, S —2, S5 being the
Lukasiewicz t-conorm, and © the usual product. The Sugeno integral is recovered
with §; = S, = S35 = max and © = min, and the Shilkret [59] integral is obtained
when © is the ordinary product.
The integral proposed by Benvenuti et al. is similar.

Universal integrals Universal integrals, proposed by Klement et al. [60] (see also
a more recent work [61]), try to answer the following question: What is an inte-
gral w.r.t. a fuzzy measure?. The answer given by Klement et al. is axiomatic: they
propose a list of axioms a functional should satisfy to be considered as a integral.
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The name “universal” comes from the fact that the integral should be defined for any
measurable space (X, A) where A is a o-algebra.

They first define a pseudo-multiplication as an operator ® : [0, 00]> — [0, co]
satisfying the following properties: it is nondecreasing in each place, O is an anni-
hilator of ®, ie., a ® 0 = 0 ® a = 0, and ® has a neutral element ¢ # 0, i.e.,
a@Q@e=eQa=a.

Let us denote by D the set of all Cartesian products M(X, .A) X F (X, A) for every
measurable space (X, .A), where M(X, A) is the set of fuzzy measures on (X, .A),
and F (X, A) is the set of A-measurable functions. A functional  : D — [0, co] is
called a universal integral of it satisfies the three following axioms:

(i) For any measurable space (X, .A), its restriction to M(X, A) X F(X, A) is non-
decreasing in each place
(i1) There exists a pseudo-multiplication @ such that for all (u,c- 1) € D, I(u,c -
1)) =c® uA)
(i) I(u,f) = I’ f") if Gr=Gyp.
Obviously, the Choquet integral and the Sugeno integrals are universal integrals.
It is not difficult to see that a universal integral is a distortion of the decumulative
function by a function J begin nondecreasing and satisfying J(d - 1)y .; = c ® d. The
Sugeno and Shilkret integrals belong to the set of smallest universal integrals (in the
sense of the usual partial order on functions), given by

Ig(p.f) = sup (G, ().
1€]0,infiy]

It can be shown that all integrals of the form (5), with product and addition being
replaced by a pseudo-multiplication ® and a pseudo-addition @ being continuous,
associative, nondecreasing, having 0 as neutral element and being left-distributive
w.r.t. ®, are universal integrals.

The concave integral and decomposition integral Recenty, in a series of papers
Lehrer presented the concave integral [62—-64], and a more general concept called
the decomposition integral [65], encompassing both the concave integral and the
Choquet integral, as well as the Shilkret integral.

We firstintroduce the concave integral. Letf : X — R, and u be a fuzzy measure.
The concave integral of f w.r.t. u is given by:

/‘Vfdﬂzsup{Z(xSﬂ(S)l ZaslS =f, (XSZO,VSQX} (26)

SCX SCX

In words, the concave integral is the value achieved by the best decomposition of
the integrand into hat functions. Note that for totally monotone fuzzy measures, the
concave integral and the integral proposed by Faigle and Grabisch coincide (see
Sect. 3.7).

Its main properties are given below.
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Theorem 15 The following properties hold for the concave integral:

(i) For every fuzzy measure u, the concave integral / “.dy is a concave and
positively homogeneous functional, and satisfies f 1 sdu = u(S) forall S €
2X’.

(ii) Foreveryf € Ri and fuzzy measure p,

cav
/ fdu = min {I(f) | 1: [R)i — R concave, positively homogeneous,

and such that I(1g) > u(S),VS € X}

(iii) Foreveryf € Rﬂf and fuzzy measure u,

cav
du = min dpP
/ f H P additive ,P>u /f

(iv) Foreveryf € R{ and fuzzy measure p,

[raus [ " fdu,

and equality holds for every f € Rﬂf if and only if u is supermodular.

Property (iv) clearly shows that unless the fuzzy measure is supermodular, the Cho-
quet integral and the concave integral differ.

As for the decomposition integral, the idea is simply to fix a “vocabulary” for the
decompositions. If only chains are allowed for the decomposition of a function, then
the Choquet integral obtains as the best achievable value for such decompositions.
If no restriction applies, then the concave integral is obtained. Also, the Shilkret
integral can also be recovered. We refer the reader to [65] for full details on this
complex notion.
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Important New Terms and Classifications
in Uncertainty and Fuzzy Logic

Madan M. Gupta and Ashu M.G. Solo

Abstract Human cognitive and perception processes have a great tolerance for
imprecision or uncertainty. For this reason, the notions of perception and cognition
have great importance in solving many decision making problems in engineering,
medicine, science, and social science as there are innumerable uncertainties in
real-world phenomena. These uncertainties can be broadly classified as either type
one uncertainty arising from the random behavior of physical processes or type two
uncertainty arising from human perception and cognition processes. Statistical
theory can be used to model the former, but lacks the sophistication to process the
latter. The theory of fuzzy logic has proven to be very effective in processing type
two uncertainty. New computing methods based on fuzzy logic can lead to greater
adaptability, tractability, robustness, a lower cost solution, and better rapport with
reality in the development of intelligent systems. Fuzzy logic is needed to properly
pose and answer queries about quantitatively defining imprecise linguistic terms
like middle class, poor, low inflation, medium inflation, and high inflation.
Imprecise terms like these in natural languages should be considered to have
qualitative definitions, quantitative definitions, crisp quantitative definitions, fuzzy
quantitative definitions, type-one fuzzy quantitative definitions, and interval type-
two fuzzy quantitative definitions. There can be crisp queries, crisp answers, type-
one fuzzy queries, type-one fuzzy answers, interval type-two fuzzy queries, and
interval type-two fuzzy answers.
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1 Introduction

For a long time, engineers and scientists have learned from nature and tried to
mimic some of the capabilities observed in humans and animals in electrical and
mechanical machines. The Wright brothers started their work on the first airplane
by studying the flight of birds. Most scientists of the time thought that it was the
flapping of wings that was the principle component of flying. However, the Wright
brothers realized that wings were required to increase the buoyancy in air.

In biomedical engineering, the principles of natural science and engineering are
applied to the benefit of the health sciences. The opposite approach, reverse bio-
logical engineering, is used to apply biological principles to the solution of engi-
neering and scientific problems. In particular, engineers and scientists use this
reverse engineering approach on humans and animals in developing intelligent
systems.

The principle attributes of a human being can be classified in three categories
(3 Hs): hands, head, and heart. The hands category refers to the physical attributes
of humans. These physical attributes have been somewhat mimicked and somewhat
improved on to surpass the restrictive physical limitations of humans through such
mighty machines as the tractor, assembly line, and aircraft. The head category refers
to the perception and cognition abilities of the brain. The restrictive reasoning
limitations of humans have been supplemented through the ongoing development
of microprocessors. However, the challenge of creating an intelligent system is still
in its incipient stages. Finally, the heart category refers to emotions. Machines can
display simple emotional behavior, but they can’t really feel.

One of the most exciting engineering endeavors involves the effort to mimic
human intelligence. Intelligence implies the ability to comprehend, reason, mem-
orize, learn, adapt, and create. It is often said that everybody makes mistakes, but an
intelligent person learns from his mistakes and avoids repeating them. This fact of
life emphasizes the importance of comprehension, reasoning, learning, and the
ability to improve one’s performance autonomously in the definition of intelligence.

There are essentially two computational systems: carbon-based organic brains,
which have existed in humans and animals since their inception, and
electronics-based computers, which have rapidly evolved over the latter half of the
twentieth century and beyond. Technological advances in recent decades have
made it possible to develop computers that are extremely fast and efficient for
numerical computations. However, these computers lack the abilities of humans
and animals in processing cognitive information acquired by natural sensors. For
example, the human brain routinely performs tasks like recognizing a face in an
unfamiliar crowd in 100-200 ms whereas a computer can take days to perform a
task of lesser complexity. While the information perceived through natural sensors
in humans is not numerical, the brain can process such cognitive information
efficiently and cause the human to act on it accordingly. Modern day computers fail
miserably in processing such cognitive information.
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This leads engineers to wonder if some of the functions and attributes of the
human sensory system, cognitive processor, and motor neurons can be emulated in
an intelligent system. For such an emulation process, it is necessary to understand
the biological and physiological functions of the brain. Hardware can be developed
to model aspects of neurons, the principle element of the brain. Similarly, new
theories and methodologies can be developed to model the human thinking process.

Many advances have been made in mimicking human cognitive abilities. These
advances were mostly inspired by certain biological aspects of the human brain. One
of the intriguing aspects of human perception and cognition is its tolerance for
imprecision and uncertainty [1-10], which characterize most real-world phenomena.

2 Certainty and Precision

The excess of precision and certainty in engineering and scientific research and
development is often providing unrealizable solutions. Certainty and precision have
much too often become an absolute standard in design, decision making, and
control problems. One of the fundamental aims in science and engineering has been
to move from perceptions to measurements in observations, analysis, and decision
making.

Through the methodology of precise measurements, engineers and scientists
have had many remarkable accomplishments. These include putting people on the
moon and returning them safely to Earth, sending spacecraft to the far reaches of the
solar system, sending rovers to explore the surface of Mars, exploring the oceans
depths, designing computers that can perform billions of computations per second,
developing the nuclear bomb, mapping the human genome, and constructing a
scanning tunneling microscope that can move individual atoms. However, the path
of precision, as manifested in the theories of determinism and stochasticism, has
often caused engineers to be ineffectual and powerless as well as lose scientific
creativity.

3 Uncertainty and Imprecision in Perception
and Cognition

The attribute of certainty or precision does not exist in human perception and cog-
nition. Alongside many startling achievements using the methodology of precise
measurements, there have been many abysmal failures that include modeling the
behavior of economic, political, social, physical, and biological systems. Engineers
have been unable to develop technology that can decipher sloppy handwriting,
recognize oral speech as well as a human can, translate between languages as well as
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a human interpreter can, drive a motorcycle in heavy traffic, walk with the agility of a
human or animal, replace the combat infantry soldier, determine the veracity of a
statement by a human subject with an acceptable degree of accuracy, replace judges
and juries, summarize a complicated document, and explain poetry or song lyrics.
Underlying these failures is the inability to manipulate imprecise perceptions instead
of precise measurements in computing methodologies.

Albert Einstein wrote, “So far as the laws of mathematics refer to reality, they
are not certain. And so far as they are certain, they do not refer to reality [11].”

There are various types of uncertainty. However, they can be classified under
two broad categories: type one uncertainty and type two uncertainty [8—10].

3.1 Type One Uncertainty

Type one uncertainty deals with information that arises from the random behavior
of physical systems. The pervasiveness of this type of uncertainty can be witnessed
in random vibrations of a machine, random fluctuations of electrons in a magnetic
field, diffusion of gases in a thermal field, random electrical activities of cardiac
muscles, uncertain fluctuations in the weather pattern, and turbulent blood flow
through a damaged cardiac valve. Type one uncertainty has been studied for cen-
turies. Complex statistical mathematics has evolved for the characterization and
analysis of such random phenomena.

3.2 Type Two Uncertainty

Type two uncertainty deals with information or phenomena that arise from human
perception and cognitive processes or from cognitive information in general. This
subject has received relatively little attention. Perception and cognition through
biological sensors (eyes, ears, nose, etc.), perception of pain, and other similar
biological events throughout our nervous system and neural networks deserve
special attention. The perception and cognition phenomena associated with these
processes are characterized by many great uncertainties and cannot be described by
conventional statistical theory. A person can linguistically express perceptions
experienced through the senses, but these perceptions cannot be described using
conventional statistical theory.

Type two uncertainty and the associated cognitive information involve the
activities of neural networks. It may seem strange that such familiar notions have
recently become the focus of intense research. However, it is the relative unfa-
miliarity of these notions and their technological applications in intelligent systems
that have led engineers and scientists to conduct research in the field of type two
uncertainty and its associated cognitive information.
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4 Fuzzy Logic

Fuzzy logic [12-37] has proven to be a very promising tool for dealing with type
two uncertainty. Stochastic theory is only effective in dealing with type one
uncertainty. The theory of fuzzy logic is based on the notion of relative graded
membership, as inspired by the processes of human perception and cognition.
Lotfi A. Zadeh published his first famous paper on fuzzy sets [12] in 1965.

Fuzzy logic can deal with information arising from computational perception
and cognition that is uncertain, imprecise, vague, partially true, or without sharp
boundaries. Fuzzy logic allows for the inclusion of vague human assessments in
computing problems. Also, it provides an effective means for conflict resolution of
multiple criteria and better assessment of options. New computing methods based
on fuzzy logic can be used in the development of intelligent systems for decision
making, identification, recognition, optimization, and control.

Measurements are crisp numbers, but perceptions are fuzzy numbers or fuzzy
granules, which are groups of objects in which there can be partial membership and
the transition of a membership function is gradual, not abrupt. A granule is a group of
objects put together by similarity, proximity, functionality, or indistinguishability.

Fuzzy logic is extremely useful for many people involved in research and devel-
opment including engineers (electrical, mechanical, civil, chemical, aerospace,
agricultural, biomedical, computer, environmental, geological, industrial, mecha-
tronics), mathematicians, computer software developers and researchers, natural
scientists (biology, chemistry, earth science, physics), medical researchers, social
scientists (economics, management, political science, psychology), public policy
analysts, business analysts, jurists, etc. Indeed, the applications of fuzzy logic, once
thought to be an obscure mathematical curiosity, can be found in many engineering
and scientific works. Fuzzy logic has been used in numerous applications such as
facial pattern recognition, washing machines, vacuum cleaners, antiskid braking
systems, transmission systems, control of subway systems and unmanned helicopters,
knowledge-based systems for multiobjective optimization of power systems, weather
forecasting systems, models for new product pricing or project risk assessment,
medical diagnosis and treatment plans, and stock trading. This branch of mathematics
has instilled new life into scientific disciplines that have been dormant for a long time.

5 Qualitative Definitions, Crisp Quantitative Definitions,
Type-One Fuzzy Quantitative Definitions, and Interval
Type-Two Fuzzy Quantitative Definitions of Imprecise
Words

Type-one fuzzy logic or interval type-two fuzzy logic [38—40] can be used to
properly quantitatively define many imprecise linguistic terms including tempera-
ture, speed, unemployment levels, and inflation. Fuzzy logic is needed to
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quantitatively define imprecise linguistic terms like high unemployment, moderate
unemployment, low unemployment, very high unemployment, high inflation,
medium inflation, low inflation, extremely low inflation, fast speed, low speed, etc.
Type-one fuzzy sets and interval type-two fuzzy sets have been used for imprecise
linguistic terms in many intelligent systems applications, but this research chapter
proposes the use of type-one fuzzy sets and interval type-two fuzzy sets for the
application of posing and answering queries about quantitatively defining imprecise
linguistic terms in natural languages.

An imprecise word should be considered to have qualitative definitions and
quantitative definitions [41-44].

There are multiple qualitative definitions because a word can have multiple
meanings and because different ways of defining a word can be employed. That is,
different dictionaries use different descriptions to convey the meaning of the same
word.

An imprecise word should be considered to have two types of quantitative
definitions: crisp quantitative definitions and fuzzy quantitative definitions [41-44].

Crisp quantitative definitions are those made with crisp sets. There are multiple
crisp quantitative definitions because different individuals have different percep-
tions of the crisp set for imprecise words. A crisp quantitative definition of annual
inflation levels is in Fig. 1.

Fuzzy quantitative definitions are those made with fuzzy sets. There are multiple
fuzzy quantitative definitions because different individuals have different percep-
tions of the fuzzy set for imprecise words. Fuzzy quantitative definitions of annual
inflation levels are in Fig. 2 and Fig. 3.

It should be realized that while quantitative definitions of imprecise words can be
made with crisp sets or fuzzy sets, only fuzzy sets can model the imprecision of
words, so crisp sets have extremely limited value in modeling imprecise words.

An imprecise word should be considered to have two types of fuzzy quantitative
definitions: type-one fuzzy quantitative definitions and interval type-two fuzzy
quantitative definitions [44].

Type-one fuzzy quantitative definitions are those made with type-one fuzzy sets.
Figure 2 shows type-one fuzzy quantitative definitions.

Interval type-two fuzzy quantitative definitions are those made with interval
type-two fuzzy sets. Figure 3 shows interval type-two fuzzy quantitative definitions.

It is important to distinguish between qualitative definitions and quantitative
definitions, crisp quantitative definitions and fuzzy quantitative definitions, and
type-one fuzzy quantitative definitions and interval type-two fuzzy quantitative
definitions.



Important New Terms and Classifications in Uncertainty ... 159
6 Crisp Quantitative Definitions of Inflation Levels

6.1 Inflation Levels as Crisp Sets

Crisp sets can be arbitrarily defined for low inflation, medium inflation, and high
inflation. These crisp sets are as illustrated in Fig. 1 and are the crisp quantitative
definitions for low inflation, medium inflation, and high inflation.

For annual inflation rates less than 2.5 %, there is a membership of 1 in the low
inflation crisp set and a membership of O in the other crisp sets. For annual inflation
rates between 2.5 % and 5.5 %, there is a membership of 1 in the medium inflation
crisp set and a membership of O in the other crisp sets. For annual inflation rates
greater than 5.5 %, there is a membership of 1 in the high inflation crisp set and a
membership of 0 in the other crisp sets. These crisp sets could be defined with
different parameters.

With these crisp sets, an annual inflation rate of 2.4999 % is considered low
inflation whereas an annual inflation rate of 2.5001 is considered medium inflation.
This extremely sudden transition from low inflation to medium inflation for
extremely small differences in annual inflation doesn’t make sense and can be
rectified using type-one fuzzy sets or interval type-two fuzzy sets, as can be seen in
the next sections.

Fig. 1 Crisp sets for annual
inflation levels.

Degree of membership
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low | medium high
inflation| inflation inflation
0 2 4 6 8 10

Annual inflation rate (percent)

6.2 Crisp Query About Quantitatively Defining Inflation
Levels with Crisp Sets

A single crisp query for quantitatively defining annual inflation rates with fuzzy sets
could be articulated as follows: “Using historical data on annual inflation rates,
classify different annual inflation rates into low inflation, medium inflation, or high
inflation.”
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6.3 Crisp Answer in Quantitatively Defining Inflation Levels
with Crisp Sets

A crisp answer could be articulated as follows: “An annual inflation rate less than
2.5 % is low inflation. An annual inflation rate between 2.5 % and 5.5 % is medium
inflation. An annual inflation rate greater than 5.5 % is high inflation.”

7 Type-One Fuzzy Quantitative Definitions
of Inflation Levels

7.1 Inflation Levels as Type-One Fuzzy Sets

A type-one fuzzy set uses a membership function to assign a degree of membership
from O to 1 to each domain value. Type-one fuzzy sets can be arbitrarily defined for
low inflation, medium inflation, and high inflation. These type-one fuzzy sets are as
illustrated in Fig. 2 and are the type-one fuzzy quantitative definitions for low
inflation, medium inflation, and high inflation.

For annual inflation rates less than 2 %, there is a membership of 1 in the low
inflation fuzzy set. As annual inflation increases from 2 % to 3 %, its membership in
the low inflation fuzzy set steadily decreases from 1 to O with constant slope and its
membership in the medium inflation fuzzy set steadily increases from 0 to 1 with
constant slope. For annual inflation rates between 3 % and 5 %, there is a mem-
bership of 1 in the medium inflation fuzzy set. As annual inflation increases from
5 % to 6 %, its membership in the medium inflation fuzzy set steadily decreases
from 1 to O with constant slope and its membership in the high inflation fuzzy set
steadily increases from O to 1 with constant slope. For annual inflation rates greater
than 6 %, there is a membership of 1 in the high inflation fuzzy set. These fuzzy sets
could be defined with different parameters.

Fig. 2 Type-one fuzzy sets
for annual inflation levels.

low Y medium high
inflation\ inflation inflation

Degree of membership
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7.2 Type-One Fuzzy Query About Quantitatively Defining
Inflation Levels with Type-One Fuzzy Sets

A type-one fuzzy query for quantitatively defining annual inflation rates with fuzzy
sets could be articulated as follows: “Give me a range of inflation rates that are
definitely low inflation. Give me a range of inflation rates that are partially low
inflation and partially medium inflation. Give me a range of inflation rates that are
definitely medium inflation. Give me a range of inflation rates that are partially
medium inflation and partially high inflation. Give me a range of inflation rates that
are definitely high inflation.”

7.3 Type-One Fuzzy Answer About Quantitatively Defining
Inflation Levels with Type-One Fuzzy Sets

A type-one fuzzy answer could be articulated as follows: “An annual inflation rate
less than 2 % is low inflation. An annual inflation rate between 2 % and 3 % is
partially low inflation and partially medium inflation. As annual inflation increases
from 2 % to 3 %, its degree of being low inflation steadily decreases and its degree
of being medium inflation steadily increases. An annual inflation rate between 3 %
and 5 % is medium inflation. An annual inflation rate between 5 % and 6 % is
partially medium inflation and partially high inflation. As annual inflation increases
from 5 % to 6 %, its degree of being medium inflation steadily decreases and its
degree of being high inflation steadily increases. An annual inflation rate greater
than 6 % is high inflation.”

8 Interval Type-Two Fuzzy Quantitative Definitions
of Inflation Levels

8.1 Type-Two Fuzzy Sets and Interval Type-Two Fuzzy Sets

A type-two fuzzy set allows the inclusion of uncertainty into the parameters of a
membership function. The membership function of a type-two fuzzy set is in itself a
fuzzy set. A type-two fuzzy set is three-dimensional where the third dimension
indicates the degree of membership of the two-dimensional membership function at
each point in its two-dimensional domain.

In a type-two fuzzy set, a footprint of uncertainty indicates the upper and lower
bounds in the two-dimensional domain of a type-two fuzzy set. A footprint of
uncertainty in a type-two fuzzy set is a region bounded by an upper membership
function and lower membership function.
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An interval type-two fuzzy set is a type-two fuzzy set in which the third
dimension is constant in value meaning the degree of membership is constant for
the two-dimensional membership function at each point in its two-dimensional
domain. Therefore, the third dimension is ignored.

It would be extremely difficult to linguistically describe an imprecise linguistic
term with a type-two fuzzy set because there is a third dimension that indicates the
degree of membership of the two-dimensional membership function at each point in
its two-dimensional domain. It is much less difficult to linguistically describe an
imprecise linguistic term with an interval type-two fuzzy set because the third
dimension is constant in value and can be ignored. Because it is impractical to
attempt to linguistically describe a type-two fuzzy set for an imprecise linguistic
term, this research chapter only covers the usage of interval type-two fuzzy sets for
describing imprecise linguistic terms.

8.2 Inflation Levels as Interval Type-Two Fuzzy Sets

Interval type-two fuzzy sets can be arbitrarily defined for low inflation, medium
inflation, and high inflation. These interval type-two fuzzy sets are as illustrated in
Fig. 3 and are the interval type-two fuzzy quantitative definitions for low inflation,
medium inflation, and high inflation.

For annual inflation rates less than an inflation rate between 1.75 % and 2.25 %,
there is a membership of 1 in the low inflation fuzzy set. As annual inflation
increases from an inflation rate between 1.75 % and 2.25 % to an inflation rate
between 2.75 % and 3.25 %, its membership in the low inflation fuzzy set steadily
decreases from 1 to O with a constant slope and its membership in the medium
inflation fuzzy set steadily increases from O to 1 with a constant slope. For annual
inflation rates from an inflation rate between 2.75 % and 3.25 % to an inflation rate
between 4.75 % and 5.25 %., there is a membership of 1 in the medium inflation
fuzzy set. As annual inflation increases from an inflation rate between 4.75 % and
5.25 % to an inflation rate between 5.75 % and 6.25 %, its membership in the
medium inflation fuzzy set steadily decreases from 1 to O with a constant slope and
its membership in the high inflation fuzzy set steadily increases from O to 1 with a
constant slope. For annual inflation rates greater than an inflation rate between
5.75 % and 6.25 %, there is a membership of 1 in the high inflation fuzzy set. These
interval type-two fuzzy sets are as illustrated in Fig. 3 and are the interval type-two
fuzzy quantitative definitions for low inflation, medium inflation, and high inflation.
These interval type-two fuzzy sets could be defined with different parameters.
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Fig. 3 Interval type-two
fuzzy sets for annual inflation
levels.
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8.3 Interval Type-Two Fuzzy Query About Quantitatively
Defining Inflation Levels with Interval
Type-Two Fuzzy Sets

An interval type-two fuzzy query for quantitatively defining annual inflation rates
with fuzzy sets could be articulated as follows: “Give me a range of annual inflation
rates below which there is definitely low inflation. Give me a range of annual
inflation rates between which there is partially low inflation and partially medium
inflation. Give me a starting range and ending range of annual inflation rates
between which there is definitely medium inflation. Give me a range of annual
inflation rates between which there is partially medium inflation and partially high
inflation. Give me a range of annual inflation rates above which there is definitely
high inflation.”

8.4 Interval Type-Two Fuzzy Answers About Quantitatively
Defining Inflation Levels with Interval
Type-Two Fuzzy Sets

An interval type-two fuzzy answer could be articulated as follows: “An annual
inflation less than an inflation rate between 1.75 % and 2.25 % is low inflation. As
annual inflation increases from an inflation rate between 1.75 % and 2.25 % to an
inflation rate between 2.75 % and 3.25 %, there is partially low inflation and
partially medium inflation. As annual inflation increases from an inflation rate
between 1.75 % and 2.25 % to an inflation rate between 2.75 % and 3.25 %, its
degree of being low inflation steadily decreases and its degree of being medium
inflation steadily increases. An annual inflation rate between an inflation rate
between 2.75 % and 3.25 % to an inflation rate between 4.75 % and 5.25 % is
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medium inflation. An annual inflation from an inflation rate between 4.75 % and
5.25 % to an inflation rate between 5.75 % and 6.25 % is partially medium inflation
and partially high inflation. As annual inflation increases from an inflation rate
between 4.75 % and 5.25 % to an inflation rate between 5.75 % and 6.25 %, its
degree of being medium inflation steadily decreases and its degree of being high
inflation steadily increases. An annual inflation rate greater than an inflation rate
between 5.75 % and 6.25 % is high inflation.”

9 Conclusion

Uncertainty is an inherent phenomenon in the universe and in peoples’ lives. To
some, it may become a cause of anxiety, but to engineers and scientists it becomes a
frontier full of challenges. Engineers and scientists attempt to comprehend the
language of this uncertainty through mathematical tools, but these mathematical
tools are still incomplete. In the past, studies of cognitive uncertainty and cognitive
information were hindered by the lack of suitable tools for modeling such infor-
mation. However, fuzzy logic, neural networks, and other methods have made it
possible to expand studies in this field. Whereas stochastic theory is effective in
dealing with type one uncertainty, fuzzy logic is needed for type two uncertainty.

Humans think in imprecise and vague terms. Consequently, human language is
inherently imprecise and vague. A major problem arises when people try to bring
precision into situations where it doesn’t apply, such as defining human linguistic
terms like high inflation as being greater than a single precise annual income. An
understanding of the basic principles of type-one fuzzy logic and interval type-two
fuzzy logic can be extremely useful in posing proper questions and giving proper
answers about quantitatively defining imprecise linguistic terms. Imprecise lin-
guistic terms in natural languages should be considered to have qualitative defi-
nitions, crisp quantitative definitions, fuzzy quantitative definitions, type-one fuzzy
quantitative definitions, and interval type-two fuzzy quantitative definitions.

Crisp queries, crisp answers, and crisp quantitative definitions are simpler than
type-one fuzzy queries, type-one fuzzy answers, and type-one fuzzy quantitative
definitions. It’s easier to define an imprecise linguistic term with a crisp set than
with a type-one fuzzy set, but a type-one fuzzy set allows for the inclusion of
uncertainty in a membership function. If one wants to include uncertainty in a
membership function, then a type-one fuzzy set should be used.

Type-one fuzzy queries, type-one fuzzy answers, and type-one fuzzy quantita-
tive definitions are simpler than interval type-two fuzzy queries, interval type-two
fuzzy answers, and interval type-two fuzzy quantitative definitions. It’s easier to
define an imprecise linguistic term with a type-one fuzzy set than with an interval
type-two fuzzy set, but an interval type-two fuzzy set allows for the inclusion of
uncertainty about the bounds of the membership function. If one wants to include
uncertainty about the bounds of the membership function in a quantitative definition
of an imprecise linguistic term, then an interval type-two fuzzy set should be used.
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Formalization and Visualization of Kansei
Information Based on Fuzzy Set Approach

Fangyan Dong and Kaoru Hirota

Abstract Kansei or affective-computing related information is easy to express in
terms of fuzzy sets. Three examples of Kansei information, e.g., emotion, atmo-
sphere, and Kansei texture, are formalized by using fuzzy set concept on [—1,1]
space. They are also visualized by using shape-brightness-size, shape-color-size,
and contour-shape-gradation models, respectively. Their applications to agent to
agent communication, multiagent communication, and online shopping are also
introduced.

1 Introduction

Kansei engineering has been studied originally in Japan and nowadays in worldwide,
and is sometimes referred to affective computing. Its main purpose is to introduce
information processing capability related to human ambiguity or subjectivity in the
computer science/engineering field, accordingly it has a good matching with fuzzy
set approach. The authors’ group has been studying Kansei information processing
in various IT fields. In this article, three topics are introduced, i.e., emotion under-
standing in man-machine interaction, atmosphere analysis/understanding in humans-
robots interaction, and Kansei texture in online shopping.
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2 Emotion Understanding in Man-Machine Interaction

Emotion understanding has been studied in man-machine, human-robot, or gener-
ally agent-agent interaction using different type of devices. The ones that are more
close to human way of understand the emotions are those which are based on voice,
face, and gesture information [1, 2]. But the part missing with these approaches is a
lack of experience [3]; learning from the interaction and creating knowledge is what
gives humans the power to understand deeply the emotions of other person.
Humans emotions are complex, and in many situations the emotion displayed in the
face, voice or body gesture sometimes may not indicate the real or absolute emotion
of the individuals [2], making the necessity to create an algorithm to model this
human ability to improve human-robot interaction [4]. To address and to make a
model of this problem, understanding by using information from face, voice,
gesture, and others is called surface level emotion understanding, whereas a deep
level emotion understanding is also proposed [5], where customized learning
knowledge from communication history and a basic knowledge base about the
observed agent are utilized with the observed visual/acoustic/gesture information
input (Fig. 1).
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Fig. 1 Concept of deep level emotion understanding



Formalization and Visualization of Kansei Information ... 171

There are many proposals to represent the emotion in so called emotion space.
The resulting emotions are displayed in the arousal pleasure-affinity space [6] as
shown in Fig. 2 to understand where the emotion and the intension is placed, which
is defined as

E= (e—afﬁm‘ty’ €_pleasure» e—amusal) €_affinity > €-pleasure» e—arousale[ -1, 1] s (1)

where E is the emotion state VECtor, €_aginity» €_pleasure> ANd €_arousal ar€ the values
for “Affinity- No-affinity”, “Pleasure-Displeasure”, and “Arousal-Sleep” axes,
respectively. The E is a 3D vector in [-1,1]* as shown in the emotion centroid in
Fig. 2. But the human emotion is complex and sometimes varies according to the
situation. So it maybe natural to represent the emotion by a fuzzy set as shown by
the cone (generally a distorted cone) in Fig. 2. The emotion represented as a fuzzy
set has generally a complex shaped membership function, but it may be possible to
approximate the complex shaped membership function by an emotion centroid, i.e.,
an average vector, and emotion standard deviation, i.e., a standard deviation vector
in [O,l]3 whose component indicates the standard deviation of the distorted cone
along each axis.

Affinity
F 3
Displeasure
Emotion Std. Dev.
///
o

< Emotion Centroid

. |

i’ 1

Sleep =———<7,> Arousal
A I I P
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No-affinity

Fig. 2 Affinity Pleasure - Arousal space [6]

The most important information is indicated by the average vector in [-1,1]> and
is illustrated by a visualization method using shape-brightness-size model as shown
in Fig. 3. For the pleasure-displeasure axis [-1, 1], some meaningful shapes are
accepted. Based on the culture in Japan where the authors’ group are studying,
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circle represents a positive or good answer, while the X-shape represents a negative
or bad answer. That makes the shape a suitable way to represent the pleasure (= 1)
or displeasure (= -1). In between displeasure and pleasure, continuous deformed
shape from X to circle is used as shown in the upside of Fig. 3.

-1.0 0 +1.0

>

+ Pleasure — Displeasure {Shcpe}

Pleasure

><)-(ll.

* Arousal — Sleep [Brnghtness)

Sleep e Arousal

IIIDD

* Affinity — No-Affinity {Slze]
No-Affinity J === - Affinity

Fig. 3 Visualization of emotion

Brightness inside of the shape is accepted to represent the arousal-sleep axis [-1,
1]. White is the brightest color that denotes vivid, activeness, and arousal (= 1),
while black is the darkest color that denotes gloom, passiveness, and sleep (= -1).
The degree from sleep to arousal is expressed by gray level degree as shown in the
middle of Fig. 3. For the affinity- no-affinity axis [-1, 1], the size of the shape is
used from the smallest in the case of no-affinity (= -1) to the full size in affinity (=
1) as indicated in the bottom of Fig. 3.

A scenario is created to demonstrate the concept of the proposed method, where
the communication is done between a human employee (observed agent) and a
robot secretary (emotion observer) in a company as shown in Fig. 4. The topic is a
meeting room reservation requested by the employee to the secretary followed by
the reservation change because of the employee’s mistake. The employee’s face/
voice/body-gesture are captured by Kinect attached to the robot secretary. They
provide the surface level emotion of the employee to the secretary robot by using
three neural networks, and the deep level emotion is inferred by the secretary robot
using fuzzy inference with the customized knowledge about the employee. The
result is shown in both a vector in [-1,1]* (bottom left in Fig. 4) and the visuali-
zation method (bottom right in Fig. 4).
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Deep Emotion
Voice Emotion
Face Emotion
Gesture Emotion

Fig. 4 Communication between employee and secretary robot

3 Atmosphere Analysis/Understanding
in Humans-Robots Interaction

To make a smooth communication in human-robot/machine or generally agent to agent
interaction, understanding the emotion of others is important. In the case of many to
many agents communication, however, the atmosphere of the society may provide more
important information than the emotion of each agent. Although many studies have
been done on the emotion from viewpoints of cognitive science or human-machine
interface, the atmosphere generated by the communication society/field by many agents
has not been studied enough. The authors’ group at Tokyo Institute of Technology has
been studied on many robots and many humans communication through internet, where
the atmosphere of the communication field/society by many (huge number of) indi-
viduals plays an important role for the smooth communication [7].

The concept of Fuzzy Atmosfield (FA), is proposed to express the atmosphere in
such humans-robots communication field/society [8]. The “Atmosfield” is a new
word from “atmosphere” and “field”, and is created by the authors’ group. It is
characterized by a 3D fuzzy cubic space [-1,1]* as shown in Fig. 5 with “friendly-
hostile”, “lively-calm”, and “casual-formal” axes by doing a cognitive science
experiments and applying principle component analysis.
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-1 Hostile

Friendly 1 v

Fig. 5 Fuzzy atmosfield

The atmosphere in the communication field/society is expressed by a point in the
3D fuzzy cubic space [-1,1]* and maybe varying/moving in the space time by time.
To understand easily such movement of the atmosphere, a graphical representation
method is also proposed as shown in Fig. 6 by using a shape-color-size model,
where “friendly-hostile” information is represented by “shape”, “lively-calm” by
“color”, and “casual-formal” by “size”.

To illustrate the FA and its visualization method, a demonstration scenario
“enjoying home party by using a Mascot Robot System is introduced/performed.
The Mascot Robot System consists of 5 robots, i.e., 4 fixed robots (placed on a TV,
a darts game machine, an information terminal, and a mini-bar) and 1 mobile robot
(Fig. 7). Each of them includes an eye robot, a speech recognition module, and a
notebook PC that controls the robot and the speech recognition module. These
robots are connected together with a server through the internet by RTM (Robot
Technology Middleware developed by AIST, Japan), thus constituting the Robot
System. The Mascot Robot System’s functioning is demonstrated in an ordinary
living room, where casual communication between 5 robots and 4 human beings
(1 host, 2 guests, and 1 walk-in) is conducted based on speech recognition and
mentality expression of eye robots.
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Fig. 6 Visualization of fuzzy atmosfield vector

An example scene of Demonstration Video “Enjoying Home Party” is shown in
Fig. 8, where the atmosphere information is indicated in the top center (3D vector
value) and top right (visualized illustration by a shape-color-size model).

4 Kansei Texture in Online Shopping

The online shopping market size becomes doubled in the last 10 years, because
customers can easily purchase various kinds of products anytime and anywhere. In
the online shopping, however, the customers have to imagine the sensation of the
product from a few photos, price, specification, reviews, and so on. Therefore, the
quality of the delivered product is sometimes different from imaged one. On the
other hand, when customers purchase a product in the shop, they actually can
observe and take it in their hand, and they can select suitable one based on their
feeling about the value, the tactile sensation, the textures, and so on. It means that
there exists information gap between real shop and online shop. In order to com-
pensate the information gap in online shopping, Kansei Texture which adds new
information on the present net shopping is proposed [9].
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Fig. 7 Mascot robot system

The Kansei Texture (‘“Shokushitsu-kan” in Japanese language) is defined as the
quality index of the feeling information on the tactile or vision sense when people
see the photo/movie image of a product or a real object.

Firstly, many kinds of expression terms which contains the amount of feelings
like onomatopoeia are gathering from the photos of the products. The expression
terms are changed in the amount of feelings which are characterized by 5 tactile
sensations in [-1, 1] scale, i.e., roughness, hardness, dryness, warmness, and
glossiness, based on the result of the subjectivity evaluation questionnaire. The
Kansei Texture is finally represented in 3-dimensional [-1,1]* space condensed
from 5-dimensional [-1,1]° space, and Kansei Texture of a product is shown by the
combination of each value of new defined 3 axes, i.e., “PuruPuru - GotsuGotsu”,
“KachiKachi - FuwaFuwa”, and “ButsuButsu - PikaPika” as shown in Fig. 9.
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Again, it maybe not easy for general customers in online shopping to understand
3D vectors in [-1,1]3, instead an easily understandable visualization method is
developed [10]. For this purpose a contour-shape-gradation model is used as shown
in Fig. 10. A program has been developed to generate the visualization illustration
by inputting the 3D vector information in the Kansei texture space [-1,1]° as shown
in Fig. 11. Several illustration examples generated by the program are shown in

Fig. 12.

F. Dong and K. Hirota
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Fig. 10 Visualization of Kansei texture by CSG model
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Fig. 11 Visualization program of Kansei texture
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Fig. 12 Examples of visualization

The Kansei texture information is visualized in the online shopping screen as
shown in Fig. 13 (bottom right). The customers are able to understand the Kanse
texture about the good from the visualized Kansei texture information and to
imagine the tactile quality of the good with the photo and the text data.

| J

Designer Handbag Ne: 123456789
Price $240

Product Dimensions:
24.5 x 11.0 x 5. binches
1.8 pounds

KANSEI TEXTURE :

Review *‘jﬁﬁﬁ'{

Good! - - -

Fig. 13 Online shopping screen with Kansei texture information
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5 Conclusions

Formalization procedures of Kansei information are introduced in terms of fuzzy set
approach. Three examples of Kansei information are shown, i.e., emotion, atmo-
sphere, and Kansei texture for the application purposes of man-machine interaction,
humans-robots interaction, and online shopping, respectively. The visualization
methods of the Kansei information are also presented.
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Cognitive Informatics: A Proper Framework
for the Use of Fuzzy Dynamic Programming
for the Modeling of Regional Development?

Janusz Kacprzyk

Abstract We advocate Wang’s cognitive informatics as a potentially powerful gen-
eral approach and paradigm to formulate, analyze and solve human centric sys-
tems modeling,decision and control problems. We show the use of fuzzy dynamic
programming for solving a regional development problem in which many crucial
aspects, in particular life quality indicators, are subject to objective and subjective,
by the humans, judgments and evaluations which are closely related to human per-
ceptions and cognitive abilities. We consider how a best (optimal) investment policy
can be obtained under different development scenarios.

1 Introduction

The main purpose of this paper is to indicate a potential of Wang’s [26, 27] (cf.
also Wang et al. [29-33] cognitive informatics for providing a novel perspective
through which some decision making and control applications can be viewed. To
be more specific, we consider the use of multistage decision making (control) under
fuzzy constraints and goals, notably by employing fuzzy dynamic programming (cf.
Kacprzyk [10]) to regional development planning. That new perspective, should
considerably enhanced other human centric and perception oriented perspectives
proposed for solving the problem in question by Kacprzyk [8, 12, 14], Kacprzyk
Francelin and Gomide [18], etc.

The main “pre-inspiration” of this paper, which is meant to show and empha-
size some impprtant research directions that have occured over the last five decades
of fuzzy sets/logic, may be what the founder of fuzzy sets theory and fuzzy logic,
Professor Lotfi A. Zadeh, has been sating since the very baginning. Namely, namely
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that —in his opinion — the very esence of fuzzy sets and fuzzy logic would make them
particularly suited for all kinds of applications in broadly perceived human centric
systems, that is, those in which the human being plays a crucial role, or — in a slightly
broader mening - which are meant to analyze and solve problems that are important to
the individuals or soail groups, organizations, etc. Unfortunately, that Zadeh’s early
belief has not been totally fulfilled as, for a strange reason, in the first breakthrough
in the real world applications of fuzzy logic starting from the early 1980 s with the
so called fuzzy boom in Japan, most applications have been in technology, notably
in relatively simple control of various home appliances, cranes, etc.

However, even in that initial period some other application, more related to
what might be called human centric, have also appeared and have been imple-
mented to solve important real world problems. This paper is about such an applica-
tion, to sustainable regional planning, which has been initiated by the author and
his collaborators, cf. notably Kacprzyk and Straszak [20-23], in the end of the
1970s and beginning of the 1980 s at the International Institute for Applied Systems
Analysis (ITASA) in Laxenburg, Asutria (www.iiasa.at). The models developed have
been widely used by the author and his collaborators in many regional planning
projects in various countries, exemplified by the Upper Note¢ Region in Poland,
Tisza Region in Hungary, Kinki region in Japan, to name a few. Those works have
resulted in many research publications, among which the following ones can be
quoted: Kacprzyk [8, 14], Kacprzyk, Francelin and Gomide [18], Kacprzyk and
Straszak [20-23], etc. The models proposed have been not only widely used in prac-
tice, documented also in project reports of limited circulation, but they have also
been mentioned as one of the most successful examples of fuzzy systems modeling
in a Special Volume on the Fiftieth Anniversary opf the Britis Operational Research
Society published in 1987 by Pergamon Press — cf Thomas [25]. This has been the
second inspiration of this paper.

The third inspiration is a recent growth of interest in various types of more human
centric and human consistent modeling, notably cognitive informatics and its related
cognitive modeling, a new area which has been conceptualized and proposed by
Wang [26, 27], and then considerably advanced over the next years by Wang and
his numerous collaborators and followers. For our purposes, which are related to
bradly perceived decision making and control, the work by Wang and Ruhe [32] is
presumably the most relevant.

Briefly speaking, cognitive informatics is a multidisciplinary field within infor-
matics, or computer science, that is based on results of cognitive and informa-
tion sciences, and which deals with human information processing mechanisms and
processes and their decision theoretic, engineering, etc. applications in broadly per-
ceived computing, including multistage decision making processes which are of our
interest. The agenda of ccgnitive informatics is to develop and implement mod-
els, tools and techniques, and technologies to facilitate and extend the information
acquisition, comprehension and processing capacity of humans to overcome some
cognitive difficulties related to the presence of the human being as a crucial part
of the system. In our case, the system will be highly related to human judgments,
and search for best (optimal) solutions. A limited comprehension, memorizing,
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learning, choice and decision making abilities, satisfaction with partial truth, allow-
ing for not perfect solutions, etc. will be or relevance. Those issues are considered
and solved using tools and techniques derived from many areas like psychology,
behavioral science, neuroscience, artificial intelligence, linguistics, etc. In our case,
we will concentrate on some cognitive informatics type elements that mostly have
been inspired by psychology and behavioral sciences, as our problem is inherently
related to human judgments and perceptions. Some relation to neuroeconomics can
also be pursued, cf. Kacprzyk [15].

The first idea of such a cognitive informatics related perspective for mmore gen-
eral dynamic modeling issues, notably related to dynamic programming under fuzzy
constraints and goals, have been proposed in Kacprzyk’s plenary talk at WCCI-
2014 in Beijing, China (cf. http://www.ieee-wcci2014.org/files/Janusz.Kacprzyk.
pdf). The very purpose of that talk was to propose of what might be called cognitive
fuzzy dynamic programming. The purpose of this paper is more general, namely to
propose some new perspective in fuzzy systems modeling which might be called cog-
nitive fuzzy modeling. The new fuzzy dynamic programming models presented, in
which the above human specific aspects will be shown and analyzed and a cognitive
informatics perspective will be indicated, will be shown on a sustainable regional
development considered in terms of expenditures, subsidies, life qualities, etc. For a
slightly different approach within the cognitive modeling context, cf. Hotaling and
Busemeyer [4].

2 Fuzzy Dynamic Programming as a Step Towards
Perception Based and Cognitive Multistage Decision
Making and Control

As a point of departure we take the famous Bellman and Zadeh’s [1] model of deci-
sion making under fuzziness in which if X = {x} is some set of possible options
(alternatives, variants, choices, decisions, ...), then the fuzzy goal is defined as a
fuzzy set G in X, characterized by its membership function u; : X — [0, 1] such
that us(x) € [0, 1] specifies the grade of membership of a particular option x € X in
the fuzzy goal G, and the fuzzy constraint is similarly defined as a fuzzy set C in the
set of options X, characterized by p- : X — [0, 1] such that p-(x) € [0, 1] specifies
the grade of membership of a particular option x € X in the fuzzy constraint C.

The general problem formulation is: “Attain G and satisfy C” which leads to the
fuzzy decision

Hp(X) = pg(x) A pe(x), foreachx € X @))

where “A” stands for the minimum that may be replaced, for instance, a r-norm.
The maximizing decision is defined as an x* € X such that

Hp(x*) = max up(x) 2
xeX
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The human cognition related aspect is that, first, the strict optimization in (2) may
be viewed to strict and unnecessary and some sort of a satisfactory, good enough
solution could be accepted. Second, in reality the satisfaction of constraints and
attainment of goals have both an objective and subjective aspect. We will mainly
deal with that second aspect.

The Bellman and Zadeh’s [1] framework can therefore be extended by introduc-
ing: an objective fuzzy goal Hg, (x), a subjective fuzzy goal pg (x), an objective fuzzy
constraint jic (x), and a sub]ectlve fuzzy constraint Hc, ).

We wish therefore to “Attain [G,and G,] and satlsfy [C, and C,]” which leads to
the fuzzy decision

Hp () = [, (X) A ug (DI A luc, (X) A pe ()], foreachxe X  (3)

and the maximizing, or optimal decision is defined as in (2); clearly, remarks on
a relaxation of that condition of a strict optimality are valid here too, as well as
throughout the paper.

This framework can be extended to handle multiple fuzzy constraints and fuzzy
goals, and also fuzzy constraints and fuzzy goals defined in different spaces, cf.
Kacprzyk’s [10] book. Namely, if we have: n, > 1 objective fuzzy goals — G(l), G
defined in Y, n, > 1 subjective fuzzy goals — Gg, ,G;l‘ definedin Y, m, > 1 objec-
tive fuzzy constraints — C{l), - C:)n" defined in X, m; > 1 subjective fuzzy constraints
~C!l,...,C}" defined in X, and a function f : X — Y, y = f(x), then

upx) =
= (g1 I A = Ao [fQOD A (G IF QLA == A pns [F(O]) A
ALHEL () A -+ A igzro GOT A Tt () A -+ A s ] A
/\[MCSI (X)A - A Hers )], foreachx € X 4)

and the maximizing decision is defined as (2), i.e. pp(x*) = max, oy pp(x).

In the control process dealt with the decision (control) space is U = {u} =
{cy,...,c,}, the state (output) space is X = {x} = {s,...,s,}, and both are finite.
We start from an initial state x, € X, apply a decision (control) uq € U, which is
subjected to a fuzzy constraint o (u), and attain a state x; € X via a known state
transition equation of the system under control S; a fuzzy goal ;1 (x) is imposed on
x1. Next, we apply u, subjected to pc-1(uy), and attain x,, subjected to pz2(x,), etc.

The (deterministic) system under control is described by a state transition
equation

X =0, u,), t=0,1,... (@)
where x;,x,,1 € X = {s,...,s,} are the states at ¢ and ¢ + 1, respectively, and
u, € U ={cy,...,c,} is the decision (control) at ¢.

Att,t=0,1,...,u, € Uis subjected to a fuzzy constraint u~(u,),andonx, ; € X
a fuzzy goal is imposed, pqgr+1(x,41). The fixed and specified in advance initial state
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is xy € X, and the termination time (planning horizon), N € {1,2, ...}, is finite, and
fixed and specified in advance.

The performance of the particular decision making (control) staget,r =0, 1, ...,
N — 1, is evaluated by

v = Her(u) A gt (K1) = pec(ug) A pge [f(xg, u)] (6)

while the performance of the whole multistage decision making (control) process is
given by the fuzzy decision

ﬂD(Uo,...,UN_l |.XO) = Vo/\Vl A ... /\VN_l =

= [uco(ug) A pgr DI A <o A Tuen-1(uy_1) A pgn (xy)] @)

The problem is to find an optimal sequence of decisions (controls) u’a, ’“;/—1
such that

uwr, . ut Xp) = max Uy oen s U X, 8

#D( 0 N—1 | 0) o “N_IEU#D( 0 N—-1 | 0) ( )

Kacprzyk’s [10] book provides and wide coverage of various aspects and exten-
sions to this basic formulation.

In the case of an extention proposed in this paper and outlined in Sect.2 in
which the objective and subjective fuzzy constraints and fuzzy goals are assumed,
which are inherently related to human judgment and cognition, we have, at each
t =0,1,...,N — 1: an objective fuzzy constraint Hel (u,) and a subjective fuzzy
constraint yq(ut), and an objective fuzzy goal Hgrrl (u,41) and a subjective fuzzy
constraint ,uG}ﬂ (Usy1)-

The (exterided) performance of the particular stage 7, t = 0,1, ... ,N — 1, is then
given by

B = L () A s ()] A Ty () A i (3] ©)

which can be schematically shown as in Fig. 1.

Fig. 1 Evaluation of
‘ e, -V e )
(extended) performance of G G
decision making (control) Uy -1
stage ¢
System
under control
. .4’ S 4’- ..
Xi-1

Xt
Control stage ¢ 5\ @

I»lGn(xt) HGX(xt)
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The (extended) performance of the whole multistage decision making (control)
process is then given by the fuzzy decision

ﬂB(uo, ’U’N—l | txO) 230 /\;1 A ... /\;N_l =
= (Lo (o) A o (] A Ligs (i) A Hr DI A ..

= AMluey-1Quy_1) A pen-1Quy_ DI A Tugy Goy) A gy (oy)1} (10)
and we seek again an u(’;, e u]*\,_l such that
—(ut, ..., ut Xg) = max —(Up, ..., U X 11
Hp (U, v-1 | %0) o uN,leUHD( 0 N-1 | Xo) (11)

There is an extremely relevant aspect related to the subjective fuzzy constraints
and fuzzy goals. We will consider the subjective fuzzy goals in which this is pre-
sumably much more pronounced than in the subjective fuzzy constraints. Namely,
it often happens that the (subjective) human satisfaction resulting from the attain-
ment of some level of x,, 1, a value of a life quality index, depends not only on the
“objectively attained” value but on how this value is perceived, how it looks like
in comparision with the past, what are future prospects, etc. For simplicity, let us
concentrate in these perceptions and jidgments on the past only.

The trajectory of the multistage decision making (control) process from ¢ = 0 to
a current stage ¢t = k is

Hy = (xg,u0, €0, C%x), G Gl oy, €1 O x GELGY (12)

that is, it involves all aspects of what has happened in terms of decisions applied,
states attained, and objective and subjective opinions of how well the fuzzy con-
straints have been satisfied and fuzzy goals attained. However, it is often sufficient
to take into account the reduced trajectory

_ k=2 k=2 k—1 k—1 k—1 k—1 k o~k
hk—(xk_z,uk_z,ca ,Cs ’xk—l’Go ,GS ’uk—vaa ,CS ’xk’Ga’Gs) (13)

which only takes into account the current, r = k, and previous stage, t = k — 1. Let
us assume this reduced trajectory. Such an approach has a long tradition, e.g. in all
kinds of the Markov decision processes, and has proved to be effective and efficient.

A further simplification is that with a trajectory, or reduced trajectory, an evalua-
tion function is associated, £ : S(H,) — [0, 1]ore : S(h;) — [0, 1], where S(H})
and S(h;,) are the sets of trajectories and reduced trajectories, respectively, such that
E(Hy) € [0,1] and e(hy) € [0, 1] denote the satisfaction of the past development,
from 1 for full satisfaction to O for full dissatisfaction, through all intermediate val-
ues. This is again consistent with the human perception.
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The subjective fuzzy constraints and huzzy goals are now:

« when the (reduced) trajectory is accounted for

Her(uy | ) and pen(uy | y) (14)
/‘G§+1(xk+1 | i) and M0§+1(xk+1 | i)
» when the evaluation of the (reduced) trajectory is accounted for
Hck [uy | E(hy)] and Hck [y | E(hy)] (15)
Hgirt gy | E()] and gt [y | EChy)]

Problem (8) can be solved using the following two basic traditional techniques:
dynamic programming (cf. Bellman and Zadeh [1], Kacprzyk [7, 10]), and branch-
and-bound (Kacprzyk [5], and also using the two new ones: a neural network (cf.
Francelin, Gomide and Kacprzyk [2, 3], and a genetic algorithm (cf. Kacprzyk [11,
12]. We will only briefly show the use of dynamic programming, and refer the reader
for an extensive coverage on this and other solution techniques to Kacprzyk’s [10]
book.

First, we rewrite (8) as to find u;, .. such that

*
LUy
Hp(ug, - uy_y | Xp) =

= max [pco(ug) A pgi(x) A ...
Ugyse s UN_|

/\ﬂcN—l(UN_l)/\MGN(f(.XN_l,UN_l))] (16)

and then, since
Hen-1(Uy_1) A ey (F(y_ys uy_1))

depends only on uy_q, then the maximization with respect to uy, ..., uy_; in (16)
can be split into:

» the maximization with respect to u, ..., uy_,, and
» the maximization with respect to uy_y,

written as

Hp(ug, - uy_ | Xp) =
= max {pco(ug) A pgrxp) A ...
LUN_D

Uo,

A /lCN—Z(’lLN_z) A HGN-1 (XN_]) A

A max[uen-1 (uy—) A oy (fGy-1s uy- )1} )
N—1

which may be continued for uy_,, uy_3, etc.
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This backward iteration leads to the following set of fuzzy dynamic programming
recurrence equations:

ﬂaN—i(xN_l‘) =
= maXuN_i [/lCN—i(UN_i) A /lGN—i(.xN_l') A MEN_i+1(xN—i+l)] (18)
.xN_H_l Zf(.xN_l', U’N—l); l = 0, l, e ,N

where HEN—i(.XN_i) is viewed as a fuzzy goal at control stage + = N — i induced by
the fuzzy goalatt =N -i+1,i=0,1,...,N; yEN(xN) = pgn (xy).

The uy, ..., uy_; sought is given by the successive maximizing values of uy_;,
i=1,...,Nin (18) which are obtained as functions of x_;, i.e. as an optimal policy,
ay_; © X — U, such that uy_; = ay_;(xy_))-

It easy to notice that if we use the subjective fuzzy constraints and fuzzy goals to
extend the above fuzzy dynamic programming model, then the very idea of dynamic
programming, i.e. the use of backward iteration represented by the recurrence equa-
tions (18), prohibits the use of subjective fuzzy constraints and subjective fuzzy goals
defined as functions of the trajectory, or any evaluation of the trajectory, as both of
them are somehow calculated on the basis of outcomes of control stages prior to
those which have been accounted for so far since we proceed via backward iteration.
Therefore, if we intend to employ fuzzy dynamic programming, as in this paper, we
can only use the subjective fuzzy constraints and goals depending on the current
value of decision (control) applied and state attained. The involvement of subjec-
tive fuzzy constraints and goals depending on the trajectory or its evaluation needs
another approach as, e.g., the use of a genetic algorithm (cf. Kacprzyk [6, 9, 12,
17]) or a neural network based approach by Francelin, Gomide and Kacprzyk [2] or
Francelin, Kacprzyk and Gomide [3].

Therefore, by involving the line of reasoning (16)—(18), using the objective and
subjective fuzzy constraints and fuzzy goals: puev-i(uy_;) and pev-i(uy_;), and
Hy-itt (y_ip1) and pen-ivi (Xy_;y ), for i = 1,2, o ,N, we arrive at the following
set of (extended) dynaniic programming recurrent equations:

,UEN—i(XN_i) =
= maXuN_,-{[/"CfY‘i(uN—i) A ,ucév-i(uN_i)]/\
[//l(;{/}’—i(xjv_i) A lngl—i(xN_i) A HeN=i+1 (oy—ir D1}
Xy_iv1 = Coy_is uy_i); i=0,1,...,N

19)

3 Sustainable Socioeconomic Regional Development
Planning Under Fuzziness

Regional development planning is a problem of crucial relevance in virtually all
countries but is difficult to formalize and solve as it involves various aspects (politi-
cal, economic, social, environmental, technological, etc.), different parties and agents
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(inhabitants, authorities of different levels, formal and informal groups, etc.), and
many entities and aspects that are difficult to precisely single out, define and quan-
tify. Needless to say that the sustainable regional development planning is even more
complex but for a lack of space we will not discuss its specifics in more detail. To
overcome these difficulties, the use of a fuzzy model was Kacprzyk and Straszak [21,
23], and then extended by Kacprzyk [10], and Kacprzyk, Francelin and Gomide [18].

Basically, they consider a (rural) region plagued by severe difficulties mainly
related to a poor life quality perceived. Hence, life quality (or, in fact, a perception
therof) should be improved, by some (mostly external) funds (investments) whose
amount and their temporal distribution should be found. We will show now how
the extended, cognitive type and perception based model developed above can be
employed.

For our purposes the essence of socioeconomic regional development may be
depicted as in Fig. 2.

CO Cl CN71
g u UN-1
System System System
under control under control under control
X0 S X S X2 XN-1 S N
oy o —— —>
1 G2 G N-1 N

t=0 t=1 t=2 t=N-1 t=N

Fig. 2 Essential elements of socioeconomic regional development

The region is represented by a socioeconomic dynamic system under control the
state of which at the development (planning) stage —1, X,_;, is characterized by a set
of relevant socioeconomic life quality indicators. Then, the decision (investment), at
t—1,u,_q,changes X, ; to X,; ¢t = 1,...,N, and N is a finite, fixed and specified
planning horizon.

The evaluation of a planning stage ¢, t = 1,..., N, is performed by accounting
for both the “goodness” of the u,_; applied (i.e. costs), and the “goodness” of the
X, attained (i.e. benefits); the former has to do with how well some constraints are
satisfied, and the latter with how well some goals are attained. We will involve, for
simplicty, a subjective assessment for the attainment of fuzzy goals only.

First, the socioeconomic system is represented as in Fig. 3. Its state (output) X, is
equated with a life quality index that consists

of the following seven life quality indicators (i.e. X, =[x, ..., x]]):

e x, —economic quality (e.g., wages, salaries, income, ...),

— environmental quality,

~ R~ =

e X
— housing quality,
— health service quality,

BN SENEY
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Cost/benefit evaluation
of investments and
development outcomes
at development stage t = N - 1

Cost/benefit evaluation
of investments and
development outcomes
at development stage =0

g Un-1
—P —P
Socioeconomic Socioeconomic
X0 system x| XN system Xy
—P E— — >

Fig. 3 Basic elements of the socioeconomic system under control

5 . .
. xg — infrastructure quality,
. xt7 - W?rk opportunlty, .
* X, — leisure time opportunity,

The decision at t—1, u,_; is investment, and we impose on u,_ a fuzzy constraint
Ucr-1(u,_y) in a piecewise linear form as shown in Fig. 4 to be read as follows.

Flg. 4 Fuzzy constraints on M1 (1) 4
investment u,_; 1 —— =

The investment may be fully utilized up to uf _y» hence pem1(u,y) = 1for 0 <

Uy < u’t’_l. However, this is usually insufficient and some additional contingency
investment is needed, maximally up to uf_l (the more the worse, of course). The
fuzzy constraints are often as shown in the dotted line in Fig.4 in that too low a
use of available investments should also be avoided, for “political” reasons, as in all
public funding related cases.

The r—1, u,_; is partitioned into u tl_], ey ut7_1, devoted to improve the respective
life quality indicators, but we will assume here that this rule is fixed.

The temporal evolution of the particular life quality indicators is governed by the
state transition equation
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x=f e ), i=1,....7:t=1,....N (20)
which may be derived by, e.g., using experts’ opinions, past experience, mathemat-
ical models, etc.

The evaluation of development takes into account how well some predetermined
goals are fulfilled, i.e. effectiveness, then be related to the investment spent, i.e. effi-
ciency — cf. Kacprzyk’s [10] book.

The effectiveness of regional development involves two aspects: the effectiveness
of a particular development stage, and the effectiveness of the whole development.

The effectiveness of a particular development stage has both an objective and sub-
jective aspect. The objective evaluation is basically the determination of how well the
fuzzy constraints are fulfilled, and fuzzy goals are attained. The objective fuzzy goals
concern desired values of the life quality indicators, i.e. concern objective entities;
however, goal attainment is not clear-cut, and a fuzzy goal should rather be used.

For each life quality indicator at t = 1,...,N, xﬁ, we define an objective fuzzy

1,0 : i . .
subgoal G;' characterized by Hgti (x7) as shown in Fig. 5

Fig. 5 Objective fuzzy M o) 4

subgoal T SO

—i f

to be read as follows: G’ is fully satisfied for xﬁ > )_c;l where )_c; is some aspiration
i

level for the indicator xﬁ; therefore, ,uGr,i(xﬁ) = 1, for x;' > )_Cz' Less preferable are
o

)_c;' < xf < )_c; for which 0 < ,uGt,i(xf) < 1, and xi < gi are assumed to be impossible,
hence u G;,,-(xi) = 0. Notice that an objective fuzzy (sub)goal may be relatively easily

determined by experts by specifying two values only, )_ct; and )_c;

The objective evaluation of the life quality index at#, X, = [le ey xZ], is obtained

by the aggregation of partial assessments of the particular life quality indicators, i.e.
He (X,) = /le,l(th) A A MGZ7(X;7) (2D

and “A” may be replaced here and later on by another suitable operation as, e.g., a
t-norm [cf. Kacprzyk (1997a)] but this will not be considered here.

Basically, the use of “A” (minimum) reflects a pessimistic, safety-first attitude,
and a lack of substitutability (i.e. that a low value of one life quality indicator cannot
be compensated by a higher value of another), which is often adequate.
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Finally, note that the objective evaluation concerns more the authorities than the
inhabitants by somehow “mechanically” checking the values of life quality indica-
tors attained against some desired predetermined levels. The inhabitants’ assessment
of the “goodness” of development conc‘erns in fact the (perception of) social satis-
faction resulting from the life quality index attained. This is clearly subjective. The
attained value of a particular life quality indicator at , xﬁ, implies its corresponding
partial social satisfaction si derived as in Fig. 6, and its interpretation is basically as
for the objective evaluation shown in Fig. 5.

Fig. 6 Partial social

i
. . S
satisfaction

v

. —i
2 (H,) zt(H; ) X

In general, both gi and Zi may be functions of the trajectory (history) of develop-
ment [cf. (12)]

H, = [(Xy, 51, b1 (X1), HG1 (51))s - (X 84 Mt (1), M (50))]

where 5, = [s}(, ,sZ],k = 1,...,t, is the social satisfaction resulting from X,.
Basically, if H, is encouraging, then the inhabitants may become more demanding,

and gﬁ (H,) and Eﬁ(H,) may move up. On the other hand, if H, is discouraging, then

gi(H,) and Z;(Ht) may move down (cf. Kacprzyk [7, 10]). Very often, however, one
can limit the analysis to the reduced trajectory [cf. 13)]. This important aspect will
not be considered here.

The social satisfaction at ¢ is now

S, =S/ A As! (22)

where “A” again reflects a pessimistic, safety-first attitude, and a lack of
substitutability.

The social satisfaction s, is subjected to a subjective fuzzy goal us: (s,) which is
meant similarly as its objective counterpart shown in Fig. 5. ’

The effectiveness of ¢ is meant as a relation of what has been attained (the life
quality indices and their respective social satisfactions) to what has been “paid for”
(the respective investments), i.e. is a benefit—cost relationship. Formally, the (fuzzy)
effectiveness of stage ¢ is expressed as
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HE’(uz_laxp S[) = Her-1 (u[_l) A MGZ (X[) A HGK (St) (23)

and the aggregation reflects the nature of a compromise between the interests of the
authorities (for whom the fuzzy constraints and the objective fuzzy goal matter), and
those of the inhabitants (for whom the subjective fuzzy goal, and to some extent the
objective fuzzy goal, matter); the minimum reflects a safety-first attitude, hence a
“more just” compromise.

Then, the effectiveness measures of the particular t = 1,...,N, ug(u,_1,X;, 5;)
given by (23), are aggregated to yield the fuzzy effectiveness measure for the whole
development

/’{E(HN) = MEI(U(),XI,SI) AL A MEN(UN_I,XN, Sn) (24)

The fuzzy decision is

ﬂD(Uo, ’U’N—l | XO’BN) =
= [pco(ug) A pgr(X1) A pgi(sDIA ...
o AN lev-1(uy ) A gy Xy) A iy (sy)] (25)

and it expresses some crucial compromises between, e.g.:

« the fuzzy constraints and (objective and subjective) fuzzy goals,
o the interests of the authorities and inhabitants, etc.
The problem is now to find an optimal sequence of controls (investments) u(*;, ey
S

uy,_, such that (under a given policy By; the optimization of policy is a separate
problem which will not be cosnidered here):

Hp(ug, ... uy_y | Xo. By) =
= mezx {luco(ug) A pgi (X)) A pgi(sPIA ...
00> %up_ g o N

c A Henv=1(uy_1) A :“G{)V(XN) A ﬂGéY(SN)]} (26)

For illustration we will show a simple example that in its initial form was shown first
in Kacprzyk’s [10] book but will be changed with respect to numbers to account for
different economic conditions in the present time. Example: The region, predomi-
nantly agricultural, has a population of ca. 120,000 inhabitants, and its arable land is
ca. 450,000 acres. For simplicity, the region’s development will be considered over
the next 3 development stages (years, for simplicity). The life quality index consists
of the four life quality indicators:

. x} — average subsidies in US$ per acre (per year),

}I — sanitation expenditures (water and sewage) in US$ per capita (per year),

« x — health care expenditures in US$ per capita (per year), and

x}V — expenditures for paved roads (new roads and maintenance of the existing

ones) in US$ (per year).

e X
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Suppose now that the investments are partitioned into parts devoted to the
improvement of the above life quality indicators due to the fixed partitioning rule
A, (u,_y,0): 5% for subsidies, 25 % for sanitation, 45 % for health care, and 25 %
for infrastructure.

Let the initial, at # = 0, values of the life quality indicators be:

_ I _ I _ vV _
x})_o.s xg =15 x' =27 x¥ = 1,700,000

For clarity, we will only take into account the following two scenarios (policies):

« Policy 1: uy = $16,000, 000 u; = $16,000,000 u, = $16,000, 000
o Policy 2: uy = $15,000,000 u; = $16,000,000 u, = $17,000, 000

Under Policy 1 and Policy 2, the values of the life quality indicators attained are:

Policy 1: Year(t) Uy x} x}I x?l x}V

0 $16,000,000

1 $16,000,000 0.88 16.7 30 $4,000,000
2 $16,000,000 0.88 16.7 30 $4,000,000
3

0.88 16.7 30 $4, 000,000

1T xIII v

Policy 2: Year(t) u, T Xl
0 $15,000,000
1 $16,000, 000 0.83 15.6 28.1 $3, 500, 000
2 $17,000,000 0.88 16.7 30 $8,000,000
3 0.94 17.7 31.9 $2,250, 000

For the evaluation of the above two development trajectories, for simplicity and
readability we will only take into account the effectiveness of development, and the
objective evaluation only. The consecutive fuzzy constraints and objective fuzzy
subgoals are assumed piecewise linear, i.e. their definition requires two values only
(cf. Figs. 4 and 5): the aspiration level (i.e. the fully acceptable value) and the lowest
(or highest) possible (still acceptable) value) which are:

t

0 C : up =$15,000,000
¢ = $17,000,000
1C 2l =$16,500,000
¢ =$18,000,000 G," : 2l =0.6 X, =085
Gyl all=14 X =16
Gy Al =27 X =29

GLv . zllv = $3. 600,000 ;'IV = $3, 800, 000
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2 C? 1 uf) = $16,000,000
¢ =$20,000,000 G' : 2l =0.7
Gyl all=15
G =28
v LT
G, @ x5 = $3,800,000
3 Gyl 1 al =075

G all=16
Gy Al =29

3

GV . ;IV = $3, 800, 000
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X =09

X =17

%' =30

=Iv

Xy = $4,000, 000
=I

X, =1

x| =185

EIH =31

1
Xy = $4,200, 000

Using the “A” (minimum) to reflect a safety-first attitude, which is clearly prefer-
able in the situation considered (a rural region plagued by aging of the society, out-
migration to neighboring urban areas, economic decay, etc.), the evaluation of the

two investment policies is:

e Policy 1
1p($16,000,000; $16, 000, 000; $16, 000,000 | .) =
= Hco($16,000,000) A (411(0.88) A
A Hgin(16.7) A p g1 (30) A i ($4,000,000)) A
ARl E$16, 000, 000; A (/465,1(0.808) A
/\/,th,u(16.7) A Hgam 30) A Hgav ($4, 000, 000)) A
Atc2($16,000,000) A (yGi,1(0.88) A
Acan(16.7) A jgam(30) A i v ($4,000,000)) =
=05A0A1TATAL)AOQS8A
AOIAOBSATALATAOS2A028A05A0.33)=
=05A08A0.28=0.28
e Policy 2

up($15,000,000; $16, 000, 000; $15,500,000 | .) =

= pco($15,000,000) A (p511(0.83) A

/\/401,11(15.6) A ,uG1,1H(28.1) A ﬂGl,IV($3, 750,000)) A

Abc1(816,000,000) A (p;21(0.88) A

A (16.7) A p 21 (30) A 1 21v ($4,000,000) A

Atc2($17,000,000) A (1 31(0.94) A

A (17.7) A p s (31.9) A p v ($4,250,000)) =
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=1A092A08A055A0.75)A08A
AOIAOBSATADAOTSAOTOAO0OBATAL) =
=0.55A0.8 A0.68 =0.55

The second policy is therefore better.

4 Concluding Remarks

We tried to show that Wang’s cognitive informatics may be a potentially power-
ful general approach and paradigm to formulate, analyze and solve human centric
systems modeling, decision and control problems. To be more specific, we showed
the use of fuzzy dynamic programming for solving a regional development prob-
lem in which many crucial aspects, in particular life quality indicators, were sub-
ject to objective and subjective, by the humans, judgments and evaluations which
are closely related to human perceptions and cognitive abilities. For illustration, we
showed a simple example of regional development planning in which the problem
was to determine a best (optimal) investment policy under different development
scenarios, and subject to objective and subjective evaluations.
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On Discord Between Expected and Actual
Developments in Applications of Fuzzy
Logic During Its First Fifty Years

George J. Klir

Abstract Developments of applications of fuzzy logic during the first fifty years of
its existence are examined in this paper with the aim of comparing the actual
developments with the expected ones in various areas of human affairs. It is shown
that in many of the examined areas the actual developments turned out to be very
different from the expected ones. In each area, an attempt is made to explain reasons
for this surprising discord between reasonable expectations and the actual
developments.

Keywords Principle of bivalence - Fuzzy logic « Applications of fuzzy logic

1 Introduction

In this paper, the term fuzzy logic in used in its general, commonsense meaning,
referring to all principles and methods for representing and manipulating knowledge
that employ, in addition to the classical truth values—true and false—intermediary
truth values that are interpreted as degrees of truth. The principal characteristic of
fuzzy logic viewed in this way is the rejection of the bivalence principle of classical
logic—the assumption, inherent in classical logic—that each declarative sentence
has exactly two possible truth values, true and false.

Recognizing that any challenge of the bivalence principle in logic and mathe-
matics is extremely radical explains why such challenges have been very rare in the
long history of logic and mathematics. Prior to the 20th century, only a very few
challenges of the bivalence principle have been discovered by historians of logic,
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and these happened to be all inconsequential. In the 20th century, the bivalence
principle was challenged more seriously by the emergence of the various many-
valued logics and, eventually, by fuzzy logic.'

It is undeniable that the most significant challenge to the principle of bivalence is
closely associated with the introduction of fuzzy set theory by Lotfi Zadeh [2]. The
aim of this book is to examine how this theory has developed during the first fifty
years of its existence and what is its impact on mathematics and other areas of
human affairs. I chose to focus in this short note on a rather neglected aspect of the
50-year history of the theory—the discrepancy between the expected and actual
applications of the theory in some basic areas of science, engineering, and other
professions (medicine, business, etc.). I also try to explain the cause of this dis-
crepancy in each of the examined areas.

It has often been emphasized by Zadeh that two distinct meaning of the term
fuzzy logic should be recognized, and he introduced the terms fuzzy logic in the
narrow sense and fuzzy logic in the broad sense for these two meanings. This
distinction, which Zadeh described particularly well in [3], is useful and I consider
it relevant for the discussion I intend to pursue in this article, so let me introduce it
from the outset.

Fuzzy logic in the narrow sense is concerned with formal logical systems in
which the truth of each proposition is a matter of degree. It studies the various
propositional, predicate and other fuzzy logic systems that are sound and complete
in a similar way as in classical, bivalent logic. These systems provide foundations
for fuzzy logic in the broad sense, which has a considerably wider and highly
pragmatic agenda.

Fuzzy logic in the broad sense can be loosely characterized as a research pro-
gram that has been pursued under the leadership of Lotfi Zadeh since the publi-
cation of his seminal paper [2]. The primary aim of this program is to employ fuzzy
set theory for emulating common-sense human reasoning in natural language and
for utilizing it for various other purposes. In pursuing this aim, fuzzy logic in the
broad sense often reaches beyond the established concepts and results in fuzzy logic
in the narrow sense, which, in turn, motivates further research in fuzzy logic in the
narrow sense.’

Fuzzy logic in the broad sense is a huge undertaking, which has been shaped
over the years by many contributors. Among them, however, Lotfi Zadeh has
played a leading role by continually introducing novel ideas, which gradually
expanded the agenda of this research program. From 1965 until the mid 1990s, the
genesis of these ideas is well documented in two large volumes of his collected
papers, edited by Yager et al. [5] and Klir and Yuan [6]. After the mid 1990s, Zadeh

'For historical details regarding this very brief summary, see the recent book by Belohlavek,
Dauben and Klir [1].

“However, this statement makes sense only since the 1990s, when the first systems of fuzzy logic
in the narrow emerged through the work of Peter Hajek [4] and other logicians.
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introduced a few additional prime ideas, including those of computing with words
[7], computing with perceptions [8], and general theory of uncertainty [9, 10].

Clearly, the term fuzzy logic (in both its narrow and broad sense) represents a
generic concept that characterizes a wide variety of special systems. In fuzzy logic
in the narrow sense, these systems are distinguished from one another by various
properties such as the set of truth degrees employed and its algebraic structure, truth
functions employed for logic connectives, recognized inference rules, and the like.
In fuzzy logic in the broad sense they are distinguished by the employed set of
membership degrees and its algebraic structure, the employed aggregation opera-
tions on fuzzy sets, modifiers representing linguistic hedges, and the like.

In the next, rather short section, I examine theoretical developments in fuzzy
logic over the last fifty years. This is followed by a considerably longer section
concerned with applications of fuzzy logic, which is the core of this paper.

2 Theoretical Developments

The development of fuzzy logic in the broad sense began with the publication of the
seminal paper on fuzzy sets by Zadeh [2]. The concept of a fuzzy set, as introduced
in this paper, is an intuitive one, not an axiomatic one. Its meaning is described in
the paper as follows (page 339):

The notion of a fuzzy set provides a convenient point of departure for the construction of a
conceptual framework which parallels in many respects the framework used in the case of
ordinary sets, but is more general than the latter and, potentially, may prove to have a much
wider scope of applicability.... Such a framework provides a natural way of dealing with
problems in which the source of imprecision is the absence of sharply defined criteria of
class membership.

The agenda of Zadeh’s research program—fuzzy logic in the broad sense—
derives rather naturally from the observations that fuzzy sets generalize ordinary
(classical) sets and that this generalization expands potentially their applicability. In
developing the agenda, Zadeh set on exploring these two observations, and it is
significant that he has pursued these explorations in a systematic fashion in his
many publications. It is typical for his publications that each contains not only some
new ideas, but also an extensive overview of relevant previous ideas in the context
of the new ideas. Through this consistent repetition of relevant previous ideas, his
own or in some cases introduced by other contributors, the agenda of fuzzy logic in
the broad sense has gradually evolved in a coherent way.

In his seminal paper [2], Zadeh introduced only a special class of fuzzy sets, the
range of whose membership functions is always the unit interval [0,1]. These are
usually referred to as standard fuzzy sets. However, he made a remark in a footnote
of the paper that this range can be generalized to “a suitable partially ordered set.”
He also made another remark in the same footnote that if values of the membership
function are interpreted as truth values, a multivalued logic is obtained with a
continuum of truth values in [0,1]. These two remarks were taken seriously by
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Joseph Goguen, a student of Zadeh, who fully elaborated on them in his two early
papers. In the first paper [11], he generalized standard fuzzy sets to the so-called L-
fuzzy sets by extending the unit interval of standard fuzzy sets to a more general and
well-conceived algebraic structure of a complete residuated lattice of membership
grades. In the second paper [12], he developed basic ideas of logic for reasoning
with inexact concepts, in which fuzzy sets (standard or L-fuzzy) play the role of
inexact predicates and quantifiers. These two papers are historically very important
since they are closely associated not only with the genesis of fuzzy logic in the
broad sense, but also with genesis of fuzzy logic in the narrow sense.

The developments of fuzzy logic from the two viewpoints—the broad one and
the narrow one—have been pursued more or less independently from one another,
primarily due to their very different agendas and because most researchers attracted
to fuzzy logic were interested in either one or the other agenda. Although there have
been some researchers who were interested in both agendas, such as Joseph
Goguen, they were unfortunately very rare.

Contrary to fuzzy logic in the broad sense, the one in the narrow sense has a long
prehistory, associated with the various many-valued logics that have been studied
since the beginning of the 20th century, as is well documented in the book by
Rescher [13]. The connection of many-valued logics with fuzzy logic in the narrow
sense, which was for the first time recognized in the above-mentioned paper
Goguen [11], is examined more completely in a large book by Gottwald [14] as
well as in [1]. These books also describe in detail how the various formal systems of
fuzzy logic were developed within the framework of many-valued logics. I do not
cover these theoretical developments in this paper, which is primarily oriented to
applications of fuzzy logic.

In the next section, which is the kernel of this paper, I examine applications of
fuzzy logic in various areas of human affairs. In each area, I focus on the dis-
crepancies between expectations and reality and I try to find plausible explanations
for these discrepancies.

3 Applications of Fuzzy Logic

3.1 Motivations for Introducing Fuzzy Sets

The introduction of the concept of a fuzzy set by Zadeh in his seminal paper [2] was
based on well-conceived and convincing motivations, which are expressed not only
in the seminal paper, but also in several of his other early publications. Zadeh’s
earliest thought about the need for fuzzy sets is expressed in his 1962 paper [15],
where he writes (page 857):

For coping with the analysis of biological systems, and that to deal effectively with such
systems, which are generally orders of magnitudes more complex than man-made systems,
we need a radically different kind of mathematics, the mathematics of fuzzy or cloudy
quantities.
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He returned to this theme a few years later in [16], where he wrote (p. 199):

One cannot help feeling that, on the whole, the degree of success achieved by the use of
mathematical techniques in biosciences has been quite limited. What is more disturbing,
however, is the possibility that classical mathematics—with its insistence on rigor and
precision—may never be able to provide totally satisfying answers to the basic questions
related to the behavior of animate systems.

The importance of fuzzy sets for biology, but also for psychology and other so-
called soft sciences was also explicitly recognized by Goguen in his Introduction to
[12]:

The ‘hard’ sciences, such as physics and chemistry, construct exact mathematical models to
make predictions. Certain aspects of reality always escape such models, and we look
hopefully to future refinements. But sometimes there is an elusive fuzziness, a readjustment
to context, or an effect of observer upon observed. These phenomena are particularly
indigenous to natural language, and are common in the ‘soft’ sciences, such as biology and
psychology.

In fact, this whole paper is devoted to the investigation of imprecise concepts,
primarily from the psychological point of view.

In his seminal paper, Zadeh emphasized that fuzzy sets provides a natural tool
for “dealing with problems in which the source of imprecision is the absence of
sharply defined criteria of class membership rather than the presence of random
variables.” The same year, he illustrated in [17] these problems by those of opti-
mization under ill defined constrains. Two years later, in a joint paper with Bellman
and Kalaba [18], they were illustrated by problems of abstraction and pattern
classification and later, in another joint paper [19], by decision-making problems in
which “the goals and/or constraints constitute classes of alternatives whose
boundaries are not sharply defined.” The suggested use of fuzzy set theory in
dealing with these problem areas—decision making, pattern classification and/or
recognition, and optimization—attracted quickly attention of a small group of
enthusiastic researchers who made substantial advances in these areas already in the
1970s. This is well documented in the early monographs by Kickert [20] on fuzzy
decision making and in the book by Bezdek [21] on fuzzy pattern recognition. The
former also contains a survey of associated fuzzy optimization methods, such as
fuzzy linear programming or fuzzy dynamic programming. Research on the use of
fuzzy logic in these problem areas has even intensified since the 1970s and has
produced a remarkable spectrum of important results. These applications are cer-
tainly among the most successful applications of fuzzy logic.

In the following, I examine the development of applications of fuzzy logic in
various areas of science, engineering and other areas of human affairs. In each of
considered areas, I focus on comparing the expected developments with the actual
ones. I show that in many cases, the actual developments have turned out very
differently from the expectations and I try in each such case to explain reasons for
the discrepancy.
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3.2 Engineering

Around the time fuzzy set theory emerged, engineering was not seen as an area in
which the use of fuzzy sets was needed. Yet, one of the most successful and visible
applications of fuzzy set theory was an engineering application—fuzzy control.
Except for the applications in decision making, pattern recognition, and optimi-
zation, mentioned in Sect. 3.1, this was also one of the earliest applications of fuzzy
set theory. Let me explain circumstances that led to this early and exceedingly
successful, but highly unexpected application of fuzzy set theory.

Seven years after publishing his seminal paper, Lotfi Zadeh wrote a short, two-
page note [22], in which he argued that the excessive concern with precision and
mathematical rigor in conventional control theory has become counterproductive
because it tends to focus the research in this area only on problems that allow of
exact solution. Hence, problems that are too complex or ill defined to admit of
precise mathematical analysis are avoided as mathematically intractable. He sug-
gested dealing with such “intractable” control problems by fuzzy algorithms, which
he already introduced in an earlier paper [23]. To make his suggestion more spe-
cific, he illustrates it by a simple fuzzy algorithm for guiding a blindfolded person
from an initial position in a room with no obstacles to a desirable final position.

It seems from the way this short note was written that Zadeh did not expect that
his suggestion would be actually pursued any time soon, but presented it rather as a
long-term perspective. However, contrary to Zadeh’s expectations, actual work on
designing, implementing, and testing an experimental fuzzy controller for con-
trolling a small steam engine began shortly after the publication of his note [22] at
Queens Mary College in London by Ebrahim Mamdani with one of his students
(S. Assilian). It was already described, together with some initial experiments in
[24], three years after Zadeh’s note. In his recollections [25], Mamdani describes
circumstances that led to his pioneering work on fuzzy controllers (p. 340):

It was Zadeh’s paper [22] published at that time which persuaded us to use a fuzzy rule-
based approach. Between reading and understanding Zadeh’s paper and having a working
controller took a mere week and it was “surprising” how easy it was to design a rule-based
controller.

In 1880, the first commercial fuzzy controller, inspired by basic ideas of
Mamdani’s design, was permanently installed for controlling a cement kiln owned
by F. L. Smidth & Company in Denmark. The controller successfully replaced
control by human operators with computer-based control and even improved
somewhat the performance and cut fuel consumption. This was a great success
since the control by human operators was too expensive and inconvenient as it took
about eight weeks to train a new operator, and the process to be controlled was in
this case too complex and unwieldy for conventional controller. The fuzzy con-
troller was designed by a Danish engineer at the University of Denmark who left the
university to work at the company to develop a computer-based controller. He tried
to do that by using conventional control theory, but he soon discovered that it was
virtually impossible. Fortunately, he came across Mamdani’s work on fuzzy
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controller described in [24], and the idea immediately appealed to him due to its
focus on modeling knowledge of a well-trained operator rather than on the process
to be controlled. He found that the rules described in the textbook commonly used
for training human operators of cement kilns could be readily represented as if-then
rules in a fuzzy controller of the Mamdani type. This first commercial fuzzy con-
troller, which is described in [26], has been subsequently used for controlling many
other kilns, mills, and other complex processes. This was undoubtedly at that time
the most significant application of fuzzy logic.

However, much more significant applications were at the same time under
development in Japan. One was a sophisticated fuzzy control, involving both
feedback and feedforward features, of fully automatic operation of the subway
system in the city of Sendai. This project was conceived in 1979 by two researchers
at Hitachi Systems development Laboratory, Seiji Yasunobu and Shoji Miyamoto,
who were inspired by the novelty of Mamdani’s fuzzy controller. It is likely that the
successful installation of fuzzy controller for controlling the cement kiln in Den-
mark helped them to convince the upper management to support this large and
rather risky project. The city of Sendai switched from trains operated by human
operators to fully automatic operation based on fuzzy control in 1987, and it was a
huge success in all measures. Details of this sophisticated fuzzy controller are
described in [27].

Success of this project motivated many Japanese industries to invest in various
other applications of fuzzy logic. This resulted in a surprising variety of innovative
and sometimes unexpected applications of fuzzy logic, especially fuzzy controllers,
that turned out to be technically as well as commercially highly successful. One
positive outcome of these developments, which are described in detail in a well-
researched book by McNeill and Freiberger [28], was that the visibility of fuzzy
logic tremendously increased and, as a consequence, industries and governments in
some countries, not only in Japan, became more receptive to support research on
fuzzy logic.

The enormous success of fuzzy controllers is my first example of discrepancy
between expected and actual applications of fuzzy logic. Indeed, fuzzy control was
in no way among the factors motivating the need for introducing the concept of a
fuzzy set. Yet, it turned out to be an extraordinarily successful early application of
fuzzy sets. Next, I am going to turn to three natural sciences, biology, chemistry,
and physics.

3.3 Biology

As is explained in Sect. 3.1, the envisioned need for mathematics based on fuzzy
logic in biology was one of the primary motivations for Zadeh to introduce fuzzy
sets. Yet, the biological community has shown virtually no interest in exploring this
emerging new mathematics. Biology is thus one area in which the reasonable
expectations have not realized so far. This is surprising and not easy to explain.
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However, as I see it, this lack of interest may in this case be at least partially
explained by a huge gap between experimental and theoretical biology and by the
strong dominance of the former one. Indeed, most biologists focus on experimental
work, for which they are trained, and pay little or no attention to mathematics.
Theoretical biologists are a small minority among biologists with little influence on
biology at large. Most biologists are just not interested in the work of theoretical
biologists. Moreover, none of the few theoretical biologists have shown any interest
in exploring the utility of fuzzy set theory in their theories.

I should add that some interest in the use of fuzzy logic in biology has been
shown for the last fifteen years or so, but only in the context of the rapidly growing
new subarea of biology—bioinformatics—a rather narrow, but highly important
subarea, which is closely connected with Human Genome Project. The objective of
this large international collaborative program, which was implemented during the
period from 1990 to 2003, was to determine structures—that is sequences of
deoxyribonucleic acid (DNA) molecules—of all genes of human beings. The
outcome of the project was a very large database containing structures of all human
genes. This database and other biomolecular databases provide researchers in
molecular genetics with huge amount of information. The challenge is to utilize this
information for advancing biological knowledge by answering many profound
biological questions, such as those regarding functions of the individual genes,
processes leading to the three-dimensional structures of proteins, functions of these
structures, and the like. It is this analytical part of bioinformatics, where the use-
fulness of fuzzy logic was suggested already in 2000 in two early papers [29, 30].
These papers were soon followed by a rapid growth of literature on various
applications of fuzzy logic and soft computing in bioinformatics. Just during the
first decade of the 21st century, three large edited books devoted to these appli-
cations were published. In 2008, the time was already ripe for publishing the first
monograph on these applications [31].

3.4 Chemistry

Chemistry, similarly as physics, has always been considered as belonging to the so-
called hard sciences. As such, the need for fuzzy logic in chemistry was definitely
not among the motivations for introducing fuzzy sets (see, e.g., the excerpt from
Goguen’s paper [12] in Sect. 3.1). Hence, researchers in fuzzy logic paid virtually
no attention to chemistry for long time after the emergence of fuzzy set theory in
1965. In the early 1990s, however, a few researchers in theoretical chemistry dis-
covered fuzzy logic and began to recognize that it might be potentially useful in
dealing with some unresolved problems in their area. These problems emanated
from the conventional way of viewing some important concepts in chemistry, such
as symmetry or chirality, as bivalent—either true or false in each of their appli-
cations in chemistry. For example, in paper [32], the authors discuss this issue with
respect to the concept of symmetry as employed in chemistry (p. 7843):
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One of the most deeply-rooted paradigms of scientific thought is that Nature is governed in
many of its manifestation by strict symmetry laws. The continuing justification of that
paradigm lies with the very achievements of human knowledge it has created over the
centuries. Yet we ague that the treatment on natural phenomena in terms of “either/or”,
when it comes to a symmetry characteristic property, may become restrictive to the extent
that some of the fine details of phenomenological interpretation may be lost. Atkins writes
in his widely-used text on physical chemistry:> “Some objects are more symmetrical than
others”, signaling that a scale, quantifying this most basic property, may be in order. The
view we wish to defend in this report is that symmetry can be and, in many instances,
should be treated as a “gray” property, and not necessarily as a black or white property
which exists or does not exist. Why is such continuous symmetry measure important? In
short, replacing a “yes or no” information processing filter, which acts as a threshold
decision-making barrier which differentiate between two states, with a filter allowing a full

range of “maybe’s”, enriches, in principle, the information content available for analysis.

In two follow-up papers published in the J. of the American Chemical Society—
115(24), 1993, and 117(1), 1995—the authors further elaborated on the continuous
symmetry measure and introduced, in addition, a continuous chirality measure.
Similar observations and arguments regarding the need to abandon the principle of
bivalence for dealing with some chemical concepts were at the same time advanced
by a fair number of other researchers in theoretical chemistry. It was also
increasingly recognized that it should be beneficial to utilize fuzzy logic for dealing
with these problems.

It was eventually decided to devote one of the annual Mathematical Chemistry
Conferences fully to the role of fuzzy logic in chemistry. The title of the conference—
Are the Concepts of Chemistry All Fuzzy?—captured quite well the primary issues
discussed within the area of theoretical chemistry at that time. The conference was
held in 1996 at conference facilities of a major distillery—very appropriate for a
conference of this kind, in Pitlochry, Scotland, in 1996. I was invited to present a
tutorial on fuzzy logic and to represent the fuzzy-logic community. A major outcome
of this conference was a book entitled “Fuzzy Logic in Chemistry”, carefully edited
by Dennis Rouvray [33]. It consists of nine rather extensive chapters that are loosely
based on presentations at the conference. The book convincingly demonstrate that
fuzzy logic is useful not only for representing realistically some fundamental
chemical concepts, such as symmetry chirality, molecular structure, or molecular
shape and size, but also for dealing properly and effectively with some methodo-
logical problems in chemistry, such as problems of molecular recognition, hierar-
chical classification, or computer-aided elucidation of molecular structures.

As far as I know, no additional books on fuzzy logic in chemistry have been
published. However, after the publication of [33], fuzzy logic has been routinely
utilized in chemistry not only for dealing with the above-mentioned conceptual
problems, but with various other problems as well. In other words, fuzzy logic has
been rather naturally recognized in chemistry as useful. This situation is clearly
radically different from the corresponding situation in biology, which is described
in Sect. 3.3. In biology, the utility of fuzzy logic was strongly anticipated, but it has

3Atkins, P. W.: Physical Chemistry, 3rd Edition, p. 406. Oxford Univ. Press, Oxford (1986).
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not yet been recognized by the biological community, with the exception of the
very recent and still rather modest recognition of its role in bioinformatics. In
chemistry, no use of fuzzy logic was anticipated and yet, its utility was discovered
already in the early 1990s by researchers in theoretical chemistry and has gradually
been accepted by the entire chemical community.

3.5 Physics

Physics, which is undoubtedly the most advanced and successful area of science,
was certainly not among the areas in which the need for fuzzy logic was anticipated.
It is perhaps due to the enormous success of physics why the developed mea-
surement routines in physics have virtually never been questioned within the
physics community. A rare dissenter was the outstanding American physicist Percy
Williams Bridgman (1882—1961).4 His rather unorthodox views about measure-
ment in physics are captured reasonably well in the following excerpts from one of
his papers ([34], 227-228, italics added):

The physics of measurement and of the laboratory does not have the yes-no sharpness of
mathematics, but nevertheless employs conventional mathematics as an indispensable tool.
Every physicist combines in his own person, to greater or less degree, the experimental
physicist who makes measurements in the laboratory, and the theoretical physicist who
represents the results of the measurements by the numbers of mathematics. These numbers
are things he says or writes on paper. The jump by which he passes from the operations of
the laboratory to what he says about the operations is a jump which may not be bridged
logically, and is furthermore a jump which ignores certain essential features of the physical
situation. For the mathematics which the physicist uses does not exactly correspond to what
happens to him. In the laboratory every measurement is fuzzy because of error. As far as
reproducing what happens to him is concerned, the mathematics of the physicist might
equally well be the mathematics of the rational numbers... Now one would certainly be
going of one’s way to attempt to force theoretical physics into a straightjacket of the
mathematics of rational numbers as distinguished from the mathematics of all real numbers,
but by forcing it into the straightjacket of any kind of mathematics at all, with its yes-no
sharpness, one is discarding an essential aspect of physical experience and to that extent
renouncing the possibility of exactly reproducing that experience. In this sense, the com-
mitment of physics to the use of mathematics itself constitutes, paradoxically, a renunci-
ation of the possibility of rigor....Now it appears to me, the linkage of error in every sort of
physical measurement must be regarded as inevitable when it is considered that the
knowledge of the measurement, which is all we can be concerned with, is a result of the
coupling of the external situation with a human brain. Even if we had adequate knowledge
of the details of this coupling we admittedly could not yet use this knowledge in formu-
lating in detail how the unavoidable fuzziness should be incorporated in our description of
the world nor how should we modify our present use of mathematics, but with the addi-
tional caveat to every equation, warning that things are not quite as they seem.

“Bridgman was an excellent experimental physicist who had been most of his academic career with
Harvard University. In 1946, he won the Nobel Prize in Physics for his groundbreaking work on
the physics of high pressures. He also wrote extensively on measurement in physics and on various
other aspects of philosophy of science.
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The use of the terms fuzzy and fuzziness by Bridgman in 1959, five years before
Zadeh’s seminal paper [2], is certainly interesting, especially because his use of
these terms is quite similar to Zadeh’s use. In fact, these terms appear even in some
of Bridgman’s earlier writings.

Bridgman’s critical comments about measurement in physics did not have any
visible impact on physics during his lifetime. However, since the early 1990s some
physicists specializing on measurement have occasionally referred to Bridgman’s
criticism and to the potential role of fuzzy sets in physical measurement; see, for
example a representative paper by Mari [35].

Finally, I should look at the potential role of fuzzy logic in quantum mechanics.
There is an extensive literature on this topic, too large and complex to be even
briefly surveyed in this paper. In any case, none of the many logics, fuzzy or non-
fuzzy, which have been proposed for quantum mechanics thus far, has not been
generally accepted as yet. The situation is well characterized in the monograph by
Chiara et al. [36], which to my best knowledge is the only one that covers logics
that recognize the principle of bivalence as well as those that do no recognize it.
They are referred to in the book as sharp quantum logics and unsharp quantum
logics, respectively. The authors seems to be well aware of the importance of the
prospective unsharp quantum logics, and make this interesting observation (p. 5):

Strangely enough, from the historical point of view, the abstract researches on fuzzy
structures and on quantum structures have undergone quite independent developments for
many decades during the 20th century.Only after the Eighties, there emerged an interesting
convergence between the investigations about fuzzy and quantum structures, in the
framework of the so-called unsharp approach to quantum theory. In this connection a
significant conjecture has been proposed: perhaps some apparent mysteries of the quantum
world should be described as special cases of some more general fuzzy phenomena, whose
behavior has not yet been fully understood.

It is also significant that on page 37 of this book, the authors describe a specific
example in quantum theory, in which the principle of bivalence fails.

Physics is thus an area of science in which the use of fuzzy logic was not
expected at all. Nevertheless, its utility in physical measurements was recognized
by some physicists, such as Bridgman a more recently Mari and others. Even more
importantly, fuzzy logic is likely to play some role, potentially a very important role
in some of its incarnations, in quantum mechanics, as suggested in the above
quotation from [36].

3.6 Geology

Similarly, as it was not expected that fuzzy logic would play any useful role in
chemistry, it was not expected that it would be of any use in geology. Now we
know that both of these expectations were wrong. The similarities extend further. In
both of these areas, the utility of fuzzy logic was not recognized by researchers
outside these areas (e.g. those who worked on fuzzy logic and were searching for
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applications), but researchers within these very areas, and it was recognized in both
areas within approximately the same period—roughly during the 1990s. It seems
that this timing could be explained by the great success of fuzzy logic in the 1990s,
as is explained in Sect. 3.2, which significantly increased its visibility.

With the emergence of computer technology around the middle of the 20th
century, geology has undergone a major transformation regarding the nature of
geological knowledge. Since the 19th century, geology has been preoccupied pri-
marily with attempts to understand how the surface of the Earth had developed. A
substantial amount of knowledge was produced by the work of many geologists via
their extensive, systematic, and painstaking observations, combined with com-
monsense reasoning. Knowledge obtained in this way was of course expressed by
the geologists in natural language, without any use of mathematics. After the
emergence of computer technology, this knowledge was gradually dismissed as
useless, as it could not be represented in a computer-acceptable language. This led
to the development of mathematical geology. When some geologist discovered
fuzzy logic around the mid 1990s and became familiar with its capabilities at that
time, they tried to experiment with it by simulating some of the knowledge
described verbally in the older geological books, often directly in the form of if-then
statements. The first such simulation was described in 1996 in a paper by Nordland
[37], where it was successfully illustrated by a particular example from the area of
dynamic stratigraphic modeling.

The paper stimulated a fair number of other geologists to pursue similar studies
not only in the same area but also in various other areas of geology. They were
astonished by the excellent results they obtained and that motivated further research
into the use of fuzzy logic in geology. As a result, the literature on applications of
fuzzy logic in geology grew very rapidly at the end of 20th century, and it was
generally felt that the time was ripe for a comprehensive book overview of this
alternative approach to dealing geological problems, once abandoned and then
rediscovered with the help of fuzzy logic. In fact, Lotfi Zadeh explicitly suggested
that such a book be published.

The book on fuzzy logic in geology was eventually published in 2004 [38] and
Zadeh wrote a wonderful Foreword to it. The book contains a tutorial on fuzzy logic
for geologists, and a comprehensive overview with a literature review of all rec-
ognized applications of fuzzy logic in geology. In addition, it contains several
chapters that describe in detail applications of fuzzy logic in the areas of strati-
graphic modeling, hydrology and water resources, paleontology, and seismology,
as well as the use of fuzzy logic for dealing with the problems of reef growth and
ancient sea level estimation.

Since the publication of [38], the literature dealing with applications of fuzzy
logic in geology as well as other areas of Earth sciences has substantially expanded
including several monographs and edited volumes. This indicates that the utility of
fuzzy logic is well recognized in this domain.
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3.7 Psychology

Psychology and biology were two areas of science in which fuzzy logic was
expected to play an important role. In fact, the need for mathematics based on fuzzy
logic in these areas was among the main motivations for introducing the concept of
a fuzzy set. As is explained in Sect. 3.3, the expectation has not realized in biology.
It has not realized in psychology as well, but for very different and more compli-
cated reasons. In the following, I am going to briefly survey the history of con-
nections between psychology and fuzzy logic, which is quite extraordinary.

One year before the publication of Zadeh’s seminal paper on fuzzy sets, Robert
Duncan Luce (1925-2012), one of the preeminent figures in mathematical psy-
chology, published a paper [39], in which he wrote (p. 376):

The language of sets does not always seem adequate to formulate psychological problems.
Put it so baldly, the statement is almost heretical since, in practice, set theory is the accepted
way to formulate mathematical problems and, hence, applied mathematical problems. Still,
we should not forget that set theory is really quite new—Iless than a century old. It could be
an interim theory. Certainly, when I think about certain psychological problems, I wish it
weren’t the way it is. The boundaries of my “sets,” and of ones that my subjects ordinarily
deal with, are a good deal fuzzier than those in mathematics.... It is quite difficult to pin
down just what elements are and are not members of that set, and I am not sure that it is
possible in principle. Do we merely lack techniques adequate to answer that question today,
or is it basically impossible to answer it?

Luce repeatedly returned in his many publications to the issues raised in this
short excerpt, especially the question posed in the last sentence. Although he has
frequently used in his writings the term “fuzzy” in its various forms, it is unfor-
tunate that he was apparently not aware throughout his whole lifetime about the
existence of fuzzy set theory and fuzzy logic.

Another connection between psychology, especially the psychology of con-
cepts,” and fuzzy logic was introduced in the classic paper by Goguen [12], from
which I use a few short excerpts (pp. 325-326):

“Exact concepts” are the sort envisioned in pure mathematics, while “inexact concepts” are
rampant in everyday life.... Ordinary logic is much used in mathematics, but applications to
everyday life have been criticized because our normal language habits seem so different.
Various modifications of orthodox logic have been suggested as remedies, particularly
omission of the Law of Excluded Middle.Ordinary logic represents exact concepts syn-
tactically: that is a concept is given a name (such as ‘man’) which becomes an object of
manipulation in a formal language.... Another representation is the semantic, as in Can-
torian set theory. Here we consider the collection or set of elements exemplifying the
concept and study such manipulations as might be performed on actual physical collections:
lumping together, removing a subcollection, and so on. The laws of set theory describe

SIn general, a concept is viewed in psychology as a mental representation of a class of real or
abstract entities, which is usually called a concept category. In the psychology of concepts, a
concept is usually viewed more specifically as a body of knowledge regarding the entities in the
associated concept category that is stored in the long-term memory (sometimes called a semantic
memory) and employed by default in most of cognitive processes.
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general properties of these manipulations.Without a semantic representation for inexact
concepts, it is hard to see that one modification of traditional logic really provides a more
satisfactory syntactic theory of inexact concepts than another. However, such a represen-
tation is now available. Zadeh [2] has studied fuzzy sets, and suggested a number of
concrete applications.

Another connection between psychology and fuzzy logic emerged from
groundbreaking psychological experiments that were performed by Eleanor Rosch
in the early 1970s and published in a series of articles, two of which are [40, 41].
These experiments consistently demonstrated that membership in concept catego-
ries is not a yes-or-no matter, but rather a matter of degree. This led to an almost
universal rejection of the classical view of concepts, in which each concept category
is defined by a collection of attributes that are both necessary and sufficient. Rosch’s
experiments also revealed that each concept category is associated with an ordering
relation that reflects the typicality of individuals in the category as examples of the
concept. The most typical individual(s) can be viewed as natural prototype(s) of the
category. The above-mentioned typicality ordering can then be defined via a suit-
able similarity measure, as thoroughly investigated in the psychological context by
Tversky [42]. This is briefly the essence of a prototype view of concepts that
emerged form Rosch’s experiments as a natural successor to the classical view of
concepts.

Although the results obtained by Rosch and the emerging prototype view of
concepts were suggestive of possible use of fuzzy sets in the psychology of con-
cepts, Rosch herself did not seem to be interested in exploring it. However, her
results have stimulated other psychologists to examine the potential role of fuzzy
sets in psychology. This led to a lively discussion of this issue in psychological
literature throughout the 1970s. However, this positive attitude toward fuzzy logic
has visibly changed to negative attitude since the early 1980s. It is now well
established that this change was triggered by a paper published in 1981 by two
highly influential cognitive psychologists, Daniel Osherson and Edward Smith [43],
whose aim was a critique of the prototype theory of concepts. This is how they
describe the organization of their paper ([43], p. 36):

We first present one version of prototype theory. We then show how it might be extended to
account for conceptual combinations by means of principles derived from fuzzy-set theory.
This extension is demonstrated to be fraught with difficulties. We then move on to the issue
of truth conditions for thought, again using fuzzy-set theory as a means of implementing the
prototype approach, and again demonstrating that this implementation won’t work. In a
final section, we establish that our analysis holds for virtually any version of prototype
theory, and consider ways of reconciling previous evidence for this theory with the wisdom
of the older kind of theory of concepts.

This paper had such a strong influence on attitudes toward fuzzy set theory in
psychology that fuzzy set theory was virtually dismissed by the psychological
community as useless. Only some twenty years after the paper by Osherson and
Smith was published, some awkward mathematical errors were accidentally dis-
covered in it. This led to a detailed analysis of all claims about fuzzy set theory in
the paper, which revealed, surprisingly, that they were virtually all erroneous, as is
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shown in [44]. Further investigation [45] revealed how these erroneous claims were
uncritically accepted within the psychological community and used often as
arguments against fuzzy set theory. This extraordinary episode is fully documented
in a book that I coedited with Radim Belohavek [46]. However, the primary aim of
this book is to renew the dialog and hopefully a cooperation of researchers in
psychology with those working in the area of fuzzy logic.

The up-and-downs regarding the use fuzzy logic in psychology certainly do not
coincide with the original expectations. One reason might be that fuzzy logic is not
yet properly developed for its specific use in psychology. This in fact was already
extensively argued in the late 1980s by Fuhrmann in several of his papers (see, e.g.,
his paper [47]). If he is right, then the cooperation between the two areas will be
essential.

3.8 Economics

Economics is generally viewed as the most advanced social science, primarily due
to the extensive role that mathematics has played in it since the late 19th century. It
is well known, however, that the mathematically ever more sophisticated economic
theories have almost never produced accurate and practical economic predictions,
while experience economists are often able to formulate fairly accurate and useful
economic predictions in linguistic terms, such as “The rate of inflation is likely to
increase substantially in the very near future.” Such predictions are based on
common sense reasoning, employing the economist’s knowledge and relevant
information, both expressed in natural language. Due to these observations, fuzzy
logic was broadly expected, soon after it emerged in the mid 1960s, to play an
important role in economics.

This expectation became in some sense a reality in the 1980s through the work
of some French economists under the leadership of distinguished French economist
Claude Ponsard (1927-1990). Influenced by the early publication of four-volume
French book on fuzzy sets by Arnold Kaufmann,® Ponsard began to explore the use
of fuzzy set theory in economics in the late 1970s. In one of his early papers [49], he
shows, for example, how fuzzy sets can be used for reformulating the classical
theory of consumer behavior in mathematical economics by discarding its two
unrealistic assumptions, that the consumer can perfectly discriminate between
different goods and that goods satisfying consumer’s needs are all supplied at a
unique point in space. The result is a considerably more realistic theory of consumer
behavior. During the first half of the 1980s, Ponsard published a series of papers, in
which he fuzzified other areas of classical economics, and which culminated in the
publication of a book he co-edited with his colleague Bernard Fustier [50]. The

SIntroduction a la Theorie des Sous-Ensembles: vol. 1 (1973); vol. 2 (1975); vol. 3 (1975); vol. 4
(1977). Masson et Cie Editeurs. Only the first volume was published later in English [48].
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books contains, ten important papers on fuzzy economics, all written by members
of the Institute for Mathematical Economics at the University of Dijon, which was
at that time directed by Ponsard. The book contains two papers by Ponsard, one on
a theory of spatial general equilibrium in fuzzy economics and one on viewing
spatial oligopoly’ as a fuzzy game. One year after publishing the edited book,
Ponsard generalized the famous Nash equilibrium concept® by showing that each 7-
person non-cooperative fuzzy game with mixed strategies has at least one equi-
librium point.

In 1988, Ponsard begins his excellent survey paper [51] on established fuzzy
models in economics with a question raised by Zadeh in his Foreword to the
classical book by Zimmermann [52]: “Are there, in fact, any significant problem
areas in which the use of the theory of fuzzy sets leads to results which could not be
obtained by classical methods”? And he closes the paper by answering the question:
“In economics, the answer is positive. The use of fuzzy subset theory leads to
results which could not be obtained by classical methods.”

In 1988, Ponsard also began to work on a major book with a tentative title
“Fuzzy Economic Space: An Axiomatic Approach”. When he unexpectedly passed
away in 1990, the book manuscript was not yet fully completed. Fortunately, his
main ideas are preserved and further developed in an important book by Billot [53],
who was Ponsard’s doctoral student at that time.

This section would be rather incomplete without mentioning the work by a
British economist George Shackle on the theory of graded possibilities within the
context of economics, long before the theory was interpreted in terms of fuzzy sets
by Zadeh [54]. Due to the limited space of this paper, I take the liberty to refer to
my paper [55], in which I outline Shacke’s unorthodox approach to economics and
describe in fair detail his work on the theory of graded possibilities.

The utility of fuzzy set theory in economics has not yet been fully recognized by
mainstream economists. Nevertheless, the work by Ponsard and the other French
economists, together with the work by Shackle, is sufficiently significant and
convincing to conclude that the early expectations by the fuzzy community that
fuzzy set theory would play an important role in economics have already been at
least partially met.

3.9 Other Social Sciences

The usefulness of fuzzy set theory in all social sciences, not only in economics, was
generally expected when the theory emerged in the mid 1960s. Zadeh, for example,
devoted one of his early articles fully to this issue [56].

"Market situation influenced by a few producers.

8Nash, J. F. Equilibrium points in n-person games. Proc. of the National Academy of Sciences 36,
48-49 (1950).
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The classical book by Smithson [57] attracted some attention to the useful role of
fuzzy sets in social sciences, but for many years almost exclusively within the
fuzzy-set community. Fortunately, it eventually attracted the attention of Charles
Ragin, a social scientist, who became seriously interested in exploring the role of
fuzzy sets for bridging the gap between the qualitative and quantitative methods in
social-science research. This led him to write the whole book on this subject [58].
While some social scientists praised the book, most remained skeptical about his
ideas, as is well captured by the following short excerpts from Ragin’s Introduction
to the book (p. 3):

Social scientists generally stay away from anything labeled “fuzzy” because their work is so
often described this way by others, especially by scholars in the “hard” sciences. My initial
title for this book, Fuzzy Social Science, made so many of my colleagues cringe that I felt
compelled to change it so that the adjective “fuzzy” applied to sets, not to social science.

Eight years later, another book by Ragin was published [59], in which he
challenges the conventional approach to social science research and proposes an
alternative approach based on fuzzy set theory that overcomes the various limita-
tions of conventional quantitative as well as qualitative social-science research. He
argues and demonstrates experimentally that the proposed approach has the capa-
bility to narrow the gap between knowledge obtained by qualitative social scientists
and that obtained by quantitative social scientists.

When taken together, the two books by Ragin form an important statement about
the utility of fuzzy set theory in social sciences. Unfortunately, the approach to
social science research proposed by him has not yet been widely accepted by social
scientists.

Perhaps the most important contribution to the use of fuzzy logic in social
sciences at large is at this time the book by Badredine Arfi [60], a Finnish political
scientist. He further develops in the book the idea of computing with words, first
suggested by Zadeh [7, 8], and applies it to a wide range of problems in social
sciences. In his methodology, he allows both membership grades and truth values to
be linguistic variables. The book contains Forewords by Ragin and Zadeh who both
highly praise it.

Interesting applications of mathematics based on fuzzy logic in political science
emerged from collaboration of political scientists with mathematicians at Creighton
University in Omaha, Nebraska. These applications, which are described in detail in
[61], show that the concept of fuzzy geometry is superior for dealing with some
problems in comparative politics in comparison with the traditional use of classical
Euclidean geometry.

I consider it reasonable to conclude that the expected utility of fuzzy logic in
social sciences has already been demonstrated, even though fuzzy logic has not yet
been fully endorsed within these areas. It is interesting that the most negative
attitude toward fuzzy logic is shown by the quantitative (or mathematical) social
scientists.
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3.10 Medicine

The need for fuzzy sets in medicine did not motivate, at least not explicitly, their
introduction. However, the utility of fuzzy sets in medicine was recognized quite
early, in about the mid 1970s, and primarily in the area of medical diagnosis.

The use of fuzzy set theory in medical diagnosis was first suggested and discussed
in a doctoral dissertation by Albin [62], followed shortly by two early papers by
Sanchez [63, 64]. In these papers, Sanchez formulated medical diagnosis in terms of
fuzzy relational equations, which he introduced and investigated in his earlier paper
[65]. A few additional papers regarding the use of fuzzy set theory in medical diag-
nosis were published in the 1970s. However, concentrated and systematic research on
fuzzy-set-based system for computer-assisted medical diagnosis began only in the
1980 and mostly at the Department of medical Computer Science of the University of
Vienna Medical School in Austria under the leadership of Klaus Peter Adlassnig.
Accomplishments of this research over the last two decades of the 20th century are
concisely described in [66]. Various other types of applications of fuzzy set theory in
medicine were also developed during this period and are surveyed in [67].

The literature on applications of fuzzy set theory in medicine rapidly increased in
the new millennium, including some specialized monographs, such as [68—70], and
numerous edited volumes, exemplified by [71] A particularly significant is the
scholarly work by Kazem Sadegh-Zadeh® in analytic philosophy of medicine. In
many of his papers published since 2000, he has consistently argued on both
medical and philosophical grounds that fuzzy logic is the only adequate logic for
medical practice. This argumentation is completely and coherently covered in
Handbook of Analytic Philosophy of Medicine [72], which is a sort of climax of his
lifelong work. This large monograph, consisting of 1,133 pages, covers compre-
hensively and in considerable detail the principal philosophical issues associated
with medicine.

About 40 % of the Handbook is devoted to logical issues involved in clinical
reasoning. After showing that classical first-order predicate logic is hopelessly
inadequate in medicine as it is capable of representing only a very small fraction of
language employed in medicine, Sadegh-Zadeh then examines the various modal
extensions of classical logic and shows that even with all these extensions classical
logic is still not sufficiently expressive to represent medical language. Next, he
examines non-classical logics, such as paraconsistent, intuitionistic, and many-
valued logics, and shows that each individually would help to overcome some
common difficulties in medicine, such as dealing with contradictory medical data or
with situations in which the law of excluded middle does not hold. Finally, he
examines fuzzy logic in detail from the medical point of view and shows that it has

9Kazem Sadegh-Zadeh was born in Tabriz, Iran in 1942. In the 1960s and 1970s, he studied
medicine and philosophy at the German universities of Miinster, Berlin, and Gottingen. He has
been for many years with the University of Miinster, where he worked in the area of analytic
philosophy of medicine, and where he is now s professor-emeritus.
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all the ingredients needed in medicine. This leads him to the conclusion that fuzzy
logic (representing actually a class of logics) is the only one (one class) among all
currently recognized logics that is fully adequate for clinical reasoning in medicine.

I should add that one year after the publication of Sadegh-Zadeh’s Handbook, a
companion volume to it was published [73], which contains 27 chapters on various
applications of fuzzy logic in medicine.

Medicine is thus somewhat different from the other areas examined in previous
sections of this paper as far as the difference between anticipated and actual utility
of fuzzy logic. The need for fuzzy logic in medicine was not (at least explicitly)
among the factors that contributed to the emergence of fuzzy logic in the mid 1960s.
However, its potential utility in medicine was recognized quite early, in the mid
1970s, and it was expected that it would play an important role in medicine. It
turned out, eventually, that fuzzy logic is the only adequate logic for medicine,
which even exceeded the expectations.

3.11 Management and Business

The need for fuzzy logic in the areas of management and business was not among
the motivations for introducing fuzzy sets. Although some scattered applications of
fuzzy set theory to various problems related to these areas, such as optimization,
scheduling and resource allocation, began to appear in the literature since the late
1970s, the role of fuzzy set theory in these areas was for the first time systematically
discussed in a textbook by George and Maria Bojadziev [74] published 1997. Two
years later, a very impressive survey of applications of fuzzy set theory in man-
agement, consisting of four large chapters, is included in [67]. Three of the chapters
deal, respectively, with strategic planning, research and development planning, and
production planning and scheduling. The forth one is devoted to the use of fuzzy
sets in actuarial science, where the book by Ostaszewski [75] —the first and still the
only book on using fuzzy set theory in actuarial science—should be highlighted.

In the new millennium, publications devoted to the use of fuzzy set theory in
management and business virtually exploded. As far as management is concerned,
the most important seems to the monograph by Carlsson et al. [76]. In business, two
significant monographs deserve to be mentioned in this very short overview [77,
78]. The number of edited volumes in this area is too large to even mention a few
representative samples.

In summary, the utility of fuzzy set theory was not initially recognized in either
management or business. However, some applications of the theory, developed some
ten years after fuzzy set theory emerged, were already indicative that fuzzy sets might
be useful in these areas. This was more explicitly recognized and discussed in the late
1990s. Since that time, the development of applications of fuzzy set theory in
management and business has been very rapid, which showed manifestly that the
theory is of great utility in these areas. As in medicine, discussed in Sect. 3.10, the
actual success of fuzzy set theory in these areas exceeded all expectations.
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3.12 Music

Within the large variety of the arts, the use of fuzzy logic have occasionally been
suggested in some branches of the arts, such as painting, sculpture, architecture,
poetry, and others, but no significant interest resulted from these rather isolated and
ad hoc suggestions. A rare exception is music, where the use of fuzzy logic turns
out to be very natural and significant. In order to explain this rather bold claim, I
begin with a short excerpt from Preface to one of the prime monographs on
mathematical theory of tone systems [79]:

There are four important and mutually interacting attributes that we can manipulate to
create or describe any sound. And we can work with these attributes in two different ways:
We can measure them and we can hear them. If we measure them, they are physical
attributes; if we hear them, they are perceptual attributes. The four physical attributes are:
frequency, amplitude, waveform, and duration. Their perceptual counterparts are: pitch,
loudness, timbre, and (psychological) time. There is similarity between hearing and mea-
suring these attributes; however, it is a complex correlation. The two are not exactly
parallel.

As is well captured by this excerpt, the basic elements of music—musical
tones—can be viewed and studied either as physical entities produced by various
musical instruments or as perceptions of these physical entities by humans.

It is well established that human auditory perceptive capabilities are remarkably
tolerant (or insensitive) to small deviations from the ideal (physical) frequencies
representing individual tones. That is, tones whose actual frequencies are suffi-
ciently close to the ideal frequency defining a particular tone in a given tone system
are perceived as the same pitch. In a similar way, human perception is tolerant to
small deviations from the ideal values of the other three physical attributes.

This fundamental dichotomy between physical and perceptual entities applies
not only to individual tones, but to various systems of musical tones as well. The
two most important characteristics of each tonal system are the pitch of each tone
recognized in the system and the pitch differences of any two of the recognized
tones. The former is a psychological concept that represents approximately the tone
frequency. The latter, called musical intervals, are physically defined as ratios of
their frequencies, which perceptually are approximate ratios.

A particular interval whose frequency ratio is 2 is called an octave. Two tones
whose distance is equal to one or more octaves are viewed in the physical domain
as equivalent, and are perceived as approximately equivalent. Most frequently,
especially in Western classical music, 12 tones within each octave are chosen
according to some rules that govern the intervals between consecutive tones in each
octave. The notes together with their locations within each octave form a particular
tonal system. When tones in these systems are viewed a physical entities, classical
mathematics based on bivalent logic is perfectly adequate to deal with them.
However, when the tones are viewed as perceptual entities, the best classical
mathematics can do is to employ intervals of real numbers for representing the
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perceptual tolerances,'” but this is a rather poor representation. Much better rep-
resentation can be obtained by mathematics based on fuzzy logic. The concept of
“being sufficiently closed to a number expressing the ideal frequency” can be
approximated in a natural way by an appropriate fuzzy number (granule) con-
structed on the basis of available knowledge regarding characteristics of human
auditory perception.

This fuzzy approximation plays an especially important role in the so-called
well-tempered tuning within a given tonal system. The aim of this tuning is to make
small deviations (tolerated by human perception) from perfect tuning in each key in
order to achieve a perceptually acceptable tuning in all keys. This allows instru-
ments such as pianos or harps, once tuned in a well-tempered way, to play com-
positions in any key and they are all perceived as well tuned.'' Although in any
well-tempered tuning, the sizes of comparable tone intervals in the physical domain
cannot be the same in all keys, this is generally viewed as a musical advantage, as it
gives a slightly distinctive character to compositions written in different keys.

Except for one early paper by Goguen [80], the literature pointing to the role
fuzzy logic in music is almost exclusively associated with the 21st century. In
addition to the book by Haluska [79], the three papers [8§1-83] seem to be the most
visible representatives of the growing literature in this area.

3.13 Concluding Remarks

Due to the limited space of this paper, I had to make conscious decisions about
which applications of fuzzy logic to include and which to omit. From the well-
established applications, I chose to omit those in image analysis, spatial information
processing, robotics, risk analysis, database systems, computer vision, and a few
others. Moreover, I did not include any of the many applications that are promising,
but have not yet been adequately developed. These include for example those in
archaeology, paleontology, forensic science, humanities, and numerous other areas.
I also did not include application areas such as the law profession, in which the
utility of fuzzy logic is highly suggestive and potentially very significant, but where
its actual use encounters various virtually insurmountable barriers, such as political,
ethical, religious, and others.

'This was actually suggested by the Russian musicologist N. A. Garbuzov in 1948 in his book
entitled “Zonal Nature of the Human Aural Perception (in Russian), published by the Academy of
Sciences of the USSR in Moscow and Leningrad.

"'The famous systematic collection of 24 preludes and 24 fugues, each written in all 12 major and
12 minor keys, which are known under the German name “Das Wohltemperierte Klavier” (The
Well-Tempered Clavier), were composed by Johann Sebastian Bach to provide an ultimate
practical test that a piano is properly tuned in a well tempered way. After they are all played on the
piano to be tested and each composition is perceived as well tuned, then the piano may be certified
as perfectly well-tempered.
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I hope that this review of how applications of fuzzy logic developed in some
basic areas of human affairs during its first fifty years of existence, focusing
especially on the often striking differences between the expected and actual
developments in many of these areas, is an appropriate and potentially useful
reflection on accomplishments of fuzzy logic on the 50th anniversary of its genesis.
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Meta-Heuristic Optimization of a Fuzzy
Character Recognizer

Alex Tormasi and Laszlé T. Koczy

Abstract Meta-heuristic algorithms are well researched and widely used in
optimization problems. There are several meta-heuristic optimization algorithms
with various concepts and each has its own advantages and disadvantages. Still it is
difficult to decide which method would fit the best to a given problem. In this study
the optimization of a fuzzy rule-base from a classifier, more specifically fuzzy
character recognizer is used as the reference problem and the aim of the research
was to investigate the behavior of selected meta-heuristic optimization techniques
in order to develop a multi meta-heuristic algorithm.

Keywords Fuzzy systems - Fuzzy rule-base optimization - Bacterial evolutionary
algorithm Big bang—big crunch algorithm - Imperialist competitive algorithm -
Particle swarm optimization - Multi meta-heuristics

1 Introduction

Genetic [1], bacterial [2] and other evolutionary and population based meta-heuristic
methods [3, 4] are widely used [5] in various computational intelligence related
optimization problems including the tuning of fuzzy sets [6] and other parameters of
fuzzy rule-based systems [7, 8]. It has both theoretical and technical significance to
have a deep knowledge of the behavior of meta-heuristic optimization techniques in
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fuzzy rule-base optimization in order to develop new, more efficient and accurate
models. The aim of this study was not to find the optimal fuzzy rule-base for a
discrete classifier, more precisely a character recognizer system [9], but to study how
the meta-heuristic optimization algorithms handle a given problem under certain
conditions, to find out which are their most sensitive parameters and how they could
be improved — if possible at all.

The investigated meta-heuristics [2-4, 10] were selected according to actual
trends in the field and to cover various approaches to optimization algorithms. The
paper also includes results of a multi meta-heuristic [11-13] experiment, where
there is a switch between various optimization algorithms, in order to achieve lower
resource usage with faster convergence to the (quasy)optimum.

Various fuzzy systems are well researched and used in a wide scope of prob-
lems; and in many cases these solutions are more accurate and/or more efficient
compared to other conventional methods. The simple way of knowledge repre-
sentation by fuzzy sets makes these systems a great subject for experimenting with
meta-heuristic optimization. A fuzzy rule-based classifier [14—16], more accurately,
a fuzzy character recognizer [17] was selected as the sample problem used in the
experiment. The reasons of this choice were the presence of fuzzy systems in the
problem, the very wide applicability of the classifiers (including theoretical and
technical aspects), and the previous in-detail knowledge of the system and of the
dataset. The meta-heuristic algorithms had to be extended to work with multiple
populations without the ability of migration in order to handle the special features
of the problem.

The paper consists of five sections; after the introduction in Sect. 2, the studied
meta-heuristic methods are summarized including the modifications made to them
done in order to fit the sample problem. It is followed by the details of the opti-
mization task (the recognizer engine), the used/investigated parameters and other
aspects of the experiment. The results of the study are presented and interpreted
from various aspects in Sect. 4. Section 5 summarizes the results of the presented
work and discusses the possible directions for a future research.

2 Meta-Heuristic Methods Studied

2.1 Bacterial Evolutionary Algorithm

The Bacterial Evolutionary Algorithm (BEA) [2] is inspired by the evolutional
processes of bacteria. Each bacterium in the population represents a solution in the
problem space.

The algorithm uses two main evolutionary operators the bacterial mutation and
the gene transfer; the first step of the algorithm is the bacterial mutation. Each
bacterium is selected individually and cloned a maximal number of times. Each
randomly selected allele of the clones is modified randomly, the modified allele of
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the alternative bacterium (or the original one’s) together with the best result is
copied to all other clones; this step is repeated until all the alleles have been
selected.

The second step of the algorithm is the gene transfer (infection), in which the
population is sorted by the goodness of the bacteria and divided into two subsets;
the set of “good” and the set of “bad” bacteria. A randomly selected allele of a
random bacterium from the group of good bacteria is copied to a randomly selected
bad bacterium. This step is repeated until the algorithm reaches the maximum
number of infections.

The above steps of the algorithm are repeated until the maximum number of
generations specified previously has been reached or until other termination con-
ditions (like 100 % result) have been satisfied (as seen on Fig. 1).

Fig. 1 Flowchart of the
bacterial evolutionary

algorithm

Create initial
population

Apply bacterial
mutation

Apply gene
transfer

ax. gen. or 100%
reached?

2.2 Big Bang-Big Crunch Algorithm

The Big Bang-Big Crunch optimization algorithm [3] uses the concept of a physical
cosmology theory. In this theory the universe expands during the Big Bang event
and then it collapses (Big Crunch) into a black hole (repeatedly). The candidate
solutions are points in the search space; these entities are randomly generated in the
(complete) problem space during the initialization step. In the beginning there could
be a great number of points, which will decrease in the next generations of the
universe.

The algorithm can be divided into two main parts, one is the Big Bang phase and
the other is the Big Crunch phase. These steps are repeated until one of the ter-
mination conditions is satisfied.
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The points weighted by their fitness are used to determine the center of gravity
for the next generation of the universe. In the next phase the search space is
narrowed down around this new center. One of the greatest advantages of this
algorithm is the fast decrease of the search space, where the dimensions are handled
individually; in the other hand this property of the method causes its main disad-
vantage: it often converges to a local optimum instead of the global optimum.

2.3 Imperialist Competitive Algorithm

The Imperialist Competitive Algorithm (ICA) [4] is an optimization algorithm
inspired by imperialistic competition, where the points (candidate solutions) in the
problem space are the countries. Initial countries are generated randomly over the
problem space and their strength is calculated by the cost function. The countries
with greater strength are the imperialists, while the weaker solutions are the colo-
nies; empires are formed by imperialists taking control over colonies.

The algorithm uses two main operators in the first part: the assimilation and the
revolution; during assimilation the colonies are approaching the imperialist country
(in the problem space), while in the revolution phase the position of some colonies
in the problem space are changed. Colonies may turn over the imperialists by
reaching a better position during their movements in the search space caused by the
previously described operators.

Imperialist competition is the second part of the algorithm. The colonies could
be taken from the weakest empire by the stronger ones; the goal of each empire to
eliminate others by taking over them. The power of an empire is calculated from
the aggregated strength of the imperialist and the colonies. The method to calculate
the power of an empire must ensure that its power will increase even if it takes over
the weakest colony, in other words an empire cannot increase its power by losing its
weakest colony. The above steps are repeated until the stop condition is not satisfied
as in Fig. 2.

2.4 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) [10] uses the simplified model of the
dynamics of movements of various animal swarms (or particles). The solutions are
represented by the particles in the search domain; each particle has a position and a
speed vector. The evolution of the population does not use evolutionary operators
unlike in genetic algorithms [1].

The orientation and the speed of the particles are influenced by all other parti-
cles. An individual particle moves towards the particle with the best local- or global
solution and is influenced by its personal best position.
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Fig. 2 Flowchart of the
imperialist competitive

algorithm
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3 Optimization Task and Experiment Properties

3.1 Optimization Task

Basic Concept, Properties and Limitations.

Four key features were defined at the beginning of the development of the

recognition engine:

1. Accuracy: it has to reach an acceptable recognition rate,
or better than other accepted methods.
2. Efficiency: the methods must fit the user’s requirements

i.e. at least as good as,

in response time and in

resources of hardware (complex geometrical transformations and other mathe-

matical functions should be avoided).
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3. Flexibility of the alphabet: the alphabet must be easily modifiable to support
various alphabets and context-sensitive recognition.
4. Learning: it should be able to learn user-specific writing style.

The general characteristics and properties of fuzzy systems enable them to satisfy
all the features considered above. This fact led us to use fuzzy inference method for
the recognition method. Fuzzy-Based Character Recognizer (FUBAR) is a family of
algorithms of various single-stroke and multi-stroke hand printed (handwritten,
non-cursive, capital letters) character recognition engines. The designed system is a
personalized online recognizer, which means it processes digital ink and deploys
user-specific information. The basic concept of the designed method is shown in
Fig. 3.

b
‘r‘i:>
-

Fig. 3 Concept of the FUBAR engine

Input Conditioning and Handling.

The input signal of the algorithm consists of two-dimensional (x, y) coordinates in
chronological order, representing the pen-movement (stroke). In unistroke (or
single-stroke) recognizers, letters are represented by a single stroke; while in multi-
stroke systems each symbol is represented by any numbers of strokes (sub-strokes).
The FUBAR algorithm merges the multi-strokes into one unistroke and handles it
accordingly.

Usually, the received signal is non-continuous as a result of the bottlenecks of
the hardware, which causes information loss during recording the pen-movement;
this information-loss causes difficulties in the processing, because the positions of
the missing coordinates thus become non-deterministic. The received signal must
be normalized for further processing and better recognition rate. In the FUBAR
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algorithm family the points of the received signal are re-sampled; the points
between a given (Euclidean) distance from the reference point are filtered out. The
re-sampling of the strokes also has an anti-aliasing property.

Feature Extraction.

FUBAR uses two kinds of stroke features for the recognition: (1) the width/
height ratio of the stroke and (2) the average number of points in the rows and
columns of the grid drawn around the stroke. The first member of the FUBAR
family used a crisp grid (with sharp borders) for the feature extraction, but the
system reached a low average recognition rate as some of the users started to write
faster and use italic writing style The sampled points of the strokes of oblique and
normal characters could be located in completely different rows and columns of the
grid, which caused huge overlap between the features of various letters. Other
methods are rotating the input characters to avoid the negative effects of the italic
writing style, but those methods use complex mathematical transformations, which
dramatically increase the computational complexity of the method. To resolve the
problems caused by the italic writing style, fuzzy grids [18, 19] were proposed. In
fuzzy grids the rows and columns of the grid are defined by fuzzy sets. It can be
also considered as a transformation of the stroke into a fuzzy space. The points in a
fuzzy grid may belong to two different columns or rows at the same time with
various membership values as seen in Fig. 4.

Fig. 4 Concept of fuzzy grids

Hrow2 Hrow4
Hrow3

Hrow1

Inference.

In the designed recognition engine a fuzzy rule-based inference method [7, 8] is
used. Each symbol in the alphabet is represented by a single rule. The input
parameters of the rules are the features described above; the output parameter of the
rules is the degree of matching between the features of the input stroke and the
stored rules as seen in Fig. 5. FUBAR returns the character associated to the best
matching rule after the rule evaluation phase.
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Fig. 5 Fuzzy rule describing a character

3.2 Extensions of Meta-Heuristic Methods

Each algorithm is extended to use multiple populations without the option of
migration. This is an important modification in order to handle the various char-
acters independently and to avoid the overlap between the fuzzy sets representing
the features of various characters. During the evaluation of candidate solutions the
best rules are used from each population.

The initial populations are randomly generated in the original algorithms; in
order to switch between the meta-heuristics, the algorithms must support to use
predetermined populations.

4 Results

4.1 Rule Optimization from Scratch

Bacterial Evolutionary Algorithm.

In this experiment various population sizes, number of clones and number of
gene transfers (infections) were used. Tests were performed with the combination of
each parameter with values between 10 and 30 (increased by 5 in each different
test). The fourth parameter was affecting the bacterial mutation operator. If the
mutation parameter was set to “tolerant”, it accepted a new allele when the system
had the same or better result as with the original allele value; otherwise (“strict”) it
accepted only the mutation from clones with better results. The maximum number
of generations was set to 100.

The results reflected that the algorithm reached the same results (or with
insignificant difference) for various parameter values, except for the mutation
parameter. If it set to “strict”, the algorithm was stuck at the same point during the
process.

The best result (0.44 error rate) was achieved when the size of the population,
the number of clones and the number of infections both were set to 10 and the
mutation type was set to “tolerant”. The average error rates/generations are shown
in Fig. 6 for the training dataset and in Fig. 7 for the validation set.
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Fig. 6 Error rates of BEA from flat sets on the training data
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Fig. 7 Error rates of BEA from flat sets on the validation data

Big Bang-Big Crunch Algorithm.

The effect of the number of generations and the size of the population were
investigated in this algorithm. The number of generations was changed between 50
and 100, while the size of the population was selected between 10 and 50 (step size
was 10 in both parameters). The results showed that the change of these parameters
does not significantly affect the results; the distribution of the error rate was the
same for each scenario, however there was a slightly greater chance to find a better
quasy-optimum after more generations. The best result (0.11 error rate) was
achieved in 70 generations and population size 10. The best, the worst and the
average convergence of the error rates/generations for the training dataset is in
Fig. 8 and for the validation data is in Fig. 9.
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Fig. 8 Error rates of BBBC from flat sets on the training data
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Fig. 9 Error rates of BBBC from flat sets on the validation data

The average error rates are more close to the worst case scenario compared to the
best results as it can be seen in the figures above.

Imperialist Competitive Algorithm.

At the testing of the ICA algorithm the number of countries was changed
between 10 and 30 and the number of generations was between 50 and 100 (the step
was 10 in both cases). The results indicated that the number of generations over 50
did not have any effect on the results, while the greater number of the countries did
result in lower error rates. The best result (0.04 error rate) was achieved in 50
generations and the number of countries was 30. Worst, average and best error
rates/generations for the validation set are shown in Fig. 10 (with 10 countries), in
Fig. 11 (with 20 countries) and in Fig. 12 (with 30 countries).
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Fig. 10 Error rates of ICA from flat sets on the validation data with 10 countries
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Particle Swarm Algorithm.

The number of generations was between 50 and 100, while the size of the swarm
was between 10 and 30 during the test of the Particle Swarm method. The best
result (0.32 error rate) was achieved with swarm size of 20 and in 60 generations.
The results are indicating that, the larger swarm size slightly increases the proba-
bility of a better result. Worst, best and average error rates/generations for vali-
dation set are shown in the figures below (Figs. 13, 14 and 15).
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0,8 -
06 -\l\‘-‘-—l-I—._l-.._.‘---.-____ o

i isssssnsasa

04
0,2

Error rate

0 +—4——r—+—r—r—r—rrrrrrr T T T T T T T T T T T

13 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Generation

Fig. 13 Error rates of PSA from flat sets on the validation data with 10 particles
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Fig. 14 Error rates of PSA from flat sets on the validation data with 20 particles
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Fig. 15 Error rates of PSA from flat sets on the validation data with 30 particles

4.2 Rule Optimization with Multi Meta-Heuristics

In this experiment a previous test population was used as a starting point for each
algorithm; this initial population was selected from a BBBC algorithm experiment.
At generation 40 and at error rate of 0.12 the population was backed up and later
loaded into each algorithm several times.

The lowest error rate in the worst cases was achieved by the ICA (0.09), while
BEA, PSA and BBBC reached the error rate of 0.12, 0.13 and 0.13 respectively
(Fig. 16).

ICA —=— BEA ——PSO —BBBC

Error rate

0+ T T T T T T T T T T T e T T
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Generation

Fig. 16 Worst error rates of BEA, BBBC, ICA, PSA

The lowest error rate in the best scenarios was achieved by the PSA (0.048), but
the BBBC and ICA algorithms were performing only slightly worse (0.05 error
rate), while the BEA algorithm could not achieve better error rate than 0.078
(Fig. 17).
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Fig. 17 Best error rates of BEA, BBBC, ICA, PSA

The best performing algorithm in average was the ICA with the error rate of
0.0778, the second one was the PSA with a slightly higher error rate 0.0779, while
the BBBC reached 0.1 and the BEA produced the error rate of 0.114 (Fig. 18)
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Fig. 18 Average error rates of BEA, BBBC, ICA, PSA

The Imperialist Competitive Algorithm and the Particle Swarm Algorithm per-
formed best during the experiment in all scenarios, while the Big Bang—Big Crunch
algorithm had the second worse results in average. The Bacterial Evolutionary
Algorithm produced the worst results in all three scenarios, but all its results were
close to each other.

5 Conclusions and Discussions

The aim of this research was to investigate the behavior of meta-heuristic algo-
rithms applied on a fuzzy rule-based classifier (multi-stroke character recognizer)
system.
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The experiment suggests that the algorithms are not enough sensitive for their
main parameters (population size, number of generations) to reach higher accuracy
without a significant increase in the computational time. A more detailed test of
other algorithm-specific parameters should be executed in order to find a low-cost
way of enhancing their effectiveness.

The results are showing that the ICA algorithm could reach the lowest error rate
(0.04), when the rule-base had to be created from scratch; the second best results
(0.11) were achieved by the BBBC algorithm. The worst result was produced by the
BEA with the error rate of 0.44, while the PSA could decrease the error rate to 0.32.

It is also important to consider that the average generations evaluated in one
second for the BEA, BBBC, ICA and PSA were 0.0667, 4, 0.667 and 1 respectively
(in the experiment environment). The ICA is 10 times faster than the BEA and it
can reach much lower error rates. The PSA is 33 % faster and the BBBC is about 6
times faster than the ICA, while their optimization performances are very close.
This means that it might be beneficial to combine these methods if we could switch
between the algorithms according to the dynamics of the population, the properties
of the problem and the algorithms.

The BBBC and PSA algorithms could be a good choice to start the optimization
process, because it is able to reach average results with a very low cost, but due to
its disadvantages (convergence to local optimum) it does not worth it to use it
during the optimization. In some scenarios they could perform same or slightly
better as the ICA, but it is more like a matter of random situations. BBBC and PSA
should be modified to avoid local optimum solutions (i.e. “anomalies” in the BBBC
algorithm which could move the center of the universe from these points or restore
some parts of the universe) without significantly increasing their processing time.

The overall performance of ICA algorithm was the best, but the evaluation time
of generations is significantly higher compared to BBBC and PSA. It might worth
to use ICA instead of the other algorithms, but in some cases it does not perform
that much better than BBBC and PSA, which would make it reasonable to use it
(considering its processing time).

The general properties of the BEA algorithm made it “stable” and it has its own
advantages despite its low results and high computational time. The algorithm
should be improved by reducing its time consuming computations.

The next aim is to research a simple and automatic procedure to test and
investigate the characteristics and other features of the population, where the pre-
sented algorithms are performing best (in terms of results and resource require-
ments). Using this knowledge a more extended alternative method for [BK] might
be developed, which would be able to switch between more than two meta-heuristic
optimization algorithms. The planned method would change to a new optimization
algorithm if the properties of the “environment” and the population are indicating
that another algorithm could be more successful (have better convergence or
solution) in order to save resource.
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Additive Fuzzy Systems as Generalized
Probability Mixture Models

Bart Kosko

Abstract Additive fuzzy systems generalize the popular mixture-density models of
machine learning. Additive fuzzy systems map inputs to outputs by summing fired
then-parts sets and then taking the centroid of the sum. This additive structure
produces a simple convex structure: Outputs are convex combinations of the cen-
troids of the fired then-part sets. Additive systems are uniform function approxi-
mators and admit simple learning laws that grow and tune rules from sample data.
They also behave as conditional expectations with conditional variances and other
higher moment that describe their uncertainty. But they suffer from exponential rule
explosion in high dimensions. Extending finite-rule additive systems to fuzzy
systems with continuum-many rules overcomes the problem of rule explosion if a
higher-level mixture structure acts as a system of tunable meta-rules. Monte Carlo
sampling can then compute fuzzy-system outputs.

Keywords Additive fuzzy system . Mixture density models + Compounding -
Function approximation + Fuzzy approximation theorem - Learning laws -
Conditional expectations « Convex sums « E-M algorithm - Monte carlo simulation -
Importance sampling « Continuum-many fuzzy rules

1 Centroidal Fuzzy Systems as Statistical Estimators

This chapter reviews and extends the main mathematical properties of additive
fuzzy systems [1-9]. Additive fuzzy systems exploit the convex-sum structure that
results from additively combining fired if-then rules. They generalize mixture-
density models from machine learning and pattern recognition because such mix-
tures are convex sums that do not depend on an input value. Additive fuzzy systems
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admit simple gradient-descent learnings laws and are uniform function approxi-
mators on compact sets. But they suffer from exponential rule explosion in high
dimensions. This curse of dimensionality limits modeling with additive fuzzy
systems and limits tuning them with sample data. Extending finite-rule additive
fuzzy systems to continuum-many fuzzy rules overcomes the problem of rule
explosion. It allows the user to define higher-level fuzzy meta-rules with a mixture
structure and then use modern statistical techniques to tune such continuum-rule
additive systems. This analysis turns on a probabilistic interpretation of fuzzy
systems. This first section shows that such a probabilistic interpretation applies to
all centroidal fuzzy systems even if they do not additively combine fired rules.

A fuzzy system is a mapping F:R" — R. It uses a set of fuzzy if-then rules to
convert a vector input x to an output F(x). There is no loss of generality if the fuzzy
system is scalar and thus if it maps to the real line R. All results still hold with
appropriate vector notation for vector-valued fuzzy systems F: R" — R”.

We first show that any centroidal fuzzy system defines a conditional expectation
and hence is a probabilistic or statistical system. The fuzzy system need not be
additive. A non-additive system could combine rules through a maximum operation
or through any other aggregation operation [10-13]. Early fuzzy systems often
combined outputs with a maximum or supremum operation.

A centroidal output suffices to produce a conditional expectation. So the con-
ditional-expectation result does not require an independent probabilistic assump-
tion. It follows instead from just the nonnegativity and the integrability of the then-
part fuzzy sets that all fuzzy if-then rules use. We first state some notation for fuzzy
systems and then state and prove the conditional-expectation result as Theorem 1.

A centroidal fuzzy system F: R" — R is a fuzzy system that computes the output
F(x) by taking the centroid of a finite number m of combined “fired” then-part sets:
F(x) = Centroid(B(x)). Later we will drop the finite assumption. The term B(x)
stands for the combined fired then-parts. The argument x implies that the vector
input x has fired the m rules. The fired combination B(x) formally is any non-
negative function b: RXR" — R ™ that has a finite integral. The jth rule Ry, . 5, has
the linguistic form “If X =A; then Y =B;” for if-part fuzzy set A;CR" and scalar
then-part fuzzy set B;CR. The unfired then-part set B; has set function
bj:R — [0, 1]. But its fired version B;j(x) has a two-place argument and thus cor-
responds to the set function b;(x,y): R"XR — [0, 1] for vector input x€R". But we
still write the set function in single-argument notation b;(x) for simplicity. The rule
Ry; - p, is a fuzzy subset of the input-output product space R"XR because all input-
output pairs (x, y) satisfy the rule to some degree. So the rule corresponds to a two-
valued set function 74, p: R"XR — [0, 1].

The n-dimensional fuzzy set A; corresponds to a joint set membership or mul-
tivalued indicator function a;: R" — [0, 1]. Users often assume in practice that the
joint membership function factors into a product of scalar membership functions:
ai(x) =TI lajl? (x*) where each factor set AJ’.‘ CR has set function a]’F :R— 0, 1] for

row vector x=(x!, ..., x"). Earlier fuzzy systems sometimes formed the joint set

function @; by taking pairwise minima ;(x) =min(a; (x'), ...,a;(x")) or some
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other pairwise triangular-norm operation. The minimum function ignores the
information in all scalar inputs except the smallest one when the inputs differ. The
standard additive fuzzy systems below always work with the simpler product
factorization. The product function preserves the relative values of the scalar inputs.
The then-part set function can be generalized set function. The then-part fuzzy sets
B; need only have positive and integral set functions b;: R - R™* because of the
normalization involved in taking the centroid. They do not need to map to the unit
interval.

Now suppose the vector input x= (x!, ..., x") activates the scalar fuzzy system
F:R" - R to produce the combined rule firings B(x). Then Theorem 1 states that
taking the centroid results in a conditional expectation for any fuzzy system that
combines rules to produce B(x).

Theorem 1 Every centroidal fuzzy system is a conditional expectation:
F(x)=E[Y|X=x].

Proof The theorem follows from the definition of the centroid and from the non-
negativity and integrability of the then-part sets B;. We also assume that the input x
leads to nontrivial rule firings. So it leads to a nonzero combination of fired rules
B(x): B(x)>0. Then O

F(x) = Centroid(B(x)) (1)

Iy b(x) dy

=T bW dy

_ STy b(xy) dy
S, b(x.y) dy

_ 7 b(x,y)
-/ [fi"m boy) dy] b @

- /°° yp(y|%) dy (5)

E[Y|X=4]. (6)

__boy)
JZ b(x.y) dy
[, p(y|x) dy=1 holds from the nonnegativity and integrability of the b function
if b(x,¥)>0. So p(y|x) is a proper conditional probability density function. Then
E[Y|X=x] is a realization of the condition-expectation random variable E[Y | X].
QED.

The result follows because p(y | x) = is nonnegative and because
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Theorem 1 yields a system conditional variance V[Y|X =x] and higher-order
moments so long as the appropriate integrals exist:

V[Y|X =x]=E[Y*|X =x] - E*[Y|X =x]. (7)

The conditional density p(y|x) gives the second moment as

oo

E[Y?|X=d = / ¥ ply|x) dy. (8)

— 0

The next section gives closed forms for these moments and for other higher-
order moments when the fuzzy systems are not just centroidal but additive.

A word is in order here about just how a given input x fires a rule Ry, -, 5,. Fuzzy
models assume that the input xy belongs to the if-part set A; to degree a;(xp):
aj(xo) = Degree(xo€A;). Then this membership or “fit” (fuzzy unit) value a;(xo)
changes the corresponding then-part B; to produce the fired then-part set Bj(xo) with
set function value bj(xy,y). Viewing the if-part set A; as a probability density
function would give the null result a;(x) =0 for all x, since g; is continuous. We
instead view the input x, as a delta pulse 5(x — xo) centered at xo. Then convolution
gives the proper fit value a;(xo) for the fired if-part set [1, 5]:

[s9)
/ 8(x—xo) aj(x) dx=a;(xo). 9)
— 0o

This convolution result follows from the “sifting” property of the delta function.
It also extends the point fuzzy system to a set fuzzy system that takes an arbitrary
continuous fuzzy set A as input if we define the corresponding activation in terms of
a more general inner product:

/00 a(x) aj(x) dx=a;(A). (10)

— 00

Then the proof of Theorem 1 still gives the system output as F(A) = E[Y | X =A].
All the standard-additive results below admit such a set-input extension.

2 Additive Fuzzy Systems as Convex Combinations
of Centroids

Additive fuzzy systems add fired then-part sets to compute the combined set B(x).
This leads to the central fact of additive systems: Their outputs equal the convex
combination of the centroids of the fired then-part sets.
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This convex structure carries over into many properties of centroidal additive
systems. It starts with the basic “mixture” fact in Proposition 1 below that the global
output conditional probability density p(y | x) is itself a convex combination of the
m then-part conditional probabilities. This convex structure leads in particular to
simple and practical forms for the conditional expectation and conditional variance.
Theorem 3 below shows that the global conditional mean (6) equals a convex sum
of local conditional means. These conditional means are local or rule-specific in the
sense that their conditional probability density arises from the shape of their cor-
responding fired then-part set.

Theorem 3 also shows that the conditional variance decomposes into two convex
sums. The first sum averages the uncertainty that arises from the shapes of the then-
part sets. So here set shape matters. This result differs from simple function
approximation where only the shape of the if-part sets controls the approximation
for default then-part sets. This then-part shape dependence contrasts with many
fuzzy applications that simply replace the then-part sets with spikes centered at
what would otherwise be a then-part set’s centroid. Such a then-part spike simplifies
some computations but it implicitly assumes total certainly about the then-part of
the rule. The second sum averages the uncertainty that arises from interpolating
between rule centroids to produce the system output. This term measures the
inherent uncertainty in the fuzzy system that results from such interpolation. The
other higher-order conditional moments in Theorem 3 involve similar convex sums
and interpolations.

We first prove that all additive centroidal fuzzy systems are convex sums of fired
then-part centroids. An additive fuzzy system combines the m fired then part sets by
adding them:

B(x) =23 w; Bj(x) (11)

for positive rule weights w;>0. The rule weights need not sum to unity. And they
can depend on the input x. They drop out of the centroidal output F(x) if they are all

equal: wy; =---=w,. Then the combined set B(x) has a generalized set function
b(y|x) for each input x as y ranges over the range space R:
b(y|x) = X5=w; bi(y [ x). (12)

We here use the conditional notation b;(y|x): R"XR — [0, 1] for the set func-
tion of the fired then-part set B;(x). So the inputs x parametrize the fired then-part
sets.

Each fired then-part set Bj(x) has an area or volume V;(x):

Vo= [ bilna. (13)

We again assume that all such integrals are finite and positive. This gives in turn
an input-dependent centroid ¢;(x) for fired then-part set B;(x):
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i ffybyl) Y AN
o=t = o [ b (14)

Then Theorem 2 states that all additive centroidal fuzzy systems equal a convex
combination of fired then-part centroids.

Theorem 2 Additive centroidal systems are convex combinations of fired then-part
centroids:

F(x) =21 1pi(x) ¢(x). (15)
The convex coefficients p;(x) have the ratio form

w; Vi(x)

pilx)= m (16)
Proof.
_ , T yb(y|x) dy
F(x) = Centroid(B(x)) = W (17)
f— y Zj IW] )dy
- f_ Zk 1b d)’ (18)
}"1Wfff° yb‘yl x) dy
Zk 1Wk f_ x) dy (19)
X Vi(x) [7f'°°yvﬁg|x> dy]
- 21wk Vi(x) (20)
3w Vi) o)
X e Velx) 2D
m w; Vi(x)
s ] o -
=Y pix) ¢i(x). (23)

The coefficients p;(x) are convex because they are nonnegative and sum to unity
by (16). Q.E.D. I

The convex-sum structure of Theorem 2 underlies much of the power of additive
fuzzy systems. An important example is universal function approximation.
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Centroidal additive fuzzy systems F can uniformly approximate any continuous
function f: KCR" — R on a compact set K [2, 5]: |F(x) —f(x)| <e for all x given
any initial choice of the error level £>0. The heart of the proof in the scalar case is
that convexity traps the output F(x) between the smallest and largest centroids:
Cimin (X) <F (x) <Cmax (x). A similar result holds component-wise in higher dimensions
because the vector output F(x) lies in a centroidal hyper-rectangle. So in principle
we can always find some set of fuzzy rules that makes an additive fuzzy system as
close as we wish to any continuous function. The uniform approximation does not
require either that the if-part sets be fuzzy or that the then-part sets be fuzzy. Binary
rectangles still produce uniform function approximators even if the resulting fuzzy
systems are not as smooth as fuzzy systems with sets based on Gaussian or Cauchy
or other smooth functions. So a fuzzy system need not be fuzzy at all. The raw
approximation power comes not from working with fuzzy matters of degree. It
comes instead from the additive system’s use of parallel if-then rules and its
convexity.

A second example of this convex structure occurs in rule adaptation or learning.
The ratio structure in (21) allows a direct application of the quotient rule of the
differential calculus. Convexity leads to a simple form for the learning gradient term

ngj for the rule weight w; [5, 8]: &£ = pi) [¢j(x) = F(x)]. This leads to the squared-

aw; wj

pi(x)
wi()
vised error term &(7) =d(r) — F(x(¢)) requires knowledge of the system’s desired
outcome d(t) at a given time instant. The learning coefficients y, usually decrease
linearly in accord with convergence principles from stochastic approximation. The
same form of learning law holds for the then-part volume V;(x) and the if-part set
function a;. But there are two more partial derivatives to unpack in the if-part set-
function case because the set function factors and because each factor depends on
shape parameters such as the location and scale of the scalar factor set. The centroid

oF

has an even simpler learning term: §- = p;(x) because of the convex structure. Then
7

gradient learning can use sample data to tune these system parameters. The simplest

error-based learning law w;(r + 1) =w;(r) + p,e(1) 22 [¢; — F(x)] where the super-

case minimizes the squared error 1(f(x) — F(x))* for some known or unknown
sample function f. Then the fuzzy system will quickly approximate the sampled
function given enough representative samples and enough training iterations. The
rules quickly move to cover the extrema or turning points of f. This reflects the
theorem that optimal additive rules cover extrema [3]. Unsupervised clustering
algorithms can help find these optimal rules in practice [1]. Such data-driven
clusters area also a good way to initialize the fuzzy system. But the number of rules
involved tends to grow exponentially with the input dimension because the fuzzy
rules define a graph cover in the input-output product space. This curse of
dimensionality tightly constrains the above learning laws when the fuzzy system
has as few as three input dimensions [8].

The next theorem shows how the convex structure in Theorem 2 passes into the
structure of the additive system’s conditional expectation and conditional variance
and indeed into all its higher conditional moments. The key insight is that additivity
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induces convexity in the global conditional probability density function p(y|x).
This density decomposes into a convex sum of the m local rule-specific conditional
probability density functions pp, (y|x):

CIE)
P10 = 0 (24)

The normalizing denominator is just the input-dependent area or volume V;(x)
from (13). This “mixture” result is important enough to state as a separate
proposition.

Proposition 1 p(y|x)=X_p;(x) ps,(y|x) for p;(x) in (16).

Proof.

L
POI= (25)

Z,"n=1w./‘ bi(y|x)

= ST b |A) & (26)
S Vi) [

=S i) @7)

-3 [%] ps, (v | ) from (24) (28)

== 1pj(x) pg,(y|x) from (16). Q.E.D. (29)

We can now state and prove the key theorem on the conditional moments of all
additive centroidal systems. O

Theorem 3 All higher-order moments of additive centroidal fuzzy systems are
convex sums:

(@) ElY [X=x]=%_ pi(x) ¢j(x) = F(x) (30)

2

() VIY[X=x= 3 pi(x) o3, () + T 1pi(x) [e(x) = F(x)] (31)

(C) E[(Y—E[Y|X=x)!|X=x]= YL ipix) >, (?) EH/(X)[(Y—c,»(x))l](c,-(x) — F(x))*~" for positive integer k.

(32)
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Proof. Result (a) restates Theorems 1 and 2. Result (b) uses Proposition 1:

VI xX=x= [ O-E¥[X=2p0 10 & )
= [ o= EW IX=aEL 0 pa 1) 34

") /  [0-6) + (@ -F@) 00 dy  (35)

— 0

from Theorem 1

) [ " (=)o (v x) dy

+ S loW -FOR [ 019 d (36)
+25 pe0) - FE) [ 0= opn 1) &

2

}n: 1Pj(x) Gé,(x) +ij= 1Pj(%) [Cj(x) —F(x)] (37)

because the cross term in (36) equals zero since [ f’w y s (y|x) dy
=¢;j(x) =Ep (v [Y] and because aéj (x)= ff’oo (y—EBj(x)[Y])2pB/ (y|x) dy
The conditional higher-order moments (c) follow similarly from the binomial

theorem (p+¢)" =3} ( > p*q"~* for real numbers p and g and the combinatorial
ffici ") = 5 Th
coetlicients k = m en

(o]

E[(Y—E[Y|X=x])k|X=x]=/ (v=ElY |X=x))" 3L 1pi(x) ps,(y | x) dy (38)

— 00

Lo [ 0-aw)+eW-FO))mon e 9)

— o0

) [ 2 (5)o- ot e -Fw ae o @0

W) ][ =0t b1 @60 - P @)

— o0
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=5 0) Zhes () Buiol (=60 Yg0) - F0) . QED. (42

The penalty term (cj(x) — F (x))* appears in the conditional variance and in all
the conditional higher-order moments. It measures the uncertainty due to rule
interpolation in the convex-sum output F(x). The jth rule tries in effect to make the
global output F(x) look like its own centroidal output c;(x). The jth rule tends to
have the most weight in the convex sum if the rule fires dead-on and thus if
pj(x)~ 1 tends to hold. Then c;(x) ~ F(x) tends to hold and thus the interpolation
penalty is small. This is easier to see with the simpler standard additive models in
the next section. The quadratic penalty tends to be higher for rules whose if-parts
fire only slightly. The penalty is most severe for inputs that occur where the if-part
sets are sparse.

The conditional variance gives a natural measure of confidence in the fuzzy
system output F(x). There is no need to invoke Type-2 fuzzy sets or other ad hoc
schemes to capture this second-order uncertainty of a given fuzzy output. Com-
puting the conditional variance involves no more computation than what existing
fuzzy models already use to compute the first-order output F(x). So it has arguably
been a needless oversight not to give users this confidence information. The first
published plot of the conditional variance of a fuzzy system appeared as Fig. 4 in
the 2005 paper [9]. The figure shows that rules involving one portion of the input
space have substantially more confidence than the rest.

We conclude this section with two more extensions of the additive model. The
first is the extension of the conditional covariance when the fuzzy system is a
vector-valued fuzzy system F: R" — R”. Then the conditional variance extends to a
p-by-p conditional covariance matrix Kyx—:

Kyix=x= 22 1pi(%) Krix=n 5,0 + 27 12i(x) (¢(x) = F(0)(e(x) = F(x))". (43)

Both the centroid ¢j(x) and output F(x) are here p-dimensional column vectors
with the same definitions as before. The local conditional covariance matrix
Kyx=x8,x) = Epn[(Y — ¢;(x)) (Y = c(x))T] uses the conditional density pg () (v | x).
Users can calculate these local matrices directly for simple shapes of the then-part
sets. The weak law of large numbers also allows sample covariance matrices to
approximate these population conditional covariance matrices if there are enough
random samples and if all appropriate moments exist.

The second extension is to combining multiple fuzzy systems. The fuzzy sys-
tems themselves need not be additive.

Suppose there are g separate real-valued fuzzy systems Fi, ..., F,. The kth
fuzzy system F; somehow produces its own combined rule firings B*(x). We also
assign the nonnegative system weight w* to Fy.. Then we can additively combine the
weighted rule firings w*B¥(x) to give the multi-system combined firings
B(x)=Y7_,w'B*(x). This allows the system to combine rules or throughputs
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rather than simply combining outputs. Taking the centroid gives the global output
as a convex sum of the system centroids: F(x) =Y/ pi(x) cx(x) if ¢ is the system
centroid of B*(x). The result is F(x)=Y7_, pk( ) Fr(x) 1f the g systems are each
centroidal. The output is richer still if each of the g systems is not just centroidal but
additive [5]:

x) = EZ 12 1P, ) (44)
where the convex coefficients are now

ky k 1k
wiwi Vi(x)

X wiwt Vi(x)”

P = (45)

The next section shows that all the above additive results become simpler and
more practical still if the fuzzy systems are standard additive.

3 The Standard Additive Model (SAM): Rule Firing
as Multiplicative Scaling

How exactly does the vector input x € R" fire the jth rule R4, -, 5,7 Standard additive
models give a simple and useful answer: multiplication. We say that an additive
fuzzy system F: R" — R is a standard additive model (SAM) if the fired if-part set
value a;(x) multiplicatively scales the then-part B; [1, 5]:

Bj(x)=a;(x)B; . (46)

The multiplicative scaling shrinks the then-part set B; over the same base. This
scaling leaves the relative structure of the then-part set unchanged. The min-clip
min(a;(x),B;) simply discards all then-part set information above the threshold
a;j(x). The same problem occurs for almost all other triangular-norm functions of
a;j(x) and B;. So a user would need to produce some compelling reason for using
some firing operator other than SAM multiplicative scaling.

The jth rule itself defines a Cartesian “patch” A; X B; or fuzzy subset of the
product space XXY : Ry _p =A;XBj={(x,y) EXXY: x€A; & yEB;}. Now
suppose the vector input is xy. Then convolution gives the fired rule as a product [5]:

/ " 8(x—x0) Ry gy (x.3) dx= / " S—xo) ) BO) dx  (47)

— 0 — 0

:bj(y) /oo 5(}6—)6()) Clj(X) dx (48)

— 00
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=a;j(xo) bj(y). (49)

So a traditional multiplicative Cartesian product leads to the SAM scaling
aj(x)Bj .

The SAM structure greatly simplifies the above results for additive fuzzy sys-
tems. The controlling fact is that a;(x) factors out of the key SAM calculations. This
leads in turn to an important cancellation that converts the local conditional
probability pg,(y | x) to the unconditional probability pp (y):

__ bkl
PB; (y ‘ x) - fiooo bj(y | x) dy (50)

a;(x) bi(y)

= a0 bi(y) dy (51)
g (x?]} ?:28) dy (52)
B % (53)

B bjg | (54)
=ps,(y) (55)

if a;j(x)>0. Zero conditional probability pg (y|x)=0 holds for zero if-part
activations a;(x) =0 so long as the then-part set functions b; are not trivial.

The SAM volume or area V; is a constant that the user can pre-compute in
advance of running the SAM fuzzy system. This also holds for the SAM then-part
centroids c;:

_ Sy b1 dy

SO=T 500 (56)

_ai(x) [Ty bi(y) dy
(%) [T, bi(y) dy (57)
=¢ (58)

since again a;(x)>0 by assumption.
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The SAM structure likewise simplifies Proposition 1 to a convex sum or mixture
of unconditional probability density functions:

pOy[x)=XL1pi(x) 5, (v). (59)

This is the result that directly generalizes the mixture probability model below.
These SAM simplifications now give the SAM Theorem [1, 5, 6] as a special
case of Theorem 2:

Yim Wi 4i(x) Vi ¢

F(x)= "0 60
S ) Vi 0
= ijz 1Pi(%) ¢ (61)
But now the convex coefficients are simpler:
Cl./(x) w; Vj (62)

P = Dhm i (x) wi Vi

This SAM system also enjoys simple forms for adaptation and statistics as well
as for function approximation. One example is the combination of g-many SAM set
systems using (10):

F(A)= Zk 12, 1PJ( ) (63)

for input fuzzy set A. The SAM convex coefficients have the form

whwk ak( ) Vk

k J
“(A) =
p]( ) -1 Em“ whw a; A) V;‘

(64)

if aj(A)= [ a(x) a;(x) dx. Gradient tuning of set-function SAMs can lead to
extremely complicated learning laws for updating the if-part sets [7]. This is not the
case for tuning ordinary point SAMs.

The most important SAM special case historically has been the so-called “center
of gravity” or COG fuzzy system because such systems were the basis of almost all
early applications of fuzzy systems [5, 11, 14]:

2i-19(x) ¢
Yio1 (%)

So a COG corresponds to SAM with equal volumes and equal weights since then
all the volume and weight terms cancel out of the SAM ratio. Some fuzzy engineers
have ignored the shape of the then-part sets and just worked with a “spike” centroid.
This corresponds to interpreting the then-part set B; as a delta function centered at

F(x)= (65)
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the centroid: B;=6(y — ¢;). Then the area or volume of B; integrates to one and thus
Centroid(B;) = ¢; holds from the sifting property of the delta function.

Gaussian sets further simplify the COG model. Using factored if-part set func-
tions a;(x) = [T~ 14} (x*) in the SAM/COG ratio then gives the popular radial basis
functions found in the neural network literature [15-18] when both if-part sets and
then-part sets are Gaussian or truncated-Gaussian sets. The idea for rule generation
here comes out of the theory of probability density estimation: Center a Gaussian
ball at the input vector x and center a Gaussian bell curve at the output value y for a
given data pair (x,y). Then adding up such normalized terms gives a type of
smoothed histogram of the sampled joint probability density function.

Rule weights can depend on then-part-set volumes. This often occurs in
Gaussian SAMs so that a rule with a wide then-part set B; will not have more
influence than the same rule with a thinner then-part set. The wider then-part set has
a larger volume V; and thus has more influence on the output F(x) because the
SAM ratio (60) is increasing in V;. The choice w; = % cancels the volumes in the
VLf makes the width or size of then-part
sets vary inversely with their influence on the output. That roughly captures the
intuition that more uncertain rules should have less overall influence. It also
changes the SAM learning law for the volumes because then [4, 5]

SAM ratio. The more common choice w; =

o =plo - F) (7 + - 22) (66)
=) ) ~ F()] (% -} é) (67)
R CICOROIES (68)
This leads to the volume learning law V;(t+ 1) = V;(r) — p,e(t) &

2 lo- P A

cruder approach simply sets the rule weights equal to the inverse Vanance w; ﬁ

<

The conditional variance of a SAM simplifies to

VIY |X == 3L pi(x) o3, + Tit i) [o(x) - F(x)]? (69)

since the then-part set variances GB no longer depend on the input x. The COG
case simplifies further because all the then- -part variances are the same and thus each
then-part set B; has the same variance 6?. Then the convex sum structure gives the
COG conditional variance as

VIY [X=x]=0"+ X1 pi(x) [¢i(x) = F(x)]’. (70)
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This shows that the shape of the then-part sets matters for higher-order uncer-
tainty even for the simplest COG models because different shapes give different
inherent variances o°. The positive value o> represents the minimal level of
uncertainty that a COG can achieve.

SAM systems also allow exact representation of arbitrary bounded functions
f:R" - R. The Watkins Representation Theorem [19-22] states that a SAM system
F needs only two rules to exactly represent a bounded real function f in the sense
that F(x)=f(x) for all x. Such representation trivializes the usual problem of
exponential rule explosion in fuzzy function approximation. The catch is that the
two if-part set functions build the bounded function f directly into their definition:
a(x)= ::llppff.—__ﬁf} and ap(x) =1 —a;(x). The two rules have the linguistic form “If
X =Athen Y =B;” and “If X =nor A then Y = B,”. The then-part sets B; and B, can
have any shape so long as the infimum of f is the center of B; and the supremum is
the center of B,: ¢; = inf f and ¢, = supf. The volumes or areas can be any positive
value so long as they are equal: V; =V, > 0. Then unity rule weights give

2
_ Zj=laj(x) Vi¢

Fo= Yo 1a(x) Vi (71)

_ al(x) mff — (1 —a](x)) sup f
- a(x)+1—a;(x) (72)

(s S N e “
_(supf—inff>( f f = sup f)+ sup f (73)
=f(x) for all x. (74)

Such SAM representation is especially useful in modern Bayesian statistics
because it allows just two rules to represent either a bounded prior or a bounded
likelihood probability density function. A common conjugate prior is the beta

probability density function f(6) = Beta(a, §) = "*H7 (=07

interval and for positive shape parameters a and f. Here I' denotes the gamma
function I'(a) = [;°x*~'e~*dx. Then a two-rule SAM can exactly represent the

beta density f(0) = Beta(5, 8) with the set function [21] a;(0)=1— %97(1 -0)*

if c;=inff=0 and c;=supf = % (1—71)7(ﬁ)4. The approximation power of

for @ in the unit

SAMs also allows users to go beyond closed-form densities and use rule-defined
priors or likelihoods and still be assured that the resulting fuzzy system will uni-
formly approximate the underlying Bayesian posterior density f(6|x) [21]. This
even holds for hierarchical Bayes systems where the prior density itself depends on
a hyperprior density [22] The above scheme for combining SAMs can combine
rule-represented priors or likelihoods with rule-defined priors or likelihoods into a
single SAM system.
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4 Generalized Mixture Models and Continuum-Many
Rules

We conclude by showing that additive fuzzy systems generalize mixture models
and that they extend to fuzzy systems with continuum-many fuzzy rules.
Mixture models are finite convex combinations of probability density functions

(pdfs) [23]. Such a convex combination mixture of m pdfs fi, ...,f,, gives a new
pdf f with m modes if the pdfs are sufficiently spread out:

fx) =217 (%) (75)

if the nonnegative mixing weights =y, ..., %, sum to unity: Z]_]ﬂ'j: 1. This

convex sum can model taking random samples from a population made up of m-many
subpopulations such as m words or patterns. Then the estimation task is to find the
mixture weights and the parameters of the mixed pdfs. The most popular mixture by
far is the Gaussian mixture where f; is a scalar or vector Gaussian N (4, 6’2)

The mixture sum is not arbitrary. It follows from the elementary theorem on total
probability. Suppose m hypothesis sets Hj, ..., H,, partition the sample space Q.
Suppose the set ECQ represents some observed evidence. Then the theorem on total
probability states that the unconditional probability of the evidence P(E) equals the
convex combination of the prior probabilities P(H;) and the likelihoods P(E | H;):
P(E)=3_,P(H;) P(E|H;). This corresponds to the mixture sum because the
evidence is the input x and because z; is the prior probability of the jth class or
mixture element. So f;(x) =f (x| ) if the conditional density f(x |j) is the likelihood
that we would observe such an x if it came from the jth class or mixture density.

The ubiquitous Expectation-Maximization (EM) algorithm quite often estimates
the mixing weights and means and variances by iteratively maximizing the likeli-
hood function [23]. The class memberships of the m decision classes correspond to
the hidden or latent variables in the EM algorithm. Then carefully injected noise can
always speed up convergence of the EM algorithm [24-26] as it climbs the nearest
hill of likelihood.

Mixture moments follow directly from the convexity of the mixed sum. This
gives the unconditional mean and variance of the random variable X as [23]

E[X] =" 7 (76)

and

VIX| =X 3 02 + X0y [~ EIX])? (77)

if the mixture’s underlying jth random variable X; has pdf f; and thus if it has
mean y; and variance 0]2. We see at once that the mixture mean and variance are
special cases of a SAM fuzzy system’s conditional mean and variance.
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The SAM and other additive systems generalize mixture models by making the
mixture weights x; depend on the input x: 7;(x) =p;(x). This in turn makes the
mixture’s means and variances (and other moments) depend on x and thus become
conditional moments. So mixture models correspond to fixed-input centroidal
additive systems. Then Proposition 1 gives back the defining mixture-density
combination for unfired then-part sets:

p(y)=Xi_1pj pB,(Y)- (78)

Mixture models sample in effect from convex combinations of m suitably nor-
malized then-part sets.

We can extend SAM models to systems with infinitely many fuzzy rules. The
cardinality of the rules can be countably or uncountably infinite. We will work with
the latter continuum case. This follows from the direct extension of mixture models
to compounding models that weight one pdf with another and then integrate out the
continuous mixture index [23]. Our approach will instead impose a higher-level
mixture structure on the continuum of rules.

Suppose now that the real parameter € indexes the continuum-many if-part set
functions ay and the corresponding then-part sets By in continuum-many rules of
the form “If X =Ay then Y = By”. Then integration gives the combined rule firings:

=00
bk = [ o by] ) do (79)

if we assume the integral exists for appropriate nonnegative rule weights wy. The
proof of Theorem 3 still goes through if (definite) integrals replace the finite sums:

F(x)= /pg(x) co dO (80)

and

[27:] (x) Wo Vg
pol) Jap(x) wy Vi dp” (8D)

Consider a simple Gaussian set of rules for a scalar parameter 6. The rules have
vector-Gaussian if-part set functions ay and scalar Gaussian then-part set func-
tionsby: ag(-) =N(0e1, Ky) and bp(y) =N(0, 6?) if @1 denotes the n-vector with
all elements equal to 6. Ky is an n-by-n covariance matrix. It equals the identity
matrix in the simplest or “white” case. Then cy=6 and Vyp=1 since
bo(y) =N(0, 6%). This gives the output F(x) as a simple unconditional expectation
for each x: F(x) = [ pg(x) 6 d0=E,,,)[O]. This approach extends at once to vector
parameters.
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Computing the convex integral for F(x) is more complicated than in the simpler
case of probabilistic compounding. Compounding allows the modeler to pick the
weighting pdf py as a normal or gamma or other well-behaved closed-form pdf. But
the SAM convex-sum py involves a highly nonlinear transformation of continuum-
many if-part set functions ay. This transformation may not be tractable. Integrating
it to produce F(x) can only compound the computational intractability.

A practical solution is to rely on the weak law of large numbers (WLLN)
through Monte Carlo simulation. The WLLN states that the sample mean
X,=13>"_Xc of independent and identically distributed finite-variance random
variables X;,X,, ... converges in probability to the population mean E[X] :
nlingo P(|X, —E[X]| > €)=0 for all £>0. Monte Carlo simulation interprets an

ordinary definite integral f: g(x) dx as the expectation of a random variable that has
a uniform distribution over (a, b) [23]:

[ e tr=-a) [ o0, 2 =-aEix (82)

for X~U(a, b). The user need not integrate the integrand (b —a)g(x). The user
need only compute values (b —a)g(x) for random uniform draws x; from (a,b).
The random draws can come from any uniform random number generator. Then the

WLLN ensures that 1 37| (b—a)g(x)~(b - f g(x)dx for enough ran-
dom draws xj. The variance in the WLLN estlmate decreases linearly with the
number n of draws.

Monte Carlo simulation can estimate the integrals in the continuum-rule SAM
for a given input x. Assume there are n random draws of € from some finite interval
(a,b) for a fuzzy system defined on the compact interval [a, b]. Then

fag )Wngnge

F fa¢ x) wy Vi dop (83)
lZZ:lwk ar(x) Vi ek

~ 84

Ly e—1we ar(x) Vi (84)

— D 1wk ak(x) Vi ¢ )

D=1k ax(x) Vi
= D= 1Px(x (86)

The result has the same convex-sum form as the finite-rule SAM even though the
sums use random choices of rules instead of firing all the rules.
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The final task is to control and shape the overall distribution of the continuum of
fuzzy rules. This allows the fuzzy engineer to define meta-rules at a much higher
level of abstraction. An engineer can also give the wave-like groupings of rules a
linguistic interpretation such as “small negative” or “medium positive” and the like.
The engineer should be able to pick an initial set of such meta-rules just as in the
case of setting up a finite SAM. Then there should be some practical way to tune
these meta-rules with data to give different levels of control or function approxi-
mation. This requires a Bayesian-like approach that puts some probabilistic struc-
ture on the parameter 0: ®~h(0). This corresponds to the old fuzzy-engineering
task of picking the shapes of if-part and then-part sets.

Mixture densities offer a natural way to define fuzzy meta-rules over the con-
tinuum of fuzzy rules. The mixture variable is no longer x. It is now 6. Suppose the
fuzzy engineer wants to impose k-many fuzzy meta-rules. This requires mixing k-
many densities:

h(0) =X 7 fi(0). (87)

The engineer might center the mixture pdfs closer together in regions of the
input space where he desires greater control. An early example of such proximity
control was the fuzzy truck-backer-upper [27]. The truck-and-trailer rig backed up
to a loading dock from a parking lot. Closer and narrower if-part sets near the
loading dock gave finer control near that equilibrium point. A few wide if-part sets
then covered much of the remaining parking lot. The engineer could distribute these
meta-rule mixture pdfs in the same way.

Standard statistical techniques can then compute fuzzy outputs F(x) and tune
the fuzzy meta-rules. Monte Carlo simulation can estimate the output F(x) for a
given x. But the sampling now cannot be from a uniform density in general. That
would always give the same output on average. The sampling must come instead
from the meta-rule mixture density 4(6) itself to reflect the distribution of the meta-
rules. This is just the well-known technique of importance sampling from mixtures
[28]. Then the E-M algorithm or its variants can tune the mixture parameters based
on sampled inputs x.

There is algorithmic irony in using mixture densities to control fuzzy meta-rules
after seeing that the underlying fuzzy rule based systems generalize mixture den-
sities. There is also a loss of the exponential rule explosion that plagues ordinary
finite fuzzy systems. This loss holds because the growth in meta-rules is only linear
in the number & of mixed densities. That shifts much of the computational burden to
the sampling task involved in converting an input x to an output F(x).

References

1. Kosko, B.: Neural Networks and Fuzzy Systems, Prentice-Hall (1991)
2. Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43(11),
1329-1333 (1994)



264 B. Kosko

3. Kosko, B.: Optimal fuzzy rules cover extrema. Int. J. Intell. Syst. 10, 249-255 (1995)

4. Dickerson, J.A., Kosko, B.: “Fuzzy Function Approximation with Ellipsoidal Rules”, with
J.A. Dickerson. IEEE Trans. Syst. Man Cybern. 26(4), 542-560 (1996)

5. Kosko, B., Fuzzy Engineering. Prentice-Hall (1996)

6. Kosko, B.: Global stability of generalized additive fuzzy systems. IEEE Trans. Syst. Man
Cybern. 28(3), 441-452 (1998)

7. Mitaim, S., Kosko, B.: Neural fuzzy agents for profile learning and adaptive object matching.
Presence 7(6), 617-637 (1998)

8. Mitaim, S., Kosko, B.: The shape of fuzzy sets in adaptive function approximation. IEEE
Trans. Fuzzy Syst. 9(4), 637-656 (2001)

9. Lee, 1., Anderson, W.F., Kosko, B.: Modeling of gunshot bruises in soft body armor with an
adaptive fuzzy system. IEEE Trans. Syst. Man Cybern. 35(6), 1374-1390 (2005)

10. Kandel, A.: Fuzzy Mathematical Techniques with Applications. Addison-Wesley (1986)

11. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice-Hall (1988)

12. Terano, T., Asai, A., Sugeno, M.: Fuzzy Systems Theory and its Applications. Academic Press
(1992)

13. Zimmerman, H.J.: Fuzzy Set Theory and its Application. Kluwer (1985)

14. Isaka, S., Kosko, B.: Fuzzy Logic. Sci. Am. 269, 76-81 (1993)

15. Jang, J.-S.R., Sun, C.-T.: Functional equivalence between radial basis function networks and
fuzzy inference systems. IEEE Trans. Neural Netw. 4(1), 156-159 (1993)

16. Moody, J., Darken, C.: Fast learning in networks of locally tuned processing units. Neural
Comput. 1, 281-294 (1989)

17. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 4, 549-557
(1991)

18. Wang, L.-X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal
least-squares learning. IEEE Trans. Neural Netw. 3, 802-814 (1992)

19. Watkins, F.A.: Fuzzy Engineering. Ph.D. Dissertation, Department of Electrical Engineering,
UC Irvine, Irvine, CA (1994)

20. Watkins, F.A.: The representation problem for additive fuzzy systems. In: Proceedings of the
IEEE Int. Conference on Fuzzy Systems (IEEE FUZZ), vol. 1, pp. 117-122, March 1995

21. Osoba, O., Mitaim, S., Kosko, B.: Bayesian inference with adaptive fuzzy priors and
likelihoods. IEEE Trans. Syst. Man Cybern.-B 41(5), 1183-1197 (2011)

22. Osoba, O., Mitaim, S., Kosko, B.: Triply fuzzy function approximation for hierarchical
bayesian inference. Fuzzy Optim. Decis. Making 11(3), 241-268 (2012)

23. Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to Mathematical Statistics, 7th edn.
Prentice Hall, New York (2013)

24. Osoba, O., Mitaim, S., Kosko, B.: The noisy expectation-maximization algorithm. Fluctuation
Noise Lett. 12(3), 1350012-1-1350012-30 (2013)

25. Audhkhasi, K., Osoba, O., Kosko, B.: Noise benefits in backpropagation and deep
bidirectional pre-training. In: Proceedings of the 2013 International Joint Conference on
Neural Networks, pp. 2254-2261, August (2013)

26. Audhkhasi, K., Osoba, O., Kosko, B.: Noise benefits in convolutional neural networks. In:
Proceedings of the 2014 International Conference on Advances in Big Data Analytics,
pp- 73-80, July (2014)

27. Kong, S.G., Kosko, B.: “Adaptive fuzzy systems for backing up a truck-and- trailer”, with
S.G. Kong. IEEE Trans. Neural Netw. 3(2), 211-223 (1992)

28. Cappe, O., Douc, R., Guillin, A., Marin, J.-M., Robert, C.P.: Adaptive importance sampling in
general mixture classes. Stat Comput., 18(4), 447-459 (2008)



Additive Fuzzy Systems as Generalized Probability Mixture Models 265

Author Biography

Bart Kosko is a Professor of electrical engineering and law with
the University of Southern California (USC) in Los Angeles. He
received degrees in philosophy, economics, mathematics, elec-
trical engineering, and law. Dr. Kosko a Past Director of USC’s
Signal and Image Processing Institute and the organizer of
several conferences on neural networks and fuzzy systems. He
has published the textbooks Neural Networks and Fuzzy
Systems and Fuzzy Engineering, the trade books Fuzzy Think-
ing and Heaven in a Chip, the novel Nanotime, edited the
volume Neural Networks for Signal Processing, and co-edited
the volume Intelligent Signal Processing. His most recent book
is Noise.



Fuzzy Information Retrieval Systems:
A Historical Perspective

Donald H. Kraft, Erin Colvin, Gloria Bordogna and Gabriella Pasi

Abstract The application of fuzzy set theory to information retrieval has been
applied, specifically to Boolean models. This includes fuzzy indexing procedures
defined to represent the varying significance of terms in synthesizing the docu-
ments’ contents, the definition of query languages to allow the expression of soft
selection conditions, and associative retrieval mechanisms to model fuzzy pseudo-
thesauri, fuzzy ontologies, and fuzzy categorizations of documents.

Keywords Fuzzy . Information retrieval + Query . Imprecision « Vagueness -
Indexing + Ememes  Geographic information retrieval

1 Introduction

The objective of this entry is to provide an overview of the application of fuzzy set
theory to design an information retrieval system (IRS). We consider the represen-
tation of uncertainty, imprecision, vagueness and subjectivity, which are charac-
teristics of the process of information searching and retrieval. Salton notes that IR
deals with the representation, storage, and access to “documents” or representatives
of documents (i.e., document surrogates) [49]. The elements of an IRS include a set
of documents, document processing for content analysis, a query describing an

D.H. Kraft (=) - E. Colvin
Colorado Technical University, Colorado Springs, USA
e-mail: kraft@bit.csc.Isu.edu

E. Colvin
e-mail: eschlapkohl@yahoo.com

G. Bordogna
Istituto per il Rilevamento Elettromagnetico dell’ Ambiente, CNR, Milano (MI), Italy
e-mail: bordogna.g@irea.cnr.it

G. Pasi
Disco Universita degli Studi di Milano Bicocca, Milano, Italy
e-mail: pasi@disco.unimib.it

© Springer International Publishing Switzerland 2015 267
D.E. Tamir et al. (eds.), Fifty Years of Fuzzy Logic and its Applications,

Studies in Fuzziness and Soft Computing 326,

DOI 10.1007/978-3-319-19683-1_15



268 D.H. Kraft et al.

information need, a matching of the query and the documents, an output module
with a ranked list of documents deemed relevant, and a user interface.

We will discuss some current trends and key issues in information retrieval, and
give an overview of the basic notions of fuzzy set theory to model IRSs. We will
also provide a description of the traditional fuzzy document representation and a
fuzzy representation of documents structured into logical sections that can be
adapted to the subjective needs of a user. In addition, we give a description of how
the Boolean query language of IR can be extended so as to make it flexible and
suitable to express soft constraints by capturing the vagueness of the user needs.
Both numeric and linguistic selection conditions are introduced to qualify term’s
importance, and we will show how linguistic quantifiers are defined to specify soft
aggregation operators of query terms. We will also discuss how fuzzy sets can serve
to define associative mechanisms to expand the functionalities of IR systems, i.e.,
the capability to represent concepts and to model their semantic relationships.
Fuzzy sets provide notions that can be applied to this purpose allowing to model
fuzzy pseudothesauri and fuzzy ontologies and to build fuzzy categorizations of
documents via fuzzy clustering techniques. Lastly, we present emerging applica-
tions of information retrieval modelled within the fuzzy framework such as geo-
graphic information retrieval, multi-dimensional relevance evaluation, and
discovery of similar web pages contents in multiple searches and ememe identifi-
cation and tracking and discuss fuzzy performance measures for IR systems.

2 Key Issues in Information Retrieval

Modeling the concept of relevance in IR is certainly a key issue, perhaps the most
difficult one, and no doubt the most important one. What makes a document relevant
to a given user is still not fully understood, specifically when one goes beyond
topicality (i.e., the matching of the topics of the query with the topics of the docu-
ment). This leads to the realization that relevance is imprecise as well as subjective.

A second key issue is the representation of the documents in a collection, as well
as the representation of users’ information needs, especially for the purpose of
matching documents to the queries semantically. This implies introducing incom-
pleteness, approximation, and managing vagueness and imprecision. Yet another
key issue is how to evaluate an information retrieval system’s performance prop-
erly, where imprecision also exists.

2.1 Imprecision, Vagueness, Uncertainty, and Inconsistency
in Information Retrieval

Very often the terms imprecision, vagueness, uncertainty, and inconsistency are
used as synonymous concepts. Nevertheless when they are used to qualify a
characteristic of the information they have a distinct meaning [42].
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There are several ways to represent imprecise and vague concepts. One can
approach this indirectly by defining similarity or proximity relationships between
each pair of imprecise and vague concepts. If we regard a document as an imprecise or
vague concept, i.e., as bearing a vague content, a numeric value computed by a
similarity measure can be used to express the closeness of any two pairs of docu-
ments. This is the way of dealing with the imprecise and vague document and query
contents via the weights in IR’s vector space model. In this context the documents and
the query are represented as points in a vector space of terms and the distances
between the query and the documents points are used to quantify their similarity [50].

Another way to represent vague and imprecise concepts is by means of the
notion of fuzzy set. The notion of a fuzzy set is an extension to normal set theory
[66]. The notion of fuzzy set has been used in the IR context to represent the vague
concepts expressed in a flexible query for specifying soft selection conditions of the
documents [59].

Uncertainty is related to the truth of a proposition, intended as the conformity of
the information carried by the proposition with the considered reality. Possibility
theory [27, 65] together with the concept of a linguistic variable defined within
fuzzy set theory [67], provide a unifying formal framework to formalize the
management of imprecise, vague and uncertain information [15].

The same information content can be expressed by choosing a trade-off between
the vagueness and the uncertainty embedded in a proposition. A dual representation
can eliminate imprecision and augment the uncertainty, like in the expression “it is
not completely probable that document d fully satisfies the query q.” One way to
model IR is to regard it as an uncertain problem [33].

There are two alternative ways to model IR activity. One possibility is to model the
query evaluation mechanism as an uncertain decision process. The concept of rele-
vance is considered binary (crisp), as the query evaluation mechanism computes the
probability of relevance of a document d to a query q. Such an approach, which does
model the uncertainty of the retrieval process, has been introduced and developed
using probabilistic IR models [26, 28, 60]. Another possibility is to interpret the query
as the specification of soft “elastic” constraints that the representation of a document
can satisfy to an extent, and to consider the term relevant as a gradual (vague)
concept. This is the approach adopted in fuzzy IR models [9, 33]. In this latter case,
the decision process performed by the query evaluation mechanism computes the
degree of satisfaction of the query by the representation of each document.

This satisfaction degree, called the retrieval status value (RSV), is considered an
estimate of the degree of relevance (or is at least proportional to the relevance) of a
given document with respect to a given user query. An RSV of 1 implies maximum
relevance; an RSV of 0 implies absolutely no relevance. And, an RSV in the
interval (0, 1) implies an intermediate level or degree of relevance.

Inconsistency comes from the simultaneous presence of contradictory informa-
tion about the same reality. An example can be observed when submitting the same
query to several IRSs that adopt different representations of documents and produce
different results. This is actually very common and often occurs when searching for
information over the Internet using different search engines. To solve this kind of
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inconsistency, some fusion strategies can be applied to the ranked lists each search
engine produces. In fact, this is what metasearch engines do [14, 64].

The document representation based on a selection of index terms is invariably
incomplete. When synthesizing the content of a text manually by asking an expert to
select a set of index terms, one introduces subjectivity in the representation. On the
other hand, automatic full-text indexing introduces imprecision since the terms are
not all fully significant in characterizing a document’s content. However, these terms
can have a partial significance that might also depend upon the context in which they
appear, i.e., which document component. Modern retrieval systems may include
natural language processing capabilities to try to deal with semantics. Thus, one can
move from the notion of a document as a “bag of terms” to having a set of concepts.
This leads to the idea of a taxonomy, i.e., a vocabulary and structure (e.g., a cat or a
dog is a pet), and an ontology, i.e., a set of relationships and rules and constraints
(i.e., dog chases cat). These ideas have their own sets of imprecision or vagueness.

3 Fuzzy Retrieval Models

Fuzzy retrieval models have been defined in order to reduce the imprecision that
characterizes the Boolean indexing process, to represent the user’s vagueness in
queries, and to deal with discriminated answers estimating the partial relevance of
the documents with respect to queries. Extended Boolean models based on fuzzy set
theory have been defined to deal with one or more of these aspects [5, 10, 11, 16,
18, 21, 32, 47, 61]. Surveys of fuzzy extensions for IRSs and of fuzzy general-
izations of the Boolean retrieval model can be found in [9, 33].

Fuzzy “knowledge based” models [35, 36], and fuzzy associative mechanisms
[38—40, 43] have been defined to cope with the incompleteness that characterizes
either the representation of documents or the users’ queries. [37] illustrates a wide
range of methods to generate fuzzy associative mechanisms.

It has been speculated that Boolean logic is passé’, out of vogue. Yet, researchers
have employed p-norms in the vector space model or Bayesian inference nets in the
probabilistic model to incorporate Boolean logic. In addition, the use of Boolean
logic to separate a collection of records into two disjoint classes has been consid-
ered, e.g., using the one-clause-at-a time (OCAT) methodology [56]. Even now
retrieval systems such as Dialog and web search engines such as Google allow for
Boolean connectives.

4 Fuzzy Techniques for Indexing

During the indexing process one wants to provide more specific and exhaustive
representations of each document’s information content. This means improving
these representations beyond those generated by existing indexing mechanisms. We
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introduce the fuzzy interpretation of a weighted document representation and a
fuzzy representation of documents structured in logical sections that can be adapted
to a user that has a subjective criteria for interpreting the content of documents
[11, 41]. In order to increase the effectiveness of IRSs, the indexing process plays a
crucial role.

4.1 Vector Space, Probabilistic, and Generalized Boolean
Indexing

The vector space model and the probabilistic models generally adopt a weighted
document representation, which has improved the Boolean document representation
by allowing the association of a numeric weight with each index term [54, 60]. The
automatic computation of the index term [56, 57]. In this case, the indexing
mechanism computes d for each document and t for each term by means of a
function F. An example of F has the index term weight increasing with the fre-
quency of term t in document d but decreasing with the frequency of the term in all
the documents of the archive is given by

F(d, t) =tfgxg(IDF,) where tfy is a normalized term frequency, which can be
defined as:

OCCyq

= Y OCC. (1)
MAXOCC,

thq

OCCy, is the number of occurrences of t in d; MAXOCC, is the number of
occurrences of the most frequent term in d, IDF; is an inverse document frequency
which can be defined as:

N
IDF,=Log———, 2
t OgNDOC, (2)

N is the total number of documents in the archive; NDOC; is the number of
documents indexed by t; and g is a normalizing function.

To simplify the computation of this value, it is possible to heuristically
approximate it: during the archive generation phase, with an expert indicating the
estimated percentage of the average length of each section with respect to the
average length of documents (PERL;). Given the number of occurrences of
the most frequent term in each document d, MAXOCC,, an approximation of the
number of occurrences of the most frequent term in section s of document d is
MAXOCCy =PERL;*MAXOCCq.

The adoption of weighted indexes allows for an estimate of the relevance, or of
the probability of relevance, of documents to a query [53, 60]. Based on such an
indexing function, and by incorporating Boolean logic into the query, the fuzzy
interpretation of an extended Boolean model has been to adopt a weighted
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document representation and to interpret it as a fuzzy set of terms [17]. From a
mathematical point of view, this is a quite natural extension: the concept of the
significance of index terms in describing the information content of a document can
then be naturally described by adopting the function F, such as the one defined
above, as the membership function of the fuzzy set representing a document’s being
in the subset of concepts represented by the term in question. Formally, a document
is represented as a fuzzy set of terms:

Rd=ZteTde(t)/tv (3)

in which the membership function is defined as pgy: DXT — [0, 1]. In this case,
Hrq(t) = F(d, t), the membership value, can be obtained by the indexing function F
which is expressed by a numeric score or RSV.

Fuzzy set theory has been applied to define new and more powerful indexing
models than the one based on the function above. The definition of new indexing
functions has been motivated by several considerations. First, the F functions do not
take into account the idea that a term can play different roles within a text according
to the distribution of its occurrences. The text can be considered as a black box,
closed to a user’s interpretation. This outlines the fact that relevance judgments are
driven by a subjective interpretation of the document’s structure, and supports the
idea of dynamic and adaptive indexing [2, 11]. By adaptive indexing, we mean
indexing procedures which take into account the users’ desire to inferpret the
document contents and to “build” their synthesis on the basis of this interpretation.

An indexing model has been proposed where the occurrences of a term in the
different documents’ sections are taken into account according to specific criteria,
and the user’s interpretation of the text is modeled [11]. During the retrieval phase,
the user can specify the distinct importance of the sections and decide that a term
must be present in all the sections or in at least a certain number of them in order to
consider the term fully significant. A section is a logical subpart identified by s;,
where i€1,..,n and n is the total number of the sections in the documents. We
assume here that an archive contains documents sharing a common structure.

4.2 Fuzzy Representation of Structured Documents

We also consider the synthesis of a fuzzy representation of structured documents
that takes into account the user needs [11]. A document can be represented as an
entity composed of sections (e.g., title, authors, introduction, and references). The
information role of each term occurrence depends then on the semantics of the
subpart where it is located. This means that to the aim of defining an indexing
function for structured documents the single occurrences of a term may contribute
differently to the significance of the term in the whole document. The document’s
subparts may have a different importance determined by the users’ needs.
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When generating an archive of a set of documents, it is necessary to define the
sections one wants to employ to structure each document. The structure of the
documents, i.e., the type and number of sections, depends on the semantics of the
documents and on the accuracy of the indexing module. A formal representation of
a document using a fuzzy binary relation: with each pair <section, term>, a sig-
nificance degree in the interval [0,1] is computed to express the significance of that
term in that document section. To obtain the overall significance degree of a term in
a document, i.e., the index term weight, these values are dynamically aggregated by
taking into account the indications that a user states in the query formulation. Other
non-fuzzy approaches have also introduced the concept of a boosting factor to
emphasize differently the contribution of the index terms occurrences depending on
the document sections to the overall index term weights. However these approaches
compute static index term weights during the indexing process, without taking into
account the user interpretation.

On the contrary, in the fuzzy approach, the aggregation function, is defined on
two levels. First, the user expresses preferences for the document sections (the
equivalent of the boosting factors), second, the user should decide which aggre-
gation function has to be applied to produce the overall significance degree. By
adopting this document representation, the same query can select documents in
different relevance order depending on the user’s preferences.

Formally, a document is represented as a fuzzy binary relation,

Ry=2 setxs Pa(t:8)/(ts), where the value py(t,s) =Fs(d,t) expresses the
significance of term t in section s of document d. An indexing function Fi:
DxT — [0,1] is then defined for each section s. The overall significance degree F(d,t)
is computed by combining the single significance degrees of the sections, the Fy(d,t)
s, through an aggregation function specified by the user.

5 Definition of Flexible Query Languages

The objective here is to define query languages that are more expressive and natural
than classical Boolean logic. This is done to capture the vagueness of user needs as
well as to simplify user system interaction. This has been pursued with two different
approaches. First, there has been work on the definition of soft selection criteria
(soft constraints), which allow the specification of the different importance of the
search terms. Query languages based on numeric query term weights with different
semantics have been first proposed as an aid to define more expressive selection
criteria [5, 18, 21, 22, 61]. An evolution of these approaches has been defined that
introduces linguistic query weights, specified by fuzzy sets such as important or
very important, in order to express the different vague importance of the query
terms [12]. Second, there is the approach of introducing soft aggregation operators
for the selection criteria, characterized by a parametric behavior which can be set
between the two extremes of intersection (AND) and union (OR) as adopted in
Boolean logic. Boolean query languages have been extended and generalized by
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defining aggregation operators as linguistic quantifiers such as at least k or about k
[10]. As a consequence of this extension, the exact matching that is employed by a
classical Boolean IRS is softened using a partial matching mechanism that evaluates
the degree of satisfaction of a user’s query for each document. This degree of
satisfaction is the RSV that is used for ranking.

5.1 Term Significance

To obtain the overall degree of significance of a term in a document, an aggregation
scheme of the values has been suggested, based on a twofold specification of the
user [11]. When starting a retrieval session, the user can specify her/his preferences
on the sections s by numeric score a,&[0,1] where the most important sections have
an importance weight close to 1.

Within fuzzy set theory linguistic quantifiers used to specify aggregations are
defined as Ordered Weighted Averaging (OWA) operators [62]. When processing a
query, the first step accomplished by the system for evaluating F(d,t) is the selection
of the OWA operator associated with the linguistic quantifier 1;, OWA,q. When the
user does not specify any preferences on the documents’ sections, the overall sig-
nificance degree F(d,t) is obtained by applying directly the OWA,, operator to the
values p(d,t), ..., p,(d,t): F(d,t) = OWAyq (p;(d,t), ..., p,(d,t)). When dis-
tinct preference scores «y,...,a, are associated with the sections, it is first necessary
to modify the values p,(d,t), ..., p,(d,t) in order to increase the “contrast” between
the contributions due to important sections with respect to those of less important
ones. The evaluation of the overall significance degree F(d,t) is obtained by applying
the operator OWA 4 to the modified degrees a;,..,a,: F(d,t) = OWAy(ay,..,a,).

5.2 Fuzzy Associative Mechanisms

These associative mechanisms allow automatically generating fuzzy pseudothe-
sauri, fuzzy ontologies, and fuzzy clustering techniques to serve three distinct but
compatible purposes. First, fuzzy pseudothesauri and fuzzy ontologies can be used
to contextualize the search by expanding the set of index terms of documents to
include additional terms by taking into account their varying significance in rep-
resenting the topics dealt with in the documents. The degree of significance of these
associated terms depends on the strength of the associations with a document’s
original descriptors. Second, an alternative use of fuzzy pseudothesauri and fuzzy
ontologies is to expand the query with related terms by taking into account their
varying importance in representing the concepts of interest. The importance of an
additional term is dependent upon its strength of association with the search terms
in the original query. Third, fuzzy clustering techniques, where each document can
be placed within several clusters with a given strength of belonging to each cluster,
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can be used to expand the set of the documents retrieved in response to a query.
Documents associated with retrieved documents, i.e., in the same cluster, can be
retrieved. The degree of association of a document with the retrieved documents
does influence its RSV. Another application of fuzzy clustering is that of providing
an alternative way of presenting the results of a search. When the user does not
specify any criterion to aggregate the single degrees of the sections, a default
aggregation operator is used [10]. Since no importance is specified to differentiate
the contributions of the sections, all of them are assumed to have the same
importance weight of 1.

Associative retrieval mechanisms are defined to enhance the retrieval of IRSs.
They work by retrieving additional documents that are not directly indexed by the
terms in a given query but are indexed by other, related terms, sometimes called
associated descriptors. The most common type of associative retrieval mechanism is
based upon the use of a thesaurus to associate index or query terms with related
terms. In traditional associative retrieval, these associations are crisp.

Fuzzy associative retrieval mechanisms obviously assume fuzzy associations. A
fuzzy association between two sets X = {Xy,...,X,} and Y = {y,...,y,} is formally
defined as a fuzzy relation.

f: X XY — [0,1], where the value f(x,y) represents the degree or strength of the
association existing between the values x€X and y€Y. In information retrieval,
different kinds of fuzzy associations can be derived depending on the semantics of
the sets X and Y.

5.3 Fuzzy Thesauri

A thesaurus is an associative mechanism that can be used to improve both indexing
and querying. The development of thesauri is very costly, as it requires a large
amount of human effort to construct and to maintain. In highly dynamic situations,
i.e., volatile situations, terms are added and new meanings derived for old terms
quite rapidly, so that the thesaurus needs frequent updates. For this reason, methods
for automatic construction of thesauri have been proposed, named pseudothesauri,
based on statistical criteria such as the terms’ co-occurrences, i.e., the simultaneous
appearance of pairs (or larger subsets) of terms in the same documents.

In a thesaurus, the relations defined between terms are of different types. If the
associated descriptor has a more general meaning than the entry term, the relation is
classified as broader term (BT), while a narrower term (NT) is the inverse relation.
Synonyms and near-synonyms are parts of another type of relationship associated
by a related term (RT) connection.

The concept of a fuzzy thesaurus has been suggested [37, 38, 44, 48], where the
links between terms are weighted to indicate the relative strengths of these asso-
ciations. Fuzzy pseudothesauri are generated when the weights of the links are
automatically computed by considering document relationships rather than concept
relationships [40, 44].
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The first work on fuzzy thesauri introduced the notion of fuzzy relations to
represent associations between terms [48, 49]. Let us look at a formal definition of a
fuzzy thesaurus [38, 39]. Consider T to be the set of index terms and C to be a set of
concepts. Each term t€T corresponds to a fuzzy set of concepts h(t):

h(t) = {<c, t(c)> | ceC}, (4)

in which t(c) is the degree to which term t is related to concept c. A measure M is
defined on all of the possible fuzzy sets of concepts, which satisfies: M(@) = 0, M
(C) < 0, M(A) < M(B), if A C B.

A typical example of M is the cardinality of a fuzzy set. The fuzzy RT relation is
represented in a fuzzy thesaurus by the similarity relation between two index terms,
t; and t, € T and is defined as:

s(ti,t) = M[h(t;) nh(ty)]/ M[h(t;) Uh(tz)], (5)

This definition satisfies the following: if terms t1 and t2 are synonymous, i.e., h
(t1) = h(t2), then s(t1,t2) = 1; if t1 and t2 are not semantically related, i.e., h(tl) N h
(t2) = @, then s(t1,t2) = 0; s(t2,t1) = s(t1,t2) for all t1,t2 € T; and if t1 is more
similar to term t3 than to t2, then s(t1,t3) > s(t1,t2). The fuzzy NT relation, indi-
cated as nt, which represents grades of inclusion of a narrower term t; in another
(broader) term t,, is defined as:

nt(t. &) = Mlh(t)) Nh(t)] / Mlh(u), (6)

This definition satisfies the following: if term t1’s concept(s) is completely
included within term t2’s concept(s), i.e. h(tl) C h(t2), then nt(t1,t2) = 1; if t1 and
t2 are not semantically related, i.e., h(t1)nh(t2) = @, then nt(t1,t2) = 0; and if the
inclusion of t1’s concept(s) in t2’s concept(s) is greater than the inclusion of t1’s
concept(s) in t3’s concept(s), then nt(t1,t2) > nt(t1,t3).

By assuming M as the cardinality of a set, s and nt are given as:

s(tr, ) = Yt min[ty (e, t(cx)]/ Tm max[ty (c), t(ck)], (7)

nt(tr, &) = Yve minft; (i), t2(ck)]/ Xne i (k) (8)

A fuzzy pseudothesaurus can be defined by replacing the set C in the definition
of h(t) above with the set of documents D, with the assumption that h(t) is the fuzzy
set of documents indexed by term t. This yields

h(t)={(d, «(d))| deD}, 9)
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in which t(d) = F(d,t) is the index term weight defined above. F can be either a
binary value defining a crisp representation, or it can be a value in [0,1] to define a
fuzzy representation of documents. The fuzzy RT and the fuzzy NT relations now
are defined as:

s(t, ) = XN min[F(t;, dy ), F(tz, di.)]/ Y- max[F(t;, dy), F(t, dy)],  (10)

nt(t;, t) = Yve min[F(t;, dy), F(t, di)]/ TN F(ty, dy), (11)

Note that s(t,t;) and nt(t;,t,) are dependent on the co-occurrences of terms t; and
t, in the set of documents, D. The set of index terms of document d, i.e., {t | F(d,t) #0
and te T}, can be augmented by those terms t, which have s(t,ta) > a and/or
nt(t,tay > p for parameters o and p€[0,1].

A thesaurus can be generated based on the max-star transitive closure for lin-
guistic completion of a thesaurus generated initially by an expert linking terms [4].
A probabilistic notion of term relationships can be employed by assuming that if
one given term is a good discriminator between relevant and non relevant docu-
ments, then any term that is closely associated with that given term (i.e., statistically
co-occurring) is likely to be a good discriminator, too [60]. Note that this implies
that thesauri are collection-dependent.

One can also expand on Salton’s [50] use of the F(d,t) values. Salton [51] infers
term relationships from document section similarities. On the other hand, one can
manipulate the F(d,t) values in order to generate co-occurrence statistics to repre-
sent term linkage weights [31]. Here, a synonym link is considered, defined as:

Hsynonym tl’t2 ZdGD d t (_)F(d tz)] (12)

where F(d, t;) & F(d, t;) =min[F(d,t;) —» F(d,t), F(d,t;) < F(d, t2)] and F(d,t;)
F(d,t,) can be defined in variety of ways. For instance, F(d,t,) F(d,t,), the implication
operator, can be defined as [F(d,t;)° VF(d, t;)], where F(d, t;)°=1— F(d, t;) is the
complement of F(d, t;) and V is the disjunctive (OR) operator defined as the max; or
it can be defined as min(1, [1— F(d,t;) + F(d,t2)]). A narrower term link (where
term t; is narrower than term t,, so term t, is broader than term t;), is defined as:

pnarrower t, t ZdeD d t _)F(d t2)] (13)

Note that fuzzy narrower relationships defined between fuzzy sets can help the
purpose of identifying generalization and specialization of topics, while the fuzzy
similarity relationship between fuzzy sets can be of aid to identify similar topics.
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5.4 Fuzzy Clustering for Documents

Clustering in information retrieval is a method for partitioning D, a given set of
documents, into groups using a measure of similarity (or distance) which is defined
on every pairs of documents. Grouping like documents together is not a new
phenomenon, especially for librarians. The similarity between documents in the
same group should be large, while the similarity between documents in different
groups should be small.

A common clustering method is based on the simultaneous occurrences of
citations in pairs of documents. Documents are clustered using a measure defined
on the space of the citations. Generated clusters can then be used as an index for
information retrieval, i.e., documents which belong to the same clusters as the
documents directly indexed by the terms in the query are retrieved.

Similarity measures have been suggested empirically or heuristically, sometimes
analogously to the similarity measures for documents matched against queries [52,
54, 56]. When adopting a fuzzy set model, clustering can be formalized as a kind of
fuzzy association. In this case, the fuzzy association is defined on the domain
D x D. By assuming R(d) to be the fuzzy set of terms representing a document d
with membership function values d(t) = F(d,t) being the index term weights of term
t in document d, the symmetric fuzzy relation s, as originally defined above, is taken
to be the similarity measure for clustering documents:

s(di, da) = XL minfdy (), da(6)]/ Xt ymax(di (), da(6)), (14)
nt(d;,dy) = Yo min[F(t, d;), F(t, d2)]/ Ihe max[F(t, dy), F(t, da)],  (15)

in which T is the set of index terms in the vocabulary and M is the number of
index terms in T.

In fuzzy clustering, documents can belong to more than one cluster with varying
degree of membership [3]. Each document is assigned a membership value to each
cluster. Modified fuzzy clustering, also called soft clustering, uses thresholding
mechanisms to limit the number of documents belonging to each cluster. The main
advantage of using modified fuzzy clustering is the fact that the degree of fuzziness
is controlled.

6 A Query Evaluation Mechanism

Query processing within retrieval can be interpreted as a decision-making activity.
Its aim is to evaluate a set of alternatives or possible solutions, in this case a set of
documents, based upon some criteria or selection conditions in order to select the
optimal list (perhaps ranked) of documents in response to a user’s query.
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In a Boolean query, the alternatives are the document representations as
described based on the presence or absence of index terms or keywords. The
selection conditions, as expressed by terms specified in a query, define a set of
constraints requiring the presence or absence of these terms within a document’s
representation. These conditions are expressed connected by aggregation operators,
i.e., the Boolean logic operators of AND, OR, and NOT. The decision process is
performed through an exact matching function, which is strictly dependent on the
system query language

Given a fuzzy approach to retrieval, query processing can be regarded as a
decision activity affected by vagueness. The query can be seen as the specification
of a set of soft constraints, i.e. vague selection conditions that the documents can
satisfy to a partial extent. The documents described through the significance degrees
of the index terms constitute the alternatives. The query evaluation mechanism is
regarded as fuzzy decision process that evaluates the degree of satisfaction of the
query constraints by each document representation by applying a partial matching
function. This degree is the RSV and can be interpreted as the degree of relevance
of the document to the query and is used to rank the documents. Then, as a result of
a query evaluation, a fuzzy set of documents is retrieved in which the RSV is the
membership value. In this case the definition of the partial matching function is
strictly dependent on the query language, specifically on the semantics of the soft
constraints.

A wish list of requirements that a matching function of an IRS must satisfy has
been proposed [21, 61]. Included in this list is the separability property that the
evaluation of an atomic selection condition for an individual term in a query should
be independent of the evaluation of the other atomic components or their Boolean
connectors. The matching function should be based solely upon a function evalu-
ating atomic conditions. Following the calculation of these evaluations, one can
then aggregate them based upon the Boolean operators in the query. It has been
shown that this property guarantees a homomorphic mapping from the space of all
single terms to the space of all possible Boolean queries using these terms [1]. This
property has been considered widely within fuzzy retrieval models, especially in the
definition of flexible query languages.

By designing the partial matching mechanism from the bottom-up the separa-
bility property is ensured. First, each atomic selection condition or soft constraint in
the query is evaluated by a function E for a given document. Then the aggregation
operators are applied to the results starting from the inmost operator in the query to
the outermost operator by a function E*. This E function evaluates the soft con-
straints associated with the query atoms on the fuzzy set Ry representing each
document, where these soft constraints are defined as fuzzy subsets. The mem-
bership value p.,»(1) is the degree of satisfaction of the soft constraint associated
with the atomic query atom, i.e., E(<atom>,d) = py0m(F(d,t)). In other words, E
evaluates how well the term t, which has an indexing weight F(d,t) for document d,
satisfies the soft constraint specified by atom. The result of the evaluation is a fuzzy
set, >.deD patom(F(d, t))/d in which p,,,(F(d,t)) is interpreted as the RSV of
document d with respect to the query atom.
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The function E*: DxQ — [0, 1], where Q is the set of all the proper queries in the
query language, evaluates the final RSV of a document, reflecting the satisfaction of
the whole query. The definition of E* depends strictly upon the structure of the
query language, specifically upon the aggregation operators used to combine the
atomic components. The AND connective is classically defined as the minimum
(min) operator, the OR connective as the maximum (max) operator, and the NOT
connective as the one-minus (1-) or complement operator. These definitions pre-
serve the idempotence property. A fuzzy generalization of the Boolean query
structure has been defined in which the Boolean operators are replaced by linguistic
quantifiers [10]. In this context, linguistic quantifiers are used as aggregation
operators to determine the degree of satisfaction for the soft constraints. They allow
to improve as well as to simplify the expressiveness of the Boolean query language.

7 Query Weights

To render a Boolean query language to be more user friendly and more expressive,
one can extend the atomic selection conditions by introducing query term weights
[5, 7, 20, 47]. An example of weighted query is the following: <t;, w;> AND
(<ty, wp> OR <t3, w3>) in which ty, t,, t3, are search terms with numeric weights
Wi, Wo, and wj in the interval [0,1]. These weights are implicitly given as being
equal to 1 in the classical Boolean query language.

The concept of query weights raises the problem of their interpretation. Several
authors have realized that the semantics of query weights should be related to the
concept of the “importance” of the terms. Being well aware that the semantics of the
query term weights influences the definition of the partial matching function,
specifically the E function, different semantics for the soft constraint imposed by a
pair <t,w> have been proposed in the literature trying to satisfy as much as possible
properties of the wish list in particular the separability property.

Early on, query weights were interpreted as a relative importance weight where
the separability property does not hold. Two distinct definitions of E have been
proposed for conjunctive and disjunctive queries, respectively [5, 63]. Later, other
models [20, 47, 61] used an interpretation of the query weights w as a threshold on
the index term weight or as an ideal index term weight [7, 22].

7.1 Implicit Query Weights

The simplest extension of the Boolean model consists of the adoption of a weighted
document representation with a classical Boolean query language [17]. This
retrieval mechanism ranks the retrieved documents in decreasing order of their
significance with respect to the user query. In this case, an atomic query consisting
of a single term t is interpreted as the specification of a pair/<t,1> in which w = 1
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is implicitly specified. The soft constraint associated with <t,1> is then interpreted
as the requirement that the index term weight be “close to 1” and its evaluation is
defined as p,, (F(d,t)) = F(d, t). This means that the desired documents are those
with maximum index term weight for the specified term t, i.e., closest to 1. This
interpretation implies that the evaluation mechanism tolerates the satisfaction of the
soft constraint associated with <t,1> with a degree equal to F(d,t).

7.2 Relative Importance Query Weights

Here, query weights are interpreted as measures of the “relative importance” of each
term with respect to the other terms in the query [5, 63]. This interpretation allows
the IRS to rank documents so that documents are ranked higher if they have larger
index term weights for those terms that have larger query weights. However, since
it is not possible to have a single definition for the soft constraint p,, that preserves
the “relative importance” semantics independently of the Boolean connectors in the
query, two distinct definitions of p,, have been proposed, depending on the
aggregation operators in the query. This approach, sadly, gives up the separability
property. Two alternative definitions have been proposed for conjunctive and dis-
junctive queries [5, 63]. The first proposal [5] yields p, (F(d,t)) = [w * F(d, t)] for
disjunctive queries and p,(F(d,t)) =max(1, F(d, t)/w) for conjunctive queries;
while the second proposal [56] yields p,, (F(d, t)) =min[w, F(d, t)] for disjunctive
queries and p,, (F(d,t)) =max[(1— w), F(d, t)] for conjunctive queries. Notice
that any weighted Boolean query can be expressed in disjunctive normal form
(DNF) so that any query can be evaluated by using one of these two definitions.

7.3 Threshold Query Weights

To preserve the separability property, an approach treating the query weights as
thresholds has been suggested [20, 47]. By specifying query weights as thresholds
the user is asking to see all documents “sufficiently about” a topic. In this case, the
soft constraint identified by the numeric query weight can be linguistically
expressed as “more or less over w”. Of course, the lower the threshold, the greater
the number of documents retrieved. Thus, a threshold allows a user to define a point
of discrimination between under- and over satisfaction.

The simplest formalization of threshold weights has been suggested as a crisp
threshold [47].

pw(F(d, 1) =

{O for F(d,t)<w, (16)

F(d, 1) for F(d,t)>w
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In this case, the threshold defines the minimally acceptable document. Due to its
inherent discontinuity, this formalization might lead to an abrupt variation in the
number of documents retrieved for small changes in the query weights. To remedy
this, continuous threshold formalization has been suggested [20]:

for F(d,t)<w

, 17
P(w) +Q(w)* FLOZW for  E(d, ) 2w (17)

wy (F(d, 1)) =

where P(w) and Q(w) might be defined as P(w) = 4% and Q(w) =! ‘4Wz. For
F(d,t) < w, the p,, function measures the closeness of F(d,t) to w; for F(d,t) > w,
pw(F(d,t)) expresses the degree of over satisfaction with respect to w, and under

satisfaction with respect to 1.

7.4 Ideal Query Weights

Another interpretation for the query weights has been defined [7, 22]. Here, the
pair <t,w> identifies a set of ideal or perfect documents so that the soft constraint
pw measures how well F(d,t) comes close to w, yielding

™ (F(d, t)) — eln(k)*(F(d, t) —W)Z’ (18)

The parameter k in the interval [0,1] determines the steepness of the Gaussian
function’s slopes. As a consequence, k will affect the strength of the soft constraint
“close to w”. So, the larger the value of k is, the weaker the constraint becomes.
This parametric definition makes it possible to adapt the constraint interpretation to
the user concept of “close to w” [7]. The retrieval operation associated with a
pair <t,w> corresponds in this model to the evaluation of a similarity measure
between the importance value w and the significance value of t in Ry: w = F(d,t).

7.5 Linguistic Query Weights

The main limitation of numeric query weights is their inadequacy in dealing with
the imprecision which characterizes the concept of importance that they represent.
In fact, the use of numeric query weights forces the user to quantify a qualitative
and rather vague notion and to be aware of the weight semantics. Thus, a fuzzy
retrieval model with linguistic query weights has been proposed [12] with a lin-
guistic extension of the Boolean query language based upon the concept of a
linguistic variable [67]. With this approach, the user can select the primary lin-
guistic term “important” together with linguistic hedges (e.g., “very” or “almost”)
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to qualify the desired importance of the search terms in the query. When defining
such a query language the term set, i.e., the set of all the possible linguistic values
of the linguistic variable importance, must be defined. Such a definition depends on
the desired granularity that one wants to achieve. The greater the number of the
linguistic terms, the finer the granularity of the concepts that are dealt with. Next,
the semantics for the primary terms must be defined. A pair <t, important> ,
expresses a soft constraint Pimporane ON the term significance values (the F(d,b)
values). The evaluation of the relevance of a given document d to a query consisting
solely of the pair <t, important> is based upon the evaluation of the degree of
satisfaction of the associated soft constraint important.

The problem of giving a meaning to numeric weights reappears here in asso-
ciating a semantic with the linguistic term important. The pimportane function is
defined based on the ideal semantics of the numeric weight to yield [12].

In(K)*(F0=0)"  for F(d,t)<i
for i<F(d,t)<j., (19)
(0= for F(d,)>]

F(d,t)) =

“impon‘ant (

R =

We see that if F(d,t) is less than the lower bound i or greater than the upper
bound j, the constraint is under satisfied. The strength of the soft constraint Wimportant
depends upon both the width of the range [i, j] and the value of the k parameter. The
values i and j delimit the level of importance for the user. We note that as the value
li - jl increases, the soft constraint becomes less precise. So, for the case of the ideal
semantics of numeric query term weights, k determines the sharpness of the con-
straint in that ask increases, the constraint increases in fuzziness.

We can define the Pimportant function based upon the threshold semantics to yield
[34]

% e @O0 for F(d,0)<i
(F(d,p)={ +Fd:0  for i<FA0<,.  (20)
TJ*( +%) for F(d,0>]

p‘important

We note that this compatibility function is continuous and non-decreasing in F(d,t)
over the interval [0,1]. For F(d,t) < i, Pimportant iNCreases as a Gaussian function. For F
(d,p) in the interval [i,j], pimpor@nt increases at a linear rate. For F(d,t) > j, pimportant
still increases, but at a lesser rate. The compatibility functions of non-primary terms,
such as very important or fairly important, are derived by modifying the compatibility
functions of primary terms. This is achieved by defining each linguistic hedge as a
modifier operator. For example, the linguistic hedges are defined as translation
operators in [34] to yield:

Hvery important (X) = Himportant (X) with ivery =i+ 0.2 and jvery :j +0.2 and Vx €
[0,1].
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Haveragely important (X) = Himportant (X) with iaveragely =i-0.3 andjaveragely =j -0.3
and Vx € [0,1].

pminimally important (X) = pimporlam (X) with iminimally =i-0.5and jminimally =j -0.5
and Vx € [0,1],

in which i and j are values in [0,1] delimiting the range of complete satisfaction of
the constraint pimporcane- With these definitions, any value F(d,t) of the basic domain
of the importance variable fully satisfies at least one of the constraints defined by
the linguistic query terms. In [30] a query language with linguistic query weights
having heterogeneous semantics have been proposed so as to benefit the full
potential offered of a fuzzy set to model subjective needs.

8 Linguistic Quantifiers to Aggregate the Selection
Conditions

In a classical Boolean query language, the AND and OR connectives allow only for
crisp (non-fuzzy) aggregations which do not capture any of the inherent vagueness
of user information needs. For example, the AND used for aggregating M selection
conditions does not tolerate the no satisfaction of but a single condition which could
cause the no retrieval of relevant documents. To deal with this problem, additional
extensions of Boolean queries have been provided which involves the replacement
of the AND and OR connectives with soft operators for aggregating the selection
criteria [46, 54, 55].

Within the framework of fuzzy set theory, a generalization of the Boolean query
language has been defined based upon the concept of linguistic quantifiers that are
employed to specify both crisp and vague aggregation criteria of the selection
conditions [10]. New aggregation operators can be specified by linguistic expres-
sions with self-expressive meaning, such as at least k and most of. They are defined
to exist between the two extremes corresponding to the AND and OR connectives,
which allow requests for all and at least one of the selection conditions, respec-
tively. The linguistic quantifiers used as aggregation operators, are defined by
ordered weighted averaging (OWA) operators.

Adopting linguistic quantifiers more easily and intuitively formulate the
requirements of a complex Boolean query. A quantified aggregation function can be
applied not only to single selection conditions, but also to other quantified expres-
sions. Then, the E* function evaluating the entire query yields a value in [0,1] for
each document d in the archive D. If S is the set of atomic selection conditions and Q
is the set of legitimate Boolean queries over our vocabulary of terms, then the E*
function can be formalized by recursively applying the following rules:

e ifge Sthen E * (d, s) = uw(F(d, t)) in which p,(F(d,t)) is the satisfaction degree
of a pair <t,w> by document d with w being either a numeric weight or a
linguistic weight.
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e if q = quantifier (qy,...,qn) and q;,...,q, € Q then E*(d,q) = OWA guandfier(E*
(d.q1)s..., E* (d, qa))E * (d, NOTq) = 1 - E * (d, q) in which OWA guandifier i
the OWA operator associated with quantifier.

The formal definition of the query language with linguistic quantifiers with the
following quantifies has been generated [10]

all replaces AND;

at least k acts as the specification of a crisp threshold of value k on the number
of selection conditions and is defined by a weighting vector Wy jeas k in Which
wi =1, and wj = 0, for i < k — noting that at least 1 selects the maximum of the
satisfaction degrees so that it has the same semantics of OR;

e about k is a soft interpretation of the quantifier at least k in which the k value is
not interpreted as a crisp threshold, but as a fuzzy one so that the user is fully
satisfied if k or more conditions are satisfied but gets a certain degree of sat-
isfaction even if k-1, k-2,...,1 conditions are satisfied - this quantifier is defined

by a weighting vector Wpou k in Which w; = Zki ; fori <k, and w; =0 fori > k;
j=1

e most is defined as a synonym of at least % n in which n is the total number of
selection conditions.

With respect to non-fuzzy approaches that tried to simplify the Boolean for-
mulations, the fuzzy approach subsumes the Boolean language, allows reformu-
lating Boolean queries in a more synthetic and comprehensible way, and improves
the Boolean expressiveness by allowing flexible aggregations. Other authors have
followed these ideas by proposing alternative formalization of linguistic query
weights and flexible operators based on ordinal labels and ordinal aggregations
[29], thus reducing the complexity of the evaluation mechanism.

9 Emerging Applications of Fuzzy Set Theory to Model
Information Retrieval Tasks

9.1 Geographic Information Retrieval

An emerging task in information retrieval is retrieving documents relevant with
respect to both a content based condition and a geographic condition.

Such applications involve the management of uncertainty and imprecision and
the modeling of user preferences and context. Indexing the geographic content of
documents implies dealing with the ambiguity, synonymy and homonymy of
geographic names in texts. On the other side, the evaluation of queries specifying
both content based conditions and spatial conditions on documents contents
requires representing the vagueness and context dependency of spatial conditions
and the personal user’s preferences. The spatial condition can be specified lin-
guistically in the query through vague terms such as “close to the North East of
Milan”, whose semantic depends on the user’s context and perception of distance.
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In [25] a geographic information retrieval model has been defined that represents
both the uncertainty in indexing the geographic documents’ content and the user’s
context and preferences in evaluating flexible spatial queries.

Finally, the system allows evaluating two types of queries flexibly combining
the content based condition, such as “vegetarian Restaurants” with the spatial
condition “close to Milano Central Ralway station”. The spatial condition “close”
is defined as a soft constraint on the user’s perceived distance between the docu-
ments’ footprint and query’s footprint [8].

For each retrieved document, two relevance scores are computed with respect to
the two query conditions that are flexibly combined to generate an overall ranked
list of documents. The user can choose the semantic for the combination, that can
be either an asymmetric “and possibly” aggregation between the mandatory content
condition and the optional spatial condition, or a compensative “average” aggre-
gation, defined as a linear combination of the two conditions; further, a relative
preference between the conditions can be specified to achieve personalization and
effectiveness.

9.2 Aggregation of Multi Dimensional Relevance Dimensions

Relevance assessment is usually based on the evaluation of multiple criteria, also
called relevance dimensions, which are aimed to capture different aspects or
properties of the considered document or document/user context. All the considered
dimensions concur to estimate the utility of a document with respect to the con-
sidered user’s query. The concept of page popularity in search engines is an
example of a relevance dimension that is usefully exploited in the process of
documents’ relevance estimate. In the multidimensional relevance assessment each
dimension is usually evaluated in an independent way, and a numeric score is
associated with each dimension for each document. To obtain an overall relevance
score the single scores will get aggregated into an overall score representing the
document’s RSV.

Among the aggregation operators, traditional non-compensatory operators, such
as the min and the max operator allow to set up a pessimistic (e.g. min, as an example
of T-norm operator) or optimistic (e.g. max, as an example of T-conorm operators)
aggregation scheme, while traditional averaging aggregation operators are totally
compensatory, i.e., a lack in the satisfaction of a criterion can be compensated by the
surplus satisfaction of another one. This property is not very realistic in many real
applications in general, and in particular in Information Retrieval (IR). In [23-25]
two prioritized aggregation operators for multidimensional relevance assessment
have been proposed (the scoring and the prioritized and operators), and they have
been evaluated by a user-centered approach that has been conducted in a person-
alized IR setting, where four relevance dimensions have been considered (aboutness
(or topicality), coverage, appropriateness and reliability). An interesting aspect in
considering a personalized IR setting to evaluate the prioritized aggregation is that
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the priority over the considered relevance dimensions may be user dependent; by
setting different priority orders over the four considered relevance dimensions,
different types of users’ can be identified, with distinct search intents. The main
impact in making the prioritized aggregation scheme user dependent is that for a
same query and a same user different document rankings can be obtained.

9.3 Discovery of Similar Contents in Web Pages Retrieved
by Multiple Queries

Another recent application of fuzzy set in information retrieval is related with the
task of organizing and discovering the contents of the Web pages retrieved by
several query reformulations of the same information need.

It may often happen that by reformulating a query by slightly changing some
words or adding new terms to a previous query new and already retrieved docu-
ments are represented in the list of results.

In order to discover the common contents retrieved by two or more queries and
select only diversified contents by eliminating near duplicates an approach defined
in [6] consists in applying soft operators to distinct lists of Web pages retrieved by
either the same query submitted to distinct search engines or similar queries sub-
mitted to the same search engine.

The approach proposes [6] the soft ranked intersection to generate from two lists
of web pages retrieved by two distinct searches a cluster of Web pages with similar
contents, and the soft ranked union to generate a cluster of Web pages with diver-
sified contents. The soft operators work on the representation of the Web pages
provided by information granules consisting of the Web pages titles, url string, and
snippets displayed in the result page, thus without the need to access the Web page
content so as to achieve efficiency. The soft operators allow users to discover and
reveal the hidden shared topics retrieved by multiple Web searches, possibly iden-
tifying near duplicates and selecting Web pages with diversified contents.

9.4 Ememe Identification and Tracking

A very up to date task in information retrieval is the identification and tracking of
the evolution of Internet Meme, hereafter named ememe, intended as a unit of
information (idea) replicated and propagated through the Web by one or more
applications such as social networks and blogs. The Web constitutes a huge
information repository, and several Internet based-services and applications repre-
sent a quite rich soil for memes’ growth and evolution. Like blogs, e-mails, and
social network applications.

The conceptual notion of ememe has been intended in a simple form as a replicated
or paraphrased sentence by the scientific literature on meme tracking. The first attempt
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that considers an ememe not as merely a sequence of words or a quoted sentence but as
a set of interrelated concepts has been proposed in [6] where a method based on the
definition of an ememe by an OWL schema, and a process for retrieving ememe
instances and fusing them by means of Ordered Weighted Averaging Operators has
been proposed. Specifically, by taking inspiration from the anthropologic literature on
memes a methodology to formally define, identify, revise and measure some char-
acteristic properties of ememes on the Blogosphere was defined.

The proposed method for identifying ememes on the Blogosphere needs a
preliminary user-system interaction [13]; the user is in fact asked to provide an “a
priori” core definition of the ememe that he/she wants to identify; the core definition
can be specified by a conceptual schema expressed in OWL, and it is provided in
input to a pull mechanism that will search the candidate instances of the given
ememe into one or several source repositories of the blogosphere; the blogs to be
analysed can be also specified by the user, and if not provided the system will
search on the whole blogosphere.

Once the OWL core definition has been completed, some textual queries are
automatically generated and submitted to a search engine that will inquiry the
blogosphere to retrieve blogs’ posts that potentially contain ememe instances.

Finally, a filtering process is defined, which takes in input the retrieved blogs’
posts and selects those containing the ememe instances which will be used in the
phase aimed at revising and enriching the original core definition of the ememe.
The aim of the filtering process is to identify the reliable ememe instances among
the results produced by the search process. The overall satisfaction value obtained
by the aggregation operator is then used to filter the first M relevant ememe
instances. The evaluation function associated with the linguistic quantifier some is
defined by an Ordered Weighted Averaging Operator.

10 Fuzzy Performance Measures

Major factors in evaluating retrieval performance include the cost, time, and effort
to retrieve relevant items, as well as user satisfaction. The standard measures of
effectiveness include recall, the proportion of relevant documents retrieved (related
to 1-a or 1-Type I error in classical statistics the proportion of retrieved documents
that are relevant) and precision, the proportion of retrieved documents that are
relevant (1-p or 1-Type II error in classical statistics). Combining recall and pre-
cision can yield

E=1-1/[aP”'+ (1-aR™") or F=(1+a)*P*R/ (aP + R),  (21)

where « is a user specified parameter. Other measures include G = generality
= proportion of documents that are relevant (one very weak rule based on the
notion that the act of retrieval should convey relevance information is that
precision > generality), and Fa = fallout = proportion of non relevant documents
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retrieved. Another measure is S=(1/2)[1+(S* +S7)/Sma] for ordering, where
S* = number of pairs in ranked list where order is correct; S~ = number of pairs in
ranked list where order is correct; Sp,x = maximal value of S*.

One problem with current criteria to measure the effectiveness of IR systems is
the fact that recall and precision measures have been defined by assuming that
relevance is a Boolean concept. In order to take into account the fact that IR systems
rank the retrieved documents based on their RSVs that are interpreted either as a
probabilities of relevance, similarity degrees of the documents to the query, or as
degrees of relevance, Recall-Precision graphs are produced in which the values of
precision are computed at standard levels of recall. Then, the average of the precision
values at different recall levels is computed to produce a single estimate.

Nevertheless, these measures do not evaluate the actual values of the RSVs
associated with documents and do not take into account the fact that also users can
consider relevance as a gradual concept. For this reason some authors have pro-
posed some fuzzy measure of effectiveness. [19] proposed the evaluation of fuzzy
recall and fuzzy precision, defined as follows:

> min(eq, ug)
2acd 7 #2)

Fuzzy Precision =

Fuzzy Recall = M7 (23)
2t

where uy is the user’s evaluation of the relevance of document d (uy can be
binary or defined in the interval [0,1]) and e4 is the RSV of document d computer
by the IR system. These measures take into account the actual values of e4 and ug,
rather than the rank ordering based in descending order on ey.

These measures can be particularly useful to evaluate the results of fuzzy clus-
tering algorithms.

11 Experimental Results

A comparison of the results produced by using the traditional fuzzy representation of
documents and the fuzzy representation of structured documents can be found in
[10]. In this experiment, a collection of 2500 textual documents about descriptions of
CNR research projects has been considered. The indexing module of the prototypal
information retrieval system named DOMINO, used for the experiment, has been
extended in order to be able to recognize in the documents any structure simply by
specifying it into a definition file. In this way it is not necessary to modify the system
when dealing with a new collection of documents with a different structure. The
definition of the documents sections has been made before starting the archive
generation phase. During this phase it was also necessary to specify the criteria by
which to compute the significance degrees of the terms in each section. Two kinds of
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sections have been identified: the “structured” sections, i.e., the research code, title,
research leader, and the “narrative” sections, containing unstructured textual
descriptions, i.e., the project description and the project objective. It has been
observed that while the values of precision remain unchanged in the two versions of
the system, the values of recall are higher by using the structured representation than
those obtained by using the traditional fuzzy representation.

We illustrate another approach which produces a weighted representation of
documents written in HTML [41]. An HTML document has a specific syntactic
structure in which its subparts have a given format specified by the delimiting tags.
In this context, tags are seen as syntactic elements carrying an indication of the
importance of the associated text. When writing a document in HTML, an author
associates varying importance to each of the different subparts of a given document
by delimiting them by means of appropriate tags. Since a certain tag can be
employed more than once, and in different positions inside the document, the
concept of document subpart is not meant as a unique, adjacent piece of text. Such a
structure is subjective and carries the interpretation of the document author. It can
be applied in archives, which collect heterogeneous documents, i.e. documents with
possibly different “logical” structures.

An indexing function has been proposed which provides different weights for the
occurrences of a given term in the document, depending on the tags by which they
are delimited [41]. The overall significance degree F(d,t) of a term t in a document d
is computed by first evaluating the term significance in the different document tags,
and then by aggregating these contributions. With each tag, a function
Frag: DXT —[0,1] is associated together an importance weight ,, € [0, 1]. Note
that the greater the emphasis of the text associated with a tag, the greater its
importance weight. A possible ranking of the considered tags has been suggested
[41] in decreasing order of tag importance. The definition of such a list is quite
subjective, although based on objective assumptions suggested by commonsense.
These rankings include notion such as a larger font, or text in boldface or italics or
appearing in a list can be assumed as having a higher importance.

To simplify the hierarchy of the tags, we see that certain tags can be employed to
accomplish similar aims, so one can group them into different classes. It is assumed
that the members of a class have the same importance weight. Text not delimited by
any tag is included into the lowest class. A simple procedure to compute numeric
importance weights starting from the proposed ranking can be achieved. The def-
inition of Fy,, follows the same mechanism as the previous approach [10].

Once the single significance degrees of a term into the tags have been computed,
these have to be aggregated in order to produce an overall significance degree of the
term into the document. In the aggregation all the significance degrees should be
taken into account, so as to consider the contribution of each tag, modulated by
their importance weights. To this aim a weighted mean can be adopted:
A(Fmgl(d, t), ... Fugn(d, t)) =iy Fuei(d,t)*w; in which Y- ,wi=1.
Starting from the list of tags in decreasing relative order of their importance, the
numeric weights w; are computed through a simple procedure. Assuming that tag; is



Fuzzy Information Retrieval Systems: A Historical Perspective 291

more important than tag; iff i < j (being i and j the positions of tag; and tag;
respectively in the ordered list), the numeric importance weight w; associated with
tag; can be computed as: wi= (n—i+1)/Yi—; ni . In the computation of the
overall significance degree F(d,t), the inverse document frequency of term t could
be taken into account (the definition of g(IDF)) is given in formula (2)):

F(d,t) = (- _nFugi(d, )*g(IDF,), (24)

12 Conclusions

This entry reviews the main objectives and characteristics of the fuzzy modeling of
the information retrieval activity with respect to alternative approaches such as
probabilistic IR and Vector space IR. The focus of the fuzzy approaches is on
modeling imprecision and vagueness of the information with respect to uncertainty.
The fuzzy generalizations of the Boolean Retrieval model have been discussed by
describing the fuzzy indexing of structured documents, the definition of flexible
query languages subsuming the Boolean language, and the definition of fuzzy
associations to expand either the indexes or the queries, or to generate fuzzy clusters
of documents. Fuzzy similarity and fuzzy inclusion relationships between fuzzy sets
have been introduced that can help to define more evolved fuzzy IR models per-
forming “semantic” matching of documents and queries, which is the current trend
of research in Information retrieval.
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Is the World Itself Fuzzy? Physical
Arguments and Unexpected Computational
Consequences of Zadeh’s Vision

Vladik Kreinovich and Olga Kosheleva

Abstract Fuzzy methodology has been invented to describe imprecise (“fuzzy”)
human statements about the world, statements that use imprecise words from natural
language like “small” or “large”. Usual applications of fuzzy techniques assume that
the world itself is “crisp”, that there are exact equations describing the world, and
fuzziness of our statements is caused by the incompleteness of our knowledge. But
what if the world itself is fuzzy? What if there is no perfect system of equations
describing the physical world — in the sense that no matter what system of equations
we try, there will always be cases when this system leads to wrong predictions? This
is not just a speculation: this idea is actually supported by many physicists. At first
glance, this is a pessimistic idea: no matter how much we try, we will never be able
to find the the Ultimate Theory of Everything. But it turns out that this idea also has
its optimistic aspects: namely, in this chapter, we show (somewhat unexpectedly),
that if such a no-perfect-theory principle is true, then the use of physical data can
drastically enhance computations.

1 Fuzzy Techniques: The Original Zadeh’s Vision

Pre-Zadeh attitude: everything can be made precise. Scientists and engineers use
both formal languages and an imprecise natural language. In engineering practice,
formulas, derivations, and computations — which are described in a precise language
— intertwine with explanations — which are usually described in a natural language.
Even in formal mathematics, when presenting a proof, a mathematician describes
part of it in precise terms and part in imprecise terms from a natural language:

“one can easily see that”, “since € is small, the difference f(x + ) — f(x) is also
small”, etc.
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In formal mathematics, usually, the imprecise parts can be reformulated in precise
terms; professional mathematicians can do it, mathematics students are taught how
to do it — and math students do not get good grades until they are able to perform
such a reformulation. In rare occasions, an attempt for such a formalization reveals
a gap in the proof, but in most such cases, this gap is later filled.

Similarly, when an engineer makes an imprecise argument, it does not necessar-
ily mean that a more precise explanation is not possible: when needed, an engineer
can usually provide a precise quantitative justification of his/her original qualitative
decision.

A similar precisiation is often possible beyond science and engineering. For
example, instructors who grade students’ work use seemingly imprecise words like
“excellent”, “good”, “satisfactory”. However, in most cases, these words have a very
precise meaning. In the US grading system, we usually add up well-defined points
that the students got for different problems on the test. If the resulting grade is 90
(or higher) out of 100 possible points, we assign the grade “excellent” (A). If the
resulting grade is at least 80 but smaller than 90, we consider this work “good”
(grade B), etc.

Similarly, in medicine, many terms that are, at first glance, imprecise, have a very
precise meaning. “High blood pressure” means upper blood pressure above 140,
“fever” means temperature above 37.5 C, “overweight” means that the body-mass
index (body mass in kg divided by the squared height in meters) is above 25, etc. In
law, a child — a seemingly informal notion, with an imprecise transition — is legally
defined as someone younger than 18 years old.

These example led scientists and engineers to conclude that in principle, all the
statements can be made precise. According to this belief, when a statement sounds
imprecise, it is only because we have not learned the corresponding terms yet. Once
we learn these terms, the statement will become very precise.

Zadeh’s vision. In 1965, Lotfi Zadeh published his revolutionary paper, in which he
emphasized that:

— in addition to situations when use imprecise terms but have a precise meaning in
mind (“excellent test results” meaning 90+ points),

— there are also many situations when we use imprecise terms for which no precise
meaning is known.

Moreover, he showed that such situations, in which no precise meaning is known, in
which the meaning is “fuzzy”, are ubiquitous in many application areas.

To deal with such situations, L. Zadeh proposed techniques — which he called
fuzzy —that enable researchers to describe their imprecise statements in precise math-
ematical terms, and thus, enables computer-based systems to process such state-
ments. These techniques has led to many successful applications; see, e.g., [3, 5,
6, 9, 16, 20, 22, 23].
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2 Is the World Itself Fuzzy? and if Yes, What Are Possible
Physical and Computational Consequences?

Traditional viewpoint. The traditional viewpoint in engineering and science is that
the world itself is crisp, it is described by precise equations which, in principle,
enable us to predict either the events themselves (in classical, pre-quantum physics)
or probabilities of different events (in quantum physics). The only reason for “fuzzy”
uncertainty is that we only have partial knowledge about the world.

For example, when a meteorologist makes a “fuzzy” statement that there is a good
chance of rain, the meteorologist usually believes that with more information, he/she
would be able to make a more definite prediction.

But what if the world itself is fuzzy? But what if there are no ultimate equations?
What if, no matter what equations we formulate, no matter how accurate their pre-
dictions are so far, there will always be cases when these equations will lead to wrong
predictions?

In other words, what if not only our knowledge is fuzzy, what if the world itself
is fuzzy?

Somewhat surprisingly, this is what many physicists actually believe. Many physi-
cists indeed believe that every physical theory is approximate — no matter how
sophisticated a theory, no matter how accurate its current predictions, inevitably
new observations will surface which would require a modification of this theory;
see, e.g., [2].

This belief can be justified by the history of physics: no matter how good a phys-
ical theory, no matter how good its accordance with observations, eventually, new
observations appeared which were not fully consistent with the original theory —
and thus, a theory needed to be modified. For example, for several centuries, New-
tonian physics seems to explain all observable facts — until later, quantum (and then
relativistic) effects were discovered which required changes in physical theories.

At first glance, this belief is pessimistic. This belief sounds pessimistic: no matter
how much we try, we will never find the Ultimate Theory of Everything.

But maybe there is room for optimism. But is the situation indeed so pessimistic?
After all, physics is not just about finding equations. Finding equations is an impor-
tant first step, but the ultimate goal of physics is not to find equations, but to predict
future events — and equations are an important first step towards this prediction.

Many physical equations are very complex, solving them is a complex computa-
tional task. From this viewpoint, any possibility to enhance computations would be
a great optimistic development. For example, quantum physics is clearly more pes-
simistic in terms of possibility of predictions, because in quantum physics, we can
often only predict probabilities of future events, and not the events themselves. On
the other hand, research on quantum computing has shown that the use of quantum
effects can drastically enhance computations; see, e.g., [17].
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How does the no-perfect-theory belief affect computations? In this chapter, we
analyze how the no-perfect-theory belief affects our computational abilities.

At first glance, the fact that no theory is perfect seems to make the question of
computability rather hopeless: no matter how seriously we analyze computability
within a given physical theory, eventually, this theory will turn out to be, strictly
speaking, false — and thus, our analysis of what is computable will have to be redone.

In this chapter, we show, however, that in spite of this seeming hopelessness, some
important answers to the question of what is computable can be deduced simply from
the fact no physical theory is perfect — namely, in this case, we show that computa-
tions can be enhanced in comparison with the usual (Turing machine) computability.

Comment. Some preliminary results from this chapter first appeared in
[7, 8, 12, 25].

3 How to Describe, in Precise Terms, that No Physical
Theory Is Perfect

Discussion. The statement that no physical theory is perfect means that no matter
what physical theory we have, eventually there will be observations which violate
this theory. To formalize this statement, we need to formalize what are observations
and what is a theory.

What are observations? Each observation can be represented, in the computer, as
a sequence of Os and 1s; actually, in many cases, the sensors already produce the
signal in the computer-readable form, as a sequence of O's and 1s.

An exact description of each experiment can also be described in precise terms,
and thus, it will be represented in a computer as a sequence of Os and 1s. An exper-
iment should specify how long we wait for the result; in this way, we are guaranteed
that we get the result. The coding should be done in such a way that the waiting time
does not exceed a polynomial of the length of the code i; for example, if we want
to wait for # moments of time, we should just add ¢ copies of an appropriate wait
symbol.

In each experiment, we can specify which bit of the result we are interested in;
for convenience, we can consider producing different bits as different experiments.

Each such experiment is represented as a sequence of Os and 1s; by appending 1
at the beginning of this sequence, we can view this sequence as a binary expansion
of a natural number i. This natural number will serve as the “code” describing the
experiment. For example, a sequence 001 is transformed into i = 1001, = 9;,. (We
need to append 1, because otherwise two different sequences 001 and 01 will be
represented by the same integer).

For natural numbers i which correspond to experiment descriptions, let w; denote
the bit result of the experiment described by the code i.
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Let us also define w; for natural numbers i which do not correspond to a syntac-
tically correct description of experiments. For example, we can take w; = 0 for such
numbers i.

In these terms, all past and future observations form a (potentially) infinite
sequence @ = w®, ... of Os and 1s, w; € {0, 1}.

What is a physical theory from the viewpoint of our problem: a set of sequences. A
physical theory may be very complex, but all we care about is which sequences of
observations w are consistent with this theory and which are not. In other words, for
our purposes, we can identify a physical theory T with the set of all sequences @
which are consistent with this theory.

Not every set of sequences corresponds to a physical theory: the set T must be non-
empty and definable. Not every set of sequences comes from a physical theory. First,
a physical theory must have at least one possible sequence of observations, i.e., the
set T must be non-empty.

Second, a theory — and thus, the corresponding set — must be described by a finite
sequence of symbols in an appropriate language. Sets which are uniquely by (finite)
formulas are known as definable. Thus, the set T must be definable.

Since at any moment of time, we only have finitely many observations, the set T
must be closed. Another property of a physical theory comes from the fact that at
any given moment of time, we only have finitely many observations, i.e., we only
observe finitely many bits. From this viewpoint, we say that observations o, ... ®,
are consistent with the theory T if there is a continuing infinite sequence which is
consistent with this theory, i.e., which belongs to the set T

The only way to check whether an infinite sequence @ = @, ... is consistent
with the theory is to check that for every 7, the sequences w; ... w,, are consistent with
the theory 7. In other words, we require that for every infinite sequence w = w; @, ...,

— if for every n, the sequence w; ... w,, is consistent with the theory 7, i.e., if for
every n, there exists a sequence @™ € T which has the same first n bits as @, i.e.,
for which 0" = o, for all i = 1,...,n,

— then the sequence w itself should be consistent with the theory, i.e., this infinite

sequence should also belong to the set 7.

From the mathematical viewpoint, we can say that the sequences ™ converge to
w: ®" — w (or, equivalently, lim " = w), where convergence is understood in

. . . def
terms of the usual metric on the set of all infinite sequences d(w, ') = 2~N@@),

where N(w, ') < max{k : @ ... = @} ...} }.

In general, if ®™ = @ in the sense of this metric, this means that for every n,
there exists an integer ¢ such that for every m > ¢, we have w(lm) . co,(qm) =® ...,
Thus, if ™ € T for all m, this means that for every n, a finite sequence @, ... ®,
can be a part of an infinite sequence which is consistent with the theory 7. In view
of the above, this means that w € T.



302 V. Kreinovich and O. Kosheleva

In other words, if @™ — @ and @™ € T for all m, then w € T. So, the set T
must contain all the limits of all its sequences. In topological terms, this means that
the set T must be closed.

A physical theory must be different from a fact and hence, the set T must be nowhere
dense. The assumption that we are trying to formalize is that no matter how many
observations we have which confirm a theory, there eventually will be a new obser-
vation which is inconsistent with this theory. In other words, for every finite sequence
| ..., which is consistent with the set 7, there exists a continuation of this
sequence which does not belong to 7. The opposite would be if all the sequences
which start with o, ... @, belong to T in this case, the set T will be dense in this
set. Thus, in mathematical terms, the statement that every finite sequence which is
consistent with 7 has a continuation which is not consistent with 7" means that the
set T is nowhere dense.

Resulting definition of a theory. By combining the above properties of a set 7 which
describes a physical theory, we arrive at the following definition.

Definition 1. By a physical theory, we mean a non-empty closed nowhere dense
definable set T.

Mathematical comment. To properly define what is definable, we need to have a con-
sistent formal definition of definability. In this chapter, we follow a natural definition
from [10, 11] — which is reproduced in Appendix A.

Formalization of the principle that no physical theory is perfect. In terms of the above
notations, the no-perfect-theory principle simply means that the infinite sequence @
(describing the results of actual observations) is not consistent with any physical
theory, i.e., that the sequence w does not belong to any physical theory 7. Thus, we
arrive at the following definition.

Definition 2. We say that an infinite binary sequence w is consistent with the no-
perfect-theory principle if the sequence w does not belong to any physical theory (in
the sense of Definition 1).

Comment. Are there such sequences in the first place? Our answer is yes. Indeed, by
definition, we want a sequence which does not belong to a union of all definable phys-
ical theories. Every physical theory is closed nowhere dense set. Every definable set
is defined by a finite sequence of symbols, so there are no more than countably many
definable theories. Thus, the union of all definable physical theories is contained in
a union of countably many closed nowhere dense sets. Such sets are knows as mea-
ger (or Baire first category); it is known that the set of all infinite binary sequences
is not meager. Thus, there are sequences who do not belong to the above union —
i.e., sequences which are consistent with the no-perfect-theory principle; see, e.g.,
[4, 18].
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4 How to Describe When Access to Physical Observations
Enhances Computability

How to describe general computations. Each computation is a solution to a well-
defined problem. As a result, each bit in the resulting answer satisfies a well-defined
mathematical property. All mathematical properties can be described, e.g., in terms
of Zermelo-Fraenkel theory ZF, the standard formalization of set theory. For each
resulting bit, we can formulate a property P which is true if and only if this bit is
equal to 1. In this sense, each bit in each computation result can be viewed as the
truth value of some statement formulated in ZF. Thus, our general ability to compute
can be described as the ability to (at least partially) compute the sequence of truth
values of all statements from ZF.

All well-defined statements from ZF can be numbered, e.g., in lexicographic
order. Let a,, denote the truth value of the n-th ZF statement, andleta = a4 ... «a,, ...
denote the infinite sequence formed by these truth values. In terms of this sequence,
our ability to compute is our ability to compute the sequence «a.

Kolmogorov complexity as a way to describe what is easier to compute. We want to
analyze whether the use of physical observations (i.e., of the sequence w analyzed
in the previous section) can simplify computations. A natural measure of easiness-
to-compute was invented by A. N. Kolmogorov, the founder of modern probability
theory, when he realized that in the traditional probability theory, there is no formal
way to distinguish between:

— finite sequences which come from observing from truly random processes, and
— orderly sequences like 0101 ... 01.

Kolmogorov noticed that an orderly sequence 0101 ... 01 can be computed by a short
program, while the only way to compute a truly random sequence 0101 ... is to have a
print statement that prints this sequence. He suggested to describe this difference by
introducing what is now known as Kolmogorov complexity K(x) of a finite sequence
x: the shortest length of a program (in some programming language) which computes
the sequence x.

— For an orderly sequence x, the Kolmogorov complexity K(x) is much smaller than
the length len(x) of this sequence: K(x) < len(x).
— For a truly random sequence x, we have K(x) ~ len(x); see, e.g., [14].

The smaller the difference len(x) — K(x), the more we are sure that the sequence x is
truly random.

Relative Kolmogorov complexity as a way to describe when using an auxiliary
sequence simplifies computations. The usual notion of Kolmogorov complexity pro-
vides the complexity of computing x “from scratch”. A similar notion of the relative
Kolmogorov complexity K(x | y) can be used to describe the complexity of comput-
ing x when a (potentially infinite) sequence y is given. This relative complexity is
based on programs which are allowed to use y as a subroutine, i.e., programs which,
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