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Abstract. Alzheimer’s disease (AD), an age-related progressive neu-
rodegenerative disorder, is the most common cause of dementia. It is
characterised by abnormal neuroanatomical changes in the brain, some
of which can be difficult to distinguish from the alterations caused by nor-
mal aging. Sulcal morphology is affected by AD atrophy, indicates signif-
icant differences between cognitively normal (CN) and AD subjects, and
proves to be a potential AD biomarker. 210 subjects (100 CN, 110 AD)
were acquired from the ADNI database. 120 sulci were extracted per
subject using BrainVISA sulcal identification pipeline. Mean curvature,
surface area and volume were calculated for each sulcus, parameterized
by a 3D mesh, and used as AD/CN classification features. 184 subjects
were correctly classified (AD=98, CN=86), producing an accuracy of
88%, sensitivity of 89%, specificity of 86%, based on 33 features. Results
indicate that sulcal morphology, when based on specific features, could
be a valuable AD biomarker.
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vector machine · BrainVISA

1 Introduction

Dementia is a descriptive term indicating an observable decline in cognitive
abilities. It is estimated that 35.6 million people were living with dementia in
2010, and this number is expected to almost double every 20 years as a result
of the worldwide ageing population [1]. Alzheimer’s disease (AD) is the most
frequent neurodegenerative disease, the most common cause of dementia, and

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf.
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is usually diagnosed in people over 65 years of age, but the early-onset AD can
occur much earlier [2]. AD is an irreversible and progressive disorder, estimated
to affect 60-65% of dementia patients [3]. By 2050 the expected prevalence of AD
will have increased to 106.8 millions, from 30 millions in 2010 [4]. AD projection
models suggest that primary prevention may successfully delay the onset of AD
and as a result reduce the future prevalence of the disease.

Human brain morphology, the study of its form and shape, is considered a
potential biomarker for diagnosis and prognosis of neurological diseases. Corti-
cal thickness, surface area and its mean curvature, sulcal depth and width, have
been applied to distinguish AD from CN [5,6]. Sulci are important macroscopic
surface landmarks of the cerebral cortex (illustrated on Figure 1) which allow
distinguishing between different functional areas of the brain. Their morphol-
ogy has recently been utilized as means of investigating the structural brain
changes, supplementing or replacing the measurements of cortical thickness, or
approaches involving voxel-based methods. Sulcal surface and length as potential
biomarkers have been investigated for Autism Spectrum Disorder [7], and they
are also speculated to be in correlation with morphological changes in the cortex
in schizophrenia, where sulcal abnormalities in language-related areas may be
the underlying cause of hallucinations [8]. The atrophic changes in the brain
are reflected in a loss of gray matter [9] and believed to first affect the entorhi-
nal cortex and the hippocampus [10]. Sulcal widening, depth, and overall cortex
atrophy have been linked with the progression of AD. The AD-related brain atro-
phy results in narrowing of cerebral gyri and widening of sulci. The widening
of cortical sulci has been measured as a neuroimaging marker of brain atrophy,
either age- or disease-related [6,11]. It is correlated with cognitive functions in
the elderly, i.e. poorer cognitive performance was associated with a wider sulcal
span [12].

Fig. 1. Illustration of an extracted sulcal mesh by BrainVISA 4.4.0

Sulcal widening also showed the highest sensitivity in revealing differences
between CN and AD [5]. Significant changes in sulcal depth have also been found
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in normal aging [11], as well as in AD and mild cognitive impairment patients,
where a relationship between sulcal shape and volumetric changes was investi-
gated. Im et al., 2008 [5] found a significantly lower sulcal mean curvature in
AD subjects than in normal controls, and a significant difference in sulcal depth
between CN and AD. Another study used similarity maps to examine correla-
tion of mean cortical thickness between region of interest (ROI) [13]. Multi-kernel
support vector machine (SVM) was used to classify regional mean cortical thick-
ness, hippocampal volume, regional cortical volumes and a combination of those
in CN and AD subjects, with a classification accuracy of 92.35%, and an area of
0.9744 under the receiver operating characteristic (ROC) curve [13].

The purpose of this cross-sectional study was to investigate the sulcal mor-
phology (mean curvature, surface area, volume) as biomarkers complementing
the structural changes seen in MRI, which would provide a successful classifi-
cation of AD. The contribution of this paper is that the pipeline successfully
extracted, calculated and selected a feature combination of sulcal mean curva-
ture, surface area, and volume for AD/CN classification using SVM, while earlier
studies focused on individual analysis of sulcal length, depth, or width.

2 Methods

Data

Data used in this project was obtained from the ADNI database. The ADNI
database was launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies and non-
profit organizations, as a $60 million, 5-year public- private partnership. The
primary goal of ADNI has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early AD. Determination of
sensitive and specific markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials.

210 1.5T pre-processed1 T1-weighted magnetization-prepared rapid gradient
echo (MP-RAGE) scans [CN (n=100), and AD (n=110)] were acquired from
ADNI. The CN group was defined in the database as ’ADNI1 Screening’, which
consists of healthy controls, with no signs of depression, mild cognitive impair-
ment nor dementia; while the AD group as ’ADNI1/GO Month 24’, with AD
subjects scanned 24 months after AD diagnosis. The criteria for CN were as fol-
lows: Mini-Mental State Examination (MMSE) score: 24-30, Clinical Dementia
Rating (CDR) of 0, non–depressed, non MCI, and not demented. The criteria for
AD were: MMSE score below 26, CDR of 0.5, and meet the National Institute of

1 Image corrections are detailed at http://adni.loni.usc.edu/methods/mri-analysis/
mri-pre-processing

http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing
http://adni.loni.usc.edu/methods/mri-analysis/mri-pre-processing
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Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and
Related Disorders Association criteria for probable AD. The demographics dis-
tribution for each group are represented in Table 1. T1-weighted MR scans were

Table 1. Demographics distribution of the subjects

Group N (females) Age ± sd MMSE ± sd CDR ± sd

AD 110 (52) 77.7±7.4 18.7±6.0 1.3±0.6
CN 100 (49) 75.8±5.3 29.1±1.1 0.0±0.0

processed in BrainVISA 4.4.0 Morphologist 2013 pipeline to extract sulci. Sur-
face area, mean curvature, and volume were calculated. Exclusion criteria were
applied to ensure the quality of the data. Figure 2 illustrates a simplified method
pipeline. Selection of features was performed by means of forward selection and

Fig. 2. A simplified pipeline for the AD/CN classification based on sulcal morphology

backward elimination in order to ensure that only the best selected features and
feature combinations produce the highest classification results. Each iteration
was investigated and evaluated on accuracy in a k-fold (k=10) cross-validation
SVM classifier. BrainVISA 4.4.0 Morphologist 2013 pipeline was used to extract
all sulci labeled in the BrainVISA Sulci Atlas v. 2011 (n=60) for both left and
right hemisphere. The mesh files, converted from a NIfTI to a polygon file format
(.ply), were analyzed in MATLAB R2014b. The meshes created by BrainVISA
are converted from consist of two main components: a vector of three-dimensional
vertices, connected by edges, and a vector of polygons, or mesh faces, where each
polygon is defined by the three vertices it links. The overall surface of the mesh
consists of the mesh faces.

Sulcal Extraction and Feature Selection

BrainVISA extracted 60 sulci from the left hemisphere and 60 from the right
(120 sulci total) for each subject. The total number of all extracted sulci from
210 subjects was 25200. In principle, every sulcus had to be extracted twice
from each subject: once from the left hemisphere, once from the right; and this
extraction was attempted on all 210 subjects. However, BrainVISA was not
able to successfully extract some of the sulci for a number of subjects, either
due to lower quality MRI data, or due to an error in sulcal identification and
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labeling. The following exclusion criterion was selected to avoid a situation where
a certain sulcus would be extracted only in a small number. If the number of
successful extractions for a given sulcus was below 95% of a total number of
expected successful extractions from all 210 subjects, that specific sulcus was
removed from the pooled data, both the left and right side. In this process,
48 sulci were removed. For each sulcus, three features were calculated: sulcal
surface area, mean curvature, and volume, resulting a total of 216 features per
subject: 108 from the left hemisphere and 108 from the right. Additionally, the
ratios of the remaining features were created (n=108) (e.g. the ratio of a sulcus
volume between the left and right hemisphere).

Surface Area: Heron’s formula [14] was used to calculate the surface area of
each triangle in the mesh. The total surface area was obtained by summing all
thee triangles in the extracted sulcus.

Mean Curvature: The mean principal curvature of each sulcus was calculated
by splitting the sulcus into parts consisting of one vertex, and the vertices con-
nected via the face-matrix in two links or less. This part was then rotated into
a normalized plane, and fitted to the function in Equation (1).

f(x, y) = α1x
2 + α2y

2 + α3xy + α4x + α5y + α6 (1)

α1, α2 and α3 were used to create the Hessian matrix, from where the eigen-
vectors and eigenvalues were calculated. This was performed for every vertex in
the sulcus. The mean of the eigenvalues was used as the mean curvature for the
sulcus.

Volume: The volume for each sulcus in all subjects was calculated using Delau-
nay triangulation to split the sulcus into tetrahedrons. The volume for each tetra-
hedron was calculated by Equation (2). The total sulcal volume was defined as
the total sum of all the tetrahedrons.

V =
|(a− d) · ((b− d) × (c− d))|

6
(2)

a, b and c are the coordinates for the base of the tetrahedron and d for the apex.
All tetrahedrons with a circumsphere radius larger than a selected threshold
(r=2) were removed.

The feature extraction and selection pipeline decreased the number of fea-
tures from the initial 360 (surface area, mean curvature, and volume for 120 sulci
per subject) to 324. The process of extracting and selecting features is illustrated
on Figure 3. The next step involved selecting the features that best distinguish
AD from CN by means of forward selection and backward elimination. During
each iteration, 10-fold cross-validation was applied to evaluate the performance
of the features, where the data was randomly partitioned into k=10 subgroups
of equal size. A single subgroup was removed from the rest of the data, and
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Fig. 3. Overview of the specific method pipeline, from feature extraction to obtaining
final features

used as the validation data for testing the classification performance, while the
remaining subgroups were used as training data. This cross-validation process
was repeated k=10 times, where each subgroup was used exactly once. If the
classification performance, based on a balancing index (below 0.40) [15] and the
highest accuracy, performed better than the previous run, the feature was added
to the feature set. This was repeated until adding additional features would not
improve the outcome of the classifier. The highest classification accuracy was
obtained with a set of 33 features.

Results

The two subject groups consisted of 110 AD and 100 CN subjects. The initial
324 features were used in a forward selection and backward elimination methods.
A MATLAB SVM with a linear kernel was employed to evaluate the selected
features with the following parameters: a standardized predictor matrix was
used to train the classifier, and the prior probabilities for the two classes were
uniform. Each iteration was evaluated based on a balancing index combined
with accuracy in a 10-fold cross-validation SVM classifier. In Table 2 the sulci
are sorted after feature type. The best feature combination consists of features
related to surface area. Eleven features were based on sulcal surface area, and
six were of the surface area ratio between the sulci in the left and the right
hemisphere, resulting in a total of 17 surface area features. Eleven related to
the sulcal curvature, out of which four were the ratio between the left and right
hemisphere. Only five features were based on sulcal volume alone, not combined
with the ratio between left and right hemisphere. The best classification result
was obtained on 33 features, listed in Table 2, which shows in what order the
features were selected and which were the most discriminating. 184 subjects
were classified correctly (AD=98, CN=86), resulting with a sensitivity of 89%,
specificity of 86% and accuracy of 88%. The receiver operating characteristic
curve (ROC) and area under curve (AUC) were used to illustrate and evaluate
the performance of the discrete classifier. The curve illustrates the true positive
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Table 2. The 33 selected features, their means and standard deviations, sorted in what
order they were selected and which were the most discriminating

Feat. no. Sulcus: Feature: AD ± SD CN ± SD

1 Superior temporal sulcus right surface area 2520.75±581.07 2904.11±571.32
2 Calloso-marginal posterior fissure left surface area 1144.14±381.26 1339.94±337.08
3 Posterior inferior temporal sulcus left surface area 667.71±318.68 858.14±394.69
4 Calloso-marginal posterior fissure surface area ratio 1.21±0.68 1.14±0.42
5 Central sulcus left volume 1239.16±220.20 1215.34±207.26
6 Superior postcentral intraparietal sup. left volume 471.79±202.23 540.54±233.63
7 Posterior intra-lingual sulcus left volume 131.01±89.27 119.91±83.06
8 Olfactory sulcus right surface area 513.06±132.77 566.39±152.23
9 Calloso-marginal posterior fissure right curvature 0.13±0.04 0.11±0.05
10 Cuneal sulcus left curvature 0.21±0.07 0.25±0.40
11 Rhinal sulcus right surface area 290.27±225.70 292.93±186.07
12 Ascending ramus of the lateral fissure surface area ratio 1.62±2.01 1.55±2.39
13 Posterior occipito-temporal lateral sulcus curvature ratio 1.06±0.50 1.19±1.01
14 Posterior terminal ascending branch curvature ratio 1.45±1.20 1.31±0.83

of superior temporal sulcus
15 Anterior intralingual sulcus right surface area 227.12±140.37 216.72±125.18
16 Rhinal sulcus right curvature 0.22±0.13 0.21±0.07
17 Marginal frontal sulcus surface area ratio 1.42±1.60 1.15±0.87
18 Olfactory sulcus right volume 227.47±62.61 257.83±73.86
19 Anterior inferior temporal sulcus right surface area 600.47±270.84 676.03±219.91
20 Central sulcus surface area ratio 1.05±0.19 1.03±0.18
21 Internal frontal sulcus surface area ratio 1.29±0.86 1.47±1.17
22 Polar frontal sulcus left curvature 0.31±0.30 0.27±0.13
23 Posterior lateral fissure left curvature 0.06±0.02 0.06±0.02
24 Polar temporal sulcus right curvature 0.20±0.08 0.19±0.06
25 Posterior inferior temporal sulcus curvature ratio 1.40±0.76 1.21±0.67
26 Intermediate precentral sulcus surface area ratio 0.98±0.68 0.92±0.63
27 Posterior lateral fissure left surface area 3093.19±563.32 3180.43±559.75
28 Collateral fissure right surface area 1198.95±529.62 1396.36±463.40
29 Polar temporal sulcus right surface area 326.65±164.55 371.70±137.46
30 Rhinal sulcus curvature ratio 1.19±1.39 0.95±0.59
31 Superior frontal sulcus left surface area 1768.61±648.59 1852.34±660.76
32 Superior precentral sulcus right volume 191.85±107.98 221.87±117.69
33 Parieto-occipital fissure right curvature 0.08±0.04 0.08±0.04

rate against the false positive rate (Figure 4). The ROC-AUC with the selected
feature combination were 84%, based on 33 features (Table 2) from 24 sulci
(Figure 5).

Discussion

The main objective of this paper was to investigate the sulcal morphology (mean
curvature, surface area, volume) to evaluate the pattern recognition classifica-
tion ability to distinguish between CN and AD subjects. Previous studies based
solely on sulcal morphology have not, to the best of our knowledge, been able
to achieve the same levels of specificity and sensitivity. Our results show that
sulcal morphology, when based on specific features, could be used as a valuable
biomarker. The contribution of this study is that it successfully investigated a
classifier combination of sulcal mean curvature, surface area and volume, while
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Fig. 4. ROC-curve for the AD/CN classification. The diagonal representing the random
guess.

earlier studies focused on individual analysis of sulcal length, depth or width. The
SVM classification of this study was based on a total of 33 features from 24 sulci
(Figure 5). Several other classification methods have been proposed in literature
to automatically distinguish between AD/MCI and cognitively normal controls
[16,17]; a majority of them are multimodal. A study by [18], which combined
three modalities of biomarkers (MRI, FDG-PET, and CSF), achieved a classifi-
cation accuracy of 93.2%, 93% sensitivity, and 93.3% specificity, when combining
all three modalities. However, a lower accuracy of 86.5% was achieved with the
best individual modality, PET. With MRI alone, the specificity obtained was
86.3%, sensitivity 86% and accuracy 86.2%. Our study achieved a specificity
of 89%, sensitivity of 86% and accuracy of 87% based on sulcal morphology
from T1-weighted MRI, which therefore demonstrates promising results in the
classification of AD and CN subjects.

The significance of our results facilitates further sulcal morphology studies
in a combination with other biomarkers in order to improve early AD diagnosis.
Most of sulcal morphology research on AD investigates very specific sulci, such as
the central sulcus [19,20], or a combination of a few major, large sulci, since they
are present in all individuals, they are relatively easy to identify and extract, and
are located on different cerebral lobes [5,6]. Our approach involved the initial
extraction of all cortical sulci. The subsequent feature extraction and selection
excluded some sulci, which were incompletely extracted. Nonetheless, a large
set of cortical sulci was studied (Figure 5). They varied in size and shape, and
were located on different cerebral lobes, thus allowing us to investigate potential
changes in sulcal morphology across the entire brain. The SVM classification in
our study was based on 33 features (Table 2) from 24 sulci. The extracted sulci,
which showed morphologic changes, were from the areas that are proved to be
affected by AD atrophy. The Collateral fissure is located near the hippocampal
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Fig. 5. The sagittal view of the selected 24 sulci

region where AD atrophy has been indicated [21,22]. Seven sulci (collateral fis-
sure, rhinal sulcus, posterior inferior temporal sulcus, polar temporal sulcus,
superior temporal sulcus, anterior inferior temporal sulcus, and the anterior ter-
minal ascending branch of the superior temporal sulcus) are located in the medial
temporal lobe, where AD atrophy also has been found [23–25]. The Calloso-
marginal posterior fissure and superior postcentral intraparietal superior sulcus
are located in the parietal lobe, where morphological changes in AD have also
been observed [22,24,26].

There are some potential limitations that should be addressed. BrainVISA
toolbox is a commonly used sulcal identification and extraction pipeline. While
the software is very efficient in automatically labeling and extracting the sulci, it
is often advisable to address the data quality issue of the program. The majority
of studies visually inspect the sulci after extraction to remove errors. This proves
to be impossible with an immense set of subjects (n = 210) and sulci per subject
(n = 120), since the initial extraction procedure resulted in a total of 25200
individual sulci. To asses the pipeline’s performance and evaluate the quality
of sulcal extraction, we performed an additional examination of a small subset
of sulci (n=62) from 31 CN and 31 AD subjects. In this dataset, some of the
extracted sulci (n=10) contained missing fragments, possibly due to lower quality
of some MRI data, or an error in sulcal identification and labelling. It must be
mentioned that this may have an impact on the calculated features. However,
while it is possible that BrainVISA pipeline introduces a bias to the data, it still
provides high classification results.
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